Science.gov

Sample records for rishon model

  1. The Harari Shupe preon model and nonrelativistic quantum phase space

    NASA Astrophysics Data System (ADS)

    Żenczykowski, P.

    2008-03-01

    We propose that the whole algebraic structure of the Harari-Shupe rishon model originates via a Dirac-like linearization of quadratic form x2 +p2, with position and momentum satisfying standard commutation relations. The scheme does not invoke the concept of preons as spin-1/2 subparticles, thus evading the problem of preon confinement, while fully explaining all symmetries emboded in the Harari-Shupe model. Furthermore, the concept of quark colour is naturally linked to the ordering of rishons. Our scheme leads to group U (1) ⊗ SU (3) combined with SU (2), with two of the SU (2) generators not commuting with reflections. An interpretation of intra-generation quark-lepton transformations in terms of genuine rotations and reflections in phase space is proposed.

  2. Four Preon Composite Quarks and Leptons

    NASA Astrophysics Data System (ADS)

    Rajpoot, S.; Samuel, Mark A.

    A model is presented in which quarks and leptons are composites of three spin-(1)/(2) preons and a scalar preon. The model is an extension of the rishon model and consists of two spin-(1)/(2) preons T, V and a scalar preon S as the fundamental building blocks of matter. Assuming distinguishability of states due to the order assigned to the preons in forming the quark and lepton states, the concepts of flavour, colour and generation number acquire meaning only at the level of compositeness. The model predicts four generations of conventional quarks and leptons.

  3. Modeling

    SciTech Connect

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  4. Leadership Models.

    ERIC Educational Resources Information Center

    Freeman, Thomas J.

    This paper discusses six different models of organizational structure and leadership, including the scalar chain or pyramid model, the continuum model, the grid model, the linking pin model, the contingency model, and the circle or democratic model. Each model is examined in a separate section that describes the model and its development, lists…

  5. Models and role models.

    PubMed

    ten Cate, Jacob M

    2015-01-01

    Developing experimental models to understand dental caries has been the theme in our research group. Our first, the pH-cycling model, was developed to investigate the chemical reactions in enamel or dentine, which lead to dental caries. It aimed to leverage our understanding of the fluoride mode of action and was also utilized for the formulation of oral care products. In addition, we made use of intra-oral (in situ) models to study other features of the oral environment that drive the de/remineralization balance in individual patients. This model addressed basic questions, such as how enamel and dentine are affected by challenges in the oral cavity, as well as practical issues related to fluoride toothpaste efficacy. The observation that perhaps fluoride is not sufficiently potent to reduce dental caries in the present-day society triggered us to expand our knowledge in the bacterial aetiology of dental caries. For this we developed the Amsterdam Active Attachment biofilm model. Different from studies on planktonic ('single') bacteria, this biofilm model captures bacteria in a habitat similar to dental plaque. With data from the combination of these models, it should be possible to study separate processes which together may lead to dental caries. Also products and novel agents could be evaluated that interfere with either of the processes. Having these separate models in place, a suggestion is made to design computer models to encompass the available information. Models but also role models are of the utmost importance in bringing and guiding research and researchers. PMID:25871413

  6. Models, Fiction, and Fictional Models

    NASA Astrophysics Data System (ADS)

    Liu, Chuang

    2014-03-01

    The following sections are included: * Introduction * Why Most Models in Science Are Not Fictional * Typically Fictional Models in Science * Modeling the Unobservable * Fictional Models for the Unobservable? * References

  7. Models, Part IV: Inquiry Models.

    ERIC Educational Resources Information Center

    Callison, Daniel

    2002-01-01

    Discusses models for information skills that include inquiry-oriented activities. Highlights include WebQuest, which uses Internet resources supplemented with videoconferencing; Minnesota's Inquiry Process based on the Big Six model for information problem-solving; Indiana's Student Inquiry Model; constructivist learning models for inquiry; and…

  8. Supermatrix models

    SciTech Connect

    Yost, S.A.

    1991-05-01

    Radom matrix models based on an integral over supermatrices are proposed as a natural extension of bosonic matrix models. The subtle nature of superspace integration allows these models to have very different properties from the analogous bosonic models. Two choices of integration slice are investigated. One leads to a perturbative structure which is reminiscent of, and perhaps identical to, the usual Hermitian matrix models. Another leads to an eigenvalue reduction which can be described by a two component plasma in one dimension. A stationary point of the model is described.

  9. Supermatrix models

    SciTech Connect

    Yost, S.A. . Dept. of Physics and Astronomy)

    1992-09-30

    In this paper, random matrix models based on an integral over supermatrices are proposed as a natural extension of bosonic matrix models. The subtle nature of superspace integration allows these models to have very different properties from the analogous bosonic models. Two choices of integration slice are investigated. One leads to a perturbative structure which is reminiscent of, and perhaps identical to, the usual Hermitian matrix models. Another leads to an eigenvalue reduction which can be described by a two-component plasma in one dimension. A stationary point of the model is described.

  10. Turbulence modeling

    NASA Technical Reports Server (NTRS)

    Rubesin, Morris W.

    1987-01-01

    Recent developments at several levels of statistical turbulence modeling applicable to aerodynamics are briefly surveyed. Emphasis is on examples of model improvements for transonic, two-dimensional flows. Experience with the development of these improved models is cited to suggest methods of accelerating the modeling process necessary to keep abreast of the rapid movement of computational fluid dynamics into the computation of complex three-dimensional flows.

  11. Architectural Models

    ERIC Educational Resources Information Center

    Levenson, Harold E.; Hurni, Andre

    1978-01-01

    Suggests building models as a way to reinforce and enhance related subjects such as architectural drafting, structural carpentry, etc., and discusses time, materials, scales, tools or equipment needed, how to achieve realistic special effects, and the types of projects that can be built (model of complete building, a panoramic model, and model…

  12. Radiation Models

    ERIC Educational Resources Information Center

    James, W. G. G.

    1970-01-01

    Discusses the historical development of both the wave and the corpuscular photon model of light. Suggests that students should be informed that the two models are complementary and that each model successfully describes a wide range of radiation phenomena. Cites 19 references which might be of interest to physics teachers and students. (LC)

  13. Hydrological models are mediating models

    NASA Astrophysics Data System (ADS)

    Babel, L. V.; Karssenberg, D.

    2013-08-01

    Despite the increasing role of models in hydrological research and decision-making processes, only few accounts of the nature and function of models exist in hydrology. Earlier considerations have traditionally been conducted while making a clear distinction between physically-based and conceptual models. A new philosophical account, primarily based on the fields of physics and economics, transcends classes of models and scientific disciplines by considering models as "mediators" between theory and observations. The core of this approach lies in identifying models as (1) being only partially dependent on theory and observations, (2) integrating non-deductive elements in their construction, and (3) carrying the role of instruments of scientific enquiry about both theory and the world. The applicability of this approach to hydrology is evaluated in the present article. Three widely used hydrological models, each showing a different degree of apparent physicality, are confronted to the main characteristics of the "mediating models" concept. We argue that irrespective of their kind, hydrological models depend on both theory and observations, rather than merely on one of these two domains. Their construction is additionally involving a large number of miscellaneous, external ingredients, such as past experiences, model objectives, knowledge and preferences of the modeller, as well as hardware and software resources. We show that hydrological models convey the role of instruments in scientific practice by mediating between theory and the world. It results from these considerations that the traditional distinction between physically-based and conceptual models is necessarily too simplistic and refers at best to the stage at which theory and observations are steering model construction. The large variety of ingredients involved in model construction would deserve closer attention, for being rarely explicitly presented in peer-reviewed literature. We believe that devoting

  14. Model Experiments and Model Descriptions

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Ko, Malcolm K. W.; Weisenstein, Debra; Scott, Courtney J.; Shia, Run-Lie; Rodriguez, Jose; Sze, N. D.; Vohralik, Peter; Randeniya, Lakshman; Plumb, Ian

    1999-01-01

    The Second Workshop on Stratospheric Models and Measurements Workshop (M&M II) is the continuation of the effort previously started in the first Workshop (M&M I, Prather and Remsberg [1993]) held in 1992. As originally stated, the aim of M&M is to provide a foundation for establishing the credibility of stratospheric models used in environmental assessments of the ozone response to chlorofluorocarbons, aircraft emissions, and other climate-chemistry interactions. To accomplish this, a set of measurements of the present day atmosphere was selected. The intent was that successful simulations of the set of measurements should become the prerequisite for the acceptance of these models as having a reliable prediction for future ozone behavior. This section is divided into two: model experiment and model descriptions. In the model experiment, participant were given the charge to design a number of experiments that would use observations to test whether models are using the correct mechanisms to simulate the distributions of ozone and other trace gases in the atmosphere. The purpose is closely tied to the needs to reduce the uncertainties in the model predicted responses of stratospheric ozone to perturbations. The specifications for the experiments were sent out to the modeling community in June 1997. Twenty eight modeling groups responded to the requests for input. The first part of this section discusses the different modeling group, along with the experiments performed. Part two of this section, gives brief descriptions of each model as provided by the individual modeling groups.

  15. Analytical Models

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A system-level design and analysis model was developed. This model was conceived to have several key elements: a solar pond thermodynamic performance model, a power generation subsystem model, and an economic analysis element. The basic approach was to create these elements or modules and refine them on an individual basis yet retain the capability to easily couple them into a full system design model. This building block approach allows for maximum flexibility and substitution of refined descriptions as the technology develops. A general overview of interconnecting these subsystem models is presented. The primary program control element will perform the administrative functions of data input, data output, information storage and transfer, and sequential calling of the subsystem models. From the point of view of the requirements of a system design model, a power conversion subsystem model was developed. The goal of the effort was a preliminary subsystem model compatible with the solar pond subsystem model so that a first order system simulation analysis could be performed.

  16. Modeling Pharmacokinetics.

    PubMed

    Bois, Frederic Y; Brochot, Céline

    2016-01-01

    Pharmacokinetics is the study of the fate of xenobiotics in a living organism. Physiologically based pharmacokinetic (PBPK) models provide realistic descriptions of xenobiotics' absorption, distribution, metabolism, and excretion processes. They model the body as a set of homogeneous compartments representing organs, and their parameters refer to anatomical, physiological, biochemical, and physicochemical entities. They offer a quantitative mechanistic framework to understand and simulate the time-course of the concentration of a substance in various organs and body fluids. These models are well suited for performing extrapolations inherent to toxicology and pharmacology (e.g., between species or doses) and for integrating data obtained from various sources (e.g., in vitro or in vivo experiments, structure-activity models). In this chapter, we describe the practical development and basic use of a PBPK model from model building to model simulations, through implementation with an easily accessible free software. PMID:27311461

  17. ICRF modelling

    SciTech Connect

    Phillips, C.K.

    1985-12-01

    This lecture provides a survey of the methods used to model fast magnetosonic wave coupling, propagation, and absorption in tokamaks. The validity and limitations of three distinct types of modelling codes, which will be contrasted, include discrete models which utilize ray tracing techniques, approximate continuous field models based on a parabolic approximation of the wave equation, and full field models derived using finite difference techniques. Inclusion of mode conversion effects in these models and modification of the minority distribution function will also be discussed. The lecture will conclude with a presentation of time-dependent global transport simulations of ICRF-heated tokamak discharges obtained in conjunction with the ICRF modelling codes. 52 refs., 15 figs.

  18. Ventilation Model

    SciTech Connect

    H. Yang

    1999-11-04

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future.

  19. Climate Models

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.

    2012-01-01

    Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.

  20. Phenomenological models

    SciTech Connect

    Braby, L.A.

    1990-09-01

    The biological effects of ionizing radiation exposure are the result of a complex sequence of physical, chemical, biochemical, and physiological interactions. One way to begin a search for an understanding of health effects of radiation is through the development of phenomenological models of the response. Many models have been presented and tested in the slowly evolving process of characterizing cellular response. A range of models covering different endpoints and phenomena has developed in parallel. Many of these models employ similar assumptions about some underlying processes while differing about the nature of others. An attempt is made to organize many of the models into groups with similar features and to compare the consequences of those features with the actual experimental observations. It is assumed that by showing that some assumptions are inconsistent with experimental observations, the job of devising and testing mechanistic models can be simplified. 43 refs., 13 figs.

  1. Building models

    SciTech Connect

    Burr, M.T.

    1995-04-01

    As developers make progress on independent power projects around the world, models for success are beginning to emerge. Different models are evolving to create ownership structures that accomoate a complex system of regulatory requirements. Other frameworks make use of previously untapped fuel resources, or establish new sources of financing; however, not all models may be applied to a given project. This article explores how developers are finding new alternatives for overcoming development challenges that are common to projects in many countries.

  2. Calorimetry modeling

    SciTech Connect

    Robinson, C.E.

    1990-01-01

    A heat-flow calorimeter has been modeled on a Compaq PC, using the Algor Heat Transfer Modeling and Analysis Program, Algor Interactive Systems, Inc., Pittsburgh, PA. Employed in this application of the Algor finite element analysis program are two-dimensional axisymmetric thermal conductivity elements. The development of a computer calorimeter modeling program allows for the testing of new materials and techniques without actual fabrication of the calorimeter. 2 figs.

  3. Cloud Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)

    2001-01-01

    Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.

  4. Ventilation Model

    SciTech Connect

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post

  5. Model Selection for Geostatistical Models

    SciTech Connect

    Hoeting, Jennifer A.; Davis, Richard A.; Merton, Andrew A.; Thompson, Sandra E.

    2006-02-01

    We consider the problem of model selection for geospatial data. Spatial correlation is typically ignored in the selection of explanatory variables and this can influence model selection results. For example, the inclusion or exclusion of particular explanatory variables may not be apparent when spatial correlation is ignored. To address this problem, we consider the Akaike Information Criterion (AIC) as applied to a geostatistical model. We offer a heuristic derivation of the AIC in this context and provide simulation results that show that using AIC for a geostatistical model is superior to the often used approach of ignoring spatial correlation in the selection of explanatory variables. These ideas are further demonstrated via a model for lizard abundance. We also employ the principle of minimum description length (MDL) to variable selection for the geostatistical model. The effect of sampling design on the selection of explanatory covariates is also explored.

  6. Turbulence modeling

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.

    1995-01-01

    The objective of this work is to develop, verify, and incorporate the baseline two-equation turbulence models which account for the effects of compressibility into the three-dimensional Reynolds averaged Navier-Stokes (RANS) code and to provide documented descriptions of the models and their numerical procedures so that they can be implemented into 3-D CFD codes for engineering applications.

  7. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  8. Modeling Sunspots

    ERIC Educational Resources Information Center

    Oh, Phil Seok; Oh, Sung Jin

    2013-01-01

    Modeling in science has been studied by education researchers for decades and is now being applied broadly in school. It is among the scientific practices featured in the "Next Generation Science Standards" ("NGSS") (Achieve Inc. 2013). This article describes modeling activities in an extracurricular science club in a high…

  9. Phonological Models.

    ERIC Educational Resources Information Center

    Ballard, W.L.

    1968-01-01

    The article discusses models of synchronic and diachronic phonology and suggests changes in them. The basic generative model of phonology is outlined with the author's reinterpretations. The systematic phonemic level is questioned in terms of its unreality with respect to linguistic performance and its lack of validity with respect to historical…

  10. Student Modelers.

    ERIC Educational Resources Information Center

    Confrey, Jere; Doerr, Helen M.

    1994-01-01

    Presents an argument for learner-centered modeling tools and approaches that take into account students' conceptions. Based on a theoretical argument for the interplay of grounded activity and systematic inquiry, the article reports on a study of an integrated science and mathematics high school class that investigated modeling activities.…

  11. Protein structure modeling with MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2014-01-01

    Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized at atomic resolution using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. In this chapter, we present an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of a similar protocol has resulted in models of useful accuracy for domains in more than half of all known protein sequences.

  12. Linguistic models and linguistic modeling.

    PubMed

    Pedryez, W; Vasilakos, A V

    1999-01-01

    The study is concerned with a linguistic approach to the design of a new category of fuzzy (granular) models. In contrast to numerically driven identification techniques, we concentrate on budding meaningful linguistic labels (granules) in the space of experimental data and forming the ensuing model as a web of associations between such granules. As such models are designed at the level of information granules and generate results in the same granular rather than pure numeric format, we refer to them as linguistic models. Furthermore, as there are no detailed numeric estimation procedures involved in the construction of the linguistic models carried out in this way, their design mode can be viewed as that of a rapid prototyping. The underlying algorithm used in the development of the models utilizes an augmented version of the clustering technique (context-based clustering) that is centered around a notion of linguistic contexts-a collection of fuzzy sets or fuzzy relations defined in the data space (more precisely a space of input variables). The detailed design algorithm is provided and contrasted with the standard modeling approaches commonly encountered in the literature. The usefulness of the linguistic mode of system modeling is discussed and illustrated with the aid of numeric studies including both synthetic data as well as some time series dealing with modeling traffic intensity over a broadband telecommunication network.

  13. OSPREY Model

    SciTech Connect

    Veronica J. Rutledge

    2013-01-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of off-gas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data is obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data and parameters were input into the adsorption model to develop models specific for krypton adsorption. The same can be done for iodine, xenon, and tritium. The model will be validated with experimental breakthrough curves. Customers will be given access to

  14. Model hydrographs

    USGS Publications Warehouse

    Mitchell, W.D.

    1972-01-01

    Model hydrographs are composed of pairs of dimensionless ratios, arrayed in tabular form, which, when modified by the appropriate values of rainfall exceed and by the time and areal characteristics of the drainage basin, satisfactorily represent the flood hydrograph for the basin. Model bydrographs are developed from a dimensionless translation hydrograph, having a time base of T hours and appropriately modified for storm duration by routing through reservoir storage, S=kOx. Models fall into two distinct classes: (1) those for which the value of x is unity and which have all the characteristics of true unit hydrographs and (2) those for which the value of x is other than unity and to which the unit-hydrograph principles of proportionality and superposition do not apply. Twenty-six families of linear models and eight families of nonlinear models in tabular form from the principal subject of this report. Supplemental discussions describe the development of the models and illustrate their application. Other sections of the report, supplemental to the tables, describe methods of determining the hydrograph characteristics, T, k, and x, both from observed hydrograph and from the physical characteristics of the drainage basin. Five illustrative examples of use show that the models, when properly converted to incorporate actual rainfall excess and the time and areal characteristics of the drainage basins, do indeed satisfactorily represent the observed flood hydrographs for the basins.

  15. Stereometric Modelling

    NASA Astrophysics Data System (ADS)

    Grimaldi, P.

    2012-07-01

    These mandatory guidelines are provided for preparation of papers accepted for publication in the series of Volumes of The The stereometric modelling means modelling achieved with : - the use of a pair of virtual cameras, with parallel axes and positioned at a mutual distance average of 1/10 of the distance camera-object (in practice the realization and use of a stereometric camera in the modeling program); - the shot visualization in two distinct windows - the stereoscopic viewing of the shot while modelling. Since the definition of "3D vision" is inaccurately referred to as the simple perspective of an object, it is required to add the word stereo so that "3D stereo vision " shall stand for "three-dimensional view" and ,therefore, measure the width, height and depth of the surveyed image. Thanks to the development of a stereo metric model , either real or virtual, through the "materialization", either real or virtual, of the optical-stereo metric model made visible with a stereoscope. It is feasible a continuous on line updating of the cultural heritage with the help of photogrammetry and stereometric modelling. The catalogue of the Architectonic Photogrammetry Laboratory of Politecnico di Bari is available on line at: http://rappresentazione.stereofot.it:591/StereoFot/FMPro?-db=StereoFot.fp5&-lay=Scheda&-format=cerca.htm&-view

  16. Phenomenological models.

    PubMed

    Braby, L A

    1991-01-01

    The biological effects of ionizing radiation exposure are the result of a complex sequence of physical, chemical, biochemical, and physiological interactions which are modified by characteristics of the radiation, the timing of its administration, the chemical and physical environment, and the nature of the biological system. However, it is generally agreed that the health effects in animals originate from changes in individual cells, or possibly small groups of cells, and that these cellular changes are initiated by ionizations and excitations produced by the passage of charged particles through the cells. One way to begin a search for an understanding of health effects of radiation is through the development of phenomenological models of the response. Many models have been presented and tested in the slowly evolving process of characterizing cellular response. Different phenomena (LET dependence, dose rate effect, oxygen effect etc.) and different end points (cell survival, aberration formation, transformation, etc.) have been observed, and no single model has been developed to cover all of them. Instead, a range of models covering different end points and phenomena have developed in parallel. Many of these models employ similar assumptions about some underlying processes while differing about the nature of others. An attempt is made to organize many of the models into groups with similar features and to compare the consequences of those features with the actual experimental observations. It is assumed that by showing that some assumptions are inconsistent with experimental observations, the job of devising and testing mechanistic models can be simplified. PMID:1811477

  17. Phenomenological models.

    PubMed

    Braby, L A

    1991-01-01

    The biological effects of ionizing radiation exposure are the result of a complex sequence of physical, chemical, biochemical, and physiological interactions which are modified by characteristics of the radiation, the timing of its administration, the chemical and physical environment, and the nature of the biological system. However, it is generally agreed that the health effects in animals originate from changes in individual cells, or possibly small groups of cells, and that these cellular changes are initiated by ionizations and excitations produced by the passage of charged particles through the cells. One way to begin a search for an understanding of health effects of radiation is through the development of phenomenological models of the response. Many models have been presented and tested in the slowly evolving process of characterizing cellular response. Different phenomena (LET dependence, dose rate effect, oxygen effect etc.) and different end points (cell survival, aberration formation, transformation, etc.) have been observed, and no single model has been developed to cover all of them. Instead, a range of models covering different end points and phenomena have developed in parallel. Many of these models employ similar assumptions about some underlying processes while differing about the nature of others. An attempt is made to organize many of the models into groups with similar features and to compare the consequences of those features with the actual experimental observations. It is assumed that by showing that some assumptions are inconsistent with experimental observations, the job of devising and testing mechanistic models can be simplified.

  18. Modular Modeling System Model Builder

    SciTech Connect

    McKim, C.S.; Matthews, M.T.

    1996-12-31

    The latest release of the Modular Modeling System (MMS) Model Builder adds still more time-saving features to an already powerful MMS dynamic-simulation tool set. The Model Builder takes advantage of 32-bit architecture within the Microsoft Windows 95/NT{trademark} Operating Systems to better integrate a mature library of power-plant components. In addition, the MMS Library of components can now be modified and extended with a new tool named MMS CompGen{trademark}. The MMS Model Builder allows the user to quickly build a graphical schematic representation for a plant by selecting from a library of predefined power plant components to dynamically simulate their operation. In addition, each component has a calculation subroutine stored in a dynamic-link library (DLL), which facilitates the determination of a steady-state condition and performance of routine calculations for the component. These calculations, termed auto-parameterization, help avoid repetitive and often tedious hand calculations for model initialization. In striving to meet the needs for large models and increase user productivity, the MMS Model Builder has been completely revamped to make power plant model creation and maintainability easier and more efficient.

  19. A Model for Math Modeling

    ERIC Educational Resources Information Center

    Lin, Tony; Erfan, Sasan

    2016-01-01

    Mathematical modeling is an open-ended research subject where no definite answers exist for any problem. Math modeling enables thinking outside the box to connect different fields of studies together including statistics, algebra, calculus, matrices, programming and scientific writing. As an integral part of society, it is the foundation for many…

  20. Energy Models

    EPA Science Inventory

    Energy models characterize the energy system, its evolution, and its interactions with the broader economy. The energy system consists of primary resources, including both fossil fuels and renewables; power plants, refineries, and other technologies to process and convert these r...

  1. Modeling Arcs

    SciTech Connect

    Insepov, Z.; Norem, J.; Vetizer, S.; Mahalingam, S.

    2011-12-23

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gradient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  2. Programming models

    SciTech Connect

    Daniel, David J; Mc Pherson, Allen; Thorp, John R; Barrett, Richard; Clay, Robert; De Supinski, Bronis; Dube, Evi; Heroux, Mike; Janssen, Curtis; Langer, Steve; Laros, Jim

    2011-01-14

    A programming model is a set of software technologies that support the expression of algorithms and provide applications with an abstract representation of the capabilities of the underlying hardware architecture. The primary goals are productivity, portability and performance.

  3. PREDICTIVE MODELS

    SciTech Connect

    Ray, R.M. )

    1986-12-01

    PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1) chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2) carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3) in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4) polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5) steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

  4. Mechanistic models

    SciTech Connect

    Curtis, S.B.

    1990-09-01

    Several models and theories are reviewed that incorporate the idea of radiation-induced lesions (repairable and/or irreparable) that can be related to molecular lesions in the DNA molecule. Usually the DNA double-strand or chromatin break is suggested as the critical lesion. In the models, the shoulder on the low-LET survival curve is hypothesized as being due to one (or more) of the following three mechanisms: (1) interaction'' of lesions produced by statistically independent particle tracks; (2) nonlinear (i.e., linear-quadratic) increase in the yield of initial lesions, and (3) saturation of repair processes at high dose. Comparisons are made between the various approaches. Several significant advances in model development are discussed; in particular, a description of the matrix formulation of the Markov versions of the RMR and LPL models is given. The more advanced theories have incorporated statistical fluctuations in various aspects of the energy-loss and lesion-formation process. An important direction is the inclusion of physical and chemical processes into the formulations by incorporating relevant track structure theory (Monte Carlo track simulations) and chemical reactions of radiation-induced radicals. At the biological end, identification of repair genes and how they operate as well as a better understanding of how DNA misjoinings lead to lethal chromosome aberrations are needed for appropriate inclusion into the theories. More effort is necessary to model the complex end point of radiation-induced carcinogenesis.

  5. Mechanistic models

    SciTech Connect

    Curtis, S.B.

    1990-09-01

    Several models and theories are reviewed that incorporate the idea of radiation-induced lesions (repairable and/or irreparable) that can be related to molecular lesions in the DNA molecule. Usually the DNA double-strand or chromatin break is suggested as the critical lesion. In the models, the shoulder on the low-LET survival curve is hypothesized as being due to one (or more) of the following three mechanisms: (1) ``interaction`` of lesions produced by statistically independent particle tracks; (2) nonlinear (i.e., linear-quadratic) increase in the yield of initial lesions, and (3) saturation of repair processes at high dose. Comparisons are made between the various approaches. Several significant advances in model development are discussed; in particular, a description of the matrix formulation of the Markov versions of the RMR and LPL models is given. The more advanced theories have incorporated statistical fluctuations in various aspects of the energy-loss and lesion-formation process. An important direction is the inclusion of physical and chemical processes into the formulations by incorporating relevant track structure theory (Monte Carlo track simulations) and chemical reactions of radiation-induced radicals. At the biological end, identification of repair genes and how they operate as well as a better understanding of how DNA misjoinings lead to lethal chromosome aberrations are needed for appropriate inclusion into the theories. More effort is necessary to model the complex end point of radiation-induced carcinogenesis.

  6. Modeling reality

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1990-01-01

    Although powerful computers have allowed complex physical and manmade hardware systems to be modeled successfully, we have encountered persistent problems with the reliability of computer models for systems involving human learning, human action, and human organizations. This is not a misfortune; unlike physical and manmade systems, human systems do not operate under a fixed set of laws. The rules governing the actions allowable in the system can be changed without warning at any moment, and can evolve over time. That the governing laws are inherently unpredictable raises serious questions about the reliability of models when applied to human situations. In these domains, computers are better used, not for prediction and planning, but for aiding humans. Examples are systems that help humans speculate about possible futures, offer advice about possible actions in a domain, systems that gather information from the networks, and systems that track and support work flows in organizations.

  7. Supernova models

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the /sup 56/Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed.

  8. Painting models

    NASA Astrophysics Data System (ADS)

    Baart, F.; Donchyts, G.; van Dam, A.; Plieger, M.

    2015-12-01

    The emergence of interactive art has blurred the line between electronic, computer graphics and art. Here we apply this art form to numerical models. Here we show how the transformation of a numerical model into an interactive painting can both provide insights and solve real world problems. The cases that are used as an example include forensic reconstructions, dredging optimization, barrier design. The system can be fed using any source of time varying vector fields, such as hydrodynamic models. The cases used here, the Indian Ocean (HYCOM), the Wadden Sea (Delft3D Curvilinear), San Francisco Bay (3Di subgrid and Delft3D Flexible Mesh), show that the method used is suitable for different time and spatial scales. High resolution numerical models become interactive paintings by exchanging their velocity fields with a high resolution (>=1M cells) image based flow visualization that runs in a html5 compatible web browser. The image based flow visualization combines three images into a new image: the current image, a drawing, and a uv + mask field. The advection scheme that computes the resultant image is executed in the graphics card using WebGL, allowing for 1M grid cells at 60Hz performance on mediocre graphic cards. The software is provided as open source software. By using different sources for a drawing one can gain insight into several aspects of the velocity fields. These aspects include not only the commonly represented magnitude and direction, but also divergence, topology and turbulence .

  9. Atmospheric Modeling

    EPA Science Inventory

    Although air quality models have been applied historically to address issues specific to ambient air quality standards (i.e., one criteria pollutant at a time) or welfare (e.g.. acid deposition or visibility impairment). they are inherently multipollutant based. Therefore. in pri...

  10. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  11. Modeling Convection

    ERIC Educational Resources Information Center

    Ebert, James R.; Elliott, Nancy A.; Hurteau, Laura; Schulz, Amanda

    2004-01-01

    Students must understand the fundamental process of convection before they can grasp a wide variety of Earth processes, many of which may seem abstract because of the scales on which they operate. Presentation of a very visual, concrete model prior to instruction on these topics may facilitate students' understanding of processes that are largely…

  12. Ensemble Models

    EPA Science Inventory

    Ensemble forecasting has been used for operational numerical weather prediction in the United States and Europe since the early 1990s. An ensemble of weather or climate forecasts is used to characterize the two main sources of uncertainty in computer models of physical systems: ...

  13. Criticality Model

    SciTech Connect

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality

  14. Models, Part V: Composition Models.

    ERIC Educational Resources Information Center

    Callison, Daniel

    2003-01-01

    Describes four models: The Authoring Cycle, a whole language approach that reflects the inquiry process; I-Search, an approach to research that uses the power of student interests; Cultural Celebration, using local heritage topics; and Science Lab Report, for the composition of a lab report. (LRW)

  15. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  16. Dendrite Model

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.

  17. Modeling biomembranes.

    SciTech Connect

    Plimpton, Steven James; Heffernan, Julieanne; Sasaki, Darryl Yoshio; Frischknecht, Amalie Lucile; Stevens, Mark Jackson; Frink, Laura J. Douglas

    2005-11-01

    Understanding the properties and behavior of biomembranes is fundamental to many biological processes and technologies. Microdomains in biomembranes or ''lipid rafts'' are now known to be an integral part of cell signaling, vesicle formation, fusion processes, protein trafficking, and viral and toxin infection processes. Understanding how microdomains form, how they depend on membrane constituents, and how they act not only has biological implications, but also will impact Sandia's effort in development of membranes that structurally adapt to their environment in a controlled manner. To provide such understanding, we created physically-based models of biomembranes. Molecular dynamics (MD) simulations and classical density functional theory (DFT) calculations using these models were applied to phenomena such as microdomain formation, membrane fusion, pattern formation, and protein insertion. Because lipid dynamics and self-organization in membranes occur on length and time scales beyond atomistic MD, we used coarse-grained models of double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided equilibrium information on membrane structure. Experimental work was performed to further help elucidate the fundamental membrane organization principles.

  18. Model checking

    NASA Technical Reports Server (NTRS)

    Dill, David L.

    1995-01-01

    Automatic formal verification methods for finite-state systems, also known as model-checking, successfully reduce labor costs since they are mostly automatic. Model checkers explicitly or implicitly enumerate the reachable state space of a system, whose behavior is described implicitly, perhaps by a program or a collection of finite automata. Simple properties, such as mutual exclusion or absence of deadlock, can be checked by inspecting individual states. More complex properties, such as lack of starvation, require search for cycles in the state graph with particular properties. Specifications to be checked may consist of built-in properties, such as deadlock or 'unspecified receptions' of messages, another program or implicit description, to be compared with a simulation, bisimulation, or language inclusion relation, or an assertion in one of several temporal logics. Finite-state verification tools are beginning to have a significant impact in commercial designs. There are many success stories of verification tools finding bugs in protocols or hardware controllers. In some cases, these tools have been incorporated into design methodology. Research in finite-state verification has been advancing rapidly, and is showing no signs of slowing down. Recent results include probabilistic algorithms for verification, exploitation of symmetry and independent events, and the use symbolic representations for Boolean functions and systems of linear inequalities. One of the most exciting areas for further research is the combination of model-checking with theorem-proving methods.

  19. Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-06-01

    Molecular modeling has trickled down from the realm of pharmaceutical and research laboratories into the realm of undergraduate chemistry instruction. It has opened avenues for the visualization of chemical concepts that previously were difficult or impossible to convey. I am sure that many of you have developed exercises using the various molecular modeling tools. It is the desire of this Journal to become an avenue for you to share these exercises among your colleagues. It is to this end that Ron Starkey has agreed to edit such a column and to publish not only the description of such exercises, but also the software documents they use. The WWW is the obvious medium to distribute this combination and so accepted submissions will appear online as a feature of JCE Internet. Typical molecular modeling exercise: finding conformation energies. Molecular Modeling Exercises and Experiments is the latest feature column of JCE Internet, joining Conceptual Questions and Challenge Problems, Hal's Picks, and Mathcad in the Chemistry Curriculum. JCE Internet continues to seek submissions in these areas of interest and submissions of general interest. If you have developed materials and would like to submit them, please see our Guide to Submissions for more information. The Chemical Education Resource Shelf, Equipment Buyers Guide, and WWW Site Review would also like to hear about chemistry textbooks and software, equipment, and WWW sites, respectively. Please consult JCE Internet Features to learn more about these resources at JCE Online. Email Announcements Would you like to be informed by email when the latest issue of the Journal is available online? when a new JCE Software title is shipping? when a new JCE Internet article has been published or is available for Open Review? when your subscription is about to expire? A new feature of JCE Online makes this possible. Visit our Guestbook to learn how. When

  20. Students' Models of Curve Fitting: A Models and Modeling Perspective

    ERIC Educational Resources Information Center

    Gupta, Shweta

    2010-01-01

    The Models and Modeling Perspectives (MMP) has evolved out of research that began 26 years ago. MMP researchers use Model Eliciting Activities (MEAs) to elicit students' mental models. In this study MMP was used as the conceptual framework to investigate the nature of students' models of curve fitting in a problem-solving environment consisting of…

  1. 10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: 1' = 400' HORIZONTAL, 1' = 100' VERTICAL), AND GREENVILLE BRIDGE MODEL (MODEL SCALE: 1' = 360' HORIZONTAL, 1' = 100' VERTICAL). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  2. Biomimetic modelling.

    PubMed Central

    Vincent, Julian F V

    2003-01-01

    Biomimetics is seen as a path from biology to engineering. The only path from engineering to biology in current use is the application of engineering concepts and models to biological systems. However, there is another pathway: the verification of biological mechanisms by manufacture, leading to an iterative process between biology and engineering in which the new understanding that the engineering implementation of a biological system can bring is fed back into biology, allowing a more complete and certain understanding and the possibility of further revelations for application in engineering. This is a pathway as yet unformalized, and one that offers the possibility that engineers can also be scientists. PMID:14561351

  3. Fault models

    NASA Astrophysics Data System (ADS)

    Sayah, H. R.; Buehler, M. G.

    1985-06-01

    A major problem in the qualification of integrated circuit cells and in the development of adequate tests for the circuits is to lack of information on the nature and density of fault models. Some of this information is being obtained from the test structures. In particular, the Pinhole Array Capacitor is providing values for the resistance of gate oxide shorts, and the Addressable Inverter Matrix is providing values for parameter distributions such as noise margins. Another CMOS fault mode, that of the open-gated transistor, is examined and the state of the transistors assessed. Preliminary results are described for a number of open-gated structures such as transistors, inverters, and NAND gates. Resistor faults are applied to various CMOS gates and the time responses are noted. The critical value for the resistive short to upset the gate response was determined.

  4. Modeling uncertainty: quicksand for water temperature modeling

    USGS Publications Warehouse

    Bartholow, John M.

    2003-01-01

    Uncertainty has been a hot topic relative to science generally, and modeling specifically. Modeling uncertainty comes in various forms: measured data, limited model domain, model parameter estimation, model structure, sensitivity to inputs, modelers themselves, and users of the results. This paper will address important components of uncertainty in modeling water temperatures, and discuss several areas that need attention as the modeling community grapples with how to incorporate uncertainty into modeling without getting stuck in the quicksand that prevents constructive contributions to policy making. The material, and in particular the reference, are meant to supplement the presentation given at this conference.

  5. Pre-Modeling Ensures Accurate Solid Models

    ERIC Educational Resources Information Center

    Gow, George

    2010-01-01

    Successful solid modeling requires a well-organized design tree. The design tree is a list of all the object's features and the sequential order in which they are modeled. The solid-modeling process is faster and less prone to modeling errors when the design tree is a simple and geometrically logical definition of the modeled object. Few high…

  6. CISNET lung models: Comparison of model assumptions and model structures

    PubMed Central

    McMahon, Pamela M.; Hazelton, William; Kimmel, Marek; Clarke, Lauren

    2012-01-01

    Sophisticated modeling techniques can be powerful tools to help us understand the effects of cancer control interventions on population trends in cancer incidence and mortality. Readers of journal articles are however rarely supplied with modeling details. Six modeling groups collaborated as part of the National Cancer Institute’s Cancer Intervention and Surveillance Modeling Network (CISNET) to investigate the contribution of US tobacco control efforts towards reducing lung cancer deaths over the period 1975 to 2000. The models included in this monograph were developed independently and use distinct, complementary approaches towards modeling the natural history of lung cancer. The models used the same data for inputs and agreed on the design of the analysis and the outcome measures. This article highlights aspects of the models that are most relevant to similarities of or differences between the results. Structured comparisons can increase the transparency of these complex models. PMID:22882887

  7. Building Mental Models by Dissecting Physical Models

    ERIC Educational Resources Information Center

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to…

  8. I&C Modeling in SPAR Models

    SciTech Connect

    John A. Schroeder

    2012-06-01

    The Standardized Plant Analysis Risk (SPAR) models for the U.S. commercial nuclear power plants currently have very limited instrumentation and control (I&C) modeling [1]. Most of the I&C components in the operating plant SPAR models are related to the reactor protection system. This was identified as a finding during the industry peer review of SPAR models. While the Emergency Safeguard Features (ESF) actuation and control system was incorporated into the Peach Bottom Unit 2 SPAR model in a recent effort [2], various approaches to expend resources for detailed I&C modeling in other SPAR models are investigated.

  9. Comparative Protein Structure Modeling Using MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2014-09-08

    Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described.

  10. Comparative Protein Structure Modeling Using MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2016-01-01

    Comparative protein structure modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. © 2016 by John Wiley & Sons, Inc. PMID:27322406

  11. Comparative Protein Structure Modeling Using MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2016-06-20

    Comparative protein structure modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. © 2016 by John Wiley & Sons, Inc.

  12. An extended cure model and model selection.

    PubMed

    Peng, Yingwei; Xu, Jianfeng

    2012-04-01

    We propose a novel interpretation for a recently proposed Box-Cox transformation cure model, which leads to a natural extension of the cure model. Based on the extended model, we consider an important issue of model selection between the mixture cure model and the bounded cumulative hazard cure model via the likelihood ratio test, score test and Akaike's Information Criterion (AIC). Our empirical study shows that AIC is informative and both the score test and the likelihood ratio test have adequate power to differentiate between the mixture cure model and the bounded cumulative hazard cure model when the sample size is large. We apply the tests and AIC methods to leukemia and colon cancer data to examine the appropriateness of the cure models considered for them in the literature.

  13. Model selection for logistic regression models

    NASA Astrophysics Data System (ADS)

    Duller, Christine

    2012-09-01

    Model selection for logistic regression models decides which of some given potential regressors have an effect and hence should be included in the final model. The second interesting question is whether a certain factor is heterogeneous among some subsets, i.e. whether the model should include a random intercept or not. In this paper these questions will be answered with classical as well as with Bayesian methods. The application show some results of recent research projects in medicine and business administration.

  14. Multilevel Model Prediction

    ERIC Educational Resources Information Center

    Frees, Edward W.; Kim, Jee-Seon

    2006-01-01

    Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…

  15. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  16. Sand-box modelling

    SciTech Connect

    Avery, P.

    1983-01-01

    As the result of an enquiry into BHRA's physical-reservoir-modelling experience, the use of sand box models was investigated. The type of model was considered a possible means of confirmation of a numerical model. The problem facing the numerical model user was comparing the performance of inclined or horizontal oil wells with that of the conventional vertical well.

  17. Solicited abstract: Global hydrological modeling and models

    NASA Astrophysics Data System (ADS)

    Xu, Chong-Yu

    2010-05-01

    The origins of rainfall-runoff modeling in the broad sense can be found in the middle of the 19th century arising in response to three types of engineering problems: (1) urban sewer design, (2) land reclamation drainage systems design, and (3) reservoir spillway design. Since then numerous empirical, conceptual and physically-based models are developed including event based models using unit hydrograph concept, Nash's linear reservoir models, HBV model, TOPMODEL, SHE model, etc. From the late 1980s, the evolution of global and continental-scale hydrology has placed new demands on hydrologic modellers. The macro-scale hydrological (global and regional scale) models were developed on the basis of the following motivations (Arenll, 1999). First, for a variety of operational and planning purposes, water resource managers responsible for large regions need to estimate the spatial variability of resources over large areas, at a spatial resolution finer than can be provided by observed data alone. Second, hydrologists and water managers are interested in the effects of land-use and climate variability and change over a large geographic domain. Third, there is an increasing need of using hydrologic models as a base to estimate point and non-point sources of pollution loading to streams. Fourth, hydrologists and atmospheric modellers have perceived weaknesses in the representation of hydrological processes in regional and global climate models, and developed global hydrological models to overcome the weaknesses of global climate models. Considerable progress in the development and application of global hydrological models has been achieved to date, however, large uncertainties still exist considering the model structure including large scale flow routing, parameterization, input data, etc. This presentation will focus on the global hydrological models, and the discussion includes (1) types of global hydrological models, (2) procedure of global hydrological model development

  18. Bohr model as an algebraic collective model

    SciTech Connect

    Rowe, D. J.; Welsh, T. A.; Caprio, M. A.

    2009-05-15

    Developments and applications are presented of an algebraic version of Bohr's collective model. Illustrative examples show that fully converged calculations can be performed quickly and easily for a large range of Hamiltonians. As a result, the Bohr model becomes an effective tool in the analysis of experimental data. The examples are chosen both to confirm the reliability of the algebraic collective model and to show the diversity of results that can be obtained by its use. The focus of the paper is to facilitate identification of the limitations of the Bohr model with a view to developing more realistic, computationally tractable models.

  19. Building mental models by dissecting physical models.

    PubMed

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to ensure focused learning; models that are too constrained require less supervision, but can be constructed mechanically, with little to no conceptual engagement. We propose "model-dissection" as an alternative to "model-building," whereby instructors could make efficient use of supervisory resources, while simultaneously promoting focused learning. We report empirical results from a study conducted with biology undergraduate students, where we demonstrate that asking them to "dissect" out specific conceptual structures from an already built 3D physical model leads to a significant improvement in performance than asking them to build the 3D model from simpler components. Using questionnaires to measure understanding both before and after model-based interventions for two cohorts of students, we find that both the "builders" and the "dissectors" improve in the post-test, but it is the latter group who show statistically significant improvement. These results, in addition to the intrinsic time-efficiency of "model dissection," suggest that it could be a valuable pedagogical tool. PMID:26712513

  20. Geologic Framework Model Analysis Model Report

    SciTech Connect

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the

  1. Models of Magnetism.

    ERIC Educational Resources Information Center

    Borges, A. Tarciso; Gilbert, John K.

    1998-01-01

    Investigates the mental models that people construct about magnetic phenomena. Involves students, physics teachers, engineers, and practitioners. Proposes five models following a progression from simple description to a field model. Contains 28 references. (DDR)

  2. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  3. Forest succession models

    SciTech Connect

    Shugart, H.H. Jr.; West, D.C.

    1980-05-01

    Studies in succession attempt to determine the changes in species composition and other ecosystem attributes expected to occur over periods of time. Mathematical models developed in forestry and ecology to study ecological succession are reviewed. Tree models, gap models and forest models are discussed. Model validation or testing procedures are described. Model applications can involve evaluating large-scale and long-term changes in the ambient levels of pollutants and assessing the effects of climate change on the environment. (RJC)

  4. Modeling of geothermal systems

    SciTech Connect

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1985-03-01

    During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

  5. Generalized smooth models

    SciTech Connect

    Glosup, J.

    1992-07-23

    The class of gene linear models is extended to develop a class of nonparametric regression models known as generalized smooth models. The technique of local scoring is used to estimate a generalized smooth model and the estimation procedure based on locally weighted regression is shown to produce local likelihood estimates. The asymptotically correct distribution of the deviance difference is derived and its use in comparing the fits of generalized linear models and generalized smooth models is illustrated. The relationship between generalized smooth models and generalized additive models is discussed, also.

  6. ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT

    SciTech Connect

    Clinton Lum

    2002-02-04

    The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS M&O 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS M&O 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4

  7. Scaled models, scaled frequencies, and model fitting

    NASA Astrophysics Data System (ADS)

    Roxburgh, Ian W.

    2015-12-01

    I show that given a model star of mass M, radius R, and density profile ρ(x) [x = r/R], there exists a two parameter family of models with masses Mk, radii Rk, density profile ρk(x) = λρ(x) and frequencies νknℓ = λ1/2νnℓ, where λ,Rk/RA are scaling factors. These models have different internal structures, but all have the same value of separation ratios calculated at given radial orders n, and all exactly satisfy a frequency matching algorithm with an offset function determined as part of the fitting procedure. But they do not satisfy ratio matching at given frequencies nor phase shift matching. This illustrates that erroneous results may be obtained when model fitting with ratios at given n values or frequency matching. I give examples from scaled models and from non scaled evolutionary models.

  8. Better models are more effectively connected models

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Bielders, Charles; Darboux, Frederic; Fiener, Peter; Finger, David; Turnbull-Lloyd, Laura; Wainwright, John

    2016-04-01

    The concept of hydrologic and geomorphologic connectivity describes the processes and pathways which link sources (e.g. rainfall, snow and ice melt, springs, eroded areas and barren lands) to accumulation areas (e.g. foot slopes, streams, aquifers, reservoirs), and the spatial variations thereof. There are many examples of hydrological and sediment connectivity on a watershed scale; in consequence, a process-based understanding of connectivity is crucial to help managers understand their systems and adopt adequate measures for flood prevention, pollution mitigation and soil protection, among others. Modelling is often used as a tool to understand and predict fluxes within a catchment by complementing observations with model results. Catchment models should therefore be able to reproduce the linkages, and thus the connectivity of water and sediment fluxes within the systems under simulation. In modelling, a high level of spatial and temporal detail is desirable to ensure taking into account a maximum number of components, which then enables connectivity to emerge from the simulated structures and functions. However, computational constraints and, in many cases, lack of data prevent the representation of all relevant processes and spatial/temporal variability in most models. In most cases, therefore, the level of detail selected for modelling is too coarse to represent the system in a way in which connectivity can emerge; a problem which can be circumvented by representing fine-scale structures and processes within coarser scale models using a variety of approaches. This poster focuses on the results of ongoing discussions on modelling connectivity held during several workshops within COST Action Connecteur. It assesses the current state of the art of incorporating the concept of connectivity in hydrological and sediment models, as well as the attitudes of modellers towards this issue. The discussion will focus on the different approaches through which connectivity

  9. Biosphere Model Report

    SciTech Connect

    D. W. Wu

    2003-07-16

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  10. Biosphere Model Report

    SciTech Connect

    M. A. Wasiolek

    2003-10-27

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  11. Qualitative Student Models.

    ERIC Educational Resources Information Center

    Clancey, William J.

    The concept of a qualitative model is used as the focus of this review of qualitative student models in order to compare alternative computational models and to contrast domain requirements. The report is divided into eight sections: (1) Origins and Goals (adaptive instruction, qualitative models of processes, components of an artificial…

  12. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  13. The Instrumental Model

    ERIC Educational Resources Information Center

    Yeates, Devin Rodney

    2011-01-01

    The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…

  14. AIDS Epidemiological models

    NASA Astrophysics Data System (ADS)

    Rahmani, Fouad Lazhar

    2010-11-01

    The aim of this paper is to present mathematical modelling of the spread of infection in the context of the transmission of the human immunodeficiency virus (HIV) and the acquired immune deficiency syndrome (AIDS). These models are based in part on the models suggested in the field of th AIDS mathematical modelling as reported by ISHAM [6].

  15. Enclosure fire dynamics model

    NASA Technical Reports Server (NTRS)

    Bellan, J.

    1979-01-01

    A practical situation of an enclosure fire is presented and why the need for a fire dynamic model is addressed. The difficulties in establishing a model are discussed, along with a brief review of enclosure fire models available. The approximation of the practical situation and the model developed are presented.

  16. Modeling for Understanding.

    ERIC Educational Resources Information Center

    Klopfer, Eric; Colella, Vanessa

    This paper focuses on one method used to introduce model design and creation using StarLogo to a group of high school teachers. Teachers with model-building skills can easily customize modeling environments for their classes. More importantly, model building can enable teachers to approach their curricula from a more holistic perspective, as well…

  17. Calibrated Properties Model

    SciTech Connect

    C.F. Ahlers, H.H. Liu

    2001-12-18

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M&O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  18. Calibrated Properties Model

    SciTech Connect

    C. Ahlers; H. Liu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  19. Introduction to Adjoint Models

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.

    2015-01-01

    In this lecture, some fundamentals of adjoint models will be described. This includes a basic derivation of tangent linear and corresponding adjoint models from a parent nonlinear model, the interpretation of adjoint-derived sensitivity fields, a description of methods of automatic differentiation, and the use of adjoint models to solve various optimization problems, including singular vectors. Concluding remarks will attempt to correct common misconceptions about adjoint models and their utilization.

  20. Stable models of superacceleration

    SciTech Connect

    Kaplinghat, Manoj; Rajaraman, Arvind

    2007-05-15

    We discuss an instability in a large class of models where dark energy is coupled to matter. In these models the mass of the scalar field is much larger than the expansion rate of the Universe. We find models in which this instability is absent, and show that these models generically predict an apparent equation of state for dark energy smaller than -1, i.e., superacceleration. These models have no acausal behavior or ghosts.

  1. WASP TRANSPORT MODELING AND WASP ECOLOGICAL MODELING

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  2. Multiple model inference.

    SciTech Connect

    Swiler, Laura Painton; Urbina, Angel

    2010-07-01

    This paper compares three approaches for model selection: classical least squares methods, information theoretic criteria, and Bayesian approaches. Least squares methods are not model selection methods although one can select the model that yields the smallest sum-of-squared error function. Information theoretic approaches balance overfitting with model accuracy by incorporating terms that penalize more parameters with a log-likelihood term to reflect goodness of fit. Bayesian model selection involves calculating the posterior probability that each model is correct, given experimental data and prior probabilities that each model is correct. As part of this calculation, one often calibrates the parameters of each model and this is included in the Bayesian calculations. Our approach is demonstrated on a structural dynamics example with models for energy dissipation and peak force across a bolted joint. The three approaches are compared and the influence of the log-likelihood term in all approaches is discussed.

  3. Model Validation Status Review

    SciTech Connect

    E.L. Hardin

    2001-11-28

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  4. Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    2000-01-01

    The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP, LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir Space Station. This report gives the details of the model-data comparisons-summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a combination report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian-trapped radiation models.

  5. Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    2000-01-01

    The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP. LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir space station. This report gives the details of the model-data comparisons -- summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a companion report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian trapped radiation models.

  6. Modeling nonstationary longitudinal data.

    PubMed

    Núñez-Antón, V; Zimmerman, D L

    2000-09-01

    An important theme of longitudinal data analysis in the past two decades has been the development and use of explicit parametric models for the data's variance-covariance structure. A variety of these models have been proposed, of which most are second-order stationary. A few are flexible enough to accommodate nonstationarity, i.e., nonconstant variances and/or correlations that are not a function solely of elapsed time between measurements. We review five nonstationary models that we regard as most useful: (1) the unstructured covariance model, (2) unstructured antedependence models, (3) structured antedependence models, (4) autoregressive integrated moving average and similar models, and (5) random coefficients models. We evaluate the relative strengths and limitations of each model, emphasizing when it is inappropriate or unlikely to be useful. We present three examples to illustrate the fitting and comparison of the models and to demonstrate that nonstationary longitudinal data can be modeled effectively and, in some cases, quite parsimoniously. In these examples, the antedependence models generally prove to be superior and the random coefficients models prove to be inferior. We conclude that antedependence models should be given much greater consideration than they have historically received.

  7. Modeling Hydrothermal Mineralization: Fractal or Multifrcatal Models?

    NASA Astrophysics Data System (ADS)

    Cheng, Q.

    2004-05-01

    Hydrothermal mineralization occurs when the natural geo-processes involve the interaction of ore material-carrying hydrothermal fluids with rocks in the earth's crust in a specific geological environment. Mineralization can cause element concentration enrichment or depletion in the country rocks. Local enrichment may form ore body that can be mined for profit at the current economic and technological conditions. To understand the spatial distribution of element concentration enrichment or depletion caused by mineralization in a mineral district is essential for mineral exploration and mineral prediction. Grade-tonnage model and mineral deposits size distribution model are common models used for characterizing mineral deposits. This paper proposes a non-linear mineralization model on the basis of a modified classical igneous differentiation mineralization model to describe the generation of multifractal distribution of element concentration in the country rocks as well as grade-tonnage fractal/multifractal distribution of ore deposits that have been often observed in hydrothermal mineralization. This work may also lead to a singularity model to explain the common properties of mineralization and mineralization-associated geochemical anomaly diversity and the generalized self-similarity of the anomalies. The model has been applied to a case study of mineral deposits prediction and mineral resource assessment in the Abitibi district, northern Ontario, Canada.

  8. Modeling the transition region

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.

    1993-01-01

    The current status of transition-region models is reviewed in this report. To understand modeling problems, various flow features that influence the transition process are discussed first. Then an overview of the different approaches to transition-region modeling is given. This is followed by a detailed discussion of turbulence models and the specific modifications that are needed to predict flows undergoing laminar-turbulent transition. Methods for determining the usefulness of the models are presented, and an outlook for the future of transition-region modeling is suggested.

  9. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  10. Holographic twin Higgs model.

    PubMed

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  11. Holographic twin Higgs model.

    PubMed

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider. PMID:26024160

  12. Modeling worldwide highway networks

    NASA Astrophysics Data System (ADS)

    Villas Boas, Paulino R.; Rodrigues, Francisco A.; da F. Costa, Luciano

    2009-12-01

    This Letter addresses the problem of modeling the highway systems of different countries by using complex networks formalism. More specifically, we compare two traditional geographical models with a modified geometrical network model where paths, rather than edges, are incorporated at each step between the origin and the destination vertices. Optimal configurations of parameters are obtained for each model and used for the comparison. The highway networks of Australia, Brazil, India, and Romania are considered and shown to be properly modeled by the modified geographical model.

  13. Energy-consumption modelling

    SciTech Connect

    Reiter, E.R.

    1980-01-01

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  14. Reliability model generator

    NASA Technical Reports Server (NTRS)

    McMann, Catherine M. (Inventor); Cohen, Gerald C. (Inventor)

    1991-01-01

    An improved method and system for automatically generating reliability models for use with a reliability evaluation tool is described. The reliability model generator of the present invention includes means for storing a plurality of low level reliability models which represent the reliability characteristics for low level system components. In addition, the present invention includes means for defining the interconnection of the low level reliability models via a system architecture description. In accordance with the principles of the present invention, a reliability model for the entire system is automatically generated by aggregating the low level reliability models based on the system architecture description.

  15. A future of the model organism model

    PubMed Central

    Rine, Jasper

    2014-01-01

    Changes in technology are fundamentally reframing our concept of what constitutes a model organism. Nevertheless, research advances in the more traditional model organisms have enabled fresh and exciting opportunities for young scientists to establish new careers and offer the hope of comprehensive understanding of fundamental processes in life. New advances in translational research can be expected to heighten the importance of basic research in model organisms and expand opportunities. However, researchers must take special care and implement new resources to enable the newest members of the community to engage fully with the remarkable legacy of information in these fields. PMID:24577733

  16. Develop a Model Component

    NASA Technical Reports Server (NTRS)

    Ensey, Tyler S.

    2013-01-01

    During my internship at NASA, I was a model developer for Ground Support Equipment (GSE). The purpose of a model developer is to develop and unit test model component libraries (fluid, electrical, gas, etc.). The models are designed to simulate software for GSE (Ground Special Power, Crew Access Arm, Cryo, Fire and Leak Detection System, Environmental Control System (ECS), etc. .) before they are implemented into hardware. These models support verifying local control and remote software for End-Item Software Under Test (SUT). The model simulates the physical behavior (function, state, limits and 110) of each end-item and it's dependencies as defined in the Subsystem Interface Table, Software Requirements & Design Specification (SRDS), Ground Integrated Schematic (GIS), and System Mechanical Schematic.(SMS). The software of each specific model component is simulated through MATLAB's Simulink program. The intensiv model development life cycle is a.s follows: Identify source documents; identify model scope; update schedule; preliminary design review; develop model requirements; update model.. scope; update schedule; detailed design review; create/modify library component; implement library components reference; implement subsystem components; develop a test script; run the test script; develop users guide; send model out for peer review; the model is sent out for verifictionlvalidation; if there is empirical data, a validation data package is generated; if there is not empirical data, a verification package is generated; the test results are then reviewed; and finally, the user. requests accreditation, and a statement of accreditation is prepared. Once each component model is reviewed and approved, they are intertwined together into one integrated model. This integrated model is then tested itself, through a test script and autotest, so that it can be concluded that all models work conjointly, for a single purpose. The component I was assigned, specifically, was a

  17. Biosphere Model Report

    SciTech Connect

    D.W. Wu; A.J. Smith

    2004-11-08

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  18. Aerosol Modeling for the Global Model Initiative

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.

    2001-01-01

    The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.

  19. Nonlinear Modeling by Assembling Piecewise Linear Models

    NASA Technical Reports Server (NTRS)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  20. Aggregation in ecosystem models and model stability

    NASA Astrophysics Data System (ADS)

    Giricheva, Evgeniya

    2015-05-01

    Using a multimodal approach to research ecosystems improves usage of available information on an object. This study presents several models of the Bering Sea ecosystem. The ecosystem is considered as a closed object, that is, the influence of the environment is not provided. We then add the links with the external medium in the models. The models differ in terms of the degree and method of grouping components. Our method is based on the differences in habitat and food source of groups, which allows us to determine the grouping of species with a greater effect on system dynamics. In particular, we determine whether benthic fish aggregation or pelagic fish aggregation can change the consumption structure of some groups of species, and consequently, the behavior of the entire model system.

  1. PREDICTIVE MODELS. Enhanced Oil Recovery Model

    SciTech Connect

    Ray, R.M.

    1992-02-26

    PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

  2. Modeling EERE deployment programs

    SciTech Connect

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.; Livingston, O. V.

    2007-11-01

    The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.

  3. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  4. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  5. Communication system modeling

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Walsh, J. R., Jr.; Wetherington, R. D.

    1971-01-01

    This report presents the results of work on communications systems modeling and covers three different areas of modeling. The first of these deals with the modeling of signals in communication systems in the frequency domain and the calculation of spectra for various modulations. These techniques are applied in determining the frequency spectra produced by a unified carrier system, the down-link portion of the Command and Communications System (CCS). The second modeling area covers the modeling of portions of a communication system on a block basis. A detailed analysis and modeling effort based on control theory is presented along with its application to modeling of the automatic frequency control system of an FM transmitter. A third topic discussed is a method for approximate modeling of stiff systems using state variable techniques.

  6. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  7. SEDIMENT GEOCHEMICAL MODEL

    EPA Science Inventory

    Until recently, sediment geochemical models (diagenetic models) have been only able to explain sedimentary flux and concentration profiles for a few simplified geochemical cycles (e.g., nitrogen, carbon and sulfur). However with advances in numerical methods, increased accuracy ...

  8. Mass modeling for bars

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1987-01-01

    Methods of modeling mass for bars are surveyed. A method for extending John Archer's concept of consistent mass beyond just translational inertia effects is included. Recommendations are given for various types of modeling situations.

  9. Models (Part 1).

    ERIC Educational Resources Information Center

    Callison, Daniel

    2002-01-01

    Defines models and describes information search models that can be helpful to instructional media specialists in meeting users' abilities and information needs. Explains pathfinders and Kuhlthau's information search process, including the pre-writing information search process. (LRW)

  10. Modeling Infectious Diseases

    MedlinePlus

    ... MIDAS models require a breadth of knowledge, the network draws together an interdisciplinary team of researchers with expertise in epidemiology, infectious diseases, computational biology, statistics, social sciences, physics, computer sciences and informatics. In 2006, MIDAS modelers simulated ...

  11. Of Molecules and Models.

    ERIC Educational Resources Information Center

    Brinner, Bonnie

    1992-01-01

    Presents an activity in which models help students visualize both the DNA process and transcription. After constructing DNA, RNA messenger, and RNA transfer molecules; students model cells, protein synthesis, codons, and RNA movement. (MDH)

  12. Consistent model driven architecture

    NASA Astrophysics Data System (ADS)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  13. Modeling DNA Replication.

    ERIC Educational Resources Information Center

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  14. System Advisor Model

    2010-03-01

    The System Advisor Model (SAM) is a performance and economic model designed to facilitate decision making for people involved in the renewable energy industry, ranging from project managers and engineers to incentive program designers, technology developers, and researchers.

  15. Future of groundwater modeling

    USGS Publications Warehouse

    Langevin, Christian D.; Panday, Sorab

    2012-01-01

    With an increasing need to better manage water resources, the future of groundwater modeling is bright and exciting. However, while the past can be described and the present is known, the future of groundwater modeling, just like a groundwater model result, is highly uncertain and any prediction is probably not going to be entirely representative. Thus we acknowledge this as we present our vision of where groundwater modeling may be headed.

  16. Mathematical circulatory system model

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Stevens, Scott A. (Inventor)

    2010-01-01

    A system and method of modeling a circulatory system including a regulatory mechanism parameter. In one embodiment, a regulatory mechanism parameter in a lumped parameter model is represented as a logistic function. In another embodiment, the circulatory system model includes a compliant vessel, the model having a parameter representing a change in pressure due to contraction of smooth muscles of a wall of the vessel.

  17. Modeling of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1977-01-01

    Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.

  18. Hierarchical Bass model

    NASA Astrophysics Data System (ADS)

    Tashiro, Tohru

    2014-03-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.

  19. Wonderland climate model

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Ruedy, R.; Lacis, A.; Russell, G.; Sato, M.; Lerner, J.; Rind, D.; Stone, P.

    1997-03-01

    We obtain a highly efficient global climate model by defining a sector version (120° of longitude) of the coarse resolution Goddard Institute for Space Studies model II. The geography of Wonderland is chosen such that the amount of land as a function of latitude is the same as on Earth. We show that the zonal mean climate of the Wonderland model is very similar to that of the parent model II.

  20. Soil moisture modeling review

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W.

    1978-01-01

    A determination of the state of the art in soil moisture transport modeling based on physical or physiological principles was made. It was found that soil moisture models based on physical principles have been under development for more than 10 years. However, these models were shown to represent infiltration and redistribution of soil moisture quite well. Evapotranspiration has not been as adequately incorporated into the models.

  1. Modeling Complex Calorimeters

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali

    2004-01-01

    We have developed a software suite that models complex calorimeters in the time and frequency domain. These models can reproduce all measurements that we currently do in a lab setting, like IV curves, impedance measurements, noise measurements, and pulse generation. Since all these measurements are modeled from one set of parameters, we can fully describe a detector and characterize its behavior. This leads to a model than can be used effectively for engineering and design of detectors for particular applications.

  2. Updating applied diffusion models

    SciTech Connect

    Weil, J.C.

    1985-11-01

    Most diffusion models currently used in air quality applications are substantially out of date with understanding of turbulence and diffusion in the planetary boundary layer. Under a Cooperative Agreement with the Environmental Protection Agency, the American Meteorological Society organized a workshop to help improve the basis of such models, their physics and hopefuly their performance. Reviews and recommendations were made on models in three areas: diffusion in the convective boundary layer (CBL), diffusion in the stabe boundary layer (SBL), and model uncertainty.

  3. Models of change.

    PubMed

    Reineck, Carol

    2007-09-01

    Implementing change in organizations is a key nursing leadership competency. At the same time, it is a daunting responsibility. Fortunately, models of successful change illustrate useful concepts for leaders. Change concepts embedded in successful models include careful use of power, reason, reeducation, structure, behavior, and technology. This article discusses models of change. Learning from models may help nurse executives avoid perils such as change fatigue and may promote smoother movement toward safer systems of care.

  4. A Model Chemistry Class.

    ERIC Educational Resources Information Center

    Summerlin, Lee; Borgford, Christie

    1989-01-01

    Described is an activity which uses a 96-well reaction plate and soda straws to construct a model of the periodic table of the elements. The model illustrates the ionization energies of the various elements. Construction of the model and related concepts are discussed. (CW)

  5. Generalized Latent Trait Models.

    ERIC Educational Resources Information Center

    Moustaki, Irini; Knott, Martin

    2000-01-01

    Discusses a general model framework within which manifest variables with different distributions in the exponential family can be analyzed with a latent trait model. Presents a unified maximum likelihood method for estimating the parameters of the generalized latent trait model and discusses the scoring of individuals on the latent dimensions.…

  6. Modern Media Education Models

    ERIC Educational Resources Information Center

    Fedorov, Alexander

    2011-01-01

    The author supposed that media education models can be divided into the following groups: (1) educational-information models (the study of the theory, history, language of media culture, etc.), based on the cultural, aesthetic, semiotic, socio-cultural theories of media education; (2) educational-ethical models (the study of moral, religions,…

  7. Modeling EERE Deployment Programs

    SciTech Connect

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.; Livingston, O. V.

    2007-11-01

    This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.

  8. Campus Energy Modeling Platform

    SciTech Connect

    Sides, Scott; Kemper, Travis; Larsen, Ross; Graf, Peter

    2014-09-19

    NREL's Campus Energy Modeling project provides a suite of simulation tools for integrated, data driven energy modeling of commercial buildings and campuses using Simulink. The tools enable development of fully interconnected models for commercial campus energy infrastructure, including electrical distribution systems, district heating and cooling, onsite generation (both conventional and renewable), building loads, energy storage, and control systems.

  9. Biophysical and spectral modeling

    NASA Technical Reports Server (NTRS)

    Goel, N. S. (Principal Investigator)

    1982-01-01

    Activities and results of a project to develop strategies for modeling vegetative canopy reflectance are reported. Specific tasks included the inversion of canopy reflectance models to estimate agronomic variables (particularly leaf area index) from in-situ reflectance measurements, and a study of possible uses of ecological models in analyzing temporal profiles of greenness.

  10. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  11. IR DIAL performance modeling

    SciTech Connect

    Sharlemann, E.T.

    1994-07-01

    We are developing a DIAL performance model for CALIOPE at LLNL. The intent of the model is to provide quick and interactive parameter sensitivity calculations with immediate graphical output. A brief overview of the features of the performance model is given, along with an example of performance calculations for a non-CALIOPE application.

  12. Crushed Salt Constitutive Model

    SciTech Connect

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  13. A Model Performance

    ERIC Educational Resources Information Center

    Thornton, Bradley D.; Smalley, Robert A.

    2008-01-01

    Building information modeling (BIM) uses three-dimensional modeling concepts, information technology and interoperable software to design, construct and operate a facility. However, BIM can be more than a tool for virtual modeling--it can provide schools with a 3-D walkthrough of a project while it still is on the electronic drawing board. BIM can…

  14. Modeling Natural Selection

    ERIC Educational Resources Information Center

    Bogiages, Christopher A.; Lotter, Christine

    2011-01-01

    In their research, scientists generate, test, and modify scientific models. These models can be shared with others and demonstrate a scientist's understanding of how the natural world works. Similarly, students can generate and modify models to gain a better understanding of the content, process, and nature of science (Kenyon, Schwarz, and Hug…

  15. Progress in mix modeling

    SciTech Connect

    Harrison, A.K.

    1997-03-14

    We have identified the Cranfill multifluid turbulence model (Cranfill, 1992) as a starting point for development of subgrid models of instability, turbulent and mixing processes. We have differenced the closed system of equations in conservation form, and coded them in the object-oriented hydrodynamics code FLAG, which is to be used as a testbed for such models.

  16. Modelling a Suspension Bridge.

    ERIC Educational Resources Information Center

    Rawlins, Phil

    1991-01-01

    The quadratic function can be modeled in real life by a suspension bridge that supports a uniform weight. This activity uses concrete models and computer generated graphs to discover the mathematical model of the shape of the main cable of a suspension bridge. (MDH)

  17. Tests of Rating Models

    ERIC Educational Resources Information Center

    Masin, Sergio Cesare; Busetto, Martina

    2010-01-01

    The study reports empirical tests of Anderson's, Haubensak's, Helson's, and Parducci's rating models when two end anchors are used for rating. The results show that these models cannot predict the judgment effect called here the Dai Pra effect. It is shown that an extension of Anderson's model is consistent with this effect. The results confirm…

  18. Molecular Models in Biology

    ERIC Educational Resources Information Center

    Goodman, Richard E.

    1970-01-01

    Describes types of molecular models (ball-and-stick, framework, and space-filling) and evaluates commercially available kits. Gives instructions for constructive models from polystyrene balls and pipe-cleaners. Models are useful for class demonstrations although not sufficiently accurate for research use. Illustrations show biologically important…

  19. Open Source Molecular Modeling

    PubMed Central

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-01-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. PMID:27631126

  20. Impact-GMI Model

    2007-03-22

    IMPACT-GMI is an atmospheric chemical transport model designed to run on massively parallel computers. It is designed to model trace pollutants in the atmosphere. It includes models for emission, chemistry and deposition of pollutants. It can be used to assess air quality and its impact on future climate change.

  1. Modeling Climate Dynamically

    ERIC Educational Resources Information Center

    Walsh, Jim; McGehee, Richard

    2013-01-01

    A dynamical systems approach to energy balance models of climate is presented, focusing on low order, or conceptual, models. Included are global average and latitude-dependent, surface temperature models. The development and analysis of the differential equations and corresponding bifurcation diagrams provides a host of appropriate material for…

  2. Elementary Teacher Training Models.

    ERIC Educational Resources Information Center

    Blewett, Evelyn J., Ed.

    This collection of articles contains descriptions of nine elementary teacher training program models conducted at universities throughout the United States. The articles include the following: (a) "The University of Toledo Model Program," by George E. Dickson; (b) "The Florida State University Model Program," by G. Wesley Sowards; (c) "The…

  3. Model Breaking Points Conceptualized

    ERIC Educational Resources Information Center

    Vig, Rozy; Murray, Eileen; Star, Jon R.

    2014-01-01

    Current curriculum initiatives (e.g., National Governors Association Center for Best Practices and Council of Chief State School Officers 2010) advocate that models be used in the mathematics classroom. However, despite their apparent promise, there comes a point when models break, a point in the mathematical problem space where the model cannot,…

  4. Rock Properties Model

    SciTech Connect

    C. Lum

    2004-09-16

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  5. Modeling and Remodeling Writing

    ERIC Educational Resources Information Center

    Hayes, John R.

    2012-01-01

    In Section 1 of this article, the author discusses the succession of models of adult writing that he and his colleagues have proposed from 1980 to the present. He notes the most important changes that differentiate earlier and later models and discusses reasons for the changes. In Section 2, he describes his recent efforts to model young…

  6. Models, Norms and Sharing.

    ERIC Educational Resources Information Center

    Harris, Mary B.

    To investigate the effect of modeling on altruism, 156 third and fifth grade children were exposed to a model who either shared with them, gave to a charity, or refused to share. The test apparatus, identified as a game, consisted of a box with signal lights and a chute through which marbles were dispensed. Subjects and the model played the game…

  7. Models for Products

    ERIC Educational Resources Information Center

    Speiser, Bob; Walter, Chuck

    2011-01-01

    This paper explores how models can support productive thinking. For us a model is a "thing", a tool to help make sense of something. We restrict attention to specific models for whole-number multiplication, hence the wording of the title. They support evolving thinking in large measure through the ways their users redesign them. They assume new…

  8. Model Rockets and Microchips.

    ERIC Educational Resources Information Center

    Fitzsimmons, Charles P.

    1986-01-01

    Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

  9. New Directions for Modeling?

    ERIC Educational Resources Information Center

    Mason, Thomas R.

    1976-01-01

    Noting the disappointing results of past experimentation with computer modeling technology in higher education, the author discusses developments which promise potential: communication between model builders and users, interaction between large- and small-scale models, interface with operating data systems, emphasis on outcomes, and continued…

  10. Surface complexation modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adsorption-desorption reactions are important processes that affect the transport of contaminants in the environment. Surface complexation models are chemical models that can account for the effects of variable chemical conditions, such as pH, on adsorption reactions. These models define specific ...

  11. Modelling Vocabulary Loss

    ERIC Educational Resources Information Center

    Meara, Paul

    2004-01-01

    This paper describes some simple simulation models of vocabulary attrition. The attrition process is modelled using a random autonomous Boolean network model, and some parallels with real attrition data are drawn. The paper argues that applying a complex systems approach to attrition can provide some important insights, which suggest that real…

  12. Modelling MIZ dynamics in a global model

    NASA Astrophysics Data System (ADS)

    Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto

    2016-04-01

    Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.

  13. Advances in Watershed Models and Modeling

    NASA Astrophysics Data System (ADS)

    Yeh, G. T.; Zhang, F.

    2015-12-01

    The development of watershed models and their applications to real-world problems has evolved significantly since 1960's. Watershed models can be classified based on what media are included, what processes are dealt with, and what approaches are taken. In term of media, a watershed may include segregated overland regime, river-canal-open channel networks, ponds-reservoirs-small lakes, and subsurface media. It may also include integrated media of all these or a partial set of these as well as man-made control structures. In term of processes, a watershed model may deal with coupled or decoupled hydrological and biogeochemical cycles. These processes include fluid flow, thermal transport, salinity transport, sediment transport, reactive transport, and biota and microbe kinetics. In terms of approaches, either parametric or physics-based approach can be taken. This talk discusses the evolution of watershed models in the past sixty years. The advances of watershed models center around their increasing design capability to foster these segregated or integrated media and coupled or decoupled processes. Widely used models developed by academia, research institutes, government agencies, and private industries will be reviewed in terms of the media and processes included as well as approaches taken. Many types of potential benchmark problems in general can be proposed and will be discussed. This presentation will focus on three benchmark problems of biogeochemical cycles. These three problems, dealing with water quality transport, will be formulated in terms of reactive transport. Simulation results will be illustrated using WASH123D, a watershed model developed and continuously updated by the author and his PhD graduates. Keywords: Hydrological Cycles, Biogeochemical Cycles, Biota Kinetics, Parametric Approach, Physics-based Approach, Reactive Transport.

  14. Transgenesis for pig models

    PubMed Central

    Yum, Soo-Young; Yoon, Ki-Young; Lee, Choong-Il; Lee, Byeong-Chun

    2016-01-01

    Animal models, particularly pigs, have come to play an important role in translational biomedical research. There have been many pig models with genetically modifications via somatic cell nuclear transfer (SCNT). However, because most transgenic pigs have been produced by random integration to date, the necessity for more exact gene-mutated models using recombinase based conditional gene expression like mice has been raised. Currently, advanced genome-editing technologies enable us to generate specific gene-deleted and -inserted pig models. In the future, the development of pig models with gene editing technologies could be a valuable resource for biomedical research. PMID:27030199

  15. The FREZCHEM Model

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.; Kargel, Jeffrey S.

    Implementation of the Pitzer approach is through the FREZCHEM (FREEZING CHEMISTRY) model, which is at the core of this work. This model was originally designed to simulate salt chemistries and freezing processes at low temperatures (-54 to 25°C) and 1 atm pressure. Over the years, this model has been broadened to include more chemistries (from 16 to 58 solid phases), a broader temperature range for some chemistries (to 113°C), and incorporation of a pressure dependence (1 to 1000 bars) into the model. Implementation, parameterization, validation, and limitations of the FREZCHEM model are extensively discussed in Chapter 3.

  16. Mechanics of materials model

    NASA Technical Reports Server (NTRS)

    Meister, Jeffrey P.

    1987-01-01

    The Mechanics of Materials Model (MOMM) is a three-dimensional inelastic structural analysis code for use as an early design stage tool for hot section components. MOMM is a stiffness method finite element code that uses a network of beams to characterize component behavior. The MOMM contains three material models to account for inelastic material behavior. These include the simplified material model, which assumes a bilinear stress-strain response; the state-of-the-art model, which utilizes the classical elastic-plastic-creep strain decomposition; and Walker's viscoplastic model, which accounts for the interaction between creep and plasticity that occurs under cyclic loading conditions.

  17. Models of Goldstone gauginos

    NASA Astrophysics Data System (ADS)

    Alves, Daniele S. M.; Galloway, Jamison; McCullough, Matthew; Weiner, Neal

    2016-04-01

    Models with Dirac gauginos are appealing scenarios for physics beyond the Standard Model. They have smaller radiative corrections to scalar soft masses, a suppression of certain supersymmetry (SUSY) production processes at the LHC, and ameliorated flavor constraints. Unfortunately, they are generically plagued by tachyons charged under the Standard Model, and attempts to eliminate such states typically spoil the positive features. The recently proposed "Goldstone gaugino" mechanism provides a simple realization of Dirac gauginos that is automatically free of dangerous tachyonic states. We provide details on this mechanism and explore models for its origin. In particular, we find SUSY QCD models that realize this idea simply and discuss scenarios for unification.

  18. UZ Colloid Transport Model

    SciTech Connect

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  19. CRAC2 model description

    SciTech Connect

    Ritchie, L.T.; Alpert, D.J.; Burke, R.P.; Johnson, J.D.; Ostmeyer, R.M.; Aldrich, D.C.; Blond, R.M.

    1984-03-01

    The CRAC2 computer code is a revised version of CRAC (Calculation of Reactor Accident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and a description of each of the models used. Significant improvements incorporated into CRAC2 include an improved weather sequence sampling technique, a new evacuation model, and new output capabilities. In addition, refinements have been made to the atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions.

  20. TEAMS Model Analyzer

    NASA Technical Reports Server (NTRS)

    Tijidjian, Raffi P.

    2010-01-01

    The TEAMS model analyzer is a supporting tool developed to work with models created with TEAMS (Testability, Engineering, and Maintenance System), which was developed by QSI. In an effort to reduce the time spent in the manual process that each TEAMS modeler must perform in the preparation of reporting for model reviews, a new tool has been developed as an aid to models developed in TEAMS. The software allows for the viewing, reporting, and checking of TEAMS models that are checked into the TEAMS model database. The software allows the user to selectively model in a hierarchical tree outline view that displays the components, failure modes, and ports. The reporting features allow the user to quickly gather statistics about the model, and generate an input/output report pertaining to all of the components. Rules can be automatically validated against the model, with a report generated containing resulting inconsistencies. In addition to reducing manual effort, this software also provides an automated process framework for the Verification and Validation (V&V) effort that will follow development of these models. The aid of such an automated tool would have a significant impact on the V&V process.

  1. A model of strength

    USGS Publications Warehouse

    Johnson, Douglas H.; Cook, R.D.

    2013-01-01

    In her AAAS News & Notes piece "Can the Southwest manage its thirst?" (26 July, p. 362), K. Wren quotes Ajay Kalra, who advocates a particular method for predicting Colorado River streamflow "because it eschews complex physical climate models for a statistical data-driven modeling approach." A preference for data-driven models may be appropriate in this individual situation, but it is not so generally, Data-driven models often come with a warning against extrapolating beyond the range of the data used to develop the models. When the future is like the past, data-driven models can work well for prediction, but it is easy to over-model local or transient phenomena, often leading to predictive inaccuracy (1). Mechanistic models are built on established knowledge of the process that connects the response variables with the predictors, using information obtained outside of an extant data set. One may shy away from a mechanistic approach when the underlying process is judged to be too complicated, but good predictive models can be constructed with statistical components that account for ingredients missing in the mechanistic analysis. Models with sound mechanistic components are more generally applicable and robust than data-driven models.

  2. Calibrated Properties Model

    SciTech Connect

    T. Ghezzehej

    2004-10-04

    The purpose of this model report is to document the calibrated properties model that provides calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.6 and 2.1.1.6). Direct inputs to this model report were derived from the following upstream analysis and model reports: ''Analysis of Hydrologic Properties Data'' (BSC 2004 [DIRS 170038]); ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004 [DIRS 169855]); ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]); ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]). Additionally, this model report incorporates errata of the previous version and closure of the Key Technical Issue agreement TSPAI 3.26 (Section 6.2.2 and Appendix B), and it is revised for improved transparency.

  3. Distributed fuzzy system modeling

    SciTech Connect

    Pedrycz, W.; Chi Fung Lam, P.; Rocha, A.F.

    1995-05-01

    The paper introduces and studies an idea of distributed modeling treating it as a new paradigm of fuzzy system modeling and analysis. This form of modeling is oriented towards developing individual (local) fuzzy models for specific modeling landmarks (expressed as fuzzy sets) and determining the essential logical relationships between these local models. The models themselves are implemented in the form of logic processors being regarded as specialized fuzzy neural networks. The interaction between the processors is developed either in an inhibitory or excitatory way. In more descriptive way, the distributed model can be sought as a collection of fuzzy finite state machines with their individual local first or higher order memories. It is also clarified how the concept of distributed modeling narrows down a gap between purely numerical (quantitative) models and the qualitative ones originated within the realm of Artificial Intelligence. The overall architecture of distributed modeling is discussed along with the detailed learning schemes. The results of extensive simulation experiments are provided as well. 17 refs.

  4. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  5. Modelling structured data with Probabilistic Graphical Models

    NASA Astrophysics Data System (ADS)

    Forbes, F.

    2016-05-01

    Most clustering and classification methods are based on the assumption that the objects to be clustered are independent. However, in more and more modern applications, data are structured in a way that makes this assumption not realistic and potentially misleading. A typical example that can be viewed as a clustering task is image segmentation where the objects are the pixels on a regular grid and depend on neighbouring pixels on this grid. Also, when data are geographically located, it is of interest to cluster data with an underlying dependence structure accounting for some spatial localisation. These spatial interactions can be naturally encoded via a graph not necessarily regular as a grid. Data sets can then be modelled via Markov random fields and mixture models (e.g. the so-called MRF and Hidden MRF). More generally, probabilistic graphical models are tools that can be used to represent and manipulate data in a structured way while modeling uncertainty. This chapter introduces the basic concepts. The two main classes of probabilistic graphical models are considered: Bayesian networks and Markov networks. The key concept of conditional independence and its link to Markov properties is presented. The main problems that can be solved with such tools are described. Some illustrations are given associated with some practical work.

  6. Toward Scientific Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2007-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.

  7. Foam process models.

    SciTech Connect

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A.; Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  8. Physical modelling in biomechanics.

    PubMed Central

    Koehl, M A R

    2003-01-01

    Physical models, like mathematical models, are useful tools in biomechanical research. Physical models enable investigators to explore parameter space in a way that is not possible using a comparative approach with living organisms: parameters can be varied one at a time to measure the performance consequences of each, while values and combinations not found in nature can be tested. Experiments using physical models in the laboratory or field can circumvent problems posed by uncooperative or endangered organisms. Physical models also permit some aspects of the biomechanical performance of extinct organisms to be measured. Use of properly scaled physical models allows detailed physical measurements to be made for organisms that are too small or fast to be easily studied directly. The process of physical modelling and the advantages and limitations of this approach are illustrated using examples from our research on hydrodynamic forces on sessile organisms, mechanics of hydraulic skeletons, food capture by zooplankton and odour interception by olfactory antennules. PMID:14561350

  9. Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling.

    PubMed

    Yesson, C; Culham, A

    2006-10-01

    We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of

  10. Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling.

    PubMed

    Yesson, C; Culham, A

    2006-10-01

    We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of

  11. Loehlin's original models and model contributions.

    PubMed

    McArdle, John J

    2014-11-01

    This is a short story about John C. Loehlin who is now at the University of Texas at Austin, dealing with his original simulation models and developments, which led to his current latent variable models. This talk was initially presented at a special meeting for John before the BGA in Rhode Island, and I was very pleased to contribute. It probably goes without saying, but John helped create this important society, has been a key contributor to this journal for several decades, and he deserves a lot for this leadership.

  12. Constitutive models in LAME.

    SciTech Connect

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-09-01

    The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented

  13. Preliminary DIAL model

    SciTech Connect

    Gentry, S.; Taylor, J.; Stephenson, D.

    1994-06-01

    A unique end-to-end LIDAR sensor model has been developed supporting the concept development stage of the CALIOPE UV DIAL and UV laser-induced-fluorescence (LIF) efforts. The model focuses on preserving the temporal and spectral nature of signals as they pass through the atmosphere, are collected by the optics, detected by the sensor, and processed by the sensor electronics and algorithms. This is done by developing accurate component sub-models with realistic inputs and outputs, as well as internal noise sources and operating parameters. These sub-models are then configured using data-flow diagrams to operate together to reflect the performance of the entire DIAL system. This modeling philosophy allows the developer to have a realistic indication of the nature of signals throughout the system and to design components and processing in a realistic environment. Current component models include atmospheric absorption and scattering losses, plume absorption and scattering losses, background, telescope and optical filter models, PMT (photomultiplier tube) with realistic noise sources, amplifier operation and noise, A/D converter operation, noise and distortion, pulse averaging, and DIAL computation. Preliminary results of the model will be presented indicating the expected model operation depicting the October field test at the NTS spill test facility. Indications will be given concerning near-term upgrades to the model.

  14. Differential Topic Models.

    PubMed

    Chen, Changyou; Buntine, Wray; Ding, Nan; Xie, Lexing; Du, Lan

    2015-02-01

    In applications we may want to compare different document collections: they could have shared content but also different and unique aspects in particular collections. This task has been called comparative text mining or cross-collection modeling. We present a differential topic model for this application that models both topic differences and similarities. For this we use hierarchical Bayesian nonparametric models. Moreover, we found it was important to properly model power-law phenomena in topic-word distributions and thus we used the full Pitman-Yor process rather than just a Dirichlet process. Furthermore, we propose the transformed Pitman-Yor process (TPYP) to incorporate prior knowledge such as vocabulary variations in different collections into the model. To deal with the non-conjugate issue between model prior and likelihood in the TPYP, we thus propose an efficient sampling algorithm using a data augmentation technique based on the multinomial theorem. Experimental results show the model discovers interesting aspects of different collections. We also show the proposed MCMC based algorithm achieves a dramatically reduced test perplexity compared to some existing topic models. Finally, we show our model outperforms the state-of-the-art for document classification/ideology prediction on a number of text collections. PMID:26353238

  15. Quantitative Rheological Model Selection

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan; Ewoldt, Randy

    2014-11-01

    The more parameters in a rheological the better it will reproduce available data, though this does not mean that it is necessarily a better justified model. Good fits are only part of model selection. We employ a Bayesian inference approach that quantifies model suitability by balancing closeness to data against both the number of model parameters and their a priori uncertainty. The penalty depends upon prior-to-calibration expectation of the viable range of values that model parameters might take, which we discuss as an essential aspect of the selection criterion. Models that are physically grounded are usually accompanied by tighter physical constraints on their respective parameters. The analysis reflects a basic principle: models grounded in physics can be expected to enjoy greater generality and perform better away from where they are calibrated. In contrast, purely empirical models can provide comparable fits, but the model selection framework penalizes their a priori uncertainty. We demonstrate the approach by selecting the best-justified number of modes in a Multi-mode Maxwell description of PVA-Borax. We also quantify relative merits of the Maxwell model relative to powerlaw fits and purely empirical fits for PVA-Borax, a viscoelastic liquid, and gluten.

  16. Geochemical modeling: a review

    SciTech Connect

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted.

  17. Generalized Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew

    2004-01-01

    A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…

  18. A Rasch Hierarchical Measurement Model.

    ERIC Educational Resources Information Center

    Maier, Kimberly S.

    This paper describes a model that integrates an item response theory (IRT) Rasch model and a hierarchical linear model and presents a method of estimating model parameter values that does not rely on large-sample theory and normal approximations. The model resulting from the integration of a hierarchical linear model and the Rasch model allows one…

  19. Modeling Imports in a Keynesian Expenditure Model

    ERIC Educational Resources Information Center

    Findlay, David W.

    2010-01-01

    The author discusses several issues that instructors of introductory macroeconomics courses should consider when introducing imports in the Keynesian expenditure model. The analysis suggests that the specification of the import function should partially, if not completely, be the result of a simple discussion about the spending and import…

  20. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  1. Extended frequency turbofan model

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Park, J. W.; Jaekel, R. F.

    1980-01-01

    The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.

  2. Load Model Data Tool

    2013-04-30

    The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to bemore » provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.« less

  3. Carcinogenesis models: An overview

    SciTech Connect

    Moolgavkar, S.H.

    1992-12-31

    Biologically based mathematical models of carcinogenesis are not only an essential part of a rational approach to quantitative cancer risk assessment but also raise fundamental questions about the nature of the events leading to malignancy. In this paper two such models are reviewed. The first is the multistage model proposed by Armitage and Doll in the 1950s; most of the paper is devoted to a discussion of the two-mutation model proposed by the author and his colleagues. This model is a generalization of the idea of recessive oncogenesis proposed by Knudson and has been shown to be consistent with a large body of epidemiologic and experimental data. The usefulness of the model is illustrated by analyzing a large experimental data set in which rats exposed to radon developed malignant lung tumors.

  4. Load Model Data Tool

    SciTech Connect

    David Chassin, Pavel Etingov

    2013-04-30

    The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to be provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.

  5. Modelling of biofilm reactors

    SciTech Connect

    Rodrigues, A.; Grasmick, A.; Elmaleh, S.

    1982-10-01

    Comprehensive models of biofilm reactors are developed. Model I assumes a zero-order reaction of a limiting substrate and a diffusional mass transport through the biofilm; in the diffusion-controlled regime the model is fully characterized by one parameter alpha. From this model the conversion of substrate or reactor efficiency can be calculated, for continuously stirred tank reactors (CSTRs) and plug flow reactors respectively, as follows: EA = )alpha(alpha + 2)) 1/2 - alpha; and Ep = (2 alpha) 1/2 - alpha/2: Validation of the model is tested for different experimental systems. Model II includes liquid film mass transfer resistance. The conversion gap between plug flow reactors and CSTRs is always lower than 25% and, as a first approximation, the biofilm reactor design does not then require accurate residence time distribution measurements. (Refs. 23).

  6. Multiscale Cancer Modeling

    PubMed Central

    Macklin, Paul; Cristini, Vittorio

    2013-01-01

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163

  7. Cloud model bat algorithm.

    PubMed

    Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi

    2014-01-01

    Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: "bats approach their prey." Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425

  8. Probabilistic Mesomechanical Fatigue Model

    NASA Technical Reports Server (NTRS)

    Tryon, Robert G.

    1997-01-01

    A probabilistic mesomechanical fatigue life model is proposed to link the microstructural material heterogeneities to the statistical scatter in the macrostructural response. The macrostructure is modeled as an ensemble of microelements. Cracks nucleation within the microelements and grow from the microelements to final fracture. Variations of the microelement properties are defined using statistical parameters. A micromechanical slip band decohesion model is used to determine the crack nucleation life and size. A crack tip opening displacement model is used to determine the small crack growth life and size. Paris law is used to determine the long crack growth life. The models are combined in a Monte Carlo simulation to determine the statistical distribution of total fatigue life for the macrostructure. The modeled response is compared to trends in experimental observations from the literature.

  9. Animal models of scoliosis.

    PubMed

    Bobyn, Justin D; Little, David G; Gray, Randolph; Schindeler, Aaron

    2015-04-01

    Multiple techniques designed to induce scoliotic deformity have been applied across many animal species. We have undertaken a review of the literature regarding experimental models of scoliosis in animals to discuss their utility in comprehending disease aetiology and treatment. Models of scoliosis in animals can be broadly divided into quadrupedal and bipedal experiments. Quadrupedal models, in the absence of axial gravitation force, depend upon development of a mechanical asymmetry along the spine to initiate a scoliotic deformity. Bipedal models more accurately mimic human posture and consequently are subject to similar forces due to gravity, which have been long appreciated to be a contributing factor to the development of scoliosis. Many effective models of scoliosis in smaller animals have not been successfully translated to primates and humans. Though these models may not clarify the aetiology of human scoliosis, by providing a reliable and reproducible deformity in the spine they are a useful means with which to test interventions designed to correct and prevent deformity.

  10. Outside users payload model

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The outside users payload model which is a continuation of documents and replaces and supersedes the July 1984 edition is presented. The time period covered by this model is 1985 through 2000. The following sections are included: (1) definition of the scope of the model; (2) discussion of the methodology used; (3) overview of total demand; (4) summary of the estimated market segmentation by launch vehicle; (5) summary of the estimated market segmentation by user type; (6) details of the STS market forecast; (7) summary of transponder trends; (8) model overview by mission category; and (9) detailed mission models. All known non-NASA, non-DOD reimbursable payloads forecast to be flown by non-Soviet-block countries are included in this model with the exception of Spacelab payloads and small self contained payloads. Certain DOD-sponsored or cosponsored payloads are included if they are reimbursable launches.

  11. Teaching macromolecular modeling.

    PubMed

    Harvey, S C; Tan, R K

    1992-12-01

    Training newcomers to the field of macromolecular modeling is as difficult as is training beginners in x-ray crystallography, nuclear magnetic resonance, or other methods in structural biology. In one or two lectures, the most that can be conveyed is a general sense of the relationship between modeling and other structural methods. If a full semester is available, then students can be taught how molecular structures are built, manipulated, refined, and analyzed on a computer. Here we describe a one-semester modeling course that combines lectures, discussions, and a laboratory using a commercial modeling package. In the laboratory, students carry out prescribed exercises that are coordinated to the lectures, and they complete a term project on a modeling problem of their choice. The goal is to give students an understanding of what kinds of problems can be attacked by molecular modeling methods and which problems are beyond the current capabilities of those methods.

  12. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io.

  13. F-14 modeling study

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Baron, S.

    1984-01-01

    Preliminary results in the application of a closed loop pilot/simulator model to the analysis of some simulator fidelity issues are discussed in the context of an air to air target tracking task. The closed loop model is described briefly. Then, problem simplifications that are employed to reduce computational costs are discussed. Finally, model results showing sensitivity of performance to various assumptions concerning the simulator and/or the pilot are presented.

  14. Acid rain: Mesoscale model

    NASA Technical Reports Server (NTRS)

    Hsu, H. M.

    1980-01-01

    A mesoscale numerical model of the Florida peninsula was formulated and applied to a dry, neutral atmosphere. The prospective use of the STAR-100 computer for the submesoscale model is discussed. The numerical model presented is tested under synoptically undisturbed conditions. Two cases, differing only in the direction of the prevailing geostrophic wind, are examined: a prevailing southwest wind and a prevailing southeast wind, both 6 m/sec at all levels initially.

  15. Computer Models of Proteins

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.

  16. Modeling Frequency Comb Sources

    NASA Astrophysics Data System (ADS)

    Li, Feng; Yuan, Jinhui; Kang, Zhe; Li, Qian; Wai, P. K. A.

    2016-06-01

    Frequency comb sources have revolutionized metrology and spectroscopy and found applications in many fields. Stable, low-cost, high-quality frequency comb sources are important to these applications. Modeling of the frequency comb sources will help the understanding of the operation mechanism and optimization of the design of such sources. In this paper,we review the theoretical models used and recent progress of the modeling of frequency comb sources.

  17. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2010-01-01

    The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.

  18. Atmospheric prediction model survey

    NASA Technical Reports Server (NTRS)

    Wellck, R. E.

    1976-01-01

    As part of the SEASAT Satellite program of NASA, a survey of representative primitive equation atmospheric prediction models that exist in the world today was written for the Jet Propulsion Laboratory. Seventeen models developed by eleven different operational and research centers throughout the world are included in the survey. The surveys are tutorial in nature describing the features of the various models in a systematic manner.

  19. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io. PMID:27631126

  20. AREST model description

    SciTech Connect

    Engel, D.W.; McGrail, B.P.

    1993-11-01

    The Office of Civilian Radioactive Waste Management and the Power Reactor and Nuclear Fuel Development Corporation of Japan (PNC) have supported the development of the Analytical Repository Source-Term (AREST) at Pacific Northwest Laboratory. AREST is a computer model developed to evaluate radionuclide release from an underground geologic repository. The AREST code can be used to calculate/estimate the amount and rate of each radionuclide that is released from the engineered barrier system (EBS) of the repository. The EBS is the man-made or disrupted area of the repository. AREST was designed as a system-level models to simulate the behavior of the total repository by combining process-level models for the release from an individual waste package or container. AREST contains primarily analytical models for calculating the release/transport of radionuclides to the lost rock that surrounds each waste package. Analytical models were used because of the small computational overhead that allows all the input parameters to be derived from a statistical distribution. Recently, a one-dimensional numerical model was also incorporated into AREST, to allow for more detailed modeling of the transport process with arbitrary length decay chains. The next step in modeling the EBS, is to develop a model that couples the probabilistic capabilities of AREST with a more detailed process model. This model will need to look at the reactive coupling of the processes that are involved with the release process. Such coupling would include: (1) the dissolution of the waste form, (2) the geochemical modeling of the groundwater, (3) the corrosion of the container overpacking, and (4) the backfill material, just to name a few. Several of these coupled processes are already incorporated in the current version of AREST.

  1. Conceptual IT model

    NASA Astrophysics Data System (ADS)

    Arnaoudova, Kristina; Stanchev, Peter

    2015-11-01

    The business processes are the key asset for every organization. The design of the business process models is the foremost concern and target among an organization's functions. Business processes and their proper management are intensely dependent on the performance of software applications and technology solutions. The paper is attempt for definition of new Conceptual model of IT service provider, it could be examined as IT focused Enterprise model, part of Enterprise Architecture (EA) school.

  2. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  3. Liftoff Model for MELCOR.

    SciTech Connect

    Young, Michael F.

    2015-07-01

    Aerosol particles that deposit on surfaces may be subsequently resuspended by air flowing over the surface. A review of models for this liftoff process is presented and compared to available data. Based on this review, a model that agrees with existing data and is readily computed is presented for incorporation into a system level code such as MELCOR. Liftoff Model for MELCOR July 2015 4 This page is intentionally blank

  4. Dataset Modelability by QSAR

    PubMed Central

    Golbraikh, Alexander; Muratov, Eugene; Fourches, Denis; Tropsha, Alexander

    2014-01-01

    We introduce a simple MODelability Index (MODI) that estimates the feasibility of obtaining predictive QSAR models (Correct Classification Rate above 0.7) for a binary dataset of bioactive compounds. MODI is defined as an activity class-weighted ratio of the number of the nearest neighbor pairs of compounds with the same activity class versus the total number of pairs. The MODI values were calculated for more than 100 datasets and the threshold of 0.65 was found to separate non-modelable from the modelable datasets. PMID:24251851

  5. Mathematical model of sarcoidosis

    PubMed Central

    Hao, Wenrui; Crouser, Elliott D.; Friedman, Avner

    2014-01-01

    Sarcoidosis is a disease involving abnormal collection of inflammatory cells forming nodules, called granulomas. Such granulomas occur in the lung and the mediastinal lymph nodes, in the heart, and in other vital and nonvital organs. The origin of the disease is unknown, and there are only limited clinical data on lung tissue of patients. No current model of sarcoidosis exists. In this paper we develop a mathematical model on the dynamics of the disease in the lung and use patients’ lung tissue data to validate the model. The model is used to explore potential treatments. PMID:25349384

  6. Models of Reality.

    SciTech Connect

    Brown-VanHoozer, S. A.

    1999-06-02

    Conscious awareness of our environment is based on a feedback loop comprised of sensory input transmitted to the central nervous system leading to construction of our ''model of the world,'' (Lewis et al, 1982). We then assimilate the neurological model at the unconscious level into information we can later consciously consider useful in identifying belief systems and behaviors for designing diverse systems. Thus, we can avoid potential problems based on our open-to-error perceived reality of the world. By understanding how our model of reality is organized, we allow ourselves to transcend content and develop insight into how effective choices and belief systems are generated through sensory derived processes. These are the processes which provide the designer the ability to meta model (build a model of a model) the user; consequently, matching the mental model of the user with that of the designer's and, coincidentally, forming rapport between the two participants. The information shared between the participants is neither assumed nor generalized, it is closer to equivocal; thus minimizing error through a sharing of each other's model of reality. How to identify individual mental mechanisms or processes, how to organize the individual strategies of these mechanisms into useful patterns, and to formulate these into models for success and knowledge based outcomes is the subject of the discussion that follows.

  7. Computer Modeling and Simulation

    SciTech Connect

    Pronskikh, V. S.

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  8. Models of HERG gating.

    PubMed

    Bett, Glenna C L; Zhou, Qinlian; Rasmusson, Randall L

    2011-08-01

    HERG (Kv11.1, KCNH2) is a voltage-gated potassium channel with unique gating characteristics. HERG has fast voltage-dependent inactivation, relatively slow deactivation, and fast recovery from inactivation. This combination of gating kinetics makes study of HERG difficult without using mathematical models. Several HERG models have been developed, with fundamentally different organization. HERG is the molecular basis of I(Kr), which plays a critical role in repolarization. We programmed and compared five distinct HERG models. HERG gating cannot be adequately replicated using Hodgkin-Huxley type formulation. Using Markov models, a five-state model is required with three closed, one open, and one inactivated state, and a voltage-independent step between some of the closed states. A fundamental difference between models is the presence/absence of a transition directly from the proximal closed state to the inactivated state. The only models that effectively reproduce HERG data have no direct closed-inactivated transition, or have a closed-inactivated transition that is effectively zero compared to the closed-open transition, rendering the closed-inactivation transition superfluous. Our single-channel model demonstrates that channels can inactivate without conducting with a flickering or bursting open-state. The various models have qualitative and quantitative differences that are critical to accurate predictions of HERG behavior during repolarization, tachycardia, and premature depolarizations. PMID:21806931

  9. Modeling plant morphogenesis.

    PubMed

    Prusinkiewicz, Przemyslaw; Rolland-Lagan, Anne-Gaëlle

    2006-02-01

    Applications of computational techniques to developmental plant biology include the processing of experimental data and the construction of simulation models. Substantial progress has been made in these areas over the past few years. Complex image-processing techniques are used to integrate sequences of two-dimensional images into three-dimensional descriptions of development over time and to extract useful quantitative traits. Large amounts of data are integrated into empirical models of developing plant organs and entire plants. Mechanistic models link molecular-level phenomena with the resulting phenotypes. Several models shed light on the possible properties of active auxin transport and its role in plant morphogenesis. PMID:16376602

  10. Model Error Budgets

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    2008-01-01

    An error budget is a commonly used tool in design of complex aerospace systems. It represents system performance requirements in terms of allowable errors and flows these down through a hierarchical structure to lower assemblies and components. The requirements may simply be 'allocated' based upon heuristics or experience, or they may be designed through use of physics-based models. This paper presents a basis for developing an error budget for models of the system, as opposed to the system itself. The need for model error budgets arises when system models are a principle design agent as is increasingly more common for poorly testable high performance space systems.

  11. Lightning return stroke models

    NASA Technical Reports Server (NTRS)

    Lin, Y. T.; Uman, M. A.; Standler, R. B.

    1980-01-01

    We test the two most commonly used lightning return stroke models, Bruce-Golde and transmission line, against subsequent stroke electric and magnetic field wave forms measured simultaneously at near and distant stations and show that these models are inadequate to describe the experimental data. We then propose a new return stroke model that is physically plausible and that yields good approximations to the measured two-station fields. Using the new model, we derive return stroke charge and current statistics for about 100 subsequent strokes.

  12. Modeling plant morphogenesis.

    PubMed

    Prusinkiewicz, Przemyslaw; Rolland-Lagan, Anne-Gaëlle

    2006-02-01

    Applications of computational techniques to developmental plant biology include the processing of experimental data and the construction of simulation models. Substantial progress has been made in these areas over the past few years. Complex image-processing techniques are used to integrate sequences of two-dimensional images into three-dimensional descriptions of development over time and to extract useful quantitative traits. Large amounts of data are integrated into empirical models of developing plant organs and entire plants. Mechanistic models link molecular-level phenomena with the resulting phenotypes. Several models shed light on the possible properties of active auxin transport and its role in plant morphogenesis.

  13. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  14. Photovoltaic array performance model.

    SciTech Connect

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  15. Modelling approaches in biomechanics.

    PubMed Central

    Alexander, R McN

    2003-01-01

    Conceptual, physical and mathematical models have all proved useful in biomechanics. Conceptual models, which have been used only occasionally, clarify a point without having to be constructed physically or analysed mathematically. Some physical models are designed to demonstrate a proposed mechanism, for example the folding mechanisms of insect wings. Others have been used to check the conclusions of mathematical modelling. However, others facilitate observations that would be difficult to make on real organisms, for example on the flow of air around the wings of small insects. Mathematical models have been used more often than physical ones. Some of them are predictive, designed for example to calculate the effects of anatomical changes on jumping performance, or the pattern of flow in a 3D assembly of semicircular canals. Others seek an optimum, for example the best possible technique for a high jump. A few have been used in inverse optimization studies, which search for variables that are optimized by observed patterns of behaviour. Mathematical models range from the extreme simplicity of some models of walking and running, to the complexity of models that represent numerous body segments and muscles, or elaborate bone shapes. The simpler the model, the clearer it is which of its features is essential to the calculated effect. PMID:14561333

  16. Wind power prediction models

    NASA Technical Reports Server (NTRS)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  17. DISJUNCTIVE NORMAL SHAPE MODELS

    PubMed Central

    Ramesh, Nisha; Mesadi, Fitsum; Cetin, Mujdat; Tasdizen, Tolga

    2016-01-01

    A novel implicit parametric shape model is proposed for segmentation and analysis of medical images. Functions representing the shape of an object can be approximated as a union of N polytopes. Each polytope is obtained by the intersection of M half-spaces. The shape function can be approximated as a disjunction of conjunctions, using the disjunctive normal form. The shape model is initialized using seed points defined by the user. We define a cost function based on the Chan-Vese energy functional. The model is differentiable, hence, gradient based optimization algorithms are used to find the model parameters. PMID:27403233

  18. Multifamily Envelope Leakage Model

    SciTech Connect

    Faakye, O.; Griffiths, D.

    2015-05-01

    The objective of the 2013 research project was to develop the model for predicting fully guarded test results (FGT), using unguarded test data and specific building features of apartment units. The model developed has a coefficient of determination R2 value of 0.53 with a root mean square error (RMSE) of 0.13. Both statistical metrics indicate that the model is relatively strong. When tested against data that was not included in the development of the model, prediction accuracy was within 19%, which is reasonable given that seasonal differences in blower door measurements can vary by as much as 25%.

  19. Models of HERG Gating

    PubMed Central

    Bett, Glenna C.L.; Zhou, Qinlian; Rasmusson, Randall L.

    2011-01-01

    HERG (Kv11.1, KCNH2) is a voltage-gated potassium channel with unique gating characteristics. HERG has fast voltage-dependent inactivation, relatively slow deactivation, and fast recovery from inactivation. This combination of gating kinetics makes study of HERG difficult without using mathematical models. Several HERG models have been developed, with fundamentally different organization. HERG is the molecular basis of IKr, which plays a critical role in repolarization. We programmed and compared five distinct HERG models. HERG gating cannot be adequately replicated using Hodgkin-Huxley type formulation. Using Markov models, a five-state model is required with three closed, one open, and one inactivated state, and a voltage-independent step between some of the closed states. A fundamental difference between models is the presence/absence of a transition directly from the proximal closed state to the inactivated state. The only models that effectively reproduce HERG data have no direct closed-inactivated transition, or have a closed-inactivated transition that is effectively zero compared to the closed-open transition, rendering the closed-inactivation transition superfluous. Our single-channel model demonstrates that channels can inactivate without conducting with a flickering or bursting open-state. The various models have qualitative and quantitative differences that are critical to accurate predictions of HERG behavior during repolarization, tachycardia, and premature depolarizations. PMID:21806931

  20. Radiation Environment Modeling for Spacecraft Design: New Model Developments

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Xapsos, Mike; Lauenstein, Jean-Marie; Ladbury, Ray

    2006-01-01

    A viewgraph presentation on various new space radiation environment models for spacecraft design is described. The topics include: 1) The Space Radiatio Environment; 2) Effects of Space Environments on Systems; 3) Space Radiatio Environment Model Use During Space Mission Development and Operations; 4) Space Radiation Hazards for Humans; 5) "Standard" Space Radiation Environment Models; 6) Concerns about Standard Models; 7) Inadequacies of Current Models; 8) Development of New Models; 9) New Model Developments: Proton Belt Models; 10) Coverage of New Proton Models; 11) Comparison of TPM-1, PSB97, AP-8; 12) New Model Developments: Electron Belt Models; 13) Coverage of New Electron Models; 14) Comparison of "Worst Case" POLE, CRESELE, and FLUMIC Models with the AE-8 Model; 15) New Model Developments: Galactic Cosmic Ray Model; 16) Comparison of NASA, MSU, CIT Models with ACE Instrument Data; 17) New Model Developmemts: Solar Proton Model; 18) Comparison of ESP, JPL91, KIng/Stassinopoulos, and PSYCHIC Models; 19) New Model Developments: Solar Heavy Ion Model; 20) Comparison of CREME96 to CREDO Measurements During 2000 and 2002; 21) PSYCHIC Heavy ion Model; 22) Model Standardization; 23) Working Group Meeting on New Standard Radiation Belt and Space Plasma Models; and 24) Summary.

  1. Groundwater Model Validation

    SciTech Connect

    Ahmed E. Hassan

    2006-01-24

    Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface environment makes uncertainty an integral component of groundwater flow and transport models, which dictates the need for continuous monitoring and improvement. Building and sustaining confidence in closure decisions and monitoring networks based on models of subsurface conditions require developing confidence in the models through an iterative process. The definition of model validation is postulated as a confidence building and long-term iterative process (Hassan, 2004a). Model validation should be viewed as a process not an end result. Following Hassan (2004b), an approach is proposed for the validation process of stochastic groundwater models. The approach is briefly summarized herein and detailed analyses of acceptance criteria for stochastic realizations and of using validation data to reduce input parameter uncertainty are presented and applied to two case studies. During the validation process for stochastic models, a question arises as to the sufficiency of the number of acceptable model realizations (in terms of conformity with validation data). Using a hierarchical approach to make this determination is proposed. This approach is based on computing five measures or metrics and following a decision tree to determine if a sufficient number of realizations attain satisfactory scores regarding how they represent the field data used for calibration (old) and used for validation (new). The first two of these measures are applied to hypothetical scenarios using the first case study and assuming field data consistent with the model or significantly different from the model results. In both cases it is shown how the two measures would lead to the appropriate decision about the model performance. Standard statistical tests are used to evaluate these measures with the results indicating they are appropriate measures for evaluating model realizations. The use of validation

  2. Why business models matter.

    PubMed

    Magretta, Joan

    2002-05-01

    "Business model" was one of the great buzz-words of the Internet boom. A company didn't need a strategy, a special competence, or even any customers--all it needed was a Web-based business model that promised wild profits in some distant, ill-defined future. Many people--investors, entrepreneurs, and executives alike--fell for the fantasy and got burned. And as the inevitable counterreaction played out, the concept of the business model fell out of fashion nearly as quickly as the .com appendage itself. That's a shame. As Joan Magretta explains, a good business model remains essential to every successful organization, whether it's a new venture or an established player. To help managers apply the concept successfully, she defines what a business model is and how it complements a smart competitive strategy. Business models are, at heart, stories that explain how enterprises work. Like a good story, a robust business model contains precisely delineated characters, plausible motivations, and a plot that turns on an insight about value. It answers certain questions: Who is the customer? How do we make money? What underlying economic logic explains how we can deliver value to customers at an appropriate cost? Every viable organization is built on a sound business model, but a business model isn't a strategy, even though many people use the terms interchangeably. Business models describe, as a system, how the pieces of a business fit together. But they don't factor in one critical dimension of performance: competition. That's the job of strategy. Illustrated with examples from companies like American Express, EuroDisney, WalMart, and Dell Computer, this article clarifies the concepts of business models and strategy, which are fundamental to every company's performance.

  3. Biosphere Process Model Report

    SciTech Connect

    J. Schmitt

    2000-05-25

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor

  4. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  5. Spiral model pilot project information model

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective was an evaluation of the Spiral Model (SM) development approach to allow NASA Marshall to develop an experience base of that software management methodology. A discussion is presented of the Information Model (IM) that was used as part of the SM methodology. A key concept of the SM is the establishment of an IM to be used by management to track the progress of a project. The IM is the set of metrics that is to be measured and reported throughout the life of the project. These metrics measure both the product and the process to ensure the quality of the final delivery item and to ensure the project met programmatic guidelines. The beauty of the SM, along with the IM, is the ability to measure not only the correctness of the specification and implementation of the requirements but to also obtain a measure of customer satisfaction.

  6. Automated Student Model Improvement

    ERIC Educational Resources Information Center

    Koedinger, Kenneth R.; McLaughlin, Elizabeth A.; Stamper, John C.

    2012-01-01

    Student modeling plays a critical role in developing and improving instruction and instructional technologies. We present a technique for automated improvement of student models that leverages the DataShop repository, crowd sourcing, and a version of the Learning Factors Analysis algorithm. We demonstrate this method on eleven educational…

  7. Modeling Antibody Diversity.

    ERIC Educational Resources Information Center

    Baker, William P.; Moore, Cathy Ronstadt

    1998-01-01

    Understanding antibody structure and function is difficult for many students. The rearrangement of constant and variable regions during antibody differentiation can be effectively simulated using a paper model. Describes a hands-on laboratory exercise which allows students to model antibody diversity using readily available resources. (PVD)

  8. Canister Model, Systems Analysis

    1993-09-29

    This packges provides a computer simulation of a systems model for packaging nuclear waste and spent nuclear fuel in canisters. The canister model calculates overall programmatic cost, number of canisters, and fuel and waste inventories for the Idaho Chemical Processing Plant (other initial conditions can be entered).

  9. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  10. Fictional models in science

    NASA Astrophysics Data System (ADS)

    Morrison, Margaret

    2014-02-01

    When James Clerk Maxwell set out his famous equations 150 years ago, his model of electromagnetism included a piece of pure fiction: an invisible, all-pervasive "aether" made up of elastic vortices separated by electric charges. Margaret Morrison explores how this and other "fictional" models shape science.

  11. Modeling Water Filtration

    ERIC Educational Resources Information Center

    Parks, Melissa

    2014-01-01

    Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…

  12. Dasymetric Modeling and Uncertainty

    PubMed Central

    Nagle, Nicholas N.; Buttenfield, Barbara P.; Leyk, Stefan; Speilman, Seth

    2014-01-01

    Dasymetric models increase the spatial resolution of population data by incorporating related ancillary data layers. The role of uncertainty in dasymetric modeling has not been fully addressed as of yet. Uncertainty is usually present because most population data are themselves uncertain, and/or the geographic processes that connect population and the ancillary data layers are not precisely known. A new dasymetric methodology - the Penalized Maximum Entropy Dasymetric Model (P-MEDM) - is presented that enables these sources of uncertainty to be represented and modeled. The P-MEDM propagates uncertainty through the model and yields fine-resolution population estimates with associated measures of uncertainty. This methodology contains a number of other benefits of theoretical and practical interest. In dasymetric modeling, researchers often struggle with identifying a relationship between population and ancillary data layers. The PEDM model simplifies this step by unifying how ancillary data are included. The P-MEDM also allows a rich array of data to be included, with disparate spatial resolutions, attribute resolutions, and uncertainties. While the P-MEDM does not necessarily produce more precise estimates than do existing approaches, it does help to unify how data enter the dasymetric model, it increases the types of data that may be used, and it allows geographers to characterize the quality of their dasymetric estimates. We present an application of the P-MEDM that includes household-level survey data combined with higher spatial resolution data such as from census tracts, block groups, and land cover classifications. PMID:25067846

  13. Connectionist Modelling and Education.

    ERIC Educational Resources Information Center

    Evers, Colin W.

    2000-01-01

    Provides a detailed, technical introduction to the state of cognitive science research, in particular the rise of the "new cognitive science," especially artificial neural net (ANN) models. Explains one influential ANN model and describes diverse applications and their implications for education. (EV)

  14. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  15. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  16. Models and Metaphors

    ERIC Educational Resources Information Center

    Ivie, Stanley D.

    2007-01-01

    Humanity delights in spinning conceptual models of the world. These models, in turn, mirror their respective root metaphors. Three root metaphors--spiritual, organic, and mechanical--have dominated western thought. The spiritual metaphor runs from Plato, through Hegel, and connects with Montessori. The organic metaphor extends from Aristotle,…

  17. Pathological Gambling: Psychiatric Models

    ERIC Educational Resources Information Center

    Westphal, James R.

    2008-01-01

    Three psychiatric conceptual models: addictive, obsessive-compulsive spectrum and mood spectrum disorder have been proposed for pathological gambling. The objectives of this paper are to (1) evaluate the evidence base from the most recent reviews of each model, (2) update the evidence through 2007 and (3) summarize the status of the evidence for…

  18. Evaluating Causal Models.

    ERIC Educational Resources Information Center

    Watt, James H., Jr.

    Pointing out that linear causal models can organize the interrelationships of a large number of variables, this paper contends that such models are particularly useful to mass communication research, which must by necessity deal with complex systems of variables. The paper first outlines briefly the philosophical requirements for establishing a…

  19. Modeling Carbon Exchange

    NASA Technical Reports Server (NTRS)

    Sellers, Piers

    2012-01-01

    Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.

  20. Using Models Effectively

    ERIC Educational Resources Information Center

    Eichinger, John

    2005-01-01

    Models are crucial to science teaching and learning, yet they can create unforeseen and overlooked challenges for students and teachers. For example, consider the time-tested clay volcano that relies on a vinegar and-baking-soda mixture for its "eruption." Based on a classroom demonstration of that geologic model, elementary students may interpret…

  1. Multilevel Mixture Factor Models

    ERIC Educational Resources Information Center

    Varriale, Roberta; Vermunt, Jeroen K.

    2012-01-01

    Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…

  2. Modelling extended chromospheres

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1986-01-01

    Attention is given to the concept that the warm, partially ionized plasma (presently called chromosphere) associated with such stars as Alpha Boo and Rho Per extends outwards at least several photospheric radii. Calculations are presented for the Mg II K line in light of two input model atmospheres. Specific predictions are deduced from the results obtained by each of the two models.

  3. Model-Based Reasoning

    ERIC Educational Resources Information Center

    Ifenthaler, Dirk; Seel, Norbert M.

    2013-01-01

    In this paper, there will be a particular focus on mental models and their application to inductive reasoning within the realm of instruction. A basic assumption of this study is the observation that the construction of mental models and related reasoning is a slowly developing capability of cognitive systems that emerges effectively with proper…

  4. A night sky model.

    NASA Astrophysics Data System (ADS)

    Erpylev, N. P.; Smirnov, M. A.; Bagrov, A. V.

    A night sky model is proposed. It includes different components of light polution, such as solar twilight, moon scattered light, zodiacal light, Milky Way, air glow and artificial light pollution. The model is designed for calculating the efficiency of astronomical installations.

  5. Solar Atmosphere Models

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.

    2002-12-01

    This contribution honoring Kees de Jager's 80th birthday is a review of "one-dimensional" solar atmosphere modeling that followed on the initial "Utrecht Reference Photosphere" of Heintze, Hubenet & de Jager (1964). My starting point is the Bilderberg conference, convened by de Jager in 1967 at the time when NLTE radiative transfer theory became mature. The resulting Bilderberg model was quickly superseded by the HSRA and later by the VAL-FAL sequence of increasingly sophisticated NLTE continuum-fitting models from Harvard. They became the "standard models" of solar atmosphere physics, but Holweger's relatively simple LTE line-fitting model still persists as a favorite of solar abundance determiners. After a brief model inventory I discuss subsequent work on the major modeling issues (coherency, NLTE, dynamics) listed as to-do items by de Jager in 1968. The present conclusion is that one-dimensional modeling recovers Schwarzschild's (1906) finding that the lower solar atmosphere is grosso modo in radiative equilibrium. This is a boon for applications regarding the solar atmosphere as one-dimensional stellar example - but the real sun, including all the intricate phenomena that now constitute the mainstay of solar physics, is vastly more interesting.

  6. Stereolithography models. Final report

    SciTech Connect

    Smith, R.E.

    1995-03-01

    This report describes the first stereolithographic models made, which proved in a new release of ProEngineer software (Parametric Technologies, or PTC) and 3D Systems (Valencia, California) software for the SLA 250 machine. They are a model of benzene and the {alpha}-carbon backbone of the variable region of an antibody.

  7. Mathematical models of hysteresis

    SciTech Connect

    1998-08-01

    The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.

  8. Dynamic Eye Model.

    ERIC Educational Resources Information Center

    Journal of Science and Mathematics Education in Southeast Asia, 1981

    1981-01-01

    Instructions (with diagrams and parts list) are provided for constructing an eye model with a pliable lens made from a plastic bottle which can vary its convexity to accommodate changing positions of an object being viewed. Also discusses concepts which the model can assist in developing. (Author/SK)

  9. Model for Coastal Restoration

    SciTech Connect

    Thom, Ronald M.; Judd, Chaeli

    2007-07-27

    Successful restoration of wetland habitats depends on both our understanding of our system and our ability to characterize it. By developing a conceptual model, looking at different spatial scales and integrating diverse data streams: GIS datasets and NASA products, we were able to develop a dynamic model for site prioritization based on both qualitative and quantitative relationships found in the coastal environment.

  10. Modelling Hadronic Matter

    NASA Astrophysics Data System (ADS)

    Menezes, Débora P.

    2016-04-01

    Hadron physics stands somewhere in the diffuse intersection between nuclear and particle physics and relies largely on the use of models. Historically, around 1930, the first nuclear physics models known as the liquid drop model and the semi-empirical mass formula established the grounds for the study of nuclei properties and nuclear structure. These two models are parameter dependent. Nowadays, around 500 hundred non-relativistic (Skyrme-type) and relativistic models are available in the literature and largely used and the vast majority are parameter dependent models. In this review I discuss some of the shortcomings of using non-relativistic models and the advantages of using relativistic ones when applying them to describe hadronic matter. I also show possible applications of relativistic models to physical situations that cover part of the QCD phase diagram: I mention how the description of compact objects can be done, how heavy-ion collisions can be investigated and particle fractions obtained and show the relation between liquid-gas phase transitions and the pasta phase.

  11. Models in Biology.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Addresses the most popular models currently being chosen for biological research and the reasons behind those choices. Among the current favorites are zebra fish, fruit flies, mice, monkeys, and yeast. Concludes with a brief examination of the ethical issues involved, and why some animals may need to be replaced in research with model systems.…

  12. Anticipatory model of cavitation

    NASA Astrophysics Data System (ADS)

    Kercel, Stephen W.; Allgood, Glenn O.; Dress, William B.; Hylton, James O.

    1999-03-01

    The Anticipatory System (AS) formalism developed by Robert Rosen provides some insight into the problem of embedding intelligent behavior in machines. AS emulates the anticipatory behavior of biological systems. AS bases its behavior on its expectations about the near future and those expectations are modified as the system gains experience. The expectation is based on an internal model that is drawn from an appeal to physical reality. To be adaptive, the model must be able to update itself. To be practical, the model must run faster than real-time. The need for a physical model and the requirement that the model execute at extreme speeds, has held back the application of AS to practical problems. Two recent advances make it possible to consider the use of AS for practical intelligent sensors. First, advances in transducer technology make it possible to obtain previously unavailable data from which a model can be derived. For example, acoustic emissions (AE) can be fed into a Bayesian system identifier that enables the separation of a weak characterizing signal, such as the signature of pump cavitation precursors, from a strong masking signal, such as a pump vibration feature. The second advance is the development of extremely fast, but inexpensive, digital signal processing hardware on which it is possible to run an adaptive Bayesian-derived model faster than real-time. This paper reports the investigation of an AS using a model of cavitation based on hydrodynamic principles and Bayesian analysis of data from high-performance AE sensors.

  13. A Model for Implementation.

    ERIC Educational Resources Information Center

    O'Connor-Petruso, Sharon Anne

    2003-01-01

    Describes the Constructural Multi-Modalities Model for MST (math, science, and technology) Inquiry Units. The MST Model uses an interdisciplinary and constructivist approach and allows teachers to create lesson plans that: integrate MST in tandem; adhere to local, state, and national standards; and actively engage students' differentiated learning…

  14. Video Self-Modeling

    ERIC Educational Resources Information Center

    Buggey, Tom; Ogle, Lindsey

    2012-01-01

    Video self-modeling (VSM) first appeared on the psychology and education stage in the early 1970s. The practical applications of VSM were limited by lack of access to tools for editing video, which is necessary for almost all self-modeling videos. Thus, VSM remained in the research domain until the advent of camcorders and VCR/DVD players and,…

  15. Model State Efforts.

    ERIC Educational Resources Information Center

    Morgan, Gwen

    Models of state involvement in training child care providers are briefly discussed and the employers' role in training is explored. Six criteria for states that are taken as models are identified, and four are described. Various state activities are described for each criterion. It is noted that little is known about employer and other private…

  16. Modeling HIV Cure

    NASA Astrophysics Data System (ADS)

    Perelson, Alan; Conway, Jessica; Cao, Youfang

    A large effort is being made to find a means to cure HIV infection. I will present a dynamical model of post-treatment control (PTC) or ``functional cure'' of HIV-infection. Some patients treated with suppressive antiviral therapy have been taken off of therapy and then spontaneously control HIV infection such that the amount of virus in the circulation is maintained undetectable by clinical assays for years. The model explains PTC occurring in some patients by having a parameter regime in which the model exhibits bistability, with both a low and high steady state viral load being stable. The model makes a number of predictions about how to attain the low PTC steady state. Bistability in this model depends upon the immune response becoming exhausted when over stimulated. I will also present a generalization of the model in which immunotherapy can be used to reverse immune exhaustion and compare model predictions with experiments in SIV infected macaques given immunotherapy and then taken off of antiretroviral therapy. Lastly, if time permits, I will discuss one of the hurdles to true HIV eradication, latently infected cells, and present clinical trial data and a new model addressing pharmacological means of flushing out the latent reservoir. Supported by NIH Grants AI028433 and OD011095.

  17. Symposium on ID Models.

    ERIC Educational Resources Information Center

    Silber, Kenneth H., Ed.

    1980-01-01

    Presents papers on four different instructional development models currently in use either in a university or a business setting. All phases of systematic development are covered, including project selection, production, implementation, performance analysis, constraints, and unusual features that distinguish each model. References are listed. (BK)

  18. Math, Science, and Models

    ERIC Educational Resources Information Center

    Weinburgh, Molly; Silva, Cecilia

    2011-01-01

    For the past five summers, the authors have taught summer school to recent immigrants and refugees. Their experiences with these fourth-grade English language learners (ELL) have taught them the value of using models to build scientific and mathematical concepts. In this article, they describe the use of different forms of 2- and 3-D models to…

  19. Dual-Schemata Model

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tadahiro; Sawaragi, Tetsuo

    In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.

  20. Modeling for Insights

    SciTech Connect

    Jacob J. Jacobson; Gretchen Matthern

    2007-04-01

    System Dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, System Dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The real power of System Dynamic modeling is gaining insights into total system behavior as time, and system parameters are adjusted and the effects are visualized in real time. System Dynamic models allow decision makers and stakeholders to explore long-term behavior and performance of complex systems, especially in the context of dynamic processes and changing scenarios without having to wait decades to obtain field data or risk failure if a poor management or design approach is used. The Idaho National Laboratory recently has been developing a System Dynamic model of the US Nuclear Fuel Cycle. The model is intended to be used to identify and understand interactions throughout the entire nuclear fuel cycle and suggest sustainable development strategies. This paper describes the basic framework of the current model and presents examples of useful insights gained from the model thus far with respect to sustainable development of nuclear power.

  1. SOSS ICN Model Validation

    NASA Technical Reports Server (NTRS)

    Zhu, Zhifan

    2016-01-01

    Under the NASA-KAIA-KARI ATM research collaboration agreement, SOSS ICN Model has been developed for Incheon International Airport. This presentation describes the model validation work in the project. The presentation will show the results and analysis of the validation.

  2. Animal models of candidiasis.

    PubMed

    Clancy, Cornelius J; Cheng, Shaoji; Nguyen, Minh Hong

    2009-01-01

    Animal models are powerful tools to study the pathogenesis of diverse types of candidiasis. Murine models are particularly attractive because of cost, ease of handling, technical feasibility, and experience with their use. In this chapter, we describe methods for two of the most popular murine models of disease caused by Candida albicans. In an intravenously disseminated candidiasis (DC) model, immunocompetent mice are infected by lateral tail vein injections of a C. albicans suspension. Endpoints include mortality, tissue burdens of infection (most importantly in the kidneys, although spleens and livers are sometimes also assessed), and histopathology of infected organs. In a model of oral/esophageal candidiasis, mice are immunosuppressed with cortisone acetate and inoculated in the oral cavities using swabs saturated with a C. albicans suspension. Since mice do not die from oral candidiasis in this model, endpoints are tissue burden of infection and histopathology. The DC and oral/esophageal models are most commonly used for studies of C. albicans virulence, in which the disease-causing ability of a mutant strain is compared with an isogenic parent strain. Nevertheless, the basic techniques we describe are also applicable to models adapted to investigate other aspects of pathogenesis, such as spatiotemporal patterns of gene expression, specific aspects of host immune response and assessment of antifungal agents, immunomodulatory strategies, and vaccines.

  3. SUSY GUT Model Building

    SciTech Connect

    Raby, Stuart

    2008-11-23

    In this talk I discuss the evolution of SUSY GUT model building as I see it. Starting with 4 dimensional model building, I then consider orbifold GUTs in 5 dimensions and finally orbifold GUTs embedded into the E{sub 8}xE{sub 8} heterotic string.

  4. Modelling University Governance

    ERIC Educational Resources Information Center

    Trakman, Leon

    2008-01-01

    Twentieth century governance models used in public universities are subject to increasing doubt across the English-speaking world. Governments question if public universities are being efficiently governed; if their boards of trustees are adequately fulfilling their trust obligations towards multiple stakeholders; and if collegial models of…

  5. On Some Electroconvection Models

    NASA Astrophysics Data System (ADS)

    Constantin, Peter; Elgindi, Tarek; Ignatova, Mihaela; Vicol, Vlad

    2016-08-01

    We consider a model of electroconvection motivated by studies of the motion of a two-dimensional annular suspended smectic film under the influence of an electric potential maintained at the boundary by two electrodes. We prove that this electroconvection model has global in time unique smooth solutions.

  6. Acid rain: Microphysical model

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1980-01-01

    A microphysical model was used to simulate the case of a ground cloud without dilution by entrainment and without precipitation. The numerical integration techniques of the model are presented. The droplet size spectra versus time and the droplet molalities for each value of time are discussed.

  7. THE AQUATOX MODEL

    EPA Science Inventory

    This lecture will present AQUATOX, an aquatic ecosystem simulation model developed by Dr. Dick Park and supported by the U.S. EPA. The AQUATOX model predicts the fate of various pollutants, such as nutrients and organic chemicals, and their effects on the ecosystem, including fi...

  8. Stormwater Management Model

    EPA Science Inventory

    SWMM is a model for urban hydrology. It has a long history and is relied upon by professional engineers in the US and around the world. SWMM provides both gray and green Infrastructure modeling capabilities. As such, it is a convenient tool for understanding the tradeoff between ...

  9. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  10. Generalized simplicial chiral models

    NASA Astrophysics Data System (ADS)

    Alimohammadi, Masoud

    2000-02-01

    Using the auxiliary field representation of the simplicial chiral models on a ( d-1)-dimensional simplex, the simplicial chiral models are generalized through replacing the term Tr (AA †) in the Lagrangian of these models by an arbitrary class function of AA †; V(AA †) . This is the same method used in defining the generalized two-dimensional Yang-Mills theories (gYM 2) from ordinary YM 2. We call these models the "generalized simplicial chiral models". Using the results of the one-link integral over a U( N) matrix, the large- N saddle-point equations for eigenvalue density function ρ( z) in the weak ( β> βc) and strong ( β< βc) regions are computed. In d=2, where the model is in some sense related to the gYM 2 theory, the saddle-point equations are solved for ρ( z) in the two regions, and the explicit value of critical point βc is calculated for V(B)= Tr B n(B=AA †) . For V(B)= Tr B 2, Tr B 3, and Tr B4, the critical behaviour of the model at d=2 is studied, and by calculating the internal energy, it is shown that these models have a third order phase transition.

  11. Introduction to Theoretical Modelling

    NASA Astrophysics Data System (ADS)

    Davis, Matthew J.; Gardiner, Simon A.; Hanna, Thomas M.; Nygaard, Nicolai; Proukakis, Nick P.; Szymańska, Marzena H.

    2013-02-01

    We briefly overview commonly encountered theoretical notions arising in the modelling of quantum gases, intended to provide a unified background to the `language' and diverse theoretical models presented elsewhere in this book, and aimed particularly at researchers from outside the quantum gases community.

  12. Model Children's Code.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque. American Indian Law Center.

    The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…

  13. Reliability model generator specification

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Mccann, Catherine

    1990-01-01

    The Reliability Model Generator (RMG), a program which produces reliability models from block diagrams for ASSIST, the interface for the reliability evaluation tool SURE is described. An account is given of motivation for RMG and the implemented algorithms are discussed. The appendices contain the algorithms and two detailed traces of examples.

  14. Warm Inflation Model Building

    NASA Astrophysics Data System (ADS)

    Bastero-Gil, Mar; Berera, Arjun

    We review the main aspects of the warm inflation scenario, focusing on the inflationary dynamics and the predictions related to the primordial spectrum of perturbations, to be compared with the recent cosmological observations. We study in detail three different classes of inflationary models, chaotic, hybrid models and hilltop models, and discuss their embedding into supersymmetric models and the consequences for model building of the warm inflationary dynamics based on first principles calculations. Due to the extra friction term introduced in the inflaton background evolution generated by the dissipative dynamics, inflation can take place generically for smaller values of the field, and larger values of couplings and masses. When the dissipative dynamics dominates over the expansion, in the so-called strong dissipative regime, inflation proceeds with sub-Planckian inflaton values. Models can be naturally embedded into a supergravity framework, with SUGRA corrections suppressed by the Planck mass now under control, for a larger class of Kähler potentials. In particular, this provides a simpler solution to the "eta" problem in supersymmetric hybrid inflation, without restricting the Kähler potentials compatible with inflation. For chaotic models dissipation leads to a smaller prediction for the tensor-to-scalar ratio and a less tilted spectrum when compared to the cold inflation scenario. We find in particular that a small component of dissipation renders the quartic model now consistent with the current CMB data.

  15. Computational Modeling of Tires

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Tanner, John A. (Compiler)

    1995-01-01

    This document contains presentations and discussions from the joint UVA/NASA Workshop on Computational Modeling of Tires. The workshop attendees represented NASA, the Army and Air force, tire companies, commercial software developers, and academia. The workshop objectives were to assess the state of technology in the computational modeling of tires and to provide guidelines for future research.

  16. Animal models of tinnitus.

    PubMed

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  17. Modeling cytomegalovirus infection in mouse tumor models.

    PubMed

    Price, Richard Lee; Chiocca, Ennio Antonio

    2015-01-01

    The hypothesis that cytomegalovirus (CMV) modulates cancer is evolving. Originally discovered in glioblastoma in 2002, the number of cancers, where intratumoral CMV antigen is detected, has increased in recent years suggesting that CMV actively affects the pathobiology of certain tumors. These findings are controversial as several groups have also reported inability to replicate these results. Regardless, several clinical trials for glioblastoma are underway or have been completed that target intratumoral CMV with anti-viral drugs or immunotherapy. Therefore, a better understanding of the possible pathobiology of CMV in cancer needs to be ascertained. We have developed genetic, syngeneic, and orthotopic malignant glioma mouse models to study the role of CMV in cancer development and progression. These models recapitulate for the most part intratumoral CMV expression as seen in human tumors. Additionally, we discovered that CMV infection in Trp53(-/+) mice promotes pleomorphic rhabdomyosarcomas. These mouse models are not only a vehicle for studying pathobiology of the viral-tumor interaction but also a platform for developing and testing cancer therapeutics. PMID:25853089

  18. Integrated Environmental Control Model

    1999-09-03

    IECM is a powerful multimedia engineering software program for simulating an integrated coal-fired power plant. It provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integratedmore » into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of dofferent costs and performance results. A Graphical Use Interface (GUI) facilitates the configuration of the technologies, entry of data, and retrieval of results.« less

  19. Modeling earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Charpentier, Arthur; Durand, Marilou

    2015-07-01

    In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.

  20. Direct insolation models

    SciTech Connect

    Bird, R.; Hulstrom, R.L.

    1980-01-01

    Several recently published models of the direct component of the broadband insolation are compared for clear sky conditions. The comparison includes seven simple models and one rigorous model that is used as a basis for determining accuracy. Where possible, the comparison is made between the results of each model for each atmospheric constituent (H/sub 2/O, CO/sub 2/, O/sub 3/, O/sub 2/, aerosol and molecular scattering) separately as well as for the combined effect of all of the constituents. Two optimum simple models of varying degrees of complexity are developed as a result of this comparison. The study indicates: aerosols dominate the attenuation of the direct beam for reasonable atmospheric conditions; molecular scattering is next in importance; water vapor is an important absorber; and carbon dioxide and oxygen are relatively unimportant as attenuators of the broadband solar energy.

  1. A Preliminary Jupiter Model

    NASA Astrophysics Data System (ADS)

    Hubbard, W. B.; Militzer, B.

    2016-03-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen-helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen-helium-rich envelope with approximately three times solar metallicity.

  2. Criticality Model Report

    SciTech Connect

    J.M. Scaglione

    2003-03-12

    The purpose of the ''Criticality Model Report'' is to validate the MCNP (CRWMS M&O 1998h) code's ability to accurately predict the effective neutron multiplication factor (k{sub eff}) for a range of conditions spanned by various critical configurations representative of the potential configurations commercial reactor assemblies stored in a waste package may take. Results of this work are an indication of the accuracy of MCNP for calculating eigenvalues, which will be used as input for criticality analyses for spent nuclear fuel (SNF) storage at the proposed Monitored Geologic Repository. The scope of this report is to document the development and validation of the criticality model. The scope of the criticality model is only applicable to commercial pressurized water reactor fuel. Valid ranges are established as part of the validation of the criticality model. This model activity follows the description in BSC (2002a).

  3. Hypertabastic survival model.

    PubMed

    Tabatabai, Mohammad A; Bursac, Zoran; Williams, David K; Singh, Karan P

    2007-10-26

    A new two-parameter probability distribution called hypertabastic is introduced to model the survival or time-to-event data. A simulation study was carried out to evaluate the performance of the hypertabastic distribution in comparison with popular distributions. We then demonstrate the application of the hypertabastic survival model by applying it to data from two motivating studies. The first one demonstrates the proportional hazards version of the model by applying it to a data set from multiple myeloma study. The second one demonstrates an accelerated failure time version of the model by applying it to data from a randomized study of glioma patients who underwent radiotherapy treatment with and without radiosensitizer misonidazole. Based on the results from the simulation study and two applications, the proposed model shows to be a flexible and promising alternative to practitioners in this field.

  4. Testing bow shock models

    NASA Astrophysics Data System (ADS)

    Alrefay, Thamer; Meziane, Karim; Hamza, A. M.

    2016-07-01

    Space plasmas studies of bow shock dynamics, given the fundamental transport role and impact natural transition boundaries, have continued to attract much interest. With the overwhelming availability of data collected by various space science missions, several empirical models have been put forward to account for the location of the Earth's bow shock. Various solar wind and IMF measured parameters are used to constrain the proposed models published in the literature. For each of these empirical models, the bow shock nose velocity, at the standoff distance, is computed; each of these velocities is then compared with the observed shock speed as determined from a multipoint measurement provided by the Cluster quartet. The present study reveals to what extent the model parameters used are significant and determinant, and suggests that some empirical models are more accurate than others are.

  5. Fuzzy object modeling

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Odhner, Dewey; Falcao, Alexandre X.; Ciesielski, Krzysztof C.; Miranda, Paulo A. V.; Vaideeswaran, Pavithra; Mishra, Shipra; Grevera, George J.; Saboury, Babak; Torigian, Drew A.

    2011-03-01

    To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition (AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building bodywide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, and orientation that exist among organs in different patients.

  6. Cardiovascular modeling and diagnostics

    SciTech Connect

    Kangas, L.J.; Keller, P.E.; Hashem, S.; Kouzes, R.T.

    1995-12-31

    In this paper, a novel approach to modeling and diagnosing the cardiovascular system is introduced. A model exhibits a subset of the dynamics of the cardiovascular behavior of an individual by using a recurrent artificial neural network. Potentially, a model will be incorporated into a cardiovascular diagnostic system. This approach is unique in that each cardiovascular model is developed from physiological measurements of an individual. Any differences between the modeled variables and the variables of an individual at a given time are used for diagnosis. This approach also exploits sensor fusion to optimize the utilization of biomedical sensors. The advantage of sensor fusion has been demonstrated in applications including control and diagnostics of mechanical and chemical processes.

  7. Rainfall erosion model

    NASA Astrophysics Data System (ADS)

    Sukhanovskii, Yu. P.

    2010-09-01

    A model describing rainfall erosion over the course of a long time period is proposed. The model includes: (1) a new equation of detachment of soil particles by water flows based on the Mirtskhulava equation; (2) a new equation for the transport capacity of the flow based on a modified Bagnold equation, which is used in the AGNPS model; (3) modified SCS runoff equation; (4) probability distributions for rainfall. The proposed equations agree satisfactorily with the data of on-site observations of the Moldova and Nizhnedevitsk water-balance stations. The Monte Carlo method is used for numerical modeling of random variables. The results of modeling agree satisfactorily with empirical equations developed for conditions in Russia and the United States. The effect of climatic conditions on the dependence of longtime average annual soil loss on various factors is analyzed. Minimum information is used for assigning the initial data.

  8. XAFS Model Compound Library

    DOE Data Explorer

    Newville, Matthew

    The XAFS Model Compound Library contains XAFS data on model compounds. The term "model" compounds refers to compounds of homogeneous and well-known crystallographic or molecular structure. Each data file in this library has an associated atoms.inp file that can be converted to a feff.inp file using the program ATOMS. (See the related Searchable Atoms.inp Archive at http://cars9.uchicago.edu/~newville/adb/) This Library exists because XAFS data on model compounds is useful for several reasons, including comparing to unknown data for "fingerprinting" and testing calculations and analysis methods. The collection here is currently limited, but is growing. The focus to date has been on inorganic compounds and minerals of interest to the geochemical community. [Copied, with editing, from http://cars9.uchicago.edu/~newville/ModelLib/

  9. Stochastic patch exploitation model

    PubMed Central

    Rita, H.; Ranta, E.

    1998-01-01

    A solitary animal is foraging in a patch consisting of discrete prey items. We develop a stochastic model for the accumulation of gain as a function of elapsed time in the patch. The model is based on the waiting times between subsequent encounters with the prey items. The novelty of the model is in that it renders possible–via parameterization of the waiting time distributions: the incorporation of different foraging situations and patch structures into the gain process. The flexibility of the model is demonstrated with different foraging scenarios. Dependence of gain expectation and variance of the parameters of the waiting times is studied under these conditions. The model allows us to comment upon some of the basic concepts in contemporary foraging theory.

  10. Impedance modelling of pipes

    NASA Astrophysics Data System (ADS)

    Creasy, M. Austin

    2016-03-01

    Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.

  11. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  12. Stratiform chromite deposit model

    USGS Publications Warehouse

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R., II

    2010-01-01

    Stratiform chromite deposits are of great economic importance, yet their origin and evolution remain highly debated. Layered igneous intrusions such as the Bushveld, Great Dyke, Kemi, and Stillwater Complexes, provide opportunities for studying magmatic differentiation processes and assimilation within the crust, as well as related ore-deposit formation. Chromite-rich seams within layered intrusions host the majority of the world's chromium reserves and may contain significant platinum-group-element (PGE) mineralization. This model of stratiform chromite deposits is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. The model focuses on features that may be common to all stratiform chromite deposits as a way to gain insight into the processes that gave rise to their emplacement and to the significant economic resources contained in them.

  13. Updating applied diffusion models

    SciTech Connect

    Weil, J.C.

    1985-01-01

    Most diffusion models currently used in air-quality applications are substantially out of date with understanding of turbulence and diffusion in the planetary boundary layer. Under a Cooperative Agreement with the Environmental Protection Agency, the American Meteorological Society organized a workshop to help improve the basis of such models, their physics and hopefully their performance. Reviews and recommendations were made on models in three areas: diffusion in the convective boundary layer (CBL), diffusion in the stable boundary layer (SBL), and model uncertainty. Progress has been made in all areas, but it is most significant and ready for application to practical models in the case of the CBL. This has resulted from a clear understanding of the vertical structure and diffusion in the CBL, as demonstrated by laboratory experiments, numerical simulations, and field observations. Understanding of turbulence structure and diffusion in the SBL is less complete and not yet ready for general use in applications.

  14. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  15. Varicella infection modeling.

    SciTech Connect

    Jones, Katherine A.; Finley, Patrick D.; Moore, Thomas W.; Nozick, Linda Karen; Martin, Nathaniel; Bandlow, Alisa; Detry, Richard Joseph; Evans, Leland B.; Berger, Taylor Eugen

    2013-09-01

    Infectious diseases can spread rapidly through healthcare facilities, resulting in widespread illness among vulnerable patients. Computational models of disease spread are useful for evaluating mitigation strategies under different scenarios. This report describes two infectious disease models built for the US Department of Veteran Affairs (VA) motivated by a Varicella outbreak in a VA facility. The first model simulates disease spread within a notional contact network representing staff and patients. Several interventions, along with initial infection counts and intervention delay, were evaluated for effectiveness at preventing disease spread. The second model adds staff categories, location, scheduling, and variable contact rates to improve resolution. This model achieved more accurate infection counts and enabled a more rigorous evaluation of comparative effectiveness of interventions.

  16. VENTILATION MODEL REPORT

    SciTech Connect

    V. Chipman

    2002-10-31

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

  17. Conditional statistical model building

    NASA Astrophysics Data System (ADS)

    Hansen, Mads Fogtmann; Hansen, Michael Sass; Larsen, Rasmus

    2008-03-01

    We present a new statistical deformation model suited for parameterized grids with different resolutions. Our method models the covariances between multiple grid levels explicitly, and allows for very efficient fitting of the model to data on multiple scales. The model is validated on a data set consisting of 62 annotated MR images of Corpus Callosum. One fifth of the data set was used as a training set, which was non-rigidly registered to each other without a shape prior. From the non-rigidly registered training set a shape prior was constructed by performing principal component analysis on each grid level and using the results to construct a conditional shape model, conditioning the finer parameters with the coarser grid levels. The remaining shapes were registered with the constructed shape prior. The dice measures for the registration without prior and the registration with a prior were 0.875 +/- 0.042 and 0.8615 +/- 0.051, respectively.

  18. Modeling glacial climates

    NASA Technical Reports Server (NTRS)

    North, G. R.; Crowley, T. J.

    1984-01-01

    Mathematical climate modelling has matured as a discipline to the point that it is useful in paleoclimatology. As an example a new two dimensional energy balance model is described and applied to several problems of current interest. The model includes the seasonal cycle and the detailed land-sea geographical distribution. By examining the changes in the seasonal cycle when external perturbations are forced upon the climate system it is possible to construct hypotheses about the origin of midlatitude ice sheets and polar ice caps. In particular the model predicts a rather sudden potential for glaciation over large areas when the Earth's orbital elements are only slightly altered. Similarly, the drift of continents or the change of atmospheric carbon dioxide over geological time induces radical changes in continental ice cover. With the advance of computer technology and improved understanding of the individual components of the climate system, these ideas will be tested in far more realistic models in the near future.

  19. Global ice sheet modeling

    SciTech Connect

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  20. Integrated Workforce Modeling System

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.

    2000-01-01

    There are several computer-based systems, currently in various phases of development at KSC, which encompass some component, aspect, or function of workforce modeling. These systems may offer redundant capabilities and/or incompatible interfaces. A systems approach to workforce modeling is necessary in order to identify and better address user requirements. This research has consisted of two primary tasks. Task 1 provided an assessment of existing and proposed KSC workforce modeling systems for their functionality and applicability to the workforce planning function. Task 2 resulted in the development of a proof-of-concept design for a systems approach to workforce modeling. The model incorporates critical aspects of workforce planning, including hires, attrition, and employee development.

  1. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.; Everitt, B.S.; Howell, D.C.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  2. Beyond the Standard Model

    SciTech Connect

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ``Beyond the Standard Model`` for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e{sup +}e{sup {minus}} colliders.

  3. Open ocean tide modelling

    NASA Technical Reports Server (NTRS)

    Parke, M. E.

    1978-01-01

    Two trends evident in global tidal modelling since the first GEOP conference in 1972 are described. The first centers on the incorporation of terms for ocean loading and gravitational self attraction into Laplace's tidal equations. The second centers on a better understanding of the problem of near resonant modelling and the need for realistic maps of tidal elevation for use by geodesists and geophysicists. Although new models still show significant differences, especially in the South Atlantic, there are significant similarities in many of the world's oceans. This allows suggestions to be made for future locations for bottom pressure gauge measurements. Where available, estimates of M2 tidal dissipation from the new models are significantly lower than estimates from previous models.

  4. Australia's Next Top Fraction Model

    ERIC Educational Resources Information Center

    Gould, Peter

    2013-01-01

    Peter Gould suggests Australia's next top fraction model should be a linear model rather than an area model. He provides a convincing argument and gives examples of ways to introduce a linear model in primary classrooms.

  5. Staged Models for Interdisciplinary Research.

    PubMed

    Lafuerza, Luis F; Dyson, Louise; Edmonds, Bruce; McKane, Alan J

    2016-01-01

    Modellers of complex biological or social systems are often faced with an invidious choice: to use simple models with few mechanisms that can be fully analysed, or to construct complicated models that include all the features which are thought relevant. The former ensures rigour, the latter relevance. We discuss a method that combines these two approaches, beginning with a complex model and then modelling the complicated model with simpler models. The resulting "chain" of models ensures some rigour and relevance. We illustrate this process on a complex model of voting intentions, constructing a reduced model which agrees well with the predictions of the full model. Experiments with variations of the simpler model yield additional insights which are hidden by the complexity of the full model. This approach facilitated collaboration between social scientists and physicists-the complex model was specified based on the social science literature, and the simpler model constrained to agree (in core aspects) with the complicated model. PMID:27362836

  6. Saturn Radiation (SATRAD) Model

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Ratliff, J. M.; Evans, R. W.

    2005-01-01

    The Saturnian radiation belts have not received as much attention as the Jovian radiation belts because they are not nearly as intense-the famous Saturnian particle rings tend to deplete the belts near where their peak would occur. As a result, there has not been a systematic development of engineering models of the Saturnian radiation environment for mission design. A primary exception is that of Divine (1990). That study used published data from several charged particle experiments aboard the Pioneer 1 1, Voyager 1, and Voyager 2 spacecraft during their flybys at Saturn to generate numerical models for the electron and proton radiation belts between 2.3 and 13 Saturn radii. The Divine Saturn radiation model described the electron distributions at energies between 0.04 and 10 MeV and the proton distributions at energies between 0.14 and 80 MeV. The model was intended to predict particle intensity, flux, and fluence for the Cassini orbiter. Divine carried out hand calculations using the model but never formally developed a computer program that could be used for general mission analyses. This report seeks to fill that void by formally developing a FORTRAN version of the model that can be used as a computer design tool for missions to Saturn that require estimates of the radiation environment around the planet. The results of that effort and the program listings are presented here along with comparisons with the original estimates carried out by Divine. In addition, Pioneer and Voyager data were scanned in from the original references and compared with the FORTRAN model s predictions. The results were statistically analyzed in a manner consistent with Divine s approach to provide estimates of the ability of the model to reproduce the original data. Results of a formal review of the model by a panel of experts are also presented. Their recommendations for further tests, analyses, and extensions to the model are discussed.

  7. Maximally Expressive Task Modeling

    NASA Technical Reports Server (NTRS)

    Japp, John; Davis, Elizabeth; Maxwell, Theresa G. (Technical Monitor)

    2002-01-01

    Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiment activities for the Space Station. The equipment used in these experiments is some of the most complex hardware ever developed by mankind, the information sought by these experiments is at the cutting edge of scientific endeavor, and the procedures for executing the experiments are intricate and exacting. Scheduling is made more difficult by a scarcity of space station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling space station experiment operations calls for a "maximally expressive" modeling schema. Modeling even the simplest of activities cannot be automated; no sensor can be attached to a piece of equipment that can discern how to use that piece of equipment; no camera can quantify how to operate a piece of equipment. Modeling is a human enterprise-both an art and a science. The modeling schema should allow the models to flow from the keyboard of the user as easily as works of literature flowed from the pen of Shakespeare. The Ground Systems Department at the Marshall Space Flight Center has embarked on an effort to develop a new scheduling engine that is highlighted by a maximally expressive modeling schema. This schema, presented in this paper, is a synergy of technological advances and domain-specific innovations.

  8. Animal Models of Atherosclerosis

    PubMed Central

    Getz, Godfrey S.; Reardon, Catherine A.

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis or lipoprotein profile. Useful large animal models include pigs, rabbits and non-human primates. Due in large part to the relative ease of genetic manipulation and the relatively short time frame for the development of atherosclerosis, murine models are currently the most extensively used. While not all aspects of murine atherosclerosis are identical to humans, studies using murine models have suggested potential biological processes and interactions that underlie this process. As it becomes clear that different factors may influence different stages of lesion development, the use of mouse models with the ability to turn on or delete proteins or cells in tissue specific and temporal manner will be very valuable. PMID:22383700

  9. VPPA weld model evaluation

    NASA Astrophysics Data System (ADS)

    McCutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-07-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  10. Biophysical models in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Scholz, M.; Elsaesser, T.

    One major rationale for the application of ion beams in tumor therapy is their increased relative biological effectiveness RBE in the Bragg peak region For dose prescription the increased effectiveness has to be taken into account in treatment planning Hence the complex dependencies of RBE on the dose level biological endpoint position in the field etc require biophysical models which have to fulfill two important criteria simplicity and quantitative precision Simplicity means that the number of free parameters should be kept at a minimum Due to the lack of precise quantitative data at least at present this requirement is incompatible with approaches aiming at the molecular modeling of the whole chain of production processing and repair of biological damages Quantitative precision is required since steep gradients in the dose response curves are observed for most tumor and normal tissues thus even small uncertainties in the estimation of the biologically effective dose can transform into large uncertainties in the clinical outcome The paper will give a general introduction into the field followed by a brief description of a specific model the so called Local Effect Model LEM This model has been successfully applied within treatment planning in the GSI pilot project for carbon ion tumor therapy over almost 10 years now The model is based on the knowledge of charged particle track structure in combination with the response of the biological objects to conventional photon radiation The model will be critically discussed with respect to other

  11. Acute radiation risk models

    NASA Astrophysics Data System (ADS)

    Smirnova, Olga

    Biologically motivated mathematical models, which describe the dynamics of the major hematopoietic lineages (the thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems) in acutely/chronically irradiated humans are developed. These models are implemented as systems of nonlinear differential equations, which variables and constant parameters have clear biological meaning. It is shown that the developed models are capable of reproducing clinical data on the dynamics of these systems in humans exposed to acute radiation in the result of incidents and accidents, as well as in humans exposed to low-level chronic radiation. Moreover, the averaged value of the "lethal" dose rates of chronic irradiation evaluated within models of these four major hematopoietic lineages coincides with the real minimal dose rate of lethal chronic irradiation. The demonstrated ability of the models of the human thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems to predict the dynamical response of these systems to acute/chronic irradiation in wide ranges of doses and dose rates implies that these mathematical models form an universal tool for the investigation and prediction of the dynamics of the major human hematopoietic lineages for a vast pattern of irradiation scenarios. In particular, these models could be applied for the radiation risk assessment for health of astronauts exposed to space radiation during long-term space missions, such as voyages to Mars or Lunar colonies, as well as for health of people exposed to acute/chronic irradiation due to environmental radiological events.

  12. Modeling mitochondrial function.

    PubMed

    Balaban, Robert S

    2006-12-01

    The mitochondrion represents a unique opportunity to apply mathematical modeling to a complex biological system. Understanding mitochondrial function and control is important since this organelle is critical in energy metabolism as well as playing key roles in biochemical synthesis, redox control/signaling, and apoptosis. A mathematical model, or hypothesis, provides several useful insights including a rigorous test of the consensus view of the operation of a biological process as well as providing methods of testing and creating new hypotheses. The advantages of the mitochondrial system for applying a mathematical model include the relative simplicity and understanding of the matrix reactions, the ability to study the mitochondria as a independent contained organelle, and, most importantly, one can dynamically measure many of the internal reaction intermediates, on line. The developing ability to internally monitor events within the metabolic network, rather than just the inflow and outflow, is extremely useful in creating critical bounds on complex mathematical models using the individual reaction mechanisms available. However, many serious problems remain in creating a working model of mitochondrial function including the incomplete definition of metabolic pathways, the uncertainty of using in vitro enzyme kinetics, as well as regulatory data in the intact system and the unknown chemical activities of relevant molecules in the matrix. Despite these formidable limitations, the advantages of the mitochondrial system make it one of the best defined mammalian metabolic networks that can be used as a model system for understanding the application and use of mathematical models to study biological systems.

  13. Invertebrate models of alcoholism.

    PubMed

    Scholz, Henrike; Mustard, Julie A

    2013-01-01

    For invertebrates to become useful models for understanding the genetic and physiological mechanisms of alcoholism related behaviors and the predisposition towards alcoholism, several general requirements must be fulfilled. The animal should encounter ethanol in its natural habitat, so that the central nervous system of the organism will have evolved mechanisms for responding to ethanol exposure. How the brain adapts to ethanol exposure depends on its access to ethanol, which can be regulated metabolically and/or by physical barriers. Therefore, a model organism should have metabolic enzymes for ethanol degradation similar to those found in humans. The neurons and supporting glial cells of the model organism that regulate behaviors affected by ethanol should share the molecular and physiological pathways found in humans, so that results can be compared. Finally, the use of invertebrate models should offer advantages over traditional model systems and should offer new insights into alcoholism-related behaviors. In this review we will summarize behavioral similarities and identified genes and mechanisms underlying ethanol-induced behaviors in invertebrates. This review mainly focuses on the use of the nematode Caenorhabditis elegans, the honey bee Apis mellifera and the fruit fly Drosophila melanogaster as model systems. We will discuss insights gained from those studies in conjunction with their vertebrate model counterparts and the implications for future research into alcoholism and alcohol-induced behaviors.

  14. Intraocular Lymphoma Models

    PubMed Central

    Aronow, Mary E.; Shen, Defen; Hochman, Jacob; Chan, Chi-Chao

    2015-01-01

    Primary vitreoretinal lymphoma (PVRL) is a subtype of primary central nervous system lymphoma (PCNSL), a high-grade, extranodal, non-Hodgkin's lymphoma, predominantly of B-cell origin. PVRL is an aggressive disease with a poor prognosis. Human studies are not ideally suited for the study of intraocular lymphoma pathogenesis or treatment strategies due to the rare nature of the disease, its variable presentation, limited volume of available ocular fluids, and fragility of sampled lymphoma cells. Animal models have been critical in making progress in understanding intraocular lymphoma pathogenesis and investigating potential therapeutic strategies. Early murine models for intraocular lymphoma used intraperitoneal injection of mouse T-cell lymphomas. This was followed by intravitreal T-cell murine models. More recent murine models have used B-cell lymphomas to more closely mimic human disease. The most current B-cell lymphoma models employ a combined approach of inoculating both the mouse vitreous cavity and brain. The challenge in murine models for intraocular lymphoma lies in recreating the clinical features, disease behavior, molecular profile, systemic immunity, and the microenvironment observed in human disease. In the future, animal models will continue to be central to furthering our understanding of the disease and in the investigation of potential treatment targets. PMID:27171354

  15. VPPA weld model evaluation

    NASA Technical Reports Server (NTRS)

    Mccutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-01-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  16. SPAR Model Structural Efficiencies

    SciTech Connect

    John Schroeder; Dan Henry

    2013-04-01

    The Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) are supporting initiatives aimed at improving the quality of probabilistic risk assessments (PRAs). Included in these initiatives are the resolution of key technical issues that are have been judged to have the most significant influence on the baseline core damage frequency of the NRC’s Standardized Plant Analysis Risk (SPAR) models and licensee PRA models. Previous work addressed issues associated with support system initiating event analysis and loss of off-site power/station blackout analysis. The key technical issues were: • Development of a standard methodology and implementation of support system initiating events • Treatment of loss of offsite power • Development of standard approach for emergency core cooling following containment failure Some of the related issues were not fully resolved. This project continues the effort to resolve outstanding issues. The work scope was intended to include substantial collaboration with EPRI; however, EPRI has had other higher priority initiatives to support. Therefore this project has addressed SPAR modeling issues. The issues addressed are • SPAR model transparency • Common cause failure modeling deficiencies and approaches • Ac and dc modeling deficiencies and approaches • Instrumentation and control system modeling deficiencies and approaches

  17. Atmospheric Models for Aerocapture

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta L.; Keller, Vernon W.

    2004-01-01

    There are eight destinations in the solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithm, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan.

  18. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online.

  19. Computationally modeling interpersonal trust

    PubMed Central

    Lee, Jin Joo; Knox, W. Bradley; Wormwood, Jolie B.; Breazeal, Cynthia; DeSteno, David

    2013-01-01

    We present a computational model capable of predicting—above human accuracy—the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind's readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our prior work using human-subjects experiments, when incorporated into the feature engineering process, permits a computational model to outperform both human predictions and a baseline model built in naiveté of this domain knowledge. We then present the construction of hidden Markov models to investigate temporal relationships among the trust-related nonverbal cues. By interpreting the resulting learned structure, we observe that models built to emulate different levels of trust exhibit different sequences of nonverbal cues. From this observation, we derived sequence-based temporal features that further improve the accuracy of our computational model. Our multi-step research process presented in this paper combines the strength of experimental manipulation and machine learning to not only design a computational trust model but also to further our understanding of the dynamics of interpersonal trust. PMID:24363649

  20. Interactive geologic modeling

    SciTech Connect

    Glaeser, J.D.; Krajewski, S.A.

    1984-04-01

    Improved success in finding hydrocarbons and minerals depends on developing geologic models from seismic, gravity, and magnetic data that most closely approximate real-world settings. Although data processing remains the chore of mainframe and minicomputers, interpretations and modeling of geologic and geophysical information now are best accomplished on personal computers because these computers afford the explorationist maximum freedom to shape and fine tune geophysical evaluations. Three case histories use the GEOSIM geophysical modeling systems to delineate exploration targets. The first example is Silurian Niagaran reef trends in the Michigan basin. Here, differences in seismic reef anomalies result from variations in carbonate-evaporite stratigraphy encasing the reefs, reef geometry, and reef reservoir parameters. These variations which influence real seismic-response differences can be successfully matched using appropriate geologic models in generating synthetic seismic reef anomalies. The second example applies gravity and magnetic data to seismic modeling of a Wyoming coal field. Detailed seismic stratigraphy helps locate those portions of the field having multiple seams, although it does not resolve individual economic zones. Gravity data do identify pinchout margins of multiseam zones and pinchouts between principal coals. Magnetic data are then used to delineate the burn (clinker) margin. Seismic modeling of subtle stratigraphic traps is the broader area of exploration interest contained in the first 2 examples. In the third, successfully modeled and tested examples of lateral changes in deltaic facies and of faulted, unconformity-bounded continent-margin sequences are shown to be successful guides to reinterpretation of seismic data.

  1. SSCL groundwater model

    SciTech Connect

    Romero, V.; Bull, J.; Stapleton, G.; Baker, S.; Goss, D.; Coulson, L.

    1994-02-01

    Activation of groundwater due to accelerator operations has been a consideration since the conceptual stages of the SSC. Prior to site selection, an elementary hydrological model assuming a porous medium with a shallow well in proximity to the tunnel was used to determine the radionuclide concentrations in the water pumped from a well. The model assumed that radionuclides produced within a few feet of the tunnel would migrate to the shallow well and be diluted as the well drew water from a conically symmetric region. After the Ellis County site was selected, the compatibility of this model with the site specific geology was evaluated. The host geology at the selected site is low permeability rock, Austin chalk, shale, and marl, however, vertical fractures do exist. Since the host rock has a low permeability, groundwater in proximity to the tunnel would have to travel primarily through fractures. This hydrology is not compatible with the above mentioned model since water does not percolate uniformly from the surrounding rock into local wells. The amount of dilution of activated water will vary significantly depending on the specific relationship of the well to the activation zone. A further complication in the original model is that it assumes the high energy particles escaping from the accelerator enclosure are localized. The model does not provide for particles being lost over a large area as will happen with routine operational losses. These losses will be distributed along the accelerator over the life of the project. The SSCL groundwater model has been recast to account for the site specific hydrology and both point and distributed losses. Using the new groundwater model, the SSC accelerators are designed to limit the activation concentration in the water located one meter outside the accelerator enclosure to meet the federal drinking water standards. This technical note provides the details of this model.

  2. Turbulence Modeling Workshop

    NASA Technical Reports Server (NTRS)

    Rubinstein, R. (Editor); Rumsey, C. L. (Editor); Salas, M. D. (Editor); Thomas, J. L. (Editor); Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Advances in turbulence modeling are needed in order to calculate high Reynolds number flows near the onset of separation and beyond. To this end, the participants in this workshop made the following recommendations. (1) A national/international database and standards for turbulence modeling assessment should be established. Existing experimental data sets should be reviewed and categorized. Advantage should be taken of other efforts already under-way, such as that of the European Research Community on Flow, Turbulence, and Combustion (ERCOFTAC) consortium. Carefully selected "unit" experiments will be needed, as well as advances in instrumentation, to fill the gaps in existing datasets. A high priority should be given to document existing turbulence model capabilities in a standard form, including numerical implementation issues such as grid quality and resolution. (2) NASA should support long-term research on Algebraic Stress Models and Reynolds Stress Models. The emphasis should be placed on improving the length-scale equation, since it is the least understood and is a key component of two-equation and higher models. Second priority should be given to the development of improved near-wall models. Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) would provide valuable guidance in developing and validating new Reynolds-averaged Navier-Stokes (RANS) models. Although not the focus of this workshop, DNS, LES, and hybrid methods currently represent viable approaches for analysis on a limited basis. Therefore, although computer limitations require the use of RANS methods for realistic configurations at high Reynolds number in the foreseeable future, a balanced effort in turbulence modeling development, validation, and implementation should include these approaches as well.

  3. SMC: SCENIC Model Control

    NASA Technical Reports Server (NTRS)

    Srivastava, Priyaka; Kraus, Jeff; Murawski, Robert; Golden, Bertsel, Jr.

    2015-01-01

    NASAs Space Communications and Navigation (SCaN) program manages three active networks: the Near Earth Network, the Space Network, and the Deep Space Network. These networks simultaneously support NASA missions and provide communications services to customers worldwide. To efficiently manage these resources and their capabilities, a team of student interns at the NASA Glenn Research Center is developing a distributed system to model the SCaN networks. Once complete, the system shall provide a platform that enables users to perform capacity modeling of current and prospective missions with finer-grained control of information between several simulation and modeling tools. This will enable the SCaN program to access a holistic view of its networks and simulate the effects of modifications in order to provide NASA with decisional information. The development of this capacity modeling system is managed by NASAs Strategic Center for Education, Networking, Integration, and Communication (SCENIC). Three primary third-party software tools offer their unique abilities in different stages of the simulation process. MagicDraw provides UMLSysML modeling, AGIs Systems Tool Kit simulates the physical transmission parameters and de-conflicts scheduled communication, and Riverbed Modeler (formerly OPNET) simulates communication protocols and packet-based networking. SCENIC developers are building custom software extensions to integrate these components in an end-to-end space communications modeling platform. A central control module acts as the hub for report-based messaging between client wrappers. Backend databases provide information related to mission parameters and ground station configurations, while the end user defines scenario-specific attributes for the model. The eight SCENIC interns are working under the direction of their mentors to complete an initial version of this capacity modeling system during the summer of 2015. The intern team is composed of four students in

  4. Sandia Material Model Driver

    2005-09-28

    The Sandia Material Model Driver (MMD) software package allows users to run material models from a variety of different Finite Element Model (FEM) codes in a standalone fashion, independent of the host codes. The MMD software is designed to be run on a variety of different operating system platforms as a console application. Initial development efforts have resulted in a package that has been shown to be fast, convenient, and easy to use, with substantialmore » growth potential.« less

  5. Computer Modeling Of Atomization

    NASA Technical Reports Server (NTRS)

    Giridharan, M.; Ibrahim, E.; Przekwas, A.; Cheuch, S.; Krishnan, A.; Yang, H.; Lee, J.

    1994-01-01

    Improved mathematical models based on fundamental principles of conservation of mass, energy, and momentum developed for use in computer simulation of atomization of jets of liquid fuel in rocket engines. Models also used to study atomization in terrestrial applications; prove especially useful in designing improved industrial sprays - humidifier water sprays, chemical process sprays, and sprays of molten metal. Because present improved mathematical models based on first principles, they are minimally dependent on empirical correlations and better able to represent hot-flow conditions that prevail in rocket engines and are too severe to be accessible for detailed experimentation.

  6. Modeling EERE Deployment Programs

    SciTech Connect

    Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.; Livingston, Olga V.

    2007-11-08

    The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, “Modeling EERE Deployment Programs,” sponsored by the Planning, Analysis, and Evaluation office within the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.

  7. Component-specific modeling

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1985-01-01

    Accomplishments are described for the second year effort of a 3-year program to develop methodology for component specific modeling of aircraft engine hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models; (2) geometry model generators; (3) remeshing; (4) specialty 3-D inelastic stuctural analysis; (5) computationally efficient solvers, (6) adaptive solution strategies; (7) engine performance parameters/component response variables decomposition and synthesis; (8) integrated software architecture and development, and (9) validation cases for software developed.

  8. Beyond Standard Model Physics

    SciTech Connect

    Bellantoni, L.

    2009-11-01

    There are many recent results from searches for fundamental new physics using the TeVatron, the SLAC b-factory and HERA. This talk quickly reviewed searches for pair-produced stop, for gauge-mediated SUSY breaking, for Higgs bosons in the MSSM and NMSSM models, for leptoquarks, and v-hadrons. There is a SUSY model which accommodates the recent astrophysical experimental results that suggest that dark matter annihilation is occurring in the center of our galaxy, and a relevant experimental result. Finally, model-independent searches at D0, CDF, and H1 are discussed.

  9. Vesta thermal models

    NASA Astrophysics Data System (ADS)

    Formisano, M.; Federico, C.; Coradini, A.

    Vesta thermal evolution and structural models are compared. These models, based on decay of 26Al, 60Fe and long-lived radionuclides (40K, 232Th, 235U and 238U), differ for the delay in injection (Delta td) of 26Al by the nebula in which Vesta was formed. In all models we can see the pristine formation of a metallic core followed by the differentiation of silicatic mantle and we can observe the evolution of the crust. This is in preparation of the Dawn mission that will provide us with constraints on the crust thickness and composition of the crust and underlying mantle.

  10. Acoustooptical spectrum analysis modeling

    NASA Astrophysics Data System (ADS)

    Carmody, M. J.

    1981-06-01

    A summary of Bragg deflection theory and various approaches to direct detection acoustooptic spectrum analysis (AOSA) modeling is presented. A suitable model is chosen and extended to include the effects of diffraction efficiency, transducer efficiency, irradiance profiles of incident laser illumination, aperture size of the Bragg cell, and the acoustic attenuation experienced by the acoustic wavetrain generated by the input r-f signal. A FORTRAN program is developed to model the AOSA and predict the output image plane intensity profiles. A second version of the program includes a time variable permitting dynamic simulation of the system response.

  11. Hierarchical model of matching

    NASA Technical Reports Server (NTRS)

    Pedrycz, Witold; Roventa, Eugene

    1992-01-01

    The issue of matching two fuzzy sets becomes an essential design aspect of many algorithms including fuzzy controllers, pattern classifiers, knowledge-based systems, etc. This paper introduces a new model of matching. Its principal features involve the following: (1) matching carried out with respect to the grades of membership of fuzzy sets as well as some functionals defined on them (like energy, entropy,transom); (2) concepts of hierarchies in the matching model leading to a straightforward distinction between 'local' and 'global' levels of matching; and (3) a distributed character of the model realized as a logic-based neural network.

  12. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, P. D.; Comfort, R. H.

    1999-01-01

    Abstract. The Global Core Plasma Model (GCPM) provides, empirically derived, core plasma density as a function of geomagnetic and solar conditions throughout the inner magnetosphere. It is continuous in value and gradient and is composed of separate models for the ionosphere, the plasmasphere, the plasmapause, the trough, and the polar cap. The relative composition of plasmaspheric H+, He+, and O+ is included in the GCPM. A blunt plasmaspheric bulge and rotation of the bulge with changing geomagnetic conditions is included. The GCPM is an amalgam of density models, intended to serve as a framework for continued improvement as new measurements become available and are used to characterize core plasma density, composition, and temperature.

  13. Modeling Hofmeister Effects.

    PubMed

    Hribar-Lee, Barbara; Vlachy, Vojko; Dill, Ken A

    2009-03-11

    A two dimensional model of water, so-called Mercedes-Benz model, was used to study effects of the size of hydrophobic solute on the insertion thermodynamics in electrolyte solutions. The model was examined by the constant pressure Monte Carlo computer simulation. The results were compared with the experimental data for noble gasses and methane in water and electrolyte solution. The influence of different ions at infinite dilution on the free energy of transfer was explored. Qualitative agreement with the experimental results was obtained. The mechanism of Hofmeister effects was proposed.

  14. Modeling Hofmeister Effects

    PubMed Central

    Hribar-Lee, Barbara; Vlachy, Vojko; Dill, Ken A.

    2009-01-01

    A two dimensional model of water, so-called Mercedes-Benz model, was used to study effects of the size of hydrophobic solute on the insertion thermodynamics in electrolyte solutions. The model was examined by the constant pressure Monte Carlo computer simulation. The results were compared with the experimental data for noble gasses and methane in water and electrolyte solution. The influence of different ions at infinite dilution on the free energy of transfer was explored. Qualitative agreement with the experimental results was obtained. The mechanism of Hofmeister effects was proposed. PMID:20161468

  15. The Finslerian wormhole models

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Paul, Nupur; Banerjee, Ayan; De, S. S.; Ray, Saibal; Usmani, A. A.

    2016-05-01

    We present models of wormhole under the Finslerian structure of spacetime. This is a sequel of our previous work (Eur Phys J 75:564, 2015) where we constructed a toy model for compact stars based on the Finslerian spacetime geometry. In the present investigation, a wide variety of solutions are obtained, which explore the wormhole geometry by considering different choices for the form function and energy density. The solutions, like in the previous work, are revealed to be physically interesting and viable models for the explanation of wormholes as far as the background theory and literature are concerned.

  16. Perspectives on multifield models

    SciTech Connect

    Banerjee, S.

    1997-07-01

    Multifield models for prediction of nuclear reactor thermalhydraulics are reviewed from the viewpoint of their structure and requirements for closure relationships. Their strengths and weaknesses are illustrated with examples, indicating that they are effective in predicting separated and distributed flow regimes, but have problems for flows with large oscillations. Needs for multifield models are also discussed in the context of reactor operations and accident simulations. The highest priorities for future developments appear to relate to closure relationships for three-dimensional multifield models with emphasis on those needed for calculations of phase separation and entrainment/de-entrainment in complex geometries.

  17. Modeling Compressed Turbulence

    SciTech Connect

    Israel, Daniel M.

    2012-07-13

    From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

  18. The inert Zee model

    NASA Astrophysics Data System (ADS)

    Longas, Robinson; Portillo, Dilia; Restrepo, Diego; Zapata, Oscar

    2016-03-01

    We study a realization of the topology of the Zee model for the generation of neutrino masses at one-loop with a minimal set of vector-like fermions. After imposing an exact Z 2 symmetry to avoid tree-level Higgs-mediated flavor changing neutral currents, one dark matter candidate is obtained from the subjacent inert doublet model, but with the presence of new co-annihilating particles. We show that the model is consistent with the constraints coming from lepton flavor violation processes, oblique parameters, dark matter and neutrino oscillation data.

  19. Dynamical model for thyroid

    NASA Astrophysics Data System (ADS)

    Rokni Lamooki, Gholam Reza; Shirazi, Amir H.; Mani, Ali R.

    2015-05-01

    Thyroid's main chemical reactions are employed to develop a mathematical model. The presented model is based on differential equations where their dynamics reflects many aspects of thyroid's behavior. Our main focus here is the well known, but not well understood, phenomenon so called as Wolff-Chaikoff effect. It is shown that the inhibitory effect of intake iodide on the rate of one single enzyme causes a similar effect as Wolff-Chaikoff. Besides this issue, the presented model is capable of revealing other complex phenomena of thyroid hormones homeostasis.

  20. Quantum causal modelling

    NASA Astrophysics Data System (ADS)

    Costa, Fabio; Shrapnel, Sally

    2016-06-01

    Causal modelling provides a powerful set of tools for identifying causal structure from observed correlations. It is well known that such techniques fail for quantum systems, unless one introduces ‘spooky’ hidden mechanisms. Whether one can produce a genuinely quantum framework in order to discover causal structure remains an open question. Here we introduce a new framework for quantum causal modelling that allows for the discovery of causal structure. We define quantum analogues for core features of classical causal modelling techniques, including the causal Markov condition and faithfulness. Based on the process matrix formalism, this framework naturally extends to generalised structures with indefinite causal order.

  1. Deconstructed Higgsless Models

    SciTech Connect

    Casalbuoni, Roberto

    2006-01-12

    We consider the possibility of constructing realistic Higgsless models within the context of deconstructed or moose models. We show that the constraints coming from the electro-weak experimental data are very severe and that it is very difficult to reconcile them with the requirement of improving the unitarity bound of the Higgsless Standard Model. On the other hand, with some fine tuning, a solution is found by delocalizing the standard fermions along the lattice line, that is allowing the fermions to couple to the moose gauge fiel0008.

  2. Modeling relativistic nuclear collisions.

    SciTech Connect

    Anderlik, C.; Magas, V.; Strottman, D.; Csernai, L. P.

    2001-01-01

    Modeling Ultra-Relativistic Heavy Ion Collisioiis at RHIC and LHC energies using a Multi Module Model is presented. The first Module is the Effective String Rope Model for the calculation of the initial stages of the reaction; the output of this module is used as the initial state for the subsequent one-fluid hydrodynainical calculation module. It is shown that such an initial state leads to the creation of the third flow component. The hydrodynamical evolution of the energy density distribution is presented for RHIC energies. The final module describing the Freeze Out; and Hadronization is also discussed.

  3. ATHENA radiation model

    SciTech Connect

    Shumway, R.W.

    1987-10-01

    The ATHENA computer program has many features that make it desirable to use as a space reactor evaluation tool. One of the missing features was a surface-to-surface thermal radiation model. A model was developed that allows any of the regular ATHENA heat slabs to radiate to any other heat slab. The view factors and surface emissivities must be specified by the user. To verify that the model was properly accounting for radiant energy transfer, two different types of test calculations were performed. Both calculations have excellent results. The updates have been used on both the INEL CDC-176 and the Livermore Cray. 7 refs., 2 figs., 6 tabs.

  4. Freeze Prediction Model

    NASA Technical Reports Server (NTRS)

    Morrow, C. T. (Principal Investigator)

    1981-01-01

    Measurements of wind speed, net irradiation, and of air, soil, and dew point temperatures in an orchard at the Rock Springs Agricultural Research Center, as well as topographical and climatological data and a description of the major apple growing regions of Pennsylvania were supplied to the University of Florida for use in running the P-model, freeze prediction program. Results show that the P-model appears to have considerable applicability to conditions in Pennsylvania. Even though modifications may have to be made for use in the fruit growing regions, there are advantages for fruit growers with the model in its present form.

  5. Aviation Safety Simulation Model

    NASA Technical Reports Server (NTRS)

    Houser, Scott; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.

  6. Stochastic ontogenetic growth model

    NASA Astrophysics Data System (ADS)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  7. Modeling Hofmeister Effects.

    PubMed

    Hribar-Lee, Barbara; Vlachy, Vojko; Dill, Ken A

    2009-03-11

    A two dimensional model of water, so-called Mercedes-Benz model, was used to study effects of the size of hydrophobic solute on the insertion thermodynamics in electrolyte solutions. The model was examined by the constant pressure Monte Carlo computer simulation. The results were compared with the experimental data for noble gasses and methane in water and electrolyte solution. The influence of different ions at infinite dilution on the free energy of transfer was explored. Qualitative agreement with the experimental results was obtained. The mechanism of Hofmeister effects was proposed. PMID:20161468

  8. Expert Models and Modeling Processes Associated with a Computer-Modeling Tool

    ERIC Educational Resources Information Center

    Zhang, BaoHui; Liu, Xiufeng; Krajcik, Joseph S.

    2006-01-01

    Holding the premise that the development of expertise is a continuous process, this study concerns expert models and modeling processes associated with a modeling tool called Model-It. Five advanced Ph.D. students in environmental engineering and public health used Model-It to create and test models of water quality. Using "think aloud" technique…

  9. Lifting Body Model

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Scaled model of the Langley Personnel Launch System (PLS) Vehicle. Concept used to measure aerodynamic performance characteristics over a wide range of flow conditions and attitudes in several Langley wind tunnels.

  10. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  11. Contact dynamics math model

    NASA Technical Reports Server (NTRS)

    Glaese, John R.; Tobbe, Patrick A.

    1986-01-01

    The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.

  12. Modeling Ionospheric Electrodynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Huba, J. D.

    2009-12-01

    We present modeling results of ionospheric electrodynamics using the 3D NRL ionosphere model SAMI3. Recently, SAMI3 has been upgraded to solve the potential equation that determines the electrostatic potential from the ionospheric conductances (Pedersen and Hall) and drivers: neutral wind, gravity, and parallel current systems. We present results showing the impact of different neutral wind models (e.g., HWM93, HWM07, TIMEGCM) on the dynamics of the low- to mid-latitude ionosphere, as well as the Region 1 and 2 current systems. We point out issues and concerns with obtaining an accurate specification of the global electric field within the context of existing models.(with J. Krall, G. Joyce, S. Slinker, and G. Crowley). Research supported by NASA and ONR

  13. Modelling pulmonary blood flow

    PubMed Central

    Tawhai, Merryn H.; Burrowes, Kelly S.

    2008-01-01

    Computational model analysis is a method that has been used widely to understand and interpret complexity of interactions in the pulmonary system. Pulmonary blood transport is a multi-scale phenomenon that involves scale-dependent structure and function, therefore requiring different model assumptions for the microcirculation and the arterial or venous flows. The blood transport systems interact with the surrounding lung tissue, and are dependent on hydrostatic pressure gradients, control of vasoconstriction, and the topology and material composition of the vascular trees. This review focuses on computational models that have been developed to study the different mechanisms contributing to regional perfusion of the lung. Different models for the microcirculation and the pulmonary arteries are considered, including fractal approaches and anatomically-based methods. The studies that are reviewed illustrate the different complementary approaches that can be used to address the same physiological question of flow heterogeneity. PMID:18434260

  14. Modeling collective cell motility

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan

    Eukaryotic cells often move in groups, a critical aspect of many biological and medical processes including wound healing, morphogenesis and cancer metastasis. Modeling can provide useful insights into the fundamental mechanisms of collective cell motility. Constructing models that incorporate the physical properties of the cells, however, is challenging. Here, I discuss our efforts to build a comprehensive cell motility model that includes cell membrane properties, cell-substrate interactions, cell polarity, and cell-cell interaction. The model will be applied to a variety of systems, including motion on micropatterned substrates and the migration of border cells in Drosophila. This work was supported by NIH Grant No. P01 GM078586 and NSF Grant No. 1068869.

  15. Maximally Expressive Modeling

    NASA Technical Reports Server (NTRS)

    Jaap, John; Davis, Elizabeth; Richardson, Lea

    2004-01-01

    Planning and scheduling systems organize tasks into a timeline or schedule. Tasks are logically grouped into containers called models. Models are a collection of related tasks, along with their dependencies and requirements, that when met will produce the desired result. One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed; the information sought is at the cutting edge of scientific endeavor; and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a maximally expressive modeling schema.

  16. GEOS-5 Modeled Clouds

    NASA Video Gallery

    This visualization shows clouds from a simulation using the Goddard Earth Observing System Model, Verison 5 (GEOS-5). The global atmospheric simulation covers a period from Feb 3, 2010 through Feb ...

  17. Community Atmosphere Model

    2004-10-18

    The Community Atmosphere Model (CAM) is an atmospheric general circulation model that solves equations for atmospheric dynamics and physics. CAM is an outgrowth of the Community Climate Model at the National Center for Atmospheric Research (NCAR) and was developed as a joint collaborative effort between NCAR and several DOE laboratories, including LLNL. CAM contains several alternative approaches for advancing the atmospheric dynamics. One of these approaches uses a finite-volume method originally developed by personnel atmore » NASNGSFC, We have developed a scalable version of the finite-volume solver for massively parallel computing systems. FV-CAM is meant to be used in conjunction with the Community Atmosphere Model. It is not stand-alone.« less

  18. Radiative transfer models

    NASA Technical Reports Server (NTRS)

    Horwitz, James L.

    1992-01-01

    The purpose of this work was to assist with the development of analytical techniques for the interpretation of infrared observations. We have done the following: (1) helped to develop models for continuum absorption calculations for water vapor in the far infrared spectral region; (2) worked on models for pressure-induced absorption for O2 and N2 and their comparison with available observations; and (3) developed preliminary studies of non-local thermal equilibrium effects in the upper stratosphere and mesosphere for infrared gases. These new techniques were employed for analysis of balloon-borne far infrared data by a group at the Harvard-Smithsonian Center for Astrophysics. The empirical continuum absorption model for water vapor in the far infrared spectral region and the pressure-induced N2 absorption model were found to give satisfactory results in the retrieval of the mixing ratios of a number of stratospheric trace constituents from balloon-borne far infrared observations.

  19. Orsted Initial Field Model

    NASA Technical Reports Server (NTRS)

    Olsen, N.; Holme, R.; Hulot, G.; Sabaka, T.; Neubert, T.; Toffner-Clausen, L.; Primdahl, F.; Jorgensen, J.; Leger, J.-M.; Barraclough, D.; Smith, David E. (Technical Monitor)

    2000-01-01

    Magnetic measurements taken by the Orsted satellite during geomagnetic quiet conditions around January 1, 2000 have been used to derive a spherical harmonic model of the Earth's magnetic field for epoch 2000.0. The maximum degree and order of the model is 19 for internal, and 2 for external, source fields; however, coefficients above degree 14 may not be robust. Such detailed models exist for only one previous epoch, 1980. Achieved rms misfit is 2 nT for the scalar intensity and 4 nT for the vector components perpendicular to the magnetic field. This model is of higher detail than the IGRF 2000, which for scientific purposes related to the Orsted mission it supersedes.

  20. HOMER® Energy Modeling Software

    2000-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  1. Materials modelling in London

    NASA Astrophysics Data System (ADS)

    Ciudad, David

    2016-04-01

    Angelos Michaelides, Professor in Theoretical Chemistry at University College London (UCL) and co-director of the Thomas Young Centre (TYC), explains to Nature Materials the challenges in materials modelling and the objectives of the TYC.

  2. Toy models for retrocausality

    NASA Astrophysics Data System (ADS)

    Price, Huw

    A number of writers have proposed that some of the peculiarities of quantum theory might be manifestations of 'backward' or 'retro' causality, underlying the quantum description. This idea has been explored in the literature in two main ways: firstly in a variety of explicit models of quantum systems, and secondly at a conceptual level. This note introduces a third approach, intended to complement the other two. It describes a simple toy model, which, under a natural interpretation, shows how retrocausality can emerge from simple global constraints. The model is also useful in permitting a clear distinction between the kind of retrocausality likely to be of interest in QM, and a different kind of reverse causality, with which it is liable to be confused. The model is proposed in the hope that future elaborations might throw light on the potential of retrocausality to account for quantum phenomena.

  3. Solar Furnance Model

    ERIC Educational Resources Information Center

    Palmer, Dennis L.; Olsen, Richard W.

    1977-01-01

    Described is how to build a solar furnace model. A detailed list of materials and methods are included along with diagrams. This particular activity is part of an audiotutorial unit concerned with the energy crisis and energy alternatives. (MA)

  4. Using the Partnership Model

    ERIC Educational Resources Information Center

    Wilks, Bob

    1977-01-01

    Demonstrates how the Partnership Model can be utilized in the real world by showing how it served as a guide during the production of a film on female menopause for the College of Human Medicine. (MH)

  5. Spinal cord contusion models.

    PubMed

    Young, Wise

    2002-01-01

    Most human spinal cord injuries involve contusions of the spinal cord. Many investigators have long used weight-drop contusion animal models to study the pathophysiology and genetic responses of spinal cord injury. All spinal cord injury therapies tested to date in clinical trial were validated in such models. In recent years, the trend has been towards use of rats for spinal cord injury studies. The MASCIS Impactor is a well-standardized rat spinal cord contusion model that produces very consistent graded spinal cord damage that linearly predicts 24-h lesion volumes, 6-week white matter sparing, and locomotor recovery in rats. All aspects of the model, including anesthesia for male and female rats, age rather than body weight criteria, and arterial blood gases were empirically selected to enhance the consistency of injury. PMID:12440371

  6. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  7. Battery Life Predictive Model

    2009-12-31

    The Software consists of a model used to predict battery capacity fade and resistance growth for arbitrary cycling and temperature profiles. It allows the user to extrapolate from experimental data to predict actual life cycle.

  8. Supersymmetric sigma models

    SciTech Connect

    Bagger, J.A.

    1984-09-01

    We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.

  9. Refining climate models

    ScienceCinema

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2016-07-12

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  10. Refining climate models

    SciTech Connect

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2012-10-31

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  11. Modeling Newspaper Advertising

    ERIC Educational Resources Information Center

    Harper, Joseph; And Others

    1978-01-01

    Presents a mathematical model for simulating a newspaper financial system. Includes the effects of advertising and circulation for predicting advertising linage as a function of population, income, and advertising rate. (RL)

  12. School in Model Homes

    ERIC Educational Resources Information Center

    Lander, Kathleen

    1973-01-01

    A model home complex solved a critical housing shortage for the San Joaquin school district in Orange County, California, last fall and will be in use again this year as a school for primary grades. (Author)

  13. Toward verified biological models.

    PubMed

    Sadot, Avital; Fisher, Jasmin; Barak, Dan; Admanit, Yishai; Stern, Michael J; Hubbard, E Jane Albert; Harel, David

    2008-01-01

    The last several decades have witnessed a vast accumulation of biological data and data analysis. Many of these data sets represent only a small fraction of the system's behavior, making the visualization of full system behavior difficult. A more complete understanding of a biological system is gained when different types of data (and/or conclusions drawn from the data) are integrated into a larger-scale representation or model of the system. Ideally, this type of model is consistent with all available data about the system, and it is then used to generate additional hypotheses to be tested. Computer-based methods intended to formulate models that integrate various events and to test the consistency of these models with respect to the laboratory-based observations on which they are based are potentially very useful. In addition, in contrast to informal models, the consistency of such formal computer-based models with laboratory data can be tested rigorously by methods of formal verification. We combined two formal modeling approaches in computer science that were originally developed for non-biological system design. One is the inter-object approach using the language of live sequence charts (LSCs) with the Play-Engine tool, and the other is the intra-object approach using the language of statecharts and Rhapsody as the tool. Integration is carried out using InterPlay, a simulation engine coordinator. Using these tools, we constructed a combined model comprising three modules. One module represents the early lineage of the somatic gonad of C. elegans in LSCs, while a second more detailed module in statecharts represents an interaction between two cells within this lineage that determine their developmental outcome. Using the advantages of the tools, we created a third module representing a set of key experimental data using LSCs. We tested the combined statechart-LSC model by showing that the simulations were consistent with the set of experimental LSCs. This small

  14. Toward verified biological models.

    PubMed

    Sadot, Avital; Fisher, Jasmin; Barak, Dan; Admanit, Yishai; Stern, Michael J; Hubbard, E Jane Albert; Harel, David

    2008-01-01

    The last several decades have witnessed a vast accumulation of biological data and data analysis. Many of these data sets represent only a small fraction of the system's behavior, making the visualization of full system behavior difficult. A more complete understanding of a biological system is gained when different types of data (and/or conclusions drawn from the data) are integrated into a larger-scale representation or model of the system. Ideally, this type of model is consistent with all available data about the system, and it is then used to generate additional hypotheses to be tested. Computer-based methods intended to formulate models that integrate various events and to test the consistency of these models with respect to the laboratory-based observations on which they are based are potentially very useful. In addition, in contrast to informal models, the consistency of such formal computer-based models with laboratory data can be tested rigorously by methods of formal verification. We combined two formal modeling approaches in computer science that were originally developed for non-biological system design. One is the inter-object approach using the language of live sequence charts (LSCs) with the Play-Engine tool, and the other is the intra-object approach using the language of statecharts and Rhapsody as the tool. Integration is carried out using InterPlay, a simulation engine coordinator. Using these tools, we constructed a combined model comprising three modules. One module represents the early lineage of the somatic gonad of C. elegans in LSCs, while a second more detailed module in statecharts represents an interaction between two cells within this lineage that determine their developmental outcome. Using the advantages of the tools, we created a third module representing a set of key experimental data using LSCs. We tested the combined statechart-LSC model by showing that the simulations were consistent with the set of experimental LSCs. This small

  15. OCH Strap Model Test

    SciTech Connect

    Weber, K.; /Fermilab

    1987-08-26

    The OCH Model was stacked using the appropriate spacers between each absorber plate. Steel bars measuring 3-inch wide by 1/4-inch thick were welded, using 1/8-inch fillet weld, along all the corner edges, except the outer radius edges. On the outer radius, the straps were bolted to the end plates and to plates 9 and 17. The straps on the outer radius were also set in towards the center by approximately 3-inches. The spacers were then knocked out. Twelve strain gauges were mounted on the model. See figure 1 and the OCH strap Model log book for locations. Each rosette was centered in the gap between two absorber plates. The finite element plate model can predict the primary deformations of the OH module in both the cantilever and crushing modes to within 11% of the measured values. The primary stresses away from the support plate for the cantilever mode can be predicted to within 13% by this model. Near the support plate where large shear stresses exists, ANSYS will overpredict the measured stresses substantially. This is probably due to the models inherent inability to allow for shear stress concentrations at the welds. The same over-prediction was seen in the side straps during the OH crush test comparison and is probably attributable to the high shear force in this mode. The simple finite element plate model will provide suitable model of OH module stiffness for use in the analysis of the module assembly. The calculation of shear stresses can be improved by applying the ANSYS calculated inter-element forces to traditional weld strength calculations

  16. Modelling heart rate kinetics.

    PubMed

    Zakynthinaki, Maria S

    2015-01-01

    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual's cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women).

  17. Theory Modeling and Simulation

    SciTech Connect

    Shlachter, Jack

    2012-08-23

    Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.

  18. Modelling Heart Rate Kinetics

    PubMed Central

    Zakynthinaki, Maria S.

    2015-01-01

    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual’s cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women). PMID:25876164

  19. The Standard Model.

    PubMed

    Shears, Tara

    2012-02-28

    The Standard Model is the theory used to describe the interactions between fundamental particles and fundamental forces. It is remarkably successful at predicting the outcome of particle physics experiments. However, the theory has not yet been completely verified. In particular, one of the most vital constituents, the Higgs boson, has not yet been observed. This paper describes the Standard Model, the experimental tests of the theory that have led to its acceptance and its shortcomings. PMID:22253237

  20. CO2 laser modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  1. Experimental Models of Cryptococcosis

    PubMed Central

    Sabiiti, Wilber; May, Robin C.; Pursall, E. Rhiannon

    2012-01-01

    Cryptococcosis is a life-threatening fungal disease that infects around one million people each year. Establishment and progression of disease involves a complex interplay between the fungus and a diverse range of host cell types. Over recent years, numerous cellular, tissue, and animal models have been exploited to probe this host-pathogen interaction. Here we review the range of experimental models that are available for cryptococcosis research and compare the relative advantages and limitations of the different systems. PMID:22007224

  2. Distributed generation systems model

    SciTech Connect

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  3. Modeling using optimization routines

    NASA Technical Reports Server (NTRS)

    Thomas, Theodore

    1995-01-01

    Modeling using mathematical optimization dynamics is a design tool used in magnetic suspension system development. MATLAB (software) is used to calculate minimum cost and other desired constraints. The parameters to be measured are programmed into mathematical equations. MATLAB will calculate answers for each set of inputs; inputs cover the boundary limits of the design. A Magnetic Suspension System using Electromagnets Mounted in a Plannar Array is a design system that makes use of optimization modeling.

  4. The GRAM-3 model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1987-01-01

    The Global Reference Atmosphere Model (GRAM) is under continuous development and improvement. GRAM data were compared with Middle Atmosphere Program (MAP) predictions and with shuttle data. An important note: Users should employ only step sizes in altitude that give vertical density gradients consistent with shuttle-derived density data. Using too small a vertical step size (finer then 1 km) will result in what appears to be unreasonably high values of density shears but what in reality is noise in the model.

  5. Argentina soybean yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate soybean yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the soybean growing area. Predictor variables for the model were derived from monthly total precipitation and monthly average temperature. A trend variable was included for the years 1969 to 1978 since an increasing trend in yields due to technology was observed between these years.

  6. Models of multiquark states

    SciTech Connect

    Lipkin, H.J.

    1986-01-01

    The success of simple constituent quark models in single-hardon physics and their failure in multiquark physics is discussed, emphasizing the relation between meson and baryon spectra, hidden color and the color matrix, breakup decay modes, coupled channels, and hadron-hadron interactions via flipping and tunneling of flux tubes. Model-independent predictions for possible multiquark bound states are considered and the most promising candidates suggested. A quark approach to baryon-baryon interactions is discussed.

  7. Argentina corn yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate corn yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the corn-growing area. Predictor variables for the model were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. A trend variable was included for the years 1965 to 1980 since an increasing trend in yields due to technology was observed between these years.

  8. Primary health care models

    PubMed Central

    Brown, Judith Belle; French, Reta; McCulloch, Amy; Clendinning, Eric

    2012-01-01

    Abstract Objective To explore the knowledge and perceptions of fourth-year medical students regarding the new models of primary health care (PHC) and to ascertain whether that knowledge influenced their decisions to pursue careers in family medicine. Design Qualitative study using semistructured interviews. Setting The Schulich School of Medicine and Dentistry at The University of Western Ontario in London. Participants Fourth-year medical students graduating in 2009 who indicated family medicine as a possible career choice on their Canadian Residency Matching Service applications. Methods Eleven semistructured interviews were conducted between January and April of 2009. Data were analyzed using an iterative and interpretive approach. The analysis strategy of immersion and crystallization assisted in synthesizing the data to provide a comprehensive view of key themes and overarching concepts. Main findings Four key themes were identified: the level of students’ knowledge regarding PHC models varied; the knowledge was generally obtained from practical experiences rather than classroom learning; students could identify both advantages and disadvantages of working within the new PHC models; and although students regarded the new PHC models positively, these models did not influence their decisions to pursue careers in family medicine. Conclusion Knowledge of the new PHC models varies among fourth-year students, indicating a need for improved education strategies in the years before clinical training. Being able to identify advantages and disadvantages of the PHC models was not enough to influence participants’ choice of specialty. Educators and health care policy makers need to determine the best methods to promote and facilitate knowledge transfer about these PHC models. PMID:22518904

  9. Model compilation: An approach to automated model derivation

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Baudin, Catherine; Iwasaki, Yumi; Nayak, Pandurang; Tanaka, Kazuo

    1990-01-01

    An approach is introduced to automated model derivation for knowledge based systems. The approach, model compilation, involves procedurally generating the set of domain models used by a knowledge based system. With an implemented example, how this approach can be used to derive models of different precision and abstraction is illustrated, and models are tailored to different tasks, from a given set of base domain models. In particular, two implemented model compilers are described, each of which takes as input a base model that describes the structure and behavior of a simple electromechanical device, the Reaction Wheel Assembly of NASA's Hubble Space Telescope. The compilers transform this relatively general base model into simple task specific models for troubleshooting and redesign, respectively, by applying a sequence of model transformations. Each transformation in this sequence produces an increasingly more specialized model. The compilation approach lessens the burden of updating and maintaining consistency among models by enabling their automatic regeneration.

  10. Extended chameleon models

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Tamanini, Nicola

    2016-05-01

    We extend the chameleon models by considering scalar-fluid theories where the coupling between matter and the scalar field can be represented by a quadratic effective potential with density-dependent minimum and mass. In this context, we study the effects of the scalar field on Solar System tests of gravity and show that models passing these stringent constraints can still induce large modifications of Newton's law on galactic scales. On these scales we analyze models which could lead to a percent deviation of Newton's law outside the virial radius. We then model the dark matter halo as a Navarro-Frenk-White profile and explicitly find that the fifth force can give large contributions around the galactic core in a particular model where the scalar field mass is constant and the minimum of its potential varies linearly with the matter density. At cosmological distances, we find that this model does not alter the growth of large scale structures and therefore would be best tested on galactic scales, where interesting signatures might arise in the galaxy rotation curves.

  11. Model for macroevolutionary dynamics.

    PubMed

    Maruvka, Yosef E; Shnerb, Nadav M; Kessler, David A; Ricklefs, Robert E

    2013-07-01

    The highly skewed distribution of species among genera, although challenging to macroevolutionists, provides an opportunity to understand the dynamics of diversification, including species formation, extinction, and morphological evolution. Early models were based on either the work by Yule [Yule GU (1925) Philos Trans R Soc Lond B Biol Sci 213:21-87], which neglects extinction, or a simple birth-death (speciation-extinction) process. Here, we extend the more recent development of a generic, neutral speciation-extinction (of species)-origination (of genera; SEO) model for macroevolutionary dynamics of taxon diversification. Simulations show that deviations from the homogeneity assumptions in the model can be detected in species-per-genus distributions. The SEO model fits observed species-per-genus distributions well for class-to-kingdom-sized taxonomic groups. The model's predictions for the appearance times (the time of the first existing species) of the taxonomic groups also approximately match estimates based on molecular inference and fossil records. Unlike estimates based on analyses of phylogenetic reconstruction, fitted extinction rates for large clades are close to speciation rates, consistent with high rates of species turnover and the relatively slow change in diversity observed in the fossil record. Finally, the SEO model generally supports the consistency of generic boundaries based on morphological differences between species and provides a comparator for rates of lineage splitting and morphological evolution. PMID:23781101

  12. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, Paul D.; Comfort, Richard H.

    1999-01-01

    Over 40 years of ground and spacecraft plasmaspheric measurements have resulted in many statistical descriptions of plasmaspheric properties. In some cases, these properties have been represented as analytical descriptions that are valid for specific regions or conditions. For the most part, what has not been done is to extend regional empirical descriptions or models to the plasmasphere as a whole. In contrast, many related investigations depend on the use of representative plasmaspheric conditions throughout the inner magnetosphere. Wave propagation, involving the transport of energy through the magnetosphere, is strongly affected by thermal plasma density and its composition. Ring current collisional and wave particle losses also strongly depend on these quantities. Plasmaspheric also plays a secondary role in influencing radio signals from the Global Positioning System satellites. The Global Core Plasma Model (GCPM) is an attempt to assimilate previous empirical evidence and regional models for plasmaspheric density into a continuous, smooth model of thermal plasma density in the inner magnetosphere. In that spirit, the International Reference Ionosphere is currently used to complete the low altitude description of density and composition in the model. The models and measurements on which the GCPM is currently based and its relationship to IRI will be discussed.

  13. Model for macroevolutionary dynamics.

    PubMed

    Maruvka, Yosef E; Shnerb, Nadav M; Kessler, David A; Ricklefs, Robert E

    2013-07-01

    The highly skewed distribution of species among genera, although challenging to macroevolutionists, provides an opportunity to understand the dynamics of diversification, including species formation, extinction, and morphological evolution. Early models were based on either the work by Yule [Yule GU (1925) Philos Trans R Soc Lond B Biol Sci 213:21-87], which neglects extinction, or a simple birth-death (speciation-extinction) process. Here, we extend the more recent development of a generic, neutral speciation-extinction (of species)-origination (of genera; SEO) model for macroevolutionary dynamics of taxon diversification. Simulations show that deviations from the homogeneity assumptions in the model can be detected in species-per-genus distributions. The SEO model fits observed species-per-genus distributions well for class-to-kingdom-sized taxonomic groups. The model's predictions for the appearance times (the time of the first existing species) of the taxonomic groups also approximately match estimates based on molecular inference and fossil records. Unlike estimates based on analyses of phylogenetic reconstruction, fitted extinction rates for large clades are close to speciation rates, consistent with high rates of species turnover and the relatively slow change in diversity observed in the fossil record. Finally, the SEO model generally supports the consistency of generic boundaries based on morphological differences between species and provides a comparator for rates of lineage splitting and morphological evolution.

  14. Causal Rasch models

    PubMed Central

    Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.

    2013-01-01

    Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained. PMID:23986726

  15. Learning planar ising models

    SciTech Connect

    Johnson, Jason K; Chertkov, Michael; Netrapalli, Praneeth

    2010-11-12

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.

  16. General composite Higgs models

    NASA Astrophysics Data System (ADS)

    Marzocca, David; Serone, Marco; Shu, Jing

    2012-08-01

    We construct a general class of pseudo-Goldstone composite Higgs models, within the minimal SO(5)/SO(4) coset structure, that are not necessarily of moose-type. We characterize the main properties these models should have in order to give rise to a Higgs mass around 125 GeV. We assume the existence of relatively light and weakly coupled spin 1 and 1/2 resonances. In absence of a symmetry principle, we introduce the Minimal Higgs Potential (MHP) hypothesis: the Higgs potential is assumed to be one-loop dominated by the SM fields and the above resonances, with a contribution that is made calculable by imposing suitable generalizations of the first and second Weinberg sum rules. We show that a 125 GeV Higgs requires light, often sub-TeV, fermion resonances. Their presence can also be important for the models to successfully pass the electroweak precision tests. Interestingly enough, the latter can also be passed by models with a heavy Higgs around 320 GeV. The composite Higgs models of the moose-type considered in the literature can be seen as particular limits of our class of models.

  17. Seismic wave propagation modeling

    SciTech Connect

    Jones, E.M.; Olsen, K.B.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A hybrid, finite-difference technique was developed for modeling nonlinear soil amplification from three-dimensional, finite-fault radiation patters for earthquakes in arbitrary earth models. The method was applied to the 17 January 1994 Northridge earthquake. Particle velocities were computed on a plane at 5-km depth, immediately above the causative fault. Time-series of the strike-perpendicular, lateral velocities then were propagated vertically in a soil column typical of the San Fernando Valley. Suitable material models were adapted from a suite used to model ground motions at the US Nevada Test Site. The effects of nonlinearity reduced relative spectral amplitudes by about 40% at frequencies above 1.5 Hz but only by 10% at lower frequencies. Runs made with source-depth amplitudes increased by a factor of two showed relative amplitudes above 1.5 Hz reduced by a total of 70% above 1.5 Hz and 20% at lower frequencies. Runs made with elastic-plastic material models showed similar behavior to runs made with Masing-Rule models.

  18. Active shape models unleashed

    NASA Astrophysics Data System (ADS)

    Kirschner, Matthias; Wesarg, Stefan

    2011-03-01

    Active Shape Models (ASMs) are a popular family of segmentation algorithms which combine local appearance models for boundary detection with a statistical shape model (SSM). They are especially popular in medical imaging due to their ability for fast and accurate segmentation of anatomical structures even in large and noisy 3D images. A well-known limitation of ASMs is that the shape constraints are over-restrictive, because the segmentations are bounded by the Principal Component Analysis (PCA) subspace learned from the training data. To overcome this limitation, we propose a new energy minimization approach which combines an external image energy with an internal shape model energy. Our shape energy uses the Distance From Feature Space (DFFS) concept to allow deviations from the PCA subspace in a theoretically sound and computationally fast way. In contrast to previous approaches, our model does not rely on post-processing with constrained free-form deformation or additional complex local energy models. In addition to the energy minimization approach, we propose a new method for liver detection, a new method for initializing an SSM and an improved k-Nearest Neighbour (kNN)-classifier for boundary detection. Our ASM is evaluated with leave-one-out tests on a data set with 34 tomographic CT scans of the liver and is compared to an ASM with standard shape constraints. The quantitative results of our experiments show that we achieve higher segmentation accuracy with our energy minimization approach than with standard shape constraints.nym

  19. Ion thruster performance model

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.

  20. Modeling electronegative plasma discharge

    SciTech Connect

    Lichtenberg, A.J.; Lieberman, M.A.

    1995-12-31

    Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}= 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.

  1. Beyond the Standard Model

    SciTech Connect

    Lykken, Joseph D.; /Fermilab

    2010-05-01

    'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or what fraction of it is already ruled out by experiment. Since Nature is only implementing at most one point in this BSM theory space (at least in our neighborhood of space and time), it might seem an impossible task to map back from a finite number of experimental discoveries and measurements to a unique BSM explanation. Fortunately for theorists the inevitable limitations of experiments themselves, in terms of resolutions, rates, and energy scales, means that in practice there are only a finite number of BSM model 'equivalence classes' competing at any given time to explain any given set of results. BSM phenomenology is a two-way street: not only do experimental results test or constrain BSM models, they also suggest - to those who get close enough to listen

  2. Climate and atmospheric modeling studies

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The climate and atmosphere modeling research programs have concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global model, and an upper ocean model. Principal applications were the study of the impact of CO2, aerosols, and the solar 'constant' on climate.

  3. Models and Modelling: Routes to More Authentic Science Education

    ERIC Educational Resources Information Center

    Gilbert, John K.

    2004-01-01

    It is argued that a central role for models and modelling would greatly increase the authenticity of the science curriculum. The range of ontological states available for the notion of "model" is outlined, together with the modes available for their representation. Issues in the selection of models for and the development of modelling skills…

  4. Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum

    2011-01-01

    Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…

  5. A High Precision Prediction Model Using Hybrid Grey Dynamic Model

    ERIC Educational Resources Information Center

    Li, Guo-Dong; Yamaguchi, Daisuke; Nagai, Masatake; Masuda, Shiro

    2008-01-01

    In this paper, we propose a new prediction analysis model which combines the first order one variable Grey differential equation Model (abbreviated as GM(1,1) model) from grey system theory and time series Autoregressive Integrated Moving Average (ARIMA) model from statistics theory. We abbreviate the combined GM(1,1) ARIMA model as ARGM(1,1)…

  6. Physical Models of Cognition

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1994-01-01

    This paper presents and discusses physical models for simulating some aspects of neural intelligence, and, in particular, the process of cognition. The main departure from the classical approach here is in utilization of a terminal version of classical dynamics introduced by the author earlier. Based upon violations of the Lipschitz condition at equilibrium points, terminal dynamics attains two new fundamental properties: it is spontaneous and nondeterministic. Special attention is focused on terminal neurodynamics as a particular architecture of terminal dynamics which is suitable for modeling of information flows. Terminal neurodynamics possesses a well-organized probabilistic structure which can be analytically predicted, prescribed, and controlled, and therefore which presents a powerful tool for modeling real-life uncertainties. Two basic phenomena associated with random behavior of neurodynamic solutions are exploited. The first one is a stochastic attractor ; a stable stationary stochastic process to which random solutions of a closed system converge. As a model of the cognition process, a stochastic attractor can be viewed as a universal tool for generalization and formation of classes of patterns. The concept of stochastic attractor is applied to model a collective brain paradigm explaining coordination between simple units of intelligence which perform a collective task without direct exchange of information. The second fundamental phenomenon discussed is terminal chaos which occurs in open systems. Applications of terminal chaos to information fusion as well as to explanation and modeling of coordination among neurons in biological systems are discussed. It should be emphasized that all the models of terminal neurodynamics are implementable in analog devices, which means that all the cognition processes discussed in the paper are reducible to the laws of Newtonian mechanics.

  7. Earth Gravitational Model 2020

    NASA Astrophysics Data System (ADS)

    Barnes, D.; Factor, J. K.; Holmes, S. A.; Ingalls, S.; Presicci, M. R.; Beale, J.; Fecher, T.

    2015-12-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and shipborne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners.

  8. Multiscale Thermohydrologic Model

    SciTech Connect

    T. Buscheck

    2004-10-12

    The purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. Thus, the goal is to predict the range of possible thermal-hydrologic conditions across the repository; this is quite different from predicting a single expected thermal-hydrologic response. The MSTHM calculates the following thermal-hydrologic parameters: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes (Table 1-1). These thermal-hydrologic parameters are required to support ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]). The thermal-hydrologic parameters are determined as a function of position along each of the emplacement drifts and as a function of waste package type. These parameters are determined at various reference locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert. The parameters are also determined at various defined locations in the adjoining host rock. The MSTHM uses data obtained from the data tracking numbers (DTNs) listed in Table 4.1-1. The majority of those DTNs were generated from the following analyses and model reports: (1) ''UZ Flow Model and Submodels'' (BSC 2004 [DIRS 169861]); (2) ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004); (3) ''Calibrated Properties Model'' (BSC 2004 [DIRS 169857]); (4) ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]); (5) ''Thermal Conductivity of the Non-Repository Lithostratigraphic Layers'' (BSC 2004 [DIRS 170033]); (6) ''Ventilation Model and Analysis Report'' (BSC 2004 [DIRS 169862]); (7) ''Heat Capacity

  9. Modeling Saturn's Magnetospheric Field

    NASA Astrophysics Data System (ADS)

    Khurana, K. K.; Leinweber, H. K.; Russell, C. T.; Dougherty, M. K.

    2015-12-01

    The Cassini spacecraft has now provided an excellent coverage of radial distances, local times and latitudes in Saturn's magnetosphere. The magnetic field observations from Cassini continue to provide deep insights on the structure and dynamics of Saturn's magnetosphere. Two of the unexpected findings from Saturn's magnetosphere are that the current sheet of Saturn assumes a shallow saucer like shape from the forcing of the solar wind on the magnetosphere and that rotational diurnal periodicities are ubiquitous in a magnetosphere formed by an axisymmetric internal field from Saturn. We have used the comprehensive magnetic field data from Cassini to construct a versatile new model of Saturn's magnetospheric field for use in current and future data analysis. Our model consists of fully shielded modules that specify the internal spherical harmonic field of Saturn, the ring current and the magnetotail current systems and the interconnection magnetic field from the solar wind IMF. The tilt and hinging of the current sheet is introduced by using the general deformation technique [Tsyganenko, 1998]. In the new model, Saturn's current sheet field is based on Tsyganenko and Peredo [1994] formalism for disk-shaped current sheets. The shielding field from the magnetopause for the equatorial current sheet and the internal field is specified by Cartesian and cylindrical harmonics, respectively. To derive the shielding fields we use a model of the magnetopause constructed from magnetopause crossings observed by both Cassini and Voyager (Arridge et al. 2006). The model uses observations from Pioneer, Voyager and Cassini. A comparison of model field with the observations will be presented. Finally, we discuss both the applications of the new model and its further generalization using data from the proximal orbit phase of Cassini.

  10. Modeling ocean deep convection

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Howard, A.; Hogan, P.; Cheng, Y.; Dubovikov, M. S.; Montenegro, L. M.

    The goal of this study is to assess models for Deep Convection with special emphasis on their use in coarse resolution ocean general circulation models. A model for deep convection must contain both vertical transport and lateral advection by mesoscale eddies generated by baroclinic instabilities. The first process operates mostly in the initial phases while the second dominates the final stages. Here, the emphasis is on models for vertical mixing. When mesoscales are not resolved, they are treated with the Gent and McWilliams parameterization. The model results are tested against the measurements of Lavender, Davis and Owens, 2002 (LDO) in the Labrador Sea. Specifically, we shall inquire whether the models are able to reproduce the region of " deepest convection," which we shall refer to as DC (mixed layer depths 800-1300 m). The region where it was measured by Lavender et al. (2002) will be referred to as the LDO region. The main results of this study can be summarized as follows. 3° × 3° resolution. A GFDL-type OGCM with the GISS vertical mixing model predicts DC in the LDO region where the vertical heat diffusivity is found to be 10 m 2 s -1, a value that is quite close to the one suggested by heuristic studies. No parameter was changed from the original GISS model. However, the GISS model also predicts some DC in a region to the east of the LDO region. 3° × 3° resolution. A GFDL-type OGCM with the KPP model (everything else being the same) does not predict DC in the LDO region where the vertical heat diffusivity is found to be 0.5 × 10 -4 m 2 s -1 which is the background value. The KPP model yields DC only to the east of the LDO region. 1° × 1° resolution. In this case, a MY2.5 mixing scheme predicts DC in the LDO region. However, it also predicts DC to the west, north and south of it, where it is not observed. The behavior of the KPP and MY models are somewhat anti-symmetric. The MY models yield too low a mixing in stably stratified flows since they

  11. Generic CSP Performance Model for NREL's System Advisor Model: Preprint

    SciTech Connect

    Wagner, M. J.; Zhu, G.

    2011-08-01

    The suite of concentrating solar power (CSP) modeling tools in NREL's System Advisor Model (SAM) includes technology performance models for parabolic troughs, power towers, and dish-Stirling systems. Each model provides the user with unique capabilities that are catered to typical design considerations seen in each technology. Since the scope of the various models is generally limited to common plant configurations, new CSP technologies, component geometries, and subsystem combinations can be difficult to model directly in the existing SAM technology models. To overcome the limitations imposed by representative CSP technology models, NREL has developed a 'Generic Solar System' (GSS) performance model for use in SAM. This paper discusses the formulation and performance considerations included in this model and verifies the model by comparing its results with more detailed models.

  12. Individual Influence on Model Selection

    ERIC Educational Resources Information Center

    Sterba, Sonya K.; Pek, Jolynn

    2012-01-01

    Researchers in psychology are increasingly using model selection strategies to decide among competing models, rather than evaluating the fit of a given model in isolation. However, such interest in model selection outpaces an awareness that one or a few cases can have disproportionate impact on the model ranking. Though case influence on the fit…

  13. Models: Caveats, Reflections, and Suggestions

    ERIC Educational Resources Information Center

    Kirschling, Wayne R.

    1976-01-01

    Noting that mathematical modeling is a relatively new phenomenon in higher education and that much can be learned from the misdirections and mistakes that characterize modeling in general, the author describes major criticisms of modeling and suggests improvements, particularly in communication between modelers and potential model users. (JT)

  14. IMPACT fragmentation model developments

    NASA Astrophysics Data System (ADS)

    Sorge, Marlon E.; Mains, Deanna L.

    2016-09-01

    The IMPACT fragmentation model has been used by The Aerospace Corporation for more than 25 years to analyze orbital altitude explosions and hypervelocity collisions. The model is semi-empirical, combining mass, energy and momentum conservation laws with empirically derived relationships for fragment characteristics such as number, mass, area-to-mass ratio, and spreading velocity as well as event energy distribution. Model results are used for several types of analysis including assessment of short-term risks to satellites from orbital altitude fragmentations, prediction of the long-term evolution of the orbital debris environment and forensic assessments of breakup events. A new version of IMPACT, version 6, has been completed and incorporates a number of advancements enabled by a multi-year long effort to characterize more than 11,000 debris fragments from more than three dozen historical on-orbit breakup events. These events involved a wide range of causes, energies, and fragmenting objects. Special focus was placed on the explosion model, as the majority of events examined were explosions. Revisions were made to the mass distribution used for explosion events, increasing the number of smaller fragments generated. The algorithm for modeling upper stage large fragment generation was updated. A momentum conserving asymmetric spreading velocity distribution algorithm was implemented to better represent sub-catastrophic events. An approach was developed for modeling sub-catastrophic explosions, those where the majority of the parent object remains intact, based on estimated event energy. Finally, significant modifications were made to the area-to-mass ratio distribution to incorporate the tendencies of different materials to fragment into different shapes. This ability enabled better matches between the observed area-to-mass ratios and those generated by the model. It also opened up additional possibilities for post-event analysis of breakups. The paper will discuss

  15. Pragmatic geometric model evaluation

    NASA Astrophysics Data System (ADS)

    Pamer, Robert

    2015-04-01

    Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to

  16. On heterotic model constraints

    NASA Astrophysics Data System (ADS)

    Bouchard, Vincent; Donagi, Ron

    2008-08-01

    The constraints imposed on heterotic compactifications by global consistency and phenomenology seem to be very finely balanced. We show that weakening these constraints, as was proposed in some recent works, is likely to lead to frivolous results. In particular, we construct an infinite set of such frivolous models having precisely the massless spectrum of the MSSM and other quasi-realistic features. Only one model in this infinite collection (the one constructed in [8]) is globally consistent and supersymmetric. The others might be interpreted as being anomalous, or as non-supersymmetric models, or as local models that cannot be embedded in a global one. We also show that the strongly coupled model of [8] can be modified to a perturbative solution with stable SU(4) or SU(5) bundles in the hidden sector. We finally propose a detailed exploration of heterotic vacua involving bundles on Calabi-Yau threefolds with Bbb Z6 Wilson lines; we obtain many more frivolous solutions, but none that are globally consistent and supersymmetric at the string scale.

  17. Radmodl Modeling Manual

    SciTech Connect

    Murphy, S.L.; Stevens, K.A.; Weister, T.E.

    1993-04-01

    RADMODL is a set of computer codes that model the transport of material through a network of interconnected compartments. This version of RADMODL is designed to model the transport of radioactive material from either a loss of coolant accident (LOCA) or a fuel handling accident into a set of interconnected compartments and determine the equivalent dose each compartment will see for the duration of the accident. The code is flexible enough to allow modeling of other types of materials and their dilution/dispersion during transport by designing a new set of input files corresponding to the facility layout and the dilution/dispersion factors. This report documents the issuance of the Modeling Manual, originally developed by EGS Corporation and ISSI as volume 1 of the Programmer`s Manual, with the incorporation of minor editorial comments. Though a Modeling Manual in itself is not required for the RADMODL code certification, this manual does contain information that is required for the one of the requirements for code User`s Manual and hence certification.

  18. Techno Economic Model

    SciTech Connect

    2010-04-01

    The Technoeconomic model is a computational model of a lignocellulosic biorefinery that can be used by industry to establish benchmarks of performance and risk-benefit analysis in order to assess the potential impact of cutting edge technologies. The model can be used to evaluate, guide, and optimize research efforts, biorefinery design, and process operation. The model will help to reduce the risk of commercial investment and development of biorefineries and help steer future research to those parts of the refining process in need of further developments for biofuels to be cost competitive. We have now aded modules for the following sections: feed handling, pretreatment, fermentation, product and water recovery, waste treatment, and steam/electricity generation. We have incorporated a kinetic model for microorganism growth and production of ethanol, inclouding toxin inhibition. For example, the feed handling section incorporates information regarding feedstock transport distance-dependent costs. The steam and electricity generation section now includes a turbogenerator that supplies power to be used by other unit operations and contains equations for efficiency calculations.

  19. Climate Model Output Rewriter

    SciTech Connect

    Taylor, K. E.; Doutriaux, C.

    2004-06-21

    CMOR comprises a set of FORTRAN 90 dunctions that can be used to produce CF-compliant netCDF files. The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate community’s standard model experiments (which are referred to here as "MIPS", which stands for "model intercomparison project", including, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs), CMOR was not designed to serve as an all-purpose wfiter of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP data. Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard. Individual modeling groups store their data in different ways. but if a group can read its own data with FORTRAN, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs, The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for the other MIPs.

  20. Personalized pseudophakic model

    NASA Astrophysics Data System (ADS)

    Ribeiro, F.; Castanheira-Dinis, A.; Dias, J. M.

    2014-08-01

    With the aim of taking into account all optical aberrations, a personalized pseudophakic optical model was designed for refractive evaluation using ray tracing software. Starting with a generic model, all clinically measurable data were replaced by personalized measurements. Data from corneal anterior and posterior surfaces were imported from a grid of elevation data obtained by topography, and a formula for the calculation of the intraocular lens (IOL) position was developed based on the lens equator. For the assessment of refractive error, a merit function minimized by the approximation of the Modulation Transfer Function values to diffraction limit values on the frequencies corresponding up to the discrimination limits of the human eye, weighted depending on the human contrast sensitivity function, was built. The model was tested on the refractive evaluation of 50 pseudophakic eyes. The developed model shows good correlation with subjective evaluation of a pseudophakic population, having the added advantage of being independent of corrective factors, allowing it to be immediately adaptable to new technological developments. In conclusion, this personalized model, which uses individual biometric values, allows for a precise refractive assessment and is a valuable tool for an accurate IOL power calculation, including in conditions to which population averages and the commonly used regression correction factors do not apply, thus achieving the goal of being both personalized and universally applicable.

  1. Nuclear Checker Board Model

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2016-03-01

    The NCB Model 1 , 2 , 3 suggests that the nucleus is a relativistic 2D structure. In 1996 at Argonne National Lab the Checker Board Model was first presented. In that poster presentation it was explained that the relativistic constituent quarks orbit inside the proton at about 85% c and about 99% c inside the neutron. As a way to test the model it was found that the de Broglie wavelength of the up quark matched the calculated circumference of the proton (radius = 0.5194 fm) analogous to the Bohr model of the electron in the H atom. 20 years later it is now accepted that the quarks are moving at relativistic speeds and the orbital motion of the quarks contribute the major part of the spin of the proton. If one considers the motion of the relativistic quarks inside the nucleus (take for example Ca 40) about its center of mass, one realizes that these relativistic quarks are confined to shells inside the nucleus (the He shell {the inner 4 nucleons}, the Oxygen shell ...). So the CBM eliminates the need for an illusionary strong nuclear force in favor of a force based upon an E/M force in perfect spin synchronization in a 2D plane. So the CBM is not at odds with the shell model but instead explains why the nucleus has a shell structure and correctly predicts the shell closures.

  2. Cosmological Models and Stability

    NASA Astrophysics Data System (ADS)

    Andersson, Lars

    Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.

  3. Climate Model Output Rewriter

    2004-06-21

    CMOR comprises a set of FORTRAN 90 dunctions that can be used to produce CF-compliant netCDF files. The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate community’s standard model experiments (which are referred to here as "MIPS", which stands for "model intercomparison project", including, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs), CMOR was not designed to serve as anmore » all-purpose wfiter of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP data. Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard. Individual modeling groups store their data in different ways. but if a group can read its own data with FORTRAN, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs, The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for the other MIPs.« less

  4. Sea modeling and rendering

    NASA Astrophysics Data System (ADS)

    Cathala, Thierry; Latger, Jean

    2010-10-01

    More and more defence and civil applications require simulation of marine synthetic environment. Currently, the "Future Anti-Surface-Guided-Weapon" (FASGW) or "anti-navire léger" (ANL) missile needs this kind of modelling. This paper presents a set of technical enhancement of the SE-Workbench that aim at better representing the sea profile and the interaction with targets. The operational scenario variability is a key criterion: the generic geographical area (e.g. Persian Gulf, coast of Somalia,...), the type of situation (e.g. peace keeping, peace enforcement, anti-piracy, drug interdiction,...)., the objectives (political, strategic, or military objectives), the description of the mission(s) (e.g. antipiracy) and operation(s) (e.g. surveillance and reconnaissance, escort, convoying) to achieve the objectives, the type of environment (Weather, Time of day, Geography [coastlines, islands, hills/mountains]). The paper insists on several points such as the dual rendering using either ray tracing [and the GP GPU optimization] or rasterization [and GPU shaders optimization], the modelling of sea-surface based on hypertextures and shaders, the wakes modelling, the buoyancy models for targets, the interaction of coast and littoral, the dielectric infrared modelling of water material.

  5. PATHS groundwater hydrologic model

    SciTech Connect

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  6. Modeling and flow theory

    SciTech Connect

    Not Available

    1981-10-01

    (1) We recommend the establishment of an experimental test facility, appropriately instrumented, dedicated to research on theoretical modeling concepts. Validation of models for the various flow regimes, and establishment of the limitations or concepts used in the construction of models, are sorely needed areas of research. There exists no mechanism currently for funding of such research on a systematic basis. Such a facility would provide information fundamental to progress in the physics of turbulent multi-phase flow, which would also have impact on the understanding of coal utilization processes; (2) combustion research appears to have special institutional barriers to information exchange because it is an established, commercial ongoing effort, with heavy reliance on empirical data for proprietary configurations; (3) for both gasification and combustion reactors, current models appear to handle adequately some, perhaps even most, gross aspects of the reactors such as overall efficiency and major chemical output constituents. However, new and more stringent requirements concerning NOX, SOX and POX (small paticulate) production require greater understanding of process details and spatial inhomogenities, hence refinement of current models to include some greater detail is necessary; (4) further progress in the theory of single-phase turbulent flow would benefit our understanding of both combustors and gasifiers; and (5) another area in which theoretical development would be extremely useful is multi-phase flow.

  7. Models of gastric emptying.

    PubMed Central

    Stubbs, D F

    1977-01-01

    Some empirical and theoretical models of the emptying behaviour of the stomach are presented. The laws of Laplace, Hooke, and Poisseuille are used to derive a new model of gastric emptying. Published data on humans are used to test the model and evaluate empirical constants. It is shown that for meals with an initial volume of larger than or equal to 300 ml, the reciprocal of the cube root of the volume of meal remaining is proportional to the time the meal is in the stomach.For meals of initial volume of less than 300 ml the equation has to be corrected for the fact that the 'resting volume' of gastric contents is about 28 ml. The more exact formula is given in the text. As this model invokes no neural or hormonal factors, it is suggested that the gastric emptying response to the volume of a meal does not depend on these factors. The gastric emptying response to the composition of the meal does depend on such factors and a recent model of this process is used to evaluate an empirical constant. PMID:856678

  8. Advanced Chemistry Basins Model

    SciTech Connect

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  9. Modeling Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Park, Conner; Read, Jocelyn; Flynn, Eric; Lockett-Ruiz, Veronica

    2016-03-01

    Gravitational waves, predicted by Einstein's Theory of Relativity, are a new frontier in astronomical observation we can use to observe phenomena in the universe. Laser Interferometer Gravitational wave Observatory (LIGO) is currently searching for gravitational wave signals, and requires accurate predictions in order to best extract astronomical signals from all other sources of fluctuations. The focus of my research is in increasing the accuracy of Post-Newtonian models of binary neutron star coalescence to match the computationally expensive Numerical models. Numerical simulations can take months to compute a couple of milliseconds of signal whereas the Post-Newtonian can generate similar signals in seconds. However the Post-Newtonian model is an approximation, e.g. the Taylor T4 Post-Newtonian model assumes that the two bodies in the binary neutron star system are point charges. To increase the effectiveness of the approximation, I added in tidal effects, resonance frequencies, and a windowing function. Using these observed effects from simulations significantly increases the Post-Newtonian model's similarity to the Numerical signal.

  10. Oxidative desulfurization: kinetic modelling.

    PubMed

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel. PMID:18541367

  11. Supersymmetric leptophilic Higgs model

    SciTech Connect

    Marshall, Gardner; Sher, Marc

    2011-01-01

    In the leptophilic model, one Higgs doublet couples to quarks and another couples to leptons. We study the supersymmetric version of this model, concentrating on the tightly constrained Higgs sector, which has four doublets. Constraints from perturbativity, unitarity, and LEP bounds are considered. It is found that the lightest Higgs, h, can have a mass well below 114 GeV, and for masses below 100 GeV will have a substantially enhanced branching ratio into {tau} pairs. For this region of parameter space, traditional production mechanisms (Higgs-strahlung, W fusion, and gluon fusion) are suppressed, but it may be produced in the decay of heavier particles. The second lightest Higgs has a mass of approximately 110 GeV for virtually all of parameter space, with standard model couplings, and thus an increase of a few GeV in the current lower bound on the standard model Higgs mass would rule out the model. The two heavier Higgs are both gauge phobic, one decays almost entirely into bb and can be produced via gluon fusion while the other decays almost entirely into {tau}{sup +}{tau}{sup -} but cannot be easily produced.

  12. Individual Colorimetric Observer Model

    PubMed Central

    Asano, Yuta; Fairchild, Mark D.; Blondé, Laurent

    2016-01-01

    This study proposes a vision model for individual colorimetric observers. The proposed model can be beneficial in many color-critical applications such as color grading and soft proofing to assess ranges of color matches instead of a single average match. We extended the CIE 2006 physiological observer by adding eight additional physiological parameters to model individual color-normal observers. These eight parameters control lens pigment density, macular pigment density, optical densities of L-, M-, and S-cone photopigments, and λmax shifts of L-, M-, and S-cone photopigments. By identifying the variability of each physiological parameter, the model can simulate color matching functions among color-normal populations using Monte Carlo simulation. The variabilities of the eight parameters were identified through two steps. In the first step, extensive reviews of past studies were performed for each of the eight physiological parameters. In the second step, the obtained variabilities were scaled to fit a color matching dataset. The model was validated using three different datasets: traditional color matching, applied color matching, and Rayleigh matches. PMID:26862905

  13. Instabilities and constitutive modelling.

    PubMed

    Wilson, Helen J

    2006-12-15

    The plastics industry today sees huge wastage through product defects caused by unstable flows during the manufacturing process. In addition, many production lines are throughput-limited by a flow speed threshold above which the process becomes unstable. Therefore, it is critically important to understand the mechanisms behind these instabilities. In order to investigate the flow of a molten plastic, the first step is a model of the liquid itself, a relation between its current stress and its flow history called a constitutive relation. These are derived in many ways and tested on several benchmark flows, but rarely is the stability of the model used as a criterion for selection. The relationship between the constitutive model and the stability properties of even simple flows is not yet well understood. We show that in one case a small change to the model, which does not affect the steady flow behaviour, entirely removes a known instability. In another, a change that makes a qualitative difference to the steady flow makes only tiny changes to the stability.The long-term vision of this research is to exactly quantify what are the important properties of a constitutive relation as far as stability is concerned. If we could understand that, not only could very simple stability experiments be used to choose the best constitutive models for a particular material, but our ability to predict and avoid wasteful industrial instabilities would also be vastly improved.

  14. UHECR: Signatures and models

    NASA Astrophysics Data System (ADS)

    Berezinsky, V.

    2013-06-01

    The signatures of Ultra High Energy (E ≳ 1 EeV) proton propagation through CMB radiation are pair-production dip and GZK cutoff. The visible characteristics of these two spectral features are ankle, which is intrinsic part of the dip, beginning of GZK cutoff in the differential spectrum and E1/2 in integral spectrum. Measured by HiRes and Telescope Array (TA) these characteristics agree with theoretical predictions. However, directly measured mass composition remains a puzzle. While HiRes and TA detectors observe the proton-dominated mass composition, the data of Auger detector strongly evidence for nuclei mass composition becoming progressively heavier at energy higher than 4 EeV and reaching Iron at energy about 35 EeV. The models based on the Auger and HiRes/TA data are considered independently and classified using the transition from galactic to extragalactic cosmic rays. The ankle cannot provide this transition. since data of all three detector at energy (1-3) EeV agree with pure proton composition (or at least not heavier than Helium). If produced in Galaxy these particles result in too high anisotropy. This argument excludes or strongly disfavours all ankle models with ankle energy Ea > 3 EeV. The calculation of elongation curves, Xmax(E), for different ankle models strengthens further this conclusion. Status of other models, the dip, mixed composition and Auger based models are discussed.

  15. The standard cosmological model

    NASA Astrophysics Data System (ADS)

    Scott, D.

    2006-06-01

    The Standard Model of Particle Physics (SMPP) is an enormously successful description of high-energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire three-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realization of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas that might explain the values of its parameters. Although it is natural to see analogies between the two Standard Models, some intrinsic differences also exist, which are discussed here. Nevertheless, a truly fundamental theory will have to explain both the SMPP and SMC, and this must include an appreciation of which elements are deterministic and which are accidental. Considering different levels of stochasticity within cosmology may make it easier to accept that physical parameters in general might have a nondeterministic aspect.

  16. High altitude atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Hedin, Alan E.

    1988-01-01

    Five empirical models were compared with 13 data sets, including both atmospheric drag-based data and mass spectrometer data. The most recently published model, MSIS-86, was found to be the best model overall with an accuracy around 15 percent. The excellent overall agreement of the mass spectrometer-based MSIS models with the drag data, including both the older data from orbital decay and the newer accelerometer data, suggests that the absolute calibration of the (ensemble of) mass spectrometers and the assumed drag coefficient in the atomic oxygen regime are consistent to 5 percent. This study illustrates a number of reasons for the current accuracy limit such as calibration accuracy and unmodeled trends. Nevertheless, the largest variations in total density in the thermosphere are accounted for, to a very high degree, by existing models. The greatest potential for improvements is in areas where we still have insufficient data (like the lower thermosphere or exosphere), where there are disagreements in technique (such as the exosphere) which can be resolved, or wherever generally more accurate measurements become available.

  17. Modeling intraocular bacterial infections.

    PubMed

    Astley, Roger A; Coburn, Phillip S; Parkunan, Salai Madhumathi; Callegan, Michelle C

    2016-09-01

    Bacterial endophthalmitis is an infection and inflammation of the posterior segment of the eye which can result in significant loss of visual acuity. Even with prompt antibiotic, anti-inflammatory and surgical intervention, vision and even the eye itself may be lost. For the past century, experimental animal models have been used to examine various aspects of the pathogenesis and pathophysiology of bacterial endophthalmitis, to further the development of anti-inflammatory treatment strategies, and to evaluate the pharmacokinetics and efficacies of antibiotics. Experimental models allow independent control of many parameters of infection and facilitate systematic examination of infection outcomes. While no single animal model perfectly reproduces the human pathology of bacterial endophthalmitis, investigators have successfully used these models to understand the infectious process and the host response, and have provided new information regarding therapeutic options for the treatment of bacterial endophthalmitis. This review highlights experimental animal models of endophthalmitis and correlates this information with the clinical setting. The goal is to identify knowledge gaps that may be addressed in future experimental and clinical studies focused on improvements in the therapeutic preservation of vision during and after this disease. PMID:27154427

  18. Techno Economic Model

    2010-04-01

    The Technoeconomic model is a computational model of a lignocellulosic biorefinery that can be used by industry to establish benchmarks of performance and risk-benefit analysis in order to assess the potential impact of cutting edge technologies. The model can be used to evaluate, guide, and optimize research efforts, biorefinery design, and process operation. The model will help to reduce the risk of commercial investment and development of biorefineries and help steer future research to thosemore » parts of the refining process in need of further developments for biofuels to be cost competitive. We have now aded modules for the following sections: feed handling, pretreatment, fermentation, product and water recovery, waste treatment, and steam/electricity generation. We have incorporated a kinetic model for microorganism growth and production of ethanol, inclouding toxin inhibition. For example, the feed handling section incorporates information regarding feedstock transport distance-dependent costs. The steam and electricity generation section now includes a turbogenerator that supplies power to be used by other unit operations and contains equations for efficiency calculations.« less

  19. Reporting workflow modeling

    NASA Astrophysics Data System (ADS)

    Noumeir, Rita

    2004-04-01

    The radiology diagnostic reporting is a process that results in generating a diagnostic report to be made available outside the radiology department. The report captures the radiologist"s interpretations and impressions. It is an element of the patient healthcare record and represents important clinical information to assist in healthcare decisions. The reporting process is initiated by the existence of images or other radiology evidences to be interpreted. The work of individuals is controlled by systems that manage workflow. These systems may introduce delays or constraints on how and when tasks are performed. In order to design and implement efficient information systems that manage the reporting workflow, an accurate workflow modeling is needed. Workflow modeling consists in describing what is done by whom and in what sequence, that is the roles, tasks and sequences of tasks. The workflow model is very important and has major consequences. An inaccurate model introduces inefficiencies, frustrations and may result in a useless information system. In this paper, we will model several common reporting workflows by describing the roles, tasks and information flows involved.

  20. Multi-model blending

    DOEpatents

    Hamann, Hendrik F.; Hwang, Youngdeok; van Kessel, Theodore G.; Khabibrakhmanov, Ildar K.; Muralidhar, Ramachandran

    2016-10-18

    A method and a system to perform multi-model blending are described. The method includes obtaining one or more sets of predictions of historical conditions, the historical conditions corresponding with a time T that is historical in reference to current time, and the one or more sets of predictions of the historical conditions being output by one or more models. The method also includes obtaining actual historical conditions, the actual historical conditions being measured conditions at the time T, assembling a training data set including designating the two or more set of predictions of historical conditions as predictor variables and the actual historical conditions as response variables, and training a machine learning algorithm based on the training data set. The method further includes obtaining a blended model based on the machine learning algorithm.

  1. Pulsed Plasma Accelerator Modeling

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Kazeminezhad, F.; Owens, T.

    2009-01-01

    This report presents the main results of the modeling task of the PPA project. The objective of this task is to make major progress towards developing a new computational tool with new capabilities for simulating cylindrically symmetric 2.5 dimensional (2.5 D) PPA's. This tool may be used for designing, optimizing, and understanding the operation of PPA s and other pulsed power devices. The foundation for this task is the 2-D, cylindrically symmetric, magnetohydrodynamic (MHD) code PCAPPS (Princeton Code for Advanced Plasma Propulsion Simulation). PCAPPS was originally developed by Sankaran (2001, 2005) to model Lithium Lorentz Force Accelerators (LLFA's), which are electrode based devices, and are typically operated in continuous magnetic field to the model, and implementing a first principles, self-consistent algorithm to couple the plasma and power circuit that drives the plasma dynamics.

  2. Modeling the Mousetrap Car

    NASA Astrophysics Data System (ADS)

    Jumper, William D.

    2012-03-01

    Many high school and introductory college physics courses make use of mousetrap car projects and competitions as a way of providing an engaging hands-on learning experience incorporating Newton's laws, conversion of potential to kinetic energy, dissipative forces, and rotational mechanics. Presented here is a simple analytical and finite element spreadsheet model for a typical mousetrap car, as shown in Fig. 1. It is hoped that the model will provide students with a tool for designing or modifying the designs of their cars, provide instructors with a means to insure students close the loop between physical principles and an understanding of their car's speed and distance performance, and, third, stimulate in students at an early stage an appreciation for the merits of computer modeling as an aid in understanding and tackling otherwise analytically intractable problems so common in today's professional world.

  3. Progress in Initiator Modeling

    SciTech Connect

    Hrousis, C A; Christensen, J S

    2009-05-04

    There is great interest in applying magnetohydrodynamic (MHD) simulation techniques to the designs of electrical high explosive (HE) initiators, for the purpose of better understanding a design's sensitivities, optimizing its performance, and/or predicting its useful lifetime. Two MHD-capable LLNL codes, CALE and ALE3D, are being used to simulate the process of ohmic heating, vaporization, and plasma formation in the bridge of an initiator, be it an exploding bridgewire (EBW), exploding bridgefoil (EBF) or slapper type initiator. The initiation of the HE is simulated using Tarver Ignition & Growth reactive flow models. 1-D, 2-D and 3-D models have been constructed and studied. The models provide some intuitive explanation of the initiation process and are useful for evaluating the potential impact of identified aging mechanisms (such as the growth of intermetallic compounds or powder sintering). The end product of this work is a simulation capability for evaluating margin in proposed, modified or aged initiation system designs.

  4. MITRE's virtual model shop

    NASA Astrophysics Data System (ADS)

    Wingfield, Michael A.

    1995-04-01

    The exploration of visual data and the use of visual information during the design process can be greatly enhanced by working within the virtual environment where the user is closely coupled to the data by means of immersive technologies and natural user interfaces. Current technology enables us to construct a virtual environment utilizing 3D graphics projection, object generated stereo sound, tactile feedback, and voice command input. Advances in software architectures and user interfaces enable us to focus on enhancing the design process within the virtual environment. These explorations at MITRE have evolved into an application which focuses on the ability to create, manipulate, and explore photo and audio realistic 3D models of work spaces, office complexes, and entire communities in real-time. This application, the Virtual Interactive Planning System, is a component of the MITRE virtual model shop, a suite of applications which permits the user to design and manipulate computer graphics models within the virtual environment.

  5. Rutherford's Nuclear Model

    NASA Astrophysics Data System (ADS)

    Heibron, John

    2011-04-01

    Rutherford's nuclear model originally was a theory of scattering that represented both the incoming alpha particles and their targets as point charges. The assumption that the apha particle, which Rutherford knew to be a doubly ionized helium atom, was a bare nucleus, and the associated assumption that the electronic structure of the atom played no significant role in large-angle scattering, had immediate and profound consequences well beyond the special problem for which Rutherford introduced them. The group around him in Manchester in 1911/12, which included Niels Bohr, Charles Darwin, Georg von Hevesy, and Henry Moseley, worked out some of these consequences. Their elucidation of radioactivity, isotopy, atomic number, and quantization marked an epoch in microphysics. Rutherford's nuclear model was exemplary not only for its fertility and picturability, but also for its radical simplicity. The lecturer will not undertake to answer the baffling question why such simple models work.

  6. Kate's Model Verification Tools

    NASA Technical Reports Server (NTRS)

    Morgan, Steve

    1991-01-01

    Kennedy Space Center's Knowledge-based Autonomous Test Engineer (KATE) is capable of monitoring electromechanical systems, diagnosing their errors, and even repairing them when they crash. A survey of KATE's developer/modelers revealed that they were already using a sophisticated set of productivity enhancing tools. They did request five more, however, and those make up the body of the information presented here: (1) a transfer function code fitter; (2) a FORTRAN-Lisp translator; (3) three existing structural consistency checkers to aid in syntax checking their modeled device frames; (4) an automated procedure for calibrating knowledge base admittances to protect KATE's hardware mockups from inadvertent hand valve twiddling; and (5) three alternatives for the 'pseudo object', a programming patch that currently apprises KATE's modeling devices of their operational environments.

  7. DEM Particle Fracture Model

    SciTech Connect

    Zhang, Boning; Herbold, Eric B.; Homel, Michael A.; Regueiro, Richard A.

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  8. The disruption management model.

    PubMed

    McAlister, James

    2011-10-01

    Within all organisations, business continuity disruptions present a set of dilemmas that managers may not have dealt with before in their normal daily duties. The disruption management model provides a simple but effective management tool to enable crisis management teams to stay focused on recovery in the midst of a business continuity incident. The model has four chronological primary headlines, which steer the team through a quick-time crisis decision-making process. The procedure facilitates timely, systematic, rationalised and justified decisions, which can withstand post-event scrutiny. The disruption management model has been thoroughly tested within an emergency services environment and is proven to significantly support clear and concise decision making in a business continuity context. PMID:22130341

  9. Metacognitive model of mindfulness.

    PubMed

    Jankowski, Tomasz; Holas, Pawel

    2014-08-01

    Mindfulness training has proven to be an efficacious therapeutic tool for a variety of clinical and nonclinical health problems and a booster of well-being. In this paper we propose a multi-level metacognitive model of mindfulness. We postulate and discuss following hypothesis: (1) mindfulness is related to the highest level of metacognition; (2) mindfulness depends on dynamic cooperation of three main components of the metacognition (metacognitive knowledge, metacognitive experiences and metacognitive skills); (3) a mindful meta-level is always conscious while the other meta-cognitive processes can occur implicitly; (4) intentionally practiced mindfulness decreases dissociations between awareness and meta-awareness; (5) components of mindful meta-level develop and change during continuous practice. The current model is discussed in the light of empirical data and other theoretical approaches to mindfulness concept. We believe that presented model provides some helpful avenues for future research and theoretical investigations into mindfulness and the mechanisms of its actions.

  10. Modeling complexity in biology

    NASA Astrophysics Data System (ADS)

    Louzoun, Yoram; Solomon, Sorin; Atlan, Henri; Cohen, Irun. R.

    2001-08-01

    Biological systems, unlike physical or chemical systems, are characterized by the very inhomogeneous distribution of their components. The immune system, in particular, is notable for self-organizing its structure. Classically, the dynamics of natural systems have been described using differential equations. But, differential equation models fail to account for the emergence of large-scale inhomogeneities and for the influence of inhomogeneity on the overall dynamics of biological systems. Here, we show that a microscopic simulation methodology enables us to model the emergence of large-scale objects and to extend the scope of mathematical modeling in biology. We take a simple example from immunology and illustrate that the methods of classical differential equations and microscopic simulation generate contradictory results. Microscopic simulations generate a more faithful approximation of the reality of the immune system.

  11. The disruption management model.

    PubMed

    McAlister, James

    2011-10-01

    Within all organisations, business continuity disruptions present a set of dilemmas that managers may not have dealt with before in their normal daily duties. The disruption management model provides a simple but effective management tool to enable crisis management teams to stay focused on recovery in the midst of a business continuity incident. The model has four chronological primary headlines, which steer the team through a quick-time crisis decision-making process. The procedure facilitates timely, systematic, rationalised and justified decisions, which can withstand post-event scrutiny. The disruption management model has been thoroughly tested within an emergency services environment and is proven to significantly support clear and concise decision making in a business continuity context.

  12. Critical Infrastructure Modeling System

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  13. 2-Stage Classification Modeling

    1994-11-01

    CIRCUIT2.4 is used to design optimum two-stage classification configurations and operating conditions for energy conservation. It permits simulation of five basic grinding-classification circuits, including one single-stage and four two-stage classification arrangements. Hydrocyclones, spiral classifiers, and sieve band screens can be simulated, and the user may choose the combination of devices for the flowsheet simulation. In addition, the user may select from four classification modeling methods to achieve the goals of a simulation project using themore » most familiar concepts. Circuit performance is modeled based on classification parameters or equipment operating conditions. A modular approach was taken in designing the program, which allows future addition of other models with relatively minor changes.« less

  14. Modeling LED street lighting.

    PubMed

    Moreno, Ivan; Avendaño-Alejo, Maximino; Saucedo-A, Tonatiuh; Bugarin, Alejandra

    2014-07-10

    LED luminaires may deliver precise illumination patterns to control light pollution, comfort, visibility, and light utilization efficiency. Here, we provide simple equations to determine how the light distributes in the streets. In particular, we model the illuminance spatial distribution as a function of Cartesian coordinates on a floor, road, or street. The equations show explicit dependence on the luminary position (pole height and arm length), luminary angle (fixture tilt), and the angular intensity profile (radiation pattern) of the LED luminary. To achieve this, we propose two mathematical representations to model the sophisticated intensity profiles of LED luminaries. Furthermore, we model the light utilization efficiency, illumination uniformity, and veiling luminance of glare due to one or several LED streetlamps.

  15. Modelling intelligent behavior

    NASA Technical Reports Server (NTRS)

    Green, H. S.; Triffet, T.

    1993-01-01

    An introductory discussion of the related concepts of intelligence and consciousness suggests criteria to be met in the modeling of intelligence and the development of intelligent materials. Methods for the modeling of actual structure and activity of the animal cortex have been found, based on present knowledge of the ionic and cellular constitution of the nervous system. These have led to the development of a realistic neural network model, which has been used to study the formation of memory and the process of learning. An account is given of experiments with simple materials which exhibit almost all properties of biological synapses and suggest the possibility of a new type of computer architecture to implement an advanced type of artificial intelligence.

  16. Modeling huddling penguins

    NASA Astrophysics Data System (ADS)

    Blanchette, Francois; Waters, Aaron; Kim, Arnold

    2012-11-01

    We present a model of the behavior of huddling penguins. We focus on the densest huddles, formed during storms, where penguins may be considered to leave no openings in the interior of the huddle. We compute a temperature distribution around the huddle, accounting for the effects of the wind. The dynamics of the huddle are based on an iterative process where the most exposed penguin relocates to the most sheltered location available. We study the effects of wind strength, number of penguins, and random perturbations. We find that our model produces huddles that agree qualitatively with actual huddles in terms of shape and downwind displacement. Moreover, the exposure to the wind appears to be shared nearly equally among penguins, despite the fact that our model assumes only that each penguin aims to minimize its own heat loss.

  17. Heterogeneous voter models

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki; Gibert, N.; Redner, S.

    2010-07-01

    We introduce the heterogeneous voter model (HVM), in which each agent has its own intrinsic rate to change state, reflective of the heterogeneity of real people, and the partisan voter model (PVM), in which each agent has an innate and fixed preference for one of two possible opinion states. For the HVM, the time until consensus is reached is much longer than in the classic voter model. For the PVM in the mean-field limit, a population evolves to a preference-based state, where each agent tends to be aligned with its internal preference. For finite populations, discrete fluctuations ultimately lead to consensus being reached in a time that scales exponentially with population size.

  18. Parametric Explosion Spectral Model

    SciTech Connect

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  19. Modeling aqueous solubility.

    PubMed

    Butina, Darko; Gola, Joelle M R

    2003-01-01

    This paper describes the development of an aqueous solubility model based on solubility data from the Syracuse database, calculated octanol-water partition coefficient, and 51 2D molecular descriptors. Two different statistical packages, SIMCA and Cubist, were used and the results were compared. The Cubist model, which comprises a collection of rules, each of which has an associated Multiple Linear Regression model (MLR), gave better overall results on a test set of 640 compounds with an overall squared correlation coefficient of 0.74 and an absolute average error of 0.68 log units. Both training and independent test sets had similar distributions of structures in terms of the different functionalities present-60% neutral, 14% acidic, 8% phenolic, 11% monobasic, 4% polybasic, and 3% zwitterionic molecules. Sets were designed by random selection, with 2688 (81%) and 640 (19%) molecules, respectively, forming the training and the test sets.

  20. Computer modeling and CCPS

    SciTech Connect

    Apul, D.; Gardner, K.; Eighmy, T.

    2005-09-30

    Computer modeling can be an instructive tool to evaluate potential environmental impacts of coal combustion byproducts and other secondary materials used in road and embankment construction. Results from the HYDRUS2D model coupled with an uncertainty analysis suggest that the cadmium fluxes will be significantly less than the output from simpler models with worst case scenarios. Two dimensional analysis of the leaching from the base layer also suggest that concentrations leaching ground water will not be significant for metals unless the pavement is completely damaged and built on sandy soils. Development and verification of these types of tools may lead the way to more informed decision with respect to beneficial use of coal combustion byproducts and other secondary materials. 5 figs., 1 tab.

  1. Models of Titan's Ionosphere

    NASA Astrophysics Data System (ADS)

    Robertson, I. P.; Cravens, T. E.; Waite, J. H.; Wahlund, J.; Yelle, R. V.; Vuitton, V.; Coates, A.; Magee, B.; Gell, D. A.

    2007-12-01

    During the TA and T18 encounters with Titan, in situ measurements were made of Titan's atmosphere and ionosphere by several instruments on board the Cassini Orbiter, including the Ion and Neutral Mass Spectrometer (INMS), the Langmuir probe on the Cassini Radio and Plasma Wave Experiment (RPWS), and the Cassini Plasma Spectrometer Subsystem (CAPS). Both of these encounters were on the day as well as the night side of Titan. The model uses neutral densities measured by the INMS instrument and the electron temperature was measured by the RPWS instrument. The model also includes energetic electron fluxes measured by the CAPS instrument, which act as an important source of ionization on the night side. The modeled ion densities are compared with densities measured by INMS in its Open Source mode.

  2. 2-Stage Classification Modeling

    SciTech Connect

    Baltich, L. K.

    1994-11-01

    CIRCUIT2.4 is used to design optimum two-stage classification configurations and operating conditions for energy conservation. It permits simulation of five basic grinding-classification circuits, including one single-stage and four two-stage classification arrangements. Hydrocyclones, spiral classifiers, and sieve band screens can be simulated, and the user may choose the combination of devices for the flowsheet simulation. In addition, the user may select from four classification modeling methods to achieve the goals of a simulation project using the most familiar concepts. Circuit performance is modeled based on classification parameters or equipment operating conditions. A modular approach was taken in designing the program, which allows future addition of other models with relatively minor changes.

  3. Two models of suicide.

    PubMed

    Pridmore, Saxby; Jamil, Mohammed Yaacob

    2009-12-01

    Objective: The aim of this paper is to present two models of separate but related aspects of suicide, developed with a view to improving understanding and management of this behaviour. Conclusions: First, the predicament model of suicide posits that all suicide represents an escape from a predicament and associated distress. Predicaments are composed of either external (environmental) or internal (mental disorders) factors, or both. Suicide occurs when a threshold is exceeded on a suicide risk ladder, and the degree of movement toward the threshold in response to a particular stressor depends on a range of factors. Second, the suicide pathways model integrates medical and sociological concepts, with distress as the central component, and three run-offs: mental disorder, medicalized and a non-mental disorder (egoistic/anomic; reaction) suicide.

  4. A flipped 331 model

    NASA Astrophysics Data System (ADS)

    Fonseca, Renato M.; Hirsch, Martin

    2016-08-01

    Models based on the extended SU(3) C × SU(3) L × U(1) X (331) gauge group usually follow a common pattern: two families of left-handed quarks are placed in anti-triplet representations of the SU(3) L group; the remaining quark family, as well as the left-handed leptons, are assigned to triplets (or vice-versa). In this work we present a flipped 331 model where this scheme is reversed: all three quark families are in the same representation and it is the lepton families which are discriminated by the gauge symmetry We discuss fermion masses and mixing, as well as Z ' interactions, in a minimal model implementing this idea.

  5. Price percolation model

    NASA Astrophysics Data System (ADS)

    Kanai, Yasuhiro; Abe, Keiji; Seki, Yoichi

    2015-06-01

    We propose a price percolation model to reproduce the price distribution of components used in industrial finished goods. The intent is to show, using the price percolation model and a component category as an example, that percolation behaviors, which exist in the matter system, the ecosystem, and human society, also exist in abstract, random phenomena satisfying the power law. First, we discretize the total potential demand for a component category, considering it a random field. Second, we assume that the discretized potential demand corresponding to a function of a finished good turns into actual demand if the difficulty of function realization is less than the maximum difficulty of the realization. The simulations using this model suggest that changes in a component category's price distribution are due to changes in the total potential demand corresponding to the lattice size and the maximum difficulty of realization, which is an occupation probability. The results are verified using electronic components' sales data.

  6. Models for transition clinics.

    PubMed

    Carrizosa, Jaime; An, Isabelle; Appleton, Richard; Camfield, Peter; Von Moers, Arpad

    2014-08-01

    Transition is a purposeful, planned process that addresses the medical, psychosocial, educational, and vocational needs of adolescents and young adults with chronic medical conditions, as they advance from a pediatric and family-centered to an adult, individual focused health care provider. This article describes some of the models for transition clinics or services for epilepsy in five countries (Canada, France, Colombia, Germany, and the United Kingdom). These models include joint adult and pediatric clinics, algorithm-driven service, and a check list system in the context of pediatric care. Evaluation of these models is limited, and it is not possible to choose an optimal program. The attitude and motivation of health care providers may be the most important elements. PMID:25209087

  7. Ocean General Circulation Models

    SciTech Connect

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  8. Multibody modeling and verification

    NASA Technical Reports Server (NTRS)

    Wiens, Gloria J.

    1989-01-01

    A summary of a ten week project on flexible multibody modeling, verification and control is presented. Emphasis was on the need for experimental verification. A literature survey was conducted for gathering information on the existence of experimental work related to flexible multibody systems. The first portion of the assigned task encompassed the modeling aspects of flexible multibodies that can undergo large angular displacements. Research in the area of modeling aspects were also surveyed, with special attention given to the component mode approach. Resulting from this is a research plan on various modeling aspects to be investigated over the next year. The relationship between the large angular displacements, boundary conditions, mode selection, and system modes is of particular interest. The other portion of the assigned task was the generation of a test plan for experimental verification of analytical and/or computer analysis techniques used for flexible multibody systems. Based on current and expected frequency ranges of flexible multibody systems to be used in space applications, an initial test article was selected and designed. A preliminary TREETOPS computer analysis was run to ensure frequency content in the low frequency range, 0.1 to 50 Hz. The initial specifications of experimental measurement and instrumentation components were also generated. Resulting from this effort is the initial multi-phase plan for a Ground Test Facility of Flexible Multibody Systems for Modeling Verification and Control. The plan focusses on the Multibody Modeling and Verification (MMV) Laboratory. General requirements of the Unobtrusive Sensor and Effector (USE) and the Robot Enhancement (RE) laboratories were considered during the laboratory development.

  9. Developing a Model Component

    NASA Technical Reports Server (NTRS)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is,. responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) is a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The purpose of the UCTS is to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems s:luring their development. As an intern at KSC, my assignment was to develop a model component for the UCTS. I was given a fluid component (drier) to model in Matlab. The drier was a Catch All replaceable core type filter-drier. The filter-drier provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-drier also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. I completed training for UNIX and Simulink to help aid in my assignment. The filter-drier was modeled by determining affects it has on the pressure, velocity and temperature of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my model filter-drier in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements.

  10. Towards Behavioral Reflexion Models

    NASA Technical Reports Server (NTRS)

    Ackermann, Christopher; Lindvall, Mikael; Cleaveland, Rance

    2009-01-01

    Software architecture has become essential in the struggle to manage today s increasingly large and complex systems. Software architecture views are created to capture important system characteristics on an abstract and, thus, comprehensible level. As the system is implemented and later maintained, it often deviates from the original design specification. Such deviations can have implication for the quality of the system, such as reliability, security, and maintainability. Software architecture compliance checking approaches, such as the reflexion model technique, have been proposed to address this issue by comparing the implementation to a model of the systems architecture design. However, architecture compliance checking approaches focus solely on structural characteristics and ignore behavioral conformance. This is especially an issue in Systems-of- Systems. Systems-of-Systems (SoS) are decompositions of large systems, into smaller systems for the sake of flexibility. Deviations of the implementation to its behavioral design often reduce the reliability of the entire SoS. An approach is needed that supports the reasoning about behavioral conformance on architecture level. In order to address this issue, we have developed an approach for comparing the implementation of a SoS to an architecture model of its behavioral design. The approach follows the idea of reflexion models and adopts it to support the compliance checking of behaviors. In this paper, we focus on sequencing properties as they play an important role in many SoS. Sequencing deviations potentially have a severe impact on the SoS correctness and qualities. The desired behavioral specification is defined in UML sequence diagram notation and behaviors are extracted from the SoS implementation. The behaviors are then mapped to the model of the desired behavior and the two are compared. Finally, a reflexion model is constructed that shows the deviations between behavioral design and implementation. This

  11. Modeling Wind Erosion Intermittency

    NASA Astrophysics Data System (ADS)

    Dupont, S.

    2015-12-01

    To improve dust emission schemes in large scale transport models, we developed the first physically-based model simulating the full erosion process in a turbulent flow by resolving explicitly saltating particle trajectories and dust suspension, in presence of vegetation. The large-eddy simulation technic is used here to simulate the turbulent flow, allowing to solve explicitly the main wind gusts near the surface and so the intermittency of the erosion process. The model appeared able to reproduce the saltation intermittency as visualized through the presence of blowing sand structures near the surface, known as aeolian streamers observed on beaches during windy days. In presence of vegetation, the model further allowed us to investigate the sensitivity of sand erosion to the arrangement and morphology of plants (shrubs versus trees). More recently, we further used the model to reanalyze the dependence of the size distribution of the dust flux to the wind speed for idealized erosion events starting from an air free of dust. We found that the suspension of small dust (around 1 μm) can be a long nonstationary process (several hours depending on the wind intensity) due to the low deposition velocity of this particle size range. This leads to a continuous enrichment of the near-surface dust flux in small particles, enrichment that is enhanced with wind intensity, independently of the possible role of saltators. The model also showed that the size distribution and magnitude of dust fluxes at a few meters height differ from those of the emitted flux at the surface as particles start to be sorted through the deposition process within the saltation layer. This last result should be considered when evaluating or calibrating "physically based" dust emission schemes against measured near-surface turbulent diffusive dust fluxes.

  12. Global Hail Model

    NASA Astrophysics Data System (ADS)

    Werner, A.; Sanderson, M.; Hand, W.; Blyth, A.; Groenemeijer, P.; Kunz, M.; Puskeiler, M.; Saville, G.; Michel, G.

    2012-04-01

    Hail risk models are rare for the insurance industry. This is opposed to the fact that average annual hail losses can be large and hail dominates losses for many motor portfolios worldwide. Insufficient observational data, high spatio-temporal variability and data inhomogenity have hindered creation of credible models so far. In January 2012, a selected group of hail experts met at Willis in London in order to discuss ways to model hail risk at various scales. Discussions aimed at improving our understanding of hail occurrence and severity, and covered recent progress in the understanding of microphysical processes and climatological behaviour and hail vulnerability. The final outcome of the meeting was the formation of a global hail risk model initiative and the launch of a realistic global hail model in order to assess hail loss occurrence and severities for the globe. The following projects will be tackled: Microphysics of Hail and hail severity measures: Understand the physical drivers of hail and hailstone size development in different regions on the globe. Proposed factors include updraft and supercooled liquid water content in the troposphere. What are the thresholds drivers of hail formation around the globe? Hail Climatology: Consider ways to build a realistic global climatological set of hail events based on physical parameters including spatial variations in total availability of moisture, aerosols, among others, and using neural networks. Vulnerability, Exposure, and financial model: Use historical losses and event footprints available in the insurance market to approximate fragility distributions and damage potential for various hail sizes for property, motor, and agricultural business. Propagate uncertainty distributions and consider effects of policy conditions along with aggregating and disaggregating exposure and losses. This presentation provides an overview of ideas and tasks that lead towards a comprehensive global understanding of hail risk for

  13. Modeling fuel succession

    USGS Publications Warehouse

    Davis, Brett; Van Wagtendonk, Jan W.; Beck, Jen; van Wagtendonk, Kent A.

    2009-01-01

    Surface fuels data are of critical importance for supporting fire incident management, risk assessment, and fuel management planning, but the development of surface fuels data can be expensive and time consuming. The data development process is extensive, generally beginning with acquisition of remotely sensed spatial data such as aerial photography or satellite imagery (Keane and others 2001). The spatial vegetation data are then crosswalked to a set of fire behavior fuel models that describe the available fuels (the burnable portions of the vegetation) (Anderson 1982, Scott and Burgan 2005). Finally, spatial fuels data are used as input to tools such as FARSITE and FlamMap to model current and potential fire spread and behavior (Finney 1998, Finney 2006). The capture date of the remotely sensed data defines the period for which the vegetation, and, therefore, fuels, data are most accurate. The more time that passes after the capture date, the less accurate the data become due to vegetation growth and processes such as fire. Subsequently, the results of any fire simulation based on these data become less accurate as the data age. Because of the amount of labor and expense required to develop these data, keeping them updated may prove to be a challenge. In this article, we describe the Sierra Nevada Fuel Succession Model, a modeling tool that can quickly and easily update surface fuel models with a minimum of additional input data. Although it was developed for use by Yosemite, Sequoia, and Kings Canyon National Parks, it is applicable to much of the central and southern Sierra Nevada. Furthermore, the methods used to develop the model have national applicability.

  14. Developing a Model Component

    NASA Technical Reports Server (NTRS)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) was a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The initial purpose of the UCTS was to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The UCTS is designed with the capability of servicing future space vehicles; including all Space Station Requirements necessary for the MPLM Modules. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems during their development. As an intern at Kennedy Space Center (KSC), my assignment was to develop a model component for the UCTS. I was given a fluid component (dryer) to model in Simulink. I completed training for UNIX and Simulink. The dryer is a Catch All replaceable core type filter-dryer. The filter-dryer provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-dryer also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. The filter-dryer was modeled by determining affects it has on the pressure and velocity of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my filter-dryer model in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements. I participated in Simulation meetings and was involved in the subsystem design process and team collaborations. I gained valuable work experience and insight into a career path as an engineer.

  15. MARCS model atmospheres

    NASA Astrophysics Data System (ADS)

    Plez, B.

    2008-12-01

    In this review presented at the Symposium A Stellar Journey in Uppsala, June 2008, I give an account of the historical development of the MARCS code, and its premises from the first version published in 1975 to the 2008 grid. The primary driver for the development team who constantly strive to include the best possible physical data, is the science that can be done with the models. A few preliminary comparisons of M star model spectra to spectrophotometric observations are presented. Particular results related to opacity effects are discussed. The size of errors in spectral energy distribution (SED) and model thermal stratification is estimated for different densities of wavelength sampling. The number of points used in the MARCS 2008 grid (108 000) is large enough to ensure errors of only a few K in all models of the grid, except the optically very thin layers of metal-poor stars. Errors in SEDs may reach about 10% locally in the UV. The published sampled SEDs are thus adequate to compute synthetic broadband photometry, but higher resolution spectra will be computed in the near future and published as well on the MARCS site (marcs.astro.uu.se). Test model calculations with TiO line opacity accounted for in scattering show significant cooling of the upper atmospheric layers of red giants. Rough estimates of radiative and collisional time scales for electronic transitions of TiO indicate that scattering may well be the dominant mechanism in these lines. However, models constructed with this hypothesis are incompatible with optical observations of TiO (Arcturus) or IR observations of OH (Betelgeuse), although they may succeed in explaining H2O line observations. More work is needed in that direction.

  16. Calibrated Properties Model

    SciTech Connect

    H. H. Liu

    2003-02-14

    This report has documented the methodologies and the data used for developing rock property sets for three infiltration maps. Model calibration is necessary to obtain parameter values appropriate for the scale of the process being modeled. Although some hydrogeologic property data (prior information) are available, these data cannot be directly used to predict flow and transport processes because they were measured on scales smaller than those characterizing property distributions in models used for the prediction. Since model calibrations were done directly on the scales of interest, the upscaling issue was automatically considered. On the other hand, joint use of data and the prior information in inversions can further increase the reliability of the developed parameters compared with those for the prior information. Rock parameter sets were developed for both the mountain and drift scales because of the scale-dependent behavior of fracture permeability. Note that these parameter sets, except those for faults, were determined using the 1-D simulations. Therefore, they cannot be directly used for modeling lateral flow because of perched water in the unsaturated zone (UZ) of Yucca Mountain. Further calibration may be needed for two- and three-dimensional modeling studies. As discussed above in Section 6.4, uncertainties for these calibrated properties are difficult to accurately determine, because of the inaccuracy of simplified methods for this complex problem or the extremely large computational expense of more rigorous methods. One estimate of uncertainty that may be useful to investigators using these properties is the uncertainty used for the prior information. In most cases, the inversions did not change the properties very much with respect to the prior information. The Output DTNs (including the input and output files for all runs) from this study are given in Section 9.4.

  17. Interstellar Dust Models

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2004-01-01

    A viable interstellar dust model - characterized by the composition, morphology, and size distribution of the dust grains and by the abundance of the different elements locked up in the dust - should fit all observational constraints arising primarily from the interactions of the dust with incident radiation or the ambient gas. As a minimum, these should include the average interstellar extinction, the infrared emission from the diffuse interstellar medium (ISM), and the observed interstellar abundances of the various refractory elements. The last constraint has been largely ignored, resulting in dust models that require more elements to be in the dust phase than available in the ISM. In this talk I will describe the most recent advances towards the construction of a comprehensive dust model made by Zubko, Dwek, and Arendt, who, for the first time, included the interstellar abundances as explicit constraints in the construction of interstellar dust models. The results showed the existence of many distinct models that satisfy the basic set of observational constraints, including bare spherical silicate and graphite particles, PAHs, as well as spherical composite particles containing silicate, organic refractories, water ice, and voids. Recently, a new interstellar dust constituent has emerged, consisting of metallic needles. These needles constitute a very small fraction of the interstellar dust abundance, and their existence is primarily manifested in the 4 to 8 micron wavelength region, where they dominate the interstellar extinction. Preliminary studies show that these models may be distinguished by their X-ray halos, which are produced primarily by small angle scattering off large dust particles along the line of sight to bright X-ray sources, and probe dust properties largely inaccessible at other wavelengths.

  18. MLS: Airplane system modeling

    NASA Technical Reports Server (NTRS)

    Thompson, A. D.; Stapleton, B. P.; Walen, D. B.; Rieder, P. F.; Moss, D. G.

    1981-01-01

    Analysis, modeling, and simulations were conducted as part of a multiyear investigation of the more important airplane-system-related items of the microwave landing system (MLS). Particular emphasis was placed upon the airplane RF system, including the antenna radiation distribution, the cabling options from the antenna to the receiver, and the overall impact of the airborne system gains and losses upon the direct-path signal structure. In addition, effort was expended toward determining the impact of the MLS upon the airplane flight management system and developing the initial stages of a fast-time MLS automatic control system simulation model. Results ot these studies are presented.

  19. Thermal Network Modelling Handbook

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Thermal mathematical modelling is discussed in detail. A three-fold purpose was established: (1) to acquaint the new user with the terminology and concepts used in thermal mathematical modelling, (2) to present the more experienced and occasional user with quick formulas and methods for solving everyday problems, coupled with study cases which lend insight into the relationships that exist among the various solution techniques and parameters, and (3) to begin to catalog in an orderly fashion the common formulas which may be applied to automated conversational language techniques.

  20. Travel Demand Modeling

    SciTech Connect

    Southworth, Frank; Garrow, Dr. Laurie

    2011-01-01

    This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.