Sample records for riometers

  1. Riometer based Neural Network Prediction of Kp

    NASA Astrophysics Data System (ADS)

    Arnason, K. M.; Spanswick, E.; Chaddock, D.; Tabrizi, A. F.; Behjat, L.

    2017-12-01

    The Canadian Geospace Observatory Riometer Array is a network of 11 wide-beam riometers deployed across Central and Northern Canada. The geographic coverage of the network affords a near continent scale view of high energy (>30keV) electron precipitation at a very course spatial resolution. In this paper we present the first results from a neural network based analysis of riometer data. Trained on decades of riometer data, the neural network is tuned to predict a simple index of global geomagnetic activity (Kp) based solely on the information provided by the high energy electron precipitation over Canada. We present results from various configurations of training and discuss the applicability of this technique for short term prediction of geomagnetic activity.

  2. A Mars Riometer: Antenna Considerations

    NASA Technical Reports Server (NTRS)

    Fry, Craig D.

    2001-01-01

    This is the final report on NASA Grant NAG5-9706. This project explored riometer (relative ionospheric opacity meter) antenna designs that would be practical for a Mars surface or balloon mission. The riometer is an important radio science instrument for terrestrial aeronomy investigations. The riometer measures absorption of cosmic radio waves by the overhead ionosphere. Studies have shown the instrument should work well on Mars, which has an appreciable daytime ionosphere. There has been concern that the required radio receiver antenna (with possibly a 10 meter scale size) would be too large or too difficult to deploy on Mars. This study addresses those concerns and presents several antenna designs and deployment options. It is found that a Mars balloon would provide an excellent platform for the riometer antenna. The antenna can be incorporated into the envelope design, allowing self-deployment of the antenna as the balloon inflates.

  3. Invited Article: Digital beam-forming imaging riometer systems

    NASA Astrophysics Data System (ADS)

    Honary, Farideh; Marple, Steve R.; Barratt, Keith; Chapman, Peter; Grill, Martin; Nielsen, Erling

    2011-03-01

    The design and operation of a new generation of digital imaging riometer systems developed by Lancaster University are presented. In the heart of the digital imaging riometer is a field-programmable gate array (FPGA), which is used for the digital signal processing and digital beam forming, completely replacing the analog Butler matrices which have been used in previous designs. The reconfigurable nature of the FPGA has been exploited to produce tools for remote system testing and diagnosis which have proven extremely useful for operation in remote locations such as the Arctic and Antarctic. Different FPGA programs enable different instrument configurations, including a 4 × 4 antenna filled array (producing 4 × 4 beams), an 8 × 8 antenna filled array (producing 7 × 7 beams), and a Mills cross system utilizing 63 antennas producing 556 usable beams. The concept of using a Mills cross antenna array for riometry has been successfully demonstrated for the first time. The digital beam forming has been validated by comparing the received signal power from cosmic radio sources with results predicted from the theoretical beam radiation pattern. The performances of four digital imaging riometer systems are compared against each other and a traditional imaging riometer utilizing analog Butler matrices. The comparison shows that digital imaging riometer systems, with independent receivers for each antenna, can obtain much better measurement precision for filled arrays or much higher spatial resolution for the Mills cross configuration when compared to existing imaging riometer systems.

  4. Morphology of Southern Hemisphere Riometer Auroral Absorption

    DTIC Science & Technology

    2006-06-01

    Departamento de Geofísica Universidad de Concepción, Concepción CHILE foppiano@udec.cl ABSTRACT A morphology of riometer auroral absorption is...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Departamento de Geofísica Universidad de ...range of frequencies used an inverse -square frequency dependence approximately holds. Morphology of Southern Hemisphere Riometer Auroral Absorption

  5. Improving the twilight model for polar cap absorption nowcasts

    NASA Astrophysics Data System (ADS)

    Rogers, N. C.; Kero, A.; Honary, F.; Verronen, P. T.; Warrington, E. M.; Danskin, D. W.

    2016-11-01

    During solar proton events (SPE), energetic protons ionize the polar mesosphere causing HF radio wave attenuation, more strongly on the dayside where the effective recombination coefficient, αeff, is low. Polar cap absorption models predict the 30 MHz cosmic noise absorption, A, measured by riometers, based on real-time measurements of the integrated proton flux-energy spectrum, J. However, empirical models in common use cannot account for regional and day-to-day variations in the daytime and nighttime profiles of αeff(z) or the related sensitivity parameter, m=A>/&sqrt;J. Large prediction errors occur during twilight when m changes rapidly, and due to errors locating the rigidity cutoff latitude. Modeling the twilight change in m as a linear or Gauss error-function transition over a range of solar-zenith angles (χl < χ < χu) provides a better fit to measurements than selecting day or night αeff profiles based on the Earth-shadow height. Optimal model parameters were determined for several polar cap riometers for large SPEs in 1998-2005. The optimal χl parameter was found to be most variable, with smaller values (as low as 60°) postsunrise compared with presunset and with positive correlation between riometers over a wide area. Day and night values of m exhibited higher correlation for closely spaced riometers. A nowcast simulation is presented in which rigidity boundary latitude and twilight model parameters are optimized by assimilating age-weighted measurements from 25 riometers. The technique reduces model bias, and root-mean-square errors are reduced by up to 30% compared with a model employing no riometer data assimilation.

  6. Using High Energy Precipitation for Magnetic Mapping in the Nightside Transition Region During Dynamic Events

    NASA Astrophysics Data System (ADS)

    Spanswick, E.

    2017-12-01

    Identifying the magnetic footprint of a satellite can be done using the in situ observations together with some ionospheric or low-altitude satellite observation to argue that the two measurements were made on the same field line. Nishimura et al. [2011], e.g., correlated a time series of chorus wave power near the magnetic equator with the time series of intensities of every pixel of a is roughly magnetically conjugate ASI. Often, the pattern of correlation shows a well-defined peak at the location of the satellite's magnetic footprint. Their results cannot be replicated during dynamic events (e.g., substorms), because the required auroral forms do not occur at such times. It would be important if we could make mappings with such confidence during active times. The Transition Region Explorer (TREx), which is presently being implemented, is a new ground-based facility that will remote sense electron precipitation across 3 hours of MLT and 12 degrees of magnetic latitude spanning the auroral zone in western Canada. TREx includes the world's first imaging riometers array with a contiguous field of view large enough to seamlessly track the spatio-temporal evolution of high energy electron precipitation at mesoscales. Two studies motivated the TREx riometers array. First, Baker et al. [1981] demonstrated riometer absorption is an excellent proxy for the electron energy flux integrated from 30 keV to 200keV keV at the magnetic equator on the flux tube corresponding to the location of that riometers. Second, Spanswick et al. [2007] showed the correlation between the riometers absorption and the integrated electron energy flux near the magnetic equator peaked when the satellite was nearest to conjugate to the riometers. Here we present observations using CANOPUS single beam riometers and CRRES MEB to illustrate how the relative closeness of the footpoint of an equatorial spacecraft can be assessed using high energy precipitation. As well, we present the capabilities of the new TREx riometers facility for spatio-temporal observation of the high energy electron precipitation over the TREx field of view, and our plan to use that high energy electron precipitation to provide accurate tracking of satellite footpoints during dynamic geospace events including substorm expansion phase.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, M.; Baker, K.D.; Brekke, A.

    Electron density profiles from ground-based and rocket-borne measurements conducted at three sites in northern Scandinavia under various degrees of geophysical disturbances are presented. These data are checked against an instantaneous picture of the ionospheric absorption obtained via the dense riometer network. A map of the riometer absorption and measured electron densities over Scandinavia is given.

  8. Electron precipitation response to geomagnetic pulsations: Riometer revelation

    NASA Astrophysics Data System (ADS)

    Honary, Farideh; Kavanagh, Andrew

    Electron precipitation modulations by geomagnetic pulsation have been observed in cosmic noise absorption (CNA) as early as 1965 by widebeam riometers (Barcus and Rosenberg, 1965). The first observation of pulsation with high m-number was reported by Kikuchi et al.(1988) em-ploying a scanning narrow-beam riometer to investigate the spatial structure in one dimension with a high resolution. However, the advances in high spatial resolution imaging riometers has provided the ability to observe pulsating cosmic noise absorption with azimuthal wave numbers as high as 380 as well as providing the capability of mapping their structures. These waves are commonly observed during the morning and early afternoon and exhibit eastward propagation. In this presentation a complete generating mechanism for these high m-number waves is dis-cussed as a five step process, beginning with the solar wind as a source for the excitation of dayside magnetospheric cavity modes, mode conversion, energisation of drift-bounce protons by Landau damping, followed by inverse Landau damping as a driving mechanism for the high m number secondary waves that ultimately modulate the electron precipitation. This modulation is observed as pulsations in cosmic noise absorption.

  9. Synopsis of D- and E-region electron densities during the energy budget campaign

    NASA Technical Reports Server (NTRS)

    Friedrich, M.; Baker, K. D.; Brekke, A.; Dickinson, P. H. G.; Dumbs, A.; Grandal, B.; Thrane, E. V.; Smith, L. G.; Torkar, K. M.

    1982-01-01

    Electron density profiles from ground-based and rocket-borne measurements conducted at three sites in northern Scandinavia under various degrees of geophysical disturbances are presented. These data are checked against an instantaneous picture of the ionospheric absorption obtained via the dense riometer network. A map of the riometer absorption and measured electron densities over Scandinavia is given.

  10. On pulsating cosmic /radio/ noise absorption

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1981-01-01

    It has been proposed that some absorption events measured on riometers are actually due to backscatter of cosmic radio noise by E-region plasma waves (D'Angelo, 1976, 1978; D'Angelo and Mehta, 1980). Assuming that DC or nearly DC absorption is a viable process, it is shown that it may also be operative in producing pulsations in cosmic noise absorption on riometers, with periods ranging from a few seconds to several minutes.

  11. Lunar Riometry

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Burns, J. O.; Kasper, J. C.

    2011-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent and its behavior over time, including modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the peak plasma density of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of nanometer- to micron-scale dust. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  12. Multi-scale Observations of High-Energy Electron Precipitation in the Nightside Transition Region

    NASA Astrophysics Data System (ADS)

    Weatherwax, A. T.; Donovan, E.

    2012-12-01

    In recent years, the riometer has experienced a renaissance as an important tool for tracking the spatio-temporal evolution of high-energy magnetospheric electron (e-) populations. Networks of single beam riometers give a sparsely sampled picture of the global evolution of magnetospheric high energy e- population; existing imaging riometers resolve smaller-scale processes, but because they are isolated from one another, that resolution cannot be applied to the ionospheric signature of mesoscale magnetospheric processes. With funding from an NSF MRI, we are developing an innovative new facility where, for the first time, absorption related to high energy precipitation will be imaged across a large enough region to allow for tracking the effects of mesoscale magnetospheric processes (such as the dispersionless injection, patchy pulsating aurora, and ULF waves) with high enough space and time resolution to address key unresolved geospace questions. We will deploy in central Canada, taking advantage of excellent coverage of our target region by existing and potential future complimentary networks. The figure shows present coverage spanning auroral latitudes in North American by ASIs (including THEMIS-ASI), the mid-latitude SuperDARN HF radars, Meridian Scanning Photometers (MSPs), and magnetometers. The ASI, SuperDARN, and magnetometer networks will provide significantly more extensive coverage than our target region, thus proving information about (lower energy) auroral precipitation, large-scale magnetospheric convection (as impressed on the ionosphere), and ionospheric currents around and within our target region. For the first time, we will simultaneously observe the coupled convection, auroral, and high-energy electron precipitation in this key geospace region. These observations will be important for RBSP, CEDAR, and GEM science.; Figure: Left: Target region for the new imaging riometer array, and FoVs of THEMIS-ASIs and Canadian Multi-Spectral ASIs. Middle: Scan planes (at 110 km) of the five Canadian MSPs, beam directions of relevant mid-latitude SuperDARN HF radars, and the locations of fluxgate magnetometers and single-beam riometers that are currently operating in and around our target region. Right: FoVs of our proposed imaging riometer network (absorption at 95 km imaged to 20° above the horizon) and StormDARN beams (Christmas Valley, Fort Hayes, and Blackstone) plotted over a THEMIS ASI mosaic. The mosaic was created using simultaneous images from five ASIs (sites at top of figure) obtained during the main phase of a small (~ 40 nT DsT) storm. Also shown are typical Radiation Belt Storm Probe (RBSP) magnetic footpoint track, with the thick blue curve indicating the four hours around apogee..

  13. Lunar Riometry: Proof-of-Concept Instrument Package

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K.; Giersch, L.; Burns, J. O.; Farrell, W. M.; Kasper, J. C.; O'Dwyer, I.; Hartman, J.

    2012-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) is based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the vertical extent of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  14. Lunar Atmosphere Probe Station: A Proof-of-Concept Instrument Package for Monitoring the Lunar Atmosphere

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.

    2013-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.

  15. Plans for a new rio-imager experiment in Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Hagfors, T.

    1997-05-01

    To observe the spatial variations and dynamics of charged particle precipitation in the high latitude ionosphere, a riometer experiment is planned, which from the ground will image the precipitation regions over an area of 300 × 300 km with a spatial resolution of 6 km in the zenith, increasing to 12 km at 60° zenith angle. The time resolution is one second. The spatial resolution represents a considerable improvement over existing imaging systems. The experiment employs a Mill's Cross technique not used before in riometer work: two 32 element rows of antennas form the antenna array, two 32 element Butler Matrices achieve directionality, and cross-correlation yield the directional intensities.

  16. Characterizing the spatio-temporal and energy-dependent response of riometer absorption to particle precipitation

    NASA Astrophysics Data System (ADS)

    Kellerman, Adam; Makarevich, Roman; Spanswick, Emma; Donovan, Eric; Shprits, Yuri

    2016-07-01

    Energetic electrons in the 10's of keV range precipitate to the upper D- and lower E-region ionosphere, and are responsible for enhanced ionization. The same particles are important in the inner magnetosphere, as they provide a source of energy for waves, and thus relate to relativistic electron enhancements in Earth's radiation belts.In situ observations of plasma populations and waves are usually limited to a single point, which complicates temporal and spatial analysis. Also, the lifespan of satellite missions is often limited to several years which does not allow one to infer long-term climatology of particle precipitation, important for affecting ionospheric conditions at high latitudes. Multi-point remote sensing of the ionospheric plasma conditions can provide a global view of both ionospheric and magnetospheric conditions, and the coupling between magnetospheric and ionospheric phenomena can be examined on time-scales that allow comprehensive statistical analysis. In this study we utilize multi-point riometer measurements in conjunction with in situ satellite data, and physics-based modeling to investigate the spatio-temporal and energy-dependent response of riometer absorption. Quantifying this relationship may be a key to future advancements in our understanding of the complex D-region ionosphere, and may lead to enhanced specification of auroral precipitation both during individual events and over climatological time-scales.

  17. Ionosphere dynamics in the auroral zone during the magnetic storm of March 17-18, 2015

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.; Sergeeva, M. A.

    2016-11-01

    A comprehensive study of the ionospheric processes encountered during the superstorm which started on March 17th 2015 has been carried out using magnetometer, ionosonde, riometer, ionospheric tomography and an all-sky camera installed in the observatory of Sodankylä, Finland. The storm manifested a number of interesting features. From 12:00 on March 17 there was a significant decrease of critical frequencies foF2 and intensive sporadic Es layers were observed. During the disturbance, there was a lack of variation of the X-component of the magnetic field at times, but the absorption level measured by the riometer was high. A comparison of the electron density distributions for the quiet and disturbed days as shown in the tomography data were very different. Where results were available at the same times, the tomographic foF2 values coincided with the ;real; foF2 values from the ionosonde. Where the ionosonde data was missing due to absorption, the tomographic foF2 values were used instead. The keograms from the all-sky camera showed that during disturbed days the aurorae manifested themselves as bright discrete forms. It was shown that the peaks of absorption due to particle precipitation seen by the riometer coincided in time with the brightenings of aurorae seen on the keograms.

  18. Polar low ionospheric responses to the most energetic SPE of the solar cycle#23 based on cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Pacini, A. A.; Brum, C. G.

    2013-05-01

    We present a detailed study of the impact of solar proton event over the polar low ionosphere, occurred in Jan/2005, during the descendent phase of the XXIII solar activity cycle. This event was the hardest SPE of the last solar cycle, and was associated to a solar X-ray flare X.2 and CME halo. For this study, we are using cosmic noise absorption data measured by a riometer located in Oulu, Finland (65oN) along with solar proton data from GOES satellite. Based on computation simulations we intend to explain the 30MHz riometer absorption events based on variations of the flux and spectrum of the energetic particle precipitated.

  19. Polar low ionospheric responses to the most energetic SPE of the solar cycle#23 based on cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Pacini, A. A.; Garnett Marques Brum, C.

    2013-12-01

    We present a detailed study of the impact of solar proton event over the polar low ionosphere, occurred Jan/2005, during the descendent phase of the last solar activity cycle XXIII. This event was the hardest SPE of the last solar cycle, and was associated to a solar X-ray flare X.2 and CME halo. For this study, we are using cosmic noise absorption data measured by a riometer located in Oulu, Finland (65N) along with solar proton data from GOES satellite. Based on computation simulations we intend to explain the 30MHz riometer absorption events based on variations of the flux and spectrum of the energetic particle precipitated.

  20. Conjugate observation of electron microburst groups by Bremsstrahlung X-ray and riometer techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siren, J.C.; Rosenberg, T.J.; Detrick, D.

    1980-12-01

    The first evidence is reported of simultaneous conjugate electron microburst group precipitation. Groups of bremsstrahlung X ray microbursts (E>25 keV) were observed during a substorm recovery phase by a balloon-borne scintillation counter over Roberval, Quebec, Canada. The microburst groups were accompanied one-to-one by time-delayed and broadened pulses of ionospheric absorption measured by a high sensitivity 30-MHz riometer at Siple Station, Antarctica (Lapprox. =4.1). For the interval of highest correlation, the absolute lag between the two data sets was 4 +- 1 s, to the limit of the relative timing accuracy. Approximately 2 s of the observed lag had been introducesmore » by a low-pass filter in the riometer data acquistion unit. The remainder (2 s) was due to the ionospheric recombination process, which evidently had a response time (tauapprox.5 s) during this event much shorter than that ordinarily associated with the D region of the ionosphere. Model calculations of the ionspheric response to time-varying precipitation, derived from the profile of the measurement X ray flux, provide a consistent picture of simultaneous microburst group precipitation at conjugate points, absolute absorption and the electron spectrum derived from X rays, the degree of variation in absorption and X ray fluxes, and the characteristic ionospheric time constant at the altitude of maximum energy deposition.« less

  1. Major Solar Proton Event during September 24-30, 2001 using Imaging Riometer Technique (P42)

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Vhatkar, R. S.

    2006-11-01

    sharma_ashokkumar@yahoo.com Major outbursts of mass and energy i.e. a fast full halo CME with speed of 2402 km/sec from region 9632, located on the Sun at S16 E23 was observed at 1030 UT by SOHO/LASCO C3 coronagraph on September 24, 2001. The proton event at greater than 100 MeV began at 1440 UT on 24 September, reached a maximum of 31.2 PFU at 0755 UT on 25 September and ended at 1940 UT on 26 September 2001. The protons event at greater than 10 MeV began at 1215 UT on 24 September, reached a maximum of 12,900 PFU at 2235 UT on 25 September and ended at 1710 UT on 30 September 2001. These extremely high energetic protons accelerated during CMEs produces significant ionization in the D region of the ionosphere at high latitudes. Increase in ionization in the D region causes cosmic noise absorption. The major Polar Cap Absorption (PCA) observed during SEPTEMBER 24 -30, 2001 will be discussed in this paper. Imaging riometer observations were made from Kilpisjarvi (69.05oN; 20.79oW), Northern Finland during the PCA event. For this the remote and insitu data have been used. The imaging riometer for ionospheric studies (IRIS) is used to quantify the intensity, time of occurrence and location of CME effects on the ionosphere.

  2. Comparison between POES energetic electron precipitation observations and riometer absorptions: Implications for determining true precipitation fluxes

    NASA Astrophysics Data System (ADS)

    Rodger, Craig J.; Kavanagh, Andrew J.; Clilverd, Mark A.; Marple, Steve R.

    2013-12-01

    electron precipitation (EEP) impacts the chemistry of the middle atmosphere with growing evidence of coupling to surface temperatures at high latitudes. To better understand this link, it is essential to have realistic observations to properly characterize precipitation and which can be incorporated into chemistry-climate models. The Polar-orbiting Operational Environmental Satellite (POES) detectors measure precipitating particles but only integral fluxes and only in a fraction of the bounce loss cone. Ground-based riometers respond to precipitation from the whole bounce loss cone; they measure the cosmic radio noise absorption (CNA), a qualitative proxy with scant direct information on the energy flux of EEP. POES observations should have a direct relationship with ΔCNA and comparing the two will clarify their utility in studies of atmospheric change. We determined ionospheric changes produced by the EEP measured by the POES spacecraft in ~250 overpasses of an imaging riometer in northern Finland. The ΔCNA modeled from the POES data is 10-15 times less than the observed ΔCNA when the >30 keV flux is reported as <106 cm-2 s-1 sr-1. Above this level, there is relatively good agreement between the space-based and ground-based measurements. The discrepancy occurs mostly during periods of low geomagnetic activity, and we contend that weak diffusion is dominating the pitch angle scattering into the bounce loss cone at these times. A correction to the calculation using measurements of the trapped flux considerably reduces the discrepancy and provides further support to our hypothesis that weak diffusion leads to underestimates of the EEP.

  3. Ionospheric effects of the simultaneous occurrence of a solar proton event and relativistic electron precipitation as recorded by ground-based instruments at different latitudes

    NASA Astrophysics Data System (ADS)

    Shirochkov, A. V.; Makarova, L. N.; Sokolov, S. N.; Sheldon, W. R.

    2004-08-01

    The intense event of highly relativistic electron (HRE) precipitation of May 1992 has been analyzed using data from ground-based observations (riometers and VLF phase measurements). Special attention was given to some features of this event observed at high and very high geomagnetic latitudes, since this aspect of the event was not well documented in previous studies. A remarkable feature of the HRE event of May 1992 was the simultaneous occurrence of a strong solar proton event (SPE), although reliable evidence shows that the simultaneous appearance of SPE and HRE events is not unique. It was demonstrated that a meridian chain of riometers with high latitudinal resolution is an effective and low-cost (as compared with satellite observations) tool to separate the effects of solar proton and relativistic electrons in the lower ionosphere. A significant conclusion is that the polar cap area is free from relativistic electron precipitation. Other interesting aspects of this complex geophysical phenomenon are also discussed.

  4. A Versatile Planetary Radio Science Microreceiver

    NASA Technical Reports Server (NTRS)

    Fry, Craig D.; Rosenberg, T. J.

    1999-01-01

    We have developed a low-power. programmable radio "microreceiver" that combines the functionality of two science instruments: a Relative Ionospheric Opacity Meter (riometer) and a swept-frequency, VTF/HF radio spectrometer. The radio receiver, calibration noise source, data acquisition and processing, and command and control functions are all contained on a single circuit board. This design is suitable for miniaturizing as a complete flight instrument. Several of the subsystems were implemented in a field-programmable gate array (FPGA), including the receiver detector, the control logic, and the data acquisition and processing blocks. Considerable efforts were made to reduce the power consumption of the instrument, and eliminate or minimize RF noise and spurious emissions generated by the receiver's digital circuitry. A prototype instrument was deployed at McMurdo Station, Antarctica, and operated in parallel with a traditional riometer instrument for approximately three weeks. The attached paper (accepted for publication by Radio Science) describes in detail the microreceiver theory of operation, performance specifications and test results.

  5. Synopsis of the D- and E-regions during the energy budget campaign

    NASA Technical Reports Server (NTRS)

    Friedrich, M.; Baker, K. D.; Dickinson, P. H. G.; Dumbs, A.; Grandal, B.; Andreassen, O.; Thrane, E. V.; Smith, L. G.; Stauning, P.; Torkar, K. M.

    1985-01-01

    Electron density profiles derived from rocket-borne measurements are presented. These data were obtained at two different sites in northern Scandinavia under various degrees of geophysical disturbance. The observed electron density profiles are related to ionospheric absorption as observed with the dense riometer network in that area.

  6. Ionospheric Sensor Developments for the Year-2000 Solar Maximum

    DTIC Science & Technology

    2000-10-23

    locations, work during the year enhanced and exploited several diagnostic instruments deployed for the High frequency Active Aurora Research Program ( HAARP ...Under HAARP , measurements employing both GPS and coherent VHF-UHF signals transmitted from satellites in low-earth polar orbit resulted in time...histories and latitudinal scans of absolute TEC over Maska, and enhanced operation of the HAARP classic riometer resulted in essentially continuous

  7. The McDonnell Douglas geophysical observatory program progress report 13 Conjugate point riometer program

    NASA Technical Reports Server (NTRS)

    Baker, M. B.

    1975-01-01

    This report, the thirteenth and final progress report on the McDonnell Douglas Geophysical Observatory Program, discusses history of the program from 1962 through 1973, and results of the research carried out in 1974. Topic areas covered include: Station operation; Ionospheric work; Solar studies, Magnetospheric studies; Satellite measurements; International participation; and, 1974 research on solar activity, ATS-6 studies, magnetospheric physics, and station operation.

  8. Direct measurements on imaging riometer antenna array beam directivities

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Nel, J. J.; Mathews, M. J.; Stoker, P. H.

    2001-01-01

    Spatial structures in enhanced ionization of the ionosphere are observed by absorption of cosmic radio waves. These structures are resolved by using theoretically derived imaging riometer antenna array directivities. These directivities are calculated from beam phasing of 64 crossed dipole elements of the 38.2-MHz antenna array at SANAE IV, Antarctica. In order to ensure that these derived directivities are representative of the actual viewing directions of the 64-beams, a radio transmitter was flown by helicopter across the antenna array. In this paper variations in the receiver signal strengths, recorded when flying across beam-viewing directions, are compared with the spatial and angular-dependent profiles of expected receiver output responses, derived theoretically from the directivities of the antenna array. A Global Positioning System (GPS) device on board the helicopter was used for positional recording. The derived and recorded profiles did coincide occasionally, but at other instances relative displacements and differences in magnitude of responses were observed. These displacements and differences could be attributed to degradation in position fixes imposed deliberately by selective availability on the GPS system. Excellent coincidence for a number of beam crossings proved that the viewing directions are accurate in all the beam directions, since the multi-dimensional Butler matrix produces 64 simultaneous beams.

  9. An Automatic System for Global Monitoring of ELF and VLF Radio Noise Phenomena.

    DTIC Science & Technology

    1985-06-01

    second low-jitter synchronization signal is also provided for precise triggering of analog-to- digital conversion samples. Both the clock and the...building in 1985 are two riometers (30 MHz and 51.4 MHz), a 3-axis fluxgate magnetometer , a 3-axis micropulsation magnetometer , an all-sky camera, and...of these filters 1s continuously sampled by a computerized recording system, and statistical averages are computed on-site and recorded on digital tape

  10. Neural Network Substorm Identification: Enabling TREx Sensor Web Modes

    NASA Astrophysics Data System (ADS)

    Chaddock, D.; Spanswick, E.; Arnason, K. M.; Donovan, E.; Liang, J.; Ahmad, S.; Jackel, B. J.

    2017-12-01

    Transition Region Explorer (TREx) is a ground-based sensor web of optical and radio instruments that is presently being deployed across central Canada. The project consists of an array of co-located blue-line, full-colour, and near-infrared all-sky imagers, imaging riometers, proton aurora spectrographs, and GNSS systems. A key goal of the TREx project is to create the world's first (artificial) intelligent sensor web for remote sensing space weather. The sensor web will autonomously control and coordinate instrument operations in real-time. To accomplish this, we will use real-time in-line analytics of TREx and other data to dynamically switch between operational modes. An operating mode could be, for example, to have a blue-line imager gather data at a one or two orders of magnitude higher cadence than it operates for its `baseline' mode. The software decision to increase the imaging cadence would be in response to an anticipated increase in auroral activity or other programmatic requirements. Our first test for TREx's sensor web technologies is to develop the capacity to autonomously alter the TREx operating mode prior to a substorm expansion phase onset. In this paper, we present our neural network analysis of historical optical and riometer data and our ability to predict an optical onset. We explore the preliminary insights into using a neural network to pick out trends and features which it deems are similar among substorms.

  11. Investigations of the Nature and Behavior of Plasma-Density Disturbances That May Impact GPS and Other Transionospheric Systems

    DTIC Science & Technology

    2002-10-31

    association with the High-frequency Active Auroral Research Program ( HAARP ). In addition to a classic riometer and a GPS Total Electron Content (TEC...sensor previously operating at the HAARP site, NWRA also operates a set of Transit receivers for measurements of TEC and scintillation at VHF and UHF...supplementing the receiver at HAARP with a receiver north of the site and an additional receiver installed south of the HAARP site.

  12. Pulsating aurora and cosmic noise absorption associated with growth-phase arcs

    NASA Astrophysics Data System (ADS)

    McKay, Derek; Partamies, Noora; Vierinen, Juha

    2018-01-01

    The initial stage of a magnetospheric substorm is the growth phase, which typically lasts 1-2 h. During the growth phase, an equatorward moving, east-west extended, optical auroral arc is observed. This is called a growth-phase arc. This work aims to characterize the optical emission and riometer absorption signatures associated with growth-phase arcs of isolated substorms. This is done using simultaneous all-sky camera and imaging riometer observations. The optical and riometric observations allow determination of the location of the precipitation within growth-phase arcs of low- (< 10 keV) and high- (> 10 keV) energy electrons, respectively. The observations indicate that growth-phase arcs have the following characteristics: 1. The peak of the cosmic noise absorption (CNA) arc is equatorward of the optical emission arc. This CNA is contained within the region of diffuse aurora on the equatorward side.2. Optical pulsating aurora are seen in the border region between the diffuse emission region on the equatorward side and the bright growth-phase arc on the poleward side. CNA is detected in the same region. 3. There is no evidence of pulsations in the CNA. 4. Once the equatorward drift starts, it proceeds at constant speed, with uniform separation between the growth-phase arc and CNA of 40 ± 10 km. Optical pulsating aurora are known to be prominent in the post-onset phase of a substorm. The fact that pulsations are also seen in a fairly localized region during the growth phase shows that the substorm expansion-phase dynamics are not required to closely precede the pulsating aurora.

  13. Latitudinal Dependence of the Energy Input into the Mesosphere by High Energy Electrons

    NASA Technical Reports Server (NTRS)

    Wagner, C. U.; Nikutowski, B.; Ranta, H.

    1984-01-01

    Night-time ionspheric absorption measurements give the possibility to study the precipitation of high energy electrons into the mesosphere during and after magnetospheric storms. The uniform Finnish riometer network was used together with measurements from Kuhlungsborn and Collm (GDR) to investigate the night-time absorption as a function of latitude (L=6.5 to 2.5) and storm-time for seven storms. The common trends visible in all these events are summarized in a schematic average picture, showing the distribution of increased ionospheric absorption as a function of latitude (L value) and storm-time.

  14. Relations between morning sector Pi 1 pulsation activity and particle and field characteristics observed by the DE 2 satellite

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Cahill, L. J., Jr.; Winningham, J. D.; Rosenberg, T. J.; Arnoldy, R. L.; Maynard, N. C.; Sugiura, M.

    1986-01-01

    Ground-based magnetometer, photometer, and riometer data are combined with low-altitude particle and electric and magnetic field data from the DE-2 spacecraft to provide a more complete characterization of the magnetospheric and tropospheric environment in which morning sector asymmetric Pi 1 pulsations are observed. The results of the study are in agreement with recent conclusions that morning sector asymmetric Pi 1 pulsations are physically related to pulsating aurorae. Precipitation of energetic electrons (E greater than 35 keV) coincides in every instance with the occurrence of these pulsations.

  15. A statistical approach to determining energetic outer radiation belt electron precipitation fluxes

    NASA Astrophysics Data System (ADS)

    Simon Wedlund, Mea; Clilverd, Mark A.; Rodger, Craig J.; Cresswell-Moorcock, Kathy; Cobbett, Neil; Breen, Paul; Danskin, Donald; Spanswick, Emma; Rodriguez, Juan V.

    2014-05-01

    Subionospheric radio wave data from an Antarctic-Arctic Radiation-Belt (Dynamic) Deposition VLF Atmospheric Research Konsortia (AARDDVARK) receiver located in Churchill, Canada, is analyzed to determine the characteristics of electron precipitation into the atmosphere over the range 3 < L < 7. The study advances previous work by combining signals from two U.S. transmitters from 20 July to 20 August 2010, allowing error estimates of derived electron precipitation fluxes to be calculated, including the application of time-varying electron energy spectral gradients. Electron precipitation observations from the NOAA POES satellites and a ground-based riometer provide intercomparison and context for the AARDDVARK measurements. AARDDVARK radiowave propagation data showed responses suggesting energetic electron precipitation from the outer radiation belt starting 27 July 2010 and lasting ~20 days. The uncertainty in >30 keV precipitation flux determined by the AARDDVARK technique was found to be ±10%. Peak >30 keV precipitation fluxes of AARDDVARK-derived precipitation flux during the main and recovery phase of the largest geomagnetic storm, which started on 4 August 2010, were >105 el cm-2 s-1 sr-1. The largest fluxes observed by AARDDVARK occurred on the dayside and were delayed by several days from the start of the geomagnetic disturbance. During the main phase of the disturbances, nightside fluxes were dominant. Significant differences in flux estimates between POES, AARDDVARK, and the riometer were found after the main phase of the largest disturbance, with evidence provided to suggest that >700 keV electron precipitation was occurring. Currently the presence of such relativistic electron precipitation introduces some uncertainty in the analysis of AARDDVARK data, given the assumption of a power law electron precipitation spectrum.

  16. Global ionospheric current distributions during substorms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, B.; Kamide, Y.; Akasofu, S.

    1984-03-01

    The growth and decay of global ionospheric currents during magnetospheric substorms on March 17, 18, and 19, 1978 are examined on the basis of magnetic records from the six IMS meridian chains of observatories and others (the total number being 71). The computer code developed by Kamide et al. (1981) and the conductivity model developed by Ahn et al. (1983) are used. Several substorms centered around 1000-1200 UT are chosen in this presentation, since the simultaneous all-sky and riometer records are essential in timing the substorm epochs. Several global feautes that are common to most substorms during the three-day intervalmore » include the following: (1) During a quiet period, currents are often present in the cusp and/or polar cap regions. The cusp current consists of a pair of east-west currents and the polar cap current consists of several vortices. (2) When the interplanetary magnetic field (IMF) B/sub z/ component is positive, but decreases in magnitude, a well-defined westward electrojet develops in the midnight sector. However, this development is not evident in the AE index. (3) A gradual, but distinct growth (often followed by a rapid and large increase) in the AE index is indentified as the intensification of a weaksubstorm current system, which was mentioned in (2), accompanied by typical auroral substorm features, including riometer absorption. (4) The subsequent sharp increase of the AE index arises primarily from a deep intrusion of the westward electrojet into the pre-midnight sector and its equatorward shift. (5) The overall increase of the global current can be significantly differnt fromm what a sharp increase of the AE index indicates. (6) During the recovery phase, the intruded westward electrojet recedes towards the dawn sector.« less

  17. Coincident bursts of auroral kilometric radiation and VLF emissions associted with a type 3 solar radio noise event

    NASA Technical Reports Server (NTRS)

    Rosenberg, T. J.; Singh, S.; Wu, C. S.; Labelle, J.; Treumann, R. A.; Inan, U. S.; Lanzerotti, L. J.

    1995-01-01

    This paper examines an isolated magnetospheric VLF/radio noise event that is highly suggestive of the triggering of terrestrial auroral kilometric radiation (AKR) bu solar type III radio emission and of a close relation between AKR and broadband hiss. The solar type III burst was measured on polar HF riometers and was coincident with local dayside VLF/LF noise emission bursts at South Pole station. It was also coincident with AKR bursts detected onthe AMPTE/IRM satellite, at the same magnetic local time as South Pole. On the basis of the close association of AKR and VLF bursts, and from geometric considerations relating to wave propagation, it is likely that the AKR source was on the dayside and on field lines near South Pole station. The general level of geomagnetic activity was very low. However, an isolated magnetic impulse event (MIE) accompanied by a riometer absorption pulse was in progress when all of the VLF/radio noise bursts occurred. The very close association of the typew III burst at HF with the AKR is consistent with external stimulation of the AKR, is different, more immediate,triggering process than that implied by Calvert (1981) is invoked. It is suggested here that some of the HF solar radiant energy may decay into waves with frequences comparable to those of the AKR by paraetric excitation or some other process, thus providing the few background photons required for the generation of AKR by the WU and Lee (1979) cyclotron maser instability. The AKR, perhaps by modifying the magnetospheric electron velocity distribution, might have produced the observed VLF emissions. Alternatively, the VLF emissions may have arisen from the same anisotropic and unstable electron distribution function responsible for the AKR.

  18. On the Additional Absorption of Radio Emission from Discrete Cosmic Sources Under HF Modification of the Lower Ionosphere

    NASA Astrophysics Data System (ADS)

    Bezrodny, V. G.; Charkina, O. V.; Yampolski, Yu. M.

    2015-12-01

    The possibilities of modification of a weakly ionized plasma are investigated theoretically and experimentally within different electron density behavior models. The dependence of the additional absorption of radiation of discreet cosmic sources Cassiopeia A and Cygnus A in the artificially disturbed ionospheric D-region on the amplitude of heating signal during the special measuring campaigns of February and October 2008 has been analyzed. The ionosphere has been modified with using the world most powerful HAARP heater, Alaska, USA. The 64 beam riometer located in the immediate vicinity of the heater was used as the recording system.

  19. Geophysical disturbance environment during the NASA/MPE barium release at 5 earth radii on September 21, 1971.

    NASA Technical Reports Server (NTRS)

    Davis, T. N.; Stanley, G. M.; Boyd, J. S.

    1973-01-01

    The geophysical disturbance environment was quiet during the NASA/MPE barium release at 5 earth radii on September 21, 1971. At the time of the release, the magnetosphere was in the late recovery phase of a principal magnetic storm, the provisional Dst value was -13 gammas, and the local horizontal disturbance at Great Whale River was near zero. Riometer and other observations indicated low-level widespread precipitation of high-energy electrons at Great Whale River before, during, and after the release. Cloudy sky at this station prevented optical observation of aurora. No magnetic or ionospheric effects attributable to the barium release were detected at Great Whale River.

  20. Characterization and diagnostic methods for geomagnetic auroral infrasound waves

    NASA Astrophysics Data System (ADS)

    Oldham, Justin J.

    Infrasonic perturbations resulting from auroral activity have been observed since the 1950's. In the last decade advances in infrasonic microphone sensitivity, high latitude sensor coverage, time series analysis methods and computational efficiency have elucidated new types of auroral infrasound. Persistent periods of infrasonic activity associated with geomagnetic sub-storms have been termed geomagnetic auroral infrasound waves [GAIW]. We consider 63 GAIW events recorded by the Fairbanks, AK infrasonic array I53US ranging from 2003 to 2014 and encompassing a complete solar cycle. We make observations of the acoustic features of these events alongside magnetometer, riometer, and all-sky camera data in an effort to quantify the ionospheric conditions suitable for infrasound generation. We find that, on average, the generation mechanism for GAIW is confined to a region centered about ~60 0 longitude east of the anti-Sun-Earth line and at ~770 North latitude. We note furthermore that in all cases considered wherein imaging riometer data are available, that dynamic regions of heightened ionospheric conductivity periodically cross the overhead zenith. Consistent features in concurrent magnetometer conditions are also noted, with irregular oscillations in the horizontal component of the field ubiquitous in all cases. In an effort to produce ionosphere based infrasound free from the clutter and unknowns typical of geophysical observations, an experiment was undertaken at the High Frequency Active Auroral Research Program [HAARP] facility in 2012. Infrasonic signals appearing to originate from a source region overhead were observed briefly on 9 August 2012. The signals were observed during a period when an electrojet current was presumed to have passed overhead and while the facilities radio transmitter was periodically heating the lower ionosphere. Our results suggest dynamic auroral electrojet currents as primary sources of much of the observed infrasound, with modulation of the electrojets due to energetic particle precipitation, dispersion due to coupling with gravity waves, and reflection and refraction effects in the intervening atmosphere all potential factors in the shaping of the waveforms observed.

  1. Leveraging the Polar Cap: Ground-Based Measurements of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Urban, K. D.; Gerrard, A. J.; Weatherwax, A. T.; Lanzerotti, L. J.; Patterson, J. D.

    2016-12-01

    In this study, we look at and identify relationships between solar wind quantities that have previously been shown to have direct access into the very high-latitude polar cap as measured by ground-based riometers and magnetometers in Antarctica: ultra-low frequency (ULF) power in the interplanetary magnetic field (IMF) Bz component and solar energetic proton (SEP) flux (Urban [2016] and Patterson et al. [2001], respectively). It is shown that such solar wind and ground-based observations can be used to infer the hydromagnetic structure and magnetospheric mapping of the polar cap region in a data-driven manner, and that high-latitude ground-based instrumentation can be used to infer concurrent various state parameters of the geospace environment.

  2. OBSERVATIONS OF LOW ENERGY SOLAR COSMIC RAYS FROM THE FLARE OF AUGUST 22, 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K.A.; Arnoldy, R.; Hoffman, R.

    1959-10-31

    Observations were made of protons at balloon altitudes in the energy range 100 to 300 Mev following a solar sequence of optical flare, r-f noise bursts, and long enduring noise storm. Other particles are shown to have low upper limits to their abundance. The flare particles continue to be observed for at least 2 days and arguments are given to show that their storage and emission takes place in the solar atmosphere. The differential energy spectrum is derived from ionization versus atmospheric depth data and is found to be E/sup -5/ dE. Observations by riometer and VHF scatter propagation pathsmore » over the polar regions indicate that solar acceleration of protons up to roughly 100 Mev energy is rather frequent. (auth)« less

  3. Propagation and Loss-Cone Properties of Relativistic Electron Beams in the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Sanchez, E. R.; Powis, A.; Greklek, M.; Porazik, P.; Kaganovich, I.

    2017-12-01

    One of the main obstacles for achieving closure of several key outstanding questions in magnetospheric physics has been the lack of accurate magnetic field mapping between processes or regions in the magnetosphere and their ionospheric foot-points. Accurate correspondence between magnetospheric processes or regions and their ionospheric foot-points can be achieved with beams of MeV electrons that propagate along magnetic-field lines in fractions of a second, emitted by compact linear accelerators under controlled conditions at specified points in the magnetosphere, while the atmospheric imprint created by their precipitation is detected by an array of ground-based optical imagers, radars, riometers or X-ray detectors. To prove that successful magnetic field mapping is possible, we must ensure that the beam can be injected into the loss cone, that the spacecraft potentials induced by the beam emission are manageable, that the beam propagates all the way into the topside ionosphere, and that the beam produces a signature detectable from the ground or from low altitude. In this work, we present the latest results of calculations of beam injection and propagation for a wide range of injection distances in the magnetotail equator and geomagnetic conditions to determine under what conditions beams emitted from the magnetosphere would be able to propagate to the topside ionosphere with enough intensity to be detected by ground-based or low-altitude instrumentation. Using ballistic simulations of charged particle motion, we demonstrate that relativistic electron beams can be successfully injected into the loss cone under both ideal (analytic dipole) and realistic (MHD modeled) magnetosphere conditions from a wide range of injection positions. For identical injection coordinates, the impact location on the top of the atmosphere is dependent on the current magnetosphere conditions, demonstrating that this technique can distinguish between the phases of a geomagnetic storm event. Furthermore, taking into account beam emittance and the motion of the spacecraft, the footprint of the beam at impact has enough intensity and is sufficiently narrow to produce a measurable signature with optical imagers, radars or riometers.

  4. Comparison of Ionospheric Parameters during Similar Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.

    2018-03-01

    The degree of closeness of ionospheric parameters during one magnetic storm and of the same parameters during another, similar, storm is estimated. Overall, four storms—two pairs of storms close in structure and appearance according to recording of the magnetic field X-component—were analyzed. The examination was based on data from Sodankyla observatory (Finland). The f-graphs of the ionospheric vertical sounding, magnetometer data, and riometer data on absorption were used. The main results are as follows. The values of the critical frequencies foF2, foF1, and foE for different but similar magnetic storms differ insignificantly. In the daytime, the difference is on average 6% (from 0 to 11.1%) for all ionospheric layers. In the nighttime conditions, the difference for foF2 is 4%. The nighttime values of foEs differ on average by 20%. These estimates potentially make it possible to forecast ionospheric parameters for a particular storm.

  5. Attenuation of Scintillation of Discrete Cosmic Sources during Nonresonant HF Heating of the Upper Ionosphere

    NASA Astrophysics Data System (ADS)

    Bezrodny, V. G.; Watkins, B.; Charkina, O. V.; Yampolski, Y. M.

    2014-03-01

    The aim of the work is to experimentally investigate the response of scintillation spectra and indices of discrete cosmic sources (DCS) to modification of the ionospheric F-region by powerful electromagnetic fields with frequencies exceeding the Langmuir and upper hybrid ones. The results of a special experiment on the scintillations of radiation from DCS Cygnus A observed with using the 64-beam imaging riometer located near the Gakona village (Alaska, USA) are here presented. The ionosphere was artificially disturbed by powerful HAARP heater. Under the studied conditions of nonresonant heating of the ionospheric plasma, an earlier unknown effect of reducing the level of DCS scintillation was discovered. The theoretical interpretation has been given for the discovered effect, which using allowed the proposed technique of solving the inverse problem (recovery deviations of average electron density and temperature in the modified region from their unperturbed values).

  6. Electron Injections Caused by a Dipolarization Flux Bundle

    NASA Astrophysics Data System (ADS)

    Kabin, K.; Kalugin, G. A.; Donovan, E.; Spanswick, E.

    2017-12-01

    We study electron injections caused by an earthward propagating electromagnetic pulse. The background magnetic field model is fully three-dimensional and includes the day-night asymmetry, however, the field lines are contained in the meridional planes. The transient pulse fields, which are prescribed analytically, are also three-dimensional. We study electron energization as a function of the initial radial position and the initial energy. We present results for equatorially-mirroring particles as well as for particles with several other values of the initial pitch angles. The pitch-angle dependence of the energization rates is relatively weak for the equatorial pitch angles greater than about 60o, but particles with smaller pitch angles gain significantly less energy than the equatorial ones. Energy gain factors of 3 to 10 are easily achievable in our model which is sufficient to produce observable features in ground based observations, such as those done by riometers.

  7. Rocket-borne and ground-based measurements in support of the field-widened interferometer experiment - sergeant a30. 276

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulwick, J.C.; Allred, G.D.; Baker, K.D.

    1985-05-28

    In April 1983 Utah State University and Air Force Geophysics Laboratory experimenters launched a Sergeant (A30.276) sounding rocket from the Poker Flat Research Range, Alaska. The prime purpose of the flight was to obtain infrared-spectral measurements in the 2-1.5 micrometer m range during an auroral event. In addition to the prime experiment, which has already been reported, the payload contained four photometers, and energy deposition scintillator and an atomic oxygen detector to gather in-situ supporting data. Simultaneously, all-sky television, meridian scanning photometers, riometer, and magnetometers supported the flight from ground-based measuring sites. This report presents a summary of the rocketbornemore » supporting instruments and the data they gathered and provides a time/intensity history of the event as documented by the ground-based meridian scanners and all-sky television.« less

  8. Solar flare induced cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Ogunmodimu, Olugbenga; Honary, Farideh; Rogers, Neil; Falayi, E. O.; Bolaji, O. S.

    2018-06-01

    Solar flare events are a major observing emphasis for space weather because they affect the ionosphere and can eject high-energy particles that can adversely affect Earth's technologies. In this study we model 38.2 MHz cosmic noise absorption (CNA) by utilising measurements from the Imaging Riometer for Ionospheric Studies (IRIS) at Kilpisjärvi, Finland obtained during solar cycle 23 (1996-2009). We utilised X-ray archive for the same period from the Geostationary Operational Environmental Satellite (GOES) to study solar flare induced cosmic noise absorption. We identified the threshold of flare (M4 class) that could bear significant influence on CNA. Through epoch analysis, we show the magnitude of absorption that each class of flare could produce. Using the parameters of flare and absorption we present a model that could provide the basis for nowcast of CNA induced by M and X-class solar flares.

  9. Analysis of proton and electron spectrometer data from OGO-5 spacecraft

    NASA Technical Reports Server (NTRS)

    Pomerantz, M. A.

    1975-01-01

    The interaction between the geomagnetic and interplanetary magnetic fields is studied through its effects upon the intensities of solar electrons reaching the polar caps during times of strongly anisotropic electron fluxes in the magnetosheath. During the particle event of November 18, 1968, electrons of solar origin were observed outside the magnetopause with detectors aboard OGO-5. Correlative studies of these satellite observations and concurrent measurements by riometers and ionospheric forward scatter systems in both polar regions revealed that the initial stage of the associated polar cap absorption event is attributable to the arrival of solar electrons. Evidence of a north-south asymmetry in the solar electron flux, at a time when the interplanetary magnetic field vector was nearly parallel with the ecliptic plane, supports an open magnetospheric model. The analysis indicates that an anisotropic electron flux may be isotropized at the magnetopause before propagating into the polar regions.

  10. Ionospheric signatures of cusp latitude Pc 3 pulsations

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Anderson, B. J.; Cahill, L. J., Jr.; Arnoldy, R. L.; Rosenberg, T. J.

    1990-01-01

    Search coil magnetometer, riometer, photometer, and ELF-VLF receiver data obtained at South Pole Station and McMurdo, Antarctica during selected days in March and April 1986 are compared. Narrow-band magnetic pulsations in the Pc 3 period range are observed simultaneously at both stations in the dayside sector during times of low IMF cone angle, but are considerably stronger at South Pole, which is located at a latitude near the nominal foot point of the dayside cusp/cleft region. Pulsations in auroral light at 427.8 nm wavelength are often observed with magnetic pulsations at South Pole, but such optical pulsations are not observed at McMurdo. The observations suggest that precipitating magnetosheathlike electrons at nominal dayside cleft latitudes are at times modulated with frequencies similar to those of upstream waves. These particles may play an important role, via modification of ionospheric currents and conductivities, in the transmission of upstream wave signals into the magnetosphere and in the generation of dayside high-latitude Pc 3 pulsations.

  11. Operational Space Weather Products at IPS

    NASA Astrophysics Data System (ADS)

    Neudegg, D.; Steward, G.; Marshall, R.; Terkildsen, M.; Kennewell, J.; Patterson, G.; Panwar, R.

    2008-12-01

    IPS Radio and Space Services operates an extensive network (IPSNET) of monitoring stations and observatories within the Australasian and Antarctic regions to gather information on the space environment. This includes ionosondes, magnetometers, GPS-ISM, oblique HF sounding, riometers, and solar radio and optical telescopes. IPS exchanges this information with similar organisations world-wide. The Regional Warning Centre (RWC) is the Australian Space Forecast Centre (ASFC) and it utilizes this data to provide products and services to support customer operations. A wide range of customers use IPS services including; defence force and emergency services using HF radio communications and surveillance systems, organisations involved in geophysical exploration and pipeline cathodic protection, GPS users in aviation. Subscriptions to the alerts, warnings, forecasts and reports regarding the solar, geophysical and ionospheric conditions are distributed by email and Special Message Service (SMS). IPS also develops and markets widely used PC software prediction tools for HF radio skywave and surface wave (ASAPS/GWPS) and provides consultancy services for system planning.

  12. Periodicities observed on solar flux index (F10.7) during geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Adhikari, B.; Narayan, C.; Chhatkuli, D. N.

    2017-12-01

    Solar activities change within the period of 11 years. Sometimes the greatest event occurs in the period of solar maxima and the lowest activity occurs in the period of solar minimum. During the time period of solar activity sunspots number will vary. A 10.7 cm solar flux measurement is a determination of the strength of solar radio emission. The solar flux index is more often used for the prediction and monitoring of the solar activity. This study mainly focused on the variation on solar flux index and amount of electromagnetic wave in the atmosphere. Both seasonal and yearly variation on solar F10.7 index. We also analyzed the dataset obatained from riometer.Both instruments show seasonal and yearly variations. We also observed the solar cycle dependence on solar flux index and found a strong dependence on solar activity. Results also show that solar intensities higher during the rising phase of solar cycle. We also observed periodicities on solar flux index using wavelet analysis. Through this analysis, it was found that the power intensities of solar flux index show a high spectral variability.

  13. Statistical analysis of solar wind stream interface induced temperature effects on the upper mesosphere and lower thermosphere over SANAE IV, Antarctica

    NASA Astrophysics Data System (ADS)

    Ogunjobi, Olakunle; Sivakumar, Venkataraman; William; Sivla, T.

    Using superposed epoch techniques, the TIMED (Thermosphere Ionosphere Mesosphere Energetic and Dynamics) and NOAA 15-18 (National Oceanic and Atmospheric Administration) satellites measurements are used to examine the response of the polar MLT (Mesosphere and Lower Thermosphere) temperature to energetic electron precipitation during solar wind stream interfaces (SI). We first investigate the relationship between the ionospheric absorption from the ground based riometer and degree of energetic electron precipitation from the MEPED (Medium Energy Proton and Electron Detectors) on board the NOAA satellites. By interpolating the energetic electron measurements from MEPED instruments, we can obtain the electron precipitation rates close in time to the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) temperature retrieval. Using measurements sorted over the vicinity of SANAE IV (South Africa National Antarctic Expedition IV), we investigate if there are significant temperature effects in the MLT altitude on SI arrival at Earth. The preliminary analysis indicate that there are no temperature increase below 100 km prior to the SI triggered precipitation; whereas a clear temperature increase is observed at 95 km immediately after the SI impact. The analysis on the SI geophysical properties indicates that an enhanced magnetospheric convection resulting to heating could be responsible for the temperature modification on SI arrival.

  14. The Polar Engineering Development Center (PEDC) for Coordinated Geospace Observations

    NASA Astrophysics Data System (ADS)

    Gerrard, A. J.; Kim, H.; Weatherwax, A. T.

    2016-12-01

    The PEDC, housed at the New Jersey Institute, consists of a highly skilled group of collegiate professors, research scientists, electrical and mechanical engineers, and technicians that have decades of experience in instrument and hardware design for deployment at high latitude/polar regions. Now supported by NSF and reaching out to serve the broader astrophysical and geospace scientific communities conducting research in polar environments by providing support in the areas of: (a) sustainable "green" power generation in the 10-W to 500-W range, (b) power conditioning and control, (c) robust engineering for polar climates, (d) data acquisition techniques, units, and transmission services, and (e) general polar field support. The original group was formed in the 1980's as part of the NSF-supported Automatic Geophysical Observatory (AGO) program which operates to this day on projects active across the Antarctic ice shelf. In this paper we present the PEDC Antarctic geospace data portal, which was created in order to host and distribute data and quicklook plots from the instrumentation located at South Pole Station, McMurdo Station, and the Automated Geophysical Observatories in Antarctica. At this time, all fluxgate magnetometer data from all of the stations are posted for a time period covering the late 1990's to today's synoptic data. In the coming months, additional datasets (e.g., searchcoil magnetometers, photometers, and riometers) will be likewise posted. This data portal, linked through antarcticgeospace.org or directly via antarcticgeospace.njit.edu, is now open to community use.

  15. Multi beam observations of cosmic radio noise using a VHF radar with beam forming by a Butler matrix

    NASA Astrophysics Data System (ADS)

    Renkwitz, T.; Singer, W.; Latteck, R.; Rapp, M.

    2011-08-01

    The Leibniz-Institute of Atmospheric Physics (IAP) in Kühlungsborn started to install a new MST radar on the North-Norwegian island Andøya (69.30° N, 16.04° E) in 2009. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the previous ALWIN radar which has been successfully operated for more than 10 years. The MAARSY radar provides increased temporal and spatial resolution combined with a flexible sequential point-to-point steering of the radar beam. To increase the spatiotemporal resolution of the observations a 16-port Butler matrix has been built and implemented to the radar. In conjunction with 64 Yagi antennas of the former ALWIN antenna array the Butler matrix simultaneously provides 16 individual beams. The beam forming capability of the Butler matrix arrangement has been verified observing the galactic cosmic radio noise of the supernova remnant Cassiopeia A. Furthermore, this multi beam configuration has been used in passive experiments to estimate the cosmic noise absorption at 53.5 MHz during events of enhanced solar and geomagnetic activity as indicators for enhanced ionization at altitudes below 90 km. These observations are well correlated with simultaneous observations of corresponding beams of the co-located imaging riometer AIRIS (69.14° N, 16.02° E) at 38.2 MHz. In addition, enhanced cosmic noise absorption goes along with enhanced electron densities at altitudes below about 90 km as observed with the co-located Saura MF radar using differential absorption and differential phase measurements.

  16. Studies of Polar Current Systems Using the IMS Scandinavian Magnetometer Array

    NASA Astrophysics Data System (ADS)

    Untiedt, J.; Baumjohann, W.

    1993-09-01

    As a contribution to the International Magnetospheric Study (IMS, 1976 1979) a two-dimensional array of 42 temporary magnetometer stations was run in Scandinavia, supplementary to the permanent observatories and concentrated in the northern part of the region. This effort aimed at the time-dependent (periods above about 100 s) determination of the two-dimensional structure of substorm-related magnetic fields at the Earth's surface with highest reasonable spatial resolution (about 100 km, corresponding to the height of the ionosphere) near the footpoints of field-aligned electric currents that couple the disturbed magnetosphere to the ionosphere at auroral latitudes. It has been of particular advantage for cooperative studies that not only simultaneous data were available from all-sky cameras, riometers, balloons, rockets, and satellites, but also from the STARE radar facility yielding colocated two-dimensional ionospheric electric field distributions. In many cases it therefore was possible to infer the three-dimensional regional structure of substorm-related ionospheric current systems. The first part of this review outlines the basic relationships and methods that have been used or have been developed for such studies. The second short part presents typical equivalent current patterns observed by the magnetometer array in the course of substorms. Finally we review main results of studies that have been based on the magnetometer array observations and on additional data, omitting studies on geomagnetic pulsations. These studies contributed to a clarification of the nature of auroral electrojets including the Harang discontinuity and of ionospheric current systems related to auroral features such as the break-up at midnight, the westward traveling surge, eastward drifting omega bands, and spirals.

  17. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    NASA Astrophysics Data System (ADS)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  18. Effects of Metformin on Spatial and Verbal Memory in Children with ASD and Overweight Associated with Atypical Antipsychotic Use.

    PubMed

    Aman, Michael G; Hollway, Jill A; Veenstra-VanderWeele, Jeremy; Handen, Benjamin L; Sanders, Kevin B; Chan, James; Macklin, Eric; Arnold, L Eugene; Wong, Taylor; Newsom, Cassandra; Hastie Adams, Rianne; Marler, Sarah; Peleg, Naomi; Anagnostou, Evdokia A

    2018-05-01

    Studies in humans and rodents suggest that metformin, a medicine typically used to treat type 2 diabetes, may have beneficial effects on memory. We sought to determine whether metformin improved spatial or verbal memory in children with autism spectrum disorder (ASD) and overweight associated with atypical antipsychotic use. We studied the effects of metformin (Riomet ® ) concentrate on spatial and verbal memory in 51 youth with ASD, ages 6 through 17 years, who were taking atypical antipsychotic medications, had gained significant weight, and were enrolled in a trial of metformin for weight management. Phase 1 was a 16-week, randomized, double-blind, placebo-controlled, parallel-group comparison of metformin (500-850 mg given twice a day) versus placebo. During Phase 2, all participants took open-label metformin from week 17 through week 32. We assessed spatial and verbal memory using the Neuropsychological Assessment 2nd Edition (NEPSY-II) and a modified children's verbal learning task. No measures differed between participants randomized to metformin versus placebo, at either 16 or 32 weeks, after adjustment for multiple comparisons. Sixteen-week change in memory for spatial location on the NEPSY-II was nominally better among participants randomized to placebo. However, patterns of treatment response across all measures revealed no systematic differences in performance, suggesting that metformin had no effect on spatial or verbal memory in these children. Although further study is needed to support these null effects, the overall impression is that metformin does not affect memory in overweight youth with ASD who were taking atypical antipsychotic medications.

  19. Impact of active geomagnetic conditions on stimulated radiation during ionospheric second electron gyroharmonic heating

    NASA Astrophysics Data System (ADS)

    Bordikar, M. R.; Scales, W. A.; Mahmoudian, A.; Kim, H.; Bernhardt, P. A.; Redmon, R.; Samimi, A. R.; Brizcinski, S.; McCarrick, M. J.

    2014-01-01

    Recently, narrowband emissions ordered near the H+ (proton) gyrofrequency (fcH) were reported in the stimulated electromagnetic emission (SEE) spectrum during active geomagnetic conditions. This work presents new observations and theoretical analysis of these recently discovered emissions. These emission lines are observed in the stimulated electromagnetic emission (SEE) spectrum when the transmitter is tuned near the second electron gyroharmonic frequency (2fce) during recent ionospheric modification experiments at the High Frequency Active Auroral Research (HAARP) facility near Gakona, Alaska. The spectral lines are typically shifted below and above the pump wave frequency by harmonics of a frequency roughly 10% less than fcH (≈ 800 Hz) with a narrow emission bandwidth less than the O+ gyrofrequency (≈ 50 Hz). However, new observations and analysis of emission lines ordered by a frequency approximately 10% greater than fcH are presented here for the first time as well. The interaction altitude for the heating for all the observations is in the range of 160 km up to 200 km. As described previously, proton precipitation due to active geomagnetic conditions is considered as the reason for the presence of H+ ions known to be a minor background constituent in this altitude region. DMSP satellite observations over HAARP during the heating experiments and ground-based magnetometer and riometer data validate active geomagnetic conditions. The theory of parametric decay instability in multi-ion component plasma including H+ ions as a minority species described in previous work is expanded in light of simultaneously observed preexisting SEE features to interpret the newly reported observations. Impact of active geomagnetic conditions on the SEE spectrum as a diagnostic tool for proton precipitation event characterization is discussed.

  20. The Role of Localized Compressional Ultra-low Frequency Waves in Energetic Electron Precipitation

    NASA Astrophysics Data System (ADS)

    Rae, I. Jonathan; Murphy, Kyle R.; Watt, Clare E. J.; Halford, Alexa J.; Mann, Ian R.; Ozeke, Louis G.; Sibeck, David G.; Clilverd, Mark A.; Rodger, Craig J.; Degeling, Alex W.; Forsyth, Colin; Singer, Howard J.

    2018-03-01

    Typically, ultra-low frequency (ULF) waves have historically been invoked for radial diffusive transport leading to acceleration and loss of outer radiation belt electrons. At higher frequencies, very low frequency waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere of radiation belt electrons. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to a direct modulation of the loss cone via localized compressional ULF waves. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity, which greatly exceeds the change in pitch angle through conservation of the first and second adiabatic invariants. The precipitation response can be a complex interplay between electron energy, the localization of the waves, the shape of the phase space density profile at low pitch angles, ionospheric decay time scales, and the time dependence of the electron source; we show that two pivotal components not usually considered are localized ULF wave fields and ionospheric decay time scales. We conclude that enhanced precipitation driven by compressional ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm times.

  1. The Challenge of Fulfilling a Perplexing Space Weather User Requirement

    NASA Astrophysics Data System (ADS)

    Kunches, J. M.; Boteler, D.; Wang, H.

    2006-12-01

    To fly commercial aircraft over the poles, it is necessary to ensure that air-ground and air-air communications be maintained throughout the flight. Some U. S. carriers have requested a seven hour lead-time for predictions of HF outages, the primary communication means for flying over the pole. This very difficult-to-meet specification results from the necessity to make alternative fueling arrangements, schedule additional flight crews, modify the loading of the aircraft, etc., to minimize the costs due to redirecting aircraft away from the optimal polar route. To satisfy this stringent requirement, better predictions of solar energetic particle (SEPs) events are necessary. Even soft SEPs can cause HF outages lasting for hours. This requirement challenges the international science community to significantly improve current predictive methodologies. Presently, a 1-2 hour lead-time may be the longest that can be obtained with a reasonable false alarm rate. Globally, there are a number of new programs, organized under the auspices of the International Space Environment Service (ISES), to facilitate progress in meeting the airlines' requirement. The Regional Warning Center in Canada is implementing a network of riometers at high latitudes, so to detect ionospheric conditions that result in HF outages. This chain is now being deployed. The Regional Warning Centers in Russia, China, the United States and Japan are working with the Canadians, to acquire and make available, other real-time data relevant to the problem. These data include solar, interplanetary, geomagnetic and ionospheric data. Clearly this challenge spans the realm of space science, from the solar and galactic origins of energetic particles, to the D-Region of Earth's ionosphere. The presentation will lay out a roadmap for an iterative solution to the prediction challenge, and identify some of the key areas to be addressed.

  2. Ground-based Observations and Atmospheric Modelling of Energetic Electron Precipitation Effects on Antarctic Mesospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Newnham, D.; Clilverd, M. A.; Horne, R. B.; Rodger, C. J.; Seppälä, A.; Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Hendrickx, K.; Megner, L. S.; Kovacs, T.; Feng, W.; Plane, J. M. C.

    2016-12-01

    The effect of energetic electron precipitation (EEP) on the seasonal and diurnal abundances of nitric oxide (NO) and ozone in the Antarctic middle atmosphere during March 2013 to July 2014 is investigated. Geomagnetic storm activity during this period, close to solar maximum, was driven primarily by impulsive coronal mass ejections. Near-continuous ground-based atmospheric measurements have been made by a passive millimetre-wave radiometer deployed at Halley station (75°37'S, 26°14'W, L = 4.6), Antarctica. This location is directly under the region of radiation-belt EEP, at the extremity of magnetospheric substorm-driven EEP, and deep within the polar vortex during Austral winter. Superposed epoch analyses of the ground based data, together with NO observations made by the Solar Occultation For Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, show enhanced mesospheric NO following moderate geomagnetic storms (Dst ≤ -50 nT). Measurements by co-located 30 MHz riometers indicate simultaneous increases in ionisation at 75-90 km directly above Halley when Kp index ≥ 4. Direct NO production by EEP in the upper mesosphere, versus downward transport of NO from the lower thermosphere, is evaluated using a new version of the Whole Atmosphere Community Climate Model incorporating the full Sodankylä Ion Neutral Chemistry Model (WACCM SIC). Model ionization rates are derived from the Polar orbiting Operational Environmental Satellites (POES) second generation Space Environment Monitor (SEM 2) Medium Energy Proton and Electron Detector instrument (MEPED). The model data are compared with observations to quantify the impact of EEP on stratospheric and mesospheric odd nitrogen (NOx), odd hydrogen (HOx), and ozone.

  3. Energetic electron precipitation and auroral morphology at the substorm recovery phase

    NASA Astrophysics Data System (ADS)

    Oyama, S. I.; Kero, A.; Rodger, C. J.; Clilverd, M. A.; Yoshizumi, M.; Partamies, N.; Turunen, E. S.; Tero, R.; Verronen, P. T.; Saito, S.

    2017-12-01

    It is well known that auroral patterns at the substorm recovery phase are characterized by diffuse or patch structures with intensity pulsation. According to satellite measurements and simulation studies, the precipitating electrons associated with these aurorae can reach or exceed energies of a few hundred keV through resonant wave-particle interactions in the magnetosphere. However, because of difficulty of simultaneous measurements, the dependency of energetic electron precipitation (EEP) on auroral morphological changes in the mesoscale has not been investigated to date. In order to study this dependency, we have analyzed data from the European Incoherent Scatter (EISCAT) radar, the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) riometer, collocated cameras, ground-based magnetometers, the Van Allen Probe satellites, Polar Operational Environmental Satellites (POES), and the Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium (AARDDVARK). Here we undertake a detailed examination of two case studies. The selected two events suggest that the highest energy of EEP on those days occurred with auroral patch formation from post-midnight to dawn, coinciding with the substorm onset at local midnight. Measurements of the EISCAT radar showed ionization as low as 65 km altitude, corresponding to EEP with energies of about 500 keV. Enhancements of the deep ionospheric ionization induced by the EEP modify the chemical-reaction balance involving atmospheric minor species such as NOx and HOx. These species may cause reduction in the ozone density at the ionization altitude or the lower region where these species are transported by the vertical convection in the dynamics. Since the EEP is a typical phenomenon at the substorm recovery phase, the ozone density depletion may be a frequent signature although our understanding has not yet reached the maturity of the mechanism behind these evidences. This presentation will discuss the processes related to the EEP and its effects on the atmosphere through changes in the minor components.

  4. The role of localised Ultra-Low Frequency waves in energetic electron precipitation

    NASA Astrophysics Data System (ADS)

    Rae, J.; Murphy, K. R.; Watt, C.; Mann, I. R.; Ozeke, L.; Halford, A. J.; Sibeck, D. G.; Clilverd, M. A.; Rodger, C. J.; Degeling, A. W.; Singer, H. J.

    2016-12-01

    Electromagnetic waves play pivotal roles in radiation belt dynamics through a variety of different means. Typically, Ultra-Low Frequency (ULF) waves have historically been invoked for radial diffusive transport leading to both acceleration and loss of outer radiation belt electrons. Very-Low Frequency (VLF) and Extremely-Low Frequency (ELF) waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to direct modulation of the loss cone via localized compressional ULF waves. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity. We then perform statistical computations of the probability distribution to determine how likely a given magnetic perturbation would produce a given percentage change in the bounce loss-cone (BLC). We discuss the ramifications of the action of coherent, localized compressional ULF waves on drifting electron populations; their precipitation response can be a complex interplay between electron energy, the shape of the phase space density profile at pitch angles close to the loss cone, ionospheric decay timescales, and the time-dependence of the electron source. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. We determine that the two pivotal components not usually considered are localized ULF wave fields and ionospheric decay timescales. We conclude that ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm-times.

  5. Proposal for Creating a Center for Research in Solar-Terrestrial Physics as an Inter-departmental Activity during IHY at Shivaji University, Kolhapur (16.40oN, 74.15oE) (P13)

    NASA Astrophysics Data System (ADS)

    Bhonsle, R. V.; et al.

    2006-11-01

    The Department of Physics, Shivaji University has started M.Sc. (Physics) degree course with a specialization in space science with effect from 1991. Emphasis has been given to the subject of Solar-terrestrial Physics, Astronomy and Astrophysics. The Indian Institute of Geomagnetism, Mumbai and The Physical Research Laboratory, Ahmedabad gave considerable help in starting teaching and research activities by providing instrumentation for experiments related to solar-terrestrial physics. Presently we have Solar Microwave Radiometer, Night Airglow Photometer, Proton Precession Magnetometer, Partial Reflection Radar, Satellite Radio Scintillometer, Automatic Weather Station, Earthquake Prediction and Detection equipments. In addition, there is a Celestron 5” Telescope for optical observations of the Sun, Planets and other celestial phenomena like comets, eclipses etc. With the addition of optical filters such as H-alpha (6563Ao) and Helium-I (10830Ao) filters, solar flares and coronal holes can be monitored using ground based optical telescope. In order to make the experimental setup more complete, a research project proposal is being submitted to DST Govt. of India requesting funds for a Digital Ionosonde, GPS System, Riometer and a Flux-gate Magnetometer and a ST Radar for measurements of wind velocity, waves and turbulence phenomena in the stratosphere and troposphere. This proposed ST Radar and Partial Reflection Radar data can yield valuable data on the dynamics of the middle atmosphere, which is important for the study of sun-weather relationship including chemical and environmental processes in the middle atmosphere. When all the above experiments become operational; a database for STP events can be created with the financial help from DST. Such a database will be a significant contribution from Shivaji University, consistent with the programme of the International Heliophysical Year sponsored by UN/NASA and DST Govt. of India.

  6. The Transition Region Explorer: Observing the Multi-Scale Dynamics of Geospace

    NASA Astrophysics Data System (ADS)

    Donovan, E.

    2015-12-01

    Meso- and global-scale IT remote sensing is accomplished via satellite imagers and ground-based instruments. On the ground, the approach is arrays providing extensive as possible coverage (the "net") and powerful observatories that drill deep to provide detailed information about small-scale processes (the "drill"). Always, there is a trade between cost, spatial resolution, coverage (extent), number of parameters, and more, such that in general the larger the network the sparser the coverage. Where are we now? There are important gaps. With THEMIS-ASI, we see processes that quickly evolve beyond the field of view of one observatory, but involve space/time scales not captured by existing meso- and large-scale arrays. Many forefront questions require observations at heretofore unexplored space and time scales, and comprehensive inter-hemispheric conjugate observations than are presently available. To address this, a new ground-based observing initiative is being developed in Canada. Called TREx, for Transition Region Explorer, this new facility will incorporate dedicated blueline, redline, and Near-Infrared All-Sky Imagers, together with an unprecedented network of ten imaging riometers, with a combined field of view spanning more than three hours of magnetic local time and from equatorward to poleward of typical auroral latitudes (spanning the ionospheric footprint of the "nightside transition region" that separates the highly stretched tail and the inner magnetosphere). The TREx field-of-view is covered by HF radars, and contains a dense network of magnetometers and VLF receivers, as well as other geospace and upper atmospheric remote sensors. Taken together, TREx and these co-located instruments represent a quantum leap forward in terms of imaging, in multiple parameters (precipitation, ionization, convection, and currents), ionospheric dynamics in the above-mentioned scale gap. This represents an exciting new opportunity for studying geospace at the system level, especially for using the aurora to remote sense magnetospheric plasma physics and dynamics, and comes with a set of Big Data challenges that are going to be exciting. One such challenge is the development of a fundamentally new type of data product, namely time series of multi-parameter, geospatially referenced 'data cubes'.

  7. Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Cherniakov, S.

    2017-12-01

    The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of the Tumanny observatory observations were carried out. It gave possibility to obtain the behavior of the electron concentration in time at the selected heights. Using the obtained experimental profiles, the effective recombination coefficients at the D-region heights of the ionosphere have been evaluated.

  8. Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network

    NASA Astrophysics Data System (ADS)

    Shiokawa, Kazuo; Katoh, Yasuo; Hamaguchi, Yoshiyuki; Yamamoto, Yuka; Adachi, Takumi; Ozaki, Mitsunori; Oyama, Shin-Ichiro; Nosé, Masahito; Nagatsuma, Tsutomu; Tanaka, Yoshimasa; Otsuka, Yuichi; Miyoshi, Yoshizumi; Kataoka, Ryuho; Takagi, Yuki; Takeshita, Yuhei; Shinbori, Atsuki; Kurita, Satoshi; Hori, Tomoaki; Nishitani, Nozomu; Shinohara, Iku; Tsuchiya, Fuminori; Obana, Yuki; Suzuki, Shin; Takahashi, Naoko; Seki, Kanako; Kadokura, Akira; Hosokawa, Keisuke; Ogawa, Yasunobu; Connors, Martin; Michael Ruohoniemi, J.; Engebretson, Mark; Turunen, Esa; Ulich, Thomas; Manninen, Jyrki; Raita, Tero; Kero, Antti; Oksanen, Arto; Back, Marko; Kauristie, Kirsti; Mattanen, Jyrki; Baishev, Dmitry; Kurkin, Vladimir; Oinats, Alexey; Pashinin, Alexander; Vasilyev, Roman; Rakhmatulin, Ravil; Bristow, William; Karjala, Marty

    2017-11-01

    The plasmas (electrons and ions) in the inner magnetosphere have wide energy ranges from electron volts to mega-electron volts (MeV). These plasmas rotate around the Earth longitudinally due to the gradient and curvature of the geomagnetic field and by the co-rotation motion with timescales from several tens of hours to less than 10 min. They interact with plasma waves at frequencies of mHz to kHz mainly in the equatorial plane of the magnetosphere, obtain energies up to MeV, and are lost into the ionosphere. In order to provide the global distribution and quantitative evaluation of the dynamical variation of these plasmas and waves in the inner magnetosphere, the PWING project (study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations, http://www.isee.nagoya-u.ac.jp/dimr/PWING/) has been carried out since April 2016. This paper describes the stations and instrumentation of the PWING project. We operate all-sky airglow/aurora imagers, 64-Hz sampling induction magnetometers, 40-kHz sampling loop antennas, and 64-Hz sampling riometers at eight stations at subauroral latitudes ( 60° geomagnetic latitude) in the northern hemisphere, as well as 100-Hz sampling EMCCD cameras at three stations. These stations are distributed longitudinally in Canada, Iceland, Finland, Russia, and Alaska to obtain the longitudinal distribution of plasmas and waves in the inner magnetosphere. This PWING longitudinal network has been developed as a part of the ERG (Arase)-ground coordinated observation network. The ERG (Arase) satellite was launched on December 20, 2016, and has been in full operation since March 2017. We will combine these ground network observations with the ERG (Arase) satellite and global modeling studies. These comprehensive datasets will contribute to the investigation of dynamical variation of particles and waves in the inner magnetosphere, which is one of the most important research topics in recent space physics, and the outcome of our research will improve safe and secure use of geospace around the Earth.[Figure not available: see fulltext.

  9. Observations of Earth space by self-powered stations in Antarctica.

    PubMed

    Mende, S B; Rachelson, W; Sterling, R; Frey, H U; Harris, S E; McBride, S; Rosenberg, T J; Detrick, D; Doolittle, J L; Engebretson, M; Inan, U; Labelle, J W; Lanzerotti, L J; Weatherwax, A T

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power control system with variable resistor shunts to regulate the power and dissipate the excess energy and at the same time provide heat for a temperature controlled environment for the instrument electronics and data system. We deployed such systems and demonstrated a high degree of reliability in several years of operation in spite of the relative unpredictability of the Antarctic environment. Sample data are shown to demonstrate that the AGOs provide key measurements, which would be impossible without the special technology developed for this type of observing platform.

  10. Observations of Earth space by self-powered stations in Antarctica

    NASA Astrophysics Data System (ADS)

    Mende, S. B.; Rachelson, W.; Sterling, R.; Frey, H. U.; Harris, S. E.; McBride, S.; Rosenberg, T. J.; Detrick, D.; Doolittle, J. L.; Engebretson, M.; Inan, U.; Labelle, J. W.; Lanzerotti, L. J.; Weatherwax, A. T.

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power control system with variable resistor shunts to regulate the power and dissipate the excess energy and at the same time provide heat for a temperature controlled environment for the instrument electronics and data system. We deployed such systems and demonstrated a high degree of reliability in several years of operation in spite of the relative unpredictability of the Antarctic environment. Sample data are shown to demonstrate that the AGOs provide key measurements, which would be impossible without the special technology developed for this type of observing platform.

  11. Enhanced Research Opportunity to Study the Atmospheric Forcing by High-Energy Particle Precipitation at High Latitudes: Emerging New Satellite Data and the new Ground-Based Observations in Northern Scandinavia, including the EISCAT_3D Incoherent Scatter Facility.

    NASA Astrophysics Data System (ADS)

    Turunen, E. S.; Ulich, T.; Kero, A.; Tero, R.; Verronen, P. T.; Norberg, J.; Miyoshi, Y.; Oyama, S. I.; Saito, S.; Hosokawa, K.; Ogawa, Y.

    2017-12-01

    Recent observational and model results on the particle precipitation as source of atmospheric variability challenge us to implement better and continuously monitoring observational infrastructure for middle and upper atmospheric research. An example is the effect of high-energy electron precipitation during pulsating aurora on mesospheric ozone, the concentration of which may be reduced by several tens of percent, similarily as during some solar proton events, which are known to occur more rarely than pulsating aurora. So far the Assessment Reports by the Intergovernmental Panel on Climate Change did not include explicitely the particle forcing of middle and upper atmosphere in their climate model scenarios. This will appear for the first time in the upcoming climate simulations. We review recent results related to atmospheric forcing by particle precipitation via effects on chemical composition. We also show the research potential of new ground-based radio measurement techniques, such as spectral riometry and incoherent scatter by new phased-array radars, such as EISCAT_3D, which will be a volumetric, 3- dimensionally imaging radar, distributed in Norway, Sweden, and Finland. It is expected to be operational from 2020 onwards, surpassing all the current IS radars of the world in technology. It will be able to produce continuous information of ionospheric plasma parameters in a volume, including 3D-vector plasma velocities. For the first time we will be able to map the 3D electric currents in ionosphere, as well as we will have continuous vector wind measurements in mesosphere. The geographical area covered by the EISCAT_3D measurements can be expanded by suitably selected other continuous observations, such as optical and satellite tomography networks. A new 100 Hz all-sky camera network was recently installed in Northern Scandinavia in order to support the Japanese Arase satellite mission. In near future the ground-based measurement network will also include new mesospheric ozone observations and a north-south chain of spectral riometers in Finland. New space missions will gain from this emerging enhancement of ground-based observations. Possibly essential new data could be provided by polar orbiting cubesats for which scientific level instrumentation is currently being developed.

  12. Study and verification of multibeam ability for a new VHF-radar in northern Norway

    NASA Astrophysics Data System (ADS)

    Renkwitz, Toralf; Singer, Werner; Latteck, Ralph

    2010-05-01

    The Leibniz-Institute of Atmospheric Physics in Kühlungsborn (IAP) has been operating the ALWIN MST radar system at 53.5 MHz on the North-Norwegian island Andoya for more than 10 years. The antenna array of 144 Yagi antennas has been used to form a 6 degree wide beam on transmission and reception. With this radar, the characteristics of Polar Mesospheric Summer Echoes (PMSE) have been investigated with high time resolution. For future studies of horizontal structures of winds, waves, turbulence and PMSE, the IAP is currently building a new advanced VHF-Radar to replace ALWIN. For this purpose an additional module (Butler matrix) for the receiver of this VHF-Radar has been built which allows the generation of multiple beams in azimuth and zenith angles for simultaneous observations. In 2009 IAP started to build the successor system of the ALWIN radar, called MAARSY (Middle Atmosphere Alomar Radar SYstem). In the first step this new system will consist of a phased array of 217 individual 3-element Yagi antennas arranged in an equilateral grid structure and the same amount of transceiver modules. Furthermore 64 Yagi antennas of the former ALWIN antenna array are still available for reception (ALWIN64). On reception the Butler matrix will be used to form simultaneously 16 beams in hardware with the ALWIN64 array, while for transmission an equal illumination with the MAARSY array will be generated. A Butler matrix is a reciprocal structure composed of half-power 90° hybrid couplers and phase shifters, first described by Butler [1961]. In this structure the total number of available beams is determined by the amount of independent receivers and antenna feeds. A 4-Port Butler matrix simultaneously generates 4 individual in- and outputs. For the current 16 channel radar receiver a 16-Port Butler matrix was built by the concatenation of 8x 4-Port Butler matrices. Using this 16-Port Butler matrix with the ALWIN64 array 16 individual beams with a beam width of approximately 9° are generated. For the height of PMSE-layers the beam width results in a target area of roughly 14km diameter for each single beam. Since the installation of the 16-Port Butler matrix in November 2009 the ALWIN64 antenna array has been used to sample galactic noise. To verify the functionality of the Butler matrix 6 out of 16 beams have been selected to e.g. monitor the supernova remnant Cassiopeia A. It is furthermore planned to verify the Butler matrix measurements by comparing the data with the AIRIS Riometer which is also located on the Island Andoya.

  13. Space weather effects on airline communications in the high latitude regions

    NASA Astrophysics Data System (ADS)

    Stocker, Alan; Siddle, Dave; Warrington, Mike; Honary, Farideh; Zaalov, Nikolay; Homam, Mariyam; Boteler, David; Danskin, Donald; de Franceschi, Georgiana; Ascaneus, Svend

    2013-04-01

    In the polar regions, ground-based VHF facilities for air-traffic control are lacking (and non-existent on the Russian side of the pole) and satellite communication systems either not available or expensive to retrofit to current aircraft and hence there remains a need for HF communication systems. Unfortunately, at these latitudes space weather can significantly affect the propagation of HF radio signals and the forecasting techniques currently employed by the airline industry are somewhat crude. In this paper, a new project that aims to provide forecasting of HF propagation characteristics for use by civilian airlines operating over polar routes will be described and preliminary results presented. Previous work in this area [e.g. Stocker et al., 2007] has focussed on taking HF signal measurements (e.g. SNR, delay and Doppler spread, and direction of arrival) on a limited number of propagation paths and developing an ionospheric model that incorporates high latitude features (e.g. polar patches and arcs) which, when combined with raytracing, allows the broad characteristics of the observations to be reproduced [Warrington et al., 2012]. The new project will greatly extend this work and consists of a number of stages. Firstly, HF measurements from an extensive network of purpose built transmitters and receivers spanning the Arctic regions will be collected and analysed. In order to test a wide variety of scenarios, the propagation paths will have different characteristics, e.g. different lengths and covering different parts of the northern ionosphere (i.e. polar cap paths where both terminals are in the polar cap, trans-auroral paths, and sub-auroral paths) and observations will be taken at a range of HF frequencies for a period covering the current (so far weak) solar maximum and part of the declining phase. Simultaneously, high latitude absorption measurements utilising the Global Riometer Array (GLORIA) will be collected and analysed. Next, the observations of the signal characteristics (i.e. both reflection and absorption properties) will be related to prevailing space weather parameters. Following on from this, an auroral absorption prediction model based on solar wind and interplanetary data will be developed together with the further refinement of the existing ionospheric model taking into account the new observations and adding auroral and polar cap absorption models. Algorithms for nowcasting and forecasting of radio propagation conditions for trans-polar aircraft will then be developed from the ionospheric model. In addition to the approach described above, the benefits of ground station diversity using both the experimental data and the models developed during the project will also be investigated. Stocker A.J., E.M. Warrington, and D.R. Siddle, Comparison between the measured and predicted parameters of HF radio signals propagating along the mid-latitude trough and within the polar cap, Radio Science, 42, RS3019, doi:10.1029/2006RS003557, 2007. Warrington EM, Zaalov NY, Stocker AJ, Naylor JS, HF propagation modelling within the polar ionosphere, Radio Science, 47, Article number RS0L13, doi:10.1029/2011RS004909, 2012.

Top