Design, fabrication and characterization of a micro-fluxgate intended for parallel robot application
NASA Astrophysics Data System (ADS)
Kirchhoff, M. R.; Bogdanski, G.; Büttgenbach, S.
2009-05-01
This paper presents a micro-magnetometer based on the fluxgate principle. Fluxgates detect the magnitude and direction of DC and low-frequency AC magnetic fields. The detectable flux density typically ranges from several 10 nT to about 1 mT. The introduced fluxgate sensor is fabricated using MEMS-technologies, basically UV depth lithography and electroplating for manufacturing high aspect ratio structures. It consists of helical copper coils around a soft magnetic nickel-iron (NiFe) core. The core is designed in so-called racetrack geometry, whereby the directional sensitivity of the sensor is considerably higher compared to common ring-core fluxgates. The electrical operation is based on analyzing the 2nd harmonic of the AC output signal. Configuration, manufacturing and selected characteristics of the fluxgate magnetometer are discussed in this work. The fluxgate builds the basis of an innovative angular sensor system for a parallel robot with HEXA-structure. Integrated into the passive joints of the parallel robot, the fluxgates are combined with permanent magnets rotating on the joint shafts. The magnet transmits the angular information via its magnetic orientation. In this way, the angles between the kinematic elements are measured, which allows self-calibration of the robot and the fast analytical solution of direct kinematics for an advanced workspace monitoring.
Design and analysis of miniature tri-axial fluxgate magnetometer
NASA Astrophysics Data System (ADS)
Zhi, Menghui; Tang, Liang; Qiao, Donghai
2017-02-01
The detection technology of weak magnetic field is widely used in Earth resource survey and geomagnetic navigation. Useful magnetic field information can be obtained by processing and analyzing the measurement data from magnetic sensors. A miniature tri-axial fluxgate magnetometer is proposed in this paper. This miniature tri-axial fluxgate magnetometer with ring-core structure has a dynamic range of the Earth’s field ±65,000 nT, resolution of several nT. It has three independent parts placed in three perpendicular planes for measuring three orthogonal magnetic field components, respectively. A field-programmable gate array (FPGA) is used to generate stimulation signal, analog-to-digital (A/D) convertor control signal, and feedback digital-to-analog (D/A) control signal. Design and analysis details are given to improve the dynamic range, sensitivity, resolution, and linearity. Our prototype was measured and compared with a commercial standard Magson fluxgate magnetometer as a reference. The results show that our miniature fluxgate magnetometer can follow the Magson’s change trend well. When used as a magnetic compass, our prototype only has ± 0.3∘ deviation compared with standard magnetic compass.
NASA Technical Reports Server (NTRS)
Dyal, P.; Gordon, D. I.
1973-01-01
Discussion of the properties of both the stationary and portable magnetometers used in the Apollo program to measure static and dynamic fields on the lunar surface. A stationary magnetometer is described in which the three orthogonal vector components of the magnetic field are measured by three fluxgate sensors which are located at the ends of three orthogonal booms and contain ferromagnetic cores driven to saturation by means of a periodic current. In the Apollo 16 magnetometer special high-stability ring-core sensors were used which provided an output voltage to the analog-to-digital converter which is proportional to the magnetic field. A portable magnetometer is described which consists of a set of three orthogonal fluxgate sensors mounted on top of a tripod connected to an electronics box by a ribbon cable. The above-mentioned stationary magnetometer simultaneously measured the time-varying components of the field which were later subtracted from the portable magnetometer measurements to give the desired resultant steady field values caused by the magnetized crustal material.
Autonomous Aeromagnetic Surveys Using a Fluxgate Magnetometer
Macharet, Douglas G.; Perez-Imaz, Héctor I. A.; Rezeck, Paulo A. F.; Potje, Guilherme A.; Benyosef, Luiz C. C.; Wiermann, André; Freitas, Gustavo M.; Garcia, Luis G. U.; Campos, Mario F. M.
2016-01-01
Recent advances in the research of autonomous vehicles have showed a vast range of applications, such as exploration, surveillance and environmental monitoring. Considering the mining industry, it is possible to use such vehicles in the prospection of minerals of commercial interest beneath the ground. However, tasks such as geophysical surveys are highly dependent on specific sensors, which mostly are not designed to be used in these new range of autonomous vehicles. In this work, we propose a novel magnetic survey pipeline that aims to increase versatility, speed and robustness by using autonomous rotary-wing Unmanned Aerial Vehicles (UAVs). We also discuss the development of a state-of-the-art three-axis fluxgate, where our goal in this work was to refine and adjust the sensor topology and coupled electronics specifically for this type of vehicle and application. The sensor was built with two ring-cores using a specially developed stress-annealed CoFeSiB amorphous ribbon, in order to get sufficient resolution to detect concentrations of small ferrous minerals. Finally, we report on the results of experiments performed with a real UAV in an outdoor environment, showing the efficacy of the methodology in detecting an artificial ferrous anomaly. PMID:27999307
Autonomous Aeromagnetic Surveys Using a Fluxgate Magnetometer.
Macharet, Douglas G; Perez-Imaz, Héctor I A; Rezeck, Paulo A F; Potje, Guilherme A; Benyosef, Luiz C C; Wiermann, André; Freitas, Gustavo M; Garcia, Luis G U; Campos, Mario F M
2016-12-17
Recent advances in the research of autonomous vehicles have showed a vast range of applications, such as exploration, surveillance and environmental monitoring. Considering the mining industry, it is possible to use such vehicles in the prospection of minerals of commercial interest beneath the ground. However, tasks such as geophysical surveys are highly dependent on specific sensors, which mostly are not designed to be used in these new range of autonomous vehicles. In this work, we propose a novel magnetic survey pipeline that aims to increase versatility, speed and robustness by using autonomous rotary-wing Unmanned Aerial Vehicles (UAVs). We also discuss the development of a state-of-the-art three-axis fluxgate, where our goal in this work was to refine and adjust the sensor topology and coupled electronics specifically for this type of vehicle and application. The sensor was built with two ring-cores using a specially developed stress-annealed CoFeSiB amorphous ribbon, in order to get sufficient resolution to detect concentrations of small ferrous minerals. Finally, we report on the results of experiments performed with a real UAV in an outdoor environment, showing the efficacy of the methodology in detecting an artificial ferrous anomaly.
Compact, Low-Noise Magnetic Sensor with Fluxgate (DC) and Induction (AC) Modes of Operation
2009-07-01
induction sensor and the fluxgate magnetometer . ......................................... 2 Figure 3.1 - Impulse response of a 4” long coil (#6...Block diagram of the Year 2, Task 2 fluxgate magnetometer . ................................... 6 Figure 3.3 - FIS-prototype magnetic-field...and demonstrated an innovative dual-mode, fluxgate -induction sensor (FIS) that combines a fluxgate magnetometer and an electromagnetic (EM) induction
A new spinner magnetometer using high sensitivity magneto-impedance sensor
NASA Astrophysics Data System (ADS)
Kodama, Kazuto
2016-04-01
A sensitive spinner magnetometer was developed using a pair of high-resolution Magneto-Impedance sensors. The MI sensor generally utilizes the MI effect of amorphous wire whose impedance changes by the application of a small magnetic field. Various kinds of MI sensors are currently used in many electric devices, for example, a magnetic compass chip built-in smart phones and car navigations. The MI sensor employed in this study is a pico-Tesla MI sensor, an especially sensitive MI sensor originally manufactured for industrial use to detect contamination of small magnetic particles in industrial materials such as fabrics. To detect weak magnetic signals from natural samples and avoid DC drift, a gradiometer system was employed that consists of a pair of the MI sensors and the electronics with analog filter and pre-amplification circuit. This MI gradiometer system was equipped to a commercial spinner magnetometer (SMD-88, Natsuhara Giken, Osaka) with the spinning rate of 5 Hz. It is demonstrated that this new spinner magnetometer is capable of measuring weak magnetic samples of 10-6 mAm2, with the highest resolution being 10-8 mAm2, approximately two orders of magnitude better than the previous one using a ring-core flux-gate sensor. One of the advantages of the MI spinner magnetometer is that it can be easily modified to accommodate samples of any shape and size. Moreover the slow-rotating speed (5 Hz) allows to measure samples for archeomagnetic studies that are usually irregular and fragile. Because the irregularity of shape increases errors in measuring the dipole component of the total magnetization, it is necessary to increase the distance between the sample and sensor, resulting in poorer sensitivity. The high-sensitivity MI sensor enables to measure the NRM of such irregular-shaped samples from an appropriate distance to the sample, with no significant loss of sensitivity.
Symmetry Induced Heteroclinic Cycles in Coupled Sensor Devices
2012-01-01
of an array of magnetic sensors. In particular, we consider arrays made up of fluxgate magnetometers inductively coupled through electronic circuits. c...cycle can significantly enhance the sensitivity of an array of magnetic sensors. In particular, we consider arrays made up of fluxgate magnetometers ...IUTAM 5 ( 2012 ) 144 – 150 4. A Cycle in A Coupled-Core Fluxgate Magnetometer 4.1. Modeling In its most basic form, a fluxgate magnetometer
Magnetic Test Facility - Sensor and Coil Calibrations
2013-08-01
amplitude of signals induced into the sensor. 2.1.1.2 Fluxgate magnetometers Fluxgate sensors consist of a ferromagnetic core, around which drive and sense...kHz range to be measured. Fluxgate magnetometers do not have a lower limit to their fre- quency response, and hence can be used to measure...placed within a larger triaxial coil which is used in conjunction with a fluxgate magnetometer to cancel earth’s field at the cen- tre of the coil. A
2008-04-01
5 Fluxgate magnetometer ... magnetometer into digital format, and transmitted as a single serial data string to log the Cs and fluxgate magnetometer data. After procurement...Hardware The system hardware comprises an EMI sensor, Cs vapor magnetometer , fluxgate magnetometer , hand-held data acquisition computer, integrated
Munitions Detection Using Unmanned Underwater Vehicles Equipped with Advanced Sensors
2012-06-29
buried target. The RTG is a small passive magnetic sensor using fluxgate magnetometers measuring 3- orthogonal magnetic-field vector components at 3...surveys. Figure 6 shows the RTG magnetic sensor in both an open (showing the fluxgate magnetometers ) and enclosed state (mode for integration onto...7.6 Real-time Tracking Gradiometer (RTG) System The RTG is a small passive magnetic sensor using fluxgate magnetometers measuring 3- orthogonal
The DMSP Space Weather Sensors Data Archive Listing (1982-2013) and File Formats Descriptions
2014-08-01
environment sensors including the auroral particle spectrometer (SSJ), the fluxgate magnetometer (SSM), the topside thermal plasma monitor (SSIES... Fluxgate Magnetometer (SSM) for the Defense Meteorological Satellite Program (DMSP) Block 5D-2, Flight 7, Instrument Papers, AFGL-TR-84-0225; ADA155229...Flux) SSM The fluxgate magnetometer . (Special Sensor, Magnetometer ) SSULI The ultraviolet limb imager SSUSI The ultraviolet spectrographic imager
Hidden Markov Model as a Framework for Situational Awareness
2008-07-01
line of sight unlike the PIR sensor – they complement each other. Magnetic sensor (B-field sensor): We used both Fluxgate and coil magnetometers ...The former has low frequency response while the coil magnetometer provides high frequency response. A total of six sensors: three fluxgate ...Computer is turned off Figure 7: Fluxgate magnetometer output in x-axis 0 50 100 150 200 250 300 350 400 450 2.6 2.8 3 3.2 3.4 3.6 3.8 4 Time (sec
Underwater (UW) Unexploded Ordnance (UXO) Multi-Sensor Data Base (MSDB) Collection
2009-07-01
11 FIGURE 6 RTG SENSOR. FOUR SENSOR TRIADS ARE SHOWN, EACH WITH A 3-AXIS FLUXGATE MAGNETOMETER ...used by RTG to measure the gradients. Each triad includes a 3-axis fluxgate magnetometer and a set of feedback coils. The outputs of three triad...each with a 3-axis fluxgate magnetometer (internal, not clearly visible) and a set of 3 feedback coils. The upper triad 3-axis magnetometer
Feasibility study on measurement of magnetocardiography (MCG) using fluxgate magnetometer
NASA Astrophysics Data System (ADS)
Sengottuvel, S.; Sharma, Akash; Biswal, Deepak; Khan, Pathan Fayaz; Swain, Pragyna Parimita; Patel, Rajesh; Gireesan, K.
2018-04-01
This paper reports the feasibility of measuring weak magnetic fields generated by the electrical activity of the heart using a portable tri-axial fluxgate magnetometer inside a magnetically shielded room. Measurement of Magnetocardiogram (MCG) signals could be successfully demonstrated from a healthy subject using a novel set-up involving a reference fluxgate sensor which simultaneously measures the magnetic fields associated with the ECG waveform measured on the same subject. The timing information provided by R wave peaks of ECG recorded by the reference sensor is utilized to generate trigger locked average of the sensor output of the measurement fluxgate, and extract MCG signals in all the three orthogonal directions (X, Y and Z) on the anterior thorax. It is expected that such portable room temperature measurements using fluxgate sensor could assist in validating the direction of the equivalent current dipole associated with the electrical activity of the human heart. This is somewhat difficult in conventional MCG measurements using SQUID sensors, which usually furnish only the z component of the magnetic field and its spatial derivatives.
2008-08-01
Figure 17: USGS Helmholtz coils with SQUID and fluxgate magnetometers installed. 22 Figure 18: Plot of SQUID and fluxgate data from a rotating... fluxgate magnetometer , each sensor measures flux in only one direction. Combinations of SQUID sensor elements are arranged in various configurations...than the absolute field value the way that a fluxgate magnetometer would do. If the SQUID is shut down or loses lock, it has no way to relate the new
System and Method for an Integrated Satellite Platform
NASA Technical Reports Server (NTRS)
Starin, Scott R. (Inventor); Sheikh, Salman I. (Inventor); Hesse, Michael (Inventor); Clagett, Charles E. (Inventor); Santos Soto, Luis H. (Inventor); Hesh, Scott V. (Inventor); Paschalidis, Nikolaos (Inventor); Ericsson, Aprille J. (Inventor); Johnson, Michael A. (Inventor)
2018-01-01
A system, method, and computer-readable storage devices for a 6U CubeSat with a magnetometer boom. The example 6U CubeSat can include an on-board computing device connected to an electrical power system, wherein the electrical power system receives power from at least one of a battery and at least one solar panel, a first fluxgate sensor attached to an extendable boom, a release mechanism for extending the extendable boom, at least one second fluxgate sensor fixed within the satellite, an ion neutral mass spectrometer, and a relativistic electron/proton telescope. The on-board computing device can receive data from the first fluxgate sensor, the at least one second fluxgate sensor, the ion neutral mass spectrometer, and the relativistic electron/proton telescope via the bus, and can then process the data via an algorithm to deduce a geophysical signal.
NASA Astrophysics Data System (ADS)
Miles, David M.; Mann, Ian R.; Kale, Andy; Milling, David K.; Narod, Barry B.; Bennest, John R.; Barona, David; Unsworth, Martyn J.
2017-10-01
Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc.) which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C-1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK) engineering plastic (virgin, 30 % glass filled and 30 % carbon filled), and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C-1) had a thermal gain dependence within 5 ppm°C-1 of a traditional sensor constructed from MACOR ceramic (8.1 ppm°C-1). If a modest increase in thermal dependence can be tolerated or compensated, then 30 % glass-filled PEEK is a good candidate for future fluxgate sensors as it is more economical, easier to machine, lighter, and more robust than MACOR.
Possibilities of further improvement of 1 s fluxgate variometers
NASA Astrophysics Data System (ADS)
Marusenkov, Andriy
2017-08-01
The paper discusses the possibility of improving temperature and noise characteristics of fluxgate variometers. The new fluxgate sensor with a Co-based amorphous ring core is described. This sensor is capable of improving the signal-to-noise ratio at the recording short-period geomagnetic variations. Besides the sensor performance, it is very important to create the high-stability compensation field that cancels the main Earth magnetic field inside the magnetic cores. For this purpose the new digitally controlled current source with low noise level and high temperature stability is developed.
Hunting Sea Mines with UUV-Based Magnetic and Electro-Optic Sensors
2010-06-01
assembly of four 3-axis fluxgate magnetometers and (c) magnetometer package for underwater deployment in flooded body section. data are automatically...features the Real-time Tracking Gradiometer (RTG), which is a multi-channel tensor gradiometer using conventional fluxgate technology. Also in this...integrated together into a Bluefin12 AUV [5]. A. RTG Sensor Technology The RTG is a multi-channel tensor gradiometer using conventional fluxgate
High-Sensitivity Low-Noise Miniature Fluxgate Magnetometers Using a Flip Chip Conceptual Design
Lu, Chih-Cheng; Huang, Jeff; Chiu, Po-Kai; Chiu, Shih-Liang; Jeng, Jen-Tzong
2014-01-01
This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB) substrate and electrically connected to each other similar to the current “flip chip” concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. Principles and analysis of the fluxgate sensor are introduced first, and followed by FEA electromagnetic modeling and simulation for the proposed sensor. Comprehensive characteristic experiments of the miniature fluxgate device exhibit favorable results in terms of sensitivity (or “responsivity” for magnetometers) and field noise spectrum. The sensor is driven and characterized by employing the improved second-harmonic detection technique that enables linear V-B correlation and responsivity verification. In addition, the double magnitude of responsivity measured under very low frequency (1 Hz) magnetic fields is experimentally demonstrated. As a result, the maximum responsivity of 593 V/T occurs at 50 kHz of excitation frequency with the second harmonic wave of excitation; however, the minimum magnetic field noise is found to be 0.05 nT/Hz1/2 at 1 Hz under the same excitation. In comparison with other miniature planar fluxgates published to date, the fluxgate magnetic sensor with flip chip configuration offers advances in both device functionality and fabrication simplicity. More importantly, the novel design can be further extended to a silicon-based micro-fluxgate chip manufactured by emerging CMOS-MEMS technologies, thus enriching its potential range of applications in modern engineering and the consumer electronics market. PMID:25196107
High-sensitivity low-noise miniature fluxgate magnetometers using a flip chip conceptual design.
Lu, Chih-Cheng; Huang, Jeff; Chiu, Po-Kai; Chiu, Shih-Liang; Jeng, Jen-Tzong
2014-07-30
This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB) substrate and electrically connected to each other similar to the current "flip chip" concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. Principles and analysis of the fluxgate sensor are introduced first, and followed by FEA electromagnetic modeling and simulation for the proposed sensor. Comprehensive characteristic experiments of the miniature fluxgate device exhibit favorable results in terms of sensitivity (or "responsivity" for magnetometers) and field noise spectrum. The sensor is driven and characterized by employing the improved second-harmonic detection technique that enables linear V-B correlation and responsivity verification. In addition, the double magnitude of responsivity measured under very low frequency (1 Hz) magnetic fields is experimentally demonstrated. As a result, the maximum responsivity of 593 V/T occurs at 50 kHz of excitation frequency with the second harmonic wave of excitation; however, the minimum magnetic field noise is found to be 0.05 nT/Hz(1/2) at 1 Hz under the same excitation. In comparison with other miniature planar fluxgates published to date, the fluxgate magnetic sensor with flip chip configuration offers advances in both device functionality and fabrication simplicity. More importantly, the novel design can be further extended to a silicon-based micro-fluxgate chip manufactured by emerging CMOS-MEMS technologies, thus enriching its potential range of applications in modern engineering and the consumer electronics market.
Shipboard Elevator Magnetic Sensor Development. Phase I, Laboratory Investigations.
1981-08-19
greater detail. The principles studied were those of the flux-meter and the flux-gate magnetometer . Of these two, the flux-gate magnetometer principle was...Abstract (Continued) Flux-gate magnetometers continuously sense the component of a stationary or slowly varying magnetic field along a chosen axis. The...distance of the sensor from the target’s line of travel, while precisely indicating displacements along the line. The modes of detection include level
A High Stability Time Difference Readout Technique of RTD-Fluxgate Sensors
Pang, Na; Cheng, Defu; Wang, Yanzhang
2017-01-01
The performance of Residence Times Difference (RTD)-fluxgate sensors is closely related to the time difference readout technique. The noise of the induction signal affects the quality of the output signal of the following circuit and the time difference detection, so the stability of the sensor is limited. Based on the analysis of the uncertainty of the RTD-fluxgate using the Bidirectional Magnetic Saturation Time Difference (BMSTD) readout scheme, the relationship between the saturation state of the magnetic core and the target (DC) magnetic field is studied in this article. It is proposed that combining the excitation and induction signals can provide the Negative Magnetic Saturation Time (NMST), which is a detection quantity used to measure the target magnetic field. Also, a mathematical model of output response between NMST and the target magnetic field is established, which analyzes the output NMST and sensitivity of the RTD-fluxgate sensor under different excitation conditions and is compared to the BMSTD readout scheme. The experiment results indicate that this technique can effectively reduce the noise influence. The fluctuation of time difference is less than ±0.1 μs in a target magnetic field range of ±5 × 104 nT. The accuracy and stability of the sensor are improved, so the RTD-fluxgate using the readout technique of high stability time difference is suitable for detecting weak magnetic fields. PMID:29023409
Unexploded Ordnance (UXO) Data Analysis System (DAS). Environmental Quality Technology Program
2009-09-01
is comprised of an EMI sensor, cesium (Cs) vapor magnetometer , fluxgate magnetometer , hand-held data acquisition computer, integrated power supply...Geometrics model 823A Cs vapor magnetometer . The fluxgate magnetometer is a Bartington model Mag-3MRN60, three- axis fluxgate magnetometer . The system...9. The ERDC hand-held Dual TFM/EMI with ArcSecond positioning system. During standard usage, the fluxgate magnetometer is used to provide the
Standardized UXO Technology Demonstration Site Blind Grid Scoring Record Number 891
2008-08-01
magnetometers (Foerster CON650 gradiometers) and RTK-DGPS georeferencing will be used. The spacing between the individual fluxgate sensors will be 25 cm...used for data acquisition usually ranges from 8 to 32. b. For the demonstration at Aberdeen Proving Ground, a system with eight fluxgate ...up to 32 fluxgate gradiometers (for the APG demonstration: eight fluxgate gradiometers), a robust, all-terrain trailer, the MonMX data acquisition
NASA Astrophysics Data System (ADS)
Ahmad, Farooq; Dennis, John Ojur; Md Khir, Mohd Haris; Hamid, Nor Hisham
2012-09-01
This paper presents the calibration of Helmholtz coils for the characterization of MEMS Magnetic sensor using Fluxgate magnetometer with DAS1 Magnetic Range Data Acquisition System. The Helmholtz coils arrangement is often used to generate a uniform magnetic field in space. In the past, standard magnets were used to calibrate the Helmholtz coils. A method is presented here for calibrating these coils using a Fluxgate magnetometer and known current source, which is easier and results in greater accuracy.
Standardized UXO Technology Demonstration Site Open Field Scoring Record No. 908
2008-08-01
demonstration at Aberdeen Proving Ground, a system with eight fluxgate magnetometers (Foerster CON650 gradiometers) and RTK-DGPS georeferencing will...be used. The spacing between the individual fluxgate sensors will be 25 cm (ca. 10 inches), totaling to a swath width of 2 m. c. The MAGNETO...MX system consists of: the MX-compact hardware multiplexer electronic module, up to 32 fluxgate gradiometers (for the APG demonstration: 8 fluxgate
Model-Scale Experiment of the Seakeeping Performance for R/V Melville, Model 5720
2012-07-01
Angle 1 Y None Deg Sensor Bourns Rotary Potentiometer 6574S-1-103 NA 39596 KVH Sin 2 Y None volts Sensor KVH Fluxgate Compass C-100...NA Deg Sensor KVH Calc Heading NA N None DegM Calculated KVH Fluxgate Compass C-100 39449 Bow Tracker Sensor Bottom NA N None...3DM-3XI combined three axis of angular rate gyros, accelerometers, and magnetometers to provide various combinations of gyro stabilized Euler
A Nonlinear Calibration Algorithm Based on Harmonic Decomposition for Two-Axis Fluxgate Sensors
Liu, Shibin
2018-01-01
Nonlinearity is a prominent limitation to the calibration performance for two-axis fluxgate sensors. In this paper, a novel nonlinear calibration algorithm taking into account the nonlinearity of errors is proposed. In order to establish the nonlinear calibration model, the combined effort of all time-invariant errors is analyzed in detail, and then harmonic decomposition method is utilized to estimate the compensation coefficients. Meanwhile, the proposed nonlinear calibration algorithm is validated and compared with a classical calibration algorithm by experiments. The experimental results show that, after the nonlinear calibration, the maximum deviation of magnetic field magnitude is decreased from 1302 nT to 30 nT, which is smaller than 81 nT after the classical calibration. Furthermore, for the two-axis fluxgate sensor used as magnetic compass, the maximum error of heading is corrected from 1.86° to 0.07°, which is approximately 11% in contrast with 0.62° after the classical calibration. The results suggest an effective way to improve the calibration performance of two-axis fluxgate sensors. PMID:29789448
A Low Frequency Electromagnetic Sensor for Underwater Geo-Location
2011-05-01
used a set of commercially available fluxgate magnetometers to measure the magnetic field gradients associated with a magnetic dipole transmitter...insight into the operational capabilities of commercial fluxgate sensors. Figure 42. Applied Physics Systems 1540 magnetometer ...a magnetic field gradient receiver array. Highest quality gradient estimates were achieved with three vector magnetometers equally spaced and
Development of High Resolution Eddy Current Imaging Using an Electro-Mechanical Sensor (Preprint)
2011-11-01
The Fluxgate Magnetometer ,” J. Phys. E: Sci. Instrum., Vol. 12: 241-253. 13. A. Abedi, J. J. Fellenstein, A. J. Lucas, and J. P. Wikswo, Jr., “A...206 (2006). 11. Ripka, P., 1992, Review of Fluxgate Sensors, Sensors and Actuators, A. 33, Elsevier Sequoia: 129-141. 12. Primdahl, F., 1979...superconducting quantum interference device magnetometer system for quantitative analysis and imaging of hidden corrosion activity in aircraft aluminum
Development of High Resolution Eddy Current Imaging Using an Electro-Mechanical Sensor (Postprint)
2011-08-01
Primdahl, F., 1979, “The Fluxgate Magnetometer ,” J. Phys. E: Sci. Instrum., Vol. 12: 241-253. 13. A. Abedi, J. J. Fellenstein, A. J. Lucas, and J. P...Issues 1-2, Pages 203-206 (2006). 11. Ripka, P., 1992, Review of Fluxgate Sensors, Sensors and Actuators, A. 33, Elsevier Sequoia: 129-141. 12...Wikswo, Jr., “A superconducting quantum interference device magnetometer system for quantitative analysis and imaging of hidden corrosion activity in
Inductance analyzer based on auto-balanced circuit for precision measurement of fluxgate impedance
NASA Astrophysics Data System (ADS)
Setiadi, Rahmondia N.; Schilling, Meinhard
2018-05-01
An instrument for fluxgate sensor impedance measurement based on an auto-balanced circuit has been designed and characterized. The circuit design is adjusted to comply with the fluxgate sensor characteristics which are low impedance and highly saturable core with very high permeability. The system utilizes a NI-DAQ card and LabVIEW to process the signal acquisition and evaluation. Some fixed reference resistances are employed for system calibration using linear regression. A multimeter HP 34401A and impedance analyzer Agilent 4294A are used as calibrator and validator for the resistance and inductance measurements. Here, we realized a fluxgate analyzer instrument based on auto-balanced circuit, which measures the resistance and inductance of the device under test with a small error and much lower excitation current to avoid core saturation compared to the used calibrator.
Low Cost, Low Power, High Sensitivity Magnetometer
2008-12-01
which are used to measure the small magnetic signals from brain. Other types of vector magnetometers are fluxgate , coil based, and magnetoresistance...concentrator with the magnetometer currently used in Army multimodal sensor systems, the Brown fluxgate . One sees the MEMS fluxgate magnetometer is...Guedes, A.; et al., 2008: Hybrid - LOW COST, LOW POWER, HIGH SENSITIVITY MAGNETOMETER A.S. Edelstein*, James E. Burnette, Greg A. Fischer, M.G
Evaluating Detection and Estimation Capabilities of Magnetometer-Based Vehicle Sensors
2012-05-01
fluxgate magnetometers whose operating characteristics are well documented [1, 2]. Such magnetometers measure two perpendicular magnetic components of...of surveillance scenarios. As part of that work, this analysis focuses on UGS utilizing of two-axis fluxgate magnetometers . Two MOPs are 12 -60 -40 -20...Proceedings of the IEEE, 78(6):973–989, June 1990. [2] E. M. Billingsley and S. W. Billingsley. Fluxgate magnetometers . Proceedings of the IEEE, 5090(194
Portable Magnetic Gradiometer for Real-Time Localization and Classification of Unexploded Ordnance
2006-09-01
classification (DLC) of Unexploded Ordnance (UXO). The portable gradiometer processes data from triaxial fluxgate magnetometers to develop sets of...low-noise (ង pTrms/√Hz) fluxgate -type Triaxial Magnetometers (TM). Paired sets of TMs comprise magnetic gradient sensor “axes” of the array that...channels of analog B-field data. The digitizers can be locked to the Global Positioning System to provide; a) Precise sensor channel timing, and b
Director of Innovation. Volume 3, November 2009
2009-11-01
evaluated at Crimson Vi- per 2009 included the Portable Acoustic Contraband Detector (PACD) and the Fluxgate Magnetometer , two projects from SPAWAR...concealed within the containers. The Fluxgate Magnetometer is a hockey puck-sized sensor head that can detect vehicles and weapons by measuring
Orthogonal fluxgate mechanism operated with dc biased excitation
NASA Astrophysics Data System (ADS)
Sasada, I.
2002-05-01
A mode of operation is presented for an orthogonal fluxgate built with a thin magnetic wire. By adding a proper dc bias to the wire excitation, the new mode is easily established. In this case, the fundamental component of the induced voltage at the sensing coil (secondary voltage) is made sensitive to the axial magnetic field, compared to the second harmonic in a conventional orthogonal fluxgate. The operating principle is explained using a magnetization rotation model. A method is proposed to cancel the offset that is inevitable when the magnetic anisotropy is present in a magnetic wire at an angle to its circumference. Experimental results are shown for a sensor head consisting of a 2-cm-long Co-based amorphous wire 120 μm in diameter with a 220-turn sensing coil. The sensitivity obtained is higher than that obtained using a conventional type of the orthogonal fluxgate built with the same sensor head. It is also demonstrated that the proposed method for canceling the offset works well.
On-Time 3D Time-Domain EMI and Tensor Magnetic Gradiometry for UXO Detection and Discrimination
2008-06-04
three-axis fluxgate magnetometers mounted on a tetrahedral structure as shown in figure 5.1.3.1. TMGS was intended to measure gradients of vector...manufacturer of the fluxgate magnetometers supplied specifications for each of the triaxial sensors (figure 5.3.2.25). Figure 5.3.2.25...Manufacturer’s specifications for the four triaxial fluxgate magnetometers used in the TMGS planar array. As shown previously in figure 5.3.2.4
Lu, Chih-Cheng; Huang, Jeff
2015-06-19
A new class of tri-axial miniature magnetometer consisting of a planar fluxgate structure with an orthogonal ferromagnetic fluxguide centrally situated over the magnetic cores is presented. The magnetic sensor possesses a cruciform ferromagnetic core placed diagonally upon the square excitation coil under which two pairs of pick-up coils for in-plane field detection are allocated. Effective principles and analysis of the magnetometer for 3-D field vectors are described and verified by numerically electromagnetic simulation for the excitation and magnetization of the ferromagnetic cores. The sensor is operated by applying the second-harmonic detection technique that can verify V-B relationship and device responsivity. Experimental characterization of the miniature fluxgate device demonstrates satisfactory spatial magnetic field detection results in terms of responsivity and noise spectrum. As a result, at an excitation frequency of 50 kHz, a maximum in-plane responsivity of 122.4 V/T appears and a maximum out-of-plane responsivity of 11.6 V/T is obtained as well. The minimum field noise spectra are found to be 0.11 nT/√Hz and 6.29 nT/√Hz, respectively, in X- and Z-axis at 1 Hz under the same excitation frequency. Compared with the previous tri-axis fluxgate devices, this planar magnetic sensor with an orthogonal fluxguide provides beneficial enhancement in both sensory functionality and manufacturing simplicity. More importantly, this novel device concept is considered highly suitable for the extension to a silicon sensor made by the current CMOS-MEMS technologies, thus emphasizing its emerging applications of field detection in portable industrial electronics.
2008-09-01
of magnetic UXO. The prototype STAR Sensor comprises: a) A cubic array of eight fluxgate magnetometers . b) A 24-channel data acquisition/signal...array (shaded boxes) of eight low noise Triaxial Fluxgate Magnetometers (TFM) develops 24 channels of vector B- field data. Processor hardware
Low Power Consumption Design and Fabrication of Thin Film Core for Micro Fluxgate.
Lv, Hui; Liu, Shibin
2016-03-01
The soft magnetic characteristic of core is a critical factor to performance of the micro fluxgate. Porous thin film core can be effectively used to decrease the value of saturation magnetic field strength (H(s)) and improve soft magnetic behavior. It is conducive to impelling the micro fluxgate toward the direction of low power consumption. In this work, negative photoresist is used to fabricate a porous core by MEMS technology. Through the processes of ultraviolet-lithography, the porous pattern transfer from the mask to the microstructure on silicon substrate. The experiment result complies with the anticipation and indicates that this MEMS technique can be applied to improve the characteristic of thin film core and decrease power consumption of fluxgate sensor.
Lu, Chih-Cheng; Huang, Jeff
2015-01-01
A new class of tri-axial miniature magnetometer consisting of a planar fluxgate structure with an orthogonal ferromagnetic fluxguide centrally situated over the magnetic cores is presented. The magnetic sensor possesses a cruciform ferromagnetic core placed diagonally upon the square excitation coil under which two pairs of pick-up coils for in-plane field detection are allocated. Effective principles and analysis of the magnetometer for 3-D field vectors are described and verified by numerically electromagnetic simulation for the excitation and magnetization of the ferromagnetic cores. The sensor is operated by applying the second-harmonic detection technique that can verify V-B relationship and device responsivity. Experimental characterization of the miniature fluxgate device demonstrates satisfactory spatial magnetic field detection results in terms of responsivity and noise spectrum. As a result, at an excitation frequency of 50 kHz, a maximum in-plane responsivity of 122.4 V/T appears and a maximum out-of-plane responsivity of 11.6 V/T is obtained as well. The minimum field noise spectra are found to be 0.11 nT/√Hz and 6.29 nT/√Hz, respectively, in X- and Z-axis at 1 Hz under the same excitation frequency. Compared with the previous tri-axis fluxgate devices, this planar magnetic sensor with an orthogonal fluxguide provides beneficial enhancement in both sensory functionality and manufacturing simplicity. More importantly, this novel device concept is considered highly suitable for the extension to a silicon sensor made by the current CMOS-MEMS technologies, thus emphasizing its emerging applications of field detection in portable industrial electronics. PMID:26102496
Yang, Zhen; Zhi, Shaotao; Feng, Zhu; Lei, Chong; Zhou, Yong
2018-01-01
A sensitive and innovative assay system based on a micro-MEMS-fluxgate sensor and immunomagnetic beads-labels was developed for the rapid analysis of C-reactive proteins (CRP). The fluxgate sensor presented in this study was fabricated through standard micro-electro-mechanical system technology. A multi-loop magnetic core made of Fe-based amorphous ribbon was employed as the sensing element, and 3-D solenoid copper coils were used to control the sensing core. Antibody-conjugated immunomagnetic microbeads were strategically utilized as signal tags to label the CRP via the specific conjugation of CRP to polyclonal CRP antibodies. Separate Au film substrates were applied as immunoplatforms to immobilize CRP-beads labels through classical sandwich assays. Detection and quantification of the CRP at different concentrations were implemented by detecting the stray field of CRP labeled magnetic beads using the newly-developed micro-fluxgate sensor. The resulting system exhibited the required sensitivity, stability, reproducibility, and selectivity. A detection limit as low as 0.002 μg/mL CRP with a linearity range from 0.002 μg/mL to 10 μg/mL was achieved, and this suggested that the proposed biosystem possesses high sensitivity. In addition to the extremely low detection limit, the proposed method can be easily manipulated and possesses a quick response time. The response time of our sensor was less than 5 s, and the entire detection period for CRP analysis can be completed in less than 30 min using the current method. Given the detection performance and other advantages such as miniaturization, excellent stability and specificity, the proposed biosensor can be considered as a potential candidate for the rapid analysis of CRP, especially for point-of-care platforms. PMID:29601593
Magnetoresistive magnetometer for space science applications
NASA Astrophysics Data System (ADS)
Brown, P.; Beek, T.; Carr, C.; O'Brien, H.; Cupido, E.; Oddy, T.; Horbury, T. S.
2012-02-01
Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz-1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm3, respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012.
2009-06-17
Electric and magnetic-field perturbations were measured by ion drift meters (IDM) and triaxial fluxgate magnetometers on DMSP F13. F15, and F16...we also regard DMSP as providing lower-bound estimates of the true *pc. The triaxial fluxgate SSM sensors are either mounted on the spacecraft
Generating broadband vortex modes in ring-core fiber by using a plasmonic q-plate.
Ye, Jingfu; Li, Yan; Han, Yanhua; Deng, Duo; Su, Xiaoya; Song, He; Gao, Jianmin; Qu, Shiliang
2017-08-15
A mode convertor was proposed and investigated for generating vortex modes in a ring-core fiber based on a plasmonic q-plate (PQP), which is composed of specially organized L-shaped resonator (LSR) arrays. A multicore fiber was used to transmit fundamental modes, and the LSR arrays were used to modulate phases of these fundamental modes. Behind the PQP, the transmitted fundamental modes with gradient phase distribution can be considered as the incident lights for generating broadband vortex modes in the ring-core fiber filter. The topological charges of generated vortex modes can be various by using an optical PQP with different q, and the chirality of the generated vortex mode can be controlled by the sign of q and handedness of the incident circularly polarized light. The operation bandwidth is 800 nm in the range of 1200-2000 nm, which covers six communication bands from the O band to the U band. The separation of vortex modes also was addressed by using a dual ring-core fiber. The mode convertor is of potential interest for connecting a traditional network and vortex communication network.
Optimizing the sensing performance of a single-rod fluxgate magnetometer using thin magnetic wires
NASA Astrophysics Data System (ADS)
Can, Hava; Svec, Peter, Jr.; Tanrıseven, Sercan; Bydzovsky, Jan; Birlikseven, Cengiz; Sözeri, Hüseyin; Svec, Peter, Sr.; Topal, Uğur
2015-11-01
This paper presents the optimal conditions for the design of a single-rod fluxgate magnetometer using Co-based amorphous magnetic wires with reduced geometrical dimensions of 100 μm in diameter. In order to enhance the performance of the current sensor (i.e. the noise level, the sensitivity, the dynamical range, the scaling factor, etc), the core materials were subjected to annealing at different annealing temperatures in a longitudinal magnetic field ranging from 0 to 0.5 T. The B-H measurements have shown that the heat treatments significantly change the magnetic parameters of the cores (the saturation field, the initial and apparent permeabilities). For instance, the initial permeability μ i attains values of between 3500 and 4700 depending on the treatment conditions. These magnetic parameters were subsequently correlated with the sensor performance by using the principles of the fluxgate physics. Consequently, the enhanced fluxgate effect with improved sensing characteristics has been obtained by annealing the wire core at 250 °C (B = 0 T). It is shown that this magnetic wire with a sensing area of 0.00785 mm2 is suitable as a sensor core for the nondestructive testing of metallic objects and the surfaces of magnetic cards. The sensor signal shows perfect linear dependence to dc or low frequency fields up to ~1 Oe. The fitting parameters R 2 of 0.9998 could be achieved in a dc field interval of -1.0 Oe and 1.0 Oe (when R 2 =1.0, all points lie exactly on the curve with no scatter). Such linearity has not been seen in such a large dynamical range until now in the rod-type single-core fluxgates. It is also shown that there is no hysteresis on the V 2f -H dc graphs (the V 2f is the sensor signal) even after applying fields as high as 100 Oe. Besides, the cross-field effect is almost zero due to the geometry of the long-thin wire.
The Pioneer XI high field fluxgate magnetometer
NASA Technical Reports Server (NTRS)
Acuna, M. A.; Ness, N. F.
1975-01-01
The high field fluxgate magnetometer experiment flown aboard the Pioneer XI spacecraft is described. This extremely simple instrument was used to extend the spacecraft's upper-limit measurement capability by approximately an order of magnitude (from 0.14 mT to 1.00 mT) with minimum power and volume requirements. This magnetometer was designed to complement the low-field measurements provided by a helium vector magnetometer and utilizes magnetic ring core sensors with biaxial orthogonal sense coils. The instrument is a single-range, triaxial-fluxgate magnetometer capable of measuring fields of up to 1 mT along each orthogonal axis, with a maximum resolution of 1 microT.
NASA Astrophysics Data System (ADS)
Gavazzi, Bruno; Le Maire, Pauline; Munschy, Marc; Dechamp, Aline
2017-04-01
Fluxgate 3-components magnetometer is the kind of magnetometer which offers the lightest weight and lowest power consumption for the measurement of the intensity of the magnetic field. Moreover, vector measurements make it the only kind of magnetometer allowing compensation of magnetic perturbations due to the equipment carried with it. Unfortunately, Fluxgate magnetometers are quite uncommon in near surface geophysics due to the difficulty to calibrate them precisely. The recent advances in calibration of the sensors and magnetic compensation of the devices from a simple process on the field led Institut de Physique du Globe de Strasbourg to develop instruments for georeferenced magnetic measurements at different scales - from submetric measurements on the ground to aircraft-conducted acquisition through the wide range offered by unmanned aerial vehicles (UAVs) - with a precision in the order of 1 nT. Such equipment is used for different kind of application: structural geology, pipes and UXO detection, archaeology.
Energy Coupling During the August 2011 Magnetic Storm (Postprint)
2014-08-27
of the horizontal cross-track plasma drifts in this study. SSM sensors are triaxial fluxgate magnetometers that are mounted on 0.5m booms on the F15...Special Sensor for Ions Electrons and Scintillations (SSIES)). All of the satellites carry magnetometers (Special Sensor for Magnetic Fields (SSM)) to
2008-09-12
measurement Fluxgate magnetometer 10 RS232- ASCII SerialDevice.fluxgate Provides redundant aircraft attitude measurement Acoustic altimeters 10 Analog...primarily by terrain, vegetation, and structural inhibitions to safe low-altitude flight. The magnetometer data can be analyzed to extract either...to validate the results of the magnetometer survey. ESTCP Victorville PBR WAA Final Report December 2008 Sky Research, Inc. 2 1.2. Objectives of
A high accuracy magnetic heading system composed of fluxgate magnetometers and a microcomputer
NASA Astrophysics Data System (ADS)
Liu, Sheng-Wu; Zhang, Zhao-Nian; Hung, James C.
The authors present a magnetic heading system consisting of two fluxgate magnetometers and a single-chip microcomputer. The system, when compared to gyro compasses, is smaller in size, lighter in weight, simpler in construction, quicker in reaction time, free from drift, and more reliable. Using a microcomputer in the system, heading error due to compass deviation, sensor offsets, scale factor uncertainty, and sensor tilts can be compensated with the help of an error model. The laboratory test of a typical system showed that the accuracy of the system was improved from more than 8 deg error without error compensation to less than 0.3 deg error with compensation.
NASA Technical Reports Server (NTRS)
Adams, D. F.; Hartmann, U. G.; Lazarow, L. L.; Maloy, J. O.; Mohler, G. W.
1976-01-01
The design of the vector magnetometer selected for analysis is capable of exceeding the required accuracy of 5 gamma per vector field component. The principal elements that assure this performance level are very low power dissipation triaxial feedback coils surrounding ring core flux-gates and temperature control of the critical components of two-loop feedback electronics. An analysis of the calibration problem points to the need for improved test facilities.
NASA Astrophysics Data System (ADS)
Alconcel, L. N. S.; Fox, P.; Brown, P.; Oddy, T. M.; Lucek, E. L.; Carr, C. M.
2014-07-01
Over the course of more than 10 years in operation, the calibration parameters of the outboard fluxgate magnetometer (FGM) sensors on the four Cluster spacecraft are shown to be remarkably stable. The parameters are refined on the ground during the rigorous FGM calibration process performed for the Cluster Active Archive (CAA). Fluctuations in some parameters show some correlation with trends in the sensor temperature (orbit position). The parameters, particularly the offsets, of the spacecraft 1 (C1) sensor have undergone more long-term drift than those of the other spacecraft (C2, C3 and C4) sensors. Some potentially anomalous calibration parameters have been identified and will require further investigation in future. However, the observed long-term stability demonstrated in this initial study gives confidence in the accuracy of the Cluster magnetic field data. For the most sensitive ranges of the FGM instrument, the offset drift is typically 0.2 nT per year in each sensor on C1 and negligible on C2, C3 and C4.
NASA Astrophysics Data System (ADS)
Alconcel, L. N. S.; Fox, P.; Brown, P.; Oddy, T. M.; Lucek, E. L.; Carr, C. M.
2014-01-01
Over the course of more than ten years in operation, the calibration parameters of the outboard fluxgate magnetometer (FGM) sensors on the four Cluster spacecraft are shown to be remarkably stable. The parameters are refined on the ground during the rigorous FGM calibration process performed for the Cluster Active Archive (CAA). Fluctuations in some parameters show some correlation with trends in the sensor temperature (orbit position). The parameters, particularly the offsets, of the Spacecraft1 (C1) sensor have undergone more long-term drift than those of the other spacecraft (C2, C3 and C4) sensors. Some potentially anomalous calibration parameters have been identified and will require further investigation in future. However, the observed long-term stability demonstrated in this initial study gives confidence in the relative accuracy of the Cluster magnetic field data. For the most sensitive ranges of the FGM instrument, the offset drift is typically 0.2 nT yr-1 in each sensor on C1 and negligible on C2, C3 and C4.
Microsatellite Digital Magnetometer SMILE - Present State and Future Trends
NASA Astrophysics Data System (ADS)
Belyayev, Serhiy; Ivchenko, Nickolay
2010-05-01
The fluxgate magnetometers (FGM) are probably the most widespread instruments used onboard spacecrafts for both scientific and service purposes. The recent trend to decrease the weight and size of the spacecrafts requires creating as small as possible but enough sensitive FGM. A joint Swedish-Ukrainian team made the development of such a magnetometer and as the result the Small Magnetometer In Low mass Experiment (SMILE) - a digital fluxgate microsatellite magnetometer - was created [1]. Majority of electronic units of this FGM were combined in a digital integrated circuit - a Field Programmable Gate Array (FPGA). The FPGA provides full processing (determined by a digital correlation algorithm) of amplified and digitized fluxgate sensor output signals and provides both FGM output data and feedback signals. Such digital design makes the instrument very flexible, reduces power consumption and opens possibilities for customization of the operation modes. It allows miniaturizing the electronic unit and, together with the smallest in the world low noise three-component fluxgate sensor with the side dimension of 20 mm and weight about 20 grams only, the small but enough sensitive space qualified FGM is created. SMILE magnetometer was successfully flown onboard the NASA Cascades-2 sounding rocket, and is to fly in the LAPLander package onboard the ESA REXUS-8 student sounding rocket [2]. Unfortunately, such a design of electronic circuit does not allow us to realize all possibilities of the miniature sensor. The separate tests of the sensor with highest-class analog electronics showed that its noise level may be reduced to as low value as 10…15 picoTesla at 1 Hz. Also the use of volume compensation in the sensor provides high geometrical stability of the axes and improved performance compared to component compensated sensors. The measured parameters appear to be comparable or even better than these of best stationary FGM and, if realized in small enough volume and weight, such a sensitive but small FGM could be a good candidate for planned Lunar missions where the weight is the major restriction factor. This stimulated further research in the direction of the analysis and elimination of noise sources of digital design, as well as of the optimization of FGM electronic circuit structure. The description of the obtained results of the electronic unit upgrade and recent FGM model tests are given and future improvement directions are discussed. These works are partially supported by NSAU contract No. 1499. References: 1. Åke Forslund, Serhiy Belyayev, Nickolay Ivchenko, Göran Olsson, Terry Edberg and Andriy Marusenkov, Miniaturized digital fluxgate magnetometer for small spacecraft applications 2008 Meas. Sci. Technol. 19 2. T. Sundberg, N. Ivchenko, D. Borglund, P. Ahlen, M. Gustavsson, C. Jonsson, J. Juhlen, O. Neunet, J. Sandstrom, E. Sund, M. Wartelski, C. Westlund, L. Xin, Small Recoverable Payload for Deployable Sounding Rocket Experiments. ESA Special Publication SP671
High stability integrated Tri-axial fluxgate sensor with suspended technology
NASA Astrophysics Data System (ADS)
Wang, Chen; Teng, Yuntian; Wang, Xiaomei; Fan, Xiaoyong; Wu, Qiong
2017-04-01
The relative geomagnetic record of China Geomagnetic Network of China(GNC) has been digitized, network, meanwhile achieving second data acquisition and storage during after 9th five-year and 10th five-year plan upgraded. Currently the relative record in geomagnetic observatories are generally two sets of the same type instrument with parallel observation, which could distinguish the differential between observation instrument failures and environmental interference, and ensure the continuity and integrity of the observation data. Fluxgate magnetometer has become mainstream equipment for relative geomagnetic record because of its low noise, high sensitivity, and fast response. There is a problem about data inconsistency by the same type of instrument in the same station though few years observation data analysis. The researchers have done a lot of experiments and found three main error sources:1. The instrument performances, due to the limitation of manufacturing and assembly process level it is difficult to ensure the orthogonality of the instrument; other performances of scale, zero offset and temperature coefficient; 2. horizontal error, which introduced by the initial installation process due to horizontal adjustment and pillar tilling due to long-term observations; 3.The observation environment, the temperature and humidity, power supply system. The new fluxgate magnetometer uses special nonmagnetic gimbaled (made by beryllium / bronze material) construction for suspension, so the fluxgate sensor is fixed at the suspended platform in order to automatically keep the horizontal level. The advantage of this design is to eliminate horizontal error introduced by the initial installation process due to horizontal adjustment and pillar tilling due to long-term observations. The signal processing circuit board is fixed on the top of the suspended platform with certain distance to ensure the static and dynamic magnetic field produced by circuit board no effect to the sensor, so we could get flexible instrument due to signal attenuation resulting signal transmission cable limited length.
NASA Astrophysics Data System (ADS)
Mann, I. R.; Miles, D.; Nokes, C.; Cupido, C.; Elliott, D.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J.; Pakhotin, I.; Kale, A.; Bruner, B.; Haluza-DeLay, T.; Forsyth, C.; Rae, J.; Lange, C.; Sameoto, D.; Milling, D. K.
2017-12-01
Making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions for studies of geospace. We describe the design, validation, and test, and initial on-orbit results from a miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer flown on the University of Alberta Experimental Albertan Satellite #1 (Ex-Alta-1) Cube Satellite, launched in 2017 from the International Space Station as part of the QB50 constellation mission. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities are being demonstrated and validated in space with flight on Ex-Alta-1. We present on-orbit data from the boom-deployment and initial operations of the fluxgate sensor and illustrate the potential scientific returns and utility of using CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation mission. We further illustrate the value of scientific constellations using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude. This indicates the likely energetic significance of Alfven wave dynamics, and we use Swarm measurements to illustrate the value of satellite constellations for diagnosing magnetosphere-ionosphere coupling even in low-Earth orbit.
Magnetocardiogram measured by fundamental mode orthogonal fluxgate array
NASA Astrophysics Data System (ADS)
Karo, Hikaru; Sasada, Ichiro
2015-05-01
Magnetocardiography (MCG) of healthy volunteers has been measured by using a fundamental mode orthogonal fluxgate magnetometer array of 32 channels in a magnetic shielded room (MSR). Sensor heads, which are employed, consist of a 45 mm long U-shaped amorphous wire core and a 1000-turn solenoid pick-up coil of 30 mm in length and 3 mm in outer diameter. The excitation current of 100 kHz with large dc bias current is fed directly into wire cores, which are connected in series, whereas the signal detection circuit is provided to each of the sensor heads. A special technique to avoid mutual interaction between sensor heads is implemented, where all the sensor heads are excited synchronously by using a single ac source. A 2-D array having 32 sensors with 4 cm grid spacing was used to measure MCG signals inside an MSR. Measured data from each channel were first filtered (0.16-100 Hz pass band), then averaged for 2 min synchronously with electrocardiogram's peaks taken from both hands. Noise remaining after the average is about 1.8 pTrms for the band-width of 0.16-100 Hz. The QRS complex and the T-wave are clearly detected.
The Detection and Discrimination of Small Munitions using Giant Magnetoresistive (OMR) Sensors
2010-09-01
Suffield, Canada. McGlone, D.T., 1998, Magnetometer Comparison Smoke Creek Instruments’ GMR SCIMAG- 01 & Bartington Fluxgate MAG-03MC70, A...a magnetometer and frequency domain or time domain electromagnetic induction sensor. Both the Honeywell and NVE GlvlR sensors studied have si.m ilar...field sensor. In p0ssive mode, the GMR sensor, which has a resolution of Jess than l 0 nT, perfom1ed similarly to a cesium vapor magnetometer . When
Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers
NASA Astrophysics Data System (ADS)
Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu
2018-03-01
We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.
Magnetic Sensors with Picotesla Magnetic Field Sensitivity at Room Temperature
2008-06-01
such small fields require cryogenic cooling such as SQUID sensors, require sophisticated detection systems such as atomic magnetometers and fluxgate ... magnetometers , or have large size and poor low frequency performance such as coil systems. [3-7] The minimum detectable field (the field noise times...Kingdon, "Development of a Combined EMI/ Magnetometer Sensor for UXO Detection," Proc. Symposium on the Applications of Geophysics to Environmental and
A Multi-Sensor Aerogeophysical Study of Afghanistan
2007-01-01
magnetometer coupled with an Applied Physics 539 3-axis fluxgate mag- netometer for compensation of the aircraft field; • an Applanix DSS 301 digital...survey. DATA COlleCTION AND PROCeSSINg Photogrammetry More than 65,000 high-resolution photogram- metric images were collected using an Applanix Digital...HSI L-Band Polarimetric Imaging Radar KGPS Dual Gravity Meters Common Sensor Bomb-bay Pallet Applanix DSS Camera Sensor Suite • Magnetometer • Gravity
Magnetic Measurements in Hot Planetary Environments
NASA Astrophysics Data System (ADS)
Russell, Christopher T.; Leneman, David; Weygand, James M.; Parish, Helen F.
2017-04-01
While space exploration generally involves measurements where the temperature is low and can be restored to a normal operating range by heating the sensor, there are regions of space in which the environment is hotter than the laboratory, and it would be desirable but not easy to cool the sensor. Unexplored hot regions include the surface of Mercury, except very near the poles, the surface and atmosphere of Venus even at the poles, and planetary probes into the deep atmosphere of Jupiter. Magnetic measurements are highly desirable in all these regions, but the sensor has to be outside the spacecraft or lander where active cooling is impractical, and passive cooling impossible. Thus the sensors have to be designed to withstand the heat of the environment in which they must operate. The UCLA fluxgate magnetometer has no active parts in the sensor so that it is a candidate for operating at high temperatures. We have examined the materials available for replacing the present wiring and sensor structure that supports the windings and find that there are distinct temperatures at which the mechanical design needs to be altered with increasing cost and difficulty of machining, but that there are no limitations until the temperatures that affect the magnetic properties of the core material. In this paper we review what needs to be done to build a 'high' temperature fluxgate sensor, as well as what can be accomplished with the resulting design.
Design of a family of ring-core fibers for OAM transmission studies.
Brunet, Charles; Ung, Bora; Wang, Lixian; Messaddeq, Younès; LaRochelle, Sophie; Rusch, Leslie A
2015-04-20
We propose a family of ring-core fibers, designed for the transmission of OAM modes, that can be fabricated by drawing five different fibers from a single preform. This novel technique allows us to experimentally sweep design parameters and speed up the fiber design optimization process. Such a family of fibers could be used to examine system performance, but also facilitate understanding of parameter impact in the transition from design to fabrication. We present design parameters characterizing our fiber, and enumerate criteria to be satisfied. We determine targeted fiber dimensions and explain our strategy for examining a design family rather than a single fiber design. We simulate modal properties of the designed fibers, and compare the results with measurements performed on fabricated fibers.
Exploiting Electric and Magnetic Fields for Underwater Characterization
2011-03-01
geophysical surveys are primarily limited to passive magnetic systems towed from a surface vessel. These systems utilize fluxgate , Overhauser, or atomic... magnetometer sensors, often deployed in arrays towed from the stern of small to moderate-size vessels. Active source electromagnetic methods have been
2015-10-01
28 Magnetometer Applied Physics Model 1540-digital 3-axis fluxgate 5 Amplifiers Alligator Technologies USBPGF-S1 programmable instrumentation...Acoustic, Seismic, magnetic, footstep, vehicle, magnetometer , geophone, unattended ground sensor (UGS) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION
Evaluation of a Three-Channel High-Temperature Superconducting Magnetometer System
1997-06-01
achieved by the best commercially available fluxgate magnetometers demonstrated to date and is only surpassed by low temperature superconducting...wire lines carry the analog SQUID magnetometer signal as well as dc power and ground, and the fiberoptic lines carry digital clock and data signals...with the magnetometers mounted on the three-sensor probe used in the sensor evaluated here. This probe is not highly stabilized with respect to the
The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter
NASA Astrophysics Data System (ADS)
Glassmeier, K.-H.; Auster, H.-U.; Heyner, D.; Okrafka, K.; Carr, C.; Berghofer, G.; Anderson, B. J.; Balogh, A.; Baumjohann, W.; Cargill, P.; Christensen, U.; Delva, M.; Dougherty, M.; Fornaçon, K.-H.; Horbury, T. S.; Lucek, E. A.; Magnes, W.; Mandea, M.; Matsuoka, A.; Matsushima, M.; Motschmann, U.; Nakamura, R.; Narita, Y.; O'Brien, H.; Richter, I.; Schwingenschuh, K.; Shibuya, H.; Slavin, J. A.; Sotin, C.; Stoll, B.; Tsunakawa, H.; Vennerstrom, S.; Vogt, J.; Zhang, T.
2010-01-01
The magnetometer (MAG) on the Mercury Planetary Orbiter (MPO) of the joint European-Japanese BepiColombo mission to planet Mercury is a low-noise, tri-axial, dual-sensor, digital fluxgate instrument with its sensors mounted on a 2.8-m-long boom. The primary MPO/MAG science objectives are to determine the spatial and temporal structure of the magnetic field in the Hermean system, in particular the structure and origin of the intrinsic magnetic field of Mercury. MPO/MAG has a dynamic measurement range of ±2000nT with a resolution of 2 pT during operation along the near-polar orbit of the MPO spacecraft around Mercury. MPO/MAG is designed to provide measurements with rates between 0.5 and 128 vectors/s. In cooperation with its sister magnetometer instrument, MMO/MGF on board the BepiColombo Mercury Magnetospheric Orbiter (MMO), MPO/MAG will be able to distinguish between temporal and spatial magnetic field variations in the magnetically closely coupled Hermean system.
In-Flight Calibration Processes for the MMS Fluxgate Magnetometers
NASA Technical Reports Server (NTRS)
Bromund, K. R.; Leinweber, H. K.; Plaschke, F.; Strangeway, R. J.; Magnes, W.; Fischer, D.; Nakamura, R.; Anderson, B. J.; Russell, C. T.; Baumjohann, W.;
2015-01-01
The calibration effort for the Magnetospheric Multiscale Mission (MMS) Analog Fluxgate (AFG) and DigitalFluxgate (DFG) magnetometers is a coordinated effort between three primary institutions: University of California, LosAngeles (UCLA); Space Research Institute, Graz, Austria (IWF); and Goddard Space Flight Center (GSFC). Since thesuccessful deployment of all 8 magnetometers on 17 March 2015, the effort to confirm and update the groundcalibrations has been underway during the MMS commissioning phase. The in-flight calibration processes evaluatetwelve parameters that determine the alignment, orthogonalization, offsets, and gains for all 8 magnetometers usingalgorithms originally developed by UCLA and the Technical University of Braunschweig and tailored to MMS by IWF,UCLA, and GSFC. We focus on the processes run at GSFC to determine the eight parameters associated with spin tonesand harmonics. We will also discuss the processing flow and interchange of parameters between GSFC, IWF, and UCLA.IWF determines the low range spin axis offsets using the Electron Drift Instrument (EDI). UCLA determines the absolutegains and sensor azimuth orientation using Earth field comparisons. We evaluate the performance achieved for MMS andgive examples of the quality of the resulting calibrations.
MetalMapper: A Multi-Sensor TEM System for UXO Detection and Classification
2011-04-01
fluxgate magnetometer that provides reference heading to magnetic north. DeploymentCThe MM can be deployed either as a man-powered cart or as a...is a live site. Preliminary investigations included a magnetometer transect survey and an EMI survey over a larger area to assist in selecting a
NASA Astrophysics Data System (ADS)
Miles, D. M.; Mann, I. R.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J. R.; Pakhotin, I. P.; Kale, A.; Bruner, B.; Nokes, C. D. A.; Cupido, C.; Haluza-DeLay, T.; Elliott, D. G.; Milling, D. K.
2016-12-01
Difficulty in making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions to study the magnetosphere. Sufficient resolution is required to resolve three-dimensional spatiotemporal structures of the magnetic field variations accompanying both waves and current systems of the nonuniform plasmas controlling dynamic magnetosphere-ionosphere coupling. This paper describes the design, validation, and test of a flight-ready, miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer for CubeSat applications. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities will be demonstrated and validated in space in late 2016 following the launch of the University of Alberta Ex-Alta 1 CubeSat, part of the QB50 constellation mission. We illustrate the potential scientific returns and utility of using a CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude.
In-Flight Calibration Processes for the MMS Fluxgate Magnetometers
NASA Astrophysics Data System (ADS)
Bromund, K. R.; Leinweber, H. K.; Plaschke, F.; Strangeway, R. J.; Magnes, W.; Fischer, D.; Nakamura, R.; Anderson, B. J.; Russell, C. T.; Baumjohann, W.; Chutter, M.; Torbert, R. B.; Le, G.; Slavin, J. A.; Kepko, L.
2015-12-01
The calibration effort for the Magnetospheric Multiscale Mission (MMS) Analog Fluxgate (AFG) and Digital Fluxgate (DFG) magnetometers is a coordinated effort between three primary institutions: University of California, Los Angeles (UCLA); Space Research Institute, Graz, Austria (IWF); and Goddard Space Flight Center (GSFC). Since the successful deployment of all 8 magnetometers on 17 March 2015, the effort to confirm and update the ground calibrations has been underway during the MMS commissioning phase. The in-flight calibration processes evaluate twelve parameters that determine the alignment, orthogonalization, offsets, and gains for all 8 magnetometers using algorithms originally developed by UCLA and the Technical University of Braunschweig and tailored to MMS by IWF, UCLA, and GSFC. We focus on the processes run at GSFC to determine the eight parameters associated with spin tones and harmonics. We will also discuss the processing flow and interchange of parameters between GSFC, IWF, and UCLA. IWF determines the low range spin axis offsets using the Electron Drift Instrument (EDI). UCLA determines the absolute gains and sensor azimuth orientation using Earth field comparisons. We evaluate the performance achieved for MMS and give examples of the quality of the resulting calibrations.
Novel semi-airborne CSEM system for the exploration of mineral resources
NASA Astrophysics Data System (ADS)
Nittinger, Christian; Cherevatova, Maria; Becken, Michael; Rochlitz, Raphael; Günther, Thomas; Martin, Tina; Matzander, Ulrich
2017-04-01
Within the DESMEX project (Deep Electromagnetic Sounding for Mineral Exploration), a semi-airborne CSEM system for mineral exploration is developed which aims to achieve a penetration depth of 1 km with a large areal coverage. Harmonically Time-varying electrical currents are injected with a grounded transmitter in order to measure the electric field on the ground and induced magnetic fields with highly sensitive magnetic sensors in the air. To measure the magnetic field and its variations, three-axis induction coils (MFS-11e by Metronix) and fluxgate sensors (Bartington FGS-03) are mounted on the platform towed by a helicopter. In addition, there is a SQUID based magnetometer, developed by IPHT and Supracon AG, available for future measurements. We deploy the different magnetometer sensors to cover a broad frequency range of 1-10000Hz. During the flight, the sensors encounter a broad variety of motion/vibration which produces noise in the magnetic field sensors. Therefore, a high accuracy motion tracking system is installed within the bird and a low vibrating system design needs to be considered in the airborne sensor platform. We conducted several flights with different source positions in a test area in Germany, which is already covered by ground based measurements. Based on the data, we discuss possible calibration schemes which are needed to overcome orthogonality and scaling errors in the fluxgate data as well as orientation errors. We apply noise correction schemes to the data and calculate transfer functions between the magnetic field and the source current. First 1-D inversion models based on the estimated transfer functions are calculated and compared to existing conductivity models from DC geoelectrics and helicopter electromagnetic (HEM) measurements.
Demonstration of an Enhanced Vertical Magnetic Gradient System for UXO
2008-12-01
fluxgate magnetometers , data recording console, laser altimeter, and acoustic altimeters were tested to ensure proper operation and performance. The VG...Simultaneous Electromagnetic Induction and Magnetometer System WAA wide area assessment ACKNOWLEDGEMENTS We wish to express our sincere...sensors. The benefits of vertical gradient (VG) configurations in magnetometer systems are common knowledge, and these configurations are routinely
2012-09-01
used a proton magnetometer to detect kiln and earth-filled pits in the United Kingdom as early as 1958 (Atkinson, 1953; Clark, 2001; Gaffney and Gater...Grad601-2 (Figure 8, upper left) is a vertical component dual sensor fluxgate gradiometer. It is designed for archaeological prospection, permits
NASA Astrophysics Data System (ADS)
Vetoshko, P. M.; Gusev, N. A.; Chepurnova, D. A.; Samoilova, E. V.; Syvorotka, I. I.; Syvorotka, I. M.; Zvezdin, A. K.; Korotaeva, A. A.; Belotelov, V. I.
2016-08-01
A new type of f lux-gate vector magnetometer based on epitaxial yttrium iron garnet films has been developed and constructed for magnetocardiography (MCG) investigations. The magnetic field sensor can operate at room temperature and measure MCG signals at a distance of about 1 mm from the thoracic cage. The high sensitivity of the sensor, better than 100 fT/Hz1/2, is demonstrated by the results of MCG measurements on rats. The main MCG pattern details and R-peak on a level of 10 pT are observed without temporal averaging, which allows heart rate anomalies to be studied. The proposed magnetic sensors can be effectively used in MCG investigations.
THOR Fluxgate Magnetometer (MAG)
NASA Astrophysics Data System (ADS)
Nakamura, Rumi; Eastwood, Jonathan; Magnes, Werner; Valavanoglou, Aris; Carr, Christopher M.; O'Brien, Helen L.; Narita, Yasuhito; Delva, Magda; Chen, Christopher H. K.; Plaschke, Ferdinand; Soucek, Jan
2016-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The goal of the Fluxgate Magnetometer (MAG) is to measure the DC to low frequency ambient magnetic field. The design of the magnetometer consists of two tri-axial sensors and the related magnetometer electronics; the electronics are hosted on printed circuit boards in the common electronics box of the fields and wave processor (FWP). A fully redundant two sensor system mounted on a common boom and the new miniaturized low noise design based on MMS and Solar Orbiter instruments enable accurate measurement throughout the region of interest for THOR science. The usage of the common electronics hosted by FWP guarantees to fulfill the required timing accuracy with other fields measurements. These improvements are important to obtain precise measurements of magnetic field, which is essential to estimate basic plasma parameters and correctly identify the spatial and temporal scales of the turbulence. Furthermore, THOR MAG provides high quality data with sufficient overlap with the Search Coil Magnetometer (SCM) in frequency space to obtain full coverage of the wave forms over all the frequencies necessary to obtain the full solar wind turbulence spectrum from MHD to kinetic range with sufficient accuracy.
NASA Astrophysics Data System (ADS)
Belyayev, Serhiy; Ivchenko, Nickolay
2018-04-01
Digital fluxgate magnetometers employ processing of the measured pickup signal to produce the value of the compensation current. Using pulse-width modulation with filtering for digital to analog conversion is a convenient approach, but it can introduce an intrinsic source of nonlinearity, which we discuss in this design note. A code shift of one least significant bit changes the second harmonic content of the pulse train, which feeds into the pick-up signal chain despite the heavy filtering. This effect produces a code-dependent nonlinearity. This nonlinearity can be overcome by the specific design of the timing of the pulse train signal. The second harmonic is suppressed if the first and third quarters of the excitation period pulse train are repeated in the second and fourth quarters. We demonstrate this principle on a digital magnetometer, achieving a magnetometer noise level corresponding to that of the sensor itself.
2009-01-01
three axis fluxgate magnetometer , CMOS sun and star sensors, and a Kalman filter. The work and tasks that have been accomplished on the TOROID... magnetometer . The problem was found to be a missing ferrite bead which connects the 12V power supply to the op-amps which are used to appropriately...establish an overall operational timeline for TOROID. Testing and calibration was performed on the three-axis magnetometer which is primary attitude
Mathematical modeling of fluxgate magnetic gradiometers
NASA Astrophysics Data System (ADS)
Milovzorov, D. G.; Yasoveev, V. Kh.
2017-07-01
Issues of designing fluxgate magnetic gradiometers are considered. The areas of application of fluxgate magnetic gradiometers are determined. The structure and layout of a two-component fluxgate magnetic gradiometer are presented. It is assumed that the fluxgates are strictly coaxial in the gradiometer body. Elements of the classical approach to the mathematical modeling of the spatial arrangement of solids are considered. The bases of the gradiometer body and their transformations during spatial displacement of the gradiometer are given. The problems of mathematical modeling of gradiometers are formulated, basic mathematical models of a two-component fluxgate gradiometer are developed, and the mathematical models are analyzed. A computer experiment was performed. Difference signals from the gradiometer fluxgates for the vertical and horizontal position of the gradiometer body are shown graphically as functions of the magnitude and direction of the geomagnetic field strength vector.
Seismo-acoustic analysis of thunderstorms at Plostina (Romania) site
NASA Astrophysics Data System (ADS)
Grecu, Bogdan; Ghica, Daniela; Moldovan, Iren; Ionescu, Constantin
2013-04-01
The National Institute for Earth Physics (Romania) operates one of the largest seismic networks in the Eastern Europe. The network includes 97 stations with velocity sensors of which 52 are broadband and 45 are short period, 102 strong motion stations and 8 seismic observatories. Located in the most active seismic region of Romania, i.e. Vrancea area, the Plostina Observatory included initially two seismic stations, one at surface with both broadband and accelerometer sensors and one at 30 m depth with only short period velocity sensor. Starting with 2007, the facilities at Plostina have been upgraded so that at present, the observatory also includes one seismic array (PLOR) of seven elements (PLOR1, PLOR2, PLOR3, PLOR4, PLOR5, PLOR6, PLOR7) with an aperture of 2.5 km, seven infrasound elements (IPL2, IPL3, IPL4, IPH4, IPH5, IPH6, IPH7), two three-component fluxgate sensors, one Boltek EFM-100 electrometer and one La Crosse weather station. The element PLOR4 is co-located with the accelerometer and borehole sensor, two infrasonic elements (IPL4 and IPH4), one fluxgate sensor, the Boltek electrometer and the weather station. All the date are continuously recorded and real-time transmitted to the Romanian National Data Centre (RONDC) in Magurele. The recent developments at Plostina site made possible the improvement of the local miscroseismic activity monitoring as well as conducting of other geophysical studies such as acoustic measurements, observations of the variation of the magnetic field in correlation with solar activity, observations of the variation of radioactive alpha gases concentration, observations of the telluric currents. In this work, we investigate the signals emitted due to the process of lightning and thunder during thunderstorms activity at Plostina site. These signals are well recorded by both seismic and infrasound networks and they are used to perform spectral and specific array analyses. We also perform multiple correlations between the atmospheric parameters recorded by the weather station and seismic and infrasound signals.
Calibration of a fluxgate magnetometer array and its application in magnetic object localization
NASA Astrophysics Data System (ADS)
Pang, Hongfeng; Luo, Shitu; Zhang, Qi; Li, Ji; Chen, Dixiang; Pan, Mengchun; Luo, Feilu
2013-07-01
The magnetometer array is effective for magnetic object detection and localization. Calibration is important to improve the accuracy of the magnetometer array. A magnetic sensor array built with four three-axis DM-050 fluxgate magnetometers is designed, which is connected by a cross aluminum frame. In order to improve the accuracy of the magnetometer array, a calibration process is presented. The calibration process includes magnetometer calibration, coordinate transformation and misalignment calibration. The calibration system consists of a magnetic sensor array, a GSM-19T proton magnetometer, a two-dimensional nonmagnetic rotation platform, a 12 V-dc portable power device and two portable computers. After magnetometer calibration, the RMS error has been decreased from an original value of 125.559 nT to a final value of 1.711 nT (a factor of 74). After alignment, the RMS error of misalignment has been decreased from 1322.3 to 6.0 nT (a factor of 220). Then, the calibrated array deployed on the nonmagnetic rotation platform is used for ferromagnetic object localization. Experimental results show that the estimated errors of X, Y and Z axes are -0.049 m, 0.008 m and 0.025 m, respectively. Thus, the magnetometer array is effective for magnetic object detection and localization in three dimensions.
Data Collection and Analysis for Personnel Detection at a Border Crossing
2011-01-01
3 Figure 4. Picture of fluxgate magnetometer ...materials carried by people, e.g., keys, firearms, and knives. For the experiment we used Model 1540 three-axis fluxgate magnetometers from Applied... magnetometer were collected at 10 samples per second. Figure 4 shows a photo of the emplaced fluxgate magnetometer . 4 Figure 4. Picture of fluxgate
A radiation hardened digital fluxgate magnetometer for space applications
NASA Astrophysics Data System (ADS)
Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.
2013-09-01
Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Zhu, Guoxuan; Liu, Jie; Wu, Xiong; Zhu, Jiangbo; Du, Cheng; Luo, Wenyong; Chen, Yujie; Yu, Siyuan
2018-02-01
An orbital-angular-momentum (OAM) mode-group multiplexing (MGM) scheme based on a graded-index ring-core fiber (GIRCF) is proposed, in which a single-input two-output (or receive diversity) architecture is designed for each MG channel and simple digital signal processing (DSP) is utilized to adaptively resist the mode partition noise resulting from random intra-group mode crosstalk. There is no need of complex multiple-input multiple-output (MIMO) equalization in this scheme. Furthermore, the signal-to-noise ratio (SNR) of the received signals can be improved if a simple maximal ratio combining (MRC) technique is employed on the receiver side to efficiently take advantage of the diversity gain of receiver. Intensity-modulated direct-detection (IM-DD) systems transmitting three OAM mode groups with total 100-Gb/s discrete multi-tone (DMT) signals over a 1-km GIRCF and two OAM mode groups with total 40-Gb/s DMT signals over an 18-km GIRCF are experimentally demonstrated, respectively, to confirm the feasibility of our proposed OAM-MGM scheme.
NASA Astrophysics Data System (ADS)
Gavazzi, Bruno; Alkhatib-Alkontar, Rozan; Munschy, Marc; Colin, Frédéric; Duvette, Catherine
2016-04-01
Fluxgate 3-components magnetometers allow vector measurements of the magnetic field. Moreover, they are the magnetometers measuring the intensity of the magnetic field with the lightest weight and the lowest power consumption. Vector measurements make them the only kind of magnetometer allowing compensation of magnetic perturbations due to the equipment carried with the magnetometer. Fluxgate 3-components magnetometers are common in space magnetometry and in aero-geophysics but are never used in archaeology due to the difficulty to calibrate them. This problem is overcome by the use of a simple calibration and compensation procedure on the field developed initially for space research (after calibration and compensation, rms noise is less than 1 nT). It is therefore possible to build a multi-sensor (up to 8) and georeferenced device for investigations at different scales down to the centimetre: because the locus of magnetic measurements is less than a cubic centimetre, magnetic profiling or mapping can be performed a few centimetres outside magnetized bodies. Such an equipment is used in a context of heavy sediment coverage and uneven topography on the 1st millennium BC site of Qasr ʿAllam in the western desert of Egypt. Magnetic measurements with a line spacing of 0.5 m allow to compute a magnetic grid. Interpretation using potential field operators such as double reduction to the pole and fractional vertical derivatives reveals a widespread irrigation system and a vast cultic facility. In some areas, magnetic profiling with a 0.1 m line spacing and at 0.1 m above the ground is performed. Results of interpretations give enough proof to the local authorities to enlarge the protection of the site against the threatening progression of agricultural fields.
3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation
NASA Astrophysics Data System (ADS)
Dekoulis, George
2016-07-01
This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.
Vector Fluxgate Magnetometer (VMAG) Development for DSX
2008-05-19
AFRL-RV-HA-TR-2008-1108 Vector Fluxgate Magnetometer (VMAG) Development for DSX Mark B. Moldwin Q. O O O I- UCLA Q Institute of...for Public Release; Distribution Unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT UCLA is building a three-axis fluxgate magnetometer for the Air... fluxgate magnetometer provides the necessary data to support both the Space Weather (SWx) specification and mapping requirements and the WPIx
Downhole Applications of Magnetic Sensors.
Gooneratne, Chinthaka P; Li, Bodong; Moellendick, Timothy E
2017-10-19
In this paper we present a review of the application of two types of magnetic sensors-fluxgate magnetometers and nuclear magnetic resonance (NMR) sensors-in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed.
Next Generation HeliMag UXO Mapping Technology
2009-10-01
fluxgate magnetometer is used to allow for aeromagnetic compensation of the data as well as to provide redundant attitude information. 2.1.4 Telemetry...sensor operator from the helicopter. Based on a survey design study , the number of magnetometers was increased from 7 to 13, decreasing the across... magnetometers on a Kevlar reinforced boom mounted on a Bell 206L helicopter. The objectives of this demonstration were too: Improve data acquisition speeds
Vector Fluxgate Magnetometer (VMAG) Development for DSX
2010-06-03
AFRL-RV-HA-TR-2010-1056 Vector Fluxgate Magnetometer (VMAG) Development for DSX Mark B. Moldwin UCLA Institute of Geophysics... Fluxgate Magnetometer (VMAG) Development for DSX 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) Mark B. Moldwin 5d. PROJECT...axis fluxgate magnetometer for the AFRL-mission. The instrument is designed to measure the medium-Earth orbit geomagnetic field with precision of 0.1
Vector Fluxgate Magnetometer (VMAG) Development for DSX
2007-07-02
AFRL-RV-HA-TR-2007-1077 Vector Fluxgate Magnetometer (VMAG) Development for DSX -- Mark B. Moldwin 0 UCLA Institute of Geophysics and Planetary...02-07-2007IScientific Report No. 2 April 2006 - April 2007 4. TITLE AND SUBTITLE S. CONTRACT NUMBER Vector Fluxgate Magnetometer (VMAG) Development...SUPPLEMENTARY NOTES 14. ABSTRACT UCLA is building a three-axis fluxgate magnetometer for the AFRL-mission. The instrument is designed to measure the medium
Optimized merging of search coil and fluxgate data for MMS
NASA Astrophysics Data System (ADS)
Fischer, David; Magnes, Werner; Hagen, Christian; Dors, Ivan; Chutter, Mark W.; Needell, Jerry; Torbert, Roy B.; Le Contel, Olivier; Strangeway, Robert J.; Kubin, Gernot; Valavanoglou, Aris; Plaschke, Ferdinand; Nakamura, Rumi; Mirioni, Laurent; Russell, Christopher T.; Leinweber, Hannes K.; Bromund, Kenneth R.; Le, Guan; Kepko, Lawrence; Anderson, Brian J.; Slavin, James A.; Baumjohann, Wolfgang
2016-11-01
The Magnetospheric Multiscale mission (MMS) targets the characterization of fine-scale current structures in the Earth's tail and magnetopause. The high speed of these structures, when traversing one of the MMS spacecraft, creates magnetic field signatures that cross the sensitive frequency bands of both search coil and fluxgate magnetometers. Higher data quality for analysis of these events can be achieved by combining data from both instrument types and using the frequency bands with best sensitivity and signal-to-noise ratio from both sensors. This can be achieved by a model-based frequency compensation approach which requires the precise knowledge of instrument gain and phase properties. We discuss relevant aspects of the instrument design and the ground calibration activities, describe the model development and explain the application on in-flight data. Finally, we show the precision of this method by comparison of in-flight data. It confirms unity gain and a time difference of less than 100 µs between the different magnetometer instruments.
A ocean bottom vector magnetometer
NASA Astrophysics Data System (ADS)
Wang, Xiaomei; Teng, Yuntian; Wang, Chen; Ma, Jiemei
2017-04-01
The new development instrument with a compact spherical coil system and Overhauser magnetometer for measuring the total strength of the magnetic field and the vectors of strength, Delta inclination - Delta declination, meanwhile we also use a triaxial fluxgate instrument of the traditional instrument for geomagnetic vector filed measurement. The advantages of this method are be calibrated by each other and get good performances with automatic operation, good stability and high resolution. Firstly, a brief description of the instrument measurement principles and the key technologies are given. The instrument used a spherical coil system with 34 coils to product the homogeneous volume inside the coils which is large enough to accommodate the sensor of Overhauser total field sensor; the rest of the footlocker-sized ocean-bottom vector magnetometer consists of equipment to run the sensors and records its data (batteries and a data logger), weight to sink it to the sea floor, a remote-controlled acoustic release and flotation to bring the instrument back to the surface. Finally, the accuracy of the instrument was tested in the Geomagnetic station, and the measurement accuracies of total strength and components were better than 0.2nT and 1nT respectively. The figure 1 shows the development instrument structure. it includes six thick glass spheres which protect the sensor, data logger and batteries from the pressures of the deep sea, meanwhile they also provide recycling positive buoyancy; To cushion the glass, the spheres then go inside yellow plastic "hardhats". The triaxial fluxgate is inside No.1 glass spheres, data logger and batteries are inside No.2 glass spheres, the new vector sensor is inside No.3 glass spheres, acoustic communication unit is inside No.4 glass spheres, No.5 and No.6 glass spheres are empty which only provide recycling positive buoyancy. The figure 2 shows the development instrument Physical photo.
MetalMapper: A Multi-Sensor TEM System for UXO Detection and Classification
2011-02-01
accelerometer to measure pitch and roll angles and a 3-axis fluxgate magnetometer that provides reference heading to magnetic...investigations included a magnetometer transect survey and an EMI survey over a larger area to assist in selecting a
GSFC magnetic field experiment Explorer 43. [describing magnetometer, data processor, and telemetry
NASA Technical Reports Server (NTRS)
Seek, J. B.; Scheifele, J. L.; Ness, N. F.
1974-01-01
The magnetic field experiment flown on Explorer 43 is described. The detecting instrument is a triaxial fluxgate magnetometer which is mounted on a boom with a flipping mechanism for reorienting the sensor in flight. An on-board data processor takes successive magnetometer samples and transmits differences to the telemetry system. By examining these differences in conjunction with an untruncated sample transmitted periodically, the original data may be uniquely reconstructed on the ground.
Investigation of Magnetic Field Phenomena in the Ionosphere
1979-01-01
several days so that a statistical measure of comparison may be developed, i.e. how well the fluxgate magnetometer replicates the standard values Because...Fig. 7 schematically 15 shows these changes. 4) Transients in the sensor to amplifier lines have caused failures of the chopper transitor . Back to back...weakness of this method is that the drop out must be longer than 100 ms. However, drop outs of durations shorter than this are statistically very small
The magnetic field investigation on Cluster
NASA Technical Reports Server (NTRS)
Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.
1988-01-01
The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.
A Measuring System for Well Logging Attitude and a Method of Sensor Calibration
Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao
2014-01-01
This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°. PMID:24859028
A measuring system for well logging attitude and a method of sensor calibration.
Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao
2014-05-23
This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.
Downhole Applications of Magnetic Sensors
Gooneratne, Chinthaka P.; Li, Bodong; Moellendick, Timothy E.
2017-01-01
In this paper we present a review of the application of two types of magnetic sensors—fluxgate magnetometers and nuclear magnetic resonance (NMR) sensors—in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed. PMID:29048391
Magnetometer for the Korea Pathfinder Lunar Orbiter
NASA Astrophysics Data System (ADS)
Lee, H.; Jin, H.; Kim, K. H.; Garrick-Bethell, I.; Son, D.; Lee, S.; Lee, J. K.; Shin, J.; Jeong, S.; Kim, E.
2016-12-01
KPLO (Korea Pathfinder Lunar Orbiter) is the first lunar exploration mission of the Korean Space program. KMAG (Kplo MAGnetometer) is the one of the scientific instruments on-board KPLO spacecraft. The main scientific targets are lunar crustal magnetic anomalies and the space environment around the moon. Global lunar magnetic field measurements have already been performed by the Lunar Prospector and SELENE missions. However, numerous questions about the nature and origin of lunar magnetism remain, and additional measurements would help answer them. For example, a greater number of measurements would help constrain inversions for characteristics of magnetized source bodies, and very low altitude measurements could observe complex field geometries at high-albedo locations known as "swirls". KMAG consists of three fluxgate magnetometers and control electronics. The sensor is a 3-axis fluxgate magnetometer and its measurement range is ±1000 nT, with a selectable gain function. One sensor is expected to be located inside of the spacecraft bus and the other two sensors will be operated inside of a 1.2-m-long boom. The total mass and average power consumption rate are estimated to be 3.5 kg and 2.8 W, respectively. KMAG will be operated with a 100% duty cycle in nominal phase ( 100±30 km altitude) and possibly during extended phase (<70 km altitude) after 1year mission period. The measurement campaign will finish just before impact. This paper describes the overall KMAG concept, design and operation scenario during the KPLO mission duration. KMAG is expected to provide lunar magnetic field data to supplement previous data sets, make new measurements at low altitudes, and improve our understanding of lunar magnetism.
Autonomous Underwater Munitions and Explosives of Concern Detection System
2015-03-01
Field Magnetometer ......................................................................... 19 5.3.2 Fluxgate Compass...through the vehicle control system. Magnetic measurements are sampled at 10 Hz. 5.3.2 Fluxgate Compass Located in the magnetometer module pressure...pitch, and roll) from the fluxgate compass and the total field magnetometer measurements are required for processing into the MagComp compensation
Automated system for the calibration of magnetometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel
2009-04-01
A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical University. There are three axes of rotation in this design (compared to two axes in the previous version). The addition of the third axis allows us to calibrate more complex devices. An electronic compass based on a vector fluxgate magnetometer and micro electro mechanical systems (MEMS) accelerometer is one example. The new platform can also be used tomore » evaluate the parameters of the compass in all possible variations in azimuth, pitch, and roll. The system is based on piezoelectric motors, which are placed on a platform made of aluminum, brass, plastic, and glass. Position sensing is accomplished through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented.« less
Advanced UXO Discrimination using Magnetometry: Understanding Remanent Magnetization
2009-09-01
moments of steel samples. The MRIP comprises six three-component fluxgate magnetometers symmetrically distributed around a rotating sample holder. Samples...comprises six three- component fluxgate magnetometers symmetrically distributed around a rotating sample holder. Samples are placed on the holder... fluxgate magnetometers symmetrically distributed around a rotating sample holder. Samples are placed on the holder and are slowly spun through two
A spinner magnetometer for large Apollo lunar samples.
Uehara, M; Gattacceca, J; Quesnel, Y; Lepaulard, C; Lima, E A; Manfredi, M; Rochette, P
2017-10-01
We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10 -7 Am 2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.
A spinner magnetometer for large Apollo lunar samples
NASA Astrophysics Data System (ADS)
Uehara, M.; Gattacceca, J.; Quesnel, Y.; Lepaulard, C.; Lima, E. A.; Manfredi, M.; Rochette, P.
2017-10-01
We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10-7 Am2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.
NASA Astrophysics Data System (ADS)
Cao, Yuan; Zhao, Yongli; Yu, Xiaosong; Han, Jiawei; Zhang, Jie
2017-11-01
A PANDA polarization-maintaining few-mode ring-core fiber (PM-FM-RCF) structure with two air holes around the ring core is proposed. The relative mode multiplicity factor (RMMF) is defined to evaluate the spatial efficiency of the designed PM-FM-RCF. The performance analysis and comparison of the proposed PANDA PM-FM-RCFs considering three different types of step-index profiles are detailed. Through modal characteristic analysis and numerical simulation, the PM-FM-RCF with a lower refractive index difference (Δnoi=1.5%) between the ring core and the inner central circle can support up to 16 polarization modes with large RMMF at C-band, which shows the optimum modal properties compared with the PM-FM-RCF with higher Δnoi. All the supported polarization modes are effectively separated from their adjacent polarization modes with effective refractive index differences (Δn) larger than 10-4, which also show relatively small chromatic dispersion (-20 to 25 ps/nm/km), low attenuation (<1.4 dB/km), and small bending radius (˜8 mm) over the C-band. The designed PM-FM-RCF can be compatible with standard single-mode fibers and applied in multiple-input multiple-output-free spatial division multiplexing optical networks for short-reach optical interconnection.
Development of a Micro-Fabricated Total-Field Magnetometer
2011-03-01
are made with fluxgate technologies. Fluxgates have lower sensitivity than Cs magnetometers , yet they continue to be used in small wands simply...extraction process by providing the sensitivity of a Cs magnetometer with the convenience and low cost of a fluxgate wand. Extremely small and low cost...FINAL REPORT Development of a Micro-Fabricated Total-Field Magnetometer SERDP Project MR-1512 MARCH 2011 Mark Prouty Geometrics, Inc
Demonstration of an Enhanced Vertical Magnetic Gradient System for UXO
2008-04-01
flights were conducted and results evaluated. The cesium magnetometers , GPS systems (positioning and attitude), fluxgate magnetometers , data...makes a measurement and when it is time-stamped and recorded. This applies to the magnetometers , fluxgate and the GPS. Accurate positioning...requires a correction for this lag. Time lags between the magnetometers , fluxgate and GPS signals were measured by a proprietary utility. This utility
2002 Airborne Geophysical Survey at Pueblo of Laguna Bombing Targets, New Mexico. Revision 3
2005-10-01
conducted and results evaluated. The eight cesium magnetometers , GPS systems (positioning and attitude), fluxgate magnetometers , data recording...Accurate positioning requires a correction for this lag. Time lags between the magnetometers , fluxgate magnetometer , and GPS signals were measured by...between magnetometers and fluxgate ); An initial check flight after installation. Under the category of data QA/QC: An extensive test flight to
A Research and Development Strategy for Unexploded Ordnance Sensing
1996-04-01
Each lane was carefully traversed with the MK-26 Ordnance Detector (dual fluxgate magnetometer hand-held unit) and the operator hand-excavated any...proton-precessing magnetometers , optically pumped magnetometers , fluxgates magnetometers , and magnetometers based on superconducting quantum...sensitivity better than 0.05 nT, and the optically-pumped magnetometers have sensitivity better than 0.005 nT. Fluxgate magnetometers are based on solid
1978-07-01
occurred. The attitude detection system included a three-axis fluxgate vector magnetometer and solar attitude detectors that produced both analog and digital ...heliogoniometer ( digital solar attitudeIsensing system) Three axis analog solar detection - Rubidium vapor magnetometer Three axis fluxgate magnetometer ...Telemetry: 35 channels modulating 150 MHz carrier on command Three axis solar attitude detector system Three axis fluxgate magnetometer system
Investigation of Magnetic Field Measurements.
1983-02-28
Report) Ill. SUPPLEMENTARY NOTES IS. KEY WORDS (CoEntnue on revere side I necoseer mnd Identify by block mamber) AFGL Magnetometer Network Fluxgate ... Magnetometer Induction Coil Magnetometer Temperature Dependency of Fluxgate Automation of Testing 20. ABSTRACT (Coniniue an reverse aide If neeeeey and...data collection platforms. Support was also provided to AFGL to process the fluxgate magnetometer archive tapes in order to make the data available to
NASA Astrophysics Data System (ADS)
Pang, Hongfeng; Chen, Dixiang; Pan, Mengchun; Luo, Shitu; Zhang, Qi; Luo, Feilu
2012-02-01
Fluxgate magnetometers are widely used for magnetic field measurement. However, their accuracy is influenced by temperature. In this paper, a new method was proposed to compensate the temperature drift of fluxgate magnetometers, in which a least-squares support vector machine (LSSVM) is utilized. The compensation performance was analyzed by simulation, which shows that the LSSVM has better performance and less training time than backpropagation and radical basis function neural networks. The temperature characteristics of a DM fluxgate magnetometer were measured with a temperature experiment box. Forty-five measured data under different magnetic fields and temperatures were obtained and divided into 36 training data and nine test data. The training data were used to obtain the parameters of the LSSVM model, and the compensation performance of the LSSVM model was verified by the test data. Experimental results show that the temperature drift of magnetometer is reduced from 109.3 to 3.3 nT after compensation, which suggests that this compensation method is effective for the accuracy improvement of fluxgate magnetometers.
1980-09-01
this system be given no further consideration. 14AGNETOMETER TECHNIQUES Four types of magnetometers are commonly in use today: fluxgate , proton...that are cumbersome to operate and less accurate than fluxgate and proton mag- netometers. The proton magnetometer is also gradually replacing the... fluxgate magnetometer because of its greater sensitivity (I gamma or better), absolute accuracy, nonmoving parts, and its ability Lo measure absolute
MCG measurement in the environment of active magnetic shield.
Yamazaki, K; Kato, K; Kobayashi, K; Igarashi, A; Sato, T; Haga, A; Kasai, N
2004-11-30
MCG (Magnetocardiography) measurement by a SQUID gradiometer was attempted with only active magnetic shielding (active shielding). A three-axis-canceling-coil active shielding system, where three 16-10-16 turns-coil sets were put in the orthogonal directions, produces a homogeneous magnetic field in a considerable volume surrounding the center. Fluxgate sensors were used as the reference sensors of the system. The system can reduce environmental magnetic noise at low frequencies of less than a few Hz, at 50 Hz and at 150 Hz. Reducing such disturbances stabilizes biomagnetic measurement conditions for SQUIDs in the absence of magnetically shielded rooms (MSR). After filtering and averaging the measured MCG data by a first-order SQUID gradiometer with only the active shielding during the daytime, the QRS complex and T wave was clearly presented.
Signal detection via residence-time asymmetry in noisy bistable devices.
Bulsara, A R; Seberino, C; Gammaitoni, L; Karlsson, M F; Lundqvist, B; Robinson, J W C
2003-01-01
We introduce a dynamical readout description for a wide class of nonlinear dynamic sensors operating in a noisy environment. The presence of weak unknown signals is assessed via the monitoring of the residence time in the metastable attractors of the system, in the presence of a known, usually time-periodic, bias signal. This operational scenario can mitigate the effects of sensor noise, providing a greatly simplified readout scheme, as well as significantly reduced processing procedures. Such devices can also show a wide variety of interesting dynamical features. This scheme for quantifying the response of a nonlinear dynamic device has been implemented in experiments involving a simple laboratory version of a fluxgate magnetometer. We present the results of the experiments and demonstrate that they match the theoretical predictions reasonably well.
Magnetic Signature: Small Arms Testing of Multiple Examples of Same Model Weapons
2009-04-01
inside the wooden building, showing a three-axis fluxgate magnetometer , north-south path lines, and instrumentation system...the FVM-400 Vector Fluxgate Magnetometer by Macintyre Electronics Design Associates, Inc. (MEDA) was used and in other cases two DFM100G2 Digital... Fluxgate Magnetometers made by Billingsley Magnetics were used. The majority of the data obtained was done with the latter. The MEDA has a 1 nT
Report on the HAARP 2008 Winter Campaign Focusing on Artificial Ionospheric Irregularities
2008-07-31
Figure Bl. Magnetic field variations recorded by the fluxgate magnetometer 30 Figure B2. Composite ionogram showing the variation of the reflection...variation was monitored by the Fluxgate Magnetometer . The density irregularities were monitored by the Ionosonde. 20:00 Preliminary Results The...magnetic field variations in three directions (H, D, and Z) recorded by the fluxgate magnetometer from UTC 20:00 to 04:00 are shown in the plots of
Impact of remanent magnetic field on the heat load of original CEBAF cryomodule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciovati, Gianluigi; Cheng, Guangfeng; Drury, Michael
The heat load of the original cryomodules for the CEBAF accelerator is ~50% higher than the target value of 100 W at 2.07 K for refurbished cavities operating at an accelerating gradient of 12.5 MV/m. This issue is due to the quality factor of the cavities being ~50% lower in the cryomodule than when tested in a vertical cryostat, even at low RF field. Previous studies were not conclusive about the origin of the additional losses. We present the results of a systematic study of the additional losses in a five-cell cavity from a decommissioned cryomodule after attaching components, whichmore » are part of the cryomodule, such as the cold tuner, the He tank and the cold magnetic shield, prior to cryogenic testing in a vertical cryostat. Flux-gate magnetometers and temperature sensors are used as diagnostic elements. Different cool-down procedures and tests in different residual magnetic fields were investigated during the study. Here, three flux-gate magnetometers attached to one of the cavities installed in the refurbished cryomodule C50-12 confirmed the hypothesis of high residual magnetic field as a major cause for the increased RF losses.« less
Impact of remanent magnetic field on the heat load of original CEBAF cryomodule
Ciovati, Gianluigi; Cheng, Guangfeng; Drury, Michael; ...
2016-11-22
The heat load of the original cryomodules for the CEBAF accelerator is ~50% higher than the target value of 100 W at 2.07 K for refurbished cavities operating at an accelerating gradient of 12.5 MV/m. This issue is due to the quality factor of the cavities being ~50% lower in the cryomodule than when tested in a vertical cryostat, even at low RF field. Previous studies were not conclusive about the origin of the additional losses. We present the results of a systematic study of the additional losses in a five-cell cavity from a decommissioned cryomodule after attaching components, whichmore » are part of the cryomodule, such as the cold tuner, the He tank and the cold magnetic shield, prior to cryogenic testing in a vertical cryostat. Flux-gate magnetometers and temperature sensors are used as diagnostic elements. Different cool-down procedures and tests in different residual magnetic fields were investigated during the study. Here, three flux-gate magnetometers attached to one of the cavities installed in the refurbished cryomodule C50-12 confirmed the hypothesis of high residual magnetic field as a major cause for the increased RF losses.« less
THOR Fluxgate Magnetometer (MAG)
NASA Astrophysics Data System (ADS)
Nakamura, Rumi; Eastwood, Jonathan; Magnes, Werner; Carr, Christopher, M.; O'Brien, Helen, L.; Narita, Yasuhito; K, Chen, Christopher H.; Berghofer, Gerhard; Valavanoglou, Aris; Delva, Magda; Plaschke, Ferdinand; Cupido, Emanuele; Soucek, Jan
2017-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The fluxgate Magnetometer (MAG) measures the background to low frequency magnetic field. The high sensitivity measurements of MAG enable to characterize the nature of turbulent fluctuations as well as the large-scale context. MAG will provide the reference system for determining anisotropy of field fluctuations, pitch-angle and gyro-phase of particles. The design of the magnetometer consists of two tri-axial sensors and the related magnetometer electronics; the electronics are hosted on printed circuit boards in the common electronics box of the fields and wave processor (FWP). A fully redundant two- sensor system mounted on a common boom and the new miniaturized low noise design based on MMS and Solar Orbiter instruments enable accurate measurement throughout the region of interest for THOR science. The usage of the common electronics hosted by FWP guarantees to fulfill the required timing accuracy with other fields measurements. These improvements are important to obtain precise measurements of magnetic field, which is essential to estimate basic plasma parameters and correctly identify the spatial and temporal scales of the turbulence. Furthermore, THOR MAG provides high quality data with sufficient overlap with the Search Coil Magnetometer (SCM) in frequency space to obtain full coverage of the wave forms over all the frequencies necessary to obtain the full solar wind turbulence spectrum from MHD to kinetic range with sufficient accuracy. We discuss the role of MAG in THOR key science questions and present the new developments during Phase A such as the finalised instrument design, MAG relevant requirement, and new calibraion schemes.
NASA Astrophysics Data System (ADS)
Brunke, Heinz-Peter; Widmer-Schnidrig, Rudolf; Korte, Monika
2017-11-01
For frequencies above 30 mHz the instrument intrinsic noise level of typical fluxgate magnetometers used at geomagnetic observatories usually masks ambient magnetic field variations on magnetically quiet days. This is especially true for stations located at middle and low latitudes, where variations are generally smaller than at high latitudes. INTERMAGNET has set a minimum quality standard for definitive 1 s data. Natural field variations referred to as pulsations (Pc-1, Pc-2, Pi-1) fall in this band. Usually their intensity is so small that they rarely surpass the instrumental noise of fluxgate magnetometers. Moreover, high-quality magnetic field observations in the band 30 mHz-0.5 Hz contain interesting information, e.g., for the study of ionospheric electron interactions with electromagnetic ion cyclotron plasma waves. We propose a method to improve 1 Hz observatory data by merging data from the proven and tested fluxgate magnetometers currently in use with induction coil magnetometers into a single data stream. We show how measurements of both instruments can be combined without information loss or phase distortion. The result is a time series of the magnetic field vector components, combining the benefits of both instruments: long-term stability (fluxgate) and low noise at high frequencies (induction coil). This new data stream fits perfectly into the data management procedures of INTERMAGNET and meets the requirements defined in the definitive 1 s data standard. We describe the applied algorithm and validate the result by comparing power spectra of the fluxgate magnetometer output with the merged signal. Daily spectrograms from the Niemegk observatory show that the resulting data series reveal information at frequencies above 30 mHz that cannot be seen in raw fluxgate data.
1985-07-01
Datatape Division 4-1 5.0 REFERENCES Acuna, M.H. et. al., The MAGSAT Vector Magnetometer - A Precision Fluxgate Magnetometer for the Measurement of the...charting would consist of a triaxial, mutually orthogonal fluxgate magnetometer and an absolute scalar magnetometer to check the flux- gates drift...While space-ready, triaxial fluxgate magnetometers are not an off-the-shelf item, their design concepts are well understood. Their resolution of less
Research on the Dynamic Hysteresis Loop Model of the Residence Times Difference (RTD)-Fluxgate
Wang, Yanzhang; Wu, Shujun; Zhou, Zhijian; Cheng, Defu; Pang, Na; Wan, Yunxia
2013-01-01
Based on the core hysteresis features, the RTD-fluxgate core, while working, is repeatedly saturated with excitation field. When the fluxgate simulates, the accurate characteristic model of the core may provide a precise simulation result. As the shape of the ideal hysteresis loop model is fixed, it cannot accurately reflect the actual dynamic changing rules of the hysteresis loop. In order to improve the fluxgate simulation accuracy, a dynamic hysteresis loop model containing the parameters which have actual physical meanings is proposed based on the changing rule of the permeability parameter when the fluxgate is working. Compared with the ideal hysteresis loop model, this model has considered the dynamic features of the hysteresis loop, which makes the simulation results closer to the actual output. In addition, other hysteresis loops of different magnetic materials can be explained utilizing the described model for an example of amorphous magnetic material in this manuscript. The model has been validated by the output response comparison between experiment results and fitting results using the model. PMID:24002230
Field-Programmable Gate Array-based fluxgate magnetometer with digital integration
NASA Astrophysics Data System (ADS)
Butta, Mattia; Janosek, Michal; Ripka, Pavel
2010-05-01
In this paper, a digital magnetometer based on printed circuit board fluxgate is presented. The fluxgate is pulse excited and the signal is extracted by gate integration. We investigate the possibility to perform integration on very narrow gates (typically 500 ns) by using digital techniques. The magnetometer is based on field-programmable gate array (FPGA) card: we will show all the advantages and disadvantages, given by digitalization of fluxgate output voltage by means of analog-to-digital converter on FPGA card, as well as digitalization performed by external digitizer. Due to very narrow gate, it is shown that a magnetometer entirely based on a FPGA card is preferable, because it avoids noise due to trigger instability. Both open loop and feedback operative mode are described and achieved results are presented.
The simple procedure for the fluxgate magnetometers calibration
NASA Astrophysics Data System (ADS)
Marusenkov, Andriy
2014-05-01
The fluxgate magnetometers are widely used in geophysics investigations including the geomagnetic field monitoring at the global network of geomagnetic observatories as well as for electromagnetic sounding of the Earth's crust conductivity. For solving these tasks the magnetometers have to be calibrated with an appropriate level of accuracy. As a particular case, the ways to satisfy the recent requirements to the scaling and orientation errors of 1-second INTERNAGNET magnetometers are considered in the work. The goal of the present study was to choose a simple and reliable calibration method for estimation of scale factors and angular errors of the three-axis magnetometers in the field. There are a large number of the scalar calibration methods, which use a free rotation of the sensor in the calibration field followed by complicated data processing procedures for numerical solution of the high-order equations set. The chosen approach also exploits the Earth's magnetic field as a calibrating signal, but, in contrast to other methods, the sensor has to be oriented in some particular positions in respect to the total field vector, instead of the sensor free rotation. This allows to use very simple and straightforward linear computation formulas and, as a result, to achieve more reliable estimations of the calibrated parameters. The estimation of the scale factors is performed by the sequential aligning of each component of the sensor in two positions: parallel and anti-parallel to the Earth's magnetic field vector. The estimation of non-orthogonality angles between each pair of components is performed after sequential aligning of the components at the angles +/- 45 and +/- 135 degrees of arc in respect to the total field vector. Due to such four positions approach the estimations of the non-orthogonality angles are invariant to the zero offsets and non-linearity of transfer functions of the components. The experimental justifying of the proposed method by means of the Coil Calibration system reveals, that the achieved accuracy (<0.04 % for scale factors and 0.03 degrees of arc for angle errors) is sufficient for many applications, particularly for satisfying the INTERMAGNET requirements to 1-second instruments.
High resolution remanent magnetization scanner for long cores
NASA Astrophysics Data System (ADS)
Demory, François; Quesnel, Yoann; Uehara, Minoru; Rochette, Pierre; Zylberman, William; Romey, Carole; Pignol, Laure; Andrieu-Ponel, Valérie
2017-04-01
Superconducting rock magnetometer reaches saturation when measuring magnetic moments higher than 5 10-5 Am2. Due to the distance of the sensor from the measurement zone, the spatial resolution is low for continuous measurements led on U channel or cores. To solve these problems, we designed a core logger dedicated to the measurement of remanent magnetizations. Based on a fluxgate sensor located very close to the sample, the spatial resolution of the core logger is infra-centimetric. The fluxgate sensor is also able to detect magnetic fields of few nT produced by magnetic moments of the order of few 10-8 Am2. As the equipment does not reach saturation, we measured isothermal remanent magnetization of highly magnetic samples. This magnetization was acquired perpendicularly to the long axis of U-channels from Cassis paleo-lake (Romey et al., 2015) and of cores from Haughton impact structure (Zylberman et al., submitted) using Halbach cylinders (Rochette et al., 2001). To interpret local magnetic fields in terms of magnetic moments, we performed an inter-calibration with the superconducting rock magnetometer and signal inversion. This development led to the filing of a patent (FR.16/53142) and is funded by the ECCOREV project MESENVIMAG. References: Rochette, P., Vadeboin, F., Clochard, L., 2001. Rock magnetic applications of Halbach cylinders. Physics of the Earth and Planetary Interiors 126, 109-117. Romey, C., Vella, C., Rochette, P., Andrieu-Ponel, V., Magnin, F., Veron, A., Talon, B., Landure, C., D'Ovidio, A.M., Delanghe, D., Ghilardi, M., Angeletti, B., 2015. Environmental imprints of landscape evolution and human activities during the Holocene in a small catchment of the Calanques Massif (Cassis, southern France). Holocene 25 (9), 1454-1469. Zylberman W., Quesnel Y., Rochette P., Osinski G. R., Marion C., Gattacceca J. (submitted to MAPS) Hydrothermally-enhanced magnetization at the center of the Haughton impact structure? (Nunavut, Canada).
2006-07-12
fluxgate magnetometer for the AFRL-DSX mission. The instrument is designed to measure the medium-Earth orbit geomagnetic field with precision of 0.1 nT and...which is essential to fulfill the two primary goals of the DSX science program. 1.1. Scientific Rationale: Ring Current and The fluxgate magnetometer ...UCLA’s ments and the Radiation Belt Remediation primary motivation in providing fluxgate requirements. The magnetic field is necessary magnetometers for
1981-10-21
characteristics of five types of magnetometers flown on spacecraft. These are: (1) search coils, (2) fluxgates , (3)proton precession, (4) alkali vapor and... Fluxgate magnetometers are most useful for measuring the dc magnetic field of the earth as well as its low frequency (:s 100 Hz) fluctuations...Characteristics of fluxgates are discussed in detail in the paragraphs immediately following. The last three types of magnetometers provide very high resolution
Exploration of geomagnetic field anomaly with balloon for geophysical research
NASA Astrophysics Data System (ADS)
Jia, Wen-Kui
The use of a balloon to explore the geomagnetic field anomaly in the area east of Beijing is demonstrated. The present results are compared with those of aerial surveys. Descriptions are given of the fluxgate magnetometer, the sensor's attitude control and measurement, and data transmission and processing. At an altitude of about 30 km, a positive anomaly of the vertical component of about 100 nanoteslas was measured. The results suggest that, for this particular area, the shallow layer of a small-scale geological structure differs from the deep layer of a large-scale geological structure.
DC-magnetic field vector measurement
NASA Technical Reports Server (NTRS)
Schmidt, R.
1981-01-01
A magnetometer experiment was designed to determine the local magnetic field by measuring the total of the Earth's magnetic field and that of an unknown spacecraft. The measured field vector components are available to all onboard experiments via the Spacelab command and data management system. The experiment consists of two parts, an electronic box and the magnetic field sensor. The sensor includes three independent measuring flux-gate magnetometers, each measuring one component. The physical background is the nonlinearity of the B-H curve of a ferrite material. Two coils wound around a ferrite rod are necessary. One of them, a tank coil, pumps the ferrite rod at approximately 20 kilohertz. As a consequence of the nonlinearity, many harmonics can be produced. The second coil (i.e., the detection coil) resonates to the first harmonic. If an unknown dc or low-frequency magnetic field exists, the amplitude of the first harmonic is a measure for the unknown magnetic field. The voltages detected by the sensors are to be digitized and transferred to the command and data management system.
Tunneling magnetoresistance sensor with pT level 1/f magnetic noise
NASA Astrophysics Data System (ADS)
Deak, James G.; Zhou, Zhimin; Shen, Weifeng
2017-05-01
Magnetoresistive devices are important components in a large number of commercial electronic products in a wide range of applications including industrial position sensors, automotive sensors, hard disk read heads, cell phone compasses, and solid state memories. These devices are commonly based on anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), but over the past few years tunneling magnetoresistance (TMR) has been emerging in more applications. Here we focus on recent work that has enabled the development of TMR magnetic field sensors with 1/f noise of less than 100 pT/rtHz at 1 Hz. Of the commercially available sensors, the lowest noise devices have typically been AMR, but they generally have the largest die size. Based on this observation and modeling of experimental data size and geometry dependence, we find that there is an optimal design rule that produces minimum 1/f noise. This design rule requires maximizing the areal coverage of an on-chip flux concentrator, providing it with a minimum possible total gap width, and tightly packing the gaps with MTJ elements, which increases the effective volume and decreases the saturation field of the MTJ freelayers. When properly optimized using this rule, these sensors have noise below 60 pT/rtHz, and could possibly replace fluxgate magnetometers in some applications.
In-Flight Calibration Methods for Temperature-Dependent Offsets in the MMS Fluxgate Magnetometers
NASA Technical Reports Server (NTRS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.;
2016-01-01
During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
A radiation hardened digital fluxgate magnetometer for space applications
NASA Astrophysics Data System (ADS)
Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.
2013-02-01
Space-based measurements of the Earth's magnetic field are required to understand the plasma processes responsible for energizing particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of the Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT per square-root Hz at 1 Hz. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory showing that the mostly-digital design matches or exceeds its radiation-soft analog predecessor in sensitivity, noise, frequency range, and RMS accuracy.
Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks
NASA Technical Reports Server (NTRS)
Wilson, L.B., III
2012-01-01
We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.
OM300 Direction Drilling Module
MacGugan, Doug
2013-08-22
OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process
The Pioneer 11 high-field fluxgate magnetometer
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1973-01-01
The High Field Fluxgate Magnetometer Experiment flow aboard the Pioneer 11 spacecraft to investigate Jupiter's magnetic field is described. The instrument extends the spacecraft's upper limit measurement capability by more than an order of magnitude to 17.3 gauss with minimum power and volume requirements.
NASA Astrophysics Data System (ADS)
Leinweber, H. K.; Russell, C. T.; Torkar, K.
2012-10-01
We show that the spin axis offset of a fluxgate magnetometer can be calibrated with an electron drift instrument (EDI) and that the required input time interval is relatively short. For missions such as Cluster or the upcoming Magnetospheric Multiscale (MMS) mission the spin axis offset of a fluxgate magnetometer could be determined on an orbital basis. An improvement of existing methods for finding spin axis offsets via comparison of accurate measurements of the field magnitude is presented, that additionally matches the gains of the two instruments that are being compared. The technique has been applied to EDI data from the Cluster Active Archive and fluxgate magnetometer data processed with calibration files also from the Cluster Active Archive. The method could prove to be valuable for the MMS mission because the four MMS spacecraft will only be inside the interplanetary field (where spin axis offsets can be calculated from Alfvénic fluctuations) for short periods of time and during unusual solar wind conditions.
Abandoned underground storage tank location using fluxgate magnetic surveying: A case study
Van Biersel, T. P.; Bristoll, B.C.; Taylor, R.W.; Rose, J.
2002-01-01
In 1993, during the removal of a diesel and a gasoline underground storage tank at the municipal garage of the Village of Kohler, Sheboygan County, Wisconsin, soil testing revealed environmental contamination at the site. A site investigation revealed the possibility of a second on-site source of petroleum contamination. Limited historical data and the present usage of structures within the suspected source area precluded the use of most invasive sampling methods and most geophysical techniques. A fluxgate magnetometer survey, followed by confirmatory excavation, was conducted at the site. The fluxgate magnetometer survey identified nine possible magnetic anomalies within the 18 ?? 25 m area. The subsequent excavation near the anomalies revealed the presence of five paired and two individual 2000 L underground storage tanks. The fluxgate magnetometer survey, although affected by the proximity of buildings, was able to detect the buried tanks within 3 m of the brick structures, using a 1.5 ?? 1.5 m sampling array.
1992-01-01
electron number density measurements. Electromagnetic plasma waves below 5.6 Hz are in the frequency range covered by the Fluxgate Magnetometer ...on the part of the spacecraft controllers and for long shadow periods late in 1990 and early 1991. Analyses of the Fluxgate Magnetometer Experiment...remaining was a strong signal between 13 and 13.5 kHz which is due to the drive frequency signal for the Fluxgate Magnetometer Experiment mounted
Small Fluxgate Magnetometers: Development and Future Trends in Spain
Ciudad, David; Díaz-Michelena, Marina; Pérez, Lucas; Aroca, Claudio
2010-01-01
In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space. PMID:22294904
Small fluxgate magnetometers: development and future trends in Spain.
Ciudad, David; Díaz-Michelena, Marina; Pérez, Lucas; Aroca, Claudio
2010-01-01
In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space.
Juno Magnetometer Observations in the Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Connerney, J. E.; Oliversen, R. J.; Espley, J. R.; MacDowall, R. J.; Schnurr, R.; Sheppard, D.; Odom, J.; Lawton, P.; Murphy, S.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M.; Denver, T.; Bloxham, J.; Smith, E. J.; Murphy, N.
2013-12-01
The Juno spacecraft enjoyed a close encounter with Earth on October 9, 2013, en route to Jupiter Orbit Insertion (JOI) on July 5, 2016. The Earth Flyby (EFB) provided a unique opportunity for the Juno particles and fields instruments to sample mission relevant environments and exercise operations anticipated for orbital operations at Jupiter, particularly the period of intense activity around perijove. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. This very capable magnetic observatory sampled the Earth's magnetic field at 64 vector samples/second throughout passage through the Earth's magnetosphere. We present observations of the Earth's magnetic field and magnetosphere obtained throughout the encounter and compare these observations with those of other Earth-orbiting assets, as available, and with particles and fields observations acquired by other Juno instruments operated during EFB.
In-Flight Calibration Methods for Temperature-Dependendent Offsets in the MMS Fluxgate Magnetometers
NASA Astrophysics Data System (ADS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.; Baumjohann, W.; Chutter, M.; Torbert, R. B.; Le, G.; Slavin, J. A.; Kepko, L.
2016-12-01
During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen — for the period of any given week — to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
Magnetogama: an open schematic magnetometer
NASA Astrophysics Data System (ADS)
Wahyudi; Khakhim, Nurul; Kuntoro, Tri; Mardiatno, Djati; Rakhman, Afif; Setyo Handaru, Anas; Akhmad Mufaqih, Adien; Marwan Irnaka, Theodosius
2017-09-01
Magnetogama is an open schematic hand-assembled fluxgate magnetometer. Compared to another magnetometer, Magnetogama has more benefit concerning its price and its ease of use. Practically Magnetogama can be utilized either in land or attached to an unmanned aerial vehicle (UAV). Magnetogama was designed to give open access to a cheap and accurate alternative to magnetometer sensor. Therefore it can be used as a standard design which is directly applicable to the low-budget company or education purposes. Schematic, code and several verification tests were presented in this article ensuring its reproducibility. Magnetogama has been tested with two kind of tests: a comparison with two nearest observatories at Learmonth (LRM) and Kakadu (KDU) and the response of magnetic substance.
Noise Reduction of 1sec Geomagnetic Observatory Data without Information Loss
NASA Astrophysics Data System (ADS)
Brunke, Heinz-Peter; Korte, Monika; Rudolf, Widmer-Schnidrig
2017-04-01
Traditional fluxgate magnetometers used at geomagnetic observatories are optimized towards long-term stability. Typically, such instruments can only resolve background geomagnetic field variations up to a frequency of approximately 0.04 Hz and are limited by instrumental self-noise above this frequency. However, recently the demand for low noise 1 Hz observatory data has increased. IAGA has defined a standard for definitive 1sec data. Induction coils have low noise at these high frequencies, but lack long-term stability. We present a method to numerically combine the data from a three axis induction coil system with a typical low-drift observatory fluxgate magnetometer. The resulting data set has a reduced noise level above 0.04 Hz while maintaining the long term stability of the fluxgate magnetometer. Numerically we fit a spline to the fluxgate data. But in contrast to such a low pass filtering process, our method reduces the noise level at high frequencies without any loss of information. In order to experimentally confirm our result, we compared it to a very low noise scalar magnetometer: an optically pumped potassium magnetometer. In the frequency band from [0.03Hz to 0.5Hz] we found an rms-noise reduction from 80pT for the unprocessed fluxgate data to about 25pT for the processed data. We show how our method improves geomagnetic 1 sec observatory data for, e.g., the study of magnetospheric pulsations and EMIC waves.
DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures
NASA Astrophysics Data System (ADS)
Burdin, Dmitrii; Chashin, Dmitrii; Ekonomov, Nikolai; Fetisov, Leonid; Fetisov, Yuri; Shamonin, Mikhail
2016-09-01
Recently, highly sensitive magnetic field sensors using the magnetoelectric effect in composite ferromagnetic-piezoelectric layered structures have been demonstrated. However, most of the proposed concepts are not useful for measuring dc magnetic fields, because the conductivity of piezoelectric layers results in a strong decline of the sensor’s sensitivity at low frequencies. In this paper, a novel functional principle of magnetoelectric sensors for dc magnetic field measurements is described. The sensor employs the nonlinear effect of voltage harmonic generation in a composite magnetoelectric structure under the simultaneous influence of a strong imposed ac magnetic field and a weak dc magnetic field to be measured. This physical effect arises due to the nonlinear dependence of the magnetostriction in the ferromagnetic layer on the magnetic field. A sensor prototype comprising of a piezoelectric fibre transducer sandwiched between two layers of the amorphous ferromagnetic Metglas® alloy was fabricated. The specifications regarding the magnetic field range, frequency characteristics, and noise level were studied experimentally. The prototype showed the responsivity of 2.5 V mT-1 and permitted the measurement of dc magnetic fields in the range of ~10 nT to about 0.4 mT. Although sensor operation is based on the nonlinear effect, the sensor response can be made linear with respect to the measured magnetic field in a broad dynamic range extending over 5 orders of magnitude. The underlying physics is explained through a simplified theory for the proposed sensor. The functionality, differences and advantages of the magnetoelectric sensor compare well with fluxgate magnetometers. The ways to enhance the sensor performance are considered.
View of the Lunar Portable Magnetometer (LPM)
1970-12-21
S70-56721 (December 1970) --- A close-up view of the Lunar Portable Magnetometer (LPM), which will be used by the crew of the Apollo 14 lunar landing mission during the second extravehicular activity (EVA). The LPM's components, a tripod-mounted flux-gate magnetometer sensor head and an electronics data package, connected by a 50-feet flat cable, function together to measure variations in the lunar magnetic field at several points on the geological traverse. Data gathered will be used to determine the location, strength and dimensions of magnetic sources, as well as knowledge of the local and total selenological structure. The LPM will be carried on the Modular Equipment Transporter (MET), and deployed by the lunar module pilot, who will align the sensor head at least 35 feet from the data package. The LM pilot will then return to the MET and verbally relay the LPM readouts to Earth. Astronaut Edgar D. Mitchell is the lunar module pilot for the Apollo 14 lunar landing mission.
NASA Astrophysics Data System (ADS)
Melton, Casey; McCammon Lab at University of Wisconsin-Madison
2018-01-01
In Dr. Dan McCammon’s lab at the University of Wisconsin-Madison, a special class of x-ray microcalorimeter called a Transition-Edge Sensor, or TES, is being tested in order to identify the strengths and weaknesses of this device in detecting x-ray photons from astronomical sources. The TES is currently housed in a cryogenic refrigerator where it can be tested at superconducting temperatures. Although this refrigerator is equipped with magnetic field shielding to keep magnetic fields out during testing, latent magnetic fields are trapped inside the receptacle at the time of cool-down. To remedy this problem, I built a set of tri-axial Helmholtz coils, which have at their center a uniform volume of magnetic field. This uniform region can be tuned prior to cool-down and nulls the magnetic field that would typically be trapped inside the receptacle. The magnetic field will be monitored inside the receptacle with a tri-axial fluxgate magnetic field sensor, which I began designing in the latter half of the project. This project is still in progress, and will be implemented in the lab in the near future.
Development of a microcomputer-based magnetic heading sensor
NASA Technical Reports Server (NTRS)
Garner, H. D.
1987-01-01
This paper explores the development of a flux-gate magnetic heading reference using a single-chip microcomputer to process heading information and to present it to the pilot in appropriate form. This instrument is intended to replace the conventional combination of mechanical compass and directional gyroscope currently in use in general aviation aircraft, at appreciable savings in cost and reduction in maintenance. Design of the sensing element, the signal processing electronics, and the computer algorithms which calculate the magnetic heading of the aircraft from the magnetometer data have been integrated in such a way as to minimize hardware requirements and simplify calibration procedures. Damping and deviation errors are avoided by the inherent design of the device, and a technique for compensating for northerly-turning-error is described.
A Bistable Microelectronic Circuit for Sensing Extremely Low Electric Field
2010-01-01
potential system describing the ferromagnetic ma- terials employed in the fluxgate magnetometers .1 To give a clearer picture of the separations between...this behavior in a specific prototype system comprised of three unidirectionally coupled ferromagnetic cores, the basis of a coupled core fluxgate ... magnetometer . Another prototypical quartic poten- tial based system of coupled overdamped Duffing elements has been applied to describe the dynamics
2008-08-28
for aircraft pitch measurement Fluxgate magnetometer 10 RS232- ASCII SerialDevice.fluxgate Provides redundant aircraft attitude measurement...Figure 28. Filtered, ’final’ magnetometer data taken at high altitude. ......................................................... 43 LIST OF TABLES...flight. The magnetometer data can be analyzed to extract either distributions of magnetic anomalies (which can be further used to locate and bound
Man-Portable Simultaneous Magnetometer and EM System (MSEMS)
2008-12-01
limited to cesium vapor magnetometers outputting a Larmor signal. It cannot, as presently configured, be used with less expensive fluxgate magnetometers ...pulses to convert the frequency-based Larmor signal into nT. A fluxgate magnetometer does not employ the resonance mechanism of an alkali vapor...Simultaneous Magnetometer and EM System (MSEMS) December 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the
Fluxgate magnetometers for outer planets exploration
NASA Technical Reports Server (NTRS)
Acuna, M. H.
1974-01-01
The exploration of the interplanetary medium and the magnetospheres of the outer planets requires the implementation of magnetic field measuring instrumentation with wide dynamic range, high stability, and reliability. The fluxgate magnetometers developed for the Pioneer 11 and Mariner-Jupiter-Saturn missions are presented. These instruments cover the range of .01 nT to 2 million nT with optimum performance characteristics and low power consumption.
Man-Portable Simultaneous Magnetometer and EM System (MSEMS)
2008-12-01
expensive fluxgate magnetometers . This is because the interleaving hardware is expecting a Larmor signal as input; it performs period counting of the...Larmor signal between EM61 pulses to convert the frequency-based Larmor signal into nanotesla. A fluxgate magnetometer does not employ the resonance...FINAL REPORT Man-Portable Simultaneous Magnetometer and EM System (MSEMS) ESTCP Project MM-0414 December 2008 Robert Siegel Science
Zhang, John; Toftness, Dave; Snyder, Brian; Nosco, Dennis; Balcavage, Walter; Nindl, Gabi
2004-12-01
The use of magnetic fields to treat disease has intrigued mankind since the time of the ancient Greeks. More recently it has been shown that electromagnetic field (EMF) treatment aids bone healing, and repetitive transcranial magnetic stimulation (rTMS) appears to be beneficial in treating schizophrenia and depression. Since external EMFs influence internal body processes, we hypothesized that measurement of body surface EMFs might be used to detect disease states and direct the course of subsequent therapy. However, measurement of minute body surface EMFs requires use of a sensitive and well documented magnetometer. In this study we evaluated the sensitivity and frequency response of a fluxgate magnetometer with a triaxial probe for use in detecting body surface EMF and we compared the magnetometer readings with a signal from a Toftness Sensometer, operated by an experienced clinician, in the laboratory and in a clinical setting. A Peavy Audio Amplifier and variable power output Telulex signal generator were used to develop 50 microT EMFs in a three coil Merritt coil system. A calibrated magnetometer was used to set a 60 Hz 50 microT field in the coil and an ammeter was used to measure the current required to develop the 50 microT field. At frequencies other than 60 Hz, the field strength was maintained at 50 microT by adjusting the Telulex signal output to keep the current constant. The field generated was monitored using a 10 turn coil connected to an oscilloscope. The oscilloscope reading indicated that the field strength was the same at all frequencies tested. To determine if there was a correspondence between the signals detected by a fluxgate magnetometer (FGM1) and the Toftness Sensometer both devices were placed in the Merritt coil and readings were recorded from the FGM1 and compared with the ability of a highly experienced Toftness operator to detect the 50 microT field. Subsequently, in a clinical setting, FGM1 readings made by an FGM1 technician and Sensometer readings were made by 4 Toftness Sensometer operators, having various degrees of experience with this device. Each examiner obtained instrument readings from 5 different volunteers in separate chiropractic adjusting rooms. Additionally, one of the Toftness Sensometers was equipped with an integrated fluxgate magnetometer (FGM2) and this magnetometer was used to obtain a second set of EMF readings in the clinical setting. The triaxial fluxgate magnetometer was determined to be moderately responsive to changes in magnetic field frequency below 10 Hz. At frequencies above 10 Hz the readings corresponded to that of the ambient static geofield. The practitioner operating the Toftness Sensometer was unable to detect magnetic fields at high frequencies (above 10 Hz) even at very high EMFs. The fluxgate magnetometer was shown to be essentially a DC/static magnetic field detector and like all such devices it has a limited frequency range with some low level of sensitivity at very low field frequencies. The interexaminer reliability of four Toftness practitioners using the Sensometer on 5 patients showed low to moderate correlation. The fluxgate magnetometer although highly sensitive to static (DC) EMFs has only limited sensitivity to EMFs in the range of 1 to 10 Hz and is very insensitive to frequencies above 10 Hz. In laboratory comparisons of the Sensometer and the fluxgate magnetometer there was an occasional correspondence between the two instruments in detecting magnetic fields within the Merritt coil but these occasions were not reproducible. In the clinical studies there was low to moderate agreement between the clinicians using the Sensometer to diagnosing spinal conditions and there was little if any agreement between the Sensometer and the fluxgate magnetometer in detecting EMFs emanating from the volunteers body surface.
Zhang, John; Toftness, Dave; Snyder, Brian; Nosco, Dennis; Balcavage, Walter; Nindl, Gabi
2004-01-01
Introduction The use of magnetic fields to treat disease has intrigued mankind since the time of the ancient Greeks. More recently it has been shown that electromagnetic field (EMF) treatment aids bone healing, and repetitive transcranial magnetic stimulation (rTMS) appears to be beneficial in treating schizophrenia and depression. Since external EMFs influence internal body processes, we hypothesized that measurement of body surface EMFs might be used to detect disease states and direct the course of subsequent therapy. However, measurement of minute body surface EMFs requires use of a sensitive and well documented magnetometer. In this study we evaluated the sensitivity and frequency response of a fluxgate magnetometer with a triaxial probe for use in detecting body surface EMF and we compared the magnetometer readings with a signal from a Toftness Sensometer, operated by an experienced clinician, in the laboratory and in a clinical setting. Methods A Peavy Audio Amplifier and variable power output Telulex signal generator were used to develop 50 μT EMFs in a three coil Merritt coil system. A calibrated magnetometer was used to set a 60 Hz 50 μT field in the coil and an ammeter was used to measure the current required to develop the 50 μT field. At frequencies other than 60 Hz, the field strength was maintained at 50 μT by adjusting the Telulex signal output to keep the current constant. The field generated was monitored using a 10 turn coil connected to an oscilloscope. The oscilloscope reading indicated that the field strength was the same at all frequencies tested. To determine if there was a correspondence between the signals detected by a fluxgate magnetometer (FGM1) and the Toftness Sensometer both devices were placed in the Merritt coil and readings were recorded from the FGM1 and compared with the ability of a highly experienced Toftness operator to detect the 50 μT field. Subsequently, in a clinical setting, FGM1 readings made by an FGM1 technician and Sensometer readings were made by 4 Toftness Sensometer operators, having various degrees of experience with this device. Each examiner obtained instrument readings from 5 different volunteers in separate chiropractic adjusting rooms. Additionally, one of the Toftness Sensometers was equipped with an integrated fluxgate magnetometer (FGM2) and this magnetometer was used to obtain a second set of EMF readings in the clinical setting. Results The triaxial fluxgate magnetometer was determined to be moderately responsive to changes in magnetic field frequency below 10 Hz. At frequencies above 10 Hz the readings corresponded to that of the ambient static geofield. The practitioner operating the Toftness Sensometer was unable to detect magnetic fields at high frequencies (above 10 Hz) even at very high EMFs. The fluxgate magnetometer was shown to be essentially a DC/static magnetic field detector and like all such devices it has a limited frequency range with some low level of sensitivity at very low field frequencies. The interexaminer reliability of four Toftness practitioners using the Sensometer on 5 patients showed low to moderate correlation. Conclusions The fluxgate magnetometer although highly sensitive to static (DC) EMFs has only limited sensitivity to EMFs in the range of 1 to 10 Hz and is very insensitive to frequencies above 10 Hz. In laboratory comparisons of the Sensometer and the fluxgate magnetometer there was an occasional correspondence between the two instruments in detecting magnetic fields within the Merritt coil but these occasions were not reproducible. In the clinical studies there was low to moderate agreement between the clinicians using the Sensometer to diagnosing spinal conditions and there was little if any agreement between the Sensometer and the fluxgate magnetometer in detecting EMFs emanating from the volunteers body surface. PMID:17549105
NASA Technical Reports Server (NTRS)
Luehr, H.; Kloecker, N.; Oelschlaegel, W.; Haeusler, B.; Acuna, M.
1985-01-01
This report describes the three-axis fluxgate magnetometer instrument on board the AMPTE IRM spacecraft. Important features of the instrument are its wide dynamic range (0.1-60,000 nT), a high resolution (16-bit analog to digital conversion) and the capability to operate automatically or via telecommand in two gain states. In addition, the wave activity is monitored in all three components up to 50 Hz. Inflight checkout proved the nominal functioning of the instrument in all modes.
2007-08-01
GPS) antennas. A fluxgate magnetometer is mounted in the forward assembly to compensate for the magnetic signature of the aircraft. A laser...recorded digitally on the ORAGS™ console (Figure 5) inside the helicopter in a binary format. The magnetometers are sampled at a 1200-Hz sample rate and...GPS. Accurate positioning requires a correction for this lag. Time lags among the magnetometers , fluxgate , and GPS signals were measured by a
Forecast of Remote Underwater Sensing Technology.
1980-07-01
hr T. MAGNETICS (2 Replies) Q. What will be sensitivities of fluxgate , proton, optical pump, SQUID (superconducting) magnetometers ? A. Fluxgate 0.1...ft Oujtpuit Analog, digital and B3CD Cost $65.K 227 Manu factu rer EG&G Geometric Unit G-806M System Marine Search Proton Magnetometer Sensitivity...optional) Depth Range 0 to 100 m or 6000 m Precision +0.15% FS Time Constant 60 ms Output Digital display, analog and digital BCD output Cost $13.K 243
2007-07-01
measurement system is based on four GPS antennas rather than a fluxgate magnetometer measurement used in previous generation systems. For the ORAGS...hardware 1 $36,500 Orientation system 1 $16,600 Fluxgate magnetometer 1 $5,300 Navigation system 1 $5,200 Laser altimeter 1 $7,300 Data...1 iii LIST OF FIGURES Page Figure 1. Schematic for the ORAGS-Arrowhead Airborne Total Field Magnetometer System Developed for this Project
In-Flight Calibration of the MMS Fluxgate Magnetometers
NASA Technical Reports Server (NTRS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.;
2017-01-01
We present an overview of the approach to in-flight calibration, which is a coordinated effort between the University of California Los Angeles (UCLA), Space Research Institute, Graz, Austria (IWF) and the NASA Goddard Space Flight Center (GSFC). We present details of the calibration effort at GSFC. During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
Field Measurement of Surface Ship Magnetic Signature Using Multiple AUVs
2009-10-01
been equipped with a tri-axial fluxgate magnetometer and used to perform preliminary magnetic field measurements. Measurements of this type will be...mounted on the AUVs, shown in Fig. 1, was a three-axis fluxgate type [16] magnetometer with a range of ±100,000 nT and a sensitivity of 100μV/nT. The...surface ship. The system will employ a formation of multiple AUVs, each equipped with a magnetometer . The objective is to measure total magnetic
NASA Astrophysics Data System (ADS)
Pang, Hongfeng; Zhu, XueJun; Pan, Mengchun; Zhang, Qi; Wan, Chengbiao; Luo, Shitu; Chen, Dixiang; Chen, Jinfei; Li, Ji; Lv, Yunxiao
2016-12-01
Misalignment error is one key factor influencing the measurement accuracy of geomagnetic vector measurement system, which should be calibrated with the difficulties that sensors measure different physical information and coordinates are invisible. A new misalignment calibration method by rotating a parallelepiped frame is proposed. Simulation and experiment result show the effectiveness of calibration method. The experimental system mainly contains DM-050 three-axis fluxgate magnetometer, INS (inertia navigation system), aluminium parallelepiped frame, aluminium plane base. Misalignment angles are calculated by measured data of magnetometer and INS after rotating the aluminium parallelepiped frame on aluminium plane base. After calibration, RMS error of geomagnetic north, vertical and east are reduced from 349.441 nT, 392.530 nT and 562.316 nT to 40.130 nT, 91.586 nT and 141.989 nT respectively.
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Scearce, C. S.; Seek, J.; Scheifele, J.
1978-01-01
A description of the precision triaxial fluxgate magnetometer to be flown aboard the MAGSAT spacecraft is presented. The instrument covers the range of + or - 64,000 nT with a resolution of + or - 0.5 nT, an intrinsic accuracy of + or - 0.001% of full scale and an angular alignment stability of the order of 2 seconds of arc. It was developed at NASA's Goddard Space Flight Center and represents the state-of-the-art in precision vector magnetometers developed for spaceflight use.
1977-11-13
Page 13 DEPENDENCE OF MEDIAN LOG POWER 1.0 ON SOLAR WIND VELOCITY Pc3 PULSATIONS June - September 1974 UCLA Fluxgate Magnetometer ATS - 6 0 Log P=-3.3...interplanetary medium; Cosmic Elec., 1, 90-114, Space Sci. Rev., in press, 1978. 1970. Rusaell, C T., The ISEE I and 2 fluxgate magnetometers IEEE Fairfield. D...investigation is to attain the capacity to use micropulsation records acquired from surface magnetometers to infer certain key parameters of the solar wind
1986-03-20
a thermal plasma analyzer, a fluxgate magnetometer , and a space radiation dosimeter. Together, ’these provide a strong tool for analyzing the high...the SSJ/4 auroral electron and ion detectors (Hardy et al ). the SSIE and SSIES thermal plasma experiments (Smiddy et al2 ), the SSM magnetometer (Rich...1978) The Topside Ionosphere Plasma Monitor (SSIE) for the Block 5D/Flight 2 DMSP Satellite, AFGL-TR-78-007 1, AD A058503. 3. Rich. F.J. (1984) Fluxgate
Integrated induction coil and fluxgate magnetometers for EM analysis and monitoring
NASA Astrophysics Data System (ADS)
Hanstein, T.; Strack, K.; Jiang, J.
2013-12-01
The concept of a full field array electromagnetic system is an ideal tool to support hydrocarbon and geothermal E & P as well as various engineering monitoring applications. Some of the key questions are defining the reservoir, mapping of the fractures and reservoir depletion monitoring. The reservoirs are all too often relative thin and give an anomalous electromagnetic (EM) response, which is often small in amplitude and challenging for the EM measuring system. A digital fluxgate magnetometer (32-bit) is connected to the KMS magnetotelluric acquisition system with analogue induction coils and electrodes to extend the range of application of a single recording site. Since the noise level is above that of the induction coil for periods shorter than 20 s, the apparent resistivity is biased. For longer periods the apparent resistivity is consistent and eventually better than the induction coil. However, phase and tipper are not biased and agree well with the induction data even for shorter periods. This allows us to develop algorithms that significantly extend the range of application of the fluxgate beyond what was done in the past. The highest frequency of the fluxgate magnetometer is about 180 Hz and the hightest sampling of the FG-board is 4 kHz.The different induction coils and fluxgate magnetometer have intensively been tested in the magnetic chamber and at the field test site near Houston for noise performance by parallel recordings. They show that even in an environment with high cultural noise, the specification can be met. In Northeast China, a 30-day monitoring test with MT was carried out for seismologic applications. Acquisitition schedule included different recordings times and sampling rates. Daily, the data was collected and processed via the internet from either Europe or the US. Even with long recording, we still had to select the time windows for data averaging and coherences are not a good threshhold criteria in this case. During another MT sounding in India, an earthquake with magnitude 5 at a distance of about 200 km was recorded. The event is very strong in amplitude and visible in all magnetic and electric field components.
Magnetic Multi-Scale Mapping to Characterize Anthropogenic Targets
NASA Astrophysics Data System (ADS)
Le Maire, P.; Munschy, M.
2017-12-01
The discovery of buried anthropic objects on construction sites can cause delays and/or dangers for workers and for the public. Indeed, every year 500 tons of Unexploded-ordnance are discovered in France. Magnetic measurements are useful to localize magnetized objects. Moreover, it is the cheapest geophysical method which does not impact environment and which is relatively fast to perform. Fluxgate magnetometers (three components) are used to measure magnetic properties bellow the ground. These magnetic sensors are not absolute, so they need to be calibrated before the onset of the measurements. The advantage is that they allow magnetic compensation of the equipment attached to the sensor. So the choice of this kind sensor gives the opportunity to install the equipment aboard different magnetized supports: boat, quad bike, unmanned aerial vehicle, aircraft,... Indeed, this methodology permits to perform magnetic mapping with different scale and different elevation above ground level. An old French aerial military plant was chosen to perform this multi-scale approach. The advantage of the site is that it contains a lot of different targets with variable sizes and depth, e.g. buildings, unexploded-ordnances of the two world wars, trenches, pipes,… By comparison between the different magnetic anomaly maps at different elevations some of the geometric parameters of the magnetic sources can be characterized. The comparison between measured maps at different elevations and the prolonged map highlights the maximum distance for the target's detection (figure).
NASA Astrophysics Data System (ADS)
Herčík, David; Auster, Hans-Ulrich; Blum, Jürgen; Fornaçon, Karl-Heinz; Fujimoto, Masaki; Gebauer, Kathrin; Güttler, Carsten; Hillenmaier, Olaf; Hördt, Andreas; Liebert, Evelyn; Matsuoka, Ayako; Nomura, Reiko; Richter, Ingo; Stoll, Bernd; Weiss, Benjamin P.; Glassmeier, Karl-Heinz
2017-07-01
The Mobile Asteroid Scout (MASCOT) is a small lander on board the Hayabusa2 mission of the Japan Aerospace Exploration Agency to the asteroid 162173 Ryugu. Among the instruments on MASCOT is a fluxgate magnetometer, the MASCOT Magnetometer (MasMag). The magnetometer is a lightweight (˜280 g) and low power (˜0.5 W) triaxial fluxgate magnetometer. Magnetic field measurements during the landing period and during the surface operational phase shall provide information about any intrinsic magnetic field of the asteroid and its remanent magnetization. This could provide important constraints on planet formation and the thermal and aqueous evolution of primitive asteroids.
Digital fluxgate magnetometer: design notes
NASA Astrophysics Data System (ADS)
Belyayev, Serhiy; Ivchenko, Nickolay
2015-12-01
We presented an approach to understanding the performance of a fully digital fluxgate magnetometer. All elements of the design are important for the performance of the instrument, and the presence of the digital feed-back loop introduces certain peculiarities affecting the noise and dynamic performance of the instrument. Ultimately, the quantisation noise of the digital to analogue converter is found to dominate the noise of the current design, although noise shaping alleviates its effect to some extent. An example of magnetometer measurements on board a sounding rocket is presented, and ways to further improve the performance of the instrument are discussed.
NASA Technical Reports Server (NTRS)
1996-01-01
The Hatizyo Hydrographic Observatory, which is one of the essential magnetic observatories in Japan, was established in 1979 and is currently operated by the Hydrographic Department, Maritime Safety Agency. This is the annual report compiled from the results of magnetic observations carried out at the observatory in 1994. As to the instruments used for magnetic observations, the digital recording variometer was replaced by a fluxgate magnetometer in 1986, and one set each of the proton and fluxgate magnetometers was additionally installed in January and October 1992, respectively.
NASA Technical Reports Server (NTRS)
1995-01-01
The Hatizyo Hydrographic Observatory, which is one of the essential magnetic observatories in Japan, was established in 1979 and is currently operated by the Hydrographic Department, Maritime Safety Agency. This is the annual report compiled from the results of magnetic observations carried out at the observatory in 1993. As to the instruments used for magnetic observations, the digital recording variometer was replaced by a fluxgate magnetometer in 1986, and one set each of the proton and fluxgate magnetometers was additionally installed in January and October 1992, respectively.
The Absolute Vector Magnetometers on Board Swarm, Lessons Learned From Two Years in Space.
NASA Astrophysics Data System (ADS)
Hulot, G.; Leger, J. M.; Vigneron, P.; Brocco, L.; Olsen, N.; Jager, T.; Bertrand, F.; Fratter, I.; Sirol, O.; Lalanne, X.
2015-12-01
ESA's Swarm satellites carry 4He absolute magnetometers (ASM), designed by CEA-Léti and developed in partnership with CNES. These instruments are the first-ever space-born magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector readings of the magnetic field. They have provided the very high accuracy scalar field data nominally required by the mission (for both science and calibration purposes, since each satellite also carries a low noise high frequency fluxgate magnetometer designed by DTU), but also very useful experimental absolute vector data. In this presentation, we will report on the status of the instruments, as well as on the various tests and investigations carried out using these experimental data since launch in November 2013. In particular, we will illustrate the advantages of flying ASM instruments on space-born magnetic missions for nominal data quality checks, geomagnetic field modeling and science objectives.
A component compensation method for magnetic interferential field
NASA Astrophysics Data System (ADS)
Zhang, Qi; Wan, Chengbiao; Pan, Mengchun; Liu, Zhongyan; Sun, Xiaoyong
2017-04-01
A new component searching with scalar restriction method (CSSRM) is proposed for magnetometer to compensate magnetic interferential field caused by ferromagnetic material of platform and improve measurement performance. In CSSRM, the objection function for parameter estimation is to minimize magnetic field (components and magnitude) difference between its measurement value and reference value. Two scalar compensation method is compared with CSSRM and the simulation results indicate that CSSRM can estimate all interferential parameters and external magnetic field vector with high accuracy. The magnetic field magnitude and components, compensated with CSSRM, coincide with true value very well. Experiment is carried out for a tri-axial fluxgate magnetometer, mounted in a measurement system with inertial sensors together. After compensation, error standard deviation of both magnetic field components and magnitude are reduced from more than thousands nT to less than 20 nT. It suggests that CSSRM provides an effective way to improve performance of magnetic interferential field compensation.
NASA Technical Reports Server (NTRS)
Russell, C. T.
1981-01-01
Highlights of the design and fabrication of fluxgate magnetometers for the ISEE A and B satellites which were launched from a single launch vehicle into the same highly elliptical orbit are presented. The instrument consisted of four basic assemblies: the sensors, the drive and sense electronics, the data handling unit; and the flipper. The digital handling data handling assembly contained a digital filter that mantained a uniform transfer function for all three axes of both spacecraft. Initial studies centered on the bow shock and the magnetopause and show that both boundaries are in rapid motion. The bow shock was found to be very thin, close to an ion inertial length in thickness, but the magnetopause was much thicker than expected, about 400 to 1000 km on average. The magnetometers have each logged over 3 2/3 years of continuous operation.
Remote detection of rotating machinery with a portable atomic magnetometer.
Marmugi, Luca; Gori, Lorenzo; Hussain, Sarah; Deans, Cameron; Renzoni, Ferruccio
2017-01-20
We demonstrate remote detection of rotating machinery, using an atomic magnetometer at room temperature and in an unshielded environment. The system relies on the coupling of the AC magnetic signature of the target with the spin-polarized, precessing atomic vapor of a radio-frequency optical atomic magnetometer. The AC magnetic signatures of rotating equipment or electric motors appear as sidebands in the power spectrum of the atomic sensor, which can be tuned to avoid noisy bands that would otherwise hamper detection. A portable apparatus is implemented and experimentally tested. Proof-of-concept investigations are performed with test targets mimicking possible applications, and the operational conditions for optimum detection are determined. Our instrument provides comparable or better performance than a commercial fluxgate and allows detection of rotating machinery behind a wall. These results demonstrate the potential for ultrasensitive devices for remote industrial and usage monitoring, security, and surveillance.
EBT reactor systems analysis and cost code: description and users guide (Version 1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoro, R.T.; Uckan, N.A.; Barnes, J.M.
1984-06-01
An ELMO Bumpy Torus (EBT) reactor systems analysis and cost code that incorporates the most recent advances in EBT physics has been written. The code determines a set of reactors that fall within an allowed operating window determined from the coupling of ring and core plasma properties and the self-consistent treatment of the coupled ring-core stability and power balance requirements. The essential elements of the systems analysis and cost code are described, along with the calculational sequences leading to the specification of the reactor options and their associated costs. The input parameters, the constraints imposed upon them, and the operatingmore » range over which the code provides valid results are discussed. A sample problem and the interpretation of the results are also presented.« less
New Magneto-Inductive DC Magnetometer for Space Missions
NASA Astrophysics Data System (ADS)
Moldwin, M.; Bronner, B.; Regoli, L.; Thoma, J.; Shen, A.; Jenkins, G.; Cutler, J.
2017-12-01
A new magneto-inductive DC magnetometer is being developed at the University of Michigan that provides fluxgate quality measurements in a low mass, volume, power and cost package. The magnetometer enables constellation-class missions not only due to its low-resource requirements, but also its potential for commercial integrated circuit fabrication. The magneto-inductive operating principle is based on a simple resistance-inductor (RL) circuit and involves measurement of the time it takes to charge and discharge the inductor between an upper and lower threshold by means of a Schmitt trigger oscillator. This time is proportional to the inductance that in turn is proportional to the field strength. We have modeled the operating principle in the circuit simulator SPICE and have built a proto-type using modified commercial sensors. The performance specifications include a dynamic range over the full-Earth's field, sampling rates up to 80 Hz, sensor and electronics mass of about 30 g, circuit board and sensor housing volume of < 100 cm3, and power consumption of about 5 mW. This system's noise levels are predicted to be about 100 pT /√Hz @ 1 Hz with a precision of about 100 pT. Due to the simple circuit design, lack of an analog-to-digital converter, and choice of oscillator, we anticipate that it will be extremely temperature stable and radiation tolerant. This presentation will describe the constellation mission enabling design, the development status and the testing results of this new magnetometer.
The modern trends in space electromagnetic instrumentation
NASA Astrophysics Data System (ADS)
Korepanov, V. E.
The future trends of the experimental plasma physics development in outer space demand more and more exact and sophisticated scientific instrumentation. Moreover, the situation is complicated by constant reduction of financial support of scientific research, even in leading countries. This resulted in the development of mini; micro and nanosatellites with low price and short preparation time. Consequently, it provoked the creation of new generation of scientific instruments with reduced weight and power consumption but increased level of metrological parameters. The recent state of the development of electromagnetic (EM) sensors for microsatellites is reported. For flux-gate magnetometers (FGM) the reduction of weight as well as power consumption was achieved not only due to the use of new electronic components but also because of the new operation mode development. The scientific and technological study allowed to decrease FGM noise and now the typical noise figure is about 10 picotesla rms at 1 Hz and the record one is below 1 picotesla. The super-light version of search-coil magnetometers (SCM) was created as the result of intensive research. These new SCMs can have about six decades of operational frequency band with upper limit ˜ 1 MHz and noise level of few femtotesla with total weight about 75 grams, including electronics. A new instrument.- wave probe (WP) - which combines three independent sensors in one body - SCM, split Langmuir probe and electric potential sensor - was created. The developed theory confirms that WP can directly measure the wave vector components in space plasmas.
NASA Astrophysics Data System (ADS)
Mahavarkar, Prasanna; John, Jacob; Dhapre, Vijay; Dongre, Varun; Labde, Sachin
2018-04-01
A tri-axial square Helmholtz coil system for the study of palaeomagnetic studies, manufactured by GEOFYZIKA (former Czechoslovakia), was successfully commissioned at the Alibag Magnetic Observatory (IAGA code: ABG) in the year 1985. This system was used for a few years, after which the system encountered technical problems with the control unit. Rectification of the unit could not be undertaken, as the information document related to this system was not available, and as a result the system had been lying in an unused state for a long time, until 2015, when the system was recommissioned and upgraded to a test facility for calibrating the magnetometer sensors. We have upgraded the system with a constant current source and a data-logging unit. Both of these units have been designed and developed in the institute laboratory. Also, re-measurements of the existing system have been made thoroughly. The upgraded system is semi-automatic, enabling non-specialists to operate it after a brief period of instruction. This facility is now widely used at the parent institute and external institutions to calibrate magnetometers and it also serves as a national facility. Here the design of this system with the calibration results for the space-borne fluxgate magnetometers is presented.
NASA Astrophysics Data System (ADS)
Wiegert, R. F.
2009-05-01
A man-portable Magnetic Scalar Triangulation and Ranging ("MagSTAR") technology for Detection, Localization and Classification (DLC) of unexploded ordnance (UXO) has been developed by Naval Surface Warfare Center Panama City Division (NSWC PCD) with support from the Strategic Environmental Research and Development Program (SERDP). Proof of principle of the MagSTAR concept and its unique advantages for real-time, high-mobility magnetic sensing applications have been demonstrated by field tests of a prototype man-portable MagSTAR sensor. The prototype comprises: a) An array of fluxgate magnetometers configured as a multi-tensor gradiometer, b) A GPS-synchronized signal processing system. c) Unique STAR algorithms for point-by-point, standoff DLC of magnetic targets. This paper outlines details of: i) MagSTAR theory, ii) Design and construction of the prototype sensor, iii) Signal processing algorithms recently developed to improve the technology's target-discrimination accuracy, iv) Results of field tests of the portable gradiometer system against magnetic dipole targets. The results demonstrate that the MagSTAR technology is capable of very accurate, high-speed localization of magnetic targets at standoff distances of several meters. These advantages could readily be transitioned to a wide range of defense, security and sensing applications to provide faster and more effective DLC of UXO and buried mines.
C/NOFS Measurements of Stormtime Magnetic Perturbations in the Low-latitude Ionosphere
NASA Technical Reports Server (NTRS)
Le, Guan; Burke, William J.; Pfaff, Robert F.; Freudenreich, Henry; Maus, Stefan; Luehr, Hermann
2012-01-01
The Vector Electric Field Investigation suite on the C/NOFS satellite includes a fluxgate magnetometer to monitor the Earth's magnetic fields in the low-latitude ionosphere. Measurements yield full magnetic vectors every second over the range of +/- 45,000 nT with a one-bit resolution of 1.37 nT (16 bit AID) in each component. The sensor's primary responsibility is to support calculations of both VxB and ExB with greater accuracy than can be obtained using standard magnetic field models. The data also contain information about large-scale current systems, that, when analyzed in conjunction with electric field measurements, promise to significantly expand understanding of equatorial electrodynamics. We first compare in situ measurements with the POMME (POtsdam Magnetic Model of the Earth) model to establish in-flight sensor "calibrations" and to compute magnetic residuals. At low latitudes the residuals are predominately products of the stormtime ring current. Since C/NOFS provides a complete coverage of all local times every 97 minutes, magnetic field data allow studies of the temporal evolution and local-time variations of stormtime ring current. The analysis demonstrates the feasibility of using instrumented spacecraft in low-inclination orbits to extract a timely proxy for the provisional Dst index and to specify the ring current's evolution.
Probabilistic resident space object detection using archival THEMIS fluxgate magnetometer data
NASA Astrophysics Data System (ADS)
Brew, Julian; Holzinger, Marcus J.
2018-05-01
Recent progress in the detection of small space objects, at geosynchronous altitudes, through ground-based optical and radar measurements is demonstrated as a viable method. However, in general, these methods are limited to detection of objects greater than 10 cm. This paper examines the use of magnetometers to detect plausible flyby encounters with charged space objects using a matched filter signal existence binary hypothesis test approach. Relevant data-set processing and reduction of archival fluxgate magnetometer data from the NASA THEMIS mission is discussed in detail. Using the proposed methodology and a false alarm rate of 10%, 285 plausible detections with probability of detection greater than 80% are claimed and several are reviewed in detail.
A summary of the results from the UCLA OGO-5 fluxgate magnetometer
NASA Technical Reports Server (NTRS)
Coleman, P. J., Jr.; Russell, C. T.
1973-01-01
The OGO-5 fluxgate magnetometer experiment (E-14) was designed to measure the vector magnetic field over the full range of the OGO-5 orbit. Thus, it had a dynamic range of + or - 64,000 gamma yet it maintained a precision of + or - 1/16 gamma at all times. This enabled a broad spectrum of problems to be attached. Studies of the magnetospheric waves, currents, waves-particle interactions, pitch angle distributions and wave normal directions were made. The structure of the magnetopause, the magnetotail, and bow shock were probed, waves and discontinuities in the solar wind were examined and the various phases of substorms were examined in depth.
The Juno Magnetic Field Investigation
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.
2017-11-01
The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno's spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.
The Juno Magnetic Field Investigation
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Benna, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.;
2017-01-01
The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields andor sensor offsets are monitored in flight taking advantage of Juno's spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.
Guiding properties and dispersion control of kagome lattice hollow-core photonic crystal fibers.
Im, Song-Jin; Husakou, Anton; Herrmann, Joachim
2009-07-20
Dispersion properties, loss and optimum design of kagome lattice hollow-core photonic crystal fibers filled with argon are studied for the purpose of possible applications in ultrafast nonlinear optics. As will be shown numerically and by using an approximate analytical formula these fibers exhibit anomalous dispersion for visible or UV wavelengths both for a 1-cell-core as well for a 3-ring-core which can be controlled by the gas pressure and do not suffer from high loss. It is shown that while the loss is mainly influenced by the strut thickness of the kagome lattice the group velocity dispersion is almost independently controlled by the core size. These results demonstrate that kagome lattice hollow fibers have a promising potential in ultrashort pulse delivering of high-energy pulses and in several interesting applications in ultrafast nonlinear optics.
Magnetic profiling of the San Andreas Fault using a dual magnetometer UAV aerial survey system.
NASA Astrophysics Data System (ADS)
Abbate, J. A.; Angelopoulos, V.; Masongsong, E. V.; Yang, J.; Medina, H. R.; Moon, S.; Davis, P. M.
2017-12-01
Aeromagnetic survey methods using planes are more time-effective than hand-held methods, but can be far more expensive per unit area unless large areas are covered. The availability of low cost UAVs and low cost, lightweight fluxgate magnetometers (FGMs) allows, with proper offset determination and stray fields correction, for low-cost magnetic surveys. Towards that end, we have developed a custom multicopter UAV for magnetic mapping using a dual 3-axis fluxgate magnetometer system: the GEOphysical Drone Enhanced Survey Instrument (GEODESI). A high precision sensor measures the UAV's position and attitude (roll, pitch, and yaw) and is recorded using a custom Arduino data processing system. The two FGMs (in-board and out-board) are placed on two ends of a vertical 1m boom attached to the base of the UAV. The in-board FGM is most sensitive to stray fields from the UAV and its signal is used, after scaling, to clean the signal of the out-board FGM from the vehicle noise. The FGMs record three orthogonal components of the magnetic field in the UAV body coordinates which are then transformed into a north-east-down coordinate system using a rotation matrix determined from the roll-pitch-yaw attitude data. This ensures knowledge of the direction of all three field components enabling us to perform inverse modeling of magnetic anomalies with greater accuracy than total or vertical field measurements used in the past. Field tests were performed at Dragon's Back Pressure Ridge in the Carrizo Plain of California, where there is a known crossing of the San Andreas Fault. Our data and models were compared to previously acquired LiDAR and hand-held magnetometer measurements. Further tests will be carried out to solidify our results and streamline our processing for educational use in the classroom and student field training.
Magnetic Field Monitoring in the SNS and LANL Neutron EDM Experiments
NASA Astrophysics Data System (ADS)
Aleksandrova, Alina; SNS nEDM Collaboration; LANL nEDM Collaboration
2017-09-01
The SNS neutron EDM experiment requires the ability to precisely control and monitor the magnetic field inside of the fiducial volume. However, it is not always practical (or even possible) to measure the field within the region of interest directly. To remedy this issue, we have designed a field monitoring system that will allow us to reconstruct the field inside of the fiducial volume using noninvasive measurements of the field components at discrete locations external to this volume. A prototype probe array (consisting of 12 single-axis fluxgate magnetometer sensors) was used to monitor the magnetic field within the fiducial volume of an in-house magnetic testing apparatus. In this talk, the design and results of this test will be presented, and the possible implementation of this field monitoring method may have in the room temperature LANL neutron EDM experiment will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC-0014622.
THREE-COMPONENT BOREHOLE MAGNETOMETER PROBE FOR MINERAL INVESTIGATIONS AND GEOLOGIC RESEARCH.
Scott, James H.; Olson, Gary G.
1985-01-01
A small-diameter three-component fluxgate magnetometer probe with gyroscopic and inclinometer orientation has been developed to meet U. S. Geological Survey design and performance specifications for measurement of the direction and intensity of the Earth's magnetic field in vertical and inclined boreholes. The orthogonal fluxgate magnetometer elements have a measurement resolution of 10 nanoteslas (nT) and a range of plus or minus 80,000 nT. The gyroscope has an effective resolution of one degree, and the orthogonal inclinometers, 0. 1 degree. The magnetometer probe has been field tested in several holes drilled through volcanic rocks in Nevada. Results indicate that reversals of polarization can be detected, and some rock units in this area appear to be characterized by unique magnetic signatures.
The MAVEN Magnetic Field Investigation
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2014-01-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.
The MAVEN Magnetic Field Investigation
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2015-12-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.
First Results of the Juno Magnetometer Investigation in Jupiter's Magnetosphere
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Schnurr, R.; Sheppard, D.; Odom, J.; Lawton, P.; Murphy, S.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Smith, E. J.; Bolton, S. J.
2016-12-01
The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, after a picture perfect Jupiter Orbit Insertion (JOI) main engine burn lasting 35 minutes. Juno's science instruments were not powered during the critical maneuver sequence ( 5 days) but were fully operational shortly afterward. The 53.5-day capture orbit provides Juno's science instruments with the first opportunity to sample the Jovian environment close up and in polar orbit on August 27, 2016 (PJ1). Following a successful PJ1, a period reduction maneuver (PRM) will drop the spacecraft into its 14-day science orbit to begin the science phase of the mission. During this phase, the gravity and magnetic fields will be mapped with unprecedented accuracy as Juno conducts a study of Jupiter's interior structure and composition, in addition to the first comprehensive exploration of the polar magnetosphere. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. This very capable magnetic observatory samples the Jovian magnetic field at a rate of up to 64 vector samples/second. We present the first observations of Jupiter's magnetic field obtained in polar orbit and in context with prior observations and those acquired by Juno's other science instruments (waves and particles instruments, and remote-sensing infrared and ultraviolet imaging spectrographs).
RTD fluxgate performance for application in magnetic label-based bioassay: preliminary results.
Ando, B; Ascia, A; Baglio, S; Bulsara, A R; Trigona, C; In, V
2006-01-01
Magnetic bioassay is becoming of great interest in several application including magnetic separation, drug delivery, hyperthermia treatments, magnetic resonance imaging (MRI) and magnetic labelling. The latter can be used to localize bio-entities (e.g. cancer tissues) by using magnetic markers and high sensitive detectors. To this aim SQUIDs can be adopted, however this result in a quite sophisticated and complex method involving high cost and complex set-up. In this paper, the possibility to adopt RTD fluxgate magnetometers as alternative low cost solution to perform magnetic bio-sensing is investigated. Some experimental results are shown that encourage to pursue this approach in order to obtain simple devices that can detect a certain number of magnetic particles accumulated onto a small surface such to be useful for diagnosis purposes.
Gradient magnetometer system balloons
NASA Astrophysics Data System (ADS)
Korepanov, Valery; Tsvetkov, Yury
2005-08-01
Earth's magnetic field study still remains one of the leading edges of experimental geophysics. Thus study is executed on the Earth surface, including ocean bottom, and on satellite heights using component, mostly flux-gate magnetometers. But balloon experiments with component magnetometers are very seldom, first of all because of great complexity of data interpretation. This niche still waits for new experimental ideology, which will allow to get the measurements results with high accuracy, especially in gradient mode. The great importance of precise balloon-borne component magnetic field gradient study is obvious. Its technical realization is based both on the available at the marked high-precision non-magnetic tiltmeters and on recent achievements of flux-gate magnetometry. The scientific goals of balloon-borne magnetic gradiometric experiment are discussed and its practical realization is proposed.
C/NOFS Measurements of Magnetic Perturbations in the Low-Latitude Ionosphere During Magnetic Storms
NASA Technical Reports Server (NTRS)
Le, Guan; Burke, William J.; Pfaff, Robert F.; Freudenreich, Henry; Maus, Stefan; Luhr, Hermann
2011-01-01
The Vector Electric Field Investigation suite on the C/NOFS satellite includes a fluxgate magnetometer to monitor the Earth s magnetic fields in the low-latitude ionosphere. Measurements yield full magnetic vectors every second over the range of +/-45,000 nT with a one-bit resolution of 1.37 nT (16 bit A/D) in each component. The sensor s primary responsibility is to support calculations of both V x B and E x B with greater accuracy than can be obtained using standard magnetic field models. The data also contain information about large-scale current systems that, when analyzed in conjunction with electric field measurements, promise to significantly expand understanding of equatorial electrodynamics. We first compare in situ measurements with the POMME (Potsdam Magnetic Model of the Earth) model to establish in-flight sensor "calibrations" and to compute magnetic residuals. At low latitudes the residuals are predominately products of the storm time ring current. Since C/NOFS provides a complete coverage of all local times every 97 min, magnetic field data allow studies of the temporal evolution and local time variations of storm time ring current. The analysis demonstrates the feasibility of using instrumented spacecraft in low-inclination orbits to extract a timely proxy for the provisional Dst index and to specify the ring current s evolution.
NASA Astrophysics Data System (ADS)
Belen Fernandez, Ana; Sanz, Ruy; Covisa, Pablo; Tordesillas, Jose Manuel; Diaz-Michelena, Marina
2013-04-01
A magnetometer and gradiometer named MOURA has been developed with the objective to measure the magnetic field on Mars in the frame of Mars MetNet Precursor Mission (MMPM) [1]. MOURA is a compact, miniaturized, intelligent and low cost instrument, based on two sets of triaxial magnetometers separated one centimeter from each other to do gradiometry studies. It has a resolution of 2.2 nT, and a field range of + 65μT, which can be extended to +130 μT when sensors are saturated. [2] These sensor heads are Anisotropic MagnetoResistances (AMR) Commercial-Off-The-Shelf (COTS) by Honeywell, specifically HMC1043, which has been selected due to their relative low consumption, weight and size, factors very important for the mission with very limited mass and power budget (shared 150 g for three full payloads). Also, this technology has been previously successfully employed on board Unmanned Aerial Vehicles (UAV) to perform geomagnetic surveys in extreme conditions areas [3], and in several space missions for different applications. [4] After the development of the MOURA Engineering Qualification Model (EQM) in November 2011, an exhaustive set of tests have been performed to validate and fully characterize the instrument. Compensation equations have been derived for the temperature corrections in the operation range (between -135 °C and 30 °C) in controlled environments. These compensation equations have been applied to field data, which have shown to follow the daily Earth's magnetic field variations as registered by San Pablo Geomagnetic Observatory (IAGA code: SPT) (available at www.ign.es and www.intermagnet.org) with deviations lower than 40 nT. These deviations were attributed to several error factors as the different locations between MOURA and SPT and other possible different geomagnetic conditions. Due to the above, a measurement campaign on SPT installations are been done. The main objective is to compare MOURA measurements on a relevant environment, with data obtained by SPT magnetometers. This is considered the last step prior to Mars in situ measurements. SPT employs for geomagnetic observations a fluxgate magnetometer FGE-Danish Meteorological Institute and a fluxgate vector magnetometer Geomag M390, both equipped with Overhauser effect magnetometers GSM90. The conditions into the rooms that contain these instruments are controlled. The equipments are situated on several pillars fixed strategically at Earth surface avoiding vibrations and other Earth movement that could affect measurement due to changes on the sensor position, the region is magnetically clean and the temperature variation is very low. Magnetic measurements are performed by MOURA for several days located on one of these pillars. These measurements are compared with SPT reference instrumentation with the aim to obtain a direct and very accurate evaluation of MOURA facing reference instrumentation. http://metnet.fmi.fi/index.php Development of miniaturized instrumentation for Planetary Exploration and its application to the Mars MetNet Precursor Mission. H. Guerrero et al. EGU General Assembly 2010, held 2-7 May, 2010 in Vienna, Austria, p.13330 Funaki, M.; Hirasawa, N.; and the Ant-Plane Group. Outline of a small unmanned aerial vehicle (Ant-Plane) designed for Antartic research. Polar Science 2008, 2, 129-142. M. Diaz-Michelena Sensors 2009, 9(4), 2271-2288
A method for real time detecting of non-uniform magnetic field
NASA Astrophysics Data System (ADS)
Marusenkov, Andriy
2015-04-01
The principle of measuring magnetic signatures for observing diverse objects is widely used in Near Surface work (unexploded ordnance (UXO); engineering & environmental; archaeology) and security and vehicle detection systems as well. As a rule, the magnitude of the signals to be measured is much lower than that of the quasi-uniform Earth magnetic field. Usually magnetometers for these purposes contain two or more spatially separated sensors to estimate the full tensor gradient of the magnetic field or, more frequently, only partial gradient components. The both types (scalar and vector) of magnetic sensors could be used. The identity of the scale factors and proper alignment of the sensitivity axes of the vector sensors are very important for deep suppression of the ambient field and detection of weak target signals. As a rule, the periodical calibration procedure is used to keep matching sensors' parameters as close as possible. In the present report we propose the technique for detection magnetic anomalies, which is almost insensitive to imperfect matching of the sensors. This method based on the idea that the difference signals between two sensors are considerably different when the instrument is rotated or moved in uniform and non-uniform fields. Due to the misfit of calibration parameters the difference signal observed at the rotation in the uniform field is similar to the total signal - the sum of the signals of both sensors. Zero change of the difference and total signals is expected, if the instrument moves in the uniform field along a straight line. In contrast, the same move in the non-uniform field produces some response of each of the sensors. In case one measures dB/dx and moves along x direction, the sensors signals is shifted in time with the lag proportional to the distance between sensors and the speed of move. It means that the difference signal looks like derivative of the total signal at move in the non-uniform field. So, using quite simple electronic schematic it is possible to detect the lag between the total and difference signals and to trigger alarms, when the instrument passes near a magnetized object. The proposed method was successfully applied in the two instruments: the low-power search coil magnetometer for vehicle detection system and the low-noise flux-gate magnetometer for magnetocardiograph. Author believes that this approach could be also useful for the fast inspection of the area during the engineering, archaeology, UXO surveys.
Jupiter's Magnetic Field and Magnetosphere after Juno's First 8 Orbits
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Gruesbeck, J.; Kotsiaros, S.; DiBraccio, G. A.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Moore, K.; Bolton, S. J.; Levin, S.; Gershman, D. J.
2016-12-01
The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, embarking upon an ambitious mission to map Jupiter's magnetic and gravitational potential fields and probe its deep atmosphere, in search of clues to the planet's formation and evolution. Juno is also instrumented to conduct the first exploration of the polar magnetosphere and to acquire images and spectra of its polar auroras and atmosphere. Juno's 53.5-day orbit trajectory carries her science instruments from pole to pole in approximately 2 hours, with a closest approach to within 1.05 Rj of the center of the planet (one Rj = 71,492 km, Jupiter's equatorial radius), just a few thousand km above the clouds. Repeated periapsis passes will eventually encircle the planet with a dense net of observations equally spaced in longitude (<12° at the equator) and optimized for characterization of the Jovian dynamo. Such close passages are sensitive to small spatial scale variations in the magnetic field and therefore many such passes are required to bring the magnetic field into focus. Nevertheless, after only 8 orbits, low-degree spherical harmonics can be extracted from a partial solution to a much more complicated representation (e.g., 20 degree/order), providing the first new information about Jupiter's magnetic field in decades. Juno is equipped with two magnetometer sensor suites, located 10 and 12 m from the center of the spacecraft at the end of one of Juno's three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads, providing accurate attitude determination for the FGM sensors. We present an overview of the magnetometer observations obtained during Juno's first year in orbit in context with prior observations and those acquired by Juno's other science instruments.
Jupiter's Magnetic Field and Magnetosphere after Juno's First 8 Orbits
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Gruesbeck, J.; Kotsiaros, S.; DiBraccio, G. A.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Moore, K.; Bolton, S. J.; Levin, S.; Gershman, D. J.
2017-12-01
The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, embarking upon an ambitious mission to map Jupiter's magnetic and gravitational potential fields and probe its deep atmosphere, in search of clues to the planet's formation and evolution. Juno is also instrumented to conduct the first exploration of the polar magnetosphere and to acquire images and spectra of its polar auroras and atmosphere. Juno's 53.5-day orbit trajectory carries her science instruments from pole to pole in approximately 2 hours, with a closest approach to within 1.05 Rj of the center of the planet (one Rj = 71,492 km, Jupiter's equatorial radius), just a few thousand km above the clouds. Repeated periapsis passes will eventually encircle the planet with a dense net of observations equally spaced in longitude (<12° at the equator) and optimized for characterization of the Jovian dynamo. Such close passages are sensitive to small spatial scale variations in the magnetic field and therefore many such passes are required to bring the magnetic field into focus. Nevertheless, after only 8 orbits, low-degree spherical harmonics can be extracted from a partial solution to a much more complicated representation (e.g., 20 degree/order), providing the first new information about Jupiter's magnetic field in decades. Juno is equipped with two magnetometer sensor suites, located 10 and 12 m from the center of the spacecraft at the end of one of Juno's three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads, providing accurate attitude determination for the FGM sensors. We present an overview of the magnetometer observations obtained during Juno's first year in orbit in context with prior observations and those acquired by Juno's other science instruments.
Observing Crustal Magnetic Anomalies in Remote Ocean Regions: Filling in the Gaps
NASA Astrophysics Data System (ADS)
Claus, B.; Kinsey, J. C.; Tominaga, M.; Tivey, M.
2016-12-01
The use of long duration ocean observing platforms is necessary for filling in broad gaps in the observational record of magnetic anomaly measurements in the ocean basins -- observations that are necessary for understanding a variety of geophysical processes. Such an instrument would need to gather 1000s of kilometers of magnetic data untended, requiring in-situ calibration methods and minimization of energy usage. In this work an autonomous underwater glider (AUG) has been equipped with a low power flux-gate magnetic sensor. Sensor integration was tested locally in shallow water followed by deep water trials to verify the calibration procedure in June of 2016. During this cruise a 160 kilometer magnetic tow was also collected across the East Coast Shelf Anomaly to the South-East of Cape Cod. Following these tests, the AUG was deployed such that it followed the trajectory of the towed magnetic survey to provide a baseline comparison against a known methodology. For these deployments an in-situ calibration procedure was used whereby the vehicle was commanded to perform descending and ascending spirals with its actuators at various discrete locations. When combined with a temperature model for the sensor the calibrated measurements were found to be in agreement with the towed data to within several 10's of nT. These comparative measurements demonstrate the utility of using directed long duration autonomous ocean observing platforms to gather medium wavelength crustal magnetic anomaly features. This ability is especially desirable for collecting measurements in remote ocean basins, such as the Southern Ocean, where presently only a few ship tracks exist and are likely to never be sampled by conventional research vessels surveys.
First Results of the Juno Magnetometer Investigation in Jupiter's Magnetosphere
NASA Astrophysics Data System (ADS)
Connerney, Jack; Oliversen, Ronald; Espley, Jared; Kotsiaros, Stavros; Joergensen, John; Joergensen, Peter; Merano, Jose; Denver, Troelz; Benn, Mathias; Bloxham, Jeremy; Bolton, Scott; Levin, Steve
2017-04-01
The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, after a Jupiter Orbit Insertion (JOI) main engine burn lasting 35 minutes. Juno's science instruments were not powered during the critical maneuver sequence ( 5 days) but were fully operational shortly afterward. The 53.5-day capture orbit provides Juno's science instruments with the opportunity to sample the Jovian environment close up (to 1.06 Jovian radii, Rj) and in polar orbit extending to the outer reaches of the Jovian magnetosphere. Jupiter's gravity and magnetic fields will be globally mapped with unprecedented accuracy as Juno conducts a study of Jupiter's interior structure and composition, as well as the first comprehensive exploration of the polar magnetosphere. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. The first few periapsis passes available to date revealed an extraordinary spatial variation of the magnetic field close to the planet's surface, suggesting that Juno may be sampling the field closer to the dynamo region than widely anticipated, i.e., portending a dynamo surface extending to relatively large radial distance ( 0.9Rj?). We present the first observations of Jupiter's magnetic field obtained in close proximity to the planet, and speculate on what wonders await as more longitudes are drawn across the global map (32 polar orbits separated by <12° longitude) that the Juno mission was designed to acquire.
The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products
NASA Astrophysics Data System (ADS)
Torbert, R. B.; Russell, C. T.; Magnes, W.; Ergun, R. E.; Lindqvist, P.-A.; Le Contel, O.; Vaith, H.; Macri, J.; Myers, S.; Rau, D.; Needell, J.; King, B.; Granoff, M.; Chutter, M.; Dors, I.; Olsson, G.; Khotyaintsev, Y. V.; Eriksson, A.; Kletzing, C. A.; Bounds, S.; Anderson, B.; Baumjohann, W.; Steller, M.; Bromund, K.; Le, Guan; Nakamura, R.; Strangeway, R. J.; Leinweber, H. K.; Tucker, S.; Westfall, J.; Fischer, D.; Plaschke, F.; Porter, J.; Lappalainen, K.
2016-03-01
The FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission provides comprehensive measurements of the full vector magnetic and electric fields in the reconnection regions investigated by MMS, including the dayside magnetopause and the night-side magnetotail acceleration regions out to 25 Re. Six sensors on each of the four MMS spacecraft provide overlapping measurements of these fields with sensitive cross-calibrations both before and after launch. The FIELDS magnetic sensors consist of redundant flux-gate magnetometers (AFG and DFG) over the frequency range from DC to 64 Hz, a search coil magnetometer (SCM) providing AC measurements over the full whistler mode spectrum expected to be seen on MMS, and an Electron Drift Instrument (EDI) that calibrates offsets for the magnetometers. The FIELDS three-axis electric field measurements are provided by two sets of biased double-probe sensors (SDP and ADP) operating in a highly symmetric spacecraft environment to reduce significantly electrostatic errors. These sensors are complemented with the EDI electric measurements that are free from all local spacecraft perturbations. Cross-calibrated vector electric field measurements are thus produced from DC to 100 kHz, well beyond the upper hybrid resonance whose frequency provides an accurate determination of the local electron density. Due to its very large geometric factor, EDI also provides very high time resolution (˜1 ms) ambient electron flux measurements at a few selected energies near 1 keV. This paper provides an overview of the FIELDS suite, its science objectives and measurement requirements, and its performance as verified in calibration and cross-calibration procedures that result in anticipated errors less than 0.1 nT in B and 0.5 mV/m in E. Summaries of data products that result from FIELDS are also described, as well as algorithms for cross-calibration. Details of the design and performance characteristics of AFG/DFG, SCM, ADP, SDP, and EDI are provided in five companion papers.
NASA Technical Reports Server (NTRS)
Voorhies, C. V.; Langel, R. A.; Slavin, J.; Lancaster, E. R.; Jones, S.
1991-01-01
Prelaunch and postlaunch calibration plans for the APAFO magnetometer experiment are presented. A study of tradeoffs between boom length and spacecraft field is described; the results are summarized. The prelaunch plan includes: calibration of the Vector Fluxgate Magnetometer (VFM), Star Sensors, and Scalar Helium Magnetometer (SHM); optical bench integration; and acquisition of basic spacecraft field data. Postlaunch calibration has two phases. In phase one, SHM data are used to calibrate the VFM, total vector magnetic field data are used to calibrate a physical model of the spacecraft field, and both calibrations are refined by iteration. In phase two, corrected vector data are transformed into geocentric coordinates, previously undetected spacecraft fields are isolated, and initial geomagnetic field models are computed. Provided the SHM is accurate to the required 1.0 nT and can be used to calibrate the VFM to the required 3.0- nT accuracy, the tradeoff study indicates that a 12 m boom and a spacecraft field model uncertainty of 5 percent together allow the 1.0 nT spacecraft field error requirement to be met.
NASA Astrophysics Data System (ADS)
Allen, George I.; Matthews, Robert; Wynn, Michael
2001-10-01
In keeping with the Navy's policy to remove humans from harms way, the Autonomous Underwater Vehicle (AUV) is replacing human divers for many missions. The Advanced Marine Systems Lab at Florida Atlantic University (FAU) has developed a small, magnetically friendly, modular plastic AUV called Morpheus designed for coastal applications and especially suited for very shallow water (VSW) mine reconnaissance. Currently employed sensor technologies on AUVs have certain deficiencies and limitations when used across the wide gamut of naval targets and environments, and a strong requirement exists for a sensor or sensors to fill these niches. The Real-time Tracking Gradiometer (RTG) selected for this integration is truly such a niche sensor because its capabilities are not degraded by media interfaces or environmental conditions. It is an experimental prototype fluxgate magnetometer array developed by Quantum Magnetics for the Coastal Systems Station (CSS) and was designed to be man portable and self contained. While limited by physics in detection range, it is capable of detecting ferrous targets under the worst environmental conditions, even when the target is buried. While not having the range of sonar, the RTG does not respond to the false alarms that are indicated by sonar, and since it is capable of also providing range and bearing information, it provides an invaluable niche filling classification tool. The placing of any magnetic sensing system on a conventional AUV is a non-trivial problem. The standard AUV is designed around materials and components that were selected to maximize performance without regard to the magnetic properties of the materials used in its fabrication. To minimize the degradation of sensor performance caused by the platform, several steps must be taken. These include; the substitution of nonferrous components for ferrous, maximizing the separation between the sensor and magnetic field sources, minimizing current loops and using auxiliary current and field sensors capable of generating noise canceling signals. To maximize utility, the magnetic sensor systems should also provide range, bearing and magnetic target strength. While all data and results contained in this paper have been obtained with land-based testing, they are easily adapted to the underwater environment of the AUV. The RTG was recently attached to the Morpheus, and data collected with the unmodified Morpheus powered and undergoing simulated sea motion table. These tests indicate that integration, while not trivial, is indeed feasible, and work is continuing toward mounting the sensor internal to the AUV and implementing the required noise mitigation solutions.
Summary of initial results from the GSFC fluxgate magnetometer on Pioneer 11
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1975-01-01
The main magnetic field of Jupiter was measured by the Fluxgate Magnetometer on Pioneer 11 and analysis reveals it to be relatively more complex than expected. In a centered spherical harmonic representation with a maximum order of n = 3 (designated GSFC model 04), the dipole term (with opposite polarity to the Earth's) has a moment of 4.28 Gauss x (Jupiter radius cubed), tilted by 9.6 deg towards a system 111 longitude of 232. The quadrupole and octupole moments are significant, 24% and 21% of the dipole moment respectively, and this leads to deviations of the planetary magnetic field from a simple offset tilted dipole for distances smaller than three Jupiter radii. The GSFC model shows a north polar field strength of 14 Gauss and a south polar field strength of 10.4 Gauss. Enhanced absorption effects in the radiation belts may be predicted as a result of field distortion.
Results from the GSFC fluxgate magnetometer on Pioneer 11
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1976-01-01
A high-field triaxial fluxgate magnetometer was mounted on Pioneer 11 to measure the main magnetic field of Jupiter. It is found that this planetary magnetic field is more complex than that indicated by the results of the Pioneer 10 vector helium magnetometer. At distances less than 3 Jupiter radii, the magnetic field is observed to increase more rapidly than an inverse-cubed distance law associated with any simple dipole model. Contributions from higher-order multipoles are significant, with the quadrupole and octupole being 24 and 21 percent of the dipole moment, respectively. Implications of the results for the study of trapped particles, planetary radio emission, and planetary interiors are discussed. Major conclusions are that the deviation of the main planetary magnetic field from a simple dipole leads to distortion of the L shells of the charged particles and to warping of the magnetic equator. Enhanced absorption effects associated with Amalthea and Io are predicted.
NASA Technical Reports Server (NTRS)
Mcleod, M. G.; Means, J. D.
1977-01-01
Tests performed to prove the critical elements of the triaxial digital fluxgate magnetometer design were described. A method for improving the linearity of the analog to digital converter portion of the instrument was studied in detail. A sawtooth waveform was added to the signal being measured before the A/D conversion, and averaging the digital readings over one cycle of the sawtooth. It was intended to reduce bit error nonlinearities present in the A/D converter which could be expected to be as much as 16 gamma if not reduced. No such nonlinearities were detected in the output of the instrument which included the feature designed to reduce these nonlinearities. However, a small scale nonlinearity of plus or minus 2 gamma with a 64 gamma repetition rate was observed in the unit tested. A design improvement intended to eliminate this small scale nonlinearity was examined.
Towards a Radiation Hardened Fluxgate Magnetometer for Space Physics Applications
NASA Astrophysics Data System (ADS)
Miles, David M.
Space-based measurements of the Earth's magnetic field are required to understand the plasma processes of the solar-terrestrial connection which energize the Van Allen radiation belts and cause space weather. This thesis describes a fluxgate magnetometer payload developed for the proposed Canadian Space Agencys Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission. The instrument can resolve 8 pT on a 65,000 nT field at 900 samples per second with a magnetic noise of less than 10 pT per square-root Hertz at 1 Hertz. The design can be manufactured from radiation tolerant (100 krad) space grade parts. A novel combination of analog temperature compensation and digital feedback simplifies and miniaturises the instrument while improving the measurement bandwidth and resolution. The prototype instrument was successfully validated at the Natural Resources Canada Geomagnetics Laboratory, and is being considered for future ground, satellite and sounding rocket applications.
Developement of a Fluxgate Magnetometer for the KITSAT-3 Satellite
NASA Astrophysics Data System (ADS)
Hwang, S. H.; Lee, D. H.; Min, K. W.; Shin, Y. H.; Choi, C. R.; Nobuhito, O.
1997-12-01
The magnetometer is one of the most important payloads of scientific satellites to monitor the near-earth space environment. The electromagnetic variations of the space environment can be observed with the electric and magnetic field measurements. In practice, it is well known that the measurement of magnetic fields needs less technical complexities than that of electric fields in space. Therefore the magnetometer has long been recognized as one of the basic payloads for the scientific satellites. In this paper, we discuss the scientific fluxgate magnetometer which will be on board the KITSAT-3. The main circuit design of the present magnetometer is based on that of KISAT-1 and -2 but its facilities have been re-designed to improve the resolution to about 5nT for scientific purpose. The calibration and noise level test of this circuit have been performed at the laboratory of the Tierra Tecnica company in Japan.
Early results from Magsat. [studies of near-earth magnetic fields
NASA Technical Reports Server (NTRS)
Langel, R. A.; Estes, R. H.; Mayhew, M. A.
1981-01-01
Papers presented at the May 27, 1981 meeting of the American Geophysical Union concerning early results from the Magsat satellite program, which was designed to study the near-earth magnetic fields originating in the core and lithosphere, are discussed. The satellite was launched on October 30, 1979 into a sun-synchronous (twilight) orbit, and re-entered the atmosphere on June 11, 1980. Instruments carried included a cesium vapor magnetometer to measure field magnitudes, a fluxgate magnetometer to measure field components and an optical system to measure fluxgate magnetometer orientation. Early results concerned spherical harmonic models, fields due to ionospheric and magnetospheric currents, the identification and interpretation of fields from lithospheric sources. The preliminary results confirm the possibility of separating the measured field into core, crustal and external components, and represent significant developments in analytical techniques in main-field modelling and the physics of the field sources.
In situ plasma and magnetic field measurements of SMILE
NASA Astrophysics Data System (ADS)
Dai, L.; Li, L.; Wang, J.; Zhang, A.; Kong, L.; Wang, C.; Branduardi-Raymont, G.; Escoubet, C. P.; Sibeck, D. G.; Zheng, J.; Rebuffat, D.; Raab, W.
2016-12-01
The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a new mission to observe the solar wind-magnetosphere coupling via X-Ray images of the magnetosheath and polar cusps, UV images of global auroral distributions and simultaneous in situ solar wind/magnetosheath plasma and magnetic field measurements. As a stand-alone mission, SMILE will provide the in situ solar wind drivers for understanding and interpreting the remote sensing data, obviating past concerns regarding the arrival times and spatial extent of solar wind features that arose in studies employing distant L1 solar wind monitors. The Light Ion Analyser (LIA) is designed to measure the moments of the solar wind and magnetosheath ion distributions. LIA is equipped with a top-hat electrostatic analyser with a FOV deflection system, with an energy range of 0.05-20keV/q, an energy resolution of 8%, an azimuthal angle range (resolution) of 360° (7.5°), and an elevation angle range (resolution) of ±45° (6°), a time cadence of 1s for normal mode and 0.25s for burst mode, and an adjustable geometric factor. The total data volume per orbit is 5.232 Gbit for LIA. The aim of the magnetometer experiment (MAG) is to establish the orientation and magnitude of magnetic field in the solar wind and magnetosheath. The magnetometer will also be used in combination with LIA to detect interplanetary shocks and solar wind discontinuities passing over the spacecraft. The baseline design of MAG is a dual redundant digital fluxgate magnetometer consisting of two individual tri-axial fluxgate sensors mounted on a 2.5m deployable boom, connected by harness to a spacecraft-mounted electronics box. The dynamic range of the instrument is ±12800nT, and the accuracy is 0.1nT, while the sampling rate is 40Hz. The development of LIA and MAG is under the responsibility of The Chinese Academy of Sciences. Now the preliminary design and simulation have begun. The preliminary design reviews of the instruments are scheduled in 2018.
NASA Astrophysics Data System (ADS)
Matsuoka, A.; Teramoto, M.; Nomura, R.; Nose, M.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Nagatsuma, T.; Shiokawa, K.; Obana, Y.; Miyoshi, Y.; Takashima, T.; Shinohara, I.
2017-12-01
The ARASE (ERG) satellite was successfully launched on December 20 2016. A fluxgate magnetometer (MGF) was built for the ARASE satellite to measure DC and low-frequency magnetic field. The requirements to the magnetic field measurements by ARASE was defined as (1) accuracy of the absolute field intensity is within 5 nT (2) angular accuracy of the field direction is within 1 degree (3) measurement frequency range is from DC to 60Hz or wider. MGF measures the vector magnetic field with the original sampling frequency of 256 Hz. The dynamic range is switched between +/-8000nT and +/- 60000nT according to the background field intensity. The MGF initial checkout was carried on January 10th 2017, when the MGF normal performance and downlinked data were confirmed. The 5-m length MAST for the sensor was deployed on 17th January. The nominal operation of MGF started in March 2017. The MGF data are calibrated based on the results from the ground experiments and in-orbit data analysis. The MGF CDF files are distributed by the ARASE Science Center and available by Space Physics Environment Data Analysis Software (SPEDAS). The acceleration process of the charged particles in the inner magnetosphere is considered to be closely related to the deformation and perturbation of the magnetic field. Accurate measurement of the magnetic field is required to understand the acceleration mechanism of the charged particles, which is one of the major scientific objectives of the ARASE mission. We designed a fluxgate magnetometer which is optimized to investigate following topics; (1) accurate measurement of the background magnetic field - the deformation of the magnetic field and its relationship with the particle acceleration. (2) MHD waves - measurement of the ULF electromagnetic waves of frequencies about 1mHz (Pc4-5), and investigation of the radiation-belt electrons radially diffused by the resonance with the ULF waves. (3) EMIC waves - measurement of the electromagnetic ion-cyclotron waves of frequencies about 1Hz, and investigation of the ring-current ions and radiation-belt electrons dissipated by the interaction with the EMIC waves.These scientific subjects are now investigated by the ARASE working team colleagues.
Magnetoelectric(ME) Composites and Functional Devices Based on ME Effect
NASA Astrophysics Data System (ADS)
Gao, Junqi
Magnetoelectric (ME) effect, a cross-coupling effect between magnetic and electric orders, has stimulated lots of investigations due to the potential for applications as multifunctional devices. In this thesis, I have investigated and optimized the ME effect in Metglas/piezo-fibers ME composites with a multi-push pull configuration. Moreover, I have also proposed several devices based on such composites. In this thesis, several methods for ME composites optimization have been investigated. (i) the ME coefficients can be enhanced greatly by using single crystal fibers with high piezoelectric properties; (ii) the influence of volume ratio between Metglas and piezo-fibers on ME coefficients has been studied both experimentally and theoretically. Modulating the volume ratio can increase the ME coefficient greatly; and (iii) the annealing process can change the properties of Metglas, which can enhance the ME response as well. Moreover, one differential structure for ME composites has been proposed, which can reject the external vibration noise by a factor of 10 to 20 dB. This differential structure may allow for practical applications of such sensors in real-world environments. Based on optimized ME composites, two types of AC magnetic sensor have been developed. The objective is to develop one alternative type of magnetic sensor with low noise, low cost and room-temperature operation; that makes the sensor competitive with the commercially available magnetic sensor, such as Fluxgate, GMR, SQUID, etc. Conventional passive sensors have been fully investigated, including the design of sensor working at specific frequency range, sensitivity, noise density characterization, etc. Furthermore, the extremely low frequency (< 10-3 Hz) magnetic sensor has undergone a redesign of the charge amplifier circuit. Additionally, the noise model has been established to simulate the noise density for this device which can predict the noise floor precisely. Based on theoretical noise analysis, the noise floor can be eliminated greatly. Moreover, another active magnetic senor based on nonlinear ME voltage coefficient is also developed. Such sensor is not required for external DC bias that can help the sensor for sensor arrays application. Inspired by the bio-behaviors in nature, the geomagnetic sensor is designed for sensing geomagnetic fields; it is also potentially used for positioning systems based on the geomagnetic field. In this section, some works for DC sensor optimization have been performed, including the different piezo-fibers, driving frequency and magnetic flux concentration. Meanwhile, the lock-in circuit is designed for the magnetic sensor to replace of the commercial instruments. Finally, the man-portable multi-axial geomagnetic sensor has been developed which has the highest resolution of 10 nT for DC magnetic field. Based on the geomagnetic sensor, some demonstrations have been finished, such as orientation monitor, magnetic field mapping, and geomagnetic sensing. Other devices have been also developed besides the magnetic sensor: (i) magnetic energy harvesters are developed under the resonant frequency condition. Especially, one 60 Hz magnetic harvester is designed which can harvester the magnetic energy source generated by instruments; and (ii) frequency multiplication tuned by geomagnetic field is investigated which potentially can be used for frequency multiplier or geomagnetic guidance devices.
Venus Lightning: What We Have Learned from the Venus Express Fluxgate Magnetometer
NASA Astrophysics Data System (ADS)
Russell, C. T.; Strangeway, R. J.; Wei, H. Y.; Zhang, T. L.
2010-03-01
The Venus Express magnetometer sees short (tens of milliseconds) pulses of EM waves in the Venus ionosphere as predicted by the lightning model for the PVO electric pulses. These waves are stronger than similar terrestrial signals produced by lightning.
NASA Technical Reports Server (NTRS)
Campbell, W. H.; Zimmerman, J. E.
1979-01-01
The field gradient method for observing the electric currents in the Alaska pipeline provided consistent values for both the fluxgate and SQUID method of observation. These currents were linearly related to the regularly measured electric and magnetic field changes. Determinations of pipeline current were consistent with values obtained by a direct connection, current shunt technique at a pipeline site about 9.6 km away. The gradient method has the distinct advantage of portability and buried- pipe capability. Field gradients due to the pipe magnetization, geological features, or ionospheric source currents do not seem to contribute a measurable error to such pipe current determination. The SQUID gradiometer is inherently sensitive enough to detect very small currents in a linear conductor at 10 meters, or conversely, to detect small currents of one amphere or more at relatively great distances. It is fairly straightforward to achieve imbalance less than one part in ten thousand, and with extreme care, one part in one million or better.
Magnetic field experiment on the SUNSAT satellite
NASA Astrophysics Data System (ADS)
Kotzé, P. B.; Langenhoven, B.; Risbo, T.
2002-03-01
On Tuesday 23 February 1999, at 10:29 UTC, SUNSAT was launched into an 857×655 km, 96.47° polar orbit on a Boeing-Delta II rocket from Vandenberg Air Force Base in California, USA. Both SUNSAT and Ørsted were NASA-sponsored secondary payloads accompanying the USA Air Force Argos satellite. In the process it became South Africa's (and Africa's) first satellite in space. Although sponsored by several private industrial organisations, it is essentially a student project with more than 96 graduate students in the Department of Electronic and Electrical Engineering at the University of Stellenbosch providing the majority of SUNSAT's engineering development and operation since 1992. This paper reports on the magnetic field experiment on board the Sunsat satellite, consisting of two fluxgate magnetometers, called Orimag and Scimag, both built and calibrated by the Hermanus Magnetic Observatory. Orimag is mainly used for orientation control purposes on SUNSAT, while Scimag, mounted on a boom of 2.2 m is designed to perform geomagnetic field observations, employing standard navigation fluxgate technology.
Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission
NASA Astrophysics Data System (ADS)
Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.
2013-12-01
The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.
NASA Astrophysics Data System (ADS)
Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek
The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.
NASA Astrophysics Data System (ADS)
LIM, M.; PARK, Y.; Jung, H.; SHIN, Y.; Rim, H.; PARK, C.
2017-12-01
To measure all components of a physical property, for example the magnetic field, is more useful than to measure its magnitude only in interpretation and application thereafter. To convert the physical property measured in 3 components on a random coordinate system, for example on moving magnetic sensor body's coordinate system, into 3 components on a fixed coordinate system, for example on geographical coordinate system, by the rotations of coordinate system around Euler angles for example, we should have the attitude values of the sensor body in time series, which could be acquired by an INS-GNSS system of which the axes are installed coincident with those of the sensor body. But if we want to install some magnetic sensors in array at sea floor but without attitude acquisition facility of the magnetic sensors and to monitor the variation of magnetic fields in time, we should have also some way to estimate the relation between the geographical coordinate system and each sensor body's coordinate system by comparison of the vectors only measured on both coordinate systems on the assumption that the directions of the measured magnetic field on both coordinate systems are the same. For that estimation, we have at least 3 ways. The first one is to calculate 3 Euler angles phi, theta, psi from the equation Vgeograph = Rx(phi) Ry(theta) Rz(psi) Vrandom, where Vgeograph is the vector on geographical coordinate system etc. and Rx(phi) is the rotation matrix around the x axis by the angle phi etc. The second one is to calculate the difference of inclination and declination between the 2 vectors on spherical coordinate system. The third one, used by us for this study, is to calculate the angle of rotation along a great circle around the rotation axis, and the direction of the rotation axis. We installed no. 1 and no. 2 FVM-400 fluxgate magnetometers in array near Cheongyang Geomagnetic Observatory (IAGA code CYG) and acquired time series of magnetic fields for CYG and for the two magnetometers. Once the angle of rotation and the direction of the rotation axis for each couple of CYG and no. 1 and of CYG and no. 2 estimated, we rotated the measured time series of vectors using quaternion rotation to get 3 time series of magnetic fields all on geographical coordinate system, which were used for tracing the moving magnetic bodies along time in that area.
Effects of anatomical position on esophageal transit time: A biomagnetic diagnostic technique
Cordova-Fraga, Teodoro; Sosa, Modesto; Wiechers, Carlos; la Roca-Chiapas, Jose Maria De; Moreles, Alejandro Maldonado; Bernal-Alvarado, Jesus; Huerta-Franco, Raquel
2008-01-01
AIM: To study the esophageal transit time (ETT) and compare its mean value among three anatomical inclinations of the body; and to analyze the correlation of ETT to body mass index (BMI). METHODS: A biomagnetic technique was implemented to perform this study: (1) The transit time of a magnetic marker (MM) through the esophagus was measured using two fluxgate sensors placed over the chest of 14 healthy subjects; (2) the ETT was assessed in three anatomical positions (at upright, fowler, and supine positions; 90º, 45º and 0º, respectively). RESULTS: ANOVA and Tuckey post-hoc tests demonstrated significant differences between ETT mean of the different positions. The ETT means were 5.2 ± 1.1 s, 6.1 ± 1.5 s, and 23.6 ± 9.2 s for 90º, 45º and 0º, respectively. Pearson correlation results were r = -0.716 and P < 0.001 by subjects’ anatomical position, and r = -0.024 and P > 0.05 according the subject’s BMI. CONCLUSION: We demonstrated that using this biomagnetic technique, it is possible to measure the ETT and the effects of the anatomical position on the ETT. PMID:18837088
Solar Wind Monitor--A School Geophysics Project
ERIC Educational Resources Information Center
Robinson, Ian
2018-01-01
Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth's field in…
ESA technology flies on Italian mini-satellite launched from Russia
NASA Astrophysics Data System (ADS)
2000-07-01
Owned by the Italian space agency (ASI) and developed by Carlo Gavazzi with contributions from many other Italian companies, MITA has two tasks to perform: in a circular orbit at 450 km altitude, the mini satellite will carry a cosmic particle detector, while its platform will be tested for the first time as a vehicle for future scientific missions. MITA also carries the MTS-AOMS payload (MicroTechSensor for Attitude and Orbit Measurement System), developed by Astrium in the framework of ESA's Technology Flight Opportunity trial programme. With the Technology Flight Opportunity scheme, funded by its General Studies Programme, ESA intends to provide access to space for European industry's technology products needing in-orbit demonstration to enhance their competitiveness on the space market. This new form of support to the European space industry ties in with ESA's strategy for fostering the competitiveness of European-made technology for eventual commercialisation. In-orbit demonstration is essential if new technologies are to compete on level terms on non-European markets. It thus consolidates strategic investments made by the space industry. The MTS-AOMS is a highly integrated sensor for autonomous attitude and orbit control systems. It combines three functions in one unit: Earth sensing, star sensing and magnetic field sensing. The equipment incorporates an active pixel array sensor and a 2-D fluxgate magnetometer. The aims of the flight are to verify in situ the payload's inherent functions and performance, which cannot be done on the ground, and to assess the behaviour of this type of technology when exposed to the space environment. The Technology Flight Opportunity rule is that ESA funds the launch and integration costs, industry the development and operating costs. According to present planning, two further in-orbit demonstrations funded by this scheme will be carried out between now and January 2001.
The modern trends in space electromagnetic instrumentation
NASA Astrophysics Data System (ADS)
Korepanov, V.
The future trends of the experimental plasma physical development in outer space demands more and more exact and sophisticated scientific instrumentation. Moreover, the situation is complicated by constant reducing of financial support of scientific research, even in leading countries. This resulted in the development of mini, micro and nanosatellites with low price and short preparation time. Consequently, it provoked the creation of new generation of scientific instruments with reduced weight and power consumption but increased level of metrological parameters. The recent state of the development of electromagnetic (EM) sensors for microsatellites is reported. The set of EM sensors produced at LCISR includes following devices. Flux-gate magnetometers (FGM). The reduction of new of satellite versions FGM weight as well as power consumption was achieved not only due to the use of new electronic components but also because the development of new operation modes. To this the scientific and technological study allowed to decrease FGM noise and now typical figure is about 10 picotesla rms at 1 Hz and the record one is below 1 picotesla. Also because of satellite weight reduction the possibility was studied to use FGM only for satellite attitude control. The magnetic orientation and stabilization system was developed and new FGM for orientation was created. It uses industrial components and special measures are taken to increase its reliability. Search-coil magnetometers (SCM). The super-light version of SCM was created as the result of intensive scientific and technological research. These new SCMs can have about six decades operational frequency band noise with upper limit ~ 1 MHz and noise level of few femtotesla with total weight about 75 grams. Electric probes (EP). The study of operation condition of EP immersed in space plasma allowed to find the possibilities to decrease the EP weight conserving the same noise factor. Two types of EP operating from DC and from 0,1 Hz are created and successfully tested. Wave probe (WP). The WP is another kind of instrument which combines in one sensor three independent sensors: SCM, EP and split Langmuir probe. Such a combination allowed to create a principally new instru ment U wave probe. The developed theory confirms that WP can directly measure vector components in space plasma. All these space sensors are described and their experimentally obtained parameters are presented. This work was partially supported by INTAS grant 2000-465.
High Resolution Magnetic surveys across the Emeelt and Hustaï faults near Ulaanbaatar, Mongolia
NASA Astrophysics Data System (ADS)
Fleury, S.; Munschy, M.; Schlupp, A.; Ferry, M.; Munkhuu, U.
2012-04-01
During the 20th century, Mongolia was one of the most seismic active intra-continental areas in the world. Some recent observations raise strong concern on still unidentified structures around Ulaanbaatar (1.5 M inhabitants). Near the city, instrumental seismicity shows continuous activity with five M 4+ events since 1974 and a M 5.4. Since 2005, the number of earthquake in the shallow crust (above 10-20 km) has significantly increased on the Emeelt fault area, west of Ulaanbaatar. A multi-disciplinary study - including GPR profiling, magnetic mapping, DGPS microtopography, morphotectonic observations and paleoseismic trenching - was carried out in the fault areas to assess their seismogenic potential. We present preliminary results of high resolution magnetic surveys using three axis fluxgate magnetic sensors. In Emeelt and Hustaï area, about 4 km2 were prospected with survey line spacing of 5 m to investigate the subsurface characteristic of the active faults. The main faults are clearly detected as well as secondary branches that affect buried paleo-channels. The combined approach of morphotectonic observations and magnetic measurements was used to select the location of paleoseismic trenches. The fluxgate equipment, being an easy, non-invasive and high-resolution way of mapping was used inside trenches to map exposures. Micro magnetic surveys were conducted on the walls of the trenches along 30 m, with a vertical extent of 2 m and a spacing of 0.1 m between each line. These measurements are used to define different units of sediments with a very high level of detail particularly where the stratigraphic interfaces are poorly visible. Magnetic mapping reveals a fault zone in recent units that consists of intense deformational patterns. Simultaneous use of horizontal and vertical maps may yield a 3D interpretation of the distribution of sedimentary layers. Faulted units related to recent depositional process attest for the ongoing activity of the Emeelt and Hustaï faults. This novel approach brings supplementary physical measurements to classic trench observations as well as access to physical properties not observable with the naked eye. It proves to be a useful complement to photologs and field observations. Finally, our multidisciplinary approach helps assess seismic hazard for the nearby capital of Mongolia, Ulaanbaatar.
2011-09-15
LANL) moments calculations27, with changes to account for the different instruments and the presence of a magnetometer on GOES. First, the pitch...angle for each telescope was determined using the magnetic field components from a co-manifested triaxial fluxgate magnetometer26. The velocity
The Magnetospheric Multiscale Magnetometers
NASA Technical Reports Server (NTRS)
Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.;
2014-01-01
The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University,s Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored onboard so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.
ATS-6 - UCLA fluxgate magnetometer
NASA Technical Reports Server (NTRS)
Mcpherron, R. L.; Coleman, P. J., Jr.; Snare, R. C.
1975-01-01
A summary of the design of the University of California at Los Angeles' fluxgate magnetometer is presented. Instrument noise in the bandwidth 0.001 to 1.0 Hz is of order 85 m gamma. The DC field of the spacecraft transverse to the earth-pointing axis is 1.0 + or - 21 gamma in the X direction and -2.4 + or - 1.3 gamma in the Y direction. The spacecraft field parallel to this axis is less than 5 gamma. The small spacecraft field has made possible studies of the macroscopic field not previously possible at synchronous orbit. At the 96 W longitude of Applications Technology Satellite-6 (ATS-6), the earth's field is typically inclined 30 deg to the dipole axis at local noon. Most perturbations of the field are due to substorms. These consist of a rotation in the meridian to a more radial field followed by a subsequent rotation back. The rotation back is normally accompanied by transient variations in the azimuthal field. The exact timing of these perturbations is a function of satellite location and the details of substorm development.
Development of fluxgate magnetometers and applications to the space science missions
NASA Astrophysics Data System (ADS)
Matsuoka, A.; Shinohara, M.; Tanaka, Y.-M.; Fujimoto, A.; Iguchi, K.
2013-11-01
Magnetic field is one of the essential physical parameters to study the space physics and evolution of the solar system. There are several methods to measure the magnetic field in the space by spacecraft and rockets. Fluxgate magnetometer has been most generally used out of them because it measures the vector field accurately and does not need much weight and power budgets. When we try more difficult missions such as multi-satellite observation, landing on the celestial body and exploration in the area of severe environment, we have to modify the magnetometer or develop new techniques to make the instrument adequate for those projects. For example, we developed a 20-bit delta-sigma analogue-to-digital converter for MGF-I on the BepiColombo MMO satellite, to achieve the wide-range (±2000 nT) measurement with good resolution in the high radiation environment. For further future missions, we have examined the digitalizing of the circuit, which has much potential to drastically reduce the instrument weight, power consumption and performance dependence on the temperature.
Fluxgate Magnetometer system mounted on UAS system: First field test at Dominga IOCG deposit, Chile
NASA Astrophysics Data System (ADS)
Yanez, G. A.; Banchero, L.; Marco, A.; Figueroa, R.
2016-12-01
With the support of Fundacion Chile (FCH) grant, we developed an airborne magnetic system (GeoMagDrone GFDAS) mounted on a UAS octodrone platform (DJI, S1000), based on a low cost/light-weight fluxgate magnetometer (FGM-301) and a robust/light-weight data logger for position, temperature, radar altimeter and 3 magnetic components at 16 Hz recording. Fluxgate magnetometer is hanging from the UAS platform at a distance of 2.5m where the EM noise is reduced to less than 2 nT. The whole geophysical system, including batteries, weights 650 gr., with an autonomy of 2 hours. Magnetometer calibration includes the 9 coefficients of amplitude, offset, and orthogonality, and temperature correction. We test the system over the IOCG deposit of Dominga-Chile, a magnetite ore (40%) (a block of 2x3 km with NS lines separated every 50m and a clearance of 40m, the mineral deposit buried 50-100m from the surface, where a ground magnetic survey was conducted previously. Ground conditions includes relatively rough topography with slopes of 10-20%, and some windy days. We use the digital terrain model SRTM30 to define the drape flight shape Average flight performance includes a mean speed of 35-40 km/hour, and an UAS battery consumption of 18-12 minutes depending on the wind conditions. A good correspondence was found between plan deployment and survey results in terms of line direction/separation/clearance. Line path were flown with errors less than 5 meters, whereas clearance of 40m was kept depending on the amount of control points used. The comparison between ground survey and GeoMagDrone results show a perfect match (anomaly amplitude/shape and noise envelope), validating in this way the system developed. Main concern for the productive application of this technology in unmanned geophysical platforms is the battery performance and the quality of digital terrain models to follow the topography.
Development and evaluation of unmanned aerial vehicle (UAV) magnetometry systems
NASA Astrophysics Data System (ADS)
Parvar, Kiyavash
In this thesis, the procedure of conducting magnetic surveys from a UAV platform is investigated. In the process of evaluating UAVs for such surveys, magnetic sensors capable of operating on a UAV platform were tested using a terrestrial survey, as well as on a UAV-platform. Results were then compared to a model of the area generated using a proton precession magnetometer. Magnetic signature of the UAVs are discussed and impact values are calculated. For a better understanding of the magnetic fields around UAVs some micro-surveys were conducted with the help of a fluxgate magnetometer around two UAVs. Results of such surveys were used to determine a location to mount the magnetometer during the survey. A test survey over a known anomaly (a visible chromite outcrop in Oman) is conducted in order to determine the feasibility of using UAV-based magnetometry for chromite exploration. Observations were taken at two different elevations in order to generate a 3-D model of the magnetic field. Later, after applying upward continuation filters and comparing the calculated results to the real values, the reliability and uncertainty levels of such filters were investigated. Results show that magnetometery on UAV platforms is feasible. Unwanted signals can be noticeable and produce fake anomalies by the end of each line because of the swinging effect of the suspended magnetometer below the UAV. This should be reduced by hardware and software modifications i.e. applying non-linear filters and mounting the sensor on a rigid rod. Also, it was derived that the error level associated with upward continuation filters exceeds 45% and thus, using such filters instead of actual observations is not suggested in gradiometry. Moreover, 3-D magnetic gradient surveys can be beneficial for future inversion problems.
Real-time Geomagnetic Data from a Raspberry Pi Magnetometer Network in the United Kingdom
NASA Astrophysics Data System (ADS)
Case, N.; Beggan, C.; Marple, S. R.
2017-12-01
In 2014, BGS and the University of Lancaster won an STFC Public Engagement grant to build and deploy 10 Raspberry Pi magnetometers to secondary schools across the UK to enable citizen science. The system uses a Raspberry Pi computer as a logging and data transfer device, connected to a set of three orthogonal miniature fluxgate magnetometers. The system has a nominal sensitivity of around 1 nanoTesla (nT), in each component direction (North, East and Down). This is around twenty times less sensitive than a current scientific-level instrument, but given its relatively low-cost, at about £250 ($325) per unit, this is an excellent price-to-performance ratio given we could not improve the sensitivity unless we spent a lot more money. The magnetic data are sampled at a 5 second cadence and sent to the AuroraWatch website at Lancaster University every 2 minutes. The data are freely available to view and download. The primary aim of the project is to encourage students from 14-18 years old to look at how sensors can be used to collect geophysical data and integrate it together to give a wider understanding of physical phenomena. A second aim is to provide useful data on the spatial variation of the magnetic field for analysis of geomagnetic storms, alongside data from the BGS observatory and University of Lancaster's SAMNET variometer network. We show results from the build, testing and running of the sensors including some recent storms and we reflect on our experiences in engaging schools and the general public with information about the magnetic field. The information to build the system and logging and analysis software for the Raspberry Pi is all freely available, allowing those interested to participate in the project as citizen scientists.
THOR Field and Wave Processor - FWP
NASA Astrophysics Data System (ADS)
Soucek, Jan; Rothkaehl, Hanna; Balikhin, Michael; Zaslavsky, Arnaud; Nakamura, Rumi; Khotyaintsev, Yuri; Uhlir, Ludek; Lan, Radek; Yearby, Keith; Morawski, Marek; Winkler, Marek
2016-04-01
If selected, Turbulence Heating ObserveR (THOR) will become the first mission ever flown in space dedicated to plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer and search-coil magnetometer (SCM) and perform data digitization and on-board processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The feasibility of making highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation complemented by a thorough electromagnetic cleanliness program will further improve on this heritage. Taking advantage of the capabilities of modern electronics, FWP will provide simultaneous synchronized waveform and spectral data products at high time resolution from the numerous THOR sensors, taking advantage of the large telemetry bandwidth of THOR. FWP will also implement a plasma a resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will be interfaced with the particle instrument data processing unit (PPU) via a dedicated digital link which will enable performing on board correlation between waves and particles, quantifying the transfer of energy between waves and particles. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.
Geomagnetic main field modeling with DMSP
NASA Astrophysics Data System (ADS)
Alken, P.; Maus, S.; Lühr, H.; Redmon, R. J.; Rich, F.; Bowman, B.; O'Malley, S. M.
2014-05-01
The Defense Meteorological Satellite Program (DMSP) launches and maintains a network of satellites to monitor the meteorological, oceanographic, and solar-terrestrial physics environments. In the past decade, geomagnetic field modelers have focused much attention on magnetic measurements from missions such as CHAMP, Ørsted, and SAC-C. With the completion of the CHAMP mission in 2010, there has been a multiyear gap in satellite-based vector magnetic field measurements available for main field modeling. In this study, we calibrate the special sensor magnetometer instrument on board DMSP to create a data set suitable for main field modeling. These vector field measurements are calibrated to compute instrument timing shifts, scale factors, offsets, and nonorthogonality angles of the fluxgate magnetometer cores. Euler angles are then computed to determine the orientation of the vector magnetometer with respect to a local coordinate system. We fit a degree 15 main field model to the data set and compare with the World Magnetic Model and Ørsted scalar measurements. We call this model DMSP-MAG-1, and its coefficients and software are available for download at http://geomag.org/models/dmsp.html. Our results indicate that the DMSP data set will be a valuable source for main field modeling for the years between CHAMP and the recently launched Swarm mission.
LISN: A distributed observatory to image and study ionospheric irregularities
NASA Astrophysics Data System (ADS)
Sheehan, R.; Valladares, C. E.
2013-05-01
During nighttime the low-latitude ionosphere commonly develops plasma irregularities and density structures able to disrupt radio wave signals. This interference produces an adverse impact on satellite communication and navigation signals. For example, EM signals originated from satellites can suffer fading as deep as 20 dB even at UHF frequencies. In addition, civil aviation is increasingly dependent upon Global Navigation Satellite Systems and disruption of the navigation capability from ionospheric irregularities poses a clear threat to passengers and crews. To monitor and specify the conditions of the ionosphere over South America, the Low-latitude Ionospheric Sensor Network (LISN) was established as a permanent array of scientific instruments that operate continuously and transmit their observables to a central server in a real-time basis. Presently, the LISN observatory includes 3 different types of instruments: (1) 47 GPS receivers, (2) 5 flux-gate magnetometers and (3) 2 Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes. In addition to providing a nowcast of the disturbed state of the ionosphere over South America, LISN permits detailed studies of the initiation and development of plasma irregularities. By using data assimilation and tomography techniques, LISN provides continuous estimates of several important geophysical parameters that are indispensable to a program aimed at forecasting the plasma electrodynamics and the formation of density structures in the low-latitude ionosphere.
A balloon-borne experiment to investigate the Martian magnetic field
NASA Astrophysics Data System (ADS)
Schwingenschuh, K.; Feldhofer, H.; Koren, W.; Jernej, I.; Stachel, M.; Riedler, W.; Slamanig, H.; Auster, H.-U.; Rustenbach, J.; Fornacon, H. K.; Schenk, H. J.; Hillenmaier, O.; Haerendel, G.; Yeroshenko, Ye.; Styashkin, V.; Zaroutzky, A.; Best, A.; Scholz, G.; Russell, C. T.; Means, J.; Pierce, D.; Luhmann, J. G.
1996-03-01
The Space Research Institute of the Austrian Academy, of Sciences (Graz, Austria) in cooperation with MPE (Berlin, Germany), GFZ Potsdam (Obs. Niemegk, Germany) IZMIRAN/IOFAN (Moscow, Russian) and IGPP/UCLA (Los Angeles, USA) is designing the magnetic field experiment MAGIBAL (MAGnetic field experiment aboard a martian BALloon) to investigate the magnetic field on the surface of Mars. The dual sensor fluxgate magnetometer is part of the MARS-98/MARS-TOGETHER balloon payload. During a ten days period the balloon will float over a distance of about 2000 km at altitudes between 0 and 4 km. Due to the limited power and telemetry allocation the magnetometer can transmit only one vector per ten seconds and spectral information in the frequency range from 2 - 25 Hz. The dynamic range is +/- 2000 nT. The main scientific objectives of the experiment are: • Determination of the magnetism of the Martian rocks • Investigation of the leakage of the solar wind induced magnetosphere using the correlation between orbiter and balloon observations • Measurement of the magnetic field profile between the orbiter and the surface of Mars during the descent phase of the balloon. Terrestrial test flights with a hot air balloon were performed in order to test the original MAGIBAL equipment under balloon flight conditions.
Measurement technology for seismomagnetic signals
NASA Astrophysics Data System (ADS)
Korepanov, Valery; Dudkin, Fedir; Marusenkov, Andriy
2010-05-01
Ultra low frequency (ULF) band (0.001-3 Hz) is usually used for study of natural magnetic field variations of ionospheric and magnetospheric origin. At present this frequency range gains in importance at monitoring of lithospheric magnetic activity in seismo-hazardous areas for application to short-time earthquake (EQ) forecasting. A big number of publications confirm that ULF magnetic precursors were recorded from few weeks up to few hours before EQ. The measurement technology of these signals has several peculiarities. First, the lithospheric ULF EQ magnetic precursors as a rule are very weak and their frequency range is overlapping with signals of magnetospheric or ionospheric origin. Second, for resolution of magnetic precursors at the background of more powerful sources it is necessary to have magnetic field sensors with wide dynamics and minimum possible spectral noise density (SND) level. Additionally, monitoring of lithospheric activity should be provided in close proximity to probable EQ area and almost in real-time regime. For the study of ULF magnetic precursors the magnetometers with search-coil (SC) and fluxgate (FG) sensors are used. SC sensors for ULF band usually have length 0.8-1.2 m, diameter 10-15 cm and weight few kilograms with SND 0.1-200 pT/Hz0.5 (here and further maximum SND value relates to a lower part of frequency range). FG sensors are very compact (pencil-shaped with length ~ 4 cm) but have greater SND in this band (about 10-500 pT/Hz0.5). Next requirement, if to use SC, is that at 3-component magnetic field measurement it is necessary to provide spacing between sensors about 1-2 of their length for avoiding mutual influence between them. This requirement creates problems caused by non-rigidity of such construction and their spatial instability relatively ground surface (or horizontal plane). In addition, for such a long sensor a ratio of core length/diameter is big enough, what leads to increased SC sensor sensitivity to variety of mechanical deformations of sensor body. These factors increase the real SC SND because of induction effect in the Earth's magnetic field. Simple estimations show that sensitivity to changing of sensor axis direction can achieve a level about 250 pT for one second of arc. To overcome majority of these problems, a specialized FG with length 10 cm has been developed. This newly developed device has SND in ULF band about 1-30 pT/Hz0.5 and moderate consumed power. Additional merit of this sensor is extremely low noise density in the most prospective EQ magnetic precursors frequency range (0.001-0.03 Hz) - about 3-30 pT/Hz0.5- which is less than SND for the best recent SCs. A ULF magnetometer with such a compact solid sensor unit at partial compensation of the Earth's magnetic field in the sensor volume allows drastic decreasing the mechanical artefacts influence and facilitates the constructing of measuring sites for field works. As an example of SND necessity decrease the experimental data from seismo-hazardous region of China are discussed. It is shown that high SND of magnetometers leads to appearance of false background lithospheric signals and complicates the procedure of EQ related signals selection. The comparison of parameter set for FG and SC has been made and a specific design of FG dedicated for seismogenic ULF signals measurements has been discussed. This work is supported by STCU grant 4818.
Images of Bottomside Irregularities Observed at Topside Altitudes (Postprint)
2012-04-04
pairs of 20 m tip-to-tip double probes and a fluxgate magnetometer on a 0.6 m boom [Pfaff et al., 2010]. Vector electric fields are obtained with 16-bit... magnetometer out- puts. AC electric fields are measured by passing VEFI data streams though low (0–6 Hz) and high-pass (3–8,000 Hz) filters. AC magnetic field
Next Generation HeliMag UXO Mapping Technology
2010-01-01
Ancillary instrumentation records aircraft height above ground and attitude. A fluxgate magnetometer is used to allow for aeromagnetic compensation of... Magnetometer System WWII World War II WAA wide area assessment ACKNOWLEDGEMENTS This Next Generation HeliMag Unexploded Ordnance (UXO) Mapping...for deployment of seven total-field magnetometers on a Kevlar reinforced boom mounted on a Bell 206L helicopter. The objectives of this
ArchaeoMapper Beta Test Report
2008-06-01
instruments (Geoscan, Bartington, GSSI, etc.) are you familiar with? The Geoscan Fluxgate Magnetometer and the Goescan Resistance Meter 2. What software do...Magnetometry - Geoscan magnetometer , RM 15 Geoscan resistance meter, and GSSI SIR 20 Radar 2. What software do you typically use to process your...Geoscan, Bartington, GSSI, etc.) are you familiar with? Magnetometry - Geoscan magnetometer , RM 15 Geoscan resistance meter, and GSSI SIR 20 Radar
Flux-gate magnetometer spin axis offset calibration using the electron drift instrument
NASA Astrophysics Data System (ADS)
Plaschke, Ferdinand; Nakamura, Rumi; Leinweber, Hannes K.; Chutter, Mark; Vaith, Hans; Baumjohann, Wolfgang; Steller, Manfred; Magnes, Werner
2014-10-01
Spin-stabilization of spacecraft immensely supports the in-flight calibration of on-board flux-gate magnetometers (FGMs). From 12 calibration parameters in total, 8 can be easily obtained by spectral analysis. From the remaining 4, the spin axis offset is known to be particularly variable. It is usually determined by analysis of Alfvénic fluctuations that are embedded in the solar wind. In the absence of solar wind observations, the spin axis offset may be obtained by comparison of FGM and electron drift instrument (EDI) measurements. The aim of our study is to develop methods that are readily usable for routine FGM spin axis offset calibration with EDI. This paper represents a major step forward in this direction. We improve an existing method to determine FGM spin axis offsets from EDI time-of-flight measurements by providing it with a comprehensive error analysis. In addition, we introduce a new, complementary method that uses EDI beam direction data instead of time-of-flight data. Using Cluster data, we show that both methods yield similarly accurate results, which are comparable yet more stable than those from a commonly used solar wind-based method.
On determining fluxgate magnetometer spin axis offsets from mirror mode observations
NASA Astrophysics Data System (ADS)
Plaschke, Ferdinand; Narita, Yasuhito
2016-09-01
In-flight calibration of fluxgate magnetometers that are mounted on spacecraft involves finding their outputs in vanishing ambient fields, the so-called magnetometer offsets. If the spacecraft is spin-stabilized, then the spin plane components of these offsets can be relatively easily determined, as they modify the spin tone content in the de-spun magnetic field data. The spin axis offset, however, is more difficult to determine. Therefore, usually Alfvénic fluctuations in the solar wind are used. We propose a novel method to determine the spin axis offset: the mirror mode method. The method is based on the assumption that mirror mode fluctuations are nearly compressible such that the maximum variance direction is aligned to the mean magnetic field. Mirror mode fluctuations are typically found in the Earth's magnetosheath region. We introduce the method and provide a first estimate of its accuracy based on magnetosheath observations by the THEMIS-C spacecraft. We find that 20 h of magnetosheath measurements may already be sufficient to obtain high-accuracy spin axis offsets with uncertainties on the order of a few tenths of a nanotesla, if offset stability can be assumed.
The SIGMA CubeSat Mission for Space Research and Technology Demonstration
NASA Astrophysics Data System (ADS)
Lee, S.; Lee, J. K.; Lee, H.; Shin, J.; Jeong, S.; Jin, H.; Nam, U. W.; Kim, H.; Lessard, M.; Lee, R.
2016-12-01
The Scientific cubesat with Instrument for Global Magnetic field and rAdiation (SIGMA) is the 3U standard CubeSat measuring the space radiation and magnetic field on a 450 × 720 km sun-synchronous orbit. Its mass is 2.95 kg and the communication system consists of Very High Frequency (VHF) uplink and Ultra High Frequency (UHF) downlink. The SIGMA mission has two academic purposes which are space research and technology demonstration. For the space research, SIGMA has two instruments such as Tissue Equivalent Proportional Counter (TEPC) and a miniaturized fluxgate MAGnetometer (MAG). The TEPC primary instrument measures the Linear Energy Transfer (LET) spectrum and calculates the equivalent dose in the range from 0.3 to 1,000 keV/μm with a single Multi-Channel Analyzer. The secondary is a miniaturized fluxgate magnetometer which have 1 nT resolution with the dynamic range of ±42000 nT. The MAG is deployed by 0.7 m folding boom to avoid CubeSat body's Electromagnetic Interference (EMI). This boom is one of our mechanical technology demonstrations. After launch, we expect that the SIGMA give us new scientific data and technologic verification. This CubeSat is supported by Korean CubeSat contest program.
NASA Astrophysics Data System (ADS)
Mann, Ian; Chi, Peter
2016-07-01
Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport, acceleration, and loss of electrons in the radiation belts promise high profile science returns. Integrated, global scale data products also have potential importance and application for real-time monitoring of the space weather threats to electrical power grids from geomagnetically induced currents. Such data exploitation increasingly relies on the collaborations between multiple national magnetometer arrays to generate single data products with common file format and data properties. We review advances in geospace science which can be delivered by networks of ground-based magnetometers - in terms of advances in sensors, data collection, and data integration - including through collaborations within the Ultra-Large Terrestrial International Magnetometer Array (ULTIMA) consortium.
The MJS-77 magnetometer actuator
NASA Technical Reports Server (NTRS)
Stange, W. C.
1977-01-01
A two-position (0 deg and 180 deg) actuating mechanism (flipper) driven by alternately-heated wax motors (pellets) used to rotate the low field triaxial fluxgate magnetometer experiment on the 1977 Mariner Jupiter-Saturn spacecraft to its 0 deg and 180 deg positions is described. The magnetic field, power requirements, weight and volume of this device are discussed. The problems encountered in design and development of this mechanism are presented.
Feasibility Study for an Autonomous UAV - Magnetometer System
2007-11-01
collect data from multiple magnetometers at high sampling rates (~100 Hz), and associated with these acquisition systems are highly accurate...component for an UAV helicopter- magnetometer system is the ability to have precise positioning (both for flightpath execution and for data acquisition...discussed under section 6.3. Figure 6.11 shows the fluxgate data used to compensate a total field magnetometer as previously described. The red
The complex magnetic field of Jupiter
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1975-01-01
An analysis of the characteristics of the magnetic field of the planet Jupiter is presented. The data were obtained during the flight of Pioneer 11 space probe, using a high field triaxial fluxgate magnetometer. The data are analyzed in terms of traditional Schmitt normalized spherical harmonic expansion fitted to the observations in a least squares sense. Tables of data and graphs are provided to summarize the findings.
Quiet-time magnetospheric field depression at 2.3 to 3.6 R sub E
NASA Technical Reports Server (NTRS)
Sugiura, M.
1972-01-01
Fluxgate magnetometer data obtained by OGO-5 near perigee were used to establish the existence of large field depressions in the magnetosphere under conditions of varying degree of disturbance at distances ranging from 2.3 to 3.6 R sub E at all local times. The results also provide the average delta B at these distances when Dst, as being derived at present, is zero.
An EM System with Dynamic Multi-Axis Transmitter and Tensor Gradiometer Receiver
2011-06-01
main difference between the spatial behavior of target anomalies measured with a magnetometer and those we measured with an EM system is in the nature...environmental and UXO applications, current efforts include the development of tensor magnetic gradiometers based on triaxial fluxgate technology by the USGS...Superconducting gradiometer/ Magnetometer Arrays and a Novel Signal Processing Technique. IEEE Trans. on Magnetics, MAG-11(2), 701-707. EM Tensor
An EM System With Dramatic Multi-Axis Transmitter and Tensor Gradiometer Receiver
2011-06-01
Thus, the main difference between the spatial behavior of target anomalies measured with a magnetometer and those we measured with an EM system is in...current efforts include the development of tensor magnetic gradiometers based on triaxial fluxgate technology by the USGS (Snyder & Bracken, Development...Superconducting gradiometer/ Magnetometer Arrays and a Novel Signal Processing Technique. IEEE Trans. on Magnetics, MAG-11(2), 701-707. EM Tensor Gradiometer
The MJS-77 magnetometer actuator
NASA Technical Reports Server (NTRS)
Stange, W. C.
1977-01-01
A two-position (0 deg and 180 deg) actuating mechanism (flipper) driven by alternately-heated wax motors (pellets) will be used to rotate the low field triaxial fluxgate magnetometer experiment on the 1977 Mariner Jupiter-Saturn spacecraft to its 0 deg and 180 deg positions. The magnetic field, power requirements, weight and volume of this device are very restrictive. The problems encountered in design and development of this mechanism are presented.
Shallow Water UXO Technology Demonstration Site, Scoring Record No. 4 (CTC, FEREX DLG-GPS), MAG)
2008-04-01
Detection and Discrimination Demonstration of a Fluxgate Vertical Gradient Magnetometer at the Aberdeen Shallow Water Test Site. Submitted in...TECHNOLOGY TYPE/PLATFORM: FEREX DLG-GPS MAGNETOMETER SYSTEM PREPARED BY: U.S. ARMY ABERDEEN TEST CENTER ABERDEEN PROVING GROUND, MD 21005...efforts of Concurrent Technologies Corporation (CTC) to detect and discriminate inert unexploded ordnance (UXO) using a FEREX DLG- magnetometer with a
SSC San Diego Command History Calendar Year 2006
2007-03-01
Year: Dr. Visarath In, Yong Kho, Dr. Adi Bulsara, Dr. Joseph Neff, Dr. Brian Meadows, “Self-Induced Oscillations in Coupled Fluxgate Magnetometer : A... digital assistant. The USCG’s Underwater Port Security Working Group reviews ongoing efforts and provides direction to the USCG and the Department...provides the data link gateway as the JDN communications equipment that is used in MDSE to exchange Tactical Digital Information Link (TADIL) J, Satellite
Pi2 Pulsations During Extremely Quiet Geomagnetic Condition: Van Allen Probe Observations
NASA Astrophysics Data System (ADS)
Ghamry, Essam
2017-06-01
A ultra low frequency (ULF) wave, Pi2, has been reported to occur during periods of extremely quiet magnetospheric and solar wind conditions. And no statistical study on the Pi2 has been performed during extremely quiet conditions, using satellite observations to the author’s knowledge. Also Pi2 pulsations in the space fluxgate magnetometers near perigee failed to attract scientist’s attention previously. In this paper, Pi2 pulsations detected by the Van Allen probe satellites (VAP-A & VAP-B) were investigated statistically. During the period from October 2012 to December 2014, ninety six Pi2 events were identified using VAP when Kp = 0 while using Kakioka (KAK, L = 1.23) as a reference ground station. Seventy five events had high coherence between VAP-Bz and H components at KAK station. As a result, it was found that 77 % of the events had power spectra between 5 and 12 mHz, which differs from the regular Pi2 band range of from 6.7 to 25 mHz. In addition, it was shown that it is possible to observe Pi2 pulsations from space fluxgate magnetometers near perigee. Twenty two clean Pi2 pulsations were found where L < 4 and four examples of Pi2 oscillations at different L shells are presented in this paper.
NASA Astrophysics Data System (ADS)
Argall, M. R.; Caide, A.; Chen, L.; Torbert, R. B.
2012-12-01
Magnetometers have been used to measure terrestrial and extraterrestrial magnetic fields in space exploration ever since Sputnik 3. Modern space missions, such as Cluster, RBSP, and MMS incorporate both search coil magnetometers (SCMs) and fluxgate magnetometers (FGMs) in their instrument suites: FGMs work well at low frequencies while SCMs perform better at high frequencies. In analyzing the noise floor of these instruments, a cross-over region is apparent around 0.3-1.5Hz. The satellite separation of MMS and average speeds of field convection and plasma flows at the subsolar magnetopause make this a crucial range for the upcoming MMS mission. The method presented here combines the signals from SCM and FGM by taking a weighted average of both in this frequency range in order to draw out key features, such as narrow current sheet structures, that would otherwise not be visible. The technique is applied to burst mode Cluster data for reported magnetopause and magnetotail reconnection events to demonstrate the power of the combined data. This technique is also applied to data from the the EMFISIS instrument on the RBSP mission. The authors acknowledge and thank the FGM and STAFF team for the use of their data from the CLUSTER Active Archive.
NASA Technical Reports Server (NTRS)
Javadi, H.; Blaes, B.; Boehm, M.; Boykins, K.; Gibbs, J.; Goodman, W.; Lieneweg, U.; Lux, J.; Lynch, K.; Narvaez, P.
2000-01-01
The sub-orbital rocket mission was a collaborative project between the University of New Hampshire, Cornell University, and the Jet Propulsion Laboratory (JPL) to study filamentation phenomena in the northern Auroral zone. The Enstrophy mission test flies the JPL Free-Flying Magnetometer (FFM) concept. The FFM technology development task has been funded by NASA develop miniaturized, low-power, integrated "sensorcrafts". JPL's role was to design, integrate, test, and deliver four FFMs for deployment from the sounding rocket, allowing a unique determination of curl-B. This provides a direct measurement of magnetic-field-aligned current density along the rocket trajectory. A miniaturized three-axis fluxgate magnetometer was integrated with a 4-channel 22-bit sigma-delta Analog to Digital Converter (ADC), four temperature sensors, digital control electronics, seven (Li-SOCl2) batteries, two (4 deg x 170 deg field of view) sun-sensors, a fan-shaped-beam laser diode beacon, a (16 MHz) stable Temperature Compensated Crystal Oscillator (TCXO) clock, Radio Frequency (RF) communication subsystem, and an antenna for approximately 15 minutes of operation where data was collected continuously and transmitted in three (3) bursts (approximately 26 seconds each) to ground station antennas at Poker Flat, Alaska. FFMs were stowed within two trays onboard the rocket during the rocket launch and were released simultaneously using the spinning action of the rocket at approximately 300 km altitude (approximately 100 sec. into the flight). FFMs were deployed with spin rate of approximately 17 Hz and approximately 3 m/sec linear velocity with respect to the rocket. For testing purposes while the rocket was in the launch pad and during flight prior to release of FFMs from the rocket, commands (such as "power on", "test", "flight", "power off', and clock "Reset" signal) were transmitted via a infrared Light Emitting Diode to an infrared detector in the FFM. Special attention was paid to low magnetic signature electronic design and choice of materials in packaging. The miniaturized fluxgate magnetometers had a range of 1-60000 nT with 0.1% full-scale linearity. The frequency range of interest for magnetic measurement was 10 mHz - 50 Hz. Digital data from the magnetometer's three axes were placed in a 4MB Static Random Access Memory (SRAM) in data packages (frames) formatted together with time tags and frame ID. After a specified time was elapsed, the data were Viterbi encoded and transmitted at a rate of 100 kbps (BPSK). Each of the four FFMs transmitted at different frequency. These carrier frequencies were in the range of 2200-2300 MHz. The antenna was a single patch on a high dielectric constant substrate covering one end-plate of the hockey-puck-sized unit. The local clocks aboard the FFMs were reset at the start of the mission and stayed synchronized within 3 msec during the mission. Position of each FFM with respect to the rocket is calculated by the knowledge of its release velocity (measured at exit point of the FFM launcher tract) providing an accuracy of 1 m over the maximum range of 3 km. Spatial and temporal nature of observants can be separated to within 3 m in space or 3 msec time interval.
The CRRES Langmuir Probe and Fluxgate Magnetometer Instrument
1989-05-09
Gbntract tenager Branch Chief i r FOR THE COWhbDER RITA C. SAGALYN Division Director Qualified requestors may obtain additional copies from the... Computations 73 2.9 Sawtooth Generation 80 2.10 Bias Sweeps 84 2.11 Main Program Loader 96 2.12 Boom Deployment 98 2.13 General Utilities...separated by 100 meters. The other pair of conductors are cylindrical wire boom elements also in the spin plane that are separated by an effective
NASA Technical Reports Server (NTRS)
Stange, W. C.
1975-01-01
A two position (0 and 180 deg) actuating mechanism driven by two alternately heated opposing flat NITINOL springs is proposed for rotating the low field triaxial fluxgate magnetometer experiment on the 1977 Mariner Jupiter-Saturn spacecraft to its 0 deg and 180 deg positions. The magnetic field, power requirements, weight, and volume of this device are very restrictive. The problems encountered in design and development are presented.
2010-01-06
Micropulsation [10] The induced magnetic field variation was monitored by the fluxgate magnetometer located at Gakona, AK. The 1 sec resolution data...minutes on and 1 minute off, were explored. The experiments were monitored using the digisonde and magnetometer located at the HAARP facility. The...were explored. The experiments were monitored using the digisonde and magnetometer located at the HAARP facility. The results show that the
NASA Astrophysics Data System (ADS)
Lee, J. K.; Shin, J.; Kim, K. H.; Jin, H.; Kim, H.; Kwon, J.; Lee, S.; Jee, G.; Lessard, M.
2016-12-01
A ground-based bi-axial search-coil magnetometer (SCM) has been devloped for observation of time-varying magnetic fields (dB/dt) in the Ultra Low Frequency (ULF) range (a few mHz up to 5 Hz) to understand magnetosphere-ionosphere coupling processes. The SCM consists of magnetic sensors, analog electronics, cables and data acquisition system (DAQ). The bi-axial magnetic sensor has coils of wire wound around a mu-metal cores, each of which measures magnetic field pulsations in the horizontal components, geomagnetic north-south and east-west, respectively. The analog electronics is designed to control the cut-off frequency of the instrument and to amplify detected signals. The DAQ has a 16 bit analog to digital converter (ADC) at the user defined rate of 10 Hz. It is also equipped with the Global Positioning System (GPS) and Network Time Protocol (NTP) for time synchronization and accuracy. We have carried out in-lab performance tests (e.g., frequency response, noise level, etc) using a magnetically shielded case and a field-test in a magnetically quiet location in South Korea. During the field test, a ULF Pi 2 event has been observed clearly. We also confirmed that it was a substorm activity from a fluxgate magnetometer data at Mineyama (35°57.3'N, 135°05'E, geographic). The SCM will be installed and operated at Jang Bogo Antarctic Research Station (74°37.4'S, 164°13.7'E, geographic) on Dec. 2016. The geomagnetic latitude of the station is similar to that of the US McMurdo station (77°51'S, 166°40'E, geographic), both of which are typically near the cusp region. Thus, we expect that the SCM can provide useful information to understand ULF wave propagation characteristics.
Science objectives of the magnetic field experiment onboard Aditya-L1 spacecraft
NASA Astrophysics Data System (ADS)
Yadav, Vipin K.; Srivastava, Nandita; Ghosh, S. S.; Srikar, P. T.; Subhalakshmi, Krishnamoorthy
2018-01-01
The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018-19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models. The proposed FGM is a dual range magnetic sensor on a 6 m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6 m from the spacecraft) and other, midway (3 m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space. In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.
NASA Astrophysics Data System (ADS)
Fang, Zhao
This dissertation investigates approaches to enhance the performance, especially the sensitivity and signal to noise ratio of magnetoelectric sensors, which exploits the magnetoelectric coupling in magnetostrictive and piezoelectric laminate composites. A magnetic sensor is a system or device that can measure the magnitude of a magnetic field or each of its vector components. Usually the techniques encompass many aspects of physics and electronics. The common technologies used for magnetic field sensing include induction coil sensors, fluxgate, SQUID (superconducting quantum interference device), Hall effect, giant magnetoresistance, magnetostrictive/piezoelectric composites, and MEMS (microelectromechanical systems)-based magnetic sensors. Magnetic sensors have found a broad range of applications for many decades. For example, ultra sensitive magnetic sensors are able to detect tiny magnetic fields produced outside the brain by the neuronal currents which can be used for diagnostic application. Measuring the brain's magnetic field is extremely challenging because they are so weak, have strengths of 0.1--1 pT and thus requiring magnetic sensors with sub-picotesla sensitivity. In fact, to date, these measurements can only performed with the most sensitive magnetic sensors, i.e., SQUID. However, such detectors need expensive and cumbersome cryogenics to operate. Additionally, the thermal insulation of the sensors prevents them from being placed very closed to the tissues under study, thereby preventing high-resolution measurement capability. All of these severely limit their broad usage and proliferation for biomedical imaging, diagnosis, and research. A novel ultra-sensitive magnetic sensor capable of operating at room temperature is investigated in this thesis. Magnetoelectric effect is a material phenomenon featuring the interchange between the magnetic and electric energies or signals. The large ME effect observed in ME composites, especially the ME laminates consisting of magnetostrictive and piezoelectric components shows a promise to make novel ultra-sensitive magnetic sensors capable of operating at room temperature. To achieve such a high sensitivity (˜pT level), piezoelectric sensors are materialized through ME composite laminates, provided piezo-sensors are among the most sensitive while being passive devices at the same time. To further improve the sensitivity and reduce the 1f noise level, several approaches are used such as magnetic flux concentration effect, which is a function of the Metglas sheet aspect ratio, and resonance enhancement. Taking advantage of this effect, the ME voltage coefficient alpha ME=21.46 V/cm·Oe for Metglas 2605SA1/PVDF laminates and alphaME=46.7 V/cm·Oe for Metglas 2605CO/PVDF laminates. The resonance response of Metglas/PZT laminates in FF (Free-Free), FC (Free-Clamped), and CC (Clamped-Clamped) modes are also investigated. alphaME=301.6 V/cm·Oe and the corresponding SNR=4x107 Hz /Oe are achieved for FC mode at resonance frequencies. In addition to this, testing setups were built to characterize the magnetic sensors. LABVIEW codes were also developed to automatize the measurements and consequently get accurate results. Then two commonly used integration methods, i.e., hybrid method and system in package (SIP), are discussed. Then the intrinsic noise analysis including dielectric loss noise, which dominates the intrinsic noise sources, and magnetostrictive noise is introduced. A charge mode readout circuit is made for hybrid method and a voltage mode readout circuit is made for SIP method. For sensors, since SNR is very important since it determines the minimum signal it can detect, the SNR of each configuration is discussed in detail. For charge mode circuit, by taking advantage of the multilayer PVDF configuration, SNR=7.2x10 5 Hz /Oe is achieved at non-resonance frequencies and SNR=2x10 7 Hz /Oe is achieved at resonance frequencies. For voltage mode circuit, a constant SNR=3x103 Hz /Oe is achieved at non-resonance frequencies. Both of the advantages and disadvantages of each method are also discussed. Piezoelectric single crystal PMN-PT with optimum orientation and cut direction is developed to increase the ME coefficient alpha ME and reduce the intrinsic dielectric loss noise, consequently to improve the SNR of the ME sensors. For Metlgas/PMN-PT laminates, SNR=3.9x10 6 Hz /Oe is achieved at non-resonance frequencies and SNR=7.3x10 8 Hz /Oe is achieved at resonance frequencies.
NASA Technical Reports Server (NTRS)
1980-01-01
A list of ISIS 2 experiments and a description of the satellite are presented. Instrumentation of the satellite included an auroral scanning photometer, a red line photometer, a swept frequency sounder, an ion mass spectrometer, and triaxial fluxgate magnetometer. Data format descriptions are provided. Included with the geophysical data set is a list of all passes.
Sticky Bomb Detection With Other Implications For Vehicle Security
2010-04-15
performance of two commercial magnetometers . The first was a handheld Walker Scientific Triaxial FluxGate Magnetometer with a 1 nanoTesla (nT) resolution...along each of 3 axes. The other ! !!!!!!!!!!!!!!!!!!!!!!!!!"#$%&’(!#)!*+,-./’(!01/$%.2,!34567!89:39!4;ɝɞ! ! 38! magnetometer was a PNI V2XE 2-axis...Argonne, IL is approximately 45,000 nT at the surface.) Readings from the Walker magnetometer were recorded manually from the liquid crystal
NASA Astrophysics Data System (ADS)
Hagen, C.; Ellmeier, M.; Piris, J.; Lammegger, R.; Jernej, I.; Magnes, W.; Murphy, E.; Pollinger, A.; Erd, C.; Baumjohann, W.
2017-11-01
Scalar magnetometers measure the magnitude of the magnetic field, while vector magnetometers (mostly fluxgate magnetometers) produce three-component outputs proportional to the magnitude and the direction of the magnetic field. While scalar magnetometers have a high accuracy, vector magnetometers suffer from parameter drifts and need to be calibrated during flight. In some cases, full science return can only be achieved by a combination of vector and scalar magnetometers.
An Automatic System for Global Monitoring of ELF and VLF Radio Noise Phenomena.
1985-06-01
second low-jitter synchronization signal is also provided for precise triggering of analog-to- digital conversion samples. Both the clock and the...building in 1985 are two riometers (30 MHz and 51.4 MHz), a 3-axis fluxgate magnetometer , a 3-axis micropulsation magnetometer , an all-sky camera, and...of these filters 1s continuously sampled by a computerized recording system, and statistical averages are computed on-site and recorded on digital tape
DC-Compensated Current Transformer.
Ripka, Pavel; Draxler, Karel; Styblíková, Renata
2016-01-20
Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component.
Statistics of EMIC Rising Tones Observed by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Sigsbee, K. M.; Kletzing, C.; Smith, C. W.; Santolik, O.
2017-12-01
We will present results from an ongoing statistical study of electromagnetic ion cyclotron (EMIC) wave rising tones observed by the Van Allen Probes. Using data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) fluxgate magnetometer, we have identified orbits by both Van Allen Probes with EMIC wave events from the start of the mission in fall 2012 through fall 2016. Orbits with EMIC wave events were further examined for evidence of rising tones. Most EMIC wave rising tones were found during H+ band EMIC wave events. In Fourier time-frequency power spectrograms of the fluxgate magnetometer data, H+ band rising tones generally took the form of triggered emission type events, where the discrete rising tone structures rapidly rise in frequency out of the main band of observed H+ EMIC waves. A smaller percentage of EMIC wave rising tone events were found in the He+ band, where rising tones may appear as discrete structures with a positive slope embedded within the main band of observed He+ EMIC waves, similar in appearance to whistler-mode chorus elements. Understanding the occurrence rate and properties of rising tone EMIC waves will provide observational context for theoretical studies indicating that EMIC waves exhibiting non-linear behavior, such as rising tones, may be more effective at scattering radiation belt electrons than ordinary EMIC waves.
The Danish Greenland Magnetometer Chain - Status and Outlook
NASA Astrophysics Data System (ADS)
Behlke, R.
2016-12-01
DTU Space operates the Greenland magnetometer array, including 19 variometer stations whereof 3 are geomagnetic observatories. This array consists of a West Coast Chain with 13 stations including three observatories between 77.47 and 61.16 geographic North. On the East Coast 5 variometer stations are located between 81.6 and 65.6 geographic North. The Greenland Array covers polar cap, cusp and auroral regions. These data allow the monitoring of electromagnetic processes in the polar ionosphere and magnetosphere, and are a significant contribution to global data sets. The vast majority of the sensors now employed are the Danish FGE 3-axis linear-core fluxgate magnetometers designed and built under the supervision of Ole Rasmussen and later Lars William Pedersen. They are optimized for long-term stability (observatory-quality instruments) rather than high sensitivity. The stations use 16 bit A/D converters with 20s or 1s sampling rate, optimized for 1 minute mean data. Hence, the rms-noise is approximately 0.1 nT in the 1 mHz - 1 Hz band, the time accuracy is 1s and the final resolution is 0.25 nT for most data at 20s sampling rate and 0.125 nT for most data at 1s sampling rate. During setup, the sensor axes are oriented along local magnetic north (H), local magnetic east (E) and vertical down (Z). Sensors at some stations are equipped with a suspension which guarantees vertical alignment. The instruments run fully automatically and require (normally) no manual intervention. All stations use the FGE vector magnetometer. Greenland magnetometer data has been aquired in digital form since 1981. From 1981 through 1990 all stations recorded with 1-min sampling rate. In 1986 the acquisition systems was gradually modified in order to record with 20-s sampling rate. Modification was completed by 1991, and since then all stations run at 20-s sampling rate. In 1999 acquisition system was made capable to record at 1-s sampling in addition to the continued 20-s sampoling rate. In 2001 most stations were upgraded, and in the summer of 2002 the upgrade was completed. Now all stations have laptops as dataloggers recording at 1Hz. In this presentation, we provide a status overview of the chain and its role within the G-ESC.
CLUSTER-STAFF search coil magnetometer calibration - comparisons with FGM
NASA Astrophysics Data System (ADS)
Robert, P.; Cornilleau-Wehrlin, N.; Piberne, R.; de Conchy, Y.; Lacombe, C.; Bouzid, V.; Grison, B.; Alison, D.; Canu, P.
2014-09-01
The main part of the Cluster Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment consists of triaxial search coils allowing the measurements of the three magnetic components of the waves from 0.1 Hz up to 4 kHz. Two sets of data are produced, one by a module to filter and transmit the corresponding waveform up to either 10 or 180 Hz (STAFF-SC), and the second by the onboard Spectrum Analyser (STAFF-SA) to compute the elements of the spectral matrix for five components of the waves, 3 × B and 2 × E (from the EFW experiment), in the frequency range 8 Hz to 4 kHz. In order to understand the way the output signals of the search coils are calibrated, the transfer functions of the different parts of the instrument are described as well as the way to transform telemetry data into physical units across various coordinate systems from the spinning sensors to a fixed and known frame. The instrument sensitivity is discussed. Cross-calibration inside STAFF (SC and SA) is presented. Results of cross-calibration between the STAFF search coils and the Cluster Fluxgate Magnetometer (FGM) data are discussed. It is shown that these cross-calibrations lead to an agreement between both data sets at low frequency within a 2% error. By means of statistics done over 10 yr, it is shown that the functionalities and characteristics of both instruments have not changed during this period.
Coalition Warfare Program Presentation to: 2009 EUCOM/AFRICOM Science and Technology Conference
2009-06-01
compac an nexpens ve m cro- fluxgate magnetometer for use in multiple COCOMs. To continue T&E with joint services and apply lessons learned to...Partners in EUCOM/AFRICOM FY08 Starts • Advanced Dynamic Magnetometer FY09 Starts • ADNS Coalition Network FY10 New Starts • Clip-on Night Vision...Partner 2008 New Starts Advanced Dynamic Magnetometer for Static and Moving Applications T d l t d i i i US Navy (SPAWAR) Italy, Sweden o eve op a a
2004-08-01
base station Attitude Measurement Ashtech ADU-2 Bartington MAG03ML7ONT 3-axis fluxgate magnetometer , Navigation Picodas PNAV100 Model P141-E Real...BBR Test Grid, horizontal difference (outer coil minus scaled inner coil). 46 22 Analytic signal derived from ground-based magnetometer bottom...one meter over UXO-contaminated terrain. As with the magnetic systems, GPS and laser altimetry provide precise positioning to within a few tens of
The surface and interior of Venus
NASA Technical Reports Server (NTRS)
Masursky, H.; Kaula, W. M.; Russell, C. T.; Schubert, G.; Mcgill, G. E.; Pettengill, G. H.; Shapiro, I. I.; Phillips, R. J.
1977-01-01
The present knowledge of Venus is reviewed with discussions of the nature and history of both the surface, crust and interior. Instrumentation on board the Pioneer Venus Orbiter, including the radar mapper, radio tracking and the fluxgate magnetometer, is described. Topographic, geological, Bouguer gravity, magnetic, and crustal thickness maps will be constructed from Orbiter data. These maps should provide information on composition and thermal history, the major geological or geophysical provinces, the rate of past and present tectonic activity, and evidence of past or present MHD dynamos.
DC-Compensated Current Transformer †
Ripka, Pavel; Draxler, Karel; Styblíková, Renata
2016-01-01
Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830
Determination of Flux-Gate Magnetometer Spin Axis Offsets with the Electron Drift Instrument
NASA Astrophysics Data System (ADS)
Plaschke, Ferdinand; Nakamura, Rumi; Giner, Lukas; Teubenbacher, Robert; Chutter, Mark; Leinweber, Hannes K.; Magnes, Werner
2014-05-01
Spin-stabilization of spacecraft enormously supports the in-flight calibration of onboard flux-gate magnetometers (FGMs): eight out of twelve calibration parameters can be determined by minimization of spin tone and harmonics in the calibrated magnetic field measurements. From the remaining four parameters, the spin axis offset is usually obtained by analyzing observations of Alfvénic fluctuations in the solar wind. If solar wind measurements are unavailable, other methods for spin axis offset determination need to be used. We present two alternative methods that are based on the comparison of FGM and electron drift instrument (EDI) data: (1) EDI measures the gyration periods of instrument-emitted electrons in the ambient magnetic field. They are inversely proportional to the magnetic field strength. Differences between FGM and EDI measured field strengths can be attributed to inaccuracies in spin axis offset, if the other calibration parameters are accurately known. (2) For EDI electrons to return to the spacecraft, they have to be sent out in perpendicular direction to the ambient magnetic field. Minimization of the variance of electron beam directions with respect to the FGM-determined magnetic field direction also yields an estimate of the spin axis offset. Prior to spin axis offset determination, systematic inaccuracies in EDI gyration period measurements and in the transformation of EDI beam directions into the FGM spin-aligned reference coordinate system have to be corrected. We show how this can be done by FGM/EDI data comparison, as well.
NASA Astrophysics Data System (ADS)
Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.
2014-01-01
We compare the magnetic field data obtained from the flux-gate magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the electron drift instrument (EDI) onboard Cluster to determine the spin-axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ∼ 0.6 nT was observed for Cluster 1 between July and October 2003. Using multipoint multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.
Fluxgate magnetometer offset vector determination by the 3D mirror mode method
NASA Astrophysics Data System (ADS)
Plaschke, F.; Goetz, C.; Volwerk, M.; Richter, I.; Frühauff, D.; Narita, Y.; Glassmeier, K.-H.; Dougherty, M. K.
2017-07-01
Fluxgate magnetometers on-board spacecraft need to be regularly calibrated in flight. In low fields, the most important calibration parameters are the three offset vector components, which represent the magnetometer measurements in vanishing ambient magnetic fields. In case of three-axis stabilized spacecraft, a few methods exist to determine offsets: (I) by analysis of Alfvénic fluctuations present in the pristine interplanetary magnetic field, (II) by rolling the spacecraft around at least two axes, (III) by cross-calibration against measurements from electron drift instruments or absolute magnetometers, and (IV) by taking measurements in regions of well-known magnetic fields, e.g. cometary diamagnetic cavities. In this paper, we introduce a fifth option, the 3-dimensional (3D) mirror mode method, by which 3D offset vectors can be determined using magnetic field measurements of highly compressional waves, e.g. mirror modes in the Earth's magnetosheath. We test the method by applying it to magnetic field data measured by the following: the Time History of Events and Macroscale Interactions during Substorms-C spacecraft in the terrestrial magnetosheath, the Cassini spacecraft in the Jovian magnetosheath and the Rosetta spacecraft in the vicinity of comet 67P/Churyumov-Gerasimenko. The tests reveal that the achievable offset accuracies depend on the ambient magnetic field strength (lower strength meaning higher accuracy), on the length of the underlying data interval (more data meaning higher accuracy) and on the stability of the offset that is to be determined.
NASA Astrophysics Data System (ADS)
Iguchi, Kyosuke; Matsuoka, Ayako
2014-07-01
One of the design challenges for future magnetospheric satellite missions is optimizing the mass, size, and power consumption of the instruments to meet the mission requirements. We have developed a digital-type fluxgate (DFG) magnetometer that is anticipated to have significantly less mass and volume than the conventional analog-type. Hitherto, the lack of a space-grade digital-to-analog converter (DAC) with good accuracy has prevented the development of a high-performance DFG. To solve this problem, we developed a high-resolution DAC using parts whose performance was equivalent to existing space-grade parts. The developed DAC consists of a 1-bit second-order sigma-delta modulator and a fourth-order analog low-pass filter. We tested the performance of the DAC experimentally and found that it had better than 17-bits resolution in 80% of the measurement range, and the linearity error was 2-13.3 of the measurement range. We built a DFG flight model (in which this DAC was embedded) for a sounding rocket experiment as an interim step in the development of a future satellite mission. The noise of this DFG was 0.79 nTrms at 0.1-10 Hz, which corresponds to a roughly 17-bit resolution. The results show that the sigma-delta DAC and the DFG had a performance that is consistent with our optimized design, and the noise was as expected from the noise simulation. Finally, we have confirmed that the DFG worked successfully during the flight of the sounding rocket.
Wöhl-Bruhn, S; Heim, E; Schwoerer, A; Bertz, A; Harling, S; Menzel, H; Schilling, M; Ludwig, F; Bunjes, H
2012-10-15
Hydrogels are under investigation as long term delivery systems for biomacromolecules as active pharmaceutical ingredients. The release behavior of hydrogels can be tailored during the fabrication process. This study investigates the applicability of fluxgate magnetorelaxometry (MRX) as a tool to characterize the release properties of such long term drug delivery depots. MRX is based on the use of superparamagnetic core-shell nanoparticles as model substances. The feasibility of using superparamagnetic nanoparticles to study the degradation of and the associated release from hydrogel cylinders and hydrogel microspheres was a major point of interest. Gels prepared from two types of photo crosslinkable polymers based on modified hydroxyethylstarch, specifically hydroxyethyl starch-hydroxyethyl methacrylate (HES-HEMA) and hydroxyethyl starch-polyethylene glycol methacrylate (HES-P(EG)(6)MA), were analyzed. MRX analysis of the incorporated nanoparticles allowed to evaluate the influence of different crosslinking conditions during hydrogel production as well as to follow the increase in nanoparticle mobility as a result of hydrogel degradation during release studies. Conventional release studies with fluorescent markers (half-change method) were performed for comparison. MRX with superparamagnetic nanoparticles as model substances is a promising method to analyze pharmaceutically relevant processes such as the degradation of hydrogel drug carrier systems. In contrast to conventional release experiments MRX allows measurements in closed vials (reducing loss of sample and sampling errors), in opaque media and at low magnetic nanoparticle concentrations. Magnetic markers possess a better long-term stability than fluorescent ones and are thus also promising for the use in in vivo studies. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Acuña, Mario H.
2002-11-01
The general characteristics and system level concepts for space-based magnetometers are presented to illustrate the instruments, principles, and tools involved in making accurate magnetic field measurements in space. Special consideration is given to the most important practical problems that need to be solved to ensure the accuracy of the measurements and their overall impact on system design and mission costs. Several types of instruments used to measure magnetic fields aboard spacecraft and their capabilities and limitations are described according to whether they measure scalar or vector fields. The very large dynamic range associated with magnetic fields of natural origin generally dictates the use of optimized designs for each particular space mission although some wide-range, multimission magnetometers have been developed and used. Earth-field magnetic mapping missions are the most demanding in terms of absolute accuracy and resolution, approaching <1 part in 100 000 in magnitude and a few arcsec in direction. The difficulties of performing sensitive measurements aboard spacecraft, which may not be magnetically clean, represent a fundamental problem which must be addressed immediately at the planning stages of any space mission that includes these measurements. The use of long, deployable booms to separate the sensors from the sources of magnetic contamination, and their impact on system design are discussed. The dual magnetometer technique, which allows the separation of fields of external and spacecraft origin, represents an important space magnetometry tool which can result in significant savings in complex contemporary spacecraft built with minimum magnetic constraints. Techniques for in-flight estimation of magnetometer biases and sensor alignment are discussed briefly, and highlight some basic considerations within the scope and complexity of magnetic field data processing and reduction. The emerging field of space weather is also discussed, including the essential role that space-based magnetic field measurements play in this complex science, which is just in its infancy. Finally, some considerations for the future of space-based magnetometers are presented. Miniature, mass produced sensors based on magnetoresistance effects and micromachined structures have made significant advances in sensitivity but have yet to reach the performance level required for accurate space measurements. The miniaturization of spacecraft and instruments to reduce launch costs usually results in significantly increased magnetic contamination problems and degraded instrument performance parameters, a challenge that has yet to be solved satisfactorily for "world-class" science missions. The rapidly disappearing manufacturing capabilities for high-grade, low noise, soft magnetic materials of the Permalloy family is a cause of concern for the development of high performance fluxgate magnetometers for future space missions.
Magnetic field gradients inferred from multi-point measurements of Cluster FGM and EDI
NASA Astrophysics Data System (ADS)
Teubenbacher, Robert; Nakamura, Rumi; Giner, Lukas; Plaschke, Ferdinand; Baumjohann, Wolfgang; Magnes, Werner; Eichelberger, Hans; Steller, Manfred; Torbert, Roy
2013-04-01
We use Cluster data from fluxgate magnetometer (FGM) and electron drift instrument (EDI) to determine the magnetic field gradients in the near-Earth magnetotail. Here we use the magnetic field data from FGM measurements as well as the gyro-time data of electrons determined from the time of flight measurements of EDI. The results are compared with the values estimated from empirical magnetic field models for different magnetospheric conditions. We also estimated the spin axis offset of FGM based on comparison between EDI and FGM data and discuss the possible effect in determining the current sheet characteristics.
The Magsat precision vector magnetometer
NASA Technical Reports Server (NTRS)
Acuna, M. H.
1980-01-01
This paper examines the Magsat precision vector magnetometer which is designed to measure projections of the ambient field in three orthogonal directions. The system contains a highly stable and linear triaxial fluxgate magnetometer with a dynamic range of + or - 2000 nT (1 nT = 10 to the -9 weber per sq m). The magnetometer electronics, analog-to-digital converter, and digitally controlled current sources are implemented with redundant designs to avoid a loss of data in case of failures. Measurements are carried out with an accuracy of + or - 1 part in 64,000 in magnitude and 5 arcsec in orientation (1 arcsec = 0.00028 deg).
Status of the Polar Engineering Development Center's (PEDC) Open-Closed Boundary Synoptic Nowcast
NASA Astrophysics Data System (ADS)
Gerrard, A. J.; Kim, H.
2017-12-01
We present the most recent Polar Engineering Development Center (PEDC) developments, specifically the first magnetic-field open-closed boundary (OCB) determination scheme. This scheme is implemented in "near real time" and utilizes data from an array of fluxgate magnetometers that are distributed across the high Antarctic plateau, as per Urban et al. [2012]. This OCB determination enables a high-latitude, synoptic measure of space weather variability that provides for more regional determinations of particle precipitation and related impacts. This methodology therefore supplements exciting "index-based" or empically-based space weather nowcasts currently in use.
Solar wind monitor—a school geophysics project
NASA Astrophysics Data System (ADS)
Robinson, Ian
2018-05-01
Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth’s field in real-time uploading data and graphs to a website every few minutes. Modular design encourages construction and testing by teams of students as well as expansion and refinement. The system has been tested running unattended for months at a time. Both the hardware design and software is published as open-source [1, 10].
UAV magnetometry in mineral exploration and infrastructure detection
NASA Astrophysics Data System (ADS)
Braun, A.; Parvar, K.; Burns, M.
2015-12-01
Magnetic surveys are critical tools in mineral exploration and UAVs have the potential to carry magnetometers. UAV surveys can offer higher spatial resolution than traditional airborne surveys, and higher coverage than terrestrial surveys. However, the main advantage is their ability to sense the magnetic field in 3-D, while most airborne or terrestrial surveys are restricted to 2-D acquisition. This study compares UAV magnetic data from two different UAVs (JIB drone, DJI Phantom 2) and three different magnetometers (GEM GSPM35, Honeywell HMR2300, GEM GST-19). The first UAV survey was conducted using a JIB UAV with a GSPM35 flying at 10-15 m above ground. The survey's goal was to detect intrusive Rhyolite bodies for primary mineral exploration. The survey resulted in a better understanding of the validity/resolution of UAV data and led to improved knowledge about the geological structures in the area. The results further drove the design of a following terrestrial survey. Comparing the UAV data with an available airborne survey (upward continued to 250 m) reveals that the UAV data has superior spatial resolution, but exhibits a higher noise level. The magnetic anomalies related to the Rhyolite intrusions is about 109 nT and translates into an estimated depth of approximately 110 meters. The second survey was conducted using an in-house developed UAV magnetometer system equipped with a DJI Phantom 2 and a Honeywell HMR2300 fluxgate magnetometer. By flying the sensor in different altitudes, the vertical and horizontal gradients can be derived leading to full 3-D magnetic data volumes which can provide improved constraints for source depth/geometry characterization. We demonstrate that a buried steam pipeline was detectable with the UAV magnetometer system and compare the resulting data with a terrestrial survey using a GEM GST-19 Proton Precession Magnetometer.
NASA Astrophysics Data System (ADS)
Wilkins, C.; Bingley, L.; Angelopoulos, V.; Caron, R.; Cruce, P. R.; Chung, M.; Rowe, K.; Runov, A.; Liu, J.; Tsai, E.
2017-12-01
UCLA's Electron Losses and Fields Investigation (ELFIN) is a 3U+ CubeSat mission designed to study relativistic particle precipitation in Earth's polar regions from Low Earth Orbit. Upon its 2018 launch, ELFIN will aim to address an important open question in Space Physics: Are Electromagnetic Ion-Cyclotron (EMIC) waves the dominant source of pitch-angle scattering of high-energy radiation belt charged particles into Earth's atmosphere during storms and substorms? Previous studies have indicated these scattering events occur frequently during storms and substorms, and ELFIN will be the first mission to study this process in-situ.Paramount to ELFIN's success is its instrument suite consisting of an Energetic Particle Detector (EPD) and a Fluxgate Magnetometer (FGM). The EPD is comprised of two collimated solid-state detector stacks which will measure the incident flux of energetic electrons from 50 keV to 4 MeV and ions from 50 keV to 300 keV. The FGM is a 3-axis magnetic field sensor which will capture the local magnetic field and its variations at frequencies up to 5 Hz. The ELFIN spacecraft spins perpendicular to the geomagnetic field to provide 16 pitch-angle particle data sectors per revolution. Together these factors provide the capability to address the nature of radiation belt particle precipitation by pitch-angle scattering during storms and substorms.ELFIN's instrument development has progressed into the late Engineering Model (EM) phase and will soon enter Flight Model (FM) development. The instrument suite is currently being tested and calibrated at UCLA using a variety of methods including the use of radioactive sources and applied magnetics to simulate orbit conditions during spin sectoring. We present the methods and test results from instrument calibration and performance validation.
The Vector Electric Field Investigation on the C/NOFS Satellite
NASA Technical Reports Server (NTRS)
Pfaff, R.; Acuna, M.; Kujawski, J.; Fourre, R.; Uribe, P.; Hunsaker, F.; Rowland, D.; Le, G.; Farrell, W.; Maynard, N.;
2008-01-01
We provide an overview of the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA/GSFC instrument funded by the Air Force Research Laboratory whose main objectives are to: 1) investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) determine the quasi-DC electric fields associated with abrupt, large amplitude, density depletions, and 3) quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions typically referred to as equatorial spread-F. The VEFI instrument includes a vector electric field double probe detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux-gate magnetometer, an optical lightning detector, and associated electronics. The heart of the instrument is the set of detectors designed to measure DC and AC electric fields using 6 identical booms that provide 3 axis, 20-m tip-to-tip orthogonal double probes. Each probe extends a 10 cm diameter sphere containing an embedded preamplifier. VEFI also includes a burst memory that enables snapshots of data from 1-8 channels of selected instruments to be sampled at rates of up to 32 kHz each. The bursts may be triggered by the detection of density depletions, intense electric field wave activity in a given band, lightning detector pulses, or an event at a pre-determined time or location. All VEFI instrument components are working exceptionally well. A description of the instrument, its sensors, and their sampling frequencies and sensitivities will be presented. Representative measurements will be shown.
Space Weather Studies Using the Low-Latitude Ionospheric Sensor Network (LISN)
NASA Astrophysics Data System (ADS)
Valladares, C. E.; Pacheco, E.
2014-12-01
LISN is an array of small instruments that operates as a real-time distributed observatory to understand the complex day-to-day variability and the extreme state of disturbance that occurs in the South American low-latitude ionosphere nearly every day after sunset. The LISN observatory aims to forecast the initiation and transport of plasma bubbles across the South American continent. The occurrence of this type of plasma structures and their embedded irregularities poses a prominent natural hazard to communication, navigation and high precision pointing systems. As commercial and military aviation is increasingly reliant on Global Navigation Satellite Systems (GNSS) any interruption due to ionospheric irregularities or errors due to large density gradients constitutes a serious threat to passengers and crew. Therefore, it is important to understand the conditions and sources that contribute to the formation of these irregularities. To achieve high quality regional nowcasts and forecasts, the LISN system was designed to include a dense coverage of the South American landmass with 47 GPS receivers, 5 flux-gate magnetometers distributed on 2 base lines and 3 Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes deployed along the same magnetic meridian that intersects the magnetic equator at 68° W. This presentation will provide a summary of recent instrument installations and new processing techniques that have been developed under the LISN project. We will also present the results of recent efforts to detect TIDs and TEC plasma depletions on a near real-time basis. We will describe a method to estimate the zonal velocity and tilt of the plasma bubbles/depletions by combining observations of TEC depletions acquired with adjacent receivers, making it possible to predict precisely their future locations.
In situ statistical observations of EMIC waves by Arase satellite
NASA Astrophysics Data System (ADS)
Nomura, R.; Matsuoka, A.; Teramoto, M.; Nose, M.; Yoshizumi, M.; Fujimoto, A.; Shinohara, M.; Tanaka, Y.
2017-12-01
We present in situ statistical survey of electromagnetic ion cyclotron (EMIC) waves observed by Arase satellite from 3 March to 16 July 2017. We identified 64 events using the fluxgate magnetometer (MGF) on the satellite. The EMIC wave is the key phenomena to understand the loss dynamics of MeV-energy electrons in the radiation belt. We will show the radial and latitudinal dependence of the wave occurance rate and the wave parameters (frequency band, coherence, polarization, and ellipticity). Especially the EMIC waves observed at localized weak background magnetic field will be discussed for the wave excitation mechanism in the deep inner magnetosphere.
NASA Astrophysics Data System (ADS)
Bergen, A.; van Weers, H. J.; Bruineman, C.; Dhallé, M. M. J.; Krooshoop, H. J. G.; ter Brake, H. J. M.; Ravensberg, K.; Jackson, B. D.; Wafelbakker, C. K.
2016-10-01
The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ˜100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 106, well exceeding the requirement of the envisaged missions. Following field-cooling in an axial field of 85 μT, the residual internal DC field normal to the detector plane is less than 1 μT. The trapped field patterns are compared to the predictions of the dynamic FEM model, which describes them well in the region where the internal field exceeds 6 μT.
Bergen, A; van Weers, H J; Bruineman, C; Dhallé, M M J; Krooshoop, H J G; Ter Brake, H J M; Ravensberg, K; Jackson, B D; Wafelbakker, C K
2016-10-01
The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ∼100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 10 6 , well exceeding the requirement of the envisaged missions. Following field-cooling in an axial field of 85 μT, the residual internal DC field normal to the detector plane is less than 1 μT. The trapped field patterns are compared to the predictions of the dynamic FEM model, which describes them well in the region where the internal field exceeds 6 μT.
The State of the Industry and Research in Airborne Geophysics
NASA Astrophysics Data System (ADS)
Hodges, G.
2007-12-01
Development of airborne geophysical methods has tended to proceed in rushes of energy, when many new systems are developed for the same application simultaneously along many pathways. The tremendous growth of airborne EM through the '50s to '70s was followed by natural selection in the '80s and '90s down to two styles: fixed-wing aircraft with high-powered time domain systems (FTEM) offering depth of exploration but poor spatial resolution, and helicopter-borne frequency-domain systems (HFEM) offering the best resolution but poor depth of exploration. At the end of the '90s there was an incredible spurt of energy toward helicopter time domain development, spurred technological advances in electronics and materials. By 2007 there were 8 systems operational. Perhaps the most daring current research is toward airborne EM systems utilizing ambient EM fields as sources. Magnetic sensors are almost universally cesium-vapor total field sensors (0.01nT sampled at 0.1s). Because the limitation on target detection is ambient, in-band noise, there is little to gain from producing higher-sensitivity meters. Data quality improvements are being sought by measuring horizontal and vertical gradients more accurately. The new wave of research for magnetic surveys is the measurement of vector or tensor magnetic data with directional sensors, generally either fluxgates or SQUIDS. Magnetometers on autonomous aircraft are newly available. Gamma Ray Spectrometry surveys with sodium-iodide crystal detectors give good performance, and the low cost allows for large volumes to make up for the relatively low sensitivity. The last few years have seen development of new systems in which each crystal in the detector array is monitored, calibrated and stabilized individually using natural radiation. Airborne gravity systems available use the LaCoste zero-length pendulum, or orthogonal accelerometers. Separation of gravity from acceleration is generally done with platforms stabilized for both rotation and translation, and measurement of acceleration. Generally, solutions must be a trade-off between sensitivity and spatial resolution, restricting their application to the large structures of oil exploration. Airborne gravity gradiometry (AGG) achieves higher resolution and sensitivity with meters based on the system of accelerometers on spinning disks, implemented as horizontal gradiometers and as full tensor gradiometers. Putting the sensor on a helicopter improved the data S/N. An airship implementation promises to be a near-ideal platform, restricted by the payload limits. Many projects are on-going to develop new gravity gradiometers toward a goal of 1Eotvös sensitivity at 100m wavelength. Hyperspectral imaging measures the reflected light from the surface across a broad spectrum, originally from near-infrared through visible, but now often including thermal infrared. The research challenges for systems have been to stabilize the system sensitivities, correct for varying ambient light levels reflectance, and improve resolution without degrading signal strength. Data processing requires the determination of the mineral reflectance spectra that best fit the spectrum of each pixel, when each pixel will probably contain many minerals, or be partly covered by vegetation.
Stability analysis of geomagnetic baseline data obtained at Cheongyang observatory in Korea
NASA Astrophysics Data System (ADS)
Amran, Shakirah M.; Kim, Wan-Seop; Cho, Heh Ree; Park, Po Gyu
2017-07-01
The stability of baselines produced by Cheongyang (CYG) observatory from the period of 2014 to 2016 is analysed. Step heights of higher than 5 nT were found in H and Z components in 2014 and 2015 due to magnetic noise in the absolute-measurement hut. In addition, a periodic modulation behaviour observed in the H and Z baseline curves was related to annual temperature variation of about 20 °C in the fluxgate magnetometer hut. Improvement in data quality was evidenced by a small dispersion between successive measurements from June 2015 to the end of 2016. Moreover, the baseline was also improved by correcting the discontinuity in the H and Z baselines.
Alignment of a vector magnetometer to an optical prism
NASA Astrophysics Data System (ADS)
Dietrich, M. R.; Bailey, K. G.; O'Connor, T. P.
2017-05-01
A method for alignment of a vector magnetometer to a rigidly attached prism is presented. This enables optical comparison of the magnetometer axes to physical surfaces in the apparatus, and thus an absolute determination of the magnetic field direction in space. This is in contrast with more common techniques, which focus on precise determination of the relative angles between magnetometer axes, and so are more suited to measuring differences in the direction of magnetic fields. Here we demonstrate precision better than 500 μrad on a fluxgate magnetometer, which also gives the coil orthogonality errors to a similar precision. The relative sensitivity of the three axes is also determined, with a precision of about 5 ×10 -4 .
Dual technique magnetometer experiment for the Cassini Orbiter spacecraft
NASA Technical Reports Server (NTRS)
Southwood, D. J.; Balogh, A.; Smith, E. J.
1992-01-01
The dual technique magnetometer to fly on the Cassini Saturn Orbiter Spacecraft is described. The instrument combines two separate techniques of measuring the magnetic field in space using both fluxgate and vector helium devices. In addition, the instrument can be operated in a special scalar mode which is to be used near the planet for highly accurate determination of the interior field of the planet. As well as the planetary field, the instrument will make large contributions to the scientific measurements of the planetary magnetosphere, the highly electrically conducting region of space surrounding Saturn permeated by the Saturnian field, the interaction of Saturn and the interplanetary medium and the interaction of Titan with its space environment.
NASA Astrophysics Data System (ADS)
Chen, Sony Su; Moro, Juliano; Araujo Resende, Laysa Cristina; Denardini, Clezio Marcos
2016-07-01
The Embrace Magnetometer Network (Embrace MagNet) is a network of three-axis fluxgate magnetometers using single bars with high level of magnetic saturation, covered with two copper coils, one for the excitation and the second for sensing the external field. It is planned to cover most of the Easter Southern American longitudinal sector in order to fulfill the gap for magnetic measurement available on-line. The availability of fast internet, reliable energy supply and easy access were the key point for deciding the location of the magnetometer stations of the network. Up to now, the main characteristic of this network is the severe sensibility matching process among all the magnetometers composing it. Now, in order to validate the magnetic data collected by the elements of the Embrace MagNet in comparison to absolute measurements, we performed a study about the correlation between the data collected by the fluxgate magnetometer provided by Embrace MagNet and an absolute magnetometer installed by Intermagnet in the same observatory. For this study, we have used data collected in Vassouras-RJ, in Brazil, covering the period from June to December 2015. The analysis consist of: (a) selecting the 5 quietest days and the 5 most disturbed days of each month based on the Kp index; (b) deducing the local midnight value from the data collected by both instruments; (c) correlating the data collected by the variometer with the absolute measurement day-by-day; (d) grouping the results as Winter (June, July, and August), Equinox (September and October) and Summer (November and December); (e) obtaining the linear correlations factor for each group. The averaged correlation factors and the daily variations of the magnetic data are presented and discussed in terms of the magnetic activity and the season variation.
Participation in the Cluster Magnetometer Consortium for the Cluster Mission
NASA Technical Reports Server (NTRS)
Kivelson, Margaret
1997-01-01
Prof. M. G. Kivelson (UCLA) and Dr. R. C. Elphic (LANL) are Co-investigators on the Cluster Magnetometer Consortium (CMC) that provided the fluxgate magnetometers and associated mission support for the Cluster Mission. The CMC designated UCLA as the site with primary responsibility for the inter-calibration of data from the four spacecraft and the production of fully corrected data critical to achieving the mission objectives. UCLA was also charged with distributing magnetometer data to the U.S. Co-investigators. UCLA also supported the Technical Management Team, which was responsible for the detailed design of the instrument and its interface. In this final progress report we detail the progress made by the UCLA team in achieving the mission objectives.
Alignment of a vector magnetometer to an optical prism.
Dietrich, M R; Bailey, K G; O'Connor, T P
2017-05-01
A method for alignment of a vector magnetometer to a rigidly attached prism is presented. This enables optical comparison of the magnetometer axes to physical surfaces in the apparatus, and thus an absolute determination of the magnetic field direction in space. This is in contrast with more common techniques, which focus on precise determination of the relative angles between magnetometer axes, and so are more suited to measuring differences in the direction of magnetic fields. Here we demonstrate precision better than 500 μrad on a fluxgate magnetometer, which also gives the coil orthogonality errors to a similar precision. The relative sensitivity of the three axes is also determined, with a precision of about 5 × 10 -4 .
A Antarctic Magnetometer Chain Along the Cusp Latitude: Preliminary Results
NASA Astrophysics Data System (ADS)
Liu, Y.
2016-12-01
A magnetometer chain from Zhongshan Station to Dome-A in Antarctica has been established since February 2009, consisting in five fluxgate magnetometers, with one regular magnetometer at Zhongshan Station and four low power magnetometers along the cusp latitude in the southern hemisphere, over a distance of 1260 Km. It is one part of the magnetometer network in Antarctic continent, filling the void area for magnetic observation over east-southern Antarctica, greatly enlarging the coverage of the Zhongshan Station. It is also magnetically conjugated with Svalbard region in the Arctic, with a leg extending to DNB in east coast Greenland. Conjunction observation among these magnetometers could provide excellent tracing of series of the typical space physical phenomena such as FTE, TCV, MIE, ULF waves, etc.
A Web Server for MACCS Magnetometer Data
NASA Technical Reports Server (NTRS)
Engebretson, Mark J.
1998-01-01
NASA Grant NAG5-3719 was provided to Augsburg College to support the development of a web server for the Magnetometer Array for Cusp and Cleft Studies (MACCS), a two-dimensional array of fluxgate magnetometers located at cusp latitudes in Arctic Canada. MACCS was developed as part of the National Science Foundation's GEM (Geospace Environment Modeling) Program, which was designed in part to complement NASA's Global Geospace Science programs during the decade of the 1990s. This report describes the successful use of these grant funds to support a working web page that provides both daily plots and file access to any user accessing the worldwide web. The MACCS home page can be accessed at http://space.augsburg.edu/space/MaccsHome.html.
Cryogenic High-Sensitivity Magnetometer
NASA Technical Reports Server (NTRS)
Day, Peter; Chui, Talso; Goodstein, David
2005-01-01
A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.
Intermediate filament structure in fully differentiated (oxidised) trichocyte keratin.
Fraser, R D Bruce; Parry, David A D
2017-10-01
For the past 50years there has been considerable debate over the sub-structure of the fully differentiated (oxidised) trichocyte keratin intermediate filament. Depending on the staining and preparative procedures employed, IF observed in transverse section in the transmission electron microscope have varied in appearance between that of a "ring" and a "ring-core" structure, corresponding to the so-called (8+0) and (7+1) protofilament arrangements. In a new analysis of the fine structure of the 1nm equatorial region of the X-ray diffraction pattern of quill we show that the observed pattern is consistent with the (8+0) model and we are also able to assign values to the various parameters. In contrast, we show that the observed X-ray pattern is inconsistent with a (7+1) arrangement. Furthermore, in the (7+1) model steric hindrance would be encountered between the core protofilament and those constituting the ring. The appearance of a central "core" in transverse TEM sections, previously attributed to a central protofilament, is explained in terms of portions of the apolar, disulfide-bonded head and/or tail domains of the trichocyte keratin IF molecules, including the conserved H subdomains, lying along the axis of the IF, thereby decreasing the efficacy of the reducing agents used prior to staining. The H1 subdomain, previously shown to be important in the assembly of epidermal IF molecules at the two- to four-molecule level, is likely to have a similar role for the trichocyte keratins and may form part of a central scaffold on which the molecules assemble into fully functional IF. Copyright © 2017 Elsevier Inc. All rights reserved.
Active and passive electromagnetic sounding on comets and moons
NASA Astrophysics Data System (ADS)
Przyklenk, Anita; Auster, Hans-Ulrich
We want to present the method of electromagnetic sounding on small extraterrestrial bodies to determine interior structures of those. Our sensors are perfectly suited for rover or lander missions, because they do not weight much (sum of all devices is approximately 600g) and can be easily installed at the bottom of a rover or at lander feet. The aim is to measure the material-specific complex resistivity, which depends on the electrical resistivity and electrical permittivity, for various sounding depth. This penetration depth depends on the 2 different operating modes. In the active mode, that is the so called Capacitive Resistivity (CR) method, the sounding depth is around a few meters. The CR is a purely electrical field measurement and works with a 4 electrode array. 2 of them are transmitter electrodes. They inject AC signals with frequencies between 100 Hz and 100 kHz into the subsurface. Then 2 receiver electrodes pick up the generated potentials. And a 4-point impedance can be calculated that depends on the electrical parameters among others [Grard, 1990a and b] [Kuras, 2002]. The second operating mode is the passive one. In the so called magneto telluric method the penetration depth depends on electrical parameters and can be in range of several 100m to km. Here, for excitation natural magnetic field variations are used. The magnetic field components are measured with our Fluxgate Magnetometer (FGM) (flight heritage: Rosetta, Venus Express, Themis,…). Induced electrical field components are measured again with the CR electrode array. Then the electromagnetic impedance can be derived, which depends on electrical resistivity among others. In the end, we want to discuss advantages and disadvantages of investigations during space missions compared to surveys on earth. As examples we have a closer look at the jovian moon Ganymede, the earth moon and the comet 67P/Churyumov-Gerasimenko and consider the applicability of electromagnetic sounding on this objects from a theoretical point of view.
Free-Flying Magnetometer Data System
NASA Technical Reports Server (NTRS)
Blaes, B.; Javadi, H.; Spencer, H.
2000-01-01
The Free-Flying Magnetometer (FFM) is an autonomous "sensorcraft" developed at the Jet Propulsion Laboratory (JPL) for the Enstrophy sounding rocket mission. This mission was a collaborative project between the University of New Hampshire, Cornell University and JPL. The science goal of the mission was the study of current filamentation phenomena in the northern auroral region through multipoint measurements of magnetic field. The technical objective of the mission was the proof of concept of the JPL FFM design and the demonstration of an in-situ multipoint measurement technique employing many free-flying spacecraft. Four FFMs were successfully deployed from a sounding rocket launched from Poker Flats, Alaska on February 11, 1999. These hockey-puck-sized (80 mm diameter, 38 mm. height, 250 gram mass) free flyers each carry a miniature 3-axis flux-gate magnetometer that output +/- 2 V signals corresponding to a +/- 60,000 nT measurement range for each axis. The FFM uses a synchronized four-channel Sigma(Delta) Analog-to-Digital Converter (ADC) having a dynamic range of +/- 2.5V and converting at a rate of 279 samples/second/channel. Three channels are used to digitize the magnetometer signals to 17-bit (1.144 nT/bit) resolution. The fourth ADC channel is multiplexed for system monitoring of four temperature sensors and two battery voltages. The FFM also contains two sun sensors, a laser diode which emits a fan-shaped beam, a miniature S-band transmitter for direct communication to the ground station antennas, an ultra-stable Temperature Compensated Crystal Oscillator (TCXO) clock, an integrated data subsystem implemented in a Field-Programmable Gate Array (FPGA), a 4 Mbit Static Random Access Memory (SRAM) for data storage and Lithium Thionyl Chloride batteries for power. Communicating commands to the FFM prior to deployment is achieved with an infrared (IR) link. The FFM IR receiver responds to 9-bit pulse coded signals that are generated by an IR Light Emitting Diode (LED) in the payload for turning FFM power on or off and placing the FFM in a test mode or flight mode. The IR links are also used to synchronize (zero) the clocks onboard all the FFMs through a reset pulse originating from the payload GPS receiver that is issued when the FFMs are in flight mode. The FPGA based data subsystem manages continuous data collection from the four ADC channels and sun sensors, formatting and storing the data to SRAM, and controlling downlink transmission. The transmitter is powered only after a 2547 frame SRAM buffer has been filled (approx. 5 minutes of data). The data is Viterbi encoded and sent to the S-band transmitter via a First-In-First-Out (FIFO) buffer who's output is clocked at 100 bits/second. After the 26-second transmission, the transmitter is turned off to reduce noise coupling to the sensitive magnetometer. The data subsystem control consists of a master state machine that performs data flow management and is interfaced through a prioritized interrupt scheme to state machines that service the ADC, sun sensors and transmitter FIFO. Continuous data collection prevents the missing of data during transmission and provides implicit time tagging of the data acquired by the ADC because of synchronization with the TCXO clock.
MEMS-based gradiometer for the complete characterization of Martian magnetic environment
NASA Astrophysics Data System (ADS)
Mesa, Jose Luis; Ciudad, David; McHenry, Michael E.; Aroca, Claudio; Díaz-Michelena, Marina
2013-04-01
The in-situ determination of the Martian magnetic field is one of the most important and ambitious objectives in Mars exploration, because its implications in paleomagnetism, tectonics and mineral determination. To place sensors on Mars is a complicated task, due to the extreme conditions of the planet surface and also because of the relative low budget devoted to this kind of instrument: low power, mass, volume and the need to operate in a magnetically noise environment. A complete and accurate measurement of the magnetic environment includes the determination of both magnitude and gradient of the magnetic field (B). There are many developments of magnetometers with the characteristics mentioned before [2], but the question about gradient is not that well solved and most gradient sensors are based on a couple of magnetometers separated a certain distance [2, 3]. The aim of this abstract is to introduce a new MEMS based robust gradiometer for the point measurement of the field gradient with the ultimate goal to perform in situ measurement on Mars and shed some light in the magnetic anomalies explanation of the Red Planet. Since in some conditions ?ׯB = 0, we assume knowing six of the nine components is sufficient to reconstruct entirely the magnetic field gradient. The device proposed consists of a set of six cantilevers to measure these six components (with resolution in the order of 1 nT/mm) combined either with another miniaturized and more accurate magnetometer (with resolution below the nT) for the measurement of the field vector. Every component system consists of a cantilever with an appropriate geometry, an excitation coil and a mechanism to generate a field gradient. The cantilevers are made of piezoelectric material (bimorph, with two piezoelectric layers) covered by a soft ferromagnetic material (of Iron-Nickel base). Is explained below the working principle for one component. When the excitation system generates an alternating magnetic field (enough to saturate) along the width of the cantilever, the ferromagnetic material is alternatively saturated in both directions along the cantilever's width. Under the presence of a magnetic field gradient in the normal direction to the plane of the cantilever, the ferromagnetic material experiments a force, making the cantilever vibrate. This vibration generates an electric signal, given that when the cantilever vibrates, the piezoelectric layers stretches and contracts, so it sets a voltage difference. The current system with dimensions in the order of mm is run at its resonant frequency. In the presence of an external magnetic field gradient, the vibration frequency changes. The external gradient can be easily measured by means of the measurement of the frequency shift. References: [1] Acuña, M.H.: Space-based magnetometers, Rev. Sci. Instrum., 73, 3717-3736, doi: 10.1063/1.1510570, Nov 2002. [2] Merayo, J.M.G.; Brauer, P.; Primdahl, F.: Triaxial fluxgate gradiometer of high stability and linearity, Sensor Actuat A-Phys., 120, 71-77, doi: 10.1016/j.sna.2004.11.014, Apr 2005. [3] Lucas, I.; Michelena, M.D.;del Real, R.P.; de Manuel, V.; Plaza, J.A. 2; Duch, M.; Esteve, J; Guerrero, H.: A New Single-Sensor Magnetic Field Gradiometer, Sens. Lett., 7, 563-570, doi: 10.1166/sl.2009.1110, Aug 2009.
NASA Astrophysics Data System (ADS)
Khomutov, Sergey Y.
2017-10-01
Continuous magnetic measurements at Geophysical Observatory "Paratunka" (PET) of IKIR FEB RAS are performed since 1967. In the new millennium analogue magnetometers were modernized to digital, the technologies of absolute observations were changed, the data processing was completely transferred to computers, and the status of INTERMAGNET observatory was obtained. Currently, the observatory uses the following magnetometers: (a) for absolute observations - DIflux LEMI-203 (theodolite 3T2KP) and Mag-01 (theodolite Wild-T1), Overhauser magnetometers POS-1 and GSM-19W; (b) for variation measurements - fluxgate magnetometers FGE-DTU, FRG-601 and MAGDAS (installed under international agreements of IKIR), vector magnetometers dIdD GSM-19FD and POS-4 with Overhauser sensors and coil systems, scalar magnetometer GSM-90 and induction magnetometer STELAB. During Spring-Autumn season dIdD also is installed at remote station "Karymshina" at distance of 15 km from Observatory. There is monitoring system for monitoring of conditions in which magnetic observations are performed, including the semi-professional weather stations Davis Vantage Pro2 and WS2000 and a network of digital temperature sensors DS19B20 located at various points in magnetic pavilions and outdoor. All measurements are synchronized with the UTC. The results of observations are collected by the IKIR data server from the recorders and loggers, including in real-time. Specialized software was developed (based on MATLAB and Octave packages), which allows automatic and semi-automatic processing of data, the comparison of the results from different magnetometers and presenting final data in formats, defined by international standards, including INTERMAGNET. Significant efforts of observatory staff are direct to archive (raw) magnetic data, a significant part of which has not been entirely processed, is not presented in international data centers and is still not available to the scientific community. Digital images of analog magnetograms have been obtained, the digitization of which allowed to fill the gaps in the hourly data available in the WDC for 1991, 1996-1997. The state of the set of the instruments and databases shows that the observatory "Paratunka" can solve most of the problems that arise in the geomagnetic field researches, including the provision of data for the development of regional and global field models, ground support of magnetometers located on satellites, support of the surface (sea) and aeromagnetic surveys and drilling, providing the data for researches of processes in the lithosphere, magnetosphere and ionosphere over a wide frequency range, and also for a number of applied problems. ARRAY(0x189e680)
Sea floor magnetic observatory
NASA Astrophysics Data System (ADS)
Korepanov, V.; Prystai, A.; Vallianatos, F.; Makris, J.
2003-04-01
The electromagnetic precursors of seismic hazards are widely accepted as strong evidence of the approaching earthquake or volcano eruption. The monitoring of these precursors are of main interest in densely populated areas, what creates serious problems to extract them at the strong industrial noise background. An interesting possibility to improve signal-to-noise ratio gives the installation of the observation points in the shelf zones near the possible earthquake places, what is fairly possible in most seismically active areas in Europe, e. g. in Greece and Italy. The serious restriction for this is the cost of the underwater instrumentation. To realize such experiments it requires the unification of efforts of several countries (e. g., GEOSTAR) or of the funds of some great companies (e. g., SIO magnetotelluric instrument). The progress in electronic components development as well as the appearance of inexpensive watertight glass spheres made it possible to decrease drastically the price of recently developed sea floor magnetic stations. The autonomous vector magnetometer LEMI-301 for sea bed application is described in the report. It is produced on the base of three-component flux-gate sensor. Non-magnetic housing and minimal magnetism of electronic components enable the instrument to be implemented as a monoblock construction where the electronic unit is placed close to the sensor. Automatic circuit provides convenient compensation of the initial field offset and readings of full value (6 digits) of the measured field. Timing by internal clock provides high accuracy synchronization of data. The internal flash memory assures long-term autonomous data storage. The system also has two-axes tilt measurement system. The methodological questions of magnetometer operation at sea bed were studied in order to avoid two types of errors appearing at such experimental cases. First is sea waving influence and second one magnetometer orientation at its random positioning on the sea floor in order to get experimental data in geomagnetic coordinates frames. The analysis executed showed that first error source can not be avoided at shallow water experiments but can be easily taken into account. The special methodology and the developed software allowed to solve the second problem. It was shown that it is possible to reduce the magnetometer data collected in randomly oriented coordinate system at arbitrary position on the sea floor to the data in the frame system connected with geomagnetic coordinates. The parameters of LEMI-302 sea bed magnetometer are discussed and the experimental results of its application are presented. The research work in Ukraine was partly supported by INTAS grant 99-1102.
The UOSAT magnetometer experiment
NASA Technical Reports Server (NTRS)
Acuna, M. H.
1982-01-01
The magnetometer aboard the University of Surrey satellite (UOSAT) and its associated electronics are described. The basic fluxgate magnetometer employed has a dynamic range of plus or minus 8000 nT with outputs digitized by a 12-bit successive approximation A-D converter having a resolution of plus or minus 2 nT. Noise in the 3-13 Hz bandwidth is less than 1 nT. A bias field generator extends the dynamic range to plus or minus 64,000 nT with quantization steps of 8000 nT. The magnetometer experiment is expected to provide information on the secular variation of the geomagnetic field, and the decay rate of the dipole term. Special emphasis will be placed on the acquisition of real time and memory data over the poles which can be correlated with that from Magsat.
Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying
2009-09-01
An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method.
Statistical survey of day-side magnetospheric current flow using Cluster observations: magnetopause
NASA Astrophysics Data System (ADS)
Liebert, Evelyn; Nabert, Christian; Perschke, Christopher; Fornaçon, Karl-Heinz; Glassmeier, Karl-Heinz
2017-05-01
We present a statistical survey of current structures observed by the Cluster spacecraft at high-latitude day-side magnetopause encounters in the close vicinity of the polar cusps. Making use of the curlometer technique and the fluxgate magnetometer data, we calculate the 3-D current densities and investigate the magnetopause current direction, location, and magnitude during varying solar wind conditions. We find that the orientation of the day-side current structures is in accordance with existing magnetopause current models. Based on the ambient plasma properties, we distinguish five different transition regions at the magnetopause surface and observe distinctive current properties for each region. Additionally, we find that the location of currents varies with respect to the onset of the changes in the plasma environment during magnetopause crossings.
A Merged Dataset for Solar Probe Plus FIELDS Magnetometers
NASA Astrophysics Data System (ADS)
Bowen, T. A.; Dudok de Wit, T.; Bale, S. D.; Revillet, C.; MacDowall, R. J.; Sheppard, D.
2016-12-01
The Solar Probe Plus FIELDS experiment will observe turbulent magnetic fluctuations deep in the inner heliosphere. The FIELDS magnetometer suite implements a set of three magnetometers: two vector DC fluxgate magnetometers (MAGs), sensitive from DC- 100Hz, as well as a vector search coil magnetometer (SCM), sensitive from 10Hz-50kHz. Single axis measurements are additionally made up to 1MHz. To study the full range of observations, we propose merging data from the individual magnetometers into a single dataset. A merged dataset will improve the quality of observations in the range of frequencies observed by both magnetometers ( 10-100 Hz). Here we present updates on the individual MAG and SCM calibrations as well as our results on generating a cross-calibrated and merged dataset.
Alignment of a vector magnetometer to an optical prism
Dietrich, M. R.; Bailey, K. G.; O’Connor, T. P.
2017-05-12
A method for alignment of a vector magnetometer to a rigidly attached prism is presented. This enables optical comparison of the magnetometer axes to physical surfaces in the apparatus, and thus an absolute determination of the magnetic field direction in space. This is in contrast with more common techniques, which focus on precise determination of the relative angles between magnetometer axes, and so are more suited to measuring differences in the direction of magnetic fields. Here we demonstrate precision better than 500 μrad on a fluxgate magnetometer, which also gives the coil orthogonality errors to a similar precision. As amore » result, the relative sensitivity of the three axes is also determined, with a precision of about 5 ×10 –4.« less
NASA Technical Reports Server (NTRS)
Williams, D. J.; Fritz, T. A.; Konradi, A.
1972-01-01
Detailed proton spectral and pitch angle distribution observations were obtained from two proton detectors and a fluxgate magnetometer flown on Small Scientific Satellite A (Explorer 45). The data of interest are from orbit 99 in-bound occurring on 17 December 1971, some 8 hours prior to the sudden commencement of a magnetic storm. The data are consistent with the initiation of ion cyclotron instability when certain requirements are met. These criteria are met initially at the altitude at which the sudden intensity decrease occurs. However, after the initiation of the instability, the linear theory is unable to explain the further evolution of intensities, pitch angle distributions, and energy spectra of the ring current particles.
The relationship of total Birkeland currents to the merging electric field
NASA Technical Reports Server (NTRS)
Bythrow, P. F.; Potemra, T. A.
1983-01-01
Magsat data were used to examine the behavior of Birkeland currents during 1100-2000 UT in consecutive orbits passing near the dawn-dusk meridian. The field was measured with a three-axis fluxgate instrument with a resolution of within 0.5 nT, with the sampling occurring every 1/16th sec. A total of 32 crossings of the Northern Hemisphere auroral zone were available for analysis. The changes in the magnetic readings were correlated more closely with variation in the IMF parameters than to the latitudinal width of the changes. Evidence was found for a relationship between the reconnection electric field and the intensity of the large-scale Birkeland current system. The total conductance of the auroral zone was calculated to be about 18.7 mhos.
NASA Astrophysics Data System (ADS)
Kalscheuer, Thomas; Juhojuntti, Niklas; Vaittinen, Katri
2017-12-01
A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer functions is used as the initial model for the inversion of the surface impedances, skin-effect transfer functions and vertical magnetic and electric transfer functions. For both synthetic examples, the inversion models resulting from surface and borehole measurements have higher similarity to the true models than models computed exclusively from surface measurements. However, the most prominent improvements were obtained for the first example, in which a deep small-sized ore body is more easily distinguished from a shallow main ore body penetrated by a borehole and the extent of the shadow zone (a conductive artefact) underneath the main conductor is strongly reduced. Formal model error and resolution analysis demonstrated that predominantly the skin-effect transfer functions improve model resolution at depth below the sensors and at distance of ˜ 300-1000 m laterally off a borehole, whereas the vertical electric and magnetic transfer functions improve resolution along the borehole and in its immediate vicinity. Furthermore, we studied the signal levels at depth and provided specifications of borehole magnetic and electric field sensors to be developed in a future project. Our results suggest that three-component SQUID and fluxgate magnetometers should be developed to facilitate borehole MT measurements at signal frequencies above and below 1 Hz, respectively.
AIROscope: Ames infrared balloon-borne telescope
NASA Technical Reports Server (NTRS)
Koontz, O. L.; Scott, S. G.
1974-01-01
A balloon-borne telescope system designed for astronomical observations at infrared wavelengths is discussed. The telescope is gyro-stabilized with updated pointing information derived from television, star tracker, or ground commands. The television system furnishes both course and fine acquisition after initial orientation using a pair of fluxgate servo compasses. Command and control is by a UHF link with 256 commands available. Scientific and engineering data are telemetered to the ground station via narrow band F.M. in the L band. The ground station displays all scientific, engineering and status information during the flights and records the command and telemetry digital bit stream for detailed analysis. The AIROscope telescope has a 28-inch diameter primary mirror and Dall-Kirkham optics. The beam is modulated by oscillating a secondary mirror at 11 or 25 Hz with provision for left or right beam fixed positions by command.
Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator.
Hu, Yong; Feng, Y Y; Xu, Chi; Xue, H B; Sun, Li
2014-04-01
We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of ⁸⁷Rb atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8 pT/√Hz in a parallel B field.
A reexamination of ATS 6 magnetometer data for radially polarized Pc 3 magnetic pulsations
NASA Technical Reports Server (NTRS)
Takahashi, K.; Mcpherron, R. L.
1983-01-01
The polarization of Pc 3 (22-100 MHz) magnetic pulsations measured by the ATS 6 fluxgate magnetometer at synchronous orbit has been examined by using dynamic autospectral analysis. In contrast to the result obtained by Arthur et al. (1977) using the same data set, very few cases of radially polarized Pc 3 pulsations are found. It is suggested that satellite noise in the radial component, which depends on frequency f as 0.015/f (nT-squared/Hz), is responsible for this disagreement. In the presence of this type of noise, diagonalization of the spectral matrix can produce an erroneous major axis of polarization. Most Pc 3 pulsations classified as radially polarized by Arthur et al. appear to be a consequence of small amplitude azimuthal pulsations contaminated by satellite noise.
Progress on the Cluster Mission
NASA Technical Reports Server (NTRS)
Kivelson, Margaret; Khurana, Krishan; Acuna, Mario (Technical Monitor)
2002-01-01
Prof M. G. Kivelson and Dr. K. K. Khurana (UCLA (University of California, Los Angeles)) are co-investigators on the Cluster Magnetometer Consortium (CMC) that provided the fluxgate magnetometers and associated mission support for the Cluster Mission. The CMC designated UCLA as the site with primary responsibility for the inter-calibration of data from the four spacecraft and the production of fully corrected data critical to achieving the mission objectives. UCLA will also participate in the analysis and interpretation of the data. The UCLA group here reports its excellent progress in developing fully intra-calibrated data for large portions of the mission and an excellent start in developing inter-calibrated data for selected time intervals, especially extended intervals in August, 2001 on which a workshop held at ESTEC in March, 2002 focused. In addition, some scientific investigations were initiated and results were reported at meetings.
Satellite-borne study of seismic phenomena by low frequency magnetic field observations
NASA Astrophysics Data System (ADS)
Schwingenschuh, Konrad; Magnes, Werner; Xuhui, Shen; Wang, Jindong; Pollinger, Andreas; Hagen, Christian; Prattes, Gustav; Eichelberger, Hans-Ulrich; Wolbang, Daniel; Boudjada, Mohammed Y.; Besser, Bruno P.; Rozhnoi, Alexander A.; Zhang, Tielong
2015-04-01
A combined scalar-vector magnetic field experiment will be flown on the upcoming CSES mission (China Seismo-Electromagnetic Satellite). Magnetic field data from DC to 30 Hz will be measured with an accuracy of about 10 pT. A fluxgate instrument will provide the 3 magnetic field components and a new type of an optically pumped magnetometer [see Pollinger, 2010] will measure the magnitude of the ambient magnetic field. The satellite will operate in a Sun synchronous polar orbit at an altitude of about 500 km and with an inclination of 97°. We present a model of magnetic field fluctuations in the upper ionosphere based on previous satellite observations and on a model of the lithospheric-atmospheric-ionospheric coupling. Pollinger et al., CDSM-a new scalar magnetometer, EGU General Assembly 2010
Solid Test Meal to Measure the Gastric Emptying with Magnetogastrography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynaga-Ornelas, M. G.; Roca-Chiapas, J. M. de ls; Cordova-Fraga, T.
2008-08-11
The gastric emptying is the time of evacuating the food ingested from the stomach to the duodenum in a controlled rate. Diverse studies express the results of the gastric emptying in form of half-time (t{sub 1/2}). The Magnetogastrography (MGG) is a biomagnetic technique that has the advantage of not being invasive, radiation free and does not interfere with the privacy of the subject. The objective was to analyze the magnetic signal of magnetic tracers mixed in a solid food to measure gastric emptying using Magnetogastrography. The ingested test meal displayed a magnetic signal, which served to obtain the signal registeredmore » by the fluxgate and the peristaltic contractions could be calculated while the stomach was emptying. The solid food product developed results to work satisfactorily in magnetogastrography.« less
The International Plate Boundary Observatory Chile (IPOC) in the northern Chile seismic gap
NASA Astrophysics Data System (ADS)
Schurr, B.; Asch, A.; Sodoudi, F.; Manzanares, A.; Ritter, O.; Klotz, J.; Chong-Diaz, G.; Barrientos, S.; Villotte, J.-P.; Oncken, O.
2009-04-01
Fast convergence between the oceanic Nazca and the continental South American plate is accommodated by recurrent rupture of large segments of the two plates' interface. The resulting earthquakes are among the largest and, for their sizes, most frequent on Earth. Along the Chilean and southern Peruvian margin, all segments have ruptured at least once in the past 150 years for which there exist historic and/or instrumental records. The one segment that is most mature for re-rupture stretches for more than 500 km along the northernmost Chilean coast between roughly -23° and -18° latitude. It last broke in 1877 in a magnitude ~8.8 earthquake, triggering a major Tsunami. From the historical record, it has been known to have a recurrence cycle of approximately 110 years. The adjoining segments to the north and south broke rather recently in 1995 and 2001 in M>8 earthquakes and an M 7.7 earthquake encroached the southern part of the gap in 2007. The IPOC project intends to investigate this segment of the Nazca-South American plate boundary, on which a strong to devastating earthquake is expected to occur within the next years, by monitoring at a variety of time-scales deformation, seismicity, and magnetotelluric fields in the subduction zone at the closing stages of the interseismic cycle before and possibly during occurrence of a big earthquake. For that purpose, installation of long-term observatories in Northern Chile started in 2006 in a close cooperation of the Universidad de Chile (Santiago, Chile), the Universidad Catolica del Norte (Antofagasta, Chile), the Institut de Physique du Globe de Paris (Paris, France), and the German Research Centre for Geosciences (GFZ, Potsdam, Germany). Currently we are operating 14 modern seismological stations equipped with STS-2 broadband seismometers and accelerometers (EPI sensor). At least two more stations will be installed in the near future. To cope with the high resolution and dynamic of the sensors and data acquisition, site installation was accomplished with special care. At each station a cavern was blasted into the bedrock up to 5 meters deep to ensure stable conditions for measurements. Currently five stations are additionally recording continuously GPS signals, another five are also recording meteorological data, and another seven are equipped with Magneto-Telluric (MT) probes (fluxgate magnetometers and electrode lines). It is planned to extend the multi-parameter observation to as many stations as possible. So far ten of the stations are sending continuous data via satellite links (VSAT) to the GEOFON data host at the GFZ. We will be reporting first results on seismicity, transient deformation and MT from the first two years of recording.
The magnetic field of saturn: pioneer 11 observations.
Acuña, M H; Ness, N F
1980-01-25
The intrinsic magnetic field of Saturn measured by the high-field fluxgate magnetometer is much weaker than expected. An analysis of preliminary data combined with the preliminary trajectory yield a model for the main planetary field which is a simple centered dipole of moment 0.20 +/- 0.01 gauss-Rs(3) = 4.3 +/- 0.2 x 10(28) gauss-cm(3) (1 Rs = 1 Saturn radius = 60,000 km). The polarity is opposite that of Earth, and, surprisingly, the tilt is small, within 2 degrees +/- 1 degrees of the rotation axis. The equatorial field intensity at the cloud tops is 0.2 gauss, and the polar intensity is 0.56 gauss. The unique moon Titan is expected to be located within the magnetosheath of Saturn or the interplanetary medium about 50 percent of the time because the average subsolar point distance to the magnetosphere is estimated to be 20 Rs, the orbital distance to Titan.
Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel
NASA Astrophysics Data System (ADS)
Bao, Sheng; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan
2017-02-01
The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect.
Biomagnetic techniques for evaluating gastric emptying, peristaltic contraction and transit time
la Roca-Chiapas, Jose María De; Cordova-Fraga, Teodoro
2011-01-01
Biomagnetic techniques were used to measure motility in various parts of the gastrointestinal (GI) tract, particularly a new technique for detecting magnetic markers and tracers. A coil was used to enhance the signal from a magnetic tracer in the GI tract and the signal was detected using a fluxgate magnetometer or a magnetoresistor in an unshielded room. Estimates of esophageal transit time were affected by the position of the subject. The reproducibility of estimates derived using the new biomagnetic technique was greater than 85% and it yielded estimates similar to those obtained using scintigraphy. This technique is suitable for studying the effect of emotional state on GI physiology and for measuring GI transit time. The biomagnetic technique can be used to evaluate digesta transit time in the esophagus, stomach and colon, peristaltic frequency and gastric emptying and is easy to use in the hospital setting. PMID:22025978
Outbursts and diamagnetic cavities in comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Voelzke, M. R.
2018-03-01
On 2014 August 06 the Rosetta spacecraft arrived at comet 67P/Churyumov-Gerasimenko. Since then, the spacecraft accompanied the comet on its journey around the Sun (Glassmeier et al. 2007), until the end of the mission on 2016 September 30. This work tries to understand the possible connections between the 665 reported diamagnetic regions (Goetz et al. 2016), detected from April 2015 to February 2016 around the comet 67P/Churyumov-Gerasimenko, with the fluxgate magnetometer of the Rosetta Plasma Consortium (RPC-MAG), when the heliocentric distance of the comet from the sun varied from 1.8 to 2.4 AU and the 34 reported outbursts (Vincent et al. 2016), detected from July to September 2015, with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras, when the ESA's Rosetta spacecraft changed the cometocentric distance from 155 to 817 km.
Biomagnetic techniques for evaluating gastric emptying, peristaltic contraction and transit time.
la Roca-Chiapas, Jose María De; Cordova-Fraga, Teodoro
2011-10-15
Biomagnetic techniques were used to measure motility in various parts of the gastrointestinal (GI) tract, particularly a new technique for detecting magnetic markers and tracers. A coil was used to enhance the signal from a magnetic tracer in the GI tract and the signal was detected using a fluxgate magnetometer or a magnetoresistor in an unshielded room. Estimates of esophageal transit time were affected by the position of the subject. The reproducibility of estimates derived using the new biomagnetic technique was greater than 85% and it yielded estimates similar to those obtained using scintigraphy. This technique is suitable for studying the effect of emotional state on GI physiology and for measuring GI transit time. The biomagnetic technique can be used to evaluate digesta transit time in the esophagus, stomach and colon, peristaltic frequency and gastric emptying and is easy to use in the hospital setting.
Geophysical survey of two rural sites in Mallorca (Balearic Islands, Spain): Unveiling Roman villae
NASA Astrophysics Data System (ADS)
Mas Florit, Catalina; Cau Ontiveros, Miguel Ángel; Goossens, Lise; Meyer, Cornelius; Sala, Roger; Ortiz, Helena
2018-03-01
Two rural sites on the island of Mallorca (Balearic Islands, Spain) have been investigated with geophysical methods. A previous archaeological field survey provided surface ceramics that allowed for a first classification of the sites as possible Roman rural settlements, possibly villae. The objective of the investigation was to work towards the identification of architectural remains to better understand the true nature of the sites. Using the 7-probe fluxgate gradiometer array LEA MAX, magnetic measurements were executed on a large area on each site. GPR measurements were subsequently carried out to examine selected areas of interest in detail by means of the IDS GPR system based on the Fast-Wave module. The investigated areas demonstrated excellent surface conditions with a negligible number of sources of disturbance, permitting a detailed interpretation of the geophysical data. The results helped to reveal the presence of architectural remains beneath the soil at both sites.
Zietz, Isidore; Henderson, Roland G.
1949-01-01
The eight attached maps were constructed from data taken on Project Volcano in the summer of 1947. The project was sponsored by the Office of Naval Research and conducted by the U.S. Geological Survey in cooperation with the Naval Ordnance Laboratory. Field work was done by Fred Keller, Jr., and J. L. Meuschke, Geophysicists of the U.S. Geological Survey, and by L. R. Alldredge, Physicist of the Naval Ordnance Laboratory. The instrument used was a modified AN/ASQ-3A flux-gate type total field magnetometer mounted in the tailcone of a PBY-5A aircraft. It is hoped that observation of the magnetic fields over volcanic areas over a period of years, may lead to prognostication of volcanic activity. These maps represent the results of the first of such surveys.
Deriving a Core Magnetic Field Model from Swarm Satellite Data
NASA Astrophysics Data System (ADS)
Lesur, V.; Rother, M.; Wardinski, I.
2014-12-01
A model of the Earth's core magnetic field has been built using Swarm satellite mission data and observatory quasi-definitive data. The satellite data processing scheme, which was used to derive previous satellite field models (i.e. GRIMM series), has been modified to handle discrepancies between the satellite total intensity data derived from the vector fluxgate magnetometer and the absolute scalar instrument. Further, the Euler angles, i.e. the angles between the vector magnetometer and the satellite reference frame, have been recalculated on a series of 30-day windows to obtain an accurate model of the core field for 2014. Preliminary derivations of core magnetic field and SV models for 2014 present the same characteristics as during the CHAMP era. The acceleration (i.e. the field second time derivative) has shown a rapid evolution over the last few years, and is present in the current model, which confirms previous observations.
Heim, E; Harling, S; Ludwig, F; Menzel, H; Schilling, M
2008-05-21
Hydrogels have the potential for providing drug delivery systems with long release rates. The polymerization kinetics and the physical entrapment capacity of photo-cross-linked hydroxyethyl methacrylate hydroxyethylstarch hydrogels are investigated with a non-destructive method. For this purpose, superparamagnetic nanoparticles as replacements for biomolecules are used as probes. By analyzing their magnetic relaxation behavior, the amounts of physically entrapped and mobile nanoparticles can be determined. The hydrogels were loaded with five different concentrations of nanoparticles. Different methods of analysis of the relaxation curves and the influence of the microviscosity are discussed. This investigation allows one to optimize the UV light irradiation time and to determine the amount of physically entrapped nanoparticles in the hydrogel network. It was found that the polymerization kinetics is faster for decreasing nanoparticle concentration but not all nanoparticles can be physically entrapped in the network.
NASA Astrophysics Data System (ADS)
Schultz, A.; Urquhart, S.; Slater, M.
2010-12-01
At present, the US academic community has access to two national electromagnetic (EM) instrument pools that support long-period magnetotelluric (MT) equipment suitable for crust-mantle scale studies. The requirements of near surface geophysics, hydrology, glaciology, as well as the full range of crust and mantle investigations require development of new capabilities in data acquisition with broader frequency bandwidth than these existing units, increased instrument numbers, and concomitant developments in 3D/4D data interpretation. NSF Major Research Instrumentation support has been obtained to meet these requirements by developing an initial set of next-generation instruments as a National Geoelectromagnetic Facility (NGF), available to all PIs on a cost recovery basis, and operated by Oregon State University (OSU). In contrast to existing instruments with data acquisition systems specialized to operate within specific frequency bands and for specific electromagnetic methods, the NGF model "Zen/5" instruments being co-developed by OSU and Zonge Research and Engineering Organization are based on modular receivers with a flexible number of digital and analog input channels, designed to acquire EM data at dc, and from frequencies ranging from micro-Hz to MHz. These systems can be deployed in a compact, low power configuration for extended deployments (e.g. for crust-mantle scale experiments), or in a high frequency sampling mode for near surface work. The NGF is also acquiring controlled source EM transmitters, so that investigators may carry out magnetotelluric, audio-MT, radiofrequency-MT, as well as time-domain/transient EM and DC resistivity studies. The instruments are designed to simultaneously accommodate multiple electric field dipole sensors, magnetic fluxgates and induction coil sensors. Sample rates as high as 2.5 MHz with resolution between 24 and 32 bits, depending on sample rate, are specified to allow for high fidelity recording of waveforms. The NGF is accepting instrument use requests from investigators planning electromagnetic surveys via webform submission on its web site ngf.coas.oregonstate.edu. The site is also a port of entry to request access to the 46 long period magnetotelluric instruments also operated by OSU as national instrument pools. Cyberinfrastructure support is available to investigators, including field computers, EM data processing software, and access to a hybrid CPU-GPU parallel computing environment, currently configured with dual Intel Westmere hexacore CPUs and 960 NVidia Tesla and 1792 Nvidia Fermi GPU cores. The capabilities of the Zen/5 receivers will be presented, with examples of data acquired from a recent shallow water marine controlled source experiment conducted in coastal Oregon as part of an effort to locate a buried submarine pipeline, using a 1.1 KW 256 Hz signal source imposed on the pipeline from shore. A Zen/5 prototype instrument, modified for marine use through support by the Oregon Wave Energy Trust, demonstrated the marine capabilities of the NGF instrument design.
Gastric activity studies using a magnetic tracer.
Cordova-Fraga, T; Bernal-Alvarado, J J; Gutierrez-Juarez, G; Sosa, M; Vargas-Luna, M
2004-10-01
A magnetic pulse generator has been set up in order to study gastric activity. Two coils 1.05 m in diameter, arranged in a Helmholtz configuration, were used. The system generated magnetic field pulses higher than 15 mT, of duration 17.3+/-1.2 ms. Measurements were performed in 11 male volunteers, with average age 29.3+/-6.4 years and body mass index 26.0+/-4.8 kg m(-2). Magnetite (Fe3O4) particles with diameters from 75 to 125 microm were used as magnetic tracers, which were mixed in 250 ml of yogurt in concentrations from 2 to 5 g. Signals were registered by using a high speed 3 axis fluxgate digital magnetometer and processed to determine the relaxation of the magnetic tracers by fitting a first-order exponential function to the data, a mean relaxation constant K = 116+/-40 s(-1) was obtained. Also, an average gastric peristaltic frequency was measured; a value of 3.2+/-0.3 cpm was determined.
The Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.
1984-01-01
Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.
The latitudinal structure of Pc 5 waves in space - Magnetic and electric field observations
NASA Technical Reports Server (NTRS)
Singer, H. J.; Kivelson, M. G.
1979-01-01
The occurrence frequency and spatial structure of Pc 5 magnetic pulsations in the dawnside of the plasma trough have been studied using data from the Ogo 5 satellite. The wave magnetic fields were obtained from the University of California, Los Angeles, flux-gate magnetometer measurements, and one component of the wave electric field was inferred from oscillations of the ion flux measured by the Lockheed light ion mass spectrometer. During portions of seven of the 19 passes comprising the survey, Pc 5 oscillations were observed in the ion flux but not in the magnetic field, and in each case the satellite was within 10 deg of the geomagnetic equator. Above 10 deg latitude, transverse magnetic and electric oscillations were both observed. The results are consistent with the model of a standing Alfven wave along a resonant field line with the geomagnetic equator as a node of the magnetic perturbation, that is, an odd mode.
NASA Astrophysics Data System (ADS)
Alken, P.; Olsen, N.; Finlay, C. C.; Chulliat, A.
2017-12-01
In order to investigate the spatial structure and development of rapid (sub-decadal) changes in the geomagnetic core field, including its secular variation and acceleration, global magnetic measurements from space play a crucial role. With the end of the CHAMP mission in September 2010, there has been a gap in high-quality satellite magnetic field measurements until the Swarm mission was launched in November 2013. Geomagnetic main field models during this period have relied on the global ground observatory network which, due to its sparse spatial configuration, has difficulty in resolving secular variation and acceleration at higher spherical harmonic degrees. In this presentation we will show new results in building main field models during this "gap period", based on vector magnetic measurements from four Defense Meteorological Satellite Program (DMSP) satellites. While the fluxgate instruments onboard DMSP were not designed for high-quality core field modeling, we find that the DMSP dataset can provide valuable information on secular variation and acceleration during the gap period.
THOR Fields and Wave Processor - FWP
NASA Astrophysics Data System (ADS)
Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud
2017-04-01
If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the particle instrument data processing unit (PPU) via a dedicated digital link. This information will help particle instruments to optimize energy and angular sweeps and calculate on-board moments. FWP will also coordinate the acquisition of high resolution waveform snapshots with very high time resolution electron data from the TEA instrument. This combined wave/particle measurement will provide the ultimate dataset for investigation of wave-particle interactions on electron scales. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.
NASA Astrophysics Data System (ADS)
Hercik, David; Auster, Hans-Ulrich; Heinisch, Philip; Richter, Ingo; Glassmeier, Karl-Heinz
2015-04-01
Minor bodies in the solar system, such as asteroids and comets, are important sources of information for our knowledge of the solar system formation. Besides other aspects, estimation of a magnetization state of such bodies might prove important in understanding the early aggregation phases of the protoplanetary disk, showing the level of importance of the magnetic forces in the processes involved. Meteorites' magnetization measurements suggest that primitive bodies consist of magnetized material. However, space observations from various flybys give to date diverse results for a global magnetization estimation. The flybys at Braille and Gaspra indicate possible higher magnetization (~ 10-3 Am2/kg), while flybys at Steins and Lutetia show no significant values in the global field change illustrating low global magnetization. Furthermore, the interpretation of remote (during flybys) measurements is very difficult. For correct estimates on the local magnetization one needs (in the best case) multi-point surface measurements. Single point observation has been done by NEAR-Shoemaker on 433 Eros asteroid, revealing no signature in magnetic field that could have origin in asteroid magnetization. Similar results, no magnetization observed, have been provided by evaluation of recent data from ROMAP (Philae lander) and RPC-MAG (Rosetta orbiter) instruments from comet 67P/Churyumov-Gerasimenko. The ROMAP instrument provided measurements from multiple points of the cometary surface as well as data along ballistic path between multiple touchdowns, which support the conclusion of no global magnetization. However, even in case of the in-situ on surface observations the magnetization estimate has a limiting spatial resolution that is dependent on the distance from the surface (~ 50 cm in case of ROMAP). To get information about possible smaller magnetized grains distribution and magnetization strength, the sensor shall be placed as close as possible to the surface. For such observations the next ideal candidate mission is Hayabusa-II with its Mascot lander equipped with fluxgate magnetometer. The small-sized lander shall deliver the magnetometer within centimeters from the surface, providing measurements on multiple points thanks to a hopping ability. The mission has been recently launched (December 2014) and is aiming to a C-type asteroid 1999 JU3 to reach it in 2018. The results will hopefully add some piece of information to the still unclear question of minor solar system bodies magnetization.
netPICOMAG: a low-cost turn-key magnetometer for aurora detection
NASA Astrophysics Data System (ADS)
Schofield, I.; Connors, M.
2008-12-01
Previous work on development of a compact, low-cost, fluxgate magnetometer, dubbed PICOMAG, yielded a 1-nanotesla resolution, 1-second cadence instrument, suitable for research or teaching solar/terrestrial physics. With a low-cost magnetic instrument and the wider availability of Internet connectivity in the auroral zone (of Canada for example), the potential exists to fill gaps in spatial coverage that still plague auroral geomagnetic research. Thus, the ability to widely distribute accurate, low cost magnetometers was the motivating factor to develop PICOMAG. NetPICOMAG was developed in the effort to refine PICOMAG into a turn-key magnetometer data collection system that is self contained, simple to install and requires zero-maintenance. Once the unit is placed in the ground and connected to the Internet, it locks onto a GPS time signal and begins to transmit magnetic field measurements back to a central data repository, where it is archived, processed and plotted for public viewing via the World Wide Web. It is envisaged (among many other uses) that science teachers can use real scientific data provided by netPICOMAG in teaching the interactions between the sun and the Earth's magnetic field, manifesting itself in the phenomenon known as the northern lights. As such, netPICOMAG can be aptly described and is being promoted as an aurora detector. The netPICOMAG unit is based around three spatially oriented Speake and Company FGM-3/3h series magnetic field sensors that each emit a pulse stream whose frequency is related to the magnetic field along these three axes, and is nearly linearly related to magnetic field perturbations relevant to auroral studies. The individual pulse frequencies are measured by two PIC18F252 programmable microcontrollers. The measurements are combined with a GPS timestamp from a Garmin GPS 18 LVC GPS receiver, and transmitted as plain text as UDP datagrams by a Rabbit Semiconductor RCM4010 8-bit, networked microcontroller module. The self-contained magnetometer unit is encased in a weatherproof 4-inch diameter 3-foot long ABS pipe. It receives power and network over a category 5e cable using a Power-over-Ethernet transmitter/receiver units, permitting it to be stationed as far as 300 feet away from a network access port.
Artificial Aurora Generated by HAARP (Invited)
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Kendall, E. A.
2013-12-01
We present results from the ionospheric heating experiment conducted on March 12, 2013 at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. During the experiment HAARP transmitted X-mode 4.57 MHz waves modulated with the frequency 0.9 mHz and pointed in the direction of the magnetic zenith. The beam was focused to ~20 km spot at the altitude 100 km. The heating produces two effects: First, it generates magnetic field-aligned currents producing D and H components of the magnetic field with frequency 0.9 mHz detected by fluxgate magnetometer in Gakona. Second, the heating produced bright luminous structures in the heated region detected with the SRI telescope in 427.8 nm, 557.7 nm, 630.0 nm wavelengths. We emphasize, that for the best of our knowledge, this is the first experiment where the heating of the ionosphere with X-mode produces luminous structures in the ionosphere. We classify this luminosity as an 'artificial aurora', because it correlate with the intensity of the magnetic field-aligned currents, and such correlation is constantly seen in the natural aurora.
NASA Astrophysics Data System (ADS)
Marsal, Santiago; José Curto, Juan; Torta, Joan Miquel; Gonsette, Alexandre; Favà, Vicent; Rasson, Jean; Ibañez, Miquel; Cid, Òscar
2017-07-01
The DI-flux, consisting of a fluxgate magnetometer coupled with a theodolite, is used for the absolute manual measurement of the magnetic field angles in most ground-based observatories worldwide. Commercial solutions for an automated DI-flux have recently been developed by the Royal Meteorological Institute of Belgium (RMI), and are practically restricted to the AutoDIF and its variant, the GyroDIF. In this article, we analyze the pros and cons of both instruments in terms of its suitability for installation at the partially manned geomagnetic observatory of Livingston Island (LIV), Antarctica. We conclude that the GyroDIF, even if it is less accurate and more power demanding, is more suitable than the AutoDIF for harsh conditions due to the simpler infrastructure that is necessary. Power constraints in the Spanish Antarctic Station Juan Carlos I (ASJI) during the unmanned season require an energy-efficient design of the thermally regulated box housing the instrument as well as thorough power management. Our experiences can benefit the geomagnetic community, which often faces similar challenges.
The Z3 model of Saturn's magnetic field and the Pioneer 11 vector helium magnetometer observations
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.
1984-01-01
Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1 percent) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.
First electric field measurements from the plasma environment of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Karlsson, Tomas; Eriksson, Anders; Odelstad, Elias; André, Mats; Dickeli, Guillaume; Kullen, Anita; Lindqvist, Per-Arne
2017-04-01
We present the first electric field measurements from the plasma environment of comet 67P/Churyumov-Gerasimenko, performed by the Rosetta dual Langmuir probe instrument LAP. For two time intervals, measurements of the electric field from cometocentric distances of 149 and 348 km are presented together with estimates of the spacecraft potential, which can be used as an indicator of plasma density changes. Persistent wave activity around the local water ion lower hybrid frequency (determined from the magnetic field measurements from the fluxgate magnetometer MAG) is observed. The largest amplitudes are observed at sharp plasma gradients. We discuss the probability that these waves are excited by the lower hybrid drift instability (LHDI), and conclude that the necessary requirements for the LHDI to be operating are fulfilled. We also present first statistical results of the electric field measurements, showing that the wave activity is concentrated to certain regions of the comet, and varies with heliocentric distance. We also discuss the possible effects the waves have on the ambient plasma, and suggest that they may explain hot plasma populations.
NASA Astrophysics Data System (ADS)
Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.
2014-06-01
We present the development considerations and design for ground based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space weather related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as dual-frequency gps receiver and an HF radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.
NASA Astrophysics Data System (ADS)
Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.
2014-10-01
We present the development considerations and design for ground-based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space-weather-related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as a dual-frequency GPS receiver and a high-frequency (HF) radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.
The solar polar radio telescope mission: an overview
NASA Astrophysics Data System (ADS)
Sun, Weiying; Zhang, Cheng; Zheng, Jianhua; Wu, Ji; Wang, C. B.; Wang, Chi; Wang, S.
: The solar polar orbit telescope (SPORT) is a mission proposed for the observation of ICMEs. The main payload is a synthetic aperture radiometer working at meter wave band taking images of the high density interplanetary plasma clouds formed by ICMEs and follows the propagation if it from the surface of the Sun all the way to as far as 0.5 AU or even further. With such a capability of observation, also the SPORT will study transient high energy phenomenon, the magnetic topology, temperature and density as well as velocity of the solar wind in the inner interplanetary heliosphere. In the practical part, the mission is also very useful for space weather forecast in advance of the geo-storm events. Other instruments are also selected to be on board of the solar polar orbit mission for in-situ measurement, such as fluxgate magnetometer, solar wind ion detector and high energy particle detectors. In this paper, we describe the scientific objective, basic principles and feasibility of the interferometric radiometer, general mission design and the status of the SPORT mission.
Observations of Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Koval, A.; Szabo, Adam; Breneman, A.; Cattell, C. A.; Goetz, K.; Kellogg, P. J.; Kersten, K.; Kasper, J. C.; Maruca, B. A.;
2012-01-01
We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. They have rest frame frequencies f(sub ci) < f much < f(sub ce) and wave numbers 0.02 approx < k rho (sub ce) approx <. 5.0. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves. Al though the precursors can have delta B/B(sub o) as large as 2, fluxgate magnetometer measurements show relatively laminar shock transitions in three of the four events.
NASA Astrophysics Data System (ADS)
Espley, J. R.; Folta, D.
2017-12-01
Recent advances in propulsion technology and interplanetary navigation theoretically allow very small spacecraft to travel directly to planetary destinations from near-Earth-space. Because there are currently many launches with excess mass capability (NASA, military, and even commercial), we anticipate a dramatic increase in the number of opportunities for missions to planetary targets. Spacecraft as small as 12U CubeSats can use solar electric propulsion to travel from Earth-orbit to Mars-orbit in approximately 2-3 years. Space physics missions are particularly well suited for such mission architectures since state-of-the-art instrumentation to answer fundamental science questions can be accommodated in relatively small payload packages. For example, multi-point measurements of the martian magnetosphere, ionosphere, and crustal magnetic fields would yield important new science results regarding atmospheric escape and the geophysical history of the martian surface. These measurements could be accomplished by a pair of 12U CubeSats with world-class instruments that require only modest mass, power, and telemetry resources (e.g. Goddard's mini-fluxgate vector magnetometer).
NASA Astrophysics Data System (ADS)
Cash, M. D.; Biesecker, D. A.; Reinard, A. A.
2013-05-01
The Deep Space Climate Observatory (DSCOVR) mission, which is scheduled for launch in late 2014, will provide real-time solar wind thermal plasma and magnetic measurements to ensure continuous monitoring for space weather forecasting. DSCOVR will be located at the L1 Lagrangian point and will include a Faraday cup to measure the proton and alpha components of the solar wind and a triaxial fluxgate magnetometer to measure the magnetic field in three dimensions. The real-time data provided by DSCOVR will be used to generate space weather applications and products that have been demonstrated to be highly accurate and provide actionable information for customers. We present several future space weather products currently under evaluation for development. New potential space weather products for use with DSCOVR real-time data include: automated shock detection, more accurate L1 to Earth delay time, automatic solar wind regime identification, and prediction of rotations in solar wind Bz within magnetic clouds. Additional ideas from the community on future space weather products are encouraged.
Space Technology 5 Multi-point Measurements of Near-Earth Magnetic Fields: Initial Results
NASA Technical Reports Server (NTRS)
Slavin, James A.; Le, G.; Strangeway, R. L.; Wang, Y.; Boardsen, S.A.; Moldwin, M. B.; Spence, H. E.
2007-01-01
The Space Technology 5 (ST-5) mission successfully placed three micro-satellites in a 300 x 4500 km dawn-dusk orbit on 22 March 2006. Each spacecraft carried a boom-mounted vector fluxgate magnetometer that returned highly sensitive and accurate measurements of the geomagnetic field. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of approximately 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness and current density. In doing so, we demonstrate two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit; 1) the "standard method," based upon s/c velocity, but corrected for FAC current sheet motion, and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data set and expand to include geomagnetic field gradient analyses as well as field-aligned and ionospheric currents.
Requirements for a multi-scale, ultra wide-band National Geoelectromagnetic Facility (Invited)
NASA Astrophysics Data System (ADS)
Schultz, A.
2009-12-01
Advances in data acquisition technology and modeling make it possible to image the electrical properties of the near surface, crust and mantle in 3D. A generation of investigators is emerging whose research depends on application of complementary methods including magnetotelluric (MT) [micro-Hz to kHz sampling frequencies], natural audio (AMT) and controlled source and radio-frequency magnetotellurics (CSAMT, RFMT) [1 Hz-300 kHz], time-domain (TDEM) EM, as well as DC resistivity, induced polarization and ground-penetrating radar. Different process studies involve different depths and spatial scales, requiring target illumination by signals of different frequency content, and application of one or more of the methods above. Current practice often assumes that near surface and deeper crustal imaging problems can be decoupled by treating shallower heterogeneities in e.g. electrical conductivity structure as surface distortions that can be dealt with either through tensor stripping techniques or thin sheet modeling. Such methods are based on parametric models with implicit or explicit assumptions that may not in all cases be satisfied by the physics of the situation. Large-scale EM imaging programs such as EarthScope/USArray's magnetotelluric (MT) component seek to reconstruct the electrical conductivity structure of the US on the crustal-to-upper mantle scale. A variety of PI-led investigations seek to increase the resolving power of this effort through a combination of targeted, finer-spaced arrays, and by pushing into a higher frequency domain. As these efforts continue, great care has to be made in dealing with the impact of near surface heterogeneities. There is no national or regional scale set of near surface conductivity maps that one could use to strip near surface effects from deeper studies. National radio propagation/absorption maps were assembled by the FCC in the 1950's, and maps of ground-penetrating radar soil suitability provide a rough guide to surface conductance. Such information is insufficient to remove near surface effects for those imaging upper-to-mid crustal electrical properties. In order to obtain field measurements that can span near-surface through crust and upper mantle problems, an initiative to establish a multi-institutional National Geoelectromagnetic Facility has been proposed as part of a Virtual Institute for EM methods. An academic-industry partnership is designing a flexible, ultra wide-band system capable of being configured to obtain most of the data types indicated above. The system is specified to to provide between 100 dB - 130 dB dynamic range for sample rates from DC up to 2.5 MHz. A hybrid magnetic field sensor employing both induction coils and fluxgates, and a flexible arrangement of electric field sensors completes the specified receivers. The systems can be configured for sustained, low-power autonomous operation, or for higher power high frequency, active source operations. A series of controlled source transmitter systems is also specified. As financial support for the National Geoelectromagnetic Facility is being aligned, an organizational framework is being developed to permit efficient scheduling, data flow and archiving of resulting data sets. Education and outreach efforts are intrinsic to this, with close interactions with SAGE and other projects planned from the outset.
Modernisation of the Narod fluxgate electronics at Budkov Geomagnetic Observatory
NASA Astrophysics Data System (ADS)
Vlk, Michal
2013-04-01
From the signal point of view, fluxgate unit is a low-frequency parametric up-convertor where the output signal is picked up in bands near second harmonic of the pump frequency fp (sometimes called idler for historic reasons) and purity of idler is augmented by orthogonal construction of the pump and pick-up coil. In our concept, the pump source uses Heegner quartz oscillator near 8 MHz, synchronous divider to 16 kHz (fp) and switched current booster. Rectangular pulse is used for feeding the original ferroresonant pump source with neutralizing transformer in the case of symmetric shielded cabling. Input transformer has split primary winding for using symmetrical shielded input cabling and secondary winding tuned by polystyrol capacitor and loaded by inverting integrator bridged by capacitor. This structure behaves like resistor cooled to low temperature. Next stage is bandpass filter (derivator) with a gain tuned to 2 fp with leaky FDNRs followed by current booster. Another part of the system is low-noise peak elimination and bias circuit. Heart of the system is a 120-V precision source which uses 3.3-V Zener diode chain - thermistor bridge in the feedback. Peak elimination circuit logics consists of the envelope detector, comparators, asynchronous counter in hardwired logics, set of weighted resistor chains and discrete MOS switches in current-mode. All HV components use airy montage to prevent the ground-leak. After 200 m long coaxial line, the signal is galvanically separated by transformer and fed into A/D converter, which is ordinary HD audio (96 kHz) soundcard. Real sample rate is constructed by a-posteriori data processing when statistic properties of the incoming sample are known. The sampled signal is band-pass filtered with a 200-Hz filter centered at 2 fp. The signal is then fed through a first-order allpass centered at 2 fp. The result approximates Hilbert transform sufficiently good for detecting the envelope via square sum-root rule. The signal is further decimated via IIR filters to sample-rate 187.5 Hz. Raw instrument data files are saved hourly in floating-point binary files and are marked by time stamps obtained from NTP server. A-posteriory processing of (plesiochronous) instrument data consists of downsampling by IIRs to 12 Hz, irrational (time-mark driven) upsampling to 13 Hz and then using the INTERMAGNET standard FIR filter (5 sec to 1 min) to obtain 1-min data. Because the range of the signal processing system is about 60 nT (range of the peak elimination circuit is 3.8 uT), the resulting magnetograms look like the La Cour ones.
Automated observatory in Antarctica: real-time data transfer on constrained networks in practice
NASA Astrophysics Data System (ADS)
Bracke, Stephan; Gonsette, Alexandre; Rasson, Jean; Poncelet, Antoine; Hendrickx, Olivier
2017-08-01
In 2013 a project was started by the geophysical centre in Dourbes to install a fully automated magnetic observatory in Antarctica. This isolated place comes with specific requirements: unmanned station during 6 months, low temperatures with extreme values down to -50 °C, minimum power consumption and satellite bandwidth limited to 56 Kbit s-1. The ultimate aim is to transfer real-time magnetic data every second: vector data from a LEMI-25 vector magnetometer, absolute F measurements from a GEM Systems scalar proton magnetometer and absolute magnetic inclination-declination (DI) measurements (five times a day) with an automated DI-fluxgate magnetometer. Traditional file transfer protocols (for instance File Transfer Protocol (FTP), email, rsync) show severe limitations when it comes to real-time capability. After evaluation of pro and cons of the available real-time Internet of things (IoT) protocols and seismic software solutions, we chose to use Message Queuing Telemetry Transport (MQTT) and receive the 1 s data with a negligible latency cost and no loss of data. Each individual instrument sends the magnetic data immediately after capturing, and the data arrive approximately 300 ms after being sent, which corresponds with the normal satellite latency.
Significant initial results from the environmental measurements experiment on ATS-6
NASA Technical Reports Server (NTRS)
Fritz, T. A.; Arthur, C. W.; Blake, J. B.; Coleman, P. J., Jr.; Corrigan, J. P.; Cummings, W. D.; Deforest, S. E.; Erickson, K. N.; Konradi, A.; Lennartsson, W.
1977-01-01
The Applications Technology Satellite (ATS-6), launched into synchronous orbit on 30 May 1974, carried a set of six particle detectors and a triaxial fluxgate magnetometer. The particle detectors were able to determine the ion and electron distribution functions from 1 to greater than 10 to the 8th power eV. It was found that the magnetic field is weaker and more tilted than predicted by models which neglect internal plasma and that there is a seasonal dependence to the magnitude and tilt. ATS-6 magnetic field measurements showed the effects of field-aligned currents associated with substorms, and large fluxes of field-aligned particles were observed with the particle detectors. Encounters with the plasmasphere revealed the existence of warm plasma with temperatures up to 30 eV. A variety of correlated waves in both the particles and fields were observed: pulsation continuous oscillations, seen predominantly in the plasmasphere bulge; ultralow frequency (ULF) standing waves; ring current proton ULF waves; and low frequency waves that modulate the energetic electrons. In additon, large scale waves on the energetic-ion-trapping boundary were observed, and the intensity of energetic electrons was modulated in association with the passage of sector boundaries of the interplanetary magnetic field.
NASA Astrophysics Data System (ADS)
Phani Chandrasekhar, Nelapatla; Potharaju, Sai Vijay Kumar; Arora, Kusumita; Shakar Rao Kasuba, Chandra; Rakhlin, Leonid; Tymoshyn, Sergey; Merenyi, Laszlo; Chilukuri, Anusha; Bulusu, Jayashree; Khomutov, Sergey
2017-12-01
One second measurements of the geomagnetic field variations, which meet INTERMAGNET quality and transmission specifications, require very special conditions to be maintained at the observatories over sustained periods of time, which pose serious challenges for the operators, particularly when infrastructural and environmental conditions are far from ideal. This work presents the progressive steps, which led to the successful setup of such measurements at the new magnetic observatory of the Council of Scientific and Industrial Research (CSIR)-National Geophysical Research Institute (NGRI) in the Choutuppal (CPL) campus, Hyderabad (HYB), India. The 1 s magnetic measurements in trial mode commenced in 2015 using the newly developed observatory-grade 1 s fluxgate magnetometer, GEOMAG-02MO, from Research Centre GEOMAGNET (GM), Ukraine, and the Overhauser proton precession magnetometer, GSM-90F1, along with the data acquisition system, Magrec-4B from Mingeo, Hungary. Iterative tuning of the setup led to the generation of good quality data from 2016 onward. The processes of commissioning this setup in low-latitude conditions, with the aim of producing 1 s definitive data, and the characteristics of the data from this new instrument are presented here.
Minimizing Environmental Magnetic Field Sources for nEDM
NASA Astrophysics Data System (ADS)
Brinson, Alex; Filippone, Bradley; Slutsky, Simon; Osthelder, Charles
2017-09-01
Measurement of the neutron's Electric Dipole Moment (nEDM) could potentially explain the Baryon Asymmetry Problem, and would suggest plausible extensions to the Standard Model. We will attempt to detect the nEDM by measuring the electric-field-dependent neutron precession frequency, which is highly sensitive to magnetic field gradients. In order to produce fields with sufficiently low gradients for our experiment, we eliminate environmental effects by offsetting the ambient field with a Field Compensation System (FCS), then magnetically shielding the reduced field with a Mu-Metal cylinder. We discovered that the strongest environmental effect in our lab came from iron rebar embedded in the floor beneath the proposed experiment location. The large extent and strength of the floor's magnetization made the effect too large to offset with the FCS, forcing us to relocate our apparatus. The floor's magnetic field was mapped with a Hall probe in order to determine the most viable experiment locations. A 3-axis Fluxgate magnetometer was then used to determine the floor field's drop-off and shape at these locations, and a final apparatus position was determined which minimized the floor's effect such that it could be effectively offset and shielded by our experiment. Caltech SFP Office.
Geospace monitoring for space weather research and operation
NASA Astrophysics Data System (ADS)
Nagatsuma, Tsutomu
2017-10-01
Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.
Comparison of Ohm's Law Terms Using New High Resolution Fast Plasma Investigation Plasma Moments
NASA Astrophysics Data System (ADS)
Rager, A. C.; Dorelli, J.; Gershman, D. J.; Avanov, L. A.; Burch, J. L.; Ergun, R.; Giles, B. L.; Lavraud, B.; Moore, T. E.; Paterson, W. R.; Pollock, C.; Russell, C.; Saito, Y.; Sauvaud, J. A.; Schiff, C.; Strangeway, R. J.; Torbert, R. B.; Figueroa-Vinas, A.
2016-12-01
The Fast Plasma Investigation's Dual Spectrometers, DES and DIS, on the Magnetospheric Multiscale (MMS) mission measure all-sky images of charged particles every 30 and 150ms, respectively. The azimuthal resolution of each skymap results from biasing the electrostatic analyzers through four 11.25 degree deflection states. We present a technique of deconstructing the four deflection states of the FPI analyzers, allowing us to then reconstruct the phase space density with 4x faster, 7.5ms DES and 37.5ms DIS, time resolution at the expense of azimuthal resolution (in that only one fourth of the azimuths are covered). Nonetheless, we show that higher time resolution structure in the plasma moments is reliably recoverable. We validate the resulting 7.5ms DES velocities through the comparison of -vxB with the perpendicular electric field measured by the Electric Field Double Probe instrument and utilizing the Fluxgate Magnetometer instrument on MMS. Using this technique, we provide an unprecedented look at the terms in Ohm's law for several events, including the electron diffusion region event on 16 October, 2015 and a magnetopause crossing under northward interplanetary magnetic field on 25 November, 2015.
NASA Astrophysics Data System (ADS)
Hood, R.; Woodroffe, J. R.; Morley, S.; Aruliah, A. L.
2017-12-01
Using the CHAMP fluxgate magnetometer to calculate field-aligned current (FAC) densities and magnetic latitudes, with SuperMAG ground magnetometers analogously providing ground geomagnetic disturbances (GMD) magnetic perturbations and latitudes, we probe FAC locations and strengths as predictors of GMD locations and strengths. We also study the relationships between solar wind drivers and global magnetospheric activity, and both FACs and GMDs using IMF Bz and the Sym-H index. We present an event study of the 22-29 July 2004 storm time interval, which had particularly large GMDs given its storm intensity. We find no correlation between FAC and GMD magnitudes, perhaps due to CHAMP orbit limitations or ground magnetometer coverage. There is, however, a correlation between IMF Bz and nightside GMD magnitudes, supportive of their generation via tail reconnection. IMF Bz is also correlated with dayside FAC and GMD magnetic latitudes, indicating solar wind as an initial driver. The ring current influence increases during the final storm, with improved correlations between the Sym-H index and both FAC magnetic latitudes and GMD magnitudes. Sym-H index correlations may only be valid for higher intensity storms; a statistical analysis of many storms is needed to verify this.
NASA Astrophysics Data System (ADS)
Downey, W. S.
An archaeomagnetic directional study of Late Minoan archaeological materials, (burnt mud brick, a clay/ash horizon and hearth material), was carried out at locations within the archaeological complex at Malia, Crete. The study aimed to establish the suitability of materials for archaeomagnetic sampling and to obtain archaeomagnetic directions for comparison with other Late Minoan "fired" sites on Crete. Results from 42 oriented samples measured on a fluxgate spinner magnetometer from homogeneously distributed burnt mud brick (constituting low elevation, in situ, partition walls), gave precise values of ancient field directions for, Malia Palace (area 13) and Maison äα. These directions are statistically identical (at a 95% confidence level) and also identical to directions obtained from other Late Minoan archaeological sites, on Crete. This, may suggest, simultaneous 'fire-involved' destruction. Other archaeomagnetic directions obtained from Malia (Quartier ɛ), from a 'clay/ash' horizon (34 samples) and hearth (19 samples), produced some spurious results, with detrimental consequences for directional accuracy. For the burnt mud brick, small viscous components were easily removed and evidence from coercivity spectra obtained, after step-wise alternating field demagnetizations, suggests that, the magnetic carriers are single domain, (low titanium), titanomagnetite.
PEGASO: An ultra light long duration stratospheric payload for polar regions flights
NASA Astrophysics Data System (ADS)
Iarocci, A.; Benedetti, P.; Caprara, F.; Cardillo, A.; di Felice, F.; di Stefano, G.; Drakøy, P.; Ibba, R.; Mari, M.; Masi, S.; Musso, I.; Palangio, P.; Peterzen, S.; Romeo, G.; Spinelli, G.; Spoto, D.; Urbini, G.
2008-11-01
Stratospheric balloons are powerful and affordable tools for a wide spectrum of scientific investigations that are carried out at the stratosphere level. They are less expensive compared to satellite projects and have the capability to lift payloads from a few kilograms to a couple of tons or more, well above the troposphere, for more than a month. Another interesting feature of these balloons, which is not viable in satellites, is the short turnaround time, which enables frequent flights. We introduce the PEGASO (Polar Explorer for Geomagnetism And other Scientific Observations) project, a stratospheric payload designed and developed by the INGV (Istituto Nazionale di Geofisica e Vulcanologia), Rome and La Sapienza University, Rome. The project was sponsored by the PNRA (Progetto Nazionale di Ricerche in Antartide), Italy (Peterzen et al., 2003). This light payload (10 kg) was used by the Italian Space Agency (ASI) and Andoya Rocket Range (ARR) for five different scientific missions. PEGASO carries a 3-component flux-gate magnetometer, uses a solar cell array as the power source and has a GPS location system. The bi-directional telemetry system for data transfer and the remote control system were IRIDIUM based.
Cusp-related Pc3-5 Wave Activity
NASA Astrophysics Data System (ADS)
Pilipenko, V.; Engebretson, M. J.; Kozlovsky, A.; Belakhovsky, V.; Lessard, M.; Yeoman, T. K.
2009-12-01
Pc3-5 pulsations were found to be an ubiquitous element of dayside ULF wave activity at the cusp region. We examine observations of Pc3-5 wave activity by search coil and flux-gate magnetometers at three locations on Svalbard, covering geomagnetic latitudes 74o-76o. To identify the ionospheric projections of the cusp, we use the width of the return signal from the SuperDARN Finland radar covering the Svalbard archipelago. The ULF meridional spatial structure is examined using the amplitude-phase gradient technique. This analysis shows no specific mode conversion pattern near the cusp region. The amplitude gradient mainly has the same direction at all frequencies, and only during periods when the cusp is shifted to very high latitudes, the gradient may change sign. The phase delay is chaotic and does not show any consistent pattern. This behavior corresponds to the occurrence of a localized peak in the latitudinal distribution of Pc3-5 power, but not under the cusp proper as was previously thought, but about several degrees southward from the equatorward cusp boundary. We suppose that compressional Pc3 fluctuations leaking from the magnetosheath into the entry layer of the magnetosphere can modulate the precipitating electron fluxes, which produce the ground response.
The DSCOVR Solar Wind Mission and Future Space Weather Products
NASA Astrophysics Data System (ADS)
Cash, M. D.; Biesecker, D. A.; Reinard, A. A.
2012-12-01
The Deep Space Climate Observatory (DSCOVR) mission, scheduled for launch in mid-2014, will provide real-time solar wind thermal plasma and magnetic measurements to ensure continuous monitoring for space weather forecasting. DSCOVR will orbit L1 and will serve as a follow-on mission to NASA's Advanced Composition Explorer (ACE), which was launched in 1997. DSCOVR will have a total of six instruments, two of which will provide real-time data necessary for space weather forecasting: a Faraday cup to measure the proton and alpha components of the solar wind, and a triaxial fluxgate magnetometer to measure the magnetic field in three dimensions. Real-time data provided by DSCOVR will include Vx, Vy, Vz, n, T, Bx, By, and Bz. Such real-time L1 data is used in generating space weather applications and products that have been demonstrated to be highly accurate and provide actionable information for customers. We evaluate current space weather products driven by ACE and discuss future products under development for DSCOVR. New space weather products under consideration include: automated shock detection, more accurate L1 to Earth delay time, and prediction of rotations in solar wind Bz within magnetic clouds. Suggestions from the community on product ideas are welcome.
NASA Astrophysics Data System (ADS)
Lesur, V.; Gebler, A.; Schachtschneider, R.
2012-12-01
In June 2012 the GEOHALO mission was flown over Italy using the high altitude and long-range German research aircraft HALO (Gulfstream jet - G550). One goal of the mission was to demonstrate the feasibility of using geodetic and geophysical instrumentation on such fast flying aircraft. Several types of data were acquired including gravity, GNSS signals (reflectometry, spectrometry and occultation), laser altimetry and magnetic data. The magnetic data were collected through two independent acquisition chains placed inside under-wing containers. Each chain included a total intensity cesium magnetometer, a three-component fluxgate magnetometer, several temperature censors and a digitizer. Magnetic and temperature data were collected at a 10 Hz sampling rate. Seven parallel profiles, each around 1000 km long, were flown over the Apennine peninsula from north-west to south-east. The flight altitude was about 3500 m and the survey line spacing around 40 km. These long profiles were complemented by four crossing profiles, and a repeated flight line at a higher altitude (approx. 10500 m). The ground speed during the flight was generally around 125 m/s (450 km/h). The output from the first steps of the magnetic data processing will be shown. The measured magnetic data appear to be consistent with the expected signal.
Development of a Magnetic Nanoparticle Susceptibility Magnitude Imaging Array
Ficko, Bradley W.; Nadar, Priyanka M.; Hoopes, P. Jack; Diamond, Solomon G.
2014-01-01
There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over 5 dilutions (R2 > 0.98, p <0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 nm and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe/ml mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution. PMID:24504184
NASA Astrophysics Data System (ADS)
Cochrane, Corey J.; Blacksberg, Jordana; Anders, Mark A.; Lenahan, Patrick M.
2016-11-01
Magnetometers are essential for scientific investigation of planetary bodies and are therefore ubiquitous on missions in space. Fluxgate and optically pumped atomic gas based magnetometers are typically flown because of their proven performance, reliability, and ability to adhere to the strict requirements associated with space missions. However, their complexity, size, and cost prevent their applicability in smaller missions involving cubesats. Conventional solid-state based magnetometers pose a viable solution, though many are prone to radiation damage and plagued with temperature instabilities. In this work, we report on the development of a new self-calibrating, solid-state based magnetometer which measures magnetic field induced changes in current within a SiC pn junction caused by the interaction of external magnetic fields with the atomic scale defects intrinsic to the semiconductor. Unlike heritage designs, the magnetometer does not require inductive sensing elements, high frequency radio, and/or optical circuitry and can be made significantly more compact and lightweight, thus enabling missions leveraging swarms of cubesats capable of science returns not possible with a single large-scale satellite. Additionally, the robustness of the SiC semiconductor allows for operation in extreme conditions such as the hot Venusian surface and the high radiation environment of the Jovian system.
A dumbbell-shaped hybrid magnetometer operating in DC-10 kHz
NASA Astrophysics Data System (ADS)
Shi, Hongyu; Wang, Yanzhang; Chen, Siyu; Lin, Jun
2017-12-01
This study is motivated by the need to design a hybrid magnetometer operating in a wide-frequency band from DC to 10 kHz. To achieve this objective, a residence times difference fluxgate magnetometer (RTDFM) and an induction magnetometer (IM) have been integrated into a compact form. The hybrid magnetometer has a dumbbell-shaped structure in which the RTDFM transducer is partially inserted into the tube cores of the IM. Thus, the sensitivity of the RTDFM is significantly improved due to the flux amplification. The optimal structure, which has maximum sensitivity enhancement, was obtained through FEM analysis. To validate the theoretical analysis, the optimal hybrid magnetometer was manufactured, and its performance was evaluated. The device has a sensitivity of 45 mV/nT at 1 kHz in IM mode and 0.38 μs/nT in RTDFM mode, which is approximately 3.45 times as large as that of the single RTDFM structure. Furthermore, to obtain a lower noise performance in the entire frequency band, two operation modes switch at the cross frequency (0.16 Hz) of their noise levels. The noise level is 30 pT/√Hz in RTDFM mode and 0.07 pT/√Hz at 1 kHz in IM mode.
NASA Astrophysics Data System (ADS)
Akhavan-Tafti, M.; Slavin, J. A.; Le, G.; Eastwood, J. P.; Strangeway, R. J.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Giles, B. L.; Gershman, D. J.; Burch, J. L.
2016-12-01
Determining the magnetic field structure, electric currents, and plasma distribution within flux transfer event (FTE)-type flux ropes is critical to the understanding of their origin, evolution, and dynamics. We analyze FTEs observed by the Magnetospheric Multiscale (MMS) mission in the vicinity of the sub-solar magnetopause, i.e. 12 ± 22.5' Local Time and XGSM > 7 RE. High-resolution data from the Fluxgate Magnetometer (FGM) and Fast Plasma Investigation (FPI) are used to determine and compare the extent to which large (> 1 RE) and small (ion scale) diameter FTEs are force-free, i.e. J×B=0, or non-force-free, i.e. J×B= gradP. Three independent methods are used: i) current density parallel and perpendicular to the magnetic field derived from the plasma measurements or magnetic field using the curlometer technique; ii) direct measurement of the plasma pressure gradient by FPI; and iii) fitting magnetic field to force-free (J=αB) flux rope models. Our initial results indicate that the plasma content of the ion-scale FTEs often exceeds that of larger FTEs. This results in higher plasma pressure gradients inside smaller FTEs and a magnetic field that is less force-free than the larger flux ropes.
A dumbbell-shaped hybrid magnetometer operating in DC-10 kHz.
Shi, Hongyu; Wang, Yanzhang; Chen, Siyu; Lin, Jun
2017-12-01
This study is motivated by the need to design a hybrid magnetometer operating in a wide-frequency band from DC to 10 kHz. To achieve this objective, a residence times difference fluxgate magnetometer (RTDFM) and an induction magnetometer (IM) have been integrated into a compact form. The hybrid magnetometer has a dumbbell-shaped structure in which the RTDFM transducer is partially inserted into the tube cores of the IM. Thus, the sensitivity of the RTDFM is significantly improved due to the flux amplification. The optimal structure, which has maximum sensitivity enhancement, was obtained through FEM analysis. To validate the theoretical analysis, the optimal hybrid magnetometer was manufactured, and its performance was evaluated. The device has a sensitivity of 45 mV/nT at 1 kHz in IM mode and 0.38 μs/nT in RTDFM mode, which is approximately 3.45 times as large as that of the single RTDFM structure. Furthermore, to obtain a lower noise performance in the entire frequency band, two operation modes switch at the cross frequency (0.16 Hz) of their noise levels. The noise level is 30 pT/√Hz in RTDFM mode and 0.07 pT/√Hz at 1 kHz in IM mode.
NASA Astrophysics Data System (ADS)
Kim, Hyomin; Clauer, C. Robert; Gerrard, Andrew J.; Engebretson, Mark J.; Hartinger, Michael D.; Lessard, Marc R.; Matzka, Jürgen; Sibeck, David G.; Singer, Howard J.; Stolle, Claudia; Weimer, Daniel R.; Xu, Zhonghua
2017-07-01
We report on simultaneous observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events caused by transient solar wind dynamic pressure (Pd) impulse events. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft located near the magnetopause observed radial fluctuations of the magnetopause, and the GOES spacecraft measured sudden compressions of the magnetosphere in response to sudden increases in Pd. During the transient events, EMIC waves were observed by interhemispheric conjugate ground-based magnetometer arrays as well as the GOES spacecraft. The spectral structures of the waves appear to be well correlated with the fluctuating motion of the magnetopause, showing compression-associated wave generation. In addition, the wave features are remarkably similar in conjugate hemispheres in terms of bandwidth, quasiperiodic wave power modulation, and polarization. Proton precipitation was also observed by the DMSP spacecraft during the wave events, from which the wave source region is estimated to be 72°-74° in magnetic latitude, consistent with the TCV center. The confluence of space-borne and ground instruments including the interhemispheric, high-latitude, fluxgate/induction coil magnetometer array allows us to constrain the EMIC source region while also confirming the relationship between EMIC waves and the TCV current system.
Thermoelectric detection of inclusions in metallic biomaterials by magnetic sensing
NASA Astrophysics Data System (ADS)
Carreon, Hector
2017-05-01
The detectability of small inclusions and subtle imperfections by magnetic measurements that senses thermoelectric currents produced by a temperature gradient is ultimately limited by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. The probability of detection (POD) of a given material flaw is determined by the resulting signal-to-noise ratio rather than by the absolute magnitude of the signal itself. The strength of the magnetic field to be detected greatly depends on the physical nature of the host medium and dimensions of the imperfection. This paper presents experimental data for the magnetic field produced by thermoelectric currents around tin inclusions in different host medium such as 316LVM stainless steel and Ti-6Al-4V titanium alloy under external thermal excitation. The diameter of the inclusions and the lift-off distance varied from 0.39 to 3.175 mm and from 1 to 10 mm, respectively. A 0.6 °C/cm temperature gradient in the samples produced peak magnetic flux densities ranging from 0.1 to 280 nT, that was measured by a fluxgate magnetometer. The numerical results were found to be in good agreement with theoretical predictions and demonstrated that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields.
NASA Astrophysics Data System (ADS)
Posch, J. L.; Witte, A. J.; Engebretson, M. J.; Murr, D.; Lessard, M.; Raita, T.; Singer, H. J.
2010-12-01
Traveling convection vortices (TCVs), which appear in ground magnetometer records at near-cusp latitudes as solitary ~5 mHz pulses, are now known to originate in instabilities in the ion foreshock just upstream of Earth’s bow shock. They can also stimulate compressions or relaxations of the dayside magnetosphere (evident in geosynchronous satellite data). These transient compressions can in turn sharply increase the growth rate of electromagnetic ion cyclotron (EMIC) waves, which also appear in ground records at near-cusp latitudes as bursts of Pc 1-2 pulsations. In this study we have identified simultaneous TCV - Pc 1-2 burst events occurring from 2008 through the first 7 months of 2010 in Eastern Arctic Canada and Svalbard, using a combination of fluxgate magnetometers (MACCS and IMAGE) and search coil magnetometers in each region. Magnetometer observations at GOES 10 and 12, at longitudes near the MACCS sites, are also used to characterize the strength of the magnetic perturbations. There is no direct proportion between the amplitude of TCV and Pc 1-2 wave events in either region, consistent with the highly variable densities and pitch angle distributions of plasma of ring current / plasma sheet energies in the outer dayside magnetosphere.
Cochrane, Corey J.; Blacksberg, Jordana; Anders, Mark A.; Lenahan, Patrick M.
2016-01-01
Magnetometers are essential for scientific investigation of planetary bodies and are therefore ubiquitous on missions in space. Fluxgate and optically pumped atomic gas based magnetometers are typically flown because of their proven performance, reliability, and ability to adhere to the strict requirements associated with space missions. However, their complexity, size, and cost prevent their applicability in smaller missions involving cubesats. Conventional solid-state based magnetometers pose a viable solution, though many are prone to radiation damage and plagued with temperature instabilities. In this work, we report on the development of a new self-calibrating, solid-state based magnetometer which measures magnetic field induced changes in current within a SiC pn junction caused by the interaction of external magnetic fields with the atomic scale defects intrinsic to the semiconductor. Unlike heritage designs, the magnetometer does not require inductive sensing elements, high frequency radio, and/or optical circuitry and can be made significantly more compact and lightweight, thus enabling missions leveraging swarms of cubesats capable of science returns not possible with a single large-scale satellite. Additionally, the robustness of the SiC semiconductor allows for operation in extreme conditions such as the hot Venusian surface and the high radiation environment of the Jovian system. PMID:27892524
Cochrane, Corey J; Blacksberg, Jordana; Anders, Mark A; Lenahan, Patrick M
2016-11-28
Magnetometers are essential for scientific investigation of planetary bodies and are therefore ubiquitous on missions in space. Fluxgate and optically pumped atomic gas based magnetometers are typically flown because of their proven performance, reliability, and ability to adhere to the strict requirements associated with space missions. However, their complexity, size, and cost prevent their applicability in smaller missions involving cubesats. Conventional solid-state based magnetometers pose a viable solution, though many are prone to radiation damage and plagued with temperature instabilities. In this work, we report on the development of a new self-calibrating, solid-state based magnetometer which measures magnetic field induced changes in current within a SiC pn junction caused by the interaction of external magnetic fields with the atomic scale defects intrinsic to the semiconductor. Unlike heritage designs, the magnetometer does not require inductive sensing elements, high frequency radio, and/or optical circuitry and can be made significantly more compact and lightweight, thus enabling missions leveraging swarms of cubesats capable of science returns not possible with a single large-scale satellite. Additionally, the robustness of the SiC semiconductor allows for operation in extreme conditions such as the hot Venusian surface and the high radiation environment of the Jovian system.
The ARASE (ERG) magnetic field investigation
NASA Astrophysics Data System (ADS)
Matsuoka, Ayako; Teramoto, Mariko; Nomura, Reiko; Nosé, Masahito; Fujimoto, Akiko; Tanaka, Yoshimasa; Shinohara, Manabu; Nagatsuma, Tsutomu; Shiokawa, Kazuo; Obana, Yuki; Miyoshi, Yoshizumi; Mita, Makoto; Takashima, Takeshi; Shinohara, Iku
2018-03-01
The fluxgate magnetometer for the Arase (ERG) spacecraft mission was built to investigate particle acceleration processes in the inner magnetosphere. Precise measurements of the field intensity and direction are essential in studying the motion of particles, the properties of waves interacting with the particles, and magnetic field variations induced by electric currents. By observing temporal field variations, we will more deeply understand magnetohydrodynamic and electromagnetic ion-cyclotron waves in the ultra-low-frequency range, which can cause production and loss of relativistic electrons and ring-current particles. The hardware and software designs of the Magnetic Field Experiment (MGF) were optimized to meet the requirements for studying these phenomena. The MGF makes measurements at a sampling rate of 256 vectors/s, and the data are averaged onboard to fit the telemetry budget. The magnetometer switches the dynamic range between ± 8000 and ± 60,000 nT, depending on the local magnetic field intensity. The experiment is calibrated by preflight tests and through analysis of in-orbit data. MGF data are edited into files with a common data file format, archived on a data server, and made available to the science community. Magnetic field observation by the MGF will significantly improve our knowledge of the growth and decay of radiation belts and ring currents, as well as the dynamics of geospace storms.
A new French-Italian geomagnetic observatory in Dome C, Antarctica
NASA Astrophysics Data System (ADS)
Cafarella, L.; Zirizzotti, A.; di Mauro, D.; Schott, J. J.; Pèrès, A.; Cantin, J. M.
2003-04-01
Concordia is a scientific station located in the inner part of Antarctica (latitude 75° 06' S, longitude 123° 23' E, at about 3,200 m above sea level), about 950 km away from the coast. Near by the station a permanent Base is under construction and is expected to open in the year 2004. All this is the result of a join French Italian Antarctic Programs (IFRTP and PNRA respectively) effort to provide support to a growing number of scientific researches. The station is located 1.200 from Terra Nova Bay (Italy), 560 km away from Vostok Station (Russia), 1.100 Km from Dumont D'Urville (France) and Casey (Australia). During the 1998-1999 and 1999-2000 expeditions in Antarctica, some preliminary tests were carried out in order to evaluate the suitability of Dome C site for a permanent geomagnetic observatory. Two parallel data acquisition systems, each equipped with overhauser and flux-gate magnetometers were installed in two shelters at about 300 m from the Base camp. After some tests and checks, the site was considered a good site for geomagnetic investigations. The instrumentation is now in France and in Italy to prepare the instruments and the acquisition systems for the final installation that will take place during the 2004-2005 expedition.
Aeromagnetic survey by a model helicopter at the ruin of ironwork refinement
NASA Astrophysics Data System (ADS)
Funaki, M.; Nishioka, T.
2007-12-01
It is difficult to detect the magnetic anomaly resulting from the small scale of magnetic sources as archeological or historical ruins by a helicopter due to the restraint of the low altitude flights in the narrow area. Although a relatively small unmanned helicopters has been commercialized for agriculture use etc., it is too expensive for aeromagnetic surveys. We have developed a small autonomous unmanned helicopter which modified a model helicopter for aeromagnetic survey. A model helicopter (Hirobo Co.; SF40) with a 40cc gasoline engine, length of 143cm from the nose to the tail and dry weight of 15 kg is selected in this study. The irradiated magnetic field from the bottom-center of skid of SF40 was the total magnetic field (R)=3511 nT, inclination (I)=12 degrees and declination (D)=138 degrees. It was reduced to about 1 nT at 3 m downward from the skid during the hovering. When SF40 was covered with a magnetic shield film (Amolic sheet), the distance to measure 1nT diminished to 2 m. As shielding whole body with the film is not effective for reliable and safety flights, the only servomotors having the strong magnetization were shielded by the film. The autonomous flights based on GPS data succeeded. As the control system was too large and heavy for SF40, we are developing more simple and small navigation system for this project. Magnetometer system consists of a 3-axis fluxgate magnetometer, data logger, GPS and battery, recording every second of x, y and z magnetic fields, latitude, longitude, altitude and satellite number during 3 hours. The total weight of the system is 400g. The system was hanged to 2m lower from the skid by a rope (Bird magnetometer) or 2m front form the nose by a carbon fiber pipe (Stinger magnetometer) in order to avoid the magnetic field of SF40. However, the bird magnetometer was not suitable due to the strong noise resulting from the swing of the sensor. An archeological ruin of the ironwork refinement aged 15th century in western Japan was measured by the stinger magnetometer. The survey area was 70x20m with a gentle slop. The helicopter was controlled by the manual keeping up the roughly same altitude (the 4-8m height from the surface) and speed (1m/s). The result showed the strong anomalies of 500 nT at the NW corner of the area where consists with the refinement. From these viewpoints the model helicopter is useful to find the ironwork refinements instead of the identification based on the feeling and the experience of archeologists.
Large-amplitude ULF waves at high latitudes
NASA Astrophysics Data System (ADS)
Guido, T.; Tulegenov, B.; Streltsov, A. V.
2014-11-01
We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quiet times. Our analysis demonstrates that the frequency of the waves carrying most of the power in almost all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system, and the amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.
NASA Astrophysics Data System (ADS)
Lesur, V.; Schachtschneider, R.; Gebler, A.
2013-12-01
In June 2012 the GEOHALO mission was flown over Italy using the high altitude and long-range German research aircraft HALO (Gulfstream jet - G550). One goal of the mission was to demonstrate the feasibility of using geodetic and geophysical instrumentation on such fast flying aircraft. The magnetic data were collected through two independent acquisition chains placed inside under-wing containers. Each chain included a total intensity cesium magnetometer, a three-component fluxgate magnetometer, several temperature censors and a digitizer. Seven parallel profiles, each around 1000 km long, were flown over the Apennine peninsula from north-west to south-east. The flight altitude was about 3500 m and the survey line spacing around 40 km. These long profiles were complemented by four crossing profiles, and a repeated flight line at a higher altitude (approx. 10500 m). The measured magnetic data appear to be consistent with the expected signal. Here we present preliminary results of the data processing. From the calibration maneuvers we have been able to correct the data for most of the plane generated signal. High frequency noise, probably associated with the plane engines, has been filtered out. Along profile data are compared with the Italian aeromagnetic grid as provided by the last version of the WDMAM (World Digital Magnetic Anomaly Map).
Anisotropic ion heating and BBELF waves within the low-altitude ion upflow region
NASA Astrophysics Data System (ADS)
Shen, Y.; Knudsen, D. J.; Burchill, J. K.; James, H. G.; Miles, D. M.
2016-12-01
Previous studies have shown that low-energy (<10 eV) ion upflow energization processes involve multiple steps. At the initial stage, contributions from transverse-to-B ion heating by wave-particle interaction (WPI) are often underestimated. The wave-generation mechanisms, the specific wave modes leading to the ion heating, and the minimum altitude where WPI takes place remain unresolved. With this in mind, we statistically investigate the relation between anisotropic ion temperature enhancements and broadband extremely low frequency (BBELF) wave emissions within the ion upflow region using data from the Suprathermal Electron imager (SEI), the Fluxgate Magnetometer (MGF), and the Radio Receiver Instrument (RRI) onboard the e-POP satellite. Initial results demonstrate that perpendicular-to-B ion temperatures can reach up to 4.3 eV in approximately 1 km wide spatial region near 410 km altitude inside an active auroral surge. Intense small-scale field-aligned currents (FACs) as well as strong BBELF wave emissions, comprising electromagnetic waves below 80 Hz and electrostatic waves above, accompany these ion heating events. The minimum altitude of potential WPI reported here is lower than as previously suggested as 520 km by Frederick-Frost et al. 2007. We measure polarization and power spectral density for specific wave modes to explore the nature of ion heating within the BBELF waves. Acknowledgement: This research is supported by an Eyes High Doctoral Recruitment Scholarship at University of Calgary.
10. The surface and interior of venus
Masursky, H.; Kaula, W.M.; McGill, G.E.; Pettengill, G.H.; Phillips, R.J.; Russell, C.T.; Schubert, G.; Shapiro, I.I.
1977-01-01
Present ideas about the surface and interior of Venus are based on data obtained from (1) Earth-based radio and radar: temperature, rotation, shape, and topography; (2) fly-by and orbiting spacecraft: gravity and magnetic fields; and (3) landers: winds, local structure, gamma radiation. Surface features, including large basins, crater-like depressions, and a linear valley, have been recognized from recent ground-based radar images. Pictures of the surface acquired by the USSR's Venera 9 and 10 show abundant boulders and apparent wind erosion. On the Pioneer Venus 1978 Orbiter mission, the radar mapper experiment will determine surface heights, dielectric constant values and small-scale slope values along the sub-orbital track between 50??S and 75??N. This experiment will also estimate the global shape and provide coarse radar images (40-80 km identification resolution) of part of the surface. Gravity data will be obtained by radio tracking. Maps combining radar altimetry with spacecraft and ground-based images will be made. A fluxgate magnetometer will measure the magnetic fields around Venus. The radar and gravity data will provide clues to the level of crustal differentiation and tectonic activity. The magnetometer will determine the field variations accurately. Data from the combined experiments may constrain the dynamo mechanism; if so, a deeper understanding of both Venus and Earth will be gained. ?? 1977 D. Reidel Publishing Company.
NASA Astrophysics Data System (ADS)
Pearce, R.; Mitchell, T. M.; Moorkamp, M.; Araya, J.; Cembrano, J. M.; Yanez, G. A.; Hammond, J. O. S.
2017-12-01
At convergent plate boundaries, volcanic orogeny is largely controlled by major thrust fault systems that act as magmatic and hydrothermal fluid conduits through the crust. In the south-central Andes, the volcanically and seismically active Tinguiririca and Planchon-Peteroa volcanoes are considered to be tectonically related to the major El Fierro thrust fault system. These large scale reverse faults are characterized by 500 - 1000m wide hydrothermally altered fault cores, which possess a distinct conductive signature relative to surrounding lithology. In order to establish the subsurface architecture of these fault systems, such conductivity contrasts can be detected using the magnetotelluric method. In this study, LEMI fluxgate-magnetometer long-period and Metronix broadband MT data were collected at 21 sites in a 40km2 survey grid that surrounds this fault system and associated volcanic complexes. Multi-remote referencing techniques is used together with robust processing to obtain reliable impedance estimates between 100 Hz and 1,000s. Our preliminary inversion results provide evidence of structures within the 10 - 20 km depth range that are attributed to this fault system. Further inversions will be conducted to determine the approximate depth extent of these features, and ultimately provide constraints for future geophysical studies aimed to deduce the role of these faults in volcanic orogeny and hydrothermal fluid migration processes in this region of the Andes.
NASA Astrophysics Data System (ADS)
Capman, N.; Engebretson, M.; Posch, J. L.; Cattell, C. A.; Tian, S.; Wygant, J. R.; Kletzing, C.; Lessard, M.; Anderson, B. J.; Russell, C. T.; Reeves, G. D.; Fuselier, S. A.
2016-12-01
A 0.5-1.0 Hz electromagnetic ion cyclotron (EMIC) wave event was observed on December 14, 2015 from 13:26 to 13:28 UT at the four MMS satellites (L= 9.5, MLT= 13.0, MLAT= -24.4, peak amplitude 7 nT), and both Van Allen probes (RBSP-A: L= 5.7, MLT= 12.8, MLAT= 19.5, peak amplitude 5 nT; RBSP-B: L= 4.3, MLT= 14.2, MLAT= 11.3, peak amplitude 1 nT). On the ground, it was observed by search coil magnetometers at Halley Bay and South Pole, Antarctica, and Sondrestromfjord, Greenland, and by fluxgate magnetometers of the MACCS array at Pangnirtung and Cape Dorset in Arctic Canada. This event was preceded by a small increase of the solar wind pressure of 3 nPa from 13:10 to 13:20 UT. The proton distributions at Van Allen probe A confirm that the compression increased the pitch angle anisotropy in 10 keV ring current protons. The wave forms were very similar at the four MMS spacecraft indicating that the coherence-scale of the wave packets is larger than the inter-spacecraft separations of 20 km at the time. Inter-comparison of the wave signals at the four MMS spacecraft are used to assess the characteristics of the waves and estimate their spatial scales transverse and parallel to the background magnetic field.
NASA Astrophysics Data System (ADS)
Yoshikawa, Akimasa; Fujimoto, Akiko; Ikeda, Akihiro; Uozumi, Teiji; Abe, Shuji
2017-10-01
For study of coupling processes in the Solar-Terrestrial System, International Center for Space Weather Science and Education (ICSWSE), Kyushu University has developed a real time magnetic data acquisition system (the MAGDAS project) around the world. The number of observational sites is increasing every year with the collaboration of host countries. Now at this time, the MAGDAS Project has installed 78 real time magnetometers - so it is the largest magnetometer array in the world. The history of global observation at Kyushu University is over 30 years and number of developed observational sites is over 140. Especially, Collaboration between IKIR is extended back to 1990's. Now a time, we are operating Flux-gate magnetometer and FM-CW Radar. It is one of most important collaboration for space weather monitoring. By using MAGDAS data, ICSWSE produces many types of space weather index, such as EE-index (for monitoring long tern and shot term variation of equatorial electrojet), Pc5 index (for monitoring solar-wind velocity and high energy electron flux), Sq-index (for monitoring global change of ionospheric low and middle latitudinal current system), and Pc3 index (for monitoring of plasma density variation at low latitudes). In this report, we will introduce recent development of MAGDAS/ICSWSE Indexes project and topics for new open policy for MAGDAS data will be also discussed.
Conjugate Magnetic Observations in the Polar Environments by PRIMO and AUTUMNX
NASA Astrophysics Data System (ADS)
Chi, P. J.; Russell, C. T.; Strangeway, R. J.; Raymond, C. A.; Connors, M. G.; Wilson, T. J.; Boteler, D. H.; Rowe, K.; Schofield, I.
2014-12-01
While magnetically conjugate observations by ground-based magnetometers are available at both high and low magnetic latitudes, few have been established at auroral latitudes to monitor the hemispheric asymmetry of auroral electric currents and its impact to geospace dynamics. Due to the limitations of global land areas, the only regions where conjugate ground-based magnetic observations can cover the full range of auroral latitudes are between Quebec, Canada and West Antarctica. Funded by the Canadian Space Agency, the AUTUMNX project is currently emplacing 10 ground-based magnetometers in Quebec, Canada, and will provide the magnetic field observations in the Northern Hemisphere. The proposed U.S. Polar Region Interhemispheric Magnetic Observatories (PRIMO) project plans to establish six new ground-based magnetometers in West Antarctica at L-values between 3.9 and 10.1. The instrument is based on the new low-power fluxgate magnetometer system recently developed at UCLA for operation in the polar environments. The PRIMO magnetometers will operate on the power and communications platform well proven by the POLENET project, and the six PRIMO systems will co-locate with existing ANET stations in the region for synergy in logistic support. Focusing on the American longitudinal sector and leveraging infrastructure through international collaborations, PRIMO and AUTUMNX can monitor the intensity and location of auroral electrojets in both hemispheres simultaneously, enabling the first systematic interhemispheric magnetic observations at auroral latitudes.
Magnetic field experiment on the Freja Satellite
NASA Astrophysics Data System (ADS)
Freja Magnetic Field Experiment Team
1994-11-01
Freja is a Swedish scientific satellite mission to study fine scale auroral processes. Launch was October 6, 1992, piggyback on a Chinese Long March 2C, to the present 600×1750 km, 63° inclination orbit. The JHU/APL provided the Magnetic Field Experiment (MFE), which includes a custom APL-designed Forth, language microprocessor. This approach has led to a truly generic and flexible design with adaptability to differing mission requirements and has resulted in the transfer of significant ground analysis to on-board processing. Special attention has been paid to the analog electronic and digital processing design in an effort to lower system noise levels, verified by inflight data showing unprecedented system noise levels for near-Earth magnetic field measurements, approaching the fluxgate sensor levels. The full dynamic range measurements are of the 3-axis Earth's magnetic field taken at 128 vector samples s-1 and digitized to 16 bit, resolution, primarily used to evaluate currents and the main magnetic field of the Earth. Additional 3-axis ‘AC’ channels are bandpass filtered from 1.5 to 128 Hz to remove the main field spin signal, the range is±650 nT. These vector measurements cover Pc waves to ion gyrofrequency magnetic wave signals up to the oxygen gyrofrequency (˜40 Hz). A separate, seventh channel samples the spin axis sensor with a bandpass filter of 1.5 to 256 Hz, the signal of which is fed to a software FFT. This on-board FFT processing covers the local helium gyrofrequencies (˜160 Hz) and is plotted in the Freja Summary Plots (FSPs) along with disturbance fields. First data were received in the U.S. October 16 from Kiruna, Sweden via the Internet and SPAN e-mail networks, and were from an orbit a few hours earlier over Greenland and Sweden. Data files and data products, e.g., FSPs generated at the Kiruna ground station, are communicated in a similar manner through an automatic mail distribution system in Stockholm to PIs and various users. Distributed management of spacecraft operations by the science team is also achieved by this advanced communications system. An exciting new discovery of the field-aligned current systems is the high frequency wave power or structure associated with the various large-scale currents. The spin axis ‘AC’ data and its standard deviation is a measure of this high-frequency component of the Birkeland current regions. The exact response of these channels and filters as well as the physics behind these wave and/or fine-scale current structures accompanying the large-scale currents is being pursued; nevertheless, the association is clear and the results are used for the MFE Birkeland current monitor calculated in the MFE microprocessor. This monitor then sets a trigger when it is greater than a commandable, preset threshold. This ‘event’ flag can be read by the system unit and used to remotely command all instruments into burst mode data taking and local memory storage. In addition,Freja is equipped with a 400 MHz ‘Low Speed Link’ transmitter which transmits spacecraft hcusekeeping that can be received with a low cost, portable receiver. These housekeeping data include the MFE auroral zone current detector; this space weather information indicates the location and strength of ionospheric current systems that directly impact communications, power systems, long distance telephone lines and near-Earth satellite operations. The JHU/APL MFE is a joint effort with NASA/GSFC and was co-sponsored by the Office of Naval Research and NASA/Headquarters in cooperation with the Swedish National Space Board and the Swedish Space Corporation.
Workshop proceedings: Sensor systems for space astrophysics in the 21st century
NASA Technical Reports Server (NTRS)
1991-01-01
This proceedings provides a summary of the Astrotech 21 Sensor Technology Workshop. Topics covered include: high energy sensors, ultraviolet and visible sensors, direct infrared sensors, heterodyne submillimeter wave sensors, sensor readout electronics, and sensor cooler technology.
Haptic seat for fuel economy feedback
Bobbitt, III, John Thomas
2016-08-30
A process of providing driver fuel economy feedback is disclosed in which vehicle sensors provide for haptic feedback on fuel usage. Such sensors may include one or more of a speed sensors, global position satellite units, vehicle pitch/roll angle sensors, suspension displacement sensors, longitudinal accelerometer sensors, throttle position in sensors, steering angle sensors, break pressure sensors, and lateral accelerometer sensors. Sensors used singlely or collectively can provide enhanced feedback as to various environmental conditions and operating conditions such that a more accurate assessment of fuel economy information can be provided to the driver.
Optical fiber sensors: Systems and applications. Volume 2
NASA Astrophysics Data System (ADS)
Culshaw, Brian; Dakin, John
State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.
Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991
NASA Technical Reports Server (NTRS)
Depaula, Ramon P. (Editor); Udd, Eric (Editor)
1991-01-01
The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.
Underwater Sensor Nodes and Networks
Lloret, Jaime
2013-01-01
Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489
Control systems using modal domain optical fiber sensors for smart structure applications
NASA Technical Reports Server (NTRS)
Lindner, Douglas K.; Reichard, Karl M.
1991-01-01
Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.
NASA Astrophysics Data System (ADS)
Lieberman, Robert A.
Various papers on chemical, biochemical, and environmental fiber sensors are presented. Individual topics addressed include: fiber optic pressure sensor for combustion monitoring and control, viologen-based fiber optic oxygen sensors, renewable-reagent fiber optic sensor for ocean pCO2, transition metal complexes as indicators for a fiber optic oxygen sensor, fiber optic pH measurements using azo indicators, simple reversible fiber optic chemical sensors using solvatochromic dyes, totally integrated optical measuring sensors, integrated optic biosensor for environmental monitoring, radiation dosimetry using planar waveguide sensors, optical and piezoelectric analysis of polymer films for chemical sensor characterization, source polarization effects in an optical fiber fluorosensor, lens-type refractometer for on-line chemical analysis, fiber optic hydrocarbon sensor system, chemical sensors for environmental monitoring, optical fibers for liquid-crystal sensing and logic devices, suitability of single-mode fluoride fibers for evanescent-wave sensing, integrated modules for fiber optic sensors, optoelectronic sensors based on narrowband A3B5 alloys, fiber Bragg grating chemical sensor.
Game theoretic sensor management for target tracking
NASA Astrophysics Data System (ADS)
Shen, Dan; Chen, Genshe; Blasch, Erik; Pham, Khanh; Douville, Philip; Yang, Chun; Kadar, Ivan
2010-04-01
This paper develops and evaluates a game-theoretic approach to distributed sensor-network management for target tracking via sensor-based negotiation. We present a distributed sensor-based negotiation game model for sensor management for multi-sensor multi-target tacking situations. In our negotiation framework, each negotiation agent represents a sensor and each sensor maximizes their utility using a game approach. The greediness of each sensor is limited by the fact that the sensor-to-target assignment efficiency will decrease if too many sensor resources are assigned to a same target. It is similar to the market concept in real world, such as agreements between buyers and sellers in an auction market. Sensors are willing to switch targets so that they can obtain their highest utility and the most efficient way of applying their resources. Our sub-game perfect equilibrium-based negotiation strategies dynamically and distributedly assign sensors to targets. Numerical simulations are performed to demonstrate our sensor-based negotiation approach for distributed sensor management.
Optimal Sensor Fusion for Structural Health Monitoring of Aircraft Composite Components
2011-09-01
sensor networks combine or fuse different types of sensors. Fiber Bragg Grating ( FBG ) sensors can be inserted in layers of composite structures to...consideration. This paper describes an example of optimal sensor fusion, which combines FBG sensors and PZT sensors. Optimal sensor fusion tries to find...Fiber Bragg Grating ( FBG ) sensors can be inserted in layers of composite structures to provide local damage detection, while surface mounted
A novel integrated multifunction micro-sensor for three-dimensional micro-force measurements.
Wang, Weizhong; Zhao, Yulong; Qin, Yafei
2012-01-01
An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10(-3) KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.
Using Custom Fiber Bragg Grating-Based Sensors to Monitor Artificial Landslides.
Zhang, Qinghua; Wang, Yuan; Sun, Yangyang; Gao, Lei; Zhang, Zhenglin; Zhang, Wenyuan; Zhao, Pengchong; Yue, Yin
2016-09-02
Four custom fiber Bragg grating (FBG)-based sensors are developed to monitor an artificial landslide located in Nanjing, China. The sensors are composed of a rod and two FBGs. Based on the strength of the rods, two sensors are referred to as "hard sensors" (Sensor 1 and Sensor 2), the other two are referred to as "soft sensors" (Sensor 3 and Sensor 4). The two FBGs are fixed on each sensor rod at distances of 50 cm and 100 cm from the top of the rod (an upper FBG and a lower FBG). In the experiment presented in this paper, the sensors are installed on a slope on which an artificial landslide is generated through both machine-based and manual excavation. The fiber sensing system consists of the four custom FBG-based sensors, optical fiber, a static fiber grating demodulation instrument (SM125), and a PC with the necessary software. Experimental data was collected in the presence of an artificial landslide, and the results show that the lower FBGs are more sensitive than the upper FBGs for all four of the custom sensors. It was also found that Sensor 2 and Sensor 4 are more capable of monitoring small-scale landslides than Sensor 1 and Sensor 3, and this is mainly due to their placement location with respect to the landslide. The stronger rods used in the hard sensors make them more adaptable to the harsh environments of large landslides. Thus, hard sensors should be fixed near the landslide, while soft sensors should be placed farther away from the landslide. In addition, a clear tendency of strain variation can be detected by the soft sensors, which can be used to predict landslides and raise a hazard alarm.
Sensor chip and apparatus for tactile and/or flow sensing
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)
2008-01-01
A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.
Sensor chip and apparatus for tactile and/or flow sensing
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)
2009-01-01
A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.
Sensors, Volume 1, Fundamentals and General Aspects
NASA Astrophysics Data System (ADS)
Grandke, Thomas; Ko, Wen H.
1996-12-01
'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume deals with the fundamentals and common principles of sensors and covers the wide areas of principles, technologies, signal processing, and applications. Contents include: Sensor Fundamentals, e.g. Sensor Parameters, Modeling, Design and Packaging; Basic Sensor Technologies, e.g. Thin and Thick Films, Integrated Magnetic Sensors, Optical Fibres and Intergrated Optics, Ceramics and Oxides; Sensor Interfaces, e.g. Signal Processing, Multisensor Signal Processing, Smart Sensors, Interface Systems; Sensor Applications, e.g. Automotive: On-board Sensors, Traffic Surveillance and Control, Home Appliances, Environmental Monitoring, etc. This volume is an indispensable reference work and text book for both specialits and newcomers, researchers and developers.
NASA Astrophysics Data System (ADS)
Conklin, John Albert
This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also presents future work needed to expand the functionality and utility of the modular sensor.
Basement Membrane-Based Glucose Sensor Coatings Enhance Continuous Glucose Monitoring in Vivo.
Klueh, Ulrike; Qiao, Yi; Czajkowski, Caroline; Ludzinska, Izabela; Antar, Omar; Kreutzer, Donald L
2015-08-25
Implantable glucose sensors demonstrate a rapid decline in function that is likely due to biofouling of the sensor. Previous efforts directed at overcoming this issue has generally focused on the use of synthetic polymer coatings, with little apparent effect in vivo, clearly a novel approach is required. We believe that the key to extending sensor life span in vivo is the development of biocompatible basement membrane (BM) based bio-hydrogels as coatings for glucose sensors. BM based bio-hydrogel sensor coatings were developed using purified BM preparations (ie, Cultrex from Trevigen Inc). Modified Abbott sensors were coated with Cultrex BM extracts. Sensor performance was evaluated for the impact of these coatings in vitro and in vivo in a continuous glucose monitoring (CGM) mouse model. In vivo sensor function was assessed over a 28-day time period expressed as mean absolute relative difference (MARD) values. Tissue reactivity of both Cultrex coated and uncoated glucose sensors was evaluated at 7, 14, 21 and 28 days post-sensor implantation with standard histological techniques. The data demonstrate that Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo glucose sensor performance was enhanced following BM coating as determined by MARD analysis, particularly in weeks 2 and 3. In vivo studies also demonstrated that Cultrex coatings significantly decreased sensor-induced tissue reactions at the sensor implantation sites. Basement-membrane-based sensor coatings enhance glucose sensor function in vivo, by minimizing or preventing sensor-induced tissues reactions. © 2015 Diabetes Technology Society.
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori
2017-01-01
Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori
2017-08-28
Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.
NASA Astrophysics Data System (ADS)
Vigren, Erik; Altwegg, Kathrin; Edberg, Niklas J. T.; Eriksson, Anders I.; Galand, Marina; Goetz, Charlotte; Henri, Pierre; Héritier, Kevin; Lebreton, Jean-Pierre; Odelstad, Elias; Tzou, Chia-Yu
2016-04-01
The ESA Rosetta spacecraft has followed comet 67P/Churyumov-Gerasimenko closely (typically at tens to hundreds of km) since early August 2014 covering heliocentric distances from ~3.6 AU to ~1.25 AU at perihelion in August 2015. Since arrival at the comet the neutral number density, nN, at the spacecraft location, has been probed by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure Sensor (ROSINA/COPS [1]). Likewise, the dual Langmuir Probe (LAP [2]) and the Mutual Impedance Probe (MIP [3]), both being subsystems of the Rosetta Plasma Consortium (RPC [4]), have operated allowing for the retrieval of the electron number density, ne. Arguably, the electron-to-neutral number density ratio, ne/nN, accessible from these observations, is key to gain insights into the processes dictating the ionization balance within the inner coma of 67P [5]. In January 2015, at a heliocentric distance of ~2.4-2.6 AU (and when not being disturbed by by-passing co-rotating interaction regions [6]) we find that a Field Free Chemistry Free (FFCF) solar EUV deposition model reasonably well captures the observed ne/nN ratio in the H2O dominated summer hemisphere of 67P. For the same period we find ratios often elevated by more than a factor of 2 (with respect to modeled values) in the winter hemisphere and argue that this partly could be caused by high mixing ratios of CO2 [see 7]. We are currently conducting a study of ne/nN ratios in the coma of 67P when close to perihelion, which includes time-intervals when within the diamagnetic cavity as attested from observations [8] by the RPC/Fluxgate Magnetometer (MAG, [9]). Results of these investigations will be presented at the meeting. The closer distance to the sun and the enhanced activity bring about several effects that are anticipated to at least somewhat reduce ne/nN ratios from values predicted by the FFCF-model. As an example one may expect an increased influence of dissociative recombination on the ionization balance. This is not only due to the increased ion-electron pair formation from photoionization but also because the enhanced outgassing makes collisional electron cooling more efficient, reducing the electron temperature, in turn giving higher recombination coefficients. [1] Balsiger, H., et al., 2007. Space Sci. Reviews 128, 745 [2] Eriksson, A. I., et al., 2007. Space Sci. Reviews 128, 729 [3] Trotignon, J.-P., et al., 2007, Space Sci. Reviews 128, 713 [4] Carr, C., et al., 2007. Space Sci. Reviews 128, 629 [5] Vigren, E., et al., 2015. The Astrophysical Journal, 812, 54 [6] Edberg, N. J. T., et al., 2016. Submitted. [7] Hässig, M., et al., 2015. Science 347, aaa0276. [8] Goetz, C., et al., 2016. Submitted [9] Glassmeier, K.-H., et al., 2007, Space Sci. Reviews 128, 649
Real-time method for establishing a detection map for a network of sensors
Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L
2012-09-11
A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.
Nanowire sensor, sensor array, and method for making the same
NASA Technical Reports Server (NTRS)
Homer, Margie (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Vasquez, Richard (Inventor); Yun, Minhee (Inventor); Myung, Nosang (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor)
2012-01-01
The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.
Review on the Traction System Sensor Technology of a Rail Transit Train.
Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong
2017-06-11
The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed.
Review on the Traction System Sensor Technology of a Rail Transit Train
Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong
2017-01-01
The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed. PMID:28604615
Information-based self-organization of sensor nodes of a sensor network
Ko, Teresa H [Castro Valley, CA; Berry, Nina M [Tracy, CA
2011-09-20
A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.
A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2012-01-01
Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.
The optical slit sensor as a standard sensor for spacecraft attitude determination
NASA Technical Reports Server (NTRS)
Wertz, J.
1975-01-01
The basic concept of an optical slit sensor as a standard altitude sensor is considered for any missions using a spinning spacecraft or where rotating sensors or mirrors could be used. Information available from a single sensor or from two sensors is analyzed. A standard slit sensor package is compared with the altitude package flown on the first synchronous meteorological satellite.
Using Custom Fiber Bragg Grating-Based Sensors to Monitor Artificial Landslides
Zhang, Qinghua; Wang, Yuan; Sun, Yangyang; Gao, Lei; Zhang, Zhenglin; Zhang, Wenyuan; Zhao, Pengchong; Yue, Yin
2016-01-01
Four custom fiber Bragg grating (FBG)-based sensors are developed to monitor an artificial landslide located in Nanjing, China. The sensors are composed of a rod and two FBGs. Based on the strength of the rods, two sensors are referred to as “hard sensors” (Sensor 1 and Sensor 2), the other two are referred to as “soft sensors” (Sensor 3 and Sensor 4). The two FBGs are fixed on each sensor rod at distances of 50 cm and 100 cm from the top of the rod (an upper FBG and a lower FBG). In the experiment presented in this paper, the sensors are installed on a slope on which an artificial landslide is generated through both machine-based and manual excavation. The fiber sensing system consists of the four custom FBG-based sensors, optical fiber, a static fiber grating demodulation instrument (SM125), and a PC with the necessary software. Experimental data was collected in the presence of an artificial landslide, and the results show that the lower FBGs are more sensitive than the upper FBGs for all four of the custom sensors. It was also found that Sensor 2 and Sensor 4 are more capable of monitoring small-scale landslides than Sensor 1 and Sensor 3, and this is mainly due to their placement location with respect to the landslide. The stronger rods used in the hard sensors make them more adaptable to the harsh environments of large landslides. Thus, hard sensors should be fixed near the landslide, while soft sensors should be placed farther away from the landslide. In addition, a clear tendency of strain variation can be detected by the soft sensors, which can be used to predict landslides and raise a hazard alarm. PMID:27598163
Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies
NASA Astrophysics Data System (ADS)
Hauptmann, Peter R.
2006-03-01
The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.
Basement Membrane-Based Glucose Sensor Coatings Enhance Continuous Glucose Monitoring in Vivo
Klueh, Ulrike; Qiao, Yi; Czajkowski, Caroline; Ludzinska, Izabela; Antar, Omar; Kreutzer, Donald L.
2015-01-01
Background: Implantable glucose sensors demonstrate a rapid decline in function that is likely due to biofouling of the sensor. Previous efforts directed at overcoming this issue has generally focused on the use of synthetic polymer coatings, with little apparent effect in vivo, clearly a novel approach is required. We believe that the key to extending sensor life span in vivo is the development of biocompatible basement membrane (BM) based bio-hydrogels as coatings for glucose sensors. Method: BM based bio-hydrogel sensor coatings were developed using purified BM preparations (ie, Cultrex from Trevigen Inc). Modified Abbott sensors were coated with Cultrex BM extracts. Sensor performance was evaluated for the impact of these coatings in vitro and in vivo in a continuous glucose monitoring (CGM) mouse model. In vivo sensor function was assessed over a 28-day time period expressed as mean absolute relative difference (MARD) values. Tissue reactivity of both Cultrex coated and uncoated glucose sensors was evaluated at 7, 14, 21 and 28 days post–sensor implantation with standard histological techniques. Results: The data demonstrate that Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo glucose sensor performance was enhanced following BM coating as determined by MARD analysis, particularly in weeks 2 and 3. In vivo studies also demonstrated that Cultrex coatings significantly decreased sensor-induced tissue reactions at the sensor implantation sites. Conclusion: Basement-membrane-based sensor coatings enhance glucose sensor function in vivo, by minimizing or preventing sensor-induced tissues reactions. PMID:26306494
Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology
Xie, Wen-Ge; Wang, Peng-Zhao; Wang, Jian-Zhang
2018-01-01
A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach–Zehnder interferometer (MZI) typed sensors, Fabry–Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed. PMID:29419745
Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.
Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang
2018-02-08
A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.
Flexible phosphor sensors: a digital supplement or option to rigid sensors.
Glazer, Howard S
2014-01-01
An increasing number of dental practices are upgrading from film radiography to digital radiography, for reasons that include faster image processing, easier image access, better patient education, enhanced data storage, and improved office productivity. Most practices that have converted to digital technology use rigid, or direct, sensors. Another digital option is flexible phosphor sensors, also called indirect sensors or phosphor storage plates (PSPs). Flexible phosphor sensors can be advantageous for use with certain patients who may be averse to direct sensors, and they can deliver a larger image area. Additionally, sensor cost for replacement PSPs is considerably lower than for hard sensors. As such, flexible phosphor sensors appear to be a viable supplement or option to direct sensors.
Massively parallel diffuse optical tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandusky, John V.; Pitts, Todd A.
Diffuse optical tomography systems and methods are described herein. In a general embodiment, the diffuse optical tomography system comprises a plurality of sensor heads, the plurality of sensor heads comprising respective optical emitter systems and respective sensor systems. A sensor head in the plurality of sensors heads is caused to act as an illuminator, such that its optical emitter system transmits a transillumination beam towards a portion of a sample. Other sensor heads in the plurality of sensor heads act as observers, detecting portions of the transillumination beam that radiate from the sample in the fields of view of themore » respective sensory systems of the other sensor heads. Thus, sensor heads in the plurality of sensors heads generate sensor data in parallel.« less
Semantically-enabled sensor plug & play for the sensor web.
Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian
2011-01-01
Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC's Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research.
Semantically-Enabled Sensor Plug & Play for the Sensor Web
Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian
2011-01-01
Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research. PMID:22164033
NASA Astrophysics Data System (ADS)
Ledermann, Christoph; Pauer, Hendrikje; Woern, Heinz
2014-05-01
In minimally invasive surgery, exible mechatronic instruments promise to improve the overall performance of surgical interventions. However, those instruments require highly developed sensors in order to provide haptic feedback to the surgeon or to enable (semi-)autonomous tasks. Precisely, haptic sensors and a shape sensor are required. In this paper, we present our ber optical sensor system of Fiber Bragg Gratings, which consists of a shape sensor, a kinesthetic sensor and a tactile sensor. The status quo of each of the three sensors is described, as well as the concept to integrate them into one ber optical sensor system.
Electron beam diagnostic system using computed tomography and an annular sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmer, John W.; Teruya, Alan T.
2015-08-11
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less
Electron beam diagnostic system using computed tomography and an annular sensor
Elmer, John W.; Teruya, Alan T.
2014-07-29
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oppel, Fred J.; Hart, Brian E.; Whitford, Gregg Douglas
2016-08-25
This package contains modules that model sensors in Umbra. There is a mix of modalities for both accumulating and tracking energy sensors: seismic, magnetic, and radiation. Some modules fuss information from multiple sensor types. Sensor devices (e.g., seismic sensors), detect objects such as people and vehicles that have sensor properties attached (e.g., seismic properties).
New Generation Sensor Web Enablement
Bröring, Arne; Echterhoff, Johannes; Jirka, Simon; Simonis, Ingo; Everding, Thomas; Stasch, Christoph; Liang, Steve; Lemmens, Rob
2011-01-01
Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement. PMID:22163760
Daamen, Ruby C.; Edwin A. Roehl, Jr.; Conrads, Paul
2010-01-01
A technology often used for industrial applications is “inferential sensor.” Rather than installing a redundant sensor to measure a process, such as an additional waterlevel gage, an inferential sensor, or virtual sensor, is developed that estimates the processes measured by the physical sensor. The advantage of an inferential sensor is that it provides a redundant signal to the sensor in the field but without exposure to environmental threats. In the event that a gage does malfunction, the inferential sensor provides an estimate for the period of missing data. The inferential sensor also can be used in the quality assurance and quality control of the data. Inferential sensors for gages in the EDEN network are currently (2010) under development. The inferential sensors will be automated so that the real-time EDEN data will continuously be compared to the inferential sensor signal and digital reports of the status of the real-time data will be sent periodically to the appropriate support personnel. The development and application of inferential sensors is easily transferable to other real-time hydrologic monitoring networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja
A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.
Fiber optic sensors; Proceedings of the Meeting, Cannes, France, November 26, 27, 1985
NASA Technical Reports Server (NTRS)
Arditty, Herve J. (Editor); Jeunhomme, Luc B. (Editor)
1986-01-01
The conference presents papers on distributed sensors and sensor networks, signal processing and detection techniques, temperature measurements, chemical sensors, and the measurement of pressure, strain, and displacements. Particular attention is given to optical fiber distributed sensors and sensor networks, tactile sensing in robotics using an optical network and Z-plane techniques, and a spontaneous Raman temperature sensor. Other topics include coherence in optical fiber gyroscopes, a high bandwidth two-phase flow void fraction fiber optic sensor, and a fiber-optic dark-field microbend sensor.
Sensor Data Qualification Technique Applied to Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Simon, Donald L.
2013-01-01
This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.
Defect-Mediated Molecular Interaction and Charge Transfer in Graphene Mesh-Glucose Sensors.
Kwon, Sun Sang; Shin, Jae Hyeok; Choi, Jonghyun; Nam, SungWoo; Park, Won Il
2017-04-26
We report the role of defects in enzymatic graphene field-effect transistor sensors by introducing engineered defects in graphene channels. Compared with conventional graphene sensors (Gr sensors), graphene mesh sensors (GM sensors), with an array of circular holes, initially exhibited a higher irreversible response to glucose, involving strong chemisorption to edge defects. However, after immobilization of glucose oxidase, the irreversibility of the responses was substantially diminished, without any reduction in the sensitivity of the GM sensors (i.e., -0.53 mV/mM for the GM sensor vs -0.37 mV/mM for Gr sensor). Furthermore, multiple cycle operation led to rapid sensing and improved the reversibility of GM sensors. In addition, control tests with sensors containing a linker showed that sensitivity was increased in Gr sensors but decreased in GM sensors. Our findings indicate that edge defects can be used to replace linkers for immobilization of glucose oxidase and improve charge transfer across glucose oxidase-graphene interfaces.
Measuring NO, NO2, CO2 and O3 with low-cost sensors
NASA Astrophysics Data System (ADS)
Müller, Michael; Graf, Peter; Hüglin, Christoph
2017-04-01
Inexpensive sensors measuring ambient gas concentrations can be integrated in sensor units forming dense sensor networks. The utilized sensors have to be sufficiently accurate as the value of such networks directly depends on the information they provide. Thus, thorough testing of sensors before bringing them into service and the application of effective strategies for performance monitoring and adjustments during service are key elements for operating the low-cost sensors that are currently available on the market. We integrated several types of low-cost sensors into sensor units (Alphasense NO2 B4/B42F/B43F, Alphasense NO B4, SensAir CO2 LP8, Aeroqual O3 SM50), run them in the field next to instruments of air quality monitoring stations and performed tests in the laboratory. The poster summarizes our findings regarding the achieved sensor accuracy, methods to improve sensor performance as well as strategies to monitor the current state of the sensor (drifts, sensitivity) within a sensor network.
Sensor readout detector circuit
Chu, Dahlon D.; Thelen, Jr., Donald C.
1998-01-01
A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.
Sensor readout detector circuit
Chu, D.D.; Thelen, D.C. Jr.
1998-08-11
A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.
Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.
2008-01-01
The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.
Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems
NASA Technical Reports Server (NTRS)
Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)
2017-01-01
A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.
NASA Astrophysics Data System (ADS)
Jing, Jian-Ying; Wang, Qi; Wang, Bo-Tao
2018-07-01
In this paper, the carbon nanotubes (CNTs)-deposited Au film photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor (CNTs/Au-PCF sensor) and CNTs-deposited Ag film PCF SPR sensor (CNTs/Ag-PCF sensor) were developed and utilized to conduct a series of experiments for the refractive index sensing characteristics study of the CNTs-deposited SPR sensors. The PCF, spliced between two sections of multimode fibers (MMFs), was coated with a metal (Au or Ag) film and then deposited with CNTs for further sensing. CNTs coating can enhance the confined electric field intensity surrounding the sensing layer, making the SPR sensor more sensitive to the changes in the ambient medium. Compared with conventional Au film PCF SPR sensor (Au-PCF sensor), the sensitivity of CNTs/Au-PCF sensor increases by 1016.09 nm/RIU. Compared with conventional Ag film PCF SPR sensor (Ag-PCF sensor), the sensitivity of CNTs/Ag-PCF sensor increases by 709.22 nm/RIU. Therefore, we find that CNTs have a more significant effect on the Au-PCF sensor than the Ag-PCF sensor. The experimental measurements results agreed well with the simulation results. Furthermore, CNTs have high surface-to-volume ratio and extremely excellent biocompatibility. Bovine serum albumin (BSA) was employed as the target analyte to evaluate the feasibility of the CNTs/Au-PCF sensor for the detection of biomolecules, and the sensor exhibits higher sensitivity (8.18 nm/(mg/mL)), lower limit of detection (LOD) (2.5 μg/mL), and faster response time (8 s) than the Au-PCF sensor. Such CNTs-deposited SPR sensors with high sensitivities and fast response present highly promising potential for application in the field of biochemistry.
Characterization of Dutch dairy farms using sensor systems for cow management.
Steeneveld, W; Hogeveen, H
2015-01-01
To improve cow management in large dairy herds, sensors have been developed that can measure physiological, behavioral, and production indicators on individual cows. Recently, the number of dairy farms using sensor systems has increased. It is not known, however, to what extent sensor systems are used on dairy farms, and the reasons why farmers invest or not in sensor systems are unclear. The first objective of this study was to give an overview of the sensor systems currently used in the Netherlands. The second objective was to investigate the reasons for investing or not investing in sensor systems. The third objective was to characterize farms with and without sensor systems. A survey was developed to investigate first, the reasons for investing or not in sensor systems and, then, how the sensor systems are used in daily cow management. The survey was sent to 1,672 Dutch dairy farmers. The final data set consisted of 512 dairy farms (response rate of 30.6%); 202 farms indicated that they had sensor systems and 310 farms indicated that they did not have sensor systems. A wide variety of sensor systems was used on Dutch dairy farms; those for mastitis detection and estrus detection were the most-used sensor systems. The use of sensor systems was different for farms using an automatic milking system (AMS) and a conventional milking system (CMS). Reasons for investing were different for different sensor systems. For sensor systems attached to the AMS, the farmers made no conscious decision to invest: they answered that the sensors were standard in the AMS or were bought for reduced cost with the AMS. The main reasons for investing in estrus detection sensor systems were improving detection rates, gaining insights into the fertility level of the herd, improving profitability of the farm, and reducing labor. Main reasons for not investing in sensor systems were economically related. It was very difficult to characterize farms with and without sensor systems. Farms with CMS and sensor systems had more cows than CMS farms without sensor systems. Furthermore, farms with sensor systems had fewer labor hours per cow compared with farms without sensor systems. Other farm characteristics (age of the farmer, availability of a successor, growth in herd size, milk production per cow, number of cows per hectare, and milk production per hectare) did not differ for farms with and without sensor systems. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Open architecture of smart sensor suites
NASA Astrophysics Data System (ADS)
Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten
2017-10-01
Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.
Chemiresistive Graphene Sensors for Ammonia Detection.
Mackin, Charles; Schroeder, Vera; Zurutuza, Amaia; Su, Cong; Kong, Jing; Swager, Timothy M; Palacios, Tomás
2018-05-09
The primary objective of this work is to demonstrate a novel sensor system as a convenient vehicle for scaled-up repeatability and the kinetic analysis of a pixelated testbed. This work presents a sensor system capable of measuring hundreds of functionalized graphene sensors in a rapid and convenient fashion. The sensor system makes use of a novel array architecture requiring only one sensor per pixel and no selector transistor. The sensor system is employed specifically for the evaluation of Co(tpfpp)ClO 4 functionalization of graphene sensors for the detection of ammonia as an extension of previous work. Co(tpfpp)ClO 4 treated graphene sensors were found to provide 4-fold increased ammonia sensitivity over pristine graphene sensors. Sensors were also found to exhibit excellent selectivity over interfering compounds such as water and common organic solvents. The ability to monitor a large sensor array with 160 pixels provides insights into performance variations and reproducibility-critical factors in the development of practical sensor systems. All sensors exhibit the same linearly related responses with variations in response exhibiting Gaussian distributions, a key finding for variation modeling and quality engineering purposes. The mean correlation coefficient between sensor responses was found to be 0.999 indicating highly consistent sensor responses and excellent reproducibility of Co(tpfpp)ClO 4 functionalization. A detailed kinetic model is developed to describe sensor response profiles. The model consists of two adsorption mechanisms-one reversible and one irreversible-and is shown capable of fitting experimental data with a mean percent error of 0.01%.
The Accuracy Benefit of Multiple Amperometric Glucose Sensors in People With Type 1 Diabetes
Castle, Jessica R.; Pitts, Amy; Hanavan, Kathryn; Muhly, Rhonda; El Youssef, Joseph; Hughes-Karvetski, Colleen; Kovatchev, Boris; Ward, W. Kenneth
2012-01-01
OBJECTIVE To improve glucose sensor accuracy in subjects with type 1 diabetes by using multiple sensors and to assess whether the benefit of redundancy is affected by intersensor distance. RESEARCH DESIGN AND METHODS Nineteen adults with type 1 diabetes wore four Dexcom SEVEN PLUS subcutaneous glucose sensors during two 9-h studies. One pair of sensors was worn on each side of the abdomen, with each sensor pair placed at a predetermined distance apart and 20 cm away from the opposite pair. Arterialized venous blood glucose levels were measured every 15 min, and sensor glucose values were recorded every 5 min. Sensors were calibrated once at the beginning of the study. RESULTS The use of four sensors significantly reduced very large errors compared with one sensor (0.4 vs. 2.6% of errors ≥50% from reference glucose, P < 0.001) and also improved overall accuracy (mean absolute relative difference, 11.6 vs. 14.8%, P < 0.001). Using only two sensors also significantly improved very large errors and accuracy. Intersensor distance did not affect the function of sensor pairs. CONCLUSIONS Sensor accuracy is significantly improved with the use of multiple sensors compared with the use of a single sensor. The benefit of redundancy is present even when sensors are positioned very closely together (7 mm). These findings are relevant to the design of an artificial pancreas device. PMID:22357189
The accuracy benefit of multiple amperometric glucose sensors in people with type 1 diabetes.
Castle, Jessica R; Pitts, Amy; Hanavan, Kathryn; Muhly, Rhonda; El Youssef, Joseph; Hughes-Karvetski, Colleen; Kovatchev, Boris; Ward, W Kenneth
2012-04-01
To improve glucose sensor accuracy in subjects with type 1 diabetes by using multiple sensors and to assess whether the benefit of redundancy is affected by intersensor distance. Nineteen adults with type 1 diabetes wore four Dexcom SEVEN PLUS subcutaneous glucose sensors during two 9-h studies. One pair of sensors was worn on each side of the abdomen, with each sensor pair placed at a predetermined distance apart and 20 cm away from the opposite pair. Arterialized venous blood glucose levels were measured every 15 min, and sensor glucose values were recorded every 5 min. Sensors were calibrated once at the beginning of the study. The use of four sensors significantly reduced very large errors compared with one sensor (0.4 vs. 2.6% of errors ≥50% from reference glucose, P < 0.001) and also improved overall accuracy (mean absolute relative difference, 11.6 vs. 14.8%, P < 0.001). Using only two sensors also significantly improved very large errors and accuracy. Intersensor distance did not affect the function of sensor pairs. Sensor accuracy is significantly improved with the use of multiple sensors compared with the use of a single sensor. The benefit of redundancy is present even when sensors are positioned very closely together (7 mm). These findings are relevant to the design of an artificial pancreas device.
Time-domain fiber loop ringdown sensor and sensor network
NASA Astrophysics Data System (ADS)
Kaya, Malik
Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and parallel by using a 2x1 micro-electromechanical system optical switch to control sensors individually. For both configurations, contributions of each sensor to two or three coupled signals were simulated theoretically. Results show that numerous FLRD sensors can be connected in different configurations, and a sensor network can be built up for multi-function sensing applications.
The acoustic vector sensor: a versatile battlefield acoustics sensor
NASA Astrophysics Data System (ADS)
de Bree, Hans-Elias; Wind, Jelmer W.
2011-06-01
The invention of the Microflown sensor has made it possible to measure acoustic particle velocity directly. An acoustic vector sensor (AVS) measures the particle velocity in three directions (the source direction) and the pressure. The sensor is a uniquely versatile battlefield sensor because its size is a few millimeters and it is sensitive to sound from 10Hz to 10kHz. This article shows field tests results of acoustic vector sensors, measuring rifles, heavy artillery, fixed wing aircraft and helicopters. Experimental data shows that the sensor is suitable as a ground sensor, mounted on a vehicle and on a UAV.
The digital compensation technology system for automotive pressure sensor
NASA Astrophysics Data System (ADS)
Guo, Bin; Li, Quanling; Lu, Yi; Luo, Zai
2011-05-01
Piezoresistive pressure sensor be made of semiconductor silicon based on Piezoresistive phenomenon, has many characteristics. But since the temperature effect of semiconductor, the performance of silicon sensor is also changed by temperature, and the pressure sensor without temperature drift can not be produced at present. This paper briefly describe the principles of sensors, the function of pressure sensor and the various types of compensation method, design the detailed digital compensation program for automotive pressure sensor. Simulation-Digital mixed signal conditioning is used in this dissertation, adopt signal conditioning chip MAX1452. AVR singlechip ATMEGA128 and other apparatus; fulfill the design of digital pressure sensor hardware circuit and singlechip hardware circuit; simultaneously design the singlechip software; Digital pressure sensor hardware circuit is used to implementing the correction and compensation of sensor; singlechip hardware circuit is used to implementing to controll the correction and compensation of pressure sensor; singlechip software is used to implementing to fulfill compensation arithmetic. In the end, it implement to measure the output of sensor, and contrast to the data of non-compensation, the outcome indicates that the compensation precision of compensated sensor output is obviously better than non-compensation sensor, not only improving the compensation precision but also increasing the stabilization of pressure sensor.
Sensor trustworthiness in uncertain time varying stochastic environments
NASA Astrophysics Data System (ADS)
Verma, Ajay; Fernandes, Ronald; Vadakkeveedu, Kalyan
2011-06-01
Persistent surveillance applications require unattended sensors deployed in remote regions to track and monitor some physical stimulant of interest that can be modeled as output of time varying stochastic process. However, the accuracy or the trustworthiness of the information received through a remote and unattended sensor and sensor network cannot be readily assumed, since sensors may get disabled, corrupted, or even compromised, resulting in unreliable information. The aim of this paper is to develop information theory based metric to determine sensor trustworthiness from the sensor data in an uncertain and time varying stochastic environment. In this paper we show an information theory based determination of sensor data trustworthiness using an adaptive stochastic reference sensor model that tracks the sensor performance for the time varying physical feature, and provides a baseline model that is used to compare and analyze the observed sensor output. We present an approach in which relative entropy is used for reference model adaptation and determination of divergence of the sensor signal from the estimated reference baseline. We show that that KL-divergence is a useful metric that can be successfully used in determination of sensor failures or sensor malice of various types.
Aerospace Sensor Systems: From Sensor Development To Vehicle Application
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2008-01-01
This paper presents an overview of years of sensor system development and application for aerospace systems. The emphasis of this work is on developing advanced capabilities for measurement and control of aeropropulsion and crew vehicle systems as well as monitoring the safety of those systems. Specific areas of work include chemical species sensors, thin film thermocouples and strain gages, heat flux gages, fuel gages, SiC based electronic devices and sensors, space qualified electronics, and MicroElectroMechanical Systems (MEMS) as well as integrated and multifunctional sensor systems. Each sensor type has its own technical challenges related to integration and reliability in a given application. The general approach has been to develop base sensor technology using microfabrication techniques, integrate sensors with "smart" hardware and software, and demonstrate those systems in a range of aerospace applications. Descriptions of the sensor elements, their integration into sensors systems, and examples of sensor system applications will be discussed. Finally, suggestions related to the future of sensor technology will be given. It is concluded that smart micro/nano sensor technology can revolutionize aerospace applications, but significant challenges exist in maturing the technology and demonstrating its value in real-life applications.
Mediation of in vivo glucose sensor inflammatory response via nitric oxide release.
Gifford, Raeann; Batchelor, Melissa M; Lee, Youngmi; Gokulrangan, Giridharan; Meyerhoff, Mark E; Wilson, George S
2005-12-15
In vivo glucose sensor nitric oxide (NO) release is a means of mediating the inflammatory response that may cause sensor/tissue interactions and degraded sensor performance. The NO release (NOr) sensors were prepared by doping the outer polymeric membrane coating of previously reported needle-type electrochemical sensors with suitable lipophilic diazeniumdiolate species. The Clarke error grid correlation of sensor glycemia estimates versus blood glucose measured in Sprague-Dawley rats yielded 99.7% of the points for NOr sensors and 96.3% of points for the control within zones A and B (clinically acceptable) on Day 1, with a similar correlation for Day 3. Histological examination of the implant site demonstrated that the inflammatory response was significantly decreased for 100% of the NOr sensors at 24 h. The NOr sensors also showed a reduced run-in time of minutes versus hours for control sensors. NO evolution does increase protein nitration in tissue surrounding the sensor, which may be linked to the suppression of inflammation. This study further emphasizes the importance of NO as an electroactive species that can potentially interfere with glucose (peroxide) detection. The NOr sensor offers a viable option for in vivo glucose sensor development.
Fiber Optic Control System Integration program: for optical flight control system development
NASA Astrophysics Data System (ADS)
Weaver, Thomas L.; Seal, Daniel W.
1994-10-01
Hardware and software were developed for optical feedback links in the flight control system of an F/A-18 aircraft. Developments included passive optical sensors and optoelectronics to operate the sensors. Sensors with different methods of operation were obtained from different manufacturers and integrated with common optoelectronics. The sensors were the following: Air Data Temperature; Air Data Pressure; and Leading Edge Flap, Nose Wheel Steering, Trailing Edge Flap, Pitch Stick, Rudder, Rudder Pedal, Stabilator, and Engine Power Lever Control Position. The sensors were built for a variety of aircraft locations and harsh environments. The sensors and optoelectronics were as similar as practical to a production system. The integrated system was installed by NASA for flight testing. Wavelength Division Multiplexing proved successful as a system design philosophy. Some sensors appeared to be better choices for aircraft applications than others, with digital sensors generally being better than analog sensors, and rotary sensors generally being better than linear sensors. The most successful sensor approaches were selected for use in a follow-on program in which the sensors will not just be flown on the aircraft and their performance recorded; but, the optical sensors will be used in closing flight control loops.
Distributed sensor management for space situational awareness via a negotiation game
NASA Astrophysics Data System (ADS)
Jia, Bin; Shen, Dan; Pham, Khanh; Blasch, Erik; Chen, Genshe
2015-05-01
Space situational awareness (SSA) is critical to many space missions serving weather analysis, communications, and navigation. However, the number of sensors used in space situational awareness is limited which hinders collision avoidance prediction, debris assessment, and efficient routing. Hence, it is critical to use such sensor resources efficiently. In addition, it is desired to develop the SSA sensor management algorithm in a distributed manner. In this paper, a distributed sensor management approach using the negotiation game (NG-DSM) is proposed for the SSA. Specifically, the proposed negotiation game is played by each sensor and its neighboring sensors. The bargaining strategies are developed for each sensor based on negotiating for accurately tracking desired targets (e.g., satellite, debris, etc.) . The proposed NG-DSM method is tested in a scenario which includes eight space objects and three different sensor modalities which include a space based optical sensor, a ground radar, or a ground Electro-Optic sensor. The geometric relation between the sensor, the Sun, and the space object is also considered. The simulation results demonstrate the effectiveness of the proposed NG-DSM sensor management methods, which facilitates an application of multiple-sensor multiple-target tracking for space situational awareness.
Cyclotron-based of plant gravisensing
NASA Astrophysics Data System (ADS)
Kordyum, E.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.
Roots exhibit positive gravitropism they grow in the direction of a gravitational vector while shoots respond negatively and grow opposite to a gravitational vector We first demonstrated the inversion of roots gravitropism from positive to negative one under gravistimulation in the weak combined magnetic field WCMF consisted of permanent magnetic field PMF with the magnitude of order of 50 mu T and altering magnetic field AMF with the 6 mu T magnitude and a frequency of 32 Hz It was found that the effect of inversion has a resonance nature It means that in the interval of frequencies 1-45 Hz inversion of root gravitropism occurs only at frequency 32 Hz 2-3-day old cress seedlings were gravistimulated in moist chambers which are placed in mu -metal shields Inside mu -metal shields combined magnetic fields have been created The magnitude of magnetic fields was measured by a flux-gate magnetometer Experiments were performed in darkness at temperature 20 pm 1 0 C We measured the divergence angle of a growing root from its horizontal position After 1 h of gravistimulation in the WCMF we observed negative gravitropism of cress roots i e they grow in the opposite direction to a gravitational vector Frequency of 32 Hz for the magnitude of the PMF applied formally corresponds to cyclotron frequency of Ca 2 ions This indicates possible participation of calcium ions in root gravitropism There are many evidences of resonance effects of the WCMF on the biological processes that involve Ca 2 but the nature of
NASA Astrophysics Data System (ADS)
Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.
2013-07-01
We compare the magnetic field data obtained from the Flux-Gate Magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the Electron Drift Instrument (EDI) onboard Cluster to determine the spin axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 nT and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ~ 0.6 nT was observed between July and October 2003. Using multi-point multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.
Characterization of a low frequency magnetic noise from a two-stage pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Eshraghi, M. J.; Sasada, I.; Kim, J. M.; Lee, Y. H.
2009-07-01
Magnetic noise of a two-stage pulse tube cryocooler (PT) was measured by a fundamental mode orthogonal fluxgate magnetometer and by a LTS Double Relaxation Oscillation SQUID (DROS) first-order planar gradiometer. The magnetometer was installed in a dewar made of aluminum at 12 cm distance from a section containing magnetic regenerative materials of the second pulse tube. The magnetic noise spectrum showed a clear peak at 1.8 Hz, which is the fundamental frequency of the He gas pumping rate. The 1.8 Hz magnetic noise registered a peak, during the cooling down process, when the second cold-stage temperature was around 12 K, which is well correlated with the 1.8 Hz variation of the temperature of the second cold stage. Hence, we attributed the main source of this magnetic noise to the temperature variation of the magnetic moments resulting from magnetic regenerative materials, Er 3Ni and HoCu 2, in the presence of background static magnetic fields. We have also pointed out that the superconducting magnetic shield of lead sheets reduced the low frequency magnetic noise generated from the magnetic regenerative materials. With this arrangement, the magnetic noise amplitude measured with the LTS DROS gradiometer, mounted at 7 cm horizontal distance from the magnetic regenerative materials, in the optimum condition, was lower than 500 pT peak-to-peak, whereas the noise level without lead shielding was higher than the dynamic range of DROS instrumentations which was around ±10nT.
Energy Estimates of Lightning-Generated Whistler-Mode Waves in the Venus Ionosphere
NASA Astrophysics Data System (ADS)
Hart, Richard; Russell, Christopher T.; Zhang, Tielong
2016-10-01
The dual fluxgate magnetometer on the Venus Express Mission sampled at 128 Hz allowing for signals up to 64 Hz to be detected. These signals are found at all local times and at altitudes up to 600 km while near periapsis. The spacecraft had a periapsis within 15 degrees of the north pole for nearly the entire mission, concentrating observations at high latitudes. At solar minimum, when the ionosphere can become strongly magnetized, the waves were more readily guided along the field up to the spacecraft. During this time, whistlers were observed 3% of the time while VEX was at 250 km altitude. Detection rates reached 5% at this altitude while near the dawn terminator due to a low altitude magnetic belt that provides a radial component enabling better access of the signals to the spacecraft.Since the majority of these observations were made at relatively low altitudes, reasonable assumptions can be made about the ionospheric conditions along the wave's path from the base of the ionosphere to the spacecraft. The electron density can be inferred by utilizing the VERA model and scaling it to match the solar cycle conditions during the Venus Express campaign. With the electron density and the three components of the magnetic field measurement, we then calculate the Poynting flux to determine the energy density of the wave. This enables us to determine the strength of the source lightning and compares this strength to that on Earth.
Spectroscopic AC Susceptibility Imaging (sASI) of Magnetic Nanoparticles
Ficko, Bradley W.; Nadar, Priyanka M.; Diamond, Solomon G.
2014-01-01
This study demonstrates a method for alternating current (AC) susceptibility imaging (ASI) of magnetic nanoparticles (mNPs) using low cost instrumentation. The ASI method uses AC magnetic susceptibility measurement to create tomographic images using an array of drive coils, compensation coils and fluxgate magnetometers. Using a spectroscopic approach in conjunction with ASI, a series of tomographic images can be created for each frequency measurement and is termed sASI. The advantage of sASI is that mNPs can be simultaneously characterized and imaged in a biological medium. System calibration was performed by fitting the in-phase and out-of-phase susceptibility measurements of an mNP sample with a hydrodynamic diameter of 100 nm to a Brownian relaxation model (R2 = 0.96). Samples of mNPs with core diameters of 10 and 40 nm and a sample of 100 nm hydrodynamic diameter were prepared in 0.5 ml tubes. Three mNP samples were arranged in a randomized array and then scanned using sASI with six frequencies between 425 and 925 Hz. The sASI scans showed the location and quantity of the mNP samples (R2 = 0.97). Biological compatibility of the sASI method was demonstrated by scanning mNPs that were injected into a pork sausage. The mNP response in the biological medium was found to correlate with a calibration sample (R2 = 0.97, p <0.001). These results demonstrate the concept of ASI and advantages of sASI. PMID:25477704
The most intense current sheets in the high-speed solar wind near 1 AU
NASA Astrophysics Data System (ADS)
Podesta, John J.
2017-03-01
Electric currents in the solar wind plasma are investigated using 92 ms fluxgate magnetometer data acquired in a high-speed stream near 1 AU. The minimum resolvable scale is roughly 0.18 s in the spacecraft frame or, using Taylor's "frozen turbulence" approximation, one proton inertial length di in the plasma frame. A new way of identifying current sheets is developed that utilizes a proxy for the current density J obtained from the derivatives of the three orthogonal components of the observed magnetic field B. The most intense currents are identified as 5σ events, where σ is the standard deviation of the current density. The observed 5σ events are characterized by an average scale size of approximately 3di along the flow direction of the solar wind, a median separation of around 50di or 100di along the flow direction of the solar wind, and a peak current density on the order of 0.5 pA/cm2. The associated current-carrying structures are consistent with current sheets; however, the planar geometry of these structures cannot be confirmed using single-point, single-spacecraft measurements. If Taylor's hypothesis continues to hold for the energetically dominant fluctuations at kinetic scales 1
The effect of low force chiropractic adjustments for 4 weeks on body surface electromagnetic field.
Zhang, John; Snyder, Brian J
2005-01-01
To study the effects of 4 weeks of low-force chiropractic adjustments on body surface electromagnetic fields (EMFs). Thirty-five chiropractic students randomly assigned into control (17 subjects) and experimental groups (28 subjects). A triaxial fluxgate magnetometer was used for EMF detection. The subjects' body surface EMF was determined in the prone position before and after the chiropractic adjustment. A Toftness low-force chiropractic adjustment was applied to the cervical, thoracic, lumbar, and sacral areas as determined by the practitioner. Heart rate variability analysis was recorded once a week to determine autonomic nervous system activity in both the control and experimental groups. The EMF on the subjects' body surface decreased after chiropractic adjustment at the cervical, thoracic, lumbar, and sacral regions in all 6 visits during the 4-week treatment period. The EMF showed a downtrend over the 4-week period after the low-force adjustment. The same changes were not observed in the control group. The chiropractic adjustment group had a slight decrease in heart rate over the 4-week treatment period, and no significant change was observed in the control group. Heart rate variability analysis did not show consistent changes before and after the low-force adjustments during the treatment period. Low-force chiropractic adjustment in the cervical and thoracic areas resulted in a consistent reduction of the body surface EMF after 4 weeks of active treatment. No statistically significant differences were found in the heart rate and heart rate variability in the 4-week study.
Energy Estimates of Lightning-Generated Whistler-Mode Waves in the Ionosphere of Venus
NASA Astrophysics Data System (ADS)
Hart, R. A.; Russell, C. T.; Zhang, T.
2016-12-01
The dual fluxgate magnetometer on the Venus Express Mission sampled at 128 Hz allowing for signals up to 64 Hz to be detected. These signals are found at all local times and at altitudes up to 600 km while near periapsis. The spacecraft had a periapsis within 15º of the north pole for nearly the entire mission, concentrating observations at high latitudes. At solar minimum, when the ionosphere can become strongly magnetized, the waves were more readily guided along the field up to the spacecraft. During this time, whistlers were observed 3% of the time while VEX was at 250 km altitude. Detection rates reached 5% at this altitude while near the dawn terminator due to a low altitude magnetic belt that provides a radial component enabling better access of the signals to the spacecraft. Since the majority of these observations were made at relatively low altitudes, reasonable assumptions can be made about the ionospheric conditions along the wave's path from the base of the ionosphere to the spacecraft. The electron density can be inferred by utilizing the VERA model and scaling it to match the solar cycle conditions during the Venus Express campaign. With the electron density and the three components of the magnetic field measurement, we then calculate the Poynting flux to determine the energy density of the wave. This enables us to determine the strength of the source lightning and compare it to that on Earth.
NASA Astrophysics Data System (ADS)
Kletzing, C.
2017-12-01
The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field and particle interactions are involved in this physics from large-scale ring current ion and magnetic field dynamics to microscopic kinetic interactions of whistler-mode chorus waves with energetic electrons. To measure these kinds of radiation belt interactions, NASA implemented the two-satellite Van Allen Probes mission. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a triaxial fluxgate magnetometer (MAG) and a Waves instrument which includes a triaxial search coil magnetometer (MSC). We show a variety of waves thought to be important for wave particle interactionsin the radiation belts: low frequency ULF pulsations, EMIC waves, and whistler mode waves including upper and lower band chorus. Outside ofthe radiation belts, Alfven waves play a key role in both solar wind turbulenceand auroral particle acceleration. Several of these wave modes could benefit (or have benefitted) from laboratory studies to further refineour understanding of the detailed physics of the wave-particle interactionswhich lead to energization, pitch angle scattering, and cross-field transportWe illustrate some of the processes and compare the wave data with particle measurements to show relationships between wave activity and particle processobserved in the inner magnetosphere and heliosphere.
The Polar Engineering Development Center (PEDC) for Coordinated Geospace Observations
NASA Astrophysics Data System (ADS)
Gerrard, A. J.; Kim, H.; Weatherwax, A. T.
2016-12-01
The PEDC, housed at the New Jersey Institute, consists of a highly skilled group of collegiate professors, research scientists, electrical and mechanical engineers, and technicians that have decades of experience in instrument and hardware design for deployment at high latitude/polar regions. Now supported by NSF and reaching out to serve the broader astrophysical and geospace scientific communities conducting research in polar environments by providing support in the areas of: (a) sustainable "green" power generation in the 10-W to 500-W range, (b) power conditioning and control, (c) robust engineering for polar climates, (d) data acquisition techniques, units, and transmission services, and (e) general polar field support. The original group was formed in the 1980's as part of the NSF-supported Automatic Geophysical Observatory (AGO) program which operates to this day on projects active across the Antarctic ice shelf. In this paper we present the PEDC Antarctic geospace data portal, which was created in order to host and distribute data and quicklook plots from the instrumentation located at South Pole Station, McMurdo Station, and the Automated Geophysical Observatories in Antarctica. At this time, all fluxgate magnetometer data from all of the stations are posted for a time period covering the late 1990's to today's synoptic data. In the coming months, additional datasets (e.g., searchcoil magnetometers, photometers, and riometers) will be likewise posted. This data portal, linked through antarcticgeospace.org or directly via antarcticgeospace.njit.edu, is now open to community use.
Key and Driving Requirements for the Juno Payload of Instruments
NASA Technical Reports Server (NTRS)
Dodge, Randy; Boyles, Mark A.; Rasbach, Chuck E.
2007-01-01
The Juno Mission was selected in the summer of 2005 via NASA's New Frontiers competitive AO process (refer to http://www.nasa.gov/home/hqnews/2005/jun/HQ_05138_New_Frontiers_2.html). The Juno project is led by a Principle Investigator based at Southwest Research Institute [SwRI] in San Antonio, Texas, with project management based at the Jet Propulsion Laboratory [JPL] in Pasadena, California, while the Spacecraft design and Flight System Integration are under contract to Lockheed Martin Space Systems Company [LM-SSC] in Denver, Colorado. the payload suite consists of a large number of instruments covering a wide spectrum of experimentation. The science team includes a lead Co-investigator for each one of the following experiments: A Magnetometer experiment (consisting of both a FluxGate Magnetometer (FGM) built at Goddard Space Flight Center GSFC] and a Scalar Helium Magnetometer (SHM) built at JPL, a MicroWave Radiometer (MWR) also built at JPL, a Gravity Science experiment (GS) implemented via the telecom subsystem, two complementary particle instruments (Jovian Auroral Distribution Experiment, JADE developed by SwRI and Juno Energetic-particle Detector Instrument, JEDI from the Applied Physics Lab (APL)--JEDI and JADE both measure electrons and ions), an Ultraviolet Spectrometer (UVS) also developed at SwRI, and a radio and plasma (WAVES) experiment (from the University of Iowa). In addition, a visible camera (JunoCam) is included in the payload to facilitate education and public outreach (designed & fabricated by Malin Space Science Systems [MSSS]).
NASA Astrophysics Data System (ADS)
Rigon Silva, Willian; Schuch, Nelson Jorge; Guimarães Dutra, Severino Luiz; Babulal Trivedi, Nalin; Claudir da Silva, Andirlei; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; de Siqueira, Josemar; Espindola Antunes, Cassio
The occurrence and intensity of the geomagnetic pulsations Pc-5 (2-7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly -SAMA is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate mag-netometers H, D and Z, three axis geomagnetic field data from the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra (29.42° S, 53.87° W, 480m a.s.l.), RS, Brasil, a were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital filtering to enhance the 2-7 mHz geomagnetic pulsations was used. Five quiet days and five perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA definition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages differences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, confirming a direct solar cycle influence in the geomagnetic pulsations intensity for long periods.
Features of highly structured equatorial plasma irregularities deduced from CHAMP observations
NASA Astrophysics Data System (ADS)
Xiong, C.; Lühr, H.; Ma, S. Y.; Stolle, C.; Fejer, B. G.
2012-08-01
In this study five years of CHAMP (Challenging Mini-satellite Payload) fluxgate magnetometer (FGM) data is used to investigate the characteristics of Equatorial Plasma Bubbles (EPBs). We filtered the FGM data by using band-passes with four different cut-off periods to get the EPBs with different maximum spatial scale sizes in the meridional plane ranging from 76-608 km. Associated with the EPB observations at about 400 km, the typical altitude of CHAMP during the year 2000-2005, we also investigate the post-sunset equatorial vertical plasma drift data from ROCSAT-1 (Republic of China Satellite 1). Since the height of the F-layer is highly correlated with the vertical plasma drift and solar flux, we sorted the ROCSAT-1 data into different groups by F10.7. From the integrated vertical drift we have estimated the post-sunset uplift of the ionosphere. By comparing the properties of EPB occurrence for different scale sizes with the global distribution of plasma vertical uplift, we have found that EPBs reaching higher altitudes are more structured than those which are sampled by CHAMP near the top side of the depleted fluxtube. Such a result is in accord with 3-D model simulations (Aveiro and Hysell, 2010). Small-scale EPB structures are observed by CHAMP when the irregularities reach apex heights of 800 km and more. Such events are encountered primarily in the Brazilian sector during the months around November, when the post-sunset vertical plasma drift is high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-08-01
As part of the Department of Energy (DOE) National Uranium Resource Evaluation (NURE) Program, LKB Resources, Inc. has performed a rotary-wing, reconnaissance high sensitivity radiometric and magnetic survey in north-east Washington. Three 1:250,000 scale NTMS quadrangles (Spokane, Sandpoint, and Okanogan) were surveyed. A total of 14,421 line miles (23,203 kilometers) of data were collected utilizing a Sikorsky S58T helicopter. Traverse lines were flown in an east-west direction at 1.0 and 3.0 mile (1.6 and 4.8 kilometers) spacing, with tie lines flown in a north-south direction at 12 mile (20 kilometer) spacing. The data were digitally recorded at 1.0 second intervals.more » The NaI terrestrial detectors used in this survey had a total volume of 2,154 cubic inches. The magnetometer employed was a modified ASQ-10 fluxgate system. This report covers only the Okanogan and Sandpoint 1:250,000 scale NTMS quadrangles. Spokane 1:250,000 scale NTMS quadrangle is covered in a separate report. The radiometric data were normalized to 400 feet terrain clearance. The data are presented in the form of computer listings on microfiche and as stacked profile plots. Profile plots are contained in Volume II of this report. A geologic interpretation of the radiometric and magnetic data is included as part of this report.« less
NASA Astrophysics Data System (ADS)
Russell, Christopher; Wei, Hanying; Zhang, Tielong
The sampling rate of the Venus Express fluxgate magnetometer was set so that it could register the 100 Hz signals previously reported by the electric antenna on the Pioneer Venus Orbiter. At least two minutes of each periapsis pass is devoted to recording at 128 Hz. Many of these passes do observe signals near 100 Hz, and these signals invariably have the properties expected for whistler-mode waves. They are nearly circularly polarized, and they propagate very closely to along the magnetic field. The waves are also only a fraction of a second in duration. They do not occur every orbit. The magnetic field is often nearly horizontal throughout the periapsis pass. When it is, no signals are seen. When the field deviates more than 15o from the horizontal, signals can reach the spacecraft but they again are not always present. The number 15o is quite similar to the size of the cone of non-propagation of the whistler-mode perpendicular to the magnetic field. Thus this observation, too, is consistent with a cloud level source of electric discharges whose electromagnetic radiation is refracted along the vertical upon entering the ionosphere. Only when and where this field is inclined to the horizontal can the signal enter the ionosphere. We continue to refine our estimate of the rate of lightning on Venus, but it is clear that the rate is very significant, comparable to activity in the terrestrial atmosphere.
Co-Investigator Proposal for Enstrophy - - Filamentation of Auroral Currents
NASA Technical Reports Server (NTRS)
Kintner, Paul M.
2000-01-01
Cornell University provided three instruments for the Enstrophy experiment: an electric field meter, a plasma wave receiver, and a magnetometer for measuring FAC. The electric field meter consisted of a 6 m Weitzmann boom system with analog signal processing and 12 bit ADC, which yielded one electric field component instantaneously and a two dimensional electric field every half spin. The plasma wave receiver used the same sensing system with the addition of pre-amplifiers in the spheres to sense plasma waves up to and including the electron Langmuir frequency. Signal processing employed a variety of continuous and snap shot techniques depending on the frequency range and band width. The science magnetometer provided by Cornell University was a Billingsly design fluxgate previously used on spacecraft missions but without radiation hardening. The magnetometer was mounted on a one meter, stiff aluminum "flop-down" boom. The Enstrophy payload was launched on february 11, 1999. Because of a design flaw in the event timers, the magnetometer boom was deployed before the payload despun. As a result the magnetometer separated mechanically from the boom but maintained electrical connection. This was confirmed by the calculation of the scalar magnetic field from all three vector components of the magnetic field. However, the individual vector values had no scientific value. The electric field and plasma wave instrumentation worked as designed. The data from these instruments was provided to the University of New Hampshire and to the Principal Investigator, as proposed.
Device for self-verifying temperature measurement and control
Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.
2004-08-03
A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.
Device and method for self-verifying temperature measurement and control
Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.
2002-10-29
A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.
Quartz Crystal Microbalance with Dissipation Monitoring
2014-11-06
Hydroxyapatite , 10 nm, Sensors • Biotin Functionalized on Gold Sensors • His-tag Capturing Sensor QCM-D techniques provide answers about...UV/Ozone cleaner • Hydroxyapatite , 10 nm, Sensors • Biotin Functionalized on Gold Sensors • His-tag Capturing Sensor QCM-D techniques provide
Micromechanical Sensor for the Spectral Decomposition of Acoustic Signals
2012-02-01
8 Figure 2.2: Reverse Ballistic Air Gun ................................................................................. 9 Figure 2.3: A MEMS...Schematic of the Sensor including Sensor-to-Sensor Parasitic .................... 177 Figure 5.9: Schematic of Laser Machined Sensor...178 Figure 5.10: Laser Machined Sensor Mode 1
Attitude measurement: Principles and sensors
NASA Technical Reports Server (NTRS)
Duchon, P.; Vermande, M. P.
1981-01-01
Tools used in the measurement of satellite attitude are described. Attention is given to the elements that characterize an attitude sensor, the references employed (stars, moon, Sun, Earth, magnetic fields, etc.), and the detectors (optical, magnetic, and inertial). Several examples of attitude sensors are described, including sun sensors, star sensors, earth sensors, triaxial magnetometers, and gyrometers. Finally, sensor combinations that make it possible to determine a complete attitude are considered; the SPOT attitude measurement system and a combined CCD star sensor-gyrometer system are discussed.
Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.
Yurtman, Aras; Barshan, Billur
2017-08-09
Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage.
Dealing with the Effects of Sensor Displacement in Wearable Activity Recognition
Banos, Oresti; Toth, Mate Attila; Damas, Miguel; Pomares, Hector; Rojas, Ignacio
2014-01-01
Most wearable activity recognition systems assume a predefined sensor deployment that remains unchanged during runtime. However, this assumption does not reflect real-life conditions. During the normal use of such systems, users may place the sensors in a position different from the predefined sensor placement. Also, sensors may move from their original location to a different one, due to a loose attachment. Activity recognition systems trained on activity patterns characteristic of a given sensor deployment may likely fail due to sensor displacements. In this work, we innovatively explore the effects of sensor displacement induced by both the intentional misplacement of sensors and self-placement by the user. The effects of sensor displacement are analyzed for standard activity recognition techniques, as well as for an alternate robust sensor fusion method proposed in a previous work. While classical recognition models show little tolerance to sensor displacement, the proposed method is proven to have notable capabilities to assimilate the changes introduced in the sensor position due to self-placement and provides considerable improvements for large misplacements. PMID:24915181
Applications of pressure-sensitive dielectric elastomer sensors
NASA Astrophysics Data System (ADS)
Böse, Holger; Ocak, Deniz; Ehrlich, Johannes
2016-04-01
Dielectric elastomer sensors for the measurement of compression loads with high sensitivity are described. The basic design of the sensors exhibits two profiled surfaces between which an elastomer film is confined. All components of the sensor were prepared with silicone whose stiffness can be varied in a wide range. Depending on details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression and electrode layers on the elastomer profiles and in the elastomer film approach each other. Different designs of the pressure sensor give rise to very different sensor characteristics in terms of the dependence of electric capacitance on compression force. Due to their inherent flexibility, the pressure sensors can be used on compliant substrates such as seats or beds or on the human body. This gives rise to numerous possible applications. The contribution describes also some examples of possible sensor applications. A glove was equipped with various sensors positioned at the finger tips. When grabbing an object with the glove, the sensors can detect the gripping forces of the individual fingers with high sensitivity. In a demonstrator of the glove equipped with seven sensors, the capacitances representing the gripping forces are recorded on a display. In another application example, a lower limb prosthesis was equipped with a pressure sensor to detect the load on the remaining part of the leg and the load is displayed in terms of the measured capacitance. The benefit of such sensors is to detect an eventual overload in order to prevent possible pressure sores. A third example introduces a seat load sensor system based on four extended pressure sensor mats. The sensor system detects the load distribution of a person on the seat. The examples emphasize the high performance of the new pressure sensor technology.
Carbon Nanotube-Based Chemiresistive Sensors
Tang, Ruixian; Shi, Yongji; Hou, Zhongyu; Wei, Liangming
2017-01-01
The development of simple and low-cost chemical sensors is critically important for improving human life. Many types of chemical sensors have been developed. Among them, the chemiresistive sensors receive particular attention because of their simple structure, the ease of high precise measurement and the low cost. This review mainly focuses on carbon nanotube (CNT)-based chemiresistive sensors. We first describe the properties of CNTs and the structure of CNT chemiresistive sensors. Next, the sensing mechanism and the performance parameters of the sensors are discussed. Then, we detail the status of the CNT chemiresistive sensors for detection of different analytes. Lastly, we put forward the remaining challenges for CNT chemiresistive sensors and outlook the possible opportunity for CNT chemiresistive sensors in the future. PMID:28420195
Carbon Nanotube-Based Chemiresistive Sensors.
Tang, Ruixian; Shi, Yongji; Hou, Zhongyu; Wei, Liangming
2017-04-18
The development of simple and low-cost chemical sensors is critically important for improving human life. Many types of chemical sensors have been developed. Among them, the chemiresistive sensors receive particular attention because of their simple structure, the ease of high precise measurement and the low cost. This review mainly focuses on carbon nanotube (CNT)-based chemiresistive sensors. We first describe the properties of CNTs and the structure of CNT chemiresistive sensors. Next, the sensing mechanism and the performance parameters of the sensors are discussed. Then, we detail the status of the CNT chemiresistive sensors for detection of different analytes. Lastly, we put forward the remaining challenges for CNT chemiresistive sensors and outlook the possible opportunity for CNT chemiresistive sensors in the future.
NASA Astrophysics Data System (ADS)
Grossman, Barry G.; Cosentino, Paul J.; Doi, Shinobu; Kumar, Girish; Verghese, John
1994-05-01
We are developing low cost, rugged, and reliable fiberoptic sensors to meet current and future needs in civil engineering, including those of smart civil structures. Our work has concentrated on load, pressure, and displacement sensors, including pore water pressure sensors. We have built and demonstrated sensors in the laboratory with loads up to 50 lb., water pressures of 100 psi, and displacements up to 1 mm. Repeatability of sensor measurements are within 5% and are being improved with continued development. The range and sensitivity of the sensors can be easily changed without changing the basic sensor design. We also have multiplexed two water pressure sensors on a single fiber. We describe the sensor construction and experimental performance.
40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sensors, and dewpoint sensors. 1065.215 Section 1065.215 Protection of Environment ENVIRONMENTAL... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature sensors, and dewpoint sensors. (a) Application. Use instruments as specified in this section to measure...
An oil fraction neural sensor developed using electrical capacitance tomography sensor data.
Zainal-Mokhtar, Khursiah; Mohamad-Saleh, Junita
2013-08-26
This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical Capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes.
Wireless sensor systems and methods, and methods of monitoring structures
Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.
2007-02-20
A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.
A new method for registration of heterogeneous sensors in a dimensional measurement system
NASA Astrophysics Data System (ADS)
Zhao, Yan; Wang, Zhong; Fu, Luhua; Qu, Xinghua; Zhang, Heng; Liu, Changjie
2017-10-01
Registration of multiple sensors is a basic step in multi-sensor dimensional or coordinate measuring systems before any measurement. In most cases, a common standard is used to be measured by all sensors, and this may work well for general registration of multiple homogeneous sensors. However, when inhomogeneous sensors detect a common standard, it is usually very difficult to obtain the same information, because of the different working principles of the sensors. In this paper, a new method called multiple steps registration is proposed to register two sensors: a video camera sensor (VCS) and a tactile probe sensor (TPS). In this method, the two sensors measure two separated standards: a chrome circle on a reticle and a reference sphere with a constant distance between them, fixed on a steel plate. The VCS captures only the circle and the TPS touches only the sphere. Both simulations and real experiments demonstrate that the proposed method is robust and accurate in the registration of multiple inhomogeneous sensors in a dimensional measurement system.
An Oil Fraction Neural Sensor Developed Using Electrical capacitance Tomography Sensor Data
Zainal-Mokhtar, Khursiah; Mohamad-Saleh, Junita
2013-01-01
This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes. PMID:24064598
NASA Astrophysics Data System (ADS)
Temel, Farabi; Ozcelik, Egemen; Ture, Ayse Gul; Tabakci, Mustafa
2017-08-01
This study presents the sensing studies of QCM sensors which coated with calix[4]arene derivatives bearing different functional groups towards some selected Volatile Organic Compounds (VOCs). Initial experiments revealed that QCM sensor coated with calix-3 bearing bromopropyl functionalities was relatively more effective sensor for methylene chloride (MC) emissions than the other calix[4]arene coated QCM sensors, in aqueous media. In further experiments, this effective calix-3 coated QCM sensor were used in detailed sensing studies of selected VOCs. However, the results demonstrated that calix-3 coated QCM sensor was most useful sensor for toluene (TOL) emissions among all. Moreover, the sensing of TOLs with calix-3 coated QCM sensor was also evaluated in terms of sorption phenomena. Consequently, calix-3 coated QCM sensor was good sensor for TOL emissions, and thus it demonstrated that the coating of QCM sensor surface with calixarenes was good approach for sensing of the VOCs.
Study the performance of star sensor influenced by space radiation damage of image sensor
NASA Astrophysics Data System (ADS)
Feng, Jie; Li, Yudong; Wen, Lin; Guo, Qi; Zhang, Xingyao
2018-03-01
Star sensor is an essential component of spacecraft attitude control system. Spatial radiation can cause star sensor performance degradation, abnormal work, attitude measurement accuracy and reliability reduction. Many studies have already been dedicated to the radiation effect on Charge-Coupled Device(CCD) image sensor, but fewer studies focus on the radiation effect of star sensor. The innovation of this paper is to study the radiation effects from the device level to the system level. The influence of the degradation of CCD image sensor radiation sensitive parameters on the performance parameters of star sensor is studied in this paper. The correlation among the radiation effect of proton, the non-uniformity noise of CCD image sensor and the performance parameter of star sensor is analyzed. This paper establishes a foundation for the study of error prediction and correction technology of star sensor on-orbit attitude measurement, and provides some theoretical basis for the design of high performance star sensor.
Steeneveld, W; Vernooij, J C M; Hogeveen, H
2015-06-01
To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study was to investigate the effect of using sensor systems on measures of health and production in dairy herds. Data of 414 Dutch dairy farms with (n=152) and without (n=262) sensor systems were available. For these herds, information on milk production per cow, days to first service, first calving age, and somatic cell count (SCC) was provided for the years 2003 to 2013. Moreover, year of investment in sensor systems was available. For every farm year, we determined whether that year was before or after the year of investment in sensor systems on farms with an automatic milking system (AMS) or a conventional milking system (CMS), or whether it was a year on a farm that never invested in sensor systems. Separate statistical analyses were performed to determine the effect of sensor systems for mastitis detection (color, SCC, electrical conductivity, and lactate dehydrogenase sensors), estrus detection for dairy cows, estrus detection for young stock, and other sensor systems (weighing platform, rumination time sensor, fat and protein sensor, temperature sensor, milk temperature sensor, urea sensor, β-hydroxybutyrate sensor, and other sensor systems). The AMS farms had a higher average SCC (by 12,000 cells/mL) after sensor investment, and CMS farms with a mastitis detection system had a lower average SCC (by 10,000 cells/mL) in the years after sensor investment. Having sensor systems was associated with a higher average production per cow on AMS farms, and with a lower average production per cow on CMS farms in the years after investment. The most likely reason for this lower milk production after investment was that on 96% of CMS farms, the sensor system investment occurred together with another major change at the farm, such as a new barn or a new milking system. Most likely, these other changes had led to a decrease in milk production that could not be compensated for by the use of sensor systems. Having estrus detection sensor systems did not improve reproduction performance. Labor reduction was an important reason for investing in sensor systems. Therefore, economic benefits from investments in sensor systems can be expected more from the reduction in labor costs than from improvements in measures of health and production in dairy herds. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Clustering approaches to improve the performance of low cost air pollution sensors.
Smith, Katie R; Edwards, Peter M; Evans, Mathew J; Lee, James D; Shaw, Marvin D; Squires, Freya; Wilde, Shona; Lewis, Alastair C
2017-08-24
Low cost air pollution sensors have substantial potential for atmospheric research and for the applied control of pollution in the urban environment, including more localized warnings to the public. The current generation of single-chemical gas sensors experience degrees of interference from other co-pollutants and have sensitivity to environmental factors such as temperature, wind speed and supply voltage. There are uncertainties introduced also because of sensor-to-sensor response variability, although this is less well reported. The sensitivity of Metal Oxide Sensors (MOS) to volatile organic compounds (VOCs) changed with relative humidity (RH) by up to a factor of five over the range of 19-90% RH and with an uncertainty in the correction of a factor of two at any given RH. The short-term (second to minute) stabilities of MOS and electrochemical CO sensor responses were reasonable. During more extended use, inter-sensor quantitative comparability was degraded due to unpredictable variability in individual sensor responses (to either measurand or interference or both) drifting over timescales of several hours to days. For timescales longer than a week identical sensors showed slow, often downwards, drifts in their responses which diverged across six CO sensors by up to 30% after two weeks. The measurement derived from the median sensor within clusters of 6, 8 and up to 21 sensors was evaluated against individual sensor performance and external reference values. The clustered approach maintained the cost competitiveness of a sensor device, but the median concentration from the ensemble of sensor signals largely eliminated the randomised hour-to-day response drift seen in individual sensors and excluded the effects of small numbers of poorly performing sensors that drifted significantly over longer time periods. The results demonstrate that for individual sensors to be optimally comparable to one another, and to reference instruments, they would likely require frequent calibration. The use of a cluster median value eliminates unpredictable medium term response changes, and other longer term outlier behaviours, extending the likely period needed between calibration and making a linear interpolation between calibrations more appropriate. Through the use of sensor clusters rather than individual sensors, existing low cost technologies could deliver significantly improved quality of observations.
Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H
2015-12-21
Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and intact cells. In turn, this study further supports the formation of sensor-Zn-protein adducts as the principal observed fluorescent product during experiments employing these two sensors.
Investigation of the applicability of using the triple redundant hydrogen sensor for methane sensing
NASA Technical Reports Server (NTRS)
Lantz, J. B.; Wynveen, R. A.
1983-01-01
Application specifications for the methane sensor were assembled and design guidelines, development goals and evaluation criteria were formulated. This was done to provide a framework to evaluate sensor performance and any design adjustments to the preprototype sensor that could be required to provide methane sensitivity. Good response to hydrogen was experimentally established for four hydrogen sensor elements to be later evaluated for methane response. Prior results were assembled and analyzed for other prototype hydrogen sensor performance parameters to form a comparison base. The four sensor elements previously shown to have good hydrogen response were experimentally evaluated for methane response in 2.5% methane-in-air. No response was obtained for any of the elements, despite the high methane concentration used (50% of the Lower Flammability Limit). It was concluded that the preprototype sensing elements were insensitive to methane and were hydrogen specific. Alternative sensor operating conditions and hardware design changes were considered to provide methane sensitivity to the preprototype sensor, including a variety of different methane sensing techniques. Minor changes to the existing sensor elements, sensor geometry and operating conditions will not make the preprototype hydrogen sensor respond to methane. New sensor elements that will provide methane and hydrogen sensitivity require replacement of the existing thermistor type elements. Some hydrogen sensing characteristics of the modified sensor will be compromised (larger in situ calibration gas volume and H2 nonspecificity). The preprototype hydrogen sensor should be retained for hydrogen monitoring and a separate methane sensor should be developed.
MASM: a market architecture for sensor management in distributed sensor networks
NASA Astrophysics Data System (ADS)
Viswanath, Avasarala; Mullen, Tracy; Hall, David; Garga, Amulya
2005-03-01
Rapid developments in sensor technology and its applications have energized research efforts towards devising a firm theoretical foundation for sensor management. Ubiquitous sensing, wide bandwidth communications and distributed processing provide both opportunities and challenges for sensor and process control and optimization. Traditional optimization techniques do not have the ability to simultaneously consider the wildly non-commensurate measures involved in sensor management in a single optimization routine. Market-oriented programming provides a valuable and principled paradigm to designing systems to solve this dynamic and distributed resource allocation problem. We have modeled the sensor management scenario as a competitive market, wherein the sensor manager holds a combinatorial auction to sell the various items produced by the sensors and the communication channels. However, standard auction mechanisms have been found not to be directly applicable to the sensor management domain. For this purpose, we have developed a specialized market architecture MASM (Market architecture for Sensor Management). In MASM, the mission manager is responsible for deciding task allocations to the consumers and their corresponding budgets and the sensor manager is responsible for resource allocation to the various consumers. In addition to having a modified combinatorial winner determination algorithm, MASM has specialized sensor network modules that address commensurability issues between consumers and producers in the sensor network domain. A preliminary multi-sensor, multi-target simulation environment has been implemented to test the performance of the proposed system. MASM outperformed the information theoretic sensor manager in meeting the mission objectives in the simulation experiments.
Gas sensor protection device and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, David; Magera, Craig
A gas sensor includes a sensor housing and a sensing element located within the sensor housing. The sensing element has a distal end and defines an axis. The gas sensor also includes a sensor protection device coupled to the sensor housing and at least partially surrounding the distal end of the sensing element. The sensor protection device includes a first member coupled to the housing, the first member having a generally rectangular cross-sectional shape in a plane perpendicular to the axis. The first member includes a gas inlet and a gas outlet. The sensor protection device also includes a secondmore » member coupled to the housing.« less
A fiber optic multi-stress monitoring system for power transformer
NASA Astrophysics Data System (ADS)
Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho
2017-04-01
A fiber-optic multi-stress monitoring system which uses 4 FBG sensors and a fiber-optic mandrel acoustic emission sensor is proposed. FBG sensors and a mandrel sensor measure different types of stresses occurring in electrical power transformer, such as temperature and acoustic signals. The sensor system uses single broadband light source to address the outputs of both sensors using single fiber-optic circuitry. An athermal-packaged FBG is used to supply quasi-coherent light for the Sagnac interferometer demodulation which processes the mandrel sensor output. The proposed sensor system could simplify the optical circuit for the multi-stress measurements and enhance the cost-effectiveness of the sensor system.
NASA Astrophysics Data System (ADS)
Viecco, Camilo H.; Camp, L. Jean
Effective defense against Internet threats requires data on global real time network status. Internet sensor networks provide such real time network data. However, an organization that participates in a sensor network risks providing a covert channel to attackers if that organization’s sensor can be identified. While there is benefit for every party when any individual participates in such sensor deployments, there are perverse incentives against individual participation. As a result, Internet sensor networks currently provide limited data. Ensuring anonymity of individual sensors can decrease the risk of participating in a sensor network without limiting data provision.
Hand-writing motion tracking with vision-inertial sensor fusion: calibration and error correction.
Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J
2014-08-25
The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model.
PEDOT:PSS/QCM-based multimodal humidity and pressure sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muckley, Eric S.; Lynch, James; Kumar, Rajeev
A room-temperature multimodal sensor composed of PEDOT:PSS deposited on an AT-cut quartz crystalmicrobalance (QCM) crystal has been fabricated. The nonlinear resistive and frequency sensor responses aredeconvolved using an articial neural network (ANN), which allows the single sensor to function simultane-ously as a relative humidity (RH) sensor and a pressure sensor using only two electrodes. We demonstratethat the predictive ability of the sensor is highly inuenced by the data used to train the ANN. When trainingsets are tailored to resemble the operating conditions of the sensor, the sensor achieves an average resolutionof < 3% RH from 0-100% RH, even after Hmore » 2O saturation occurs on the surface. Our results indicate thatANNs show strong promise for improving the resolution of low cost gas sensors and for expanding the rangeof environmental conditions in which a given sensor can operate.« less