Sample records for risk analysis system

  1. Fault tree analysis for integrated and probabilistic risk analysis of drinking water systems.

    PubMed

    Lindhe, Andreas; Rosén, Lars; Norberg, Tommy; Bergstedt, Olof

    2009-04-01

    Drinking water systems are vulnerable and subject to a wide range of risks. To avoid sub-optimisation of risk-reduction options, risk analyses need to include the entire drinking water system, from source to tap. Such an integrated approach demands tools that are able to model interactions between different events. Fault tree analysis is a risk estimation tool with the ability to model interactions between events. Using fault tree analysis on an integrated level, a probabilistic risk analysis of a large drinking water system in Sweden was carried out. The primary aims of the study were: (1) to develop a method for integrated and probabilistic risk analysis of entire drinking water systems; and (2) to evaluate the applicability of Customer Minutes Lost (CML) as a measure of risk. The analysis included situations where no water is delivered to the consumer (quantity failure) and situations where water is delivered but does not comply with water quality standards (quality failure). Hard data as well as expert judgements were used to estimate probabilities of events and uncertainties in the estimates. The calculations were performed using Monte Carlo simulations. CML is shown to be a useful measure of risks associated with drinking water systems. The method presented provides information on risk levels, probabilities of failure, failure rates and downtimes of the system. This information is available for the entire system as well as its different sub-systems. Furthermore, the method enables comparison of the results with performance targets and acceptable levels of risk. The method thus facilitates integrated risk analysis and consequently helps decision-makers to minimise sub-optimisation of risk-reduction options.

  2. Quantitative risk assessment system (QRAS)

    NASA Technical Reports Server (NTRS)

    Tan, Zhibin (Inventor); Mosleh, Ali (Inventor); Weinstock, Robert M (Inventor); Smidts, Carol S (Inventor); Chang, Yung-Hsien (Inventor); Groen, Francisco J (Inventor); Swaminathan, Sankaran (Inventor)

    2001-01-01

    A quantitative risk assessment system (QRAS) builds a risk model of a system for which risk of failure is being assessed, then analyzes the risk of the system corresponding to the risk model. The QRAS performs sensitivity analysis of the risk model by altering fundamental components and quantifications built into the risk model, then re-analyzes the risk of the system using the modifications. More particularly, the risk model is built by building a hierarchy, creating a mission timeline, quantifying failure modes, and building/editing event sequence diagrams. Multiplicities, dependencies, and redundancies of the system are included in the risk model. For analysis runs, a fixed baseline is first constructed and stored. This baseline contains the lowest level scenarios, preserved in event tree structure. The analysis runs, at any level of the hierarchy and below, access this baseline for risk quantitative computation as well as ranking of particular risks. A standalone Tool Box capability exists, allowing the user to store application programs within QRAS.

  3. [Reliability theory based on quality risk network analysis for Chinese medicine injection].

    PubMed

    Li, Zheng; Kang, Li-Yuan; Fan, Xiao-Hui

    2014-08-01

    A new risk analysis method based upon reliability theory was introduced in this paper for the quality risk management of Chinese medicine injection manufacturing plants. The risk events including both cause and effect ones were derived in the framework as nodes with a Bayesian network analysis approach. It thus transforms the risk analysis results from failure mode and effect analysis (FMEA) into a Bayesian network platform. With its structure and parameters determined, the network can be used to evaluate the system reliability quantitatively with probabilistic analytical appraoches. Using network analysis tools such as GeNie and AgenaRisk, we are able to find the nodes that are most critical to influence the system reliability. The importance of each node to the system can be quantitatively evaluated by calculating the effect of the node on the overall risk, and minimization plan can be determined accordingly to reduce their influences and improve the system reliability. Using the Shengmai injection manufacturing plant of SZYY Ltd as a user case, we analyzed the quality risk with both static FMEA analysis and dynamic Bayesian Network analysis. The potential risk factors for the quality of Shengmai injection manufacturing were identified with the network analysis platform. Quality assurance actions were further defined to reduce the risk and improve the product quality.

  4. Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.

    PubMed

    Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis

    2016-08-01

    Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system.

  5. 76 FR 76215 - Privacy Act; System of Records: State-78, Risk Analysis and Management Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... network. Vetting requests, analyses, and results will be stored separately on a classified computer... DEPARTMENT OF STATE [Public Notice 7709] Privacy Act; System of Records: State-78, Risk Analysis... a system of records, Risk Analysis and Management Records, State-78, pursuant to the provisions of...

  6. Expert systems in civil engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostem, C.N.; Maher, M.L.

    1986-01-01

    This book presents the papers given at a symposium on expert systems in civil engineering. Topics considered at the symposium included problem solving using expert system techniques, construction schedule analysis, decision making and risk analysis, seismic risk analysis systems, an expert system for inactive hazardous waste site characterization, an expert system for site selection, knowledge engineering, and knowledge-based expert systems in seismic analysis.

  7. C-Band Airport Surface Communications System Engineering-Initial High-Level Safety Risk Assessment and Mitigation

    NASA Technical Reports Server (NTRS)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.

  8. Risk analysis of computer system designs

    NASA Technical Reports Server (NTRS)

    Vallone, A.

    1981-01-01

    Adverse events during implementation can affect final capabilities, schedule and cost of a computer system even though the system was accurately designed and evaluated. Risk analysis enables the manager to forecast the impact of those events and to timely ask for design revisions or contingency plans before making any decision. This paper presents a structured procedure for an effective risk analysis. The procedure identifies the required activities, separates subjective assessments from objective evaluations, and defines a risk measure to determine the analysis results. The procedure is consistent with the system design evaluation and enables a meaningful comparison among alternative designs.

  9. Risk Modeling of Interdependent Complex Systems of Systems: Theory and Practice.

    PubMed

    Haimes, Yacov Y

    2018-01-01

    The emergence of the complexity characterizing our systems of systems (SoS) requires a reevaluation of the way we model, assess, manage, communicate, and analyze the risk thereto. Current models for risk analysis of emergent complex SoS are insufficient because too often they rely on the same risk functions and models used for single systems. These models commonly fail to incorporate the complexity derived from the networks of interdependencies and interconnectedness (I-I) characterizing SoS. There is a need to reevaluate currently practiced risk analysis to respond to this reality by examining, and thus comprehending, what makes emergent SoS complex. The key to evaluating the risk to SoS lies in understanding the genesis of characterizing I-I of systems manifested through shared states and other essential entities within and among the systems that constitute SoS. The term "essential entities" includes shared decisions, resources, functions, policies, decisionmakers, stakeholders, organizational setups, and others. This undertaking can be accomplished by building on state-space theory, which is fundamental to systems engineering and process control. This article presents a theoretical and analytical framework for modeling the risk to SoS with two case studies performed with the MITRE Corporation and demonstrates the pivotal contributions made by shared states and other essential entities to modeling and analysis of the risk to complex SoS. A third case study highlights the multifarious representations of SoS, which require harmonizing the risk analysis process currently applied to single systems when applied to complex SoS. © 2017 Society for Risk Analysis.

  10. System Theoretic Frameworks for Mitigating Risk Complexity in the Nuclear Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Adam David; Mohagheghi, Amir H.; Cohn, Brian

    In response to the expansion of nuclear fuel cycle (NFC) activities -- and the associated suite of risks -- around the world, this project evaluated systems-based solutions for managing such risk complexity in multimodal and multi-jurisdictional international spent nuclear fuel (SNF) transportation. By better understanding systemic risks in SNF transportation, developing SNF transportation risk assessment frameworks, and evaluating these systems-based risk assessment frameworks, this research illustrated interdependency between safety, security, and safeguards risks is inherent in NFC activities and can go unidentified when each "S" is independently evaluated. Two novel system-theoretic analysis techniques -- dynamic probabilistic risk assessment (DPRA) andmore » system-theoretic process analysis (STPA) -- provide integrated "3S" analysis to address these interdependencies and the research results suggest a need -- and provide a way -- to reprioritize United States engagement efforts to reduce global nuclear risks. Lastly, this research identifies areas where Sandia National Laboratories can spearhead technical advances to reduce global nuclear dangers.« less

  11. Deficient Contractor Business Systems: Applying the Value at Risk (VaR) Model to Earned Value Management Systems

    DTIC Science & Technology

    2013-06-30

    QUANTITATIVE RISK ANALYSIS The use of quantitative cost risk analysis tools can be valuable in measuring numerical risk to the government ( Galway , 2004...assessment of the EVMS itself. Galway (2004) practically linked project quantitative risk assessment to EVM by focusing on cost, schedule, and...www.amazon.com Galway , L. (2004, February). Quantitative risk analysis for project management: A critical review (RAND Working Paper WR-112-RC

  12. L-Band Digital Aeronautical Communications System Engineering - Initial Safety and Security Risk Assessment and Mitigation

    NASA Technical Reports Server (NTRS)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.

  13. Cost-effectiveness analysis of risk-reduction measures to reach water safety targets.

    PubMed

    Lindhe, Andreas; Rosén, Lars; Norberg, Tommy; Bergstedt, Olof; Pettersson, Thomas J R

    2011-01-01

    Identifying the most suitable risk-reduction measures in drinking water systems requires a thorough analysis of possible alternatives. In addition to the effects on the risk level, also the economic aspects of the risk-reduction alternatives are commonly considered important. Drinking water supplies are complex systems and to avoid sub-optimisation of risk-reduction measures, the entire system from source to tap needs to be considered. There is a lack of methods for quantification of water supply risk reduction in an economic context for entire drinking water systems. The aim of this paper is to present a novel approach for risk assessment in combination with economic analysis to evaluate risk-reduction measures based on a source-to-tap approach. The approach combines a probabilistic and dynamic fault tree method with cost-effectiveness analysis (CEA). The developed approach comprises the following main parts: (1) quantification of risk reduction of alternatives using a probabilistic fault tree model of the entire system; (2) combination of the modelling results with CEA; and (3) evaluation of the alternatives with respect to the risk reduction, the probability of not reaching water safety targets and the cost-effectiveness. The fault tree method and CEA enable comparison of risk-reduction measures in the same quantitative unit and consider costs and uncertainties. The approach provides a structured and thorough analysis of risk-reduction measures that facilitates transparency and long-term planning of drinking water systems in order to avoid sub-optimisation of available resources for risk reduction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. 76 FR 76103 - Privacy Act; Notice of Proposed Rulemaking: State-78, Risk Analysis and Management Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... Rulemaking: State-78, Risk Analysis and Management Records SUMMARY: Notice is hereby given that the... portions of the Risk Analysis and Management (RAM) Records, State-78, system of records contain criminal...) * * * (2) * * * Risk Analysis and Management Records, STATE-78. * * * * * (b) * * * (1) * * * Risk Analysis...

  15. A Simplified Approach to Risk Assessment Based on System Dynamics: An Industrial Case Study.

    PubMed

    Garbolino, Emmanuel; Chery, Jean-Pierre; Guarnieri, Franck

    2016-01-01

    Seveso plants are complex sociotechnical systems, which makes it appropriate to support any risk assessment with a model of the system. However, more often than not, this step is only partially addressed, simplified, or avoided in safety reports. At the same time, investigations have shown that the complexity of industrial systems is frequently a factor in accidents, due to interactions between their technical, human, and organizational dimensions. In order to handle both this complexity and changes in the system over time, this article proposes an original and simplified qualitative risk evaluation method based on the system dynamics theory developed by Forrester in the early 1960s. The methodology supports the development of a dynamic risk assessment framework dedicated to industrial activities. It consists of 10 complementary steps grouped into two main activities: system dynamics modeling of the sociotechnical system and risk analysis. This system dynamics risk analysis is applied to a case study of a chemical plant and provides a way to assess the technological and organizational components of safety. © 2016 Society for Risk Analysis.

  16. Risk assessment for enterprise resource planning (ERP) system implementations: a fault tree analysis approach

    NASA Astrophysics Data System (ADS)

    Zeng, Yajun; Skibniewski, Miroslaw J.

    2013-08-01

    Enterprise resource planning (ERP) system implementations are often characterised with large capital outlay, long implementation duration, and high risk of failure. In order to avoid ERP implementation failure and realise the benefits of the system, sound risk management is the key. This paper proposes a probabilistic risk assessment approach for ERP system implementation projects based on fault tree analysis, which models the relationship between ERP system components and specific risk factors. Unlike traditional risk management approaches that have been mostly focused on meeting project budget and schedule objectives, the proposed approach intends to address the risks that may cause ERP system usage failure. The approach can be used to identify the root causes of ERP system implementation usage failure and quantify the impact of critical component failures or critical risk events in the implementation process.

  17. Risk Based Reliability Centered Maintenance of DOD Fire Protection Systems

    DTIC Science & Technology

    1999-01-01

    2.2.3 Failure Mode and Effect Analysis ( FMEA )............................ 2.2.4 Failure Mode Risk Characterization...Step 2 - System functions and functional failures definition Step 3 - Failure mode and effect analysis ( FMEA ) Step 4 - Failure mode risk...system). The Interface Location column identifies the location where the FMEA of the fire protection system began or stopped. For example, for the fire

  18. Risk Analysis Methods for Deepwater Port Oil Transfer Systems

    DOT National Transportation Integrated Search

    1976-06-01

    This report deals with the risk analysis methodology for oil spills from the oil transfer systems in deepwater ports. Failure mode and effect analysis in combination with fault tree analysis are identified as the methods best suited for the assessmen...

  19. NASA Langley Systems Analysis & Concepts Directorate Technology Assessment/Portfolio Analysis

    NASA Technical Reports Server (NTRS)

    Cavanaugh, Stephen; Chytka, Trina; Arcara, Phil; Jones, Sharon; Stanley, Doug; Wilhite, Alan W.

    2006-01-01

    Systems analysis develops and documents candidate mission and architectures, associated system concepts, enabling capabilities and investment strategies to achieve NASA s strategic objectives. The technology assessment process connects the mission and architectures to the investment strategies. In order to successfully implement a technology assessment, there is a need to collect, manipulate, analyze, document, and disseminate technology-related information. Information must be collected and organized on the wide variety of potentially applicable technologies, including: previous research results, key technical parameters and characteristics, technology readiness levels, relationships to other technologies, costs, and potential barriers and risks. This information must be manipulated to facilitate planning and documentation. An assessment is included of the programmatic and technical risks associated with each technology task as well as potential risk mitigation plans. Risks are assessed and tracked in terms of likelihood of the risk occurring and consequences of the risk if it does occur. The risk assessments take into account cost, schedule, and technical risk dimensions. Assessment data must be simplified for presentation to decision makers. The Systems Analysis and Concepts Directorate (SACD) at NASA Langley Research Center has a wealth of experience in performing Technology Assessment and Portfolio Analysis as this has been a business line since 1978.

  20. Integrated risk assessment and screening analysis of drinking water safety of a conventional water supply system.

    PubMed

    Sun, F; Chen, J; Tong, Q; Zeng, S

    2007-01-01

    Management of drinking water safety is changing towards an integrated risk assessment and risk management approach that includes all processes in a water supply system from catchment to consumers. However, given the large number of water supply systems in China and the cost of implementing such a risk assessment procedure, there is a necessity to first conduct a strategic screening analysis at a national level. An integrated methodology of risk assessment and screening analysis is thus proposed to evaluate drinking water safety of a conventional water supply system. The violation probability, indicating drinking water safety, is estimated at different locations of a water supply system in terms of permanganate index, ammonia nitrogen, turbidity, residual chlorine and trihalomethanes. Critical parameters with respect to drinking water safety are then identified, based on which an index system is developed to prioritize conventional water supply systems in implementing a detailed risk assessment procedure. The evaluation results are represented as graphic check matrices for the concerned hazards in drinking water, from which the vulnerability of a conventional water supply system is characterized.

  1. Modeling Finite-Time Failure Probabilities in Risk Analysis Applications.

    PubMed

    Dimitrova, Dimitrina S; Kaishev, Vladimir K; Zhao, Shouqi

    2015-10-01

    In this article, we introduce a framework for analyzing the risk of systems failure based on estimating the failure probability. The latter is defined as the probability that a certain risk process, characterizing the operations of a system, reaches a possibly time-dependent critical risk level within a finite-time interval. Under general assumptions, we define two dually connected models for the risk process and derive explicit expressions for the failure probability and also the joint probability of the time of the occurrence of failure and the excess of the risk process over the risk level. We illustrate how these probabilistic models and results can be successfully applied in several important areas of risk analysis, among which are systems reliability, inventory management, flood control via dam management, infectious disease spread, and financial insolvency. Numerical illustrations are also presented. © 2015 Society for Risk Analysis.

  2. NEW APPROACHES IN RISK ANALYSIS OF ENVIRONMENTAL STRESSORS TO HUMAN AND ECOLOGICAL SYSTEMS

    EPA Science Inventory

    We explore the application of novel techniques for improving and integrating risk analysis of environmental stressors to human and ecological systems. Environmental protection decisions are guided by risk assessments serving as tools to develop regulatory policy and other relate...

  3. A stable systemic risk ranking in China's banking sector: Based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Fang, Libing; Xiao, Binqing; Yu, Honghai; You, Qixing

    2018-02-01

    In this paper, we compare five popular systemic risk rankings, and apply principal component analysis (PCA) model to provide a stable systemic risk ranking for the Chinese banking sector. Our empirical results indicate that five methods suggest vastly different systemic risk rankings for the same bank, while the combined systemic risk measure based on PCA provides a reliable ranking. Furthermore, according to factor loadings of the first component, PCA combined ranking is mainly based on fundamentals instead of market price data. We clearly find that price-based rankings are not as practical a method as fundamentals-based ones. This PCA combined ranking directly shows systemic risk contributions of each bank for banking supervision purpose and reminds banks to prevent and cope with the financial crisis in advance.

  4. Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance

    NASA Technical Reports Server (NTRS)

    Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.

    2016-01-01

    Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.

  5. U.K. Foot and Mouth Disease: A Systemic Risk Assessment of Existing Controls.

    PubMed

    Delgado, João; Pollard, Simon; Pearn, Kerry; Snary, Emma L; Black, Edgar; Prpich, George; Longhurst, Phil

    2017-09-01

    This article details a systemic analysis of the controls in place and possible interventions available to further reduce the risk of a foot and mouth disease (FMD) outbreak in the United Kingdom. Using a research-based network analysis tool, we identify vulnerabilities within the multibarrier control system and their corresponding critical control points (CCPs). CCPs represent opportunities for active intervention that produce the greatest improvement to United Kingdom's resilience to future FMD outbreaks. Using an adapted 'features, events, and processes' (FEPs) methodology and network analysis, our results suggest that movements of animals and goods associated with legal activities significantly influence the system's behavior due to their higher frequency and ability to combine and create scenarios of exposure similar in origin to the U.K. FMD outbreaks of 1967/8 and 2001. The systemic risk assessment highlights areas outside of disease control that are relevant to disease spread. Further, it proves to be a powerful tool for demonstrating the need for implementing disease controls that have not previously been part of the system. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  6. Deficient Contractor Business Systems: Applying the Value at Risk (VAR) Model to Earned Value Management Systems

    DTIC Science & Technology

    2013-06-01

    measuring numerical risk to the government ( Galway , 2004). However, quantitative risk analysis is rarely utilized in DoD acquisition programs because the...quantitative assessment of the EVMS itself. Galway (2004) practically linked project quantitative risk assessment to EVM by focusing on cost...Kindle version]. Retrieved from Amazon.com 83 Galway , L. (2004, February). Quantitative risk analysis for project management: A critical review

  7. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 5: Auxiliary shuttle risk analyses

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.

  8. Stingray Failure Mode, Effects and Criticality Analysis: WEC Risk Registers

    DOE Data Explorer

    Ken Rhinefrank

    2016-07-25

    Analysis method to systematically identify all potential failure modes and their effects on the Stingray WEC system. This analysis is incorporated early in the development cycle such that the mitigation of the identified failure modes can be achieved cost effectively and efficiently. The FMECA can begin once there is enough detail to functions and failure modes of a given system, and its interfaces with other systems. The FMECA occurs coincidently with the design process and is an iterative process which allows for design changes to overcome deficiencies in the analysis.Risk Registers for major subsystems completed according to the methodology described in "Failure Mode Effects and Criticality Analysis Risk Reduction Program Plan.pdf" document below, in compliance with the DOE Risk Management Framework developed by NREL.

  9. Investment appraisal using quantitative risk analysis.

    PubMed

    Johansson, Henrik

    2002-07-01

    Investment appraisal concerned with investments in fire safety systems is discussed. Particular attention is directed at evaluating, in terms of the Bayesian decision theory, the risk reduction that investment in a fire safety system involves. It is shown how the monetary value of the change from a building design without any specific fire protection system to one including such a system can be estimated by use of quantitative risk analysis, the results of which are expressed in terms of a Risk-adjusted net present value. This represents the intrinsic monetary value of investing in the fire safety system. The method suggested is exemplified by a case study performed in an Avesta Sheffield factory.

  10. Cyber Risk Management for Critical Infrastructure: A Risk Analysis Model and Three Case Studies.

    PubMed

    Paté-Cornell, M-Elisabeth; Kuypers, Marshall; Smith, Matthew; Keller, Philip

    2018-02-01

    Managing cyber security in an organization involves allocating the protection budget across a spectrum of possible options. This requires assessing the benefits and the costs of these options. The risk analyses presented here are statistical when relevant data are available, and system-based for high-consequence events that have not happened yet. This article presents, first, a general probabilistic risk analysis framework for cyber security in an organization to be specified. It then describes three examples of forward-looking analyses motivated by recent cyber attacks. The first one is the statistical analysis of an actual database, extended at the upper end of the loss distribution by a Bayesian analysis of possible, high-consequence attack scenarios that may happen in the future. The second is a systems analysis of cyber risks for a smart, connected electric grid, showing that there is an optimal level of connectivity. The third is an analysis of sequential decisions to upgrade the software of an existing cyber security system or to adopt a new one to stay ahead of adversaries trying to find their way in. The results are distributions of losses to cyber attacks, with and without some considered countermeasures in support of risk management decisions based both on past data and anticipated incidents. © 2017 Society for Risk Analysis.

  11. Lack of any association between insertion/deletion (I/D) polymorphisms in the angiotensin-converting enzyme gene and digestive system cancer risk: a meta-analysis.

    PubMed

    Liu, Jin-Fei; Xie, Hao-Jun; Cheng, Tian-Ming

    2013-01-01

    To investigate the association between the gene polymorphisms of angiotensin-converting enzyme (ACE) and digestive system cancer risk. A search was performed in Pubmed, Medline, ISI Web of Science and Chinese Biomedical (CBM) databases, covering all studies until Sep 1st, 2013. Statistical analysis was performed by using Revman5.2 and STATA 12.0. A total of 15 case-control studies comprising 2,390 digestive system cancer patients and 9,706 controls were identified. No significant association was found between the I/D polymorphism and digestive cancer risk (OR =0.93, 95%CI = (0.75, 1.16), P =0.53 for DD+DI vs. II). In the subgroup analysis by ethnicity and cancer type, no significant associations were found for the comparison of DD+DI vs. II. Results from other comparative genetic models also indicated a lack of associations between this polymorphism and digestive system cancer risks. This meta-analysis suggested that the ACE D/I polymorphism might not contribute to the risk of digestive system cancer.

  12. Loss of Coolant Accident (LOCA) / Emergency Core Coolant System (ECCS Evaluation of Risk-Informed Margins Management Strategies for a Representative Pressurized Water Reactor (PWR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szilard, Ronaldo Henriques

    A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.

  13. Guidelines for contingency planning NASA (National Aeronautics and Space Administration) ADP security risk reduction decision studies

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1984-01-01

    Guidance is presented to NASA Computer Security Officials for determining the acceptability or unacceptability of ADP security risks based on the technical, operational and economic feasibility of potential safeguards. The risk management process is reviewed as a specialized application of the systems approach to problem solving and information systems analysis and design. Reporting the results of the risk reduction analysis to management is considered. Report formats for the risk reduction study are provided.

  14. A method for scenario-based risk assessment for robust aerospace systems

    NASA Astrophysics Data System (ADS)

    Thomas, Victoria Katherine

    In years past, aircraft conceptual design centered around creating a feasible aircraft that could be built and could fly the required missions. More recently, aircraft viability entered into conceptual design, allowing that the product's potential to be profitable should also be examined early in the design process. While examining an aerospace system's feasibility and viability early in the design process is extremely important, it is also important to examine system risk. In traditional aerospace systems risk analysis, risk is examined from the perspective of performance, schedule, and cost. Recently, safety and reliability analysis have been brought forward in the design process to also be examined during late conceptual and early preliminary design. While these analyses work as designed, existing risk analysis methods and techniques are not designed to examine an aerospace system's external operating environment and the risks present there. A new method has been developed here to examine, during the early part of concept design, the risk associated with not meeting assumptions about the system's external operating environment. The risks are examined in five categories: employment, culture, government and politics, economics, and technology. The risks are examined over a long time-period, up to the system's entire life cycle. The method consists of eight steps over three focus areas. The first focus area is Problem Setup. During problem setup, the problem is defined and understood to the best of the decision maker's ability. There are four steps in this area, in the following order: Establish the Need, Scenario Development, Identify Solution Alternatives, and Uncertainty and Risk Identification. There is significant iteration between steps two through four. Focus area two is Modeling and Simulation. In this area the solution alternatives and risks are modeled, and a numerical value for risk is calculated. A risk mitigation model is also created. The four steps involved in completing the modeling and simulation are: Alternative Solution Modeling, Uncertainty Quantification, Risk Assessment, and Risk Mitigation. Focus area three consists of Decision Support. In this area a decision support interface is created that allows for game playing between solution alternatives and risk mitigation. A multi-attribute decision making process is also implemented to aid in decision making. A demonstration problem inspired by Airbus' mid 1980s decision to break into the widebody long-range market was developed to illustrate the use of this method. The results showed that the method is able to capture additional types of risk than previous analysis methods, particularly at the early stages of aircraft design. It was also shown that the method can be used to help create a system that is robust to external environmental factors. The addition of an external environment risk analysis in the early stages of conceptual design can add another dimension to the analysis of feasibility and viability. The ability to take risk into account during the early stages of the design process can allow for the elimination of potentially feasible and viable but too-risky alternatives. The addition of a scenario-based analysis instead of a traditional probabilistic analysis enabled uncertainty to be effectively bound and examined over a variety of potential futures instead of only a single future. There is also potential for a product to be groomed for a specific future that one believes is likely to happen, or for a product to be steered during design as the future unfolds.

  15. An Accident Precursor Analysis Process Tailored for NASA Space Systems

    NASA Technical Reports Server (NTRS)

    Groen, Frank; Stamatelatos, Michael; Dezfuli, Homayoon; Maggio, Gaspare

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system and which may differ in frequency or type from those in the various models. These discrepancies between the models (perceived risk) and the system (actual risk) provide the leading indication of an underappreciated risk. This paper presents an APA process developed specifically for NASA Earth-to-Orbit space systems. The purpose of the process is to identify and characterize potential sources of system risk as evidenced by anomalous events which, although not necessarily presenting an immediate safety impact, may indicate that an unknown or insufficiently understood risk-significant condition exists in the system. Such anomalous events are considered accident precursors because they signal the potential for severe consequences that may occur in the future, due to causes that are discernible from their occurrence today. Their early identification allows them to be integrated into the overall system risk model used to intbrm decisions relating to safety.

  16. Global Persistent Attack: A Systems Architecture, Process Modeling, and Risk Analysis Approach

    DTIC Science & Technology

    2008-06-01

    develop an analysis process for quantifying risk associated with the limitations presented by a fiscally constrained environment. The second step...previous independent analysis of each force structure provided information for quantifying risk associated with the given force presentations, the

  17. Applicability of the Common Safety Method for Risk Evaluation and Assessment (CSM-RA) to the Space Domain

    NASA Astrophysics Data System (ADS)

    Moreira, Francisco; Silva, Nuno

    2016-08-01

    Safety systems require accident avoidance. This is covered by application standards, processes, techniques and tools that support the identification, analysis, elimination or reduction to an acceptable level of system risks and hazards. Ideally, a safety system should be free of hazards. However, both industry and academia have been struggling to ensure appropriate risk and hazard analysis, especially in what concerns completeness of the hazards, formalization, and timely analysis in order to influence the specifications and the implementation. Such analysis is also important when considering a change to an existing system. The Common Safety Method for Risk Evaluation and Assessment (CSM- RA) is a mandatory procedure whenever any significant change is proposed to the railway system in a European Member State. This paper provides insights on the fundamentals of CSM-RA based and complemented with Hazard Analysis. When and how to apply them, and the relation and similarities of these processes with industry standards and the system life cycles is highlighted. Finally, the paper shows how CSM-RA can be the basis of a change management process, guiding the identification and management of the hazards helping ensuring the similar safety level as the initial system. This paper will show how the CSM-RA principles can be used in other domains particularly for space system evolution.

  18. 49 CFR Appendix D to Part 172 - Rail Risk Analysis Factors

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nature of the rail system, each carrier must select and document the analysis method/model used and identify the routes to be analyzed. D. The safety and security risk analysis must consider current data and... curvature; 7. Presence or absence of signals and train control systems along the route (“dark” versus...

  19. On some recent definitions and analysis frameworks for risk, vulnerability, and resilience.

    PubMed

    Aven, Terje

    2011-04-01

    Recently, considerable attention has been paid to a systems-based approach to risk, vulnerability, and resilience analysis. It is argued that risk, vulnerability, and resilience are inherently and fundamentally functions of the states of the system and its environment. Vulnerability is defined as the manifestation of the inherent states of the system that can be subjected to a natural hazard or be exploited to adversely affect that system, whereas resilience is defined as the ability of the system to withstand a major disruption within acceptable degradation parameters and to recover within an acceptable time, and composite costs, and risks. Risk, on the other hand, is probability based, defined by the probability and severity of adverse effects (i.e., the consequences). In this article, we look more closely into this approach. It is observed that the key concepts are inconsistent in the sense that the uncertainty (probability) dimension is included for the risk definition but not for vulnerability and resilience. In the article, we question the rationale for this inconsistency. The suggested approach is compared with an alternative framework that provides a logically defined structure for risk, vulnerability, and resilience, where all three concepts are incorporating the uncertainty (probability) dimension. © 2010 Society for Risk Analysis.

  20. Instability risk analysis and risk assessment system establishment of underground storage caverns in bedded salt rock

    NASA Astrophysics Data System (ADS)

    Jing, Wenjun; Zhao, Yan

    2018-02-01

    Stability is an important part of geotechnical engineering research. The operating experiences of underground storage caverns in salt rock all around the world show that the stability of the caverns is the key problem of safe operation. Currently, the combination of theoretical analysis and numerical simulation are the mainly adopts method of reserve stability analysis. This paper introduces the concept of risk into the stability analysis of underground geotechnical structure, and studies the instability of underground storage cavern in salt rock from the perspective of risk analysis. Firstly, the definition and classification of cavern instability risk is proposed, and the damage mechanism is analyzed from the mechanical angle. Then the main stability evaluating indicators of cavern instability risk are proposed, and an evaluation method of cavern instability risk is put forward. Finally, the established cavern instability risk assessment system is applied to the analysis and prediction of cavern instability risk after 30 years of operation in a proposed storage cavern group in the Huai’an salt mine. This research can provide a useful theoretical base for the safe operation and management of underground storage caverns in salt rock.

  1. Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    Analysis of the material protection, control, and accountability (MPC&A) system is necessary to understand the limits and vulnerabilities of the system to internal threats. A self-appraisal helps the facility be prepared to respond to internal threats and reduce the risk of theft or diversion of nuclear material. The material control and accountability (MC&A) system effectiveness tool (MSET) fault tree was developed to depict the failure of the MPC&A system as a result of poor practices and random failures in the MC&A system. It can also be employed as a basis for assessing deliberate threats against a facility. MSET uses faultmore » tree analysis, which is a top-down approach to examining system failure. The analysis starts with identifying a potential undesirable event called a 'top event' and then determining the ways it can occur (e.g., 'Fail To Maintain Nuclear Materials Under The Purview Of The MC&A System'). The analysis proceeds by determining how the top event can be caused by individual or combined lower level faults or failures. These faults, which are the causes of the top event, are 'connected' through logic gates. The MSET model uses AND-gates and OR-gates and propagates the effect of event failure using Boolean algebra. To enable the fault tree analysis calculations, the basic events in the fault tree are populated with probability risk values derived by conversion of questionnaire data to numeric values. The basic events are treated as independent variables. This assumption affects the Boolean algebraic calculations used to calculate results. All the necessary calculations are built into the fault tree codes, but it is often useful to estimate the probabilities manually as a check on code functioning. The probability of failure of a given basic event is the probability that the basic event primary question fails to meet the performance metric for that question. The failure probability is related to how well the facility performs the task identified in that basic event over time (not just one performance or exercise). Fault tree calculations provide a failure probability for the top event in the fault tree. The basic fault tree calculations establish a baseline relative risk value for the system. This probability depicts relative risk, not absolute risk. Subsequent calculations are made to evaluate the change in relative risk that would occur if system performance is improved or degraded. During the development effort of MSET, the fault tree analysis program used was SAPHIRE. SAPHIRE is an acronym for 'Systems Analysis Programs for Hands-on Integrated Reliability Evaluations.' Version 1 of the SAPHIRE code was sponsored by the Nuclear Regulatory Commission in 1987 as an innovative way to draw, edit, and analyze graphical fault trees primarily for safe operation of nuclear power reactors. When the fault tree calculations are performed, the fault tree analysis program will produce several reports that can be used to analyze the MPC&A system. SAPHIRE produces reports showing risk importance factors for all basic events in the operational MC&A system. The risk importance information is used to examine the potential impacts when performance of certain basic events increases or decreases. The initial results produced by the SAPHIRE program are considered relative risk values. None of the results can be interpreted as absolute risk values since the basic event probability values represent estimates of risk associated with the performance of MPC&A tasks throughout the material balance area (MBA). The RRR for a basic event represents the decrease in total system risk that would result from improvement of that one event to a perfect performance level. Improvement of the basic event with the greatest RRR value produces a greater decrease in total system risk than improvement of any other basic event. Basic events with the greatest potential for system risk reduction are assigned performance improvement values, and new fault tree calculations show the improvement in total system risk. The operational impact or cost-effectiveness from implementing the performance improvements can then be evaluated. The improvements being evaluated can be system performance improvements, or they can be potential, or actual, upgrades to the system. The RIR for a basic event represents the increase in total system risk that would result from failure of that one event. Failure of the basic event with the greatest RIR value produces a greater increase in total system risk than failure of any other basic event. Basic events with the greatest potential for system risk increase are assigned failure performance values, and new fault tree calculations show the increase in total system risk. This evaluation shows the importance of preventing performance degradation of the basic events. SAPHIRE identifies combinations of basic events where concurrent failure of the events results in failure of the top event.« less

  2. Advanced uncertainty modelling for container port risk analysis.

    PubMed

    Alyami, Hani; Yang, Zaili; Riahi, Ramin; Bonsall, Stephen; Wang, Jin

    2016-08-13

    Globalization has led to a rapid increase of container movements in seaports. Risks in seaports need to be appropriately addressed to ensure economic wealth, operational efficiency, and personnel safety. As a result, the safety performance of a Container Terminal Operational System (CTOS) plays a growing role in improving the efficiency of international trade. This paper proposes a novel method to facilitate the application of Failure Mode and Effects Analysis (FMEA) in assessing the safety performance of CTOS. The new approach is developed through incorporating a Fuzzy Rule-Based Bayesian Network (FRBN) with Evidential Reasoning (ER) in a complementary manner. The former provides a realistic and flexible method to describe input failure information for risk estimates of individual hazardous events (HEs) at the bottom level of a risk analysis hierarchy. The latter is used to aggregate HEs safety estimates collectively, allowing dynamic risk-based decision support in CTOS from a systematic perspective. The novel feature of the proposed method, compared to those in traditional port risk analysis lies in a dynamic model capable of dealing with continually changing operational conditions in ports. More importantly, a new sensitivity analysis method is developed and carried out to rank the HEs by taking into account their specific risk estimations (locally) and their Risk Influence (RI) to a port's safety system (globally). Due to its generality, the new approach can be tailored for a wide range of applications in different safety and reliability engineering and management systems, particularly when real time risk ranking is required to measure, predict, and improve the associated system safety performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Costing the satellite power system

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.

    1978-01-01

    The paper presents a methodology for satellite power system costing, places approximate limits on the accuracy possible in cost estimates made at this time, and outlines the use of probabilistic cost information in support of the decision-making process. Reasons for using probabilistic costing or risk analysis procedures instead of standard deterministic costing procedures are considered. Components of cost, costing estimating relationships, grass roots costing, and risk analysis are discussed. Risk analysis using a Monte Carlo simulation model is used to estimate future costs.

  4. The Use and Abuse of Risk Analysis in Policy Debate.

    ERIC Educational Resources Information Center

    Herbeck, Dale A.; Katsulas, John P.

    The best check on the preposterous claims of crisis rhetoric is an appreciation of the nature of risk analysis and how it functions in argumentation. The use of risk analysis is common in policy debate. While the stock issues paradigm focused the debate exclusively on the affirmative case, the advent of policy systems analysis has transformed…

  5. Comparison Of Intake Gate Closure Methods At Lower Granite, Little Goose, Lower Monumental, And Mcnary Dams Using Risk-Based Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gore, Bryan F.; Blackburn, Tyrone R.; Heasler, Patrick G.

    2001-01-19

    The objective of this report is to compare the benefits and costs of modifications proposed for intake gate closure systems at four hydroelectric stations on the Lower Snake and Upper Columbia Rivers in the Walla Walla District that are unable to meet the COE 10-minute closure rule due to the installation of fish screens. The primary benefit of the proposed modifications is to reduce the risk of damage to the station and environs when emergency intake gate closure is required. Consequently, this report presents the results and methodology of an extensive risk analysis performed to assess the reliability of powerhousemore » systems and the costs and timing of potential damages resulting from events requiring emergency intake gate closure. As part of this analysis, the level of protection provided by the nitrogen emergency closure system was also evaluated. The nitrogen system was the basis for the original recommendation to partially disable the intake gate systems. The risk analysis quantifies this protection level.« less

  6. Analysis and Derivation of Allocations for Fiber Contaminants in Liquid Bipropellant Systems

    NASA Technical Reports Server (NTRS)

    Lowrey, N. M; ibrahim, K. Y.

    2012-01-01

    An analysis was performed to identify the engineering rationale for the existing particulate limits in MSFC-SPEC-164, Cleanliness of Components for Use in Oxygen, Fuel, and Pneumatic Systems, determine the applicability of this rationale to fibers, identify potential risks that may result from fiber contamination in liquid oxygen/fuel bipropellant systems, and bound each of these risks. The objective of this analysis was to determine whether fiber contamination exceeding the established quantitative limits for particulate can be tolerated in these systems and, if so, to derive and recommend quantitative allocations for fibers beyond the limits established for other particulate. Knowledge gaps were identified that limit a complete understanding of the risk of promoted ignition from an accumulation of fibers in a gaseous oxygen system.

  7. The tumor necrosis factor-α-238 polymorphism and digestive system cancer risk: a meta-analysis.

    PubMed

    Hui, Ming; Yan, Xiaojuan; Jiang, Ying

    2016-08-01

    Many studies have reported the association between tumor necrosis factor-α (TNF-α)-238 polymorphism and digestive system cancer susceptibility, but the results were inconclusive. We performed a meta-analysis to derive a more precise estimation of the relationship between TNF-α-238 G/A polymorphism and digestive system cancer risk. Pooled analysis for the TNF-α-238 G/A polymorphism contained 26 studies with a total of 4849 cases and 8567 controls. The meta-analysis observed a significant association between TNF-α-238 G/A polymorphism and digestive system cancer risk in the overall population (GA vs GG: OR 1.19, 95 % CI 1.00-1.40, P heterpgeneity = 0.016; A vs G: OR 1.19, 95 % CI 1.03-1.39, P heterpgeneity = 0.015; dominant model: OR 1.20, 95 % CI 1.02-1.41, P heterpgeneity = 0.012). In the analysis of the ethnic subgroups, however, similar results were observed only in the Asian population, but not in the Caucasian population. Therefore, this meta-analysis suggests that TNF-α-238 G/A polymorphism is associated with a significantly increased risk of digestive system cancer. Further large and well-designed studies are needed to confirm these findings.

  8. SADA: Ecological Risk Based Decision Support System for Selective Remediation

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is freeware that implements terrestrial ecological risk assessment and yields a selective remediation design using its integral geographical information system, based on ecological and risk assessment inputs. Selective remediation ...

  9. The Study Elements and Indicators of Risk Management System for Secondary Schools in Thailand

    ERIC Educational Resources Information Center

    Wandee, Methenan; Sirisuthi, Chaiyuth; Leamvijarn, Subunn

    2017-01-01

    The purposes of this research aimed 1) to study the elements and indicators of risk management system for secondary schools in Thailand. 2) to study suitable the elements and indicators of the risk management system for secondary schools in Thailand. 3) to study the results of CFA (Confirmatory Factors Analysis) risk management process of risk…

  10. 77 FR 55371 - System Safety Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ...-based rule and FRA seeks comments on all aspects of the proposed rule. An SSP would be implemented by a... SSP would be the risk-based hazard management program and risk-based hazard analysis. A properly implemented risk-based hazard management program and risk-based hazard analysis would identify the hazards and...

  11. Patient safety in external beam radiotherapy, results of the ACCIRAD project: Current status of proactive risk assessment, reactive analysis of events, and reporting and learning systems in Europe.

    PubMed

    Malicki, Julian; Bly, Ritva; Bulot, Mireille; Godet, Jean-Luc; Jahnen, Andreas; Krengli, Marco; Maingon, Philippe; Prieto Martin, Carlos; Przybylska, Kamila; Skrobała, Agnieszka; Valero, Marc; Jarvinen, Hannu

    2017-04-01

    To describe the current status of implementation of European directives for risk management in radiotherapy and to assess variability in risk management in the following areas: 1) in-country regulatory framework; 2) proactive risk assessment; (3) reactive analysis of events; and (4) reporting and learning systems. The original data were collected as part of the ACCIRAD project through two online surveys. Risk assessment criteria are closely associated with quality assurance programs. Only 9/32 responding countries (28%) with national regulations reported clear "requirements" for proactive risk assessment and/or reactive risk analysis, with wide variability in assessment methods. Reporting of adverse error events is mandatory in most (70%) but not all surveyed countries. Most European countries have taken steps to implement European directives designed to reduce the probability and magnitude of accidents in radiotherapy. Variability between countries is substantial in terms of legal frameworks, tools used to conduct proactive risk assessment and reactive analysis of events, and in the reporting and learning systems utilized. These findings underscore the need for greater harmonisation in common terminology, classification and reporting practices across Europe to improve patient safety and to enable more reliable inter-country comparisons. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Risk Interfaces to Support Integrated Systems Analysis and Development

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark; Anton, Wilma; Havenhill, Maria

    2016-01-01

    Objectives for systems analysis capability: Develop integrated understanding of how a complex human physiological-socio-technical mission system behaves in spaceflight. Why? Support development of integrated solutions that prevent unwanted outcomes (Implementable approaches to minimize mission resources(mass, power, crew time, etc.)); Support development of tools for autonomy (need for exploration) (Assess and maintain resilience -individuals, teams, integrated system). Output of this exercise: -Representation of interfaces based on Human System Risk Board (HSRB) Risk Summary information and simple status based on Human Research Roadmap; Consolidated HSRB information applied to support communication; Point-of-Departure for HRP Element planning; Ability to track and communicate status of collaborations. 4

  13. Time Factor in the Theory of Anthropogenic Risk Prediction in Complex Dynamic Systems

    NASA Astrophysics Data System (ADS)

    Ostreikovsky, V. A.; Shevchenko, Ye N.; Yurkov, N. K.; Kochegarov, I. I.; Grishko, A. K.

    2018-01-01

    The article overviews the anthropogenic risk models that take into consideration the development of different factors in time that influence the complex system. Three classes of mathematical models have been analyzed for the use in assessing the anthropogenic risk of complex dynamic systems. These models take into consideration time factor in determining the prospect of safety change of critical systems. The originality of the study is in the analysis of five time postulates in the theory of anthropogenic risk and the safety of highly important objects. It has to be stressed that the given postulates are still rarely used in practical assessment of equipment service life of critically important systems. That is why, the results of study presented in the article can be used in safety engineering and analysis of critically important complex technical systems.

  14. National Research Council Dialogue to Assess Progress on NASA's Systems Engineering Cost/Risk Analysis Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria

    2005-01-01

    Contents include the following: General Background and Introduction of Capability. Roadmaps for Systems Engineering Cost/Risk Analysis. Agency Objectives. Strategic Planning Transformation. Review Capability Roadmaps and Schedule. Review Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  15. A novel scoring system for gastric cancer risk assessment based on the expression of three CLIP4 DNA methylation-associated genes

    PubMed Central

    Hu, Chenggong; Zhou, Yongfang; Liu, Chang; Kang, Yan

    2018-01-01

    Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-associated mortality worldwide. In the current study, comprehensive bioinformatic analyses were performed to develop a novel scoring system for GC risk assessment based on CAP-Gly domain containing linker protein family member 4 (CLIP4) DNA methylation status. Two GC datasets with methylation sequencing information and mRNA expression profiling were downloaded from the The Cancer Genome Atlas and Gene Expression Omnibus databases. Differentially expressed genes (DEGs) between the CLIP4 hypermethylation and CLIP4 hypomethylation groups were screened using the limma package in R 3.3.1, and survival analysis of these DEGs was performed using the survival package. A risk scoring system was established via regression factor-weighted gene expression based on linear combination to screen the most important genes associated with CLIP4 methylation and prognosis. Genes associated with high/low-risk value were selected using the limma package. Functional enrichment analysis of the top 500 DEGs that positively and negatively associated with risk values was performed using DAVID 6.8 online and the gene set enrichment analysis (GSEA) software. In total, 35 genes were identified to be that significantly associated with prognosis and CLIP4 DNA methylation, and three prognostic signature genes, claudin-11 (CLDN11), apolipoprotein D (APOD), and chordin like 1 (CHRDL1), were used to establish a risk assessment system. The prognostic scoring system exhibited efficiency in classifying patients with different prognoses, where the low-risk groups had significantly longer overall survival times than those in the high-risk groups. CLDN11, APOD and CHRDL1 exhibited reduced expression in the hypermethylation and low-risk groups compare with the hypomethylation and high-risk groups, respectively. Multivariate Cox analysis indicated that risk value could be used as an independent prognostic factor. In functional analysis, six functional gene ontology terms and five GSEA pathways were associated with CLDN11, APOD and CHRDL1. The results established the credibility of the scoring system in this study. Additionally, these three genes, which were significantly associated with CLIP4 DNA methylation and GC risk assessment, were identified as potential prognostic biomarkers. PMID:29901187

  16. A Risk-Analysis Approach to Implementing Web-Based Assessment

    ERIC Educational Resources Information Center

    Ricketts, Chris; Zakrzewski, Stan

    2005-01-01

    Computer-Based Assessment is a risky business. This paper proposes the use of a model for web-based assessment systems that identifies pedagogic, operational, technical (non web-based), web-based and financial risks. The strategies and procedures for risk elimination or reduction arise from risk analysis and management and are the means by which…

  17. Managing security risks for inter-organisational information systems: a multiagent collaborative model

    NASA Astrophysics Data System (ADS)

    Feng, Nan; Wu, Harris; Li, Minqiang; Wu, Desheng; Chen, Fuzan; Tian, Jin

    2016-09-01

    Information sharing across organisations is critical to effectively managing the security risks of inter-organisational information systems. Nevertheless, few previous studies on information systems security have focused on inter-organisational information sharing, and none have studied the sharing of inferred beliefs versus factual observations. In this article, a multiagent collaborative model (MACM) is proposed as a practical solution to assess the risk level of each allied organisation's information system and support proactive security treatment by sharing beliefs on event probabilities as well as factual observations. In MACM, for each allied organisation's information system, we design four types of agents: inspection agent, analysis agent, control agent, and communication agent. By sharing soft findings (beliefs) in addition to hard findings (factual observations) among the organisations, each organisation's analysis agent is capable of dynamically predicting its security risk level using a Bayesian network. A real-world implementation illustrates how our model can be used to manage security risks in distributed information systems and that sharing soft findings leads to lower expected loss from security risks.

  18. Vulnerabilities, Influences and Interaction Paths: Failure Data for Integrated System Risk Analysis

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Fleming, Land

    2006-01-01

    We describe graph-based analysis methods for identifying and analyzing cross-subsystem interaction risks from subsystem connectivity information. By discovering external and remote influences that would be otherwise unexpected, these methods can support better communication among subsystem designers at points of potential conflict and to support design of more dependable and diagnosable systems. These methods identify hazard causes that can impact vulnerable functions or entities if propagated across interaction paths from the hazard source to the vulnerable target. The analysis can also assess combined impacts of And-Or trees of disabling influences. The analysis can use ratings of hazards and vulnerabilities to calculate cumulative measures of the severity and importance. Identification of cross-subsystem hazard-vulnerability pairs and propagation paths across subsystems will increase coverage of hazard and risk analysis and can indicate risk control and protection strategies.

  19. The significance of OLGA and OLGIM staging systems in the risk assessment of gastric cancer: a systematic review and meta-analysis.

    PubMed

    Yue, Hu; Shan, Liu; Bin, Lv

    2018-02-19

    Despite extensive research on the criteria for the assessment of gastric cancer risk using the Operative Link on Gastritis Assessment (OLGA) and Operative Link on Gastritis/Intestinal-Metaplasia Assessment (OLGIM) systems, no comprehensive overview or systematic summary on their use is currently available. To perform a systematic review and meta-analysis to assess the efficacy of the OLGA and OLGIM staging systems in evaluating gastric cancer risk. We searched various databases, including PubMed, EMBASE, Medline, and Cochrane's library, for articles published before March 2017 on the association between OLGA/OLGIM stages and risk of gastric cancer. Statistical analysis was performed using RevMan 5.30 and Stata 14.0, with the odds ratio, risk ratio, and 95% confidence interval as the effect measures. A meta-analysis of six case-control studies and two cohort studies, comprising 2700 subjects, was performed. The meta-analysis of prospective case-control studies demonstrated a significant association between the OLGA/OLGIM stages III/IV and gastric cancer. The Newcastle-Ottawa Scale (NOS) score reflected heterogeneity in the case-control studies on OLGA. Subgroup analysis of high-quality (NOS score ≥ 5) studies showed an association between OLGA stage III/IV and increased risk of gastric cancer; the association was also high in the remaining study with low NOS score. The association between higher stages of gastritis defined by OLGA and risk of gastric cancer was significant. This correlation implies that close and frequent monitoring of such high-risk patients is necessary to facilitate timely diagnosis of gastric cancer.

  20. A modeling framework for exposing risks in complex systems.

    PubMed

    Sharit, J

    2000-08-01

    This article introduces and develops a modeling framework for exposing risks in the form of human errors and adverse consequences in high-risk systems. The modeling framework is based on two components: a two-dimensional theory of accidents in systems developed by Perrow in 1984, and the concept of multiple system perspectives. The theory of accidents differentiates systems on the basis of two sets of attributes. One set characterizes the degree to which systems are interactively complex; the other emphasizes the extent to which systems are tightly coupled. The concept of multiple perspectives provides alternative descriptions of the entire system that serve to enhance insight into system processes. The usefulness of these two model components derives from a modeling framework that cross-links them, enabling a variety of work contexts to be exposed and understood that would otherwise be very difficult or impossible to identify. The model components and the modeling framework are illustrated in the case of a large and comprehensive trauma care system. In addition to its general utility in the area of risk analysis, this methodology may be valuable in applications of current methods of human and system reliability analysis in complex and continually evolving high-risk systems.

  1. Cost Estimation and Control for Flight Systems

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.; Vanhook, Michael E. (Technical Monitor)

    2002-01-01

    Good program management practices, cost analysis, cost estimation, and cost control for aerospace flight systems are interrelated and depend upon each other. The best cost control process cannot overcome poor design or poor systems trades that lead to the wrong approach. The project needs robust Technical, Schedule, Cost, Risk, and Cost Risk practices before it can incorporate adequate Cost Control. Cost analysis both precedes and follows cost estimation -- the two are closely coupled with each other and with Risk analysis. Parametric cost estimating relationships and computerized models are most often used. NASA has learned some valuable lessons in controlling cost problems, and recommends use of a summary Project Manager's checklist as shown here.

  2. Shortcuts in complex engineering systems: a principal-agent approach to risk management.

    PubMed

    Garber, Russ; Paté-Cornell, Elisabeth

    2012-05-01

    In this article, we examine the effects of shortcuts in the development of engineered systems through a principal-agent model. We find that occurrences of illicit shortcuts are closely related to the incentive structure and to the level of effort that the agent is willing to expend from the beginning of the project to remain on schedule. Using a probabilistic risk analysis to determine the risks of system failure from these shortcuts, we show how a principal can choose optimal settings (payments, penalties, and inspections) that can deter an agent from cutting corners and maximize the principal's value through increased agent effort. We analyze the problem for an agent with limited liability. We consider first the case where he is risk neutral; we then include the case where he is risk averse. © 2011 Society for Risk Analysis.

  3. NASA System Safety Handbook. Volume 1; System Safety Framework and Concepts for Implementation

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Smith, Curtis; Stamatelatos, Michael; Youngblood, Robert

    2011-01-01

    System safety assessment is defined in NPR 8715.3C, NASA General Safety Program Requirements as a disciplined, systematic approach to the analysis of risks resulting from hazards that can affect humans, the environment, and mission assets. Achievement of the highest practicable degree of system safety is one of NASA's highest priorities. Traditionally, system safety assessment at NASA and elsewhere has focused on the application of a set of safety analysis tools to identify safety risks and formulate effective controls.1 Familiar tools used for this purpose include various forms of hazard analyses, failure modes and effects analyses, and probabilistic safety assessment (commonly also referred to as probabilistic risk assessment (PRA)). In the past, it has been assumed that to show that a system is safe, it is sufficient to provide assurance that the process for identifying the hazards has been as comprehensive as possible and that each identified hazard has one or more associated controls. The NASA Aerospace Safety Advisory Panel (ASAP) has made several statements in its annual reports supporting a more holistic approach. In 2006, it recommended that "... a comprehensive risk assessment, communication and acceptance process be implemented to ensure that overall launch risk is considered in an integrated and consistent manner." In 2009, it advocated for "... a process for using a risk-informed design approach to produce a design that is optimally and sufficiently safe." As a rationale for the latter advocacy, it stated that "... the ASAP applauds switching to a performance-based approach because it emphasizes early risk identification to guide designs, thus enabling creative design approaches that might be more efficient, safer, or both." For purposes of this preface, it is worth mentioning three areas where the handbook emphasizes a more holistic type of thinking. First, the handbook takes the position that it is important to not just focus on risk on an individual basis but to consider measures of aggregate safety risk and to ensure wherever possible that there be quantitative measures for evaluating how effective the controls are in reducing these aggregate risks. The term aggregate risk, when used in this handbook, refers to the accumulation of risks from individual scenarios that lead to a shortfall in safety performance at a high level: e.g., an excessively high probability of loss of crew, loss of mission, planetary contamination, etc. Without aggregated quantitative measures such as these, it is not reasonable to expect that safety has been optimized with respect to other technical and programmatic objectives. At the same time, it is fully recognized that not all sources of risk are amenable to precise quantitative analysis and that the use of qualitative approaches and bounding estimates may be appropriate for those risk sources. Second, the handbook stresses the necessity of developing confidence that the controls derived for the purpose of achieving system safety not only handle risks that have been identified and properly characterized but also provide a general, more holistic means for protecting against unidentified or uncharacterized risks. For example, while it is not possible to be assured that all credible causes of risk have been identified, there are defenses that can provide protection against broad categories of risks and thereby increase the chances that individual causes are contained. Third, the handbook strives at all times to treat uncertainties as an integral aspect of risk and as a part of making decisions. The term "uncertainty" here does not refer to an actuarial type of data analysis, but rather to a characterization of our state of knowledge regarding results from logical and physical models that approximate reality. Uncertainty analysis finds how the output parameters of the models are related to plausible variations in the input parameters and in the modeling assumptions. The evaluation of unrtainties represents a method of probabilistic thinking wherein the analyst and decision makers recognize possible outcomes other than the outcome perceived to be "most likely." Without this type of analysis, it is not possible to determine the worth of an analysis product as a basis for making decisions related to safety and mission success. In line with these considerations the handbook does not take a hazard-analysis-centric approach to system safety. Hazard analysis remains a useful tool to facilitate brainstorming but does not substitute for a more holistic approach geared to a comprehensive identification and understanding of individual risk issues and their contributions to aggregate safety risks. The handbook strives to emphasize the importance of identifying the most critical scenarios that contribute to the risk of not meeting the agreed-upon safety objectives and requirements using all appropriate tools (including but not limited to hazard analysis). Thereafter, emphasis shifts to identifying the risk drivers that cause these scenarios to be critical and ensuring that there are controls directed toward preventing or mitigating the risk drivers. To address these and other areas, the handbook advocates a proactive, analytic-deliberative, risk-informed approach to system safety, enabling the integration of system safety activities with systems engineering and risk management processes. It emphasizes how one can systematically provide the necessary evidence to substantiate the claim that a system is safe to within an acceptable risk tolerance, and that safety has been achieved in a cost-effective manner. The methodology discussed in this handbook is part of a systems engineering process and is intended to be integral to the system safety practices being conducted by the NASA safety and mission assurance and systems engineering organizations. The handbook posits that to conclude that a system is adequately safe, it is necessary to consider a set of safety claims that derive from the safety objectives of the organization. The safety claims are developed from a hierarchy of safety objectives and are therefore hierarchical themselves. Assurance that all the claims are true within acceptable risk tolerance limits implies that all of the safety objectives have been satisfied, and therefore that the system is safe. The acceptable risk tolerance limits are provided by the authority who must make the decision whether or not to proceed to the next step in the life cycle. These tolerances are therefore referred to as the decision maker's risk tolerances. In general, the safety claims address two fundamental facets of safety: 1) whether required safety thresholds or goals have been achieved, and 2) whether the safety risk is as low as possible within reasonable impacts on cost, schedule, and performance. The latter facet includes consideration of controls that are collective in nature (i.e., apply generically to broad categories of risks) and thereby provide protection against unidentified or uncharacterized risks.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almajali, Anas; Rice, Eric; Viswanathan, Arun

    This paper presents a systems analysis approach to characterizing the risk of a Smart Grid to a load-drop attack. A characterization of the risk is necessary for the design of detection and remediation strategies to address the consequences of such attacks. Using concepts from systems health management and system engineering, this work (a) first identifies metrics that can be used to generate constraints for security features, and (b) lays out an end-to-end integrated methodology using separate network and power simulations to assess system risk. We demonstrate our approach by performing a systems-style analysis of a load-drop attack implemented over themore » AMI subsystem and targeted at destabilizing the underlying power grid.« less

  5. A methodology for risk analysis based on hybrid Bayesian networks: application to the regasification system of liquefied natural gas onboard a floating storage and regasification unit.

    PubMed

    Martins, Marcelo Ramos; Schleder, Adriana Miralles; Droguett, Enrique López

    2014-12-01

    This article presents an iterative six-step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty. © 2014 Society for Risk Analysis.

  6. Trade Studies of Space Launch Architectures using Modular Probabilistic Risk Analysis

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Go, Susie

    2006-01-01

    A top-down risk assessment in the early phases of space exploration architecture development can provide understanding and intuition of the potential risks associated with new designs and technologies. In this approach, risk analysts draw from their past experience and the heritage of similar existing systems as a source for reliability data. This top-down approach captures the complex interactions of the risk driving parts of the integrated system without requiring detailed knowledge of the parts themselves, which is often unavailable in the early design stages. Traditional probabilistic risk analysis (PRA) technologies, however, suffer several drawbacks that limit their timely application to complex technology development programs. The most restrictive of these is a dependence on static planning scenarios, expressed through fault and event trees. Fault trees incorporating comprehensive mission scenarios are routinely constructed for complex space systems, and several commercial software products are available for evaluating fault statistics. These static representations cannot capture the dynamic behavior of system failures without substantial modification of the initial tree. Consequently, the development of dynamic models using fault tree analysis has been an active area of research in recent years. This paper discusses the implementation and demonstration of dynamic, modular scenario modeling for integration of subsystem fault evaluation modules using the Space Architecture Failure Evaluation (SAFE) tool. SAFE is a C++ code that was originally developed to support NASA s Space Launch Initiative. It provides a flexible framework for system architecture definition and trade studies. SAFE supports extensible modeling of dynamic, time-dependent risk drivers of the system and functions at the level of fidelity for which design and failure data exists. The approach is scalable, allowing inclusion of additional information as detailed data becomes available. The tool performs a Monte Carlo analysis to provide statistical estimates. Example results of an architecture system reliability study are summarized for an exploration system concept using heritage data from liquid-fueled expendable Saturn V/Apollo launch vehicles.

  7. Analysis of the Genetic Basis of Disease in the Context of Worldwide Human Relationships and Migration

    PubMed Central

    Corona, Erik; Chen, Rong; Sikora, Martin; Morgan, Alexander A.; Patel, Chirag J.; Ramesh, Aditya; Bustamante, Carlos D.; Butte, Atul J.

    2013-01-01

    Genetic diversity across different human populations can enhance understanding of the genetic basis of disease. We calculated the genetic risk of 102 diseases in 1,043 unrelated individuals across 51 populations of the Human Genome Diversity Panel. We found that genetic risk for type 2 diabetes and pancreatic cancer decreased as humans migrated toward East Asia. In addition, biliary liver cirrhosis, alopecia areata, bladder cancer, inflammatory bowel disease, membranous nephropathy, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, and vitiligo have undergone genetic risk differentiation. This analysis represents a large-scale attempt to characterize genetic risk differentiation in the context of migration. We anticipate that our findings will enable detailed analysis pertaining to the driving forces behind genetic risk differentiation. PMID:23717210

  8. Impact of systemic risk in the real estate sector on banking return.

    PubMed

    Li, Shouwei; Pan, Qing; He, Jianmin

    2016-01-01

    In this paper, we measure systemic risk in the real estate sector based on contingent claims analysis, and then investigate its impact on banking return. Based on the data in China, we find that systemic risk in the real estate sector has a negative effect on banking return, but this effect is temporary; banking risk aversion and implicit interest expense have considerable impact on banking return.

  9. Method and system for dynamic probabilistic risk assessment

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne Bechta (Inventor); Xu, Hong (Inventor)

    2013-01-01

    The DEFT methodology, system and computer readable medium extends the applicability of the PRA (Probabilistic Risk Assessment) methodology to computer-based systems, by allowing DFT (Dynamic Fault Tree) nodes as pivot nodes in the Event Tree (ET) model. DEFT includes a mathematical model and solution algorithm, supports all common PRA analysis functions and cutsets. Additional capabilities enabled by the DFT include modularization, phased mission analysis, sequence dependencies, and imperfect coverage.

  10. Failure environment analysis tool applications

    NASA Astrophysics Data System (ADS)

    Pack, Ginger L.; Wadsworth, David B.

    1993-02-01

    Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.

  11. Failure environment analysis tool applications

    NASA Technical Reports Server (NTRS)

    Pack, Ginger L.; Wadsworth, David B.

    1993-01-01

    Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.

  12. Failure environment analysis tool applications

    NASA Technical Reports Server (NTRS)

    Pack, Ginger L.; Wadsworth, David B.

    1994-01-01

    Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within it, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.

  13. Overview and Demonstration of USEPA’s Risk-Informed Materials Management (RIMM) Tool System

    EPA Science Inventory

    The Risk-Informed Materials Management (RIMM) Tool System is a data gathering and analysis platform for conducting material disposal and beneficial use assessments. Users can evaluate risks to human and ecological receptors associated with exposures to organic and inorganic chemi...

  14. Case Study on Project Risk Management Planning Based on Soft System Methodology

    NASA Astrophysics Data System (ADS)

    Lifang, Xie; Jun, Li

    This paper analyzed the soft system characters of construction projects and the applicability on using Soft System Methodology (SSM) for risk analysis after a brief review of SSM. Taking a hydropower project as an example, it constructed the general frame of project risk management planning (PRMP) and established the Risk Management Planning (RMP) system from the perspective of the interests of co-ordination. This paper provided the ideas and methods for construction RMP under the win-win situation through the practice of SSM.

  15. A systems approach to the policy-level risk assessment of exotic animal diseases: network model and application to classical swine fever.

    PubMed

    Delgado, João; Pollard, Simon; Snary, Emma; Black, Edgar; Prpich, George; Longhurst, Phil

    2013-08-01

    Exotic animal diseases (EADs) are characterized by their capacity to spread global distances, causing impacts on animal health and welfare with significant economic consequences. We offer a critique of current import risk analysis approaches employed in the EAD field, focusing on their capacity to assess complex systems at a policy level. To address the shortcomings identified, we propose a novel method providing a systematic analysis of the likelihood of a disease incursion, developed by reference to the multibarrier system employed for the United Kingdom. We apply the network model to a policy-level risk assessment of classical swine fever (CSF), a notifiable animal disease caused by the CSF virus. In doing so, we document and discuss a sequence of analyses that describe system vulnerabilities and reveal the critical control points (CCPs) for intervention, reducing the likelihood of U.K. pig herds being exposed to the CSF virus. © 2012 Society for Risk Analysis.

  16. 49 CFR Appendix B to Part 236 - Risk Assessment Criteria

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... availability calculations for subsystems and components, Fault Tree Analysis (FTA) of the subsystems, and... upper bound, as estimated with a sensitivity analysis, and the risk value selected must be demonstrated... interconnected subsystems/components? The risk assessment of each safety-critical system (product) must account...

  17. 49 CFR Appendix B to Part 236 - Risk Assessment Criteria

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... availability calculations for subsystems and components, Fault Tree Analysis (FTA) of the subsystems, and... upper bound, as estimated with a sensitivity analysis, and the risk value selected must be demonstrated... interconnected subsystems/components? The risk assessment of each safety-critical system (product) must account...

  18. Using software security analysis to verify the secure socket layer (SSL) protocol

    NASA Technical Reports Server (NTRS)

    Powell, John D.

    2004-01-01

    nal Aeronautics and Space Administration (NASA) have tens of thousands of networked computer systems and applications. Software Security vulnerabilities present risks such as lost or corrupted data, information the3, and unavailability of critical systems. These risks represent potentially enormous costs to NASA. The NASA Code Q research initiative 'Reducing Software Security Risk (RSSR) Trough an Integrated Approach '' offers, among its capabilities, formal verification of software security properties, through the use of model based verification (MBV) to address software security risks. [1,2,3,4,5,6] MBV is a formal approach to software assurance that combines analysis of software, via abstract models, with technology, such as model checkers, that provide automation of the mechanical portions of the analysis process. This paper will discuss: The need for formal analysis to assure software systems with respect to software and why testing alone cannot provide it. The means by which MBV with a Flexible Modeling Framework (FMF) accomplishes the necessary analysis task. An example of FMF style MBV in the verification of properties over the Secure Socket Layer (SSL) communication protocol as a demonstration.

  19. Spatio-temporal assessment of food safety risks in Canadian food distribution systems using GIS.

    PubMed

    Hashemi Beni, Leila; Villeneuve, Sébastien; LeBlanc, Denyse I; Côté, Kevin; Fazil, Aamir; Otten, Ainsley; McKellar, Robin; Delaquis, Pascal

    2012-09-01

    While the value of geographic information systems (GIS) is widely applied in public health there have been comparatively few examples of applications that extend to the assessment of risks in food distribution systems. GIS can provide decision makers with strong computing platforms for spatial data management, integration, analysis, querying and visualization. The present report addresses some spatio-analyses in a complex food distribution system and defines influence areas as travel time zones generated through road network analysis on a national scale rather than on a community scale. In addition, a dynamic risk index is defined to translate a contamination event into a public health risk as time progresses. More specifically, in this research, GIS is used to map the Canadian produce distribution system, analyze accessibility to contaminated product by consumers, and estimate the level of risk associated with a contamination event over time, as illustrated in a scenario. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Reliability Block Diagram (RBD) Analysis of NASA Dryden Flight Research Center (DFRC) Flight Termination System and Power Supply

    NASA Technical Reports Server (NTRS)

    Morehouse, Dennis V.

    2006-01-01

    In order to perform public risk analyses for vehicles containing Flight Termination Systems (FTS), it is necessary for the analyst to know the reliability of each of the components of the FTS. These systems are typically divided into two segments; a transmitter system and associated equipment, typically in a ground station or on a support aircraft, and a receiver system and associated equipment on the target vehicle. This analysis attempts to analyze the reliability of the NASA DFRC flight termination system ground transmitter segment for use in the larger risk analysis and to compare the results against two established Department of Defense availability standards for such equipment.

  1. XPA A23G polymorphism and risk of digestive system cancers: a meta-analysis.

    PubMed

    He, Lei; Deng, Tao; Luo, Hesheng

    2015-01-01

    Several studies have reported an association between the A23G polymorphism (rs 1800975) in the xeroderma pigmentosum group A (XPA) gene and risk of digestive system cancers. However, the results are inconsistent. In this study, we performed a meta-analysis to assess the association between XPA A23G polymorphism and the risk of digestive system cancers. Relevant studies were identified using the PubMed, Web of Science, China National Knowledge Infrastructure, WanFang, and VIP databases up to August 30, 2014. The pooled odds ratio (OR) with a 95% confidence interval (CI) was calculated using the fixed or random effects model. A total of 18 case-control studies from 16 publications with 4,170 patients and 6,929 controls were included. Overall, no significant association was found between XPA A23G polymorphism and the risk of digestive system cancers (dominant model: GA + AA versus GG, OR 0.89, 95% CI 0.74-1.08; recessive model: AA versus GA + GG, OR 0.94, 95% CI 0.74-1.20; GA versus GG, OR 0.89, 95% CI 0.77-1.03; and AA versus GG, OR 0.87, 95% CI 0.64-1.19). When the analysis was stratified by ethnicity, similar results were observed among Asians and Caucasians in all genetic models. In stratified analysis based on tumor type, we also failed to detect any association between XPA A23G polymorphism and the risk of esophageal, gastric, or colorectal cancers. This meta-analysis indicates that the XPA A23G polymorphism is not associated with a risk of digestive system cancers.

  2. User's Guide and Metadata to Coastal Biodiversity Risk Analysis Tool (CBRAT): Framework for the Systemization of Life History and Biogeographic Information

    EPA Science Inventory

    ABSTRACTUser’s Guide & Metadata to Coastal Biodiversity Risk Analysis Tool (CBRAT): Framework for the Systemization of Life History and Biogeographic Information(EPA/601/B-15/001, 2015, 123 pages)Henry Lee II, U.S. EPA, Western Ecology DivisionKatharine Marko, U.S. EPA,...

  3. Human Agency in Disaster Planning: A Systems Approach.

    PubMed

    Powell, John Hamer; Hammond, Michael; Chen, Albert; Mustafee, Navonil

    2018-01-16

    Current approaches to risk management place insufficient emphasis on the system knowledge available to the assessor, particularly in respect of the dynamic behavior of the system under threat, the role of human agents (HAs), and the knowledge available to those agents. In this article, we address the second of these issues. We are concerned with a class of systems containing HAs playing a variety of roles as significant system elements-as decisionmakers, cognitive agents, or implementers-that is, human activity systems. Within this family of HAS, we focus on safety and mission-critical systems, referring to this subclass as critical human activity systems (CHASs). Identification of the role and contribution of these human elements to a system is a nontrivial problem whether in an engineering context, or, as is the case here, in a wider social and public context. Frequently, they are treated as standing apart from the system in design or policy terms. Regardless of the process of policy definition followed, analysis of the risk and threats to such a CHAS requires a holistic approach, since the effect of undesirable, uninformed, or erroneous actions on the part of the human elements is both potentially significant to the system output and inextricably bound together with the nonhuman elements of the system. We present a procedure for identifying the potential threats and risks emerging from the roles and activity of those HAs, using the 2014 flooding in southwestern England and the Thames Valley as a contemporary example. © 2018 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  4. Impossible Certainty: Cost Risk Analysis for Air Force Systems

    DTIC Science & Technology

    2006-01-01

    the estimated cost of weapon systems , which typically take many years to acquire and remain in operation for a long time . To make those esti- mates... times , uncertain, undefined, or unknown when estimates are prepared. New system development may involve further uncer- tainty due to unproven or...risk (a system requiring more money to complete than was forecasted ) and opera- tional risk (a vital capability becoming unaffordable as the program

  5. Risk analysis of hematopoietic stem cell transplant process: failure mode, effect, and criticality analysis and hazard analysis critical control point methods integration based on guidelines to good manufacturing practice for medicinal product ANNEX 20 (February 2008).

    PubMed

    Gianassi, S; Bisin, S; Bindi, B; Spitaleri, I; Bambi, F

    2010-01-01

    The collection and handling of hematopoietic stem cells (HSCs) must meet high quality requirements. An integrated Quality Risk Management can help to identify and contain potential risks related to HSC production. Risk analysis techniques allow one to "weigh" identified hazards, considering the seriousness of their effects, frequency, and detectability, seeking to prevent the most harmful hazards. The Hazard Analysis Critical Point, recognized as the most appropriate technique to identify risks associated with physical, chemical, and biological hazards for cellular products, consists of classifying finished product specifications and limits of acceptability, identifying all off-specifications, defining activities that can cause them, and finally establishing both a monitoring system for each Critical Control Point and corrective actions for deviations. The severity of possible effects on patients, as well as the occurrence and detectability of critical parameters, are measured on quantitative scales (Risk Priority Number [RPN]). Risk analysis was performed with this technique on manipulation process of HPC performed at our blood center. The data analysis showed that hazards with higher values of RPN with greater impact on the process are loss of dose and tracking; technical skills of operators and manual transcription of data were the most critical parameters. Problems related to operator skills are handled by defining targeted training programs, while other critical parameters can be mitigated with the use of continuous control systems. The blood center management software was completed by a labeling system with forms designed to be in compliance with standards in force and by starting implementation of a cryopreservation management module. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Fuzzy-based failure mode and effect analysis (FMEA) of a hybrid molten carbonate fuel cell (MCFC) and gas turbine system for marine propulsion

    NASA Astrophysics Data System (ADS)

    Ahn, Junkeon; Noh, Yeelyong; Park, Sung Ho; Choi, Byung Il; Chang, Daejun

    2017-10-01

    This study proposes a fuzzy-based FMEA (failure mode and effect analysis) for a hybrid molten carbonate fuel cell and gas turbine system for liquefied hydrogen tankers. An FMEA-based regulatory framework is adopted to analyze the non-conventional propulsion system and to understand the risk picture of the system. Since the participants of the FMEA rely on their subjective and qualitative experiences, the conventional FMEA used for identifying failures that affect system performance inevitably involves inherent uncertainties. A fuzzy-based FMEA is introduced to express such uncertainties appropriately and to provide flexible access to a risk picture for a new system using fuzzy modeling. The hybrid system has 35 components and has 70 potential failure modes, respectively. Significant failure modes occur in the fuel cell stack and rotary machine. The fuzzy risk priority number is used to validate the crisp risk priority number in the FMEA.

  7. Technology Systems Analysis | Energy Analysis | NREL

    Science.gov Websites

    RD&D areas in terms of potential costs, benefits, risks, uncertainties, and timeframes. For examples of our technology systems analysis work, see these research areas: Bioenergy Buildings Grid

  8. The safer clinical systems project in renal care.

    PubMed

    Weale, Andy R

    2013-09-01

    Current systems in place in healthcare are designed to detect harm after it has happened (e.g critical incident reports) and make recommendations based on an assessment of that event. Safer Clinical Systems, a Health Foundation funded project, is designed to proactively search for risk within systems, rather than being reactive to harm. The aim of the Safer Clinical Systems project in Renal Care was to reduce the risks associated with shared care for patients who are undergoing surgery but are looked after peri-operatively by nephrology teams on nephrology wards. This report details our findings of the diagnostic phase of Safer Clinical Systems: the proactive search for risk. We have evaluated the current system of care using a set of risk evaluation and process mapping tools (Failure Modes and Effects Analysis (FMEA) and Hierarchical Task Analysis HTA). We have engaged staff with the process mapping and risk assessment tools. We now understand our system and understand where the highest risk tasks are undertaken during a renal in-patient stay during which a patient has an operation. These key tasks occur across the perioperaive period and are not confined to one aspect of care. A measurement strategy and intervention plan have been designed around these tasks. Safer Clinical Systems has identified high risk, low reliability tasks in our system. We look forward to fully reporting these data in 2014. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  9. Multi-Mission System Analysis for Planetary Entry (M-SAPE) Version 1

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid; Glaab, Louis; Winski, Richard G.; Maddock, Robert W.; Emmett, Anjie L.; Munk, Michelle M.; Agrawal, Parul; Sepka, Steve; Aliaga, Jose; Zarchi, Kerry; hide

    2014-01-01

    This report describes an integrated system for Multi-mission System Analysis for Planetary Entry (M-SAPE). The system in its current form is capable of performing system analysis and design for an Earth entry vehicle suitable for sample return missions. The system includes geometry, mass sizing, impact analysis, structural analysis, flight mechanics, TPS, and a web portal for user access. The report includes details of M-SAPE modules and provides sample results. Current M-SAPE vehicle design concept is based on Mars sample return (MSR) Earth entry vehicle design, which is driven by minimizing risk associated with sample containment (no parachute and passive aerodynamic stability). By M-SAPE exploiting a common design concept, any sample return mission, particularly MSR, will benefit from significant risk and development cost reductions. The design provides a platform by which technologies and design elements can be evaluated rapidly prior to any costly investment commitment.

  10. Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems

    NASA Astrophysics Data System (ADS)

    Kwag, Shinyoung

    Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or component on the critical path is relatively more important in a risk-informed environment. Significance of multi-hazard risk is also illustrated for uncorrelated hazards of earthquakes and high winds which may result in competing design objectives. It is also illustrated that the number of computationally intensive nonlinear simulations needed in performance-based risk assessment for external hazards can be significantly reduced by using the power of Bayesian updating in conjunction with the concept of equivalent limit-state.

  11. Low-thrust mission risk analysis, with application to a 1980 rendezvous with the comet Encke

    NASA Technical Reports Server (NTRS)

    Yen, C. L.; Smith, D. B.

    1973-01-01

    A computerized failure process simulation procedure is used to evaluate the risk in a solar electric space mission. The procedure uses currently available thrust-subsystem reliability data and performs approximate simulations of the thrust sybsystem burn operation, the system failure processes, and the retargeting operations. The method is applied to assess the risks in carrying out a 1980 rendezvous mission to the comet Encke. Analysis of the results and evaluation of the effects of various risk factors on the mission show that system component failure rates are the limiting factors in attaining a high mission relability. It is also shown that a well-designed trajectory and system operation mode can be used effectively to partially compensate for unreliable thruster performance.

  12. Risk Management for Weapon Systems Acquisition: A Decision Support System

    DTIC Science & Technology

    1985-02-28

    includes the program evaluation and review technique (PERT) for network analysis, the PMRM for quantifying risk , an optimization package for generating...Despite the inclusion of uncertainty in time, PERT can at best be considered as a tool for quantifying risk with regard to the time element only. Moreover

  13. Study of a risk-based piping inspection guideline system.

    PubMed

    Tien, Shiaw-Wen; Hwang, Wen-Tsung; Tsai, Chih-Hung

    2007-02-01

    A risk-based inspection system and a piping inspection guideline model were developed in this study. The research procedure consists of two parts--the building of a risk-based inspection model for piping and the construction of a risk-based piping inspection guideline model. Field visits at the plant were conducted to develop the risk-based inspection and strategic analysis system. A knowledge-based model had been built in accordance with international standards and local government regulations, and the rational unified process was applied for reducing the discrepancy in the development of the models. The models had been designed to analyze damage factors, damage models, and potential damage positions of piping in the petrochemical plants. The purpose of this study was to provide inspection-related personnel with the optimal planning tools for piping inspections, hence, to enable effective predictions of potential piping risks and to enhance the better degree of safety in plant operations that the petrochemical industries can be expected to achieve. A risk analysis was conducted on the piping system of a petrochemical plant. The outcome indicated that most of the risks resulted from a small number of pipelines.

  14. System Interdependency Modeling in the Design of Prognostic and Health Management Systems in Smart Manufacturing.

    PubMed

    Malinowski, M L; Beling, P A; Haimes, Y Y; LaViers, A; Marvel, J A; Weiss, B A

    2015-01-01

    The fields of risk analysis and prognostics and health management (PHM) have developed in a largely independent fashion. However, both fields share a common core goal. They aspire to manage future adverse consequences associated with prospective dysfunctions of the systems under consideration due to internal or external forces. This paper describes how two prominent risk analysis theories and methodologies - Hierarchical Holographic Modeling (HHM) and Risk Filtering, Ranking, and Management (RFRM) - can be adapted to support the design of PHM systems in the context of smart manufacturing processes. Specifically, the proposed methodologies will be used to identify targets - components, subsystems, or systems - that would most benefit from a PHM system in regards to achieving the following objectives: minimizing cost, minimizing production/maintenance time, maximizing system remaining usable life (RUL), maximizing product quality, and maximizing product output. HHM is a comprehensive modeling theory and methodology that is grounded on the premise that no system can be modeled effectively from a single perspective. It can also be used as an inductive method for scenario structuring to identify emergent forced changes (EFCs) in a system. EFCs connote trends in external or internal sources of risk to a system that may adversely affect specific states of the system. An important aspect of proactive risk management includes bolstering the resilience of the system for specific EFCs by appropriately controlling the states. Risk scenarios for specific EFCs can be the basis for the design of prognostic and diagnostic systems that provide real-time predictions and recognition of scenario changes. The HHM methodology includes visual modeling techniques that can enhance stakeholders' understanding of shared states, resources, objectives and constraints among the interdependent and interconnected subsystems of smart manufacturing systems. In risk analysis, HHM is often paired with Risk Filtering, Ranking, and Management (RFRM). The RFRM process provides the users, (e.g., technology developers, original equipment manufacturers (OEMs), technology integrators, manufacturers), with the most critical risks to the objectives, which can be used to identify the most critical components and subsystems that would most benefit from a PHM system. A case study is presented in which HHM and RFRM are adapted for PHM in the context of an active manufacturing facility located in the United States. The methodologies help to identify the critical risks to the manufacturing process, and the major components and subsystems that would most benefit from a developed PHM system.

  15. System Interdependency Modeling in the Design of Prognostic and Health Management Systems in Smart Manufacturing

    PubMed Central

    Malinowski, M.L.; Beling, P.A.; Haimes, Y.Y.; LaViers, A.; Marvel, J.A.; Weiss, B.A.

    2017-01-01

    The fields of risk analysis and prognostics and health management (PHM) have developed in a largely independent fashion. However, both fields share a common core goal. They aspire to manage future adverse consequences associated with prospective dysfunctions of the systems under consideration due to internal or external forces. This paper describes how two prominent risk analysis theories and methodologies – Hierarchical Holographic Modeling (HHM) and Risk Filtering, Ranking, and Management (RFRM) – can be adapted to support the design of PHM systems in the context of smart manufacturing processes. Specifically, the proposed methodologies will be used to identify targets – components, subsystems, or systems – that would most benefit from a PHM system in regards to achieving the following objectives: minimizing cost, minimizing production/maintenance time, maximizing system remaining usable life (RUL), maximizing product quality, and maximizing product output. HHM is a comprehensive modeling theory and methodology that is grounded on the premise that no system can be modeled effectively from a single perspective. It can also be used as an inductive method for scenario structuring to identify emergent forced changes (EFCs) in a system. EFCs connote trends in external or internal sources of risk to a system that may adversely affect specific states of the system. An important aspect of proactive risk management includes bolstering the resilience of the system for specific EFCs by appropriately controlling the states. Risk scenarios for specific EFCs can be the basis for the design of prognostic and diagnostic systems that provide real-time predictions and recognition of scenario changes. The HHM methodology includes visual modeling techniques that can enhance stakeholders’ understanding of shared states, resources, objectives and constraints among the interdependent and interconnected subsystems of smart manufacturing systems. In risk analysis, HHM is often paired with Risk Filtering, Ranking, and Management (RFRM). The RFRM process provides the users, (e.g., technology developers, original equipment manufacturers (OEMs), technology integrators, manufacturers), with the most critical risks to the objectives, which can be used to identify the most critical components and subsystems that would most benefit from a PHM system. A case study is presented in which HHM and RFRM are adapted for PHM in the context of an active manufacturing facility located in the United States. The methodologies help to identify the critical risks to the manufacturing process, and the major components and subsystems that would most benefit from a developed PHM system. PMID:28664162

  16. The -765G>C polymorphism in the cyclooxygenase-2 gene and digestive system cancer: a meta-analysis.

    PubMed

    Zhao, Fen; Cao, Yue; Zhu, Hong; Huang, Min; Yi, Cheng; Huang, Ying

    2014-01-01

    Published data regarding associations between the -765G>C polymorphism in cyclooxygenase-2 (COX-2) gene and digestive system cancer risk have been inconclusive. The aim of this study was to comprehensively evaluate the genetic risk of the -765G>C polymorphism in the COX-2 gene for digestive system cancer. A search was performed in Pubmed, Medline (Ovid), Embase, CNKI, Weipu, Wanfang and CBM databases, covering all studies until Feb 10, 2014. Statistical analysis was performed using Revman5.2. A total of 10,814 cases and 16,174 controls in 38 case-control studies were included in this meta-analysis. The results indicated that C allele carriers (GC+CC) had a 20% increased risk of digestive system cancer when compared with the homozygote GG (odds ratio (OR)=1.20, 95% confidence interval (CI), 1.00-1.44 for GC+CC vs GG). In the subgroup analysis by ethnicity, significant elevated risks were associated with C allele carriers (GC+CC) in Asians (OR = 1.46, 95% CI=1.07-2.01, and p=0.02) and Africans (OR=2.12, 95% CI=1.57-2.87, and p< 0.00001), but not among Caucasians, Americans and mixed groups. For subgroup analysis by cancer type (GC+CC vs GG), significant associations were found between the -765G>C polymorphism and higher risk for gastric cancer (OR=1.64, 95% CI=1.03-2.61, and p=0.04), but not for colorectal cancer, oral cancer, esophageal cancer, and others. Regarding study design (GC+CC vs GG), no significant associations were found in then population-based case-control (PCC), hospital-based case-control (HCC) and family-based case-control (FCC) studies. This meta-analysis suggested that the -765G>C polymorphism of the COX-2 gene is a potential risk factor for digestive system cancer in Asians and Africans and gastric cancer overall.

  17. An Extreme-Value Approach to Anomaly Vulnerability Identification

    NASA Technical Reports Server (NTRS)

    Everett, Chris; Maggio, Gaspare; Groen, Frank

    2010-01-01

    The objective of this paper is to present a method for importance analysis in parametric probabilistic modeling where the result of interest is the identification of potential engineering vulnerabilities associated with postulated anomalies in system behavior. In the context of Accident Precursor Analysis (APA), under which this method has been developed, these vulnerabilities, designated as anomaly vulnerabilities, are conditions that produce high risk in the presence of anomalous system behavior. The method defines a parameter-specific Parameter Vulnerability Importance measure (PVI), which identifies anomaly risk-model parameter values that indicate the potential presence of anomaly vulnerabilities, and allows them to be prioritized for further investigation. This entails analyzing each uncertain risk-model parameter over its credible range of values to determine where it produces the maximum risk. A parameter that produces high system risk for a particular range of values suggests that the system is vulnerable to the modeled anomalous conditions, if indeed the true parameter value lies in that range. Thus, PVI analysis provides a means of identifying and prioritizing anomaly-related engineering issues that at the very least warrant improved understanding to reduce uncertainty, such that true vulnerabilities may be identified and proper corrective actions taken.

  18. Risk Management Technique for design and operation of facilities and equipment

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Parsons, W. N.; Coutinho, J. De S.

    1975-01-01

    The Risk Management System collects information from engineering, operating, and management personnel to identify potentially hazardous conditions. This information is used in risk analysis, problem resolution, and contingency planning. The resulting hazard accountability system enables management to monitor all identified hazards. Data from this system are examined in project reviews so that management can decide to eliminate or accept these risks. This technique is particularly effective in improving the management of risks in large, complex, high-energy facilities. These improvements are needed for increased cooperation among industry, regulatory agencies, and the public.

  19. Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda

    2017-01-01

    As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification & Validation (IV&V) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASAs Office of Safety and Mission Assurance (OSMA) defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domain/component, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IV&V enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.

  20. Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda

    2017-01-01

    As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification Validation (IVV) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASA's Office of Safety and Mission Assurance defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domaincomponent, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IVV enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.

  1. Advances in Risk Analysis with Big Data.

    PubMed

    Choi, Tsan-Ming; Lambert, James H

    2017-08-01

    With cloud computing, Internet-of-things, wireless sensors, social media, fast storage and retrieval, etc., organizations and enterprises have access to unprecedented amounts and varieties of data. Current risk analysis methodology and applications are experiencing related advances and breakthroughs. For example, highway operations data are readily available, and making use of them reduces risks of traffic crashes and travel delays. Massive data of financial and enterprise systems support decision making under risk by individuals, industries, regulators, etc. In this introductory article, we first discuss the meaning of big data for risk analysis. We then examine recent advances in risk analysis with big data in several topic areas. For each area, we identify and introduce the relevant articles that are featured in the special issue. We conclude with a discussion on future research opportunities. © 2017 Society for Risk Analysis.

  2. Application of a risk management system to improve drinking water safety.

    PubMed

    Jayaratne, Asoka

    2008-12-01

    The use of a comprehensive risk management framework is considered a very effective means of managing water quality risks. There are many risk-based systems available to water utilities such as ISO 9001 and Hazard Analysis and Critical Control Point (HACCP). In 2004, the World Health Organization's (WHO) Guidelines for Drinking Water Quality recommended the use of preventive risk management approaches to manage water quality risks. This paper describes the framework adopted by Yarra Valley Water for the development of its Drinking Water Quality Risk Management Plan incorporating HACCP and ISO 9001 systems and demonstrates benefits of Water Safety Plans such as HACCP. Copyright IWA Publishing 2008.

  3. Improving Flood Risk Management for California's Central Valley: How the State Developed a Toolbox for Large, System-wide Studies

    NASA Astrophysics Data System (ADS)

    Pingel, N.; Liang, Y.; Bindra, A.

    2016-12-01

    More than 1 million Californians live and work in the floodplains of the Sacramento-San Joaquin Valley where flood risks are among the highest in the nation. In response to this threat to people, property and the environment, the Department of Water Resources (DWR) has been called to action to improve flood risk management. This has transpired through significant advances in development of flood information and tools, analysis, and planning. Senate Bill 5 directed DWR to prepare the Central Valley Flood Protection Plan (CVFPP) and update it every 5 years. A key component of this aggressive planning approach is answering the question: What is the current flood risk, and how would proposed improvements change flood risk throughout the system? Answering this question is a substantial challenge due to the size and complexity of the watershed and flood control system. The watershed is roughly 42,000 sq mi, and flows are controlled by numerous reservoirs, bypasses, and levees. To overcome this challenge, the State invested in development of a comprehensive analysis "tool box" through various DWR programs. Development of the tool box included: collection of hydro-meteorological, topographic, geotechnical, and economic data; development of rainfall-runoff, reservoir operation, hydraulic routing, and flood risk analysis models; and development of specialized applications and computing schemes to accelerate the analysis. With this toolbox, DWR is analyzing flood hazard, flood control system performance, exposure and vulnerability of people and property to flooding, consequence of flooding for specific events, and finally flood risk for a range of CVFPP alternatives. Based on the results, DWR will put forward a State Recommended Plan in the 2017 CVFPP. Further, the value of the analysis tool box extends beyond the CVFPP. It will serve as a foundation for other flood studies for years to come and has already been successfully applied for inundation mapping to support emergency response, reservoir operation analysis, and others.

  4. A Risk Analysis Approach to Prioritizing Epidemics: Ebola Virus Disease in West Africa as a Case Study.

    PubMed

    Ajisegiri, Whenayon Simeon; Chughtai, Abrar Ahmad; MacIntyre, C Raina

    2018-03-01

    The 2014 Ebola virus disease (EVD) outbreak affected several countries worldwide, including six West African countries. It was the largest Ebola epidemic in the history and the first to affect multiple countries simultaneously. Significant national and international delay in response to the epidemic resulted in 28,652 cases and 11,325 deaths. The aim of this study was to develop a risk analysis framework to prioritize rapid response for situations of high risk. Based on findings from the literature, sociodemographic features of the affected countries, and documented epidemic data, a risk scoring framework using 18 criteria was developed. The framework includes measures of socioeconomics, health systems, geographical factors, cultural beliefs, and traditional practices. The three worst affected West African countries (Guinea, Sierra Leone, and Liberia) had the highest risk scores. The scores were much lower in developed countries that experienced Ebola compared to West African countries. A more complex risk analysis framework using 18 measures was compared with a simpler one with 10 measures, and both predicted risk equally well. A simple risk scoring system can incorporate measures of hazard and impact that may otherwise be neglected in prioritizing outbreak response. This framework can be used by public health personnel as a tool to prioritize outbreak investigation and flag outbreaks with potentially catastrophic outcomes for urgent response. Such a tool could mitigate costly delays in epidemic response. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  5. Systems Toxicology: From Basic Research to Risk Assessment

    PubMed Central

    2014-01-01

    Systems Toxicology is the integration of classical toxicology with quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Society demands increasingly close scrutiny of the potential health risks associated with exposure to chemicals present in our everyday life, leading to an increasing need for more predictive and accurate risk-assessment approaches. Developing such approaches requires a detailed mechanistic understanding of the ways in which xenobiotic substances perturb biological systems and lead to adverse outcomes. Thus, Systems Toxicology approaches offer modern strategies for gaining such mechanistic knowledge by combining advanced analytical and computational tools. Furthermore, Systems Toxicology is a means for the identification and application of biomarkers for improved safety assessments. In Systems Toxicology, quantitative systems-wide molecular changes in the context of an exposure are measured, and a causal chain of molecular events linking exposures with adverse outcomes (i.e., functional and apical end points) is deciphered. Mathematical models are then built to describe these processes in a quantitative manner. The integrated data analysis leads to the identification of how biological networks are perturbed by the exposure and enables the development of predictive mathematical models of toxicological processes. This perspective integrates current knowledge regarding bioanalytical approaches, computational analysis, and the potential for improved risk assessment. PMID:24446777

  6. Systems toxicology: from basic research to risk assessment.

    PubMed

    Sturla, Shana J; Boobis, Alan R; FitzGerald, Rex E; Hoeng, Julia; Kavlock, Robert J; Schirmer, Kristin; Whelan, Maurice; Wilks, Martin F; Peitsch, Manuel C

    2014-03-17

    Systems Toxicology is the integration of classical toxicology with quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Society demands increasingly close scrutiny of the potential health risks associated with exposure to chemicals present in our everyday life, leading to an increasing need for more predictive and accurate risk-assessment approaches. Developing such approaches requires a detailed mechanistic understanding of the ways in which xenobiotic substances perturb biological systems and lead to adverse outcomes. Thus, Systems Toxicology approaches offer modern strategies for gaining such mechanistic knowledge by combining advanced analytical and computational tools. Furthermore, Systems Toxicology is a means for the identification and application of biomarkers for improved safety assessments. In Systems Toxicology, quantitative systems-wide molecular changes in the context of an exposure are measured, and a causal chain of molecular events linking exposures with adverse outcomes (i.e., functional and apical end points) is deciphered. Mathematical models are then built to describe these processes in a quantitative manner. The integrated data analysis leads to the identification of how biological networks are perturbed by the exposure and enables the development of predictive mathematical models of toxicological processes. This perspective integrates current knowledge regarding bioanalytical approaches, computational analysis, and the potential for improved risk assessment.

  7. SCAP: a new methodology for safety management based on feedback from credible accident-probabilistic fault tree analysis system.

    PubMed

    Khan, F I; Iqbal, A; Ramesh, N; Abbasi, S A

    2001-10-12

    As it is conventionally done, strategies for incorporating accident--prevention measures in any hazardous chemical process industry are developed on the basis of input from risk assessment. However, the two steps-- risk assessment and hazard reduction (or safety) measures--are not linked interactively in the existing methodologies. This prevents a quantitative assessment of the impacts of safety measures on risk control. We have made an attempt to develop a methodology in which risk assessment steps are interactively linked with implementation of safety measures. The resultant system tells us the extent of reduction of risk by each successive safety measure. It also tells based on sophisticated maximum credible accident analysis (MCAA) and probabilistic fault tree analysis (PFTA) whether a given unit can ever be made 'safe'. The application of the methodology has been illustrated with a case study.

  8. Dynamic safety assessment of natural gas stations using Bayesian network.

    PubMed

    Zarei, Esmaeil; Azadeh, Ali; Khakzad, Nima; Aliabadi, Mostafa Mirzaei; Mohammadfam, Iraj

    2017-01-05

    Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. An Example of Risk Informed Design

    NASA Technical Reports Server (NTRS)

    Banke, Rick; Grant, Warren; Wilson, Paul

    2014-01-01

    NASA Engineering requested a Probabilistic Risk Assessment (PRA) to compare the difference in the risk of Loss of Crew (LOC) and Loss of Mission (LOM) between different designs of a fluid assembly. They were concerned that the configuration favored by the design team was more susceptible to leakage than a second proposed design, but realized that a quantitative analysis to compare the risks between the two designs might strengthen their argument. The analysis showed that while the second design did help improve the probability of LOC, it did not help from a probability of LOM perspective. This drove the analysis team to propose a minor design change that would drive the probability of LOM down considerably. The analysis also demonstrated that there was another major risk driver that was not immediately obvious from a typical engineering study of the design and was therefore unexpected. None of the proposed alternatives were addressing this risk. This type of trade study demonstrates the importance of performing a PRA in order to completely understand a system's design. It allows managers to use risk as another one of the commodities (e.g., mass, cost, schedule, fault tolerance) that can be traded early in the design of a new system.

  10. Framework for Risk Analysis in Multimedia Environmental Systems: Modeling Individual Steps of a Risk Assessment Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Anuj; Castleton, Karl J.; Hoopes, Bonnie L.

    2004-06-01

    The study of the release and effects of chemicals in the environment and their associated risks to humans is central to public and private decision making. FRAMES 1.X, Framework for Risk Analysis in Multimedia Environmental Systems, is a systems modeling software platform, developed by PNNL, Pacific Northwest National Laboratory, that helps scientists study the release and effects of chemicals on a source to outcome basis, create environmental models for similar risk assessment and management problems. The unique aspect of FRAMES is to dynamically introduce software modules representing individual components of a risk assessment (e.g., source release of contaminants, fate andmore » transport in various environmental media, exposure, etc.) within a software framework, manipulate their attributes and run simulations to obtain results. This paper outlines the fundamental constituents of FRAMES 2.X, an enhanced version of FRAMES 1.X, that greatly improve the ability of the module developers to “plug” their self-developed software modules into the system. The basic design, the underlying principles and a discussion of the guidelines for module developers are presented.« less

  11. Montana Youth Risk Behavior Survey Report, 2005 for Alternative Schools Students: Statewide Analysis of Selected Behavior Risk Factors

    ERIC Educational Resources Information Center

    Montana Office of Public Instruction, 2005

    2005-01-01

    The Youth Risk Behavior Surveillance System is an epidemiologic surveillance system that was established by the U.S. Centers for Disease Control and Prevention (CDC) to help monitor the prevalence of behaviors that not only influence youth health, but also put youth at risk for the most significant health and social problems that can occur during…

  12. Montana Youth Risk Behavior Survey Report, 2005 for Students with Disabilities: Statewide Analysis of Selected Behavior Risk Factors

    ERIC Educational Resources Information Center

    Montana Office of Public Instruction, 2005

    2005-01-01

    The Youth Risk Behavior Surveillance System is an epidemiologic surveillance system that was established by the U.S. Centers for Disease Control and Prevention (CDC) to help monitor the prevalence of behaviors that not only influence youth health, but also put youth at risk for the most significant health and social problems that can occur during…

  13. Montana Youth Risk Behavior Survey Report, 2005 for Grades 7-8: Statewide Analysis of Selected Behavior Risk Factors

    ERIC Educational Resources Information Center

    Montana Office of Public Instruction, 2005

    2005-01-01

    The Youth Risk Behavior Surveillance System is an epidemiologic surveillance system that was established by the U.S. Centers for Disease Control and Prevention (CDC) to help monitor the prevalence of behaviors that not only influence youth health, but also put youth at risk for the most significant health and social problems that can occur during…

  14. Systems resilience for multihazard environments: definition, metrics, and valuation for decision making.

    PubMed

    Ayyub, Bilal M

    2014-02-01

    The United Nations Office for Disaster Risk Reduction reported that the 2011 natural disasters, including the earthquake and tsunami that struck Japan, resulted in $366 billion in direct damages and 29,782 fatalities worldwide. Storms and floods accounted for up to 70% of the 302 natural disasters worldwide in 2011, with earthquakes producing the greatest number of fatalities. Average annual losses in the United States amount to about $55 billion. Enhancing community and system resilience could lead to massive savings through risk reduction and expeditious recovery. The rational management of such reduction and recovery is facilitated by an appropriate definition of resilience and associated metrics. In this article, a resilience definition is provided that meets a set of requirements with clear relationships to the metrics of the relevant abstract notions of reliability and risk. Those metrics also meet logically consistent requirements drawn from measure theory, and provide a sound basis for the development of effective decision-making tools for multihazard environments. Improving the resiliency of a system to meet target levels requires the examination of system enhancement alternatives in economic terms, within a decision-making framework. Relevant decision analysis methods would typically require the examination of resilience based on its valuation by society at large. The article provides methods for valuation and benefit-cost analysis based on concepts from risk analysis and management. © 2013 Society for Risk Analysis.

  15. Serine/threonine kinase 15 gene polymorphism and risk of digestive system cancers: A meta-analysis.

    PubMed

    Luo, Jianfei; Yan, Ruicheng; Zou, Li

    2015-01-01

    Previous studies have reported an association between the two coding polymorphisms (91T>A and 169G>A) of the serine/threonine kinase 15 (STK15) gene and the risk of digestive system cancers; however, the results are inconsistent. In the present study, a meta-analysis was carried out to assess the association between the two STK15 polymorphisms and the risk of digestive system cancers. Relevant studies were identified using PubMed, Web of Science, China National Knowledge Infrastructure, WanFang and VIP databases up to February 18, 2014. The pooled odds ratio (OR) with a 95% confidence interval (CI) was calculated using the fixed or random effects model. A total of 15 case-control studies from 14 publications were included. Of these, 15 studies concerned the 91T>A polymorphism and included 7,619 cases and 7,196 controls and four studies concerned the 161G>A polymorphism and included 826 cases and 713 controls. A significantly increased risk of digestive system cancers was observed for the 91T>A polymorphism (recessive model: OR, 1.19; 95% CI, 1.07-1.31). In subgroup analysis by ethnicity, a significant association was detected in Asian populations (recessive model: OR, 1.21; 95% CI, 1.08-1.36) but not in Caucasian and mixed populations. Stratification by tumor type indicated that the 91T>A polymorphism was associated with an increased risk of esophageal and colorectal cancers under the recessive model (OR, 1.19; 95% CI, 1.03-1.38; and OR, 1.24; 95% CI, 1.04-1.46; respectively); however, no significant association was observed between the 169G>A polymorphism and the risk of digestive system cancers in any of the genetic models. Furthermore, in subgroup analysis by ethnicity, similar results were observed in the Asian and Caucasian populations. The present meta-analysis demonstrated that the STK15 gene 91T>A polymorphism, but not the 169G>A polymorphism, may be a risk factor for digestive system cancers, particularly for esophageal and colorectal cancers.

  16. Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China.

    PubMed

    Gong, Jian; Yang, Jianxin; Tang, Wenwu

    2015-11-09

    Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution-severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems.

  17. Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China

    PubMed Central

    Gong, Jian; Yang, Jianxin; Tang, Wenwu

    2015-01-01

    Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution—severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems. PMID:26569270

  18. Analysis of the risk management decisionmaking processes and the decision support systems in the wildland fire agencies

    Treesearch

    Patrick Withen

    2007-01-01

    This paper offers an analysis of the strengths, weaknesses, opportunities, and threats in the risk management process, decision support systems (DSSs), and other types of decisionmaking, including recognition primed decisionmaking, bricolage with the goal of improving DSSs and decisionmaking. DSSs may be thought of as any technology or knowledge that is used as an aid...

  19. A Risk-Based Approach for Aerothermal/TPS Analysis and Testing

    DTIC Science & Technology

    2007-07-01

    RTO-EN-AVT-142 17 - 1 A Risk-Based Approach for Aerothermal/ TPS Analysis and Testing Michael J. Wright∗ and Jay H. Grinstead† NASA Ames...of the thermal protection system ( TPS ) is to protect the payload (crew, cargo, or science) from this entry heating environment. The performance of...the TPS is determined by the efficiency and reliability of this system, typically measured

  20. Hazard, Vulnerability and Capacity Mapping for Landslides Risk Analysis using Geographic Information System (GIS)

    NASA Astrophysics Data System (ADS)

    Sari, D. A. P.; Innaqa, S.; Safrilah

    2017-06-01

    This research analyzed the levels of disaster risk in the Citeureup sub-District, Bogor Regency, West Java, based on its potential hazard, vulnerability and capacity, using map to represent the results, then Miles and Huberman analytical techniques was used to analyze the qualitative interviews. The analysis conducted in this study is based on the concept of disaster risk by Wisner. The result shows that the Citeureup sub-District has medium-low risk of landslides. Of the 14 villages, three villages have a moderate risk level, namely Hambalang, Tajur, and Tangkil, or 49.58% of the total land area. Eleven villages have a low level of risk, namely Pasir Mukti, Sanja, Tarikolot, Gunung Sari, Puspasari, East Karang Asem, Citeureup, Leuwinutug, Sukahati, West Karang Asem West and Puspanegara, or 48.68% of the total land area, for high-risk areas only around 1.74%, which is part of Hambalang village. The analysis using Geographic Information System (GIS) prove that areas with a high risk potential does not necessarily have a high level of risk. The capacity of the community plays an important role to minimize the risk of a region. Disaster risk reduction strategy is done by creating a safe condition, which intensified the movement of disaster risk reduction.

  1. Volatility and correlation-based systemic risk measures in the US market

    NASA Astrophysics Data System (ADS)

    Civitarese, Jamil

    2016-10-01

    This paper deals with the problem of how to use simple systemic risk measures to assess portfolio risk characteristics. Using three simple examples taken from previous literature, one based on raw and partial correlations, another based on the eigenvalue decomposition of the covariance matrix and the last one based on an eigenvalue entropy, a Granger-causation analysis revealed some of them are not always a good measure of risk in the S&P 500 and in the VIX. The measures selected do not Granger-cause the VIX index in all windows selected; therefore, in the sense of risk as volatility, the indicators are not always suitable. Nevertheless, their results towards returns are similar to previous works that accept them. A deeper analysis has shown that any symmetric measure based on eigenvalue decomposition of correlation matrices, however, is not useful as a measure of "correlation" risk. The empirical counterpart analysis of this proposition stated that negative correlations are usually small and, therefore, do not heavily distort the behavior of the indicator.

  2. Risk management of key issues of FPSO

    NASA Astrophysics Data System (ADS)

    Sun, Liping; Sun, Hai

    2012-12-01

    Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offloading system and fire accidents were analyzed based on the floating production, storage and offloading (FPSO) features. Fault tree analysis (FTA), and failure modes and effects analysis (FMEA) methods were examined based on information already researched on modules of relex reliability studio (RRS). Equipment failures were also analyzed qualitatively by establishing a fault tree and Boolean structure function based on the shortage of failure cases, statistical data, and risk control measures examined. Failure modes of fire accident were classified according to the different areas of fire occurrences during the FMEA process, using risk priority number (RPN) methods to evaluate their severity rank. The qualitative analysis of FTA gave the basic insight of forming the failure modes of FPSO offloading, and the fire FMEA gave the priorities and suggested processes. The research has practical importance for the security analysis problems of FPSO.

  3. A financial network perspective of financial institutions' systemic risk contributions

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang; Uryasev, Stan

    2016-08-01

    This study considers the effects of the financial institutions' local topology structure in the financial network on their systemic risk contribution using data from the Chinese stock market. We first measure the systemic risk contribution with the Conditional Value-at-Risk (CoVaR) which is estimated by applying dynamic conditional correlation multivariate GARCH model (DCC-MVGARCH). Financial networks are constructed from dynamic conditional correlations (DCC) with graph filtering method of minimum spanning trees (MSTs). Then we investigate dynamics of systemic risk contributions of financial institution. Also we study dynamics of financial institution's local topology structure in the financial network. Finally, we analyze the quantitative relationships between the local topology structure and systemic risk contribution with panel data regression analysis. We find that financial institutions with greater node strength, larger node betweenness centrality, larger node closeness centrality and larger node clustering coefficient tend to be associated with larger systemic risk contributions.

  4. On "black swans" and "perfect storms": risk analysis and management when statistics are not enough.

    PubMed

    Paté-Cornell, Elisabeth

    2012-11-01

    Two images, "black swans" and "perfect storms," have struck the public's imagination and are used--at times indiscriminately--to describe the unthinkable or the extremely unlikely. These metaphors have been used as excuses to wait for an accident to happen before taking risk management measures, both in industry and government. These two images represent two distinct types of uncertainties (epistemic and aleatory). Existing statistics are often insufficient to support risk management because the sample may be too small and the system may have changed. Rationality as defined by the von Neumann axioms leads to a combination of both types of uncertainties into a single probability measure--Bayesian probability--and accounts only for risk aversion. Yet, the decisionmaker may also want to be ambiguity averse. This article presents an engineering risk analysis perspective on the problem, using all available information in support of proactive risk management decisions and considering both types of uncertainty. These measures involve monitoring of signals, precursors, and near-misses, as well as reinforcement of the system and a thoughtful response strategy. It also involves careful examination of organizational factors such as the incentive system, which shape human performance and affect the risk of errors. In all cases, including rare events, risk quantification does not allow "prediction" of accidents and catastrophes. Instead, it is meant to support effective risk management rather than simply reacting to the latest events and headlines. © 2012 Society for Risk Analysis.

  5. [How the information system can contribute to the implementation of a risk management program in a hospital?].

    PubMed

    Staccini, P; Quaranta, J F; Staccini-Myx, A; Veyres, P; Jambou, P

    2003-09-01

    Nowadays, information system is recognised as one of the key points of the management strategy. An information system is regarded conceptualised as a mean to link 3 aspects of a firm (structure, organisation rules and staff). Its design and implementation have to meet the objectives of medical and economical evaluation, especially risk management objectives. In order to identify, analyse, reduce and prevent the occurrence of adverse events, and also to measure the efficacy and efficiency of the production of care services, the design of information systems should be based on a process analysis in order to describe and classify all the working practices within the hospital. According to various methodologies (usually top-down analysis), each process can be divided into activities. Each activity (especially each care activity) can be described according to its potential risks and expected results. For care professionals performing a task, the access to official or internal guidelines and the adverse events reporting forms has also to be defined. Putting together all the elements of such a process analysis will contribute to integrate, into daily practice, the management of risks, supported by the information system.

  6. Weighted Fuzzy Risk Priority Number Evaluation of Turbine and Compressor Blades Considering Failure Mode Correlations

    NASA Astrophysics Data System (ADS)

    Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-06-01

    Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural system under failure correlations.

  7. Quantifying the Metrics That Characterize Safety Culture of Three Engineered Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Julie; Ernesti, Mary; Tokuhiro, Akira

    2002-07-01

    With potential energy shortages and increasing electricity demand, the nuclear energy option is being reconsidered in the United States. Public opinion will have a considerable voice in policy decisions that will 'road-map' the future of nuclear energy in this country. This report is an extension of the last author's work on the 'safety culture' associated with three engineered systems (automobiles, commercial airplanes, and nuclear power plants) in Japan and the United States. Safety culture, in brief is defined as a specifically developed culture based on societal and individual interpretations of the balance of real, perceived, and imagined risks versus themore » benefits drawn from utilizing a given engineered systems. The method of analysis is a modified scale analysis, with two fundamental Eigen-metrics, time- (t) and number-scales (N) that describe both engineered systems and human factors. The scale analysis approach is appropriate because human perception of risk, perception of benefit and level of (technological) acceptance are inherently subjective, therefore 'fuzzy' and rarely quantifiable in exact magnitude. Perception of risk, expressed in terms of the psychometric factors 'dread risk' and 'unknown risk', contains both time- and number-scale elements. Various engineering system accidents with fatalities, reported by mass media are characterized by t and N, and are presented in this work using the scale analysis method. We contend that level of acceptance infers a perception of benefit at least two orders larger magnitude than perception of risk. The 'amplification' influence of mass media is also deduced as being 100- to 1000-fold the actual number of fatalities/serious injuries in a nuclear-related accident. (authors)« less

  8. An overview of safety assessment, regulation, and control of hazardous material use at NREL

    NASA Astrophysics Data System (ADS)

    Nelson, B. P.; Crandall, R. S.; Moskowitz, P. D.; Fthenakis, V. M.

    1992-12-01

    This paper summarizes the methodology we use to ensure the safe use of hazardous materials at the National Renewable Energy Laboratory (NREL). First, we analyze the processes and the materials used in those processes to identify the hazards presented. Then we study federal, state, and local regulations and apply the relevant requirements to our operations. When necessary, we generate internal safety documents to consolidate this information. We design research operations and support systems to conform to these requirements. Before we construct the systems, we perform a semiquantitative risk analysis on likely accident scenarios. All scenarios presenting an unacceptable risk require system or procedural modifications to reduce the risk. Following these modifications, we repeat the risk analysis to ensure that the respective accident scenarios present an acceptable risk. Once all risks are acceptable, we conduct an operational readiness review (ORR). A management-appointed panel performs the ORR ensuring compliance with all relevant requirements. After successful completion of the ORR, operations can begin.

  9. Interim reliability-evaluation program: analysis of the Browns Ferry, Unit 1, nuclear plant. Appendix B - system descriptions and fault trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, S.E.; Poloski, J.P.; Sullivan, W.H.

    1982-07-01

    This report describes a risk study of the Browns Ferry, Unit 1, nuclear plant. The study is one of four such studies sponsored by the NRC Office of Research, Division of Risk Assessment, as part of its Interim Reliability Evaluation Program (IREP), Phase II. This report is contained in four volumes: a main report and three appendixes. Appendix B provides a description of Browns Ferry, Unit 1, plant systems and the failure evaluation of those systems as they apply to accidents at Browns Ferry. Information is presented concerning front-line system fault analysis; support system fault analysis; human error models andmore » probabilities; and generic control circuit analyses.« less

  10. Validation of cytogenetic risk groups according to International Prognostic Scoring Systems by peripheral blood CD34+FISH: results from a German diagnostic study in comparison with an international control group

    PubMed Central

    Braulke, Friederike; Platzbecker, Uwe; Müller-Thomas, Catharina; Götze, Katharina; Germing, Ulrich; Brümmendorf, Tim H.; Nolte, Florian; Hofmann, Wolf-Karsten; Giagounidis, Aristoteles A. N.; Lübbert, Michael; Greenberg, Peter L.; Bennett, John M.; Solé, Francesc; Mallo, Mar; Slovak, Marilyn L.; Ohyashiki, Kazuma; Le Beau, Michelle M.; Tüchler, Heinz; Pfeilstöcker, Michael; Nösslinger, Thomas; Hildebrandt, Barbara; Shirneshan, Katayoon; Aul, Carlo; Stauder, Reinhard; Sperr, Wolfgang R.; Valent, Peter; Fonatsch, Christa; Trümper, Lorenz; Haase, Detlef; Schanz, Julie

    2015-01-01

    International Prognostic Scoring Systems are used to determine the individual risk profile of myelodysplastic syndrome patients. For the assessment of International Prognostic Scoring Systems, an adequate chromosome banding analysis of the bone marrow is essential. Cytogenetic information is not available for a substantial number of patients (5%–20%) with dry marrow or an insufficient number of metaphase cells. For these patients, a valid risk classification is impossible. In the study presented here, the International Prognostic Scoring Systems were validated based on fluorescence in situ hybridization analyses using extended probe panels applied to cluster of differentiation 34 positive (CD34+) peripheral blood cells of 328 MDS patients of our prospective multicenter German diagnostic study and compared to chromosome banding results of 2902 previously published patients with myelodysplastic syndromes. For cytogenetic risk classification by fluorescence in situ hybridization analyses of CD34+ peripheral blood cells, the groups differed significantly for overall and leukemia-free survival by uni- and multivariate analyses without discrepancies between treated and untreated patients. Including cytogenetic data of fluorescence in situ hybridization analyses of peripheral CD34+ blood cells (instead of bone marrow banding analysis) into the complete International Prognostic Scoring System assessment, the prognostic risk groups separated significantly for overall and leukemia-free survival. Our data show that a reliable stratification to the risk groups of the International Prognostic Scoring Systems is possible from peripheral blood in patients with missing chromosome banding analysis by using a comprehensive probe panel (clinicaltrials.gov identifier:01355913). PMID:25344522

  11. The Application of a Residual Risk Evaluation Technique Used for Expendable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Latimer, John A.

    2009-01-01

    This presentation provides a Residual Risk Evaluation Technique (RRET) developed by Kennedy Space Center (KSC) Safety and Mission Assurance (S&MA) Launch Services Division. This technique is one of many procedures used by S&MA at KSC to evaluate residual risks for each Expendable Launch Vehicle (ELV) mission. RRET is a straight forward technique that incorporates the proven methodology of risk management, fault tree analysis, and reliability prediction. RRET derives a system reliability impact indicator from the system baseline reliability and the system residual risk reliability values. The system reliability impact indicator provides a quantitative measure of the reduction in the system baseline reliability due to the identified residual risks associated with the designated ELV mission. An example is discussed to provide insight into the application of RRET.

  12. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)

    NASA Technical Reports Server (NTRS)

    Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis; hide

    2011-01-01

    Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was, however, not to happen. Early in the Apollo program, estimates of the probability for a successful roundtrip human mission to the moon yielded disappointingly low (and suspect) values and NASA became discouraged from further performing quantitative risk analyses until some two decades later when the methods were more refined, rigorous, and repeatable. Instead, NASA decided to rely primarily on the Hazard Analysis (HA) and Failure Modes and Effects Analysis (FMEA) methods for system safety assessment.

  13. Need for, and financial feasibility of, satellite-aided land mobile communications

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Marantz, C. S.; Freibaum, J.

    1982-01-01

    Questions regarding the role of a mobile-satellite system in augmenting the terrestrial communications system are considered, and a market assessment study is discussed. Aspects of an investment analysis are examined, taking into account a three phase financial study of four postulated land Mobile Satellite Service (LMSS) systems, project profitability evaluation methods, risk analysis methods, financial projections, potential investor acceptance standards, and a risk analysis. It is concluded that a satellite augmented terrestrial mobile service appears to be economically and technically superior to a service depending exclusively on terrestrial systems. The interest in the Mobile Satellite Service is found to be worldwide, and the ground equipment market is potentially large.

  14. Gemitis : an integrated and participative risk reduction strategy for the sustainable development of cities

    NASA Astrophysics Data System (ADS)

    Masure, P.

    2003-04-01

    The GEMITIS method has been implemented since 1995 into a global and integrated Risk Reduction Strategy for improving the seismic risk-assessment effectiveness in urban areas, including the generation of crisis scenarios and mid- to long term- seismic impact assessment. GEMITIS required us to provide more precise definitions of notions in common use by natural-hazard specialists, such as elements at risk and vulnerability. Until then, only the physical and human elements had been considered, and analysis of their vulnerability referred to their fragility in the face of aggression by nature. We have completed this approach by also characterizing the social and cultural vulnerability of a city and its inhabitants, and, with a wider scope, the functional vulnerability of the "urban system". This functional vulnerability depends upon the relations between the system elements (weak links in chains, functional relays, and defense systems) and upon the city's relations with the outside world (interdependence). Though well developed in methods for evaluating industrial risk (fault-tree analysis, event-tree analysis, multiple defense barriers, etc.), this aspect had until now been ignored by the "hard-science" specialists working on natural hazards. Based on the implementation of an Urban System Exposure methodology, we were able to identify specific human, institutional, or functional vulnerability factors for each urban system, which until had been very little discussed by risk-analysis and civil-protection specialists. In addition, we have defined the new concept of "main stakes" of the urban system, ranked by order of social value (or collective utility). Obviously, vital or strategic issues must be better resistant or protected against natural hazards than issues of secondary importance. The ranking of exposed elements of a city in terms of "main stakes" provides a very useful guide for adapting vulnerability studies and for orienting preventive actions. For this, GEMITIS is based on a systemic approach of the city and on value analysis of exposed elements. It facilitates a collective expertise for the definition of a preventive action plan based on the participation of the main urban actors (crisis preparedness, construction, land-use, etc.).

  15. Use of Model-Based Design Methods for Enhancing Resiliency Analysis of Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Knox, Lenora A.

    The most common traditional non-functional requirement analysis is reliability. With systems becoming more complex, networked, and adaptive to environmental uncertainties, system resiliency has recently become the non-functional requirement analysis of choice. Analysis of system resiliency has challenges; which include, defining resilience for domain areas, identifying resilience metrics, determining resilience modeling strategies, and understanding how to best integrate the concepts of risk and reliability into resiliency. Formal methods that integrate all of these concepts do not currently exist in specific domain areas. Leveraging RAMSoS, a model-based reliability analysis methodology for Systems of Systems (SoS), we propose an extension that accounts for resiliency analysis through evaluation of mission performance, risk, and cost using multi-criteria decision-making (MCDM) modeling and design trade study variability modeling evaluation techniques. This proposed methodology, coined RAMSoS-RESIL, is applied to a case study in the multi-agent unmanned aerial vehicle (UAV) domain to investigate the potential benefits of a mission architecture where functionality to complete a mission is disseminated across multiple UAVs (distributed) opposed to being contained in a single UAV (monolithic). The case study based research demonstrates proof of concept for the proposed model-based technique and provides sufficient preliminary evidence to conclude which architectural design (distributed vs. monolithic) is most resilient based on insight into mission resilience performance, risk, and cost in addition to the traditional analysis of reliability.

  16. Risk as analysis and risk as feelings: some thoughts about affect, reason, risk, and rationality.

    PubMed

    Slovic, Paul; Finucane, Melissa L; Peters, Ellen; MacGregor, Donald G

    2004-04-01

    Modern theories in cognitive psychology and neuroscience indicate that there are two fundamental ways in which human beings comprehend risk. The "analytic system" uses algorithms and normative rules, such as probability calculus, formal logic, and risk assessment. It is relatively slow, effortful, and requires conscious control. The "experiential system" is intuitive, fast, mostly automatic, and not very accessible to conscious awareness. The experiential system enabled human beings to survive during their long period of evolution and remains today the most natural and most common way to respond to risk. It relies on images and associations, linked by experience to emotion and affect (a feeling that something is good or bad). This system represents risk as a feeling that tells us whether it is safe to walk down this dark street or drink this strange-smelling water. Proponents of formal risk analysis tend to view affective responses to risk as irrational. Current wisdom disputes this view. The rational and the experiential systems operate in parallel and each seems to depend on the other for guidance. Studies have demonstrated that analytic reasoning cannot be effective unless it is guided by emotion and affect. Rational decision making requires proper integration of both modes of thought. Both systems have their advantages, biases, and limitations. Now that we are beginning to understand the complex interplay between emotion and reason that is essential to rational behavior, the challenge before us is to think creatively about what this means for managing risk. On the one hand, how do we apply reason to temper the strong emotions engendered by some risk events? On the other hand, how do we infuse needed "doses of feeling" into circumstances where lack of experience may otherwise leave us too "coldly rational"? This article addresses these important questions.

  17. Risk analysis with a fuzzy-logic approach of a complex installation

    NASA Astrophysics Data System (ADS)

    Peikert, Tim; Garbe, Heyno; Potthast, Stefan

    2016-09-01

    This paper introduces a procedural method based on fuzzy logic to analyze systematic the risk of an electronic system in an intentional electromagnetic environment (IEME). The method analyzes the susceptibility of a complex electronic installation with respect to intentional electromagnetic interference (IEMI). It combines the advantages of well-known techniques as fault tree analysis (FTA), electromagnetic topology (EMT) and Bayesian networks (BN) and extends the techniques with an approach to handle uncertainty. This approach uses fuzzy sets, membership functions and fuzzy logic to handle the uncertainty with probability functions and linguistic terms. The linguistic terms add to the risk analysis the knowledge from experts of the investigated system or environment.

  18. Medical-device risk management and public safety: using cost-benefit as a measurement of effectiveness

    NASA Astrophysics Data System (ADS)

    Hughes, Allen A.

    1994-12-01

    Public safety can be enhanced through the development of a comprehensive medical device risk management. This can be accomplished through case studies using a framework that incorporates cost-benefit analysis in the evaluation of risk management attributes. This paper presents a framework for evaluating the risk management system for regulatory Class III medical devices. The framework consists of the following sixteen attributes of a comprehensive medical device risk management system: fault/failure analysis, premarket testing/clinical trials, post-approval studies, manufacturer sponsored hospital studies, product labeling, establishment inspections, problem reporting program, mandatory hospital reporting, medical literature surveillance, device/patient registries, device performance monitoring, returned product analysis, autopsy program, emergency treatment funds/interim compensation, product liability, and alternative compensation mechanisms. Review of performance histories for several medical devices can reveal the value of information for many attributes, and also the inter-dependencies of the attributes in generating risk information flow. Such an information flow network is presented as a starting point for enhancing medical device risk management by focusing on attributes with high net benefit values and potential to spur information dissemination.

  19. Montana Youth Risk Behavior Survey Report, 2005 for American Indian Students in Urban Schools: Statewide Analysis of Selected Behavior Risk Factors

    ERIC Educational Resources Information Center

    Montana Office of Public Instruction, 2005

    2005-01-01

    The Youth Risk Behavior Surveillance System is an epidemiologic surveillance system that was established by the U.S. Centers for Disease Control and Prevention (CDC) to help monitor the prevalence of behaviors that not only influence youth health, but also put youth at risk for the most significant health and social problems that can occur during…

  20. On Space Exploration and Human Error: A Paper on Reliability and Safety

    NASA Technical Reports Server (NTRS)

    Bell, David G.; Maluf, David A.; Gawdiak, Yuri

    2005-01-01

    NASA space exploration should largely address a problem class in reliability and risk management stemming primarily from human error, system risk and multi-objective trade-off analysis, by conducting research into system complexity, risk characterization and modeling, and system reasoning. In general, in every mission we can distinguish risk in three possible ways: a) known-known, b) known-unknown, and c) unknown-unknown. It is probably almost certain that space exploration will partially experience similar known or unknown risks embedded in the Apollo missions, Shuttle or Station unless something alters how NASA will perceive and manage safety and reliability

  1. Systems Analysis of NASA Aviation Safety Program: Final Report

    NASA Technical Reports Server (NTRS)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  2. An integrated optimization method for river water quality management and risk analysis in a rural system.

    PubMed

    Liu, J; Li, Y P; Huang, G H; Zeng, X T; Nie, S

    2016-01-01

    In this study, an interval-stochastic-based risk analysis (RSRA) method is developed for supporting river water quality management in a rural system under uncertainty (i.e., uncertainties exist in a number of system components as well as their interrelationships). The RSRA method is effective in risk management and policy analysis, particularly when the inputs (such as allowable pollutant discharge and pollutant discharge rate) are expressed as probability distributions and interval values. Moreover, decision-makers' attitudes towards system risk can be reflected using a restricted resource measure by controlling the variability of the recourse cost. The RSRA method is then applied to a real case of water quality management in the Heshui River Basin (a rural area of China), where chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and soil loss are selected as major indicators to identify the water pollution control strategies. Results reveal that uncertainties and risk attitudes have significant effects on both pollutant discharge and system benefit. A high risk measure level can lead to a reduced system benefit; however, this reduction also corresponds to raised system reliability. Results also disclose that (a) agriculture is the dominant contributor to soil loss, TN, and TP loads, and abatement actions should be mainly carried out for paddy and dry farms; (b) livestock husbandry is the main COD discharger, and abatement measures should be mainly conducted for poultry farm; (c) fishery accounts for a high percentage of TN, TP, and COD discharges but a has low percentage of overall net benefit, and it may be beneficial to cease fishery activities in the basin. The findings can facilitate the local authority in identifying desired pollution control strategies with the tradeoff between socioeconomic development and environmental sustainability.

  3. Advancing Risk Assessment through the Application of Systems Toxicology

    PubMed Central

    Sauer, John Michael; Kleensang, André; Peitsch, Manuel C.; Hayes, A. Wallace

    2016-01-01

    Risk assessment is the process of quantifying the probability of a harmful effect to individuals or populations from human activities. Mechanistic approaches to risk assessment have been generally referred to as systems toxicology. Systems toxicology makes use of advanced analytical and computational tools to integrate classical toxicology and quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Three presentations including two case studies involving both in vitro and in vivo approaches described the current state of systems toxicology and the potential for its future application in chemical risk assessment. PMID:26977253

  4. Analysis of Risk Compensation Behavior on Night Vision Enhancement System

    NASA Astrophysics Data System (ADS)

    Hiraoka, Toshihiro; Masui, Junya; Nishikawa, Seimei

    Advanced driver assistance systems (ADAS) such as a forward obstacle collision warning system (FOCWS) and a night vision enhancement system (NVES) aim to decrease driver's mental workload and enhance vehicle safety by provision of useful information to support driver's perception process and judgment process. On the other hand, the risk homeostasis theory (RHT) cautions that an enhanced safety and a reduced risk would cause a risk compensation behavior such as increasing the vehicle velocity. Therefore, the present paper performed the driving simulator experiments to discuss dependence on the NVES and emergence of the risk compensation behavior. Moreover, we verified the side-effects of spontaneous behavioral adaptation derived from the presentation of the fuel-consumption meter on the risk compensation behavior.

  5. Research on the method of information system risk state estimation based on clustering particle filter

    NASA Astrophysics Data System (ADS)

    Cui, Jia; Hong, Bei; Jiang, Xuepeng; Chen, Qinghua

    2017-05-01

    With the purpose of reinforcing correlation analysis of risk assessment threat factors, a dynamic assessment method of safety risks based on particle filtering is proposed, which takes threat analysis as the core. Based on the risk assessment standards, the method selects threat indicates, applies a particle filtering algorithm to calculate influencing weight of threat indications, and confirms information system risk levels by combining with state estimation theory. In order to improve the calculating efficiency of the particle filtering algorithm, the k-means cluster algorithm is introduced to the particle filtering algorithm. By clustering all particles, the author regards centroid as the representative to operate, so as to reduce calculated amount. The empirical experience indicates that the method can embody the relation of mutual dependence and influence in risk elements reasonably. Under the circumstance of limited information, it provides the scientific basis on fabricating a risk management control strategy.

  6. Derailment-based Fault Tree Analysis on Risk Management of Railway Turnout Systems

    NASA Astrophysics Data System (ADS)

    Dindar, Serdar; Kaewunruen, Sakdirat; An, Min; Gigante-Barrera, Ángel

    2017-10-01

    Railway turnouts are fundamental mechanical infrastructures, which allow a rolling stock to divert one direction to another. As those are of a large number of engineering subsystems, e.g. track, signalling, earthworks, these particular sub-systems are expected to induce high potential through various kind of failure mechanisms. This could be a cause of any catastrophic event. A derailment, one of undesirable events in railway operation, often results, albeit rare occurs, in damaging to rolling stock, railway infrastructure and disrupt service, and has the potential to cause casualties and even loss of lives. As a result, it is quite significant that a well-designed risk analysis is performed to create awareness of hazards and to identify what parts of the systems may be at risk. This study will focus on all types of environment based failures as a result of numerous contributing factors noted officially as accident reports. This risk analysis is designed to help industry to minimise the occurrence of accidents at railway turnouts. The methodology of the study relies on accurate assessment of derailment likelihood, and is based on statistical multiple factors-integrated accident rate analysis. The study is prepared in the way of establishing product risks and faults, and showing the impact of potential process by Boolean algebra.

  7. Software for occupational health and safety risk analysis based on a fuzzy model.

    PubMed

    Stefanovic, Miladin; Tadic, Danijela; Djapan, Marko; Macuzic, Ivan

    2012-01-01

    Risk and safety management are very important issues in healthcare systems. Those are complex systems with many entities, hazards and uncertainties. In such an environment, it is very hard to introduce a system for evaluating and simulating significant hazards. In this paper, we analyzed different types of hazards in healthcare systems and we introduced a new fuzzy model for evaluating and ranking hazards. Finally, we presented a developed software solution, based on the suggested fuzzy model for evaluating and monitoring risk.

  8. The role of risk-based prioritization in total quality management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, C.T.

    1994-10-01

    The climate in which government managers must make decisions grows more complex and uncertain. All stakeholders - the public, industry, and Congress - are demanding greater consciousness, responsibility, and accountability of programs and their budgets. Yet, managerial decisions have become multifaceted, involve greater risk, and operate over much longer time periods. Over the last four or five decades, as policy analysis and decisions became more complex, scientists from psychology, operations research, systems science, and economics have developed a more or less coherent process called decision analysis to aid program management. The process of decision analysis - a systems theoretic approachmore » - provides the backdrop for this paper. The Laboratory Integrated Prioritization System (LIPS) has been developed as a systems analytic and risk-based prioritization tool to aid the management of the Tri-Labs` (Lawrence Livermore, Los Alamos, and Sandia) operating resources. Preliminary analyses of the effects of LIPS has confirmed the practical benefits of decision and systems sciences - the systematic, quantitative reduction in uncertainty. To date, the use of LIPS - and, hence, its value - has been restricted to resource allocation within the Tri-Labs` operations budgets. This report extends the role of risk-based prioritization to the support of DOE Total Quality Management (TQM) programs. Furthermore, this paper will argue for the requirement to institutionalize an evolutionary, decision theoretic approach to the policy analysis of the Department of Energy`s Program Budget.« less

  9. Risk-Based Prioritization of Research for Aviation Security Using Logic-Evolved Decision Analysis

    NASA Technical Reports Server (NTRS)

    Eisenhawer, S. W.; Bott, T. F.; Sorokach, M. R.; Jones, F. P.; Foggia, J. R.

    2004-01-01

    The National Aeronautics and Space Administration is developing advanced technologies to reduce terrorist risk for the air transportation system. Decision support tools are needed to help allocate assets to the most promising research. An approach to rank ordering technologies (using logic-evolved decision analysis), with risk reduction as the metric, is presented. The development of a spanning set of scenarios using a logic-gate tree is described. Baseline risk for these scenarios is evaluated with an approximate reasoning model. Illustrative risk and risk reduction results are presented.

  10. Decision analysis and risk models for land development affecting infrastructure systems.

    PubMed

    Thekdi, Shital A; Lambert, James H

    2012-07-01

    Coordination and layering of models to identify risks in complex systems such as large-scale infrastructure of energy, water, and transportation is of current interest across application domains. Such infrastructures are increasingly vulnerable to adjacent commercial and residential land development. Land development can compromise the performance of essential infrastructure systems and increase the costs of maintaining or increasing performance. A risk-informed approach to this topic would be useful to avoid surprise, regret, and the need for costly remedies. This article develops a layering and coordination of models for risk management of land development affecting infrastructure systems. The layers are: system identification, expert elicitation, predictive modeling, comparison of investment alternatives, and implications of current decisions for future options. The modeling layers share a focus on observable factors that most contribute to volatility of land development and land use. The relevant data and expert evidence include current and forecasted growth in population and employment, conservation and preservation rules, land topography and geometries, real estate assessments, market and economic conditions, and other factors. The approach integrates to a decision framework of strategic considerations based on assessing risk, cost, and opportunity in order to prioritize needs and potential remedies that mitigate impacts of land development to the infrastructure systems. The approach is demonstrated for a 5,700-mile multimodal transportation system adjacent to 60,000 tracts of potential land development. © 2011 Society for Risk Analysis.

  11. Program risk analysis handbook

    NASA Technical Reports Server (NTRS)

    Batson, R. G.

    1987-01-01

    NASA regulations specify that formal risk analysis be performed on a program at each of several milestones. Program risk analysis is discussed as a systems analysis approach, an iterative process (identification, assessment, management), and a collection of techniques. These techniques, which range from extremely simple to complex network-based simulation, are described in this handbook in order to provide both analyst and manager with a guide for selection of the most appropriate technique. All program risk assessment techniques are shown to be based on elicitation and encoding of subjective probability estimates from the various area experts on a program. Techniques to encode the five most common distribution types are given. Then, a total of twelve distinct approaches to risk assessment are given. Steps involved, good and bad points, time involved, and degree of computer support needed are listed. Why risk analysis should be used by all NASA program managers is discussed. Tools available at NASA-MSFC are identified, along with commercially available software. Bibliography (150 entries) and a program risk analysis check-list are provided.

  12. Econometric analysis of the impact of the relationship of GDP and the pension capital

    NASA Astrophysics Data System (ADS)

    Nepp, A. N.; Amiryan, A. A.

    2016-12-01

    The article demonstrates the impact of institutional risks on indicators of compulsory pension insurance and describes the results of a comparative analysis of investment risks faced by the pension systems of the Russian Federation and OECD countries. Efficiency of private companies managing pension funds in Russia and OECD countries is compared and analyzed to show the necessity to liberalize requirements placed on investments of pension savings funds. On the basis of the available statistical data, the article puts forward and discusses the hypothesis that increasing of the basic indicators of the pension system is possible by reducing its institutional risks. It is concluded that if the institutional risks are reduced and the level of trust increases, there will be enhance growth in the pension system key indicators, such as pension payments and the replacement rate.

  13. Laser power conversion system analysis, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.

  14. Risk-benefit analysis and public policy: a bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E.M.; Van Horn, A.J.

    1976-11-01

    Risk-benefit analysis has been implicitly practiced whenever decision-makers are confronted with decisions involving risks to life, health, or to the environment. Various methodologies have been developed to evaluate relevant criteria and to aid in assessing the impacts of alternative projects. Among these have been cost-benefit analysis, which has been widely used for project evaluation. However, in many cases it has been difficult to assign dollar costs to those criteria involving risks and benefits which are not now assigned explicit monetary values in our economic system. Hence, risk-benefit analysis has evolved to become more than merely an extension of cost-benefit analysis,more » and many methods have been applied to examine the trade-offs between risks and benefits. In addition, new scientific and statistical techniques have been developed for assessing current and future risks. The 950 references included in this bibliography are meant to suggest the breadth of those methodologies which have been applied to decisions involving risk.« less

  15. Identifying Students at Risk: An Examination of Computer-Adaptive Measures and Latent Class Growth Analysis

    ERIC Educational Resources Information Center

    Keller-Margulis, Milena; McQuillin, Samuel D.; Castañeda, Juan Javier; Ochs, Sarah; Jones, John H.

    2018-01-01

    Multitiered systems of support depend on screening technology to identify students at risk. The purpose of this study was to examine the use of a computer-adaptive test and latent class growth analysis (LCGA) to identify students at risk in reading with focus on the use of this methodology to characterize student performance in screening.…

  16. Reducing the Risk of Human Space Missions with INTEGRITY

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Dillon-Merill, Robin L.; Tri, Terry O.; Henninger, Donald L.

    2003-01-01

    The INTEGRITY Program will design and operate a test bed facility to help prepare for future beyond-LEO missions. The purpose of INTEGRITY is to enable future missions by developing, testing, and demonstrating advanced human space systems. INTEGRITY will also implement and validate advanced management techniques including risk analysis and mitigation. One important way INTEGRITY will help enable future missions is by reducing their risk. A risk analysis of human space missions is important in defining the steps that INTEGRITY should take to mitigate risk. This paper describes how a Probabilistic Risk Assessment (PRA) of human space missions will help support the planning and development of INTEGRITY to maximize its benefits to future missions. PRA is a systematic methodology to decompose the system into subsystems and components, to quantify the failure risk as a function of the design elements and their corresponding probability of failure. PRA provides a quantitative estimate of the probability of failure of the system, including an assessment and display of the degree of uncertainty surrounding the probability. PRA provides a basis for understanding the impacts of decisions that affect safety, reliability, performance, and cost. Risks with both high probability and high impact are identified as top priority. The PRA of human missions beyond Earth orbit will help indicate how the risk of future human space missions can be reduced by integrating and testing systems in INTEGRITY.

  17. SYN-OP-SYS™: A Computerized Management Information System for Quality Assurance and Risk Management

    PubMed Central

    Thomas, David J.; Weiner, Jayne; Lippincott, Ronald C.

    1985-01-01

    SYN·OP·SYS™ is a computerized management information system for quality assurance and risk management. Computer software for the efficient collection and analysis of “occurrences” and the clinical data associated with these kinds of patient events is described. The system is evaluated according to certain computer design criteria, and the system's implementation is assessed.

  18. A group-level approach to analyzing participative ergonomics (PE) effectiveness: The relationship between PE dimensions and employee exposure to injuries.

    PubMed

    Morag, Ido; Luria, Gil

    2018-04-01

    Most studies concerned with participative ergonomic (PE) interventions, focus on organizational rather than group level analysis. By implementing an intervention at a manufacturing plant, the current study, utilizing advanced information systems, measured the effect of line-supervisor leadership on employee exposure to risks. The study evaluated which PE dimensions (i.e., extent of workforce involvement, diversity of reporter role types and scope of analysis) are related to such exposure at the group level. The data for the study was extracted from two separate computerized systems (workforce medical records of 791 employees and an intranet reporting system) during a two-year period. While the results did not confirm the effect of line-supervisor leadership on subordinates' exposure to risks, they did demonstrate relationships between PE dimensions and the employees' exposure to risks. The results support the suggested level of analysis and demonstrate that group-based analysis facilitates the assimilation of preventive interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A Framework for Assessment of Aviation Safety Technology Portfolios

    NASA Technical Reports Server (NTRS)

    Jones, Sharon M.; Reveley, Mary S.

    2014-01-01

    The programs within NASA's Aeronautics Research Mission Directorate (ARMD) conduct research and development to improve the national air transportation system so that Americans can travel as safely as possible. NASA aviation safety systems analysis personnel support various levels of ARMD management in their fulfillment of system analysis and technology prioritization as defined in the agency's program and project requirements. This paper provides a framework for the assessment of aviation safety research and technology portfolios that includes metrics such as projected impact on current and future safety, technical development risk and implementation risk. The paper also contains methods for presenting portfolio analysis and aviation safety Bayesian Belief Network (BBN) output results to management using bubble charts and quantitative decision analysis techniques.

  20. Risk Management using Dependency Stucture Matrix

    NASA Astrophysics Data System (ADS)

    Petković, Ivan

    2011-09-01

    An efficient method based on dependency structure matrix (DSM) analysis is given for ranking risks in a complex system or process whose entities are mutually dependent. This rank is determined according to the element's values of the unique positive eigenvector which corresponds to the matrix spectral radius modeling the considered engineering system. For demonstration, the risk problem of NASA's robotic spacecraft is analyzed.

  1. LNG risk management

    NASA Astrophysics Data System (ADS)

    Martino, P.

    1980-12-01

    A general methodology is presented for conducting an analysis of the various aspects of the hazards associated with the storage and transportation of liquefied natural gas (LNG) which should be considered during the planning stages of a typical LNG ship terminal. The procedure includes the performance of a hazards and system analysis of the proposed site, a probability analysis of accident scenarios and safety impacts, an analysis of the consequences of credible accidents such as tanker accidents, spills and fires, the assessment of risks and the design and evaluation of risk mitigation measures.

  2. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 3: Nuclear Safety Analysis Document (NSAD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Nuclear safety analysis as applied to a space base mission is presented. The nuclear safety analysis document summarizes the mission and the credible accidents/events which may lead to nuclear hazards to the general public. The radiological effects and associated consequences of the hazards are discussed in detail. The probability of occurrence is combined with the potential number of individuals exposed to or above guideline values to provide a measure of accident and total mission risk. The overall mission risk has been determined to be low with the potential exposure to or above 25 rem limited to less than 4 individuals per every 1000 missions performed. No radiological risk to the general public occurs during the prelaunch phase at KSC. The most significant risks occur from prolonged exposure to reactor debris following land impact generally associated with the disposal phase of the mission where fission product inventories can be high.

  3. Simple Scoring System to Predict In-Hospital Mortality After Surgery for Infective Endocarditis.

    PubMed

    Gatti, Giuseppe; Perrotti, Andrea; Obadia, Jean-François; Duval, Xavier; Iung, Bernard; Alla, François; Chirouze, Catherine; Selton-Suty, Christine; Hoen, Bruno; Sinagra, Gianfranco; Delahaye, François; Tattevin, Pierre; Le Moing, Vincent; Pappalardo, Aniello; Chocron, Sidney

    2017-07-20

    Aspecific scoring systems are used to predict the risk of death postsurgery in patients with infective endocarditis (IE). The purpose of the present study was both to analyze the risk factors for in-hospital death, which complicates surgery for IE, and to create a mortality risk score based on the results of this analysis. Outcomes of 361 consecutive patients (mean age, 59.1±15.4 years) who had undergone surgery for IE in 8 European centers of cardiac surgery were recorded prospectively, and a risk factor analysis (multivariable logistic regression) for in-hospital death was performed. The discriminatory power of a new predictive scoring system was assessed with the receiver operating characteristic curve analysis. Score validation procedures were carried out. Fifty-six (15.5%) patients died postsurgery. BMI >27 kg/m 2 (odds ratio [OR], 1.79; P =0.049), estimated glomerular filtration rate <50 mL/min (OR, 3.52; P <0.0001), New York Heart Association class IV (OR, 2.11; P =0.024), systolic pulmonary artery pressure >55 mm Hg (OR, 1.78; P =0.032), and critical state (OR, 2.37; P =0.017) were independent predictors of in-hospital death. A scoring system was devised to predict in-hospital death postsurgery for IE (area under the receiver operating characteristic curve, 0.780; 95% CI, 0.734-0.822). The score performed better than 5 of 6 scoring systems for in-hospital death after cardiac surgery that were considered. A simple scoring system based on risk factors for in-hospital death was specifically created to predict mortality risk postsurgery in patients with IE. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. Validation of cytogenetic risk groups according to International Prognostic Scoring Systems by peripheral blood CD34+FISH: results from a German diagnostic study in comparison with an international control group.

    PubMed

    Braulke, Friederike; Platzbecker, Uwe; Müller-Thomas, Catharina; Götze, Katharina; Germing, Ulrich; Brümmendorf, Tim H; Nolte, Florian; Hofmann, Wolf-Karsten; Giagounidis, Aristoteles A N; Lübbert, Michael; Greenberg, Peter L; Bennett, John M; Solé, Francesc; Mallo, Mar; Slovak, Marilyn L; Ohyashiki, Kazuma; Le Beau, Michelle M; Tüchler, Heinz; Pfeilstöcker, Michael; Nösslinger, Thomas; Hildebrandt, Barbara; Shirneshan, Katayoon; Aul, Carlo; Stauder, Reinhard; Sperr, Wolfgang R; Valent, Peter; Fonatsch, Christa; Trümper, Lorenz; Haase, Detlef; Schanz, Julie

    2015-02-01

    International Prognostic Scoring Systems are used to determine the individual risk profile of myelodysplastic syndrome patients. For the assessment of International Prognostic Scoring Systems, an adequate chromosome banding analysis of the bone marrow is essential. Cytogenetic information is not available for a substantial number of patients (5%-20%) with dry marrow or an insufficient number of metaphase cells. For these patients, a valid risk classification is impossible. In the study presented here, the International Prognostic Scoring Systems were validated based on fluorescence in situ hybridization analyses using extended probe panels applied to cluster of differentiation 34 positive (CD34(+)) peripheral blood cells of 328 MDS patients of our prospective multicenter German diagnostic study and compared to chromosome banding results of 2902 previously published patients with myelodysplastic syndromes. For cytogenetic risk classification by fluorescence in situ hybridization analyses of CD34(+) peripheral blood cells, the groups differed significantly for overall and leukemia-free survival by uni- and multivariate analyses without discrepancies between treated and untreated patients. Including cytogenetic data of fluorescence in situ hybridization analyses of peripheral CD34(+) blood cells (instead of bone marrow banding analysis) into the complete International Prognostic Scoring System assessment, the prognostic risk groups separated significantly for overall and leukemia-free survival. Our data show that a reliable stratification to the risk groups of the International Prognostic Scoring Systems is possible from peripheral blood in patients with missing chromosome banding analysis by using a comprehensive probe panel (clinicaltrials.gov identifier:01355913). Copyright© Ferrata Storti Foundation.

  5. A New Approach in Applying Systems Engineering Tools and Analysis to Determine Hepatocyte Toxicogenomics Risk Levels to Human Health.

    PubMed

    Gigrich, James; Sarkani, Shahryar; Holzer, Thomas

    2017-03-01

    There is an increasing backlog of potentially toxic compounds that cannot be evaluated with current animal-based approaches in a cost-effective and expeditious manner, thus putting human health at risk. Extrapolation of animal-based test results for human risk assessment often leads to different physiological outcomes. This article introduces the use of quantitative tools and methods from systems engineering to evaluate the risk of toxic compounds by the analysis of the amount of stress that human hepatocytes undergo in vitro when metabolizing GW7647 1 over extended times and concentrations. Hepatocytes are exceedingly connected systems that make it challenging to understand the highly varied dimensional genomics data to determine risk of exposure. Gene expression data of peroxisome proliferator-activated receptor-α (PPARα) 2 binding was measured over multiple concentrations and varied times of GW7647 exposure and leveraging mahalanombis distance to establish toxicity threshold risk levels. The application of these novel systems engineering tools provides new insight into the intricate workings of human hepatocytes to determine risk threshold levels from exposure. This approach is beneficial to decision makers and scientists, and it can help reduce the backlog of untested chemical compounds due to the high cost and inefficiency of animal-based models.

  6. Game Theory and Risk-Based Levee System Design

    NASA Astrophysics Data System (ADS)

    Hui, R.; Lund, J. R.; Madani, K.

    2014-12-01

    Risk-based analysis has been developed for optimal levee design for economic efficiency. Along many rivers, two levees on opposite riverbanks act as a simple levee system. Being rational and self-interested, land owners on each river bank would tend to independently optimize their levees with risk-based analysis, resulting in a Pareto-inefficient levee system design from the social planner's perspective. Game theory is applied in this study to analyze decision making process in a simple levee system in which the land owners on each river bank develop their design strategies using risk-based economic optimization. For each land owner, the annual expected total cost includes expected annual damage cost and annualized construction cost. The non-cooperative Nash equilibrium is identified and compared to the social planner's optimal distribution of flood risk and damage cost throughout the system which results in the minimum total flood cost for the system. The social planner's optimal solution is not feasible without appropriate level of compensation for the transferred flood risk to guarantee and improve conditions for all parties. Therefore, cooperative game theory is then employed to develop an economically optimal design that can be implemented in practice. By examining the game in the reversible and irreversible decision making modes, the cost of decision making myopia is calculated to underline the significance of considering the externalities and evolution path of dynamic water resource problems for optimal decision making.

  7. Systematic analysis of natural hazards along infrastructure networks using a GIS-tool for risk assessment

    NASA Astrophysics Data System (ADS)

    Baruffini, Mirko

    2010-05-01

    Due to the topographical conditions in Switzerland, the highways and the railway lines are frequently exposed to natural hazards as rockfalls, debris flows, landslides, avalanches and others. With the rising incidence of those natural hazards, protection measures become an important political issue. However, they are costly, and maximal protection is most probably not economically feasible. Furthermore risks are distributed in space and time. Consequently, important decision problems to the public sector decision makers are derived. This asks for a high level of surveillance and preservation along the transalpine lines. Efficient protection alternatives can be obtained consequently considering the concept of integral risk management. Risk analysis, as the central part of risk management, has become gradually a generally accepted approach for the assessment of current and future scenarios (Loat & Zimmermann 2004). The procedure aims at risk reduction which can be reached by conventional mitigation on one hand and the implementation of land-use planning on the other hand: a combination of active and passive mitigation measures is applied to prevent damage to buildings, people and infrastructures. With a Geographical Information System adapted to run with a tool developed to manage Risk analysis it is possible to survey the data in time and space, obtaining an important system for managing natural risks. As a framework, we adopt the Swiss system for risk analysis of gravitational natural hazards (BUWAL 1999). It offers a complete framework for the analysis and assessment of risks due to natural hazards, ranging from hazard assessment for gravitational natural hazards, such as landslides, collapses, rockfalls, floodings, debris flows and avalanches, to vulnerability assessment and risk analysis, and the integration into land use planning at the cantonal and municipality level. The scheme is limited to the direct consequences of natural hazards. Thus, we develop a system which integrates the procedures for a complete risk analysis in a Geographic Information System (GIS) toolbox, in order to be applied to our testbed, the Alps-crossing corridor of St. Gotthard. The simulation environment is developed within ArcObjects, the development platform for ArcGIS. The topic of ArcObjects usually emerges when users realize that programming ArcObjects can actually reduce the amount of repetitive work, streamline the workflow, and even produce functionalities that are not easily available in ArcGIS. We have adopted Visual Basic for Applications (VBA) for programming ArcObjects. Because VBA is already embedded within ArcMap and ArcCatalog, it is convenient for ArcGIS users to program ArcObjects in VBA. Our tool visualises the obtained data by an analysis of historical data (aerial photo imagery, field surveys, documentation of past events) or an environmental modeling (estimations of the area affected by a given event), and event such as route number and route position and thematic maps. As a result of this step the record appears in WebGIS. The user can select a specific area to overview previous hazards in the region. After performing the analysis, a double click on the visualised infrastructures opens the corresponding results. The constantly updated risk maps show all sites that require more protection against natural hazards. The final goal of our work is to offer a versatile tool for risk analysis which can be applied to different situations. Today our GIS application mainly centralises the documentation of natural hazards. Additionally the system offers information about natural hazard at the Gotthard line. It is very flexible and can be used as a simple program to model the expansion of natural hazards, as a program of quantitatively estimate risks or as a detailed analysis at a municipality level. The tool is extensible and can be expanded with additional modules. The initial results of the experimental case study show how useful a GIS-based system can be for effective and efficient disaster response management. In the coming years our GIS application will be a data base containing all information needed for the evaluation of risk sites along the Gotthard line. Our GIS application can help the technical management to decide about protection measures because of, in addition to the visualisation, tools for spatial data analysis will be available. REFERENCES Bründl M. (Ed.) 2009 : Risikokonzept für Naturgefahren - Leitfaden. Nationale Plattform für Naturgefahren PLANAT, Bern. 416 S. BUWAL 1999: Risikoanalyse bei gravitativen Naturgefahren - Methode, Fallbeispiele und Daten (Risk analyses for gravitational natural hazards). Bundesamt für Umwelt, Wald und Landschaft (BUWAL). Umwelt-Materialen Nr. 107, 1-244. Loat, R. & Zimmermann, M. 2004: La gestion des risques en Suisse (Risk Management in Switzerland). In: Veyret, Y., Garry, G., Meschinet de Richemont, N. & Armand Colin (eds) 2002: Colloque Arche de la Défense 22-24 octobre 2002, dans Risques naturels et aménagement en Europe, 108-120. Maggi R. et al, 2009: Evaluation of the optimal resilience for vulnerable infrastructure networks. An interdisciplinary pilot study on the transalpine transportation corridors, NRP 54 "Sustainable Development of the Built Environment", Projekt Nr. 405 440, Final Scientific Report, Lugano

  8. AN IMPROVEMENT TO THE MOUSE COMPUTERIZED UNCERTAINTY ANALYSIS SYSTEM

    EPA Science Inventory

    The original MOUSE (Modular Oriented Uncertainty System) system was designed to deal with the problem of uncertainties in Environmental engineering calculations, such as a set of engineering cast or risk analysis equations. It was especially intended for use by individuals with l...

  9. Conceptual design study of Fusion Experimental Reactor (FY86 FER): Safety

    NASA Astrophysics Data System (ADS)

    Seki, Yasushi; Iida, Hiromasa; Honda, Tsutomu

    1987-08-01

    This report describes the study on safety for FER (Fusion Experimental Reactor) which has been designed as a next step machine to the JT-60. Though the final purpose of this study is to have an image of design base accident, maximum credible accident and to assess their risk or probability, etc., as FER plant system, the emphasis of this years study is placed on fuel-gas circulation system where the tritium inventory is maximum. The report consists of two chapters. The first chapter summarizes the FER system and describes FMEA (Failure Mode and Effect Analysis) and related accident progression sequence for FER plant system as a whole. The second chapter of this report is focused on fuel-gas circulation system including purification, isotope separation and storage. Probability of risk is assessed by the probabilistic risk analysis (PRA) procedure based on FMEA, ETA and FTA.

  10. The perception of the relationship between environment and health according to data from Italian Behavioural Risk Factor Surveillance System (PASSI).

    PubMed

    Sampaolo, Letizia; Tommaso, Giulia; Gherardi, Bianca; Carrozzi, Giuliano; Freni Sterrantino, Anna; Ottone, Marta; Goldoni, Carlo Alberto; Bertozzi, Nicoletta; Scaringi, Meri; Bolognesi, Lara; Masocco, Maria; Salmaso, Stefania; Lauriola, Paolo

    2017-01-01

    "OBJECTIVES: to identify groups of people in relation to the perception of environmental risk and to assess the main characteristics using data collected in the environmental module of the surveillance network Italian Behavioral Risk Factor Surveillance System (PASSI). perceptive profiles were identified using a latent class analysis; later they were included as outcome in multinomial logistic regression models to assess the association between environmental risk perception and demographic, health, socio-economic and behavioural variables. the latent class analysis allowed to split the sample in "worried", "indifferent", and "positive" people. The multinomial logistic regression model showed that the "worried" profile typically includes people of Italian nationality, living in highly urbanized areas, with a high level of education, and with economic difficulties; they pay special attention to their own health and fitness, but they have a negative perception of their own psychophysical state. the application of advanced statistical analysis enable to appraise PASSI data in order to characterize the perception of environmental risk, making the planning of interventions related to risk communication possible. ".

  11. Methodology for conceptual remote sensing spacecraft technology: insertion analysis balancing performance, cost, and risk

    NASA Astrophysics Data System (ADS)

    Bearden, David A.; Duclos, Donald P.; Barrera, Mark J.; Mosher, Todd J.; Lao, Norman Y.

    1997-12-01

    Emerging technologies and micro-instrumentation are changing the way remote sensing spacecraft missions are developed and implemented. Government agencies responsible for procuring space systems are increasingly requesting analyses to estimate cost, performance and design impacts of advanced technology insertion for both state-of-the-art systems as well as systems to be built 5 to 10 years in the future. Numerous spacecraft technology development programs are being sponsored by Department of Defense (DoD) and National Aeronautics and Space Administration (NASA) agencies with the goal of enhancing spacecraft performance, reducing mass, and reducing cost. However, it is often the case that technology studies, in the interest of maximizing subsystem-level performance and/or mass reduction, do not anticipate synergistic system-level effects. Furthermore, even though technical risks are often identified as one of the largest cost drivers for space systems, many cost/design processes and models ignore effects of cost risk in the interest of quick estimates. To address these issues, the Aerospace Corporation developed a concept analysis methodology and associated software tools. These tools, collectively referred to as the concept analysis and design evaluation toolkit (CADET), facilitate system architecture studies and space system conceptual designs focusing on design heritage, technology selection, and associated effects on cost, risk and performance at the system and subsystem level. CADET allows: (1) quick response to technical design and cost questions; (2) assessment of the cost and performance impacts of existing and new designs/technologies; and (3) estimation of cost uncertainties and risks. These capabilities aid mission designers in determining the configuration of remote sensing missions that meet essential requirements in a cost- effective manner. This paper discuses the development of CADET modules and their application to several remote sensing satellite mission concepts.

  12. A simple scoring system for predicting early major complications in spine surgery: the cumulative effect of age and size of surgery.

    PubMed

    Brasil, Albert Vincent Berthier; Teles, Alisson R; Roxo, Marcelo Ricardo; Schuster, Marcelo Neutzling; Zauk, Eduardo Ballverdu; Barcellos, Gabriel da Costa; Costa, Pablo Ramon Fruett da; Ferreira, Nelson Pires; Kraemer, Jorge Luiz; Ferreira, Marcelo Paglioli; Gobbato, Pedro Luis; Worm, Paulo Valdeci

    2016-10-01

    To analyze the cumulative effect of risk factors associated with early major complications in postoperative spine surgery. Retrospective analysis of 583 surgically-treated patients. Early "major" complications were defined as those that may lead to permanent detrimental effects or require further significant intervention. A balanced risk score was built using multiple logistic regression. Ninety-two early major complications occurred in 76 patients (13%). Age > 60 years and surgery of three or more levels proved to be significant independent risk factors in the multivariate analysis. The balanced scoring system was defined as: 0 points (no risk factor), 2 points (1 factor) or 4 points (2 factors). The incidence of early major complications in each category was 7% (0 points), 15% (2 points) and 29% (4 points) respectively. This balanced scoring system, based on two risk factors, represents an important tool for both surgical indication and for patient counseling before surgery.

  13. WE-B-BRC-02: Risk Analysis and Incident Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraass, B.

    Prospective quality management techniques, long used by engineering and industry, have become a growing aspect of efforts to improve quality management and safety in healthcare. These techniques are of particular interest to medical physics as scope and complexity of clinical practice continue to grow, thus making the prescriptive methods we have used harder to apply and potentially less effective for our interconnected and highly complex healthcare enterprise, especially in imaging and radiation oncology. An essential part of most prospective methods is the need to assess the various risks associated with problems, failures, errors, and design flaws in our systems. Wemore » therefore begin with an overview of risk assessment methodologies used in healthcare and industry and discuss their strengths and weaknesses. The rationale for use of process mapping, failure modes and effects analysis (FMEA) and fault tree analysis (FTA) by TG-100 will be described, as well as suggestions for the way forward. This is followed by discussion of radiation oncology specific risk assessment strategies and issues, including the TG-100 effort to evaluate IMRT and other ways to think about risk in the context of radiotherapy. Incident learning systems, local as well as the ASTRO/AAPM ROILS system, can also be useful in the risk assessment process. Finally, risk in the context of medical imaging will be discussed. Radiation (and other) safety considerations, as well as lack of quality and certainty all contribute to the potential risks associated with suboptimal imaging. The goal of this session is to summarize a wide variety of risk analysis methods and issues to give the medical physicist access to tools which can better define risks (and their importance) which we work to mitigate with both prescriptive and prospective risk-based quality management methods. Learning Objectives: Description of risk assessment methodologies used in healthcare and industry Discussion of radiation oncology-specific risk assessment strategies and issues Evaluation of risk in the context of medical imaging and image quality E. Samei: Research grants from Siemens and GE.« less

  14. Megacity Indicator System for Disaster Risk Management in Istanbul (MegaIST)

    NASA Astrophysics Data System (ADS)

    Yahya Menteşe, Emin; Kılıç, Osman; Baş, Mahmut; Khazai, Bijan; Ergün Konukcu, Betul; Emre Basmacı, Ahmet

    2017-04-01

    Decision makers need tools to understand the priorities and to set up benchmarks and track progress in their disaster risk reduction activities, so that they can justify their decisions and investments. In this regard, Megacity Indicator System for Disaster Risk Management (MegaIST), is developed in order to be used in disaster risk management studies, for decision makers and managers to establish right strategies and proper risk reduction actions, enhance resource management and investment decisions, set priorities, monitor progress in DRM and validate decisions taken with the aim of helping disaster oriented urban redevelopment, inform investors about risk profile of the city and providing a basis for dissemination and sharing of risk components with related stakeholders; by Directorate of Earthquake and Ground Research of Istanbul Metropolitan Municipality (IMM). MegaIST achieves these goals by analyzing the earthquake risk in three separate but complementary sub-categories consisting of "urban seismic risk, coping capacity and disaster risk management index" in an integrated way. MegaIST model fosters its analyses by presenting the outputs in a simple and user friendly format benefiting from GIS technology that ensures the adoptability of the model's use. Urban seismic risk analysis includes two components, namely; Physical Risk and Social Vulnerability Analysis. Physical risk analysis is based on the possible physical losses (such as building damage, casualties etc.) due to an earthquake while social vulnerability is considered as a factor that increases the results of the physical losses in correlation with the level of education, health, economic status and disaster awareness/preparedness of society. Coping capacity analysis is carried out with the aim of understanding the readiness of the Municipality to respond and recover from a disaster in Istanbul can be defined both in terms of the Municipality's operational capacities - the capacity of the Municipality in terms of the demand on its resources to respond to emergencies and restore services - as well as functional capacities - the policies and planning measures at the Municipality which lead to reduction of risk and protection of people. Disaster Risk Management Index (DRMI) is used as "control system" within the conceptual framework of MegaIST. This index has been developed to understand impact of corporate governance and enforcement structures and policies on total Urban Seismic Risk and in order to make the performance evaluation. Also, DRMI is composed of macro indicators that are developed in order to monitor progress in reducing disaster risk management of institution. They are presented in four broad indicator groups: Legal and Institutional Requirements, Risk Reduction Implementation and Preparedness Activities, Readiness to Respond and Recover, and Strategy and Coordination. As a result; in MegaIST, with the identification and analysis of physical and social vulnerabilities along with coping capacity and disaster risk management performance indicators; an integrated and analytical decision support system has been established to enhance DRM process and reach to a disaster resilient urban environment.

  15. Vulnerability Analysis and Evaluation of Urban Road System in Tianjin

    NASA Astrophysics Data System (ADS)

    Liu, Y. Q.; Wu, X.

    In recent years, with the development of economy, the road construction of our country has entered into a period of rapid growth. The road transportation network has been expanding and the risk of disasters is increasing. In this paper we study the vulnerability of urban road system in Tianjin. After analyzed many risk factors of the urban road system security, including road construction, road traffic and the natural environment, we proposed an evaluation index of vulnerability of urban road system and established the corresponding evaluation index system. Based on the results of analysis and comprehensive evaluation, appropriate improvement measures and suggestions which may reduce the vulnerability of the road system and improve the safety and reliability of the road system are proposed.

  16. Weighing of risk factors for penetrating keratoplasty graft failure: application of Risk Score System.

    PubMed

    Tourkmani, Abdo Karim; Sánchez-Huerta, Valeria; De Wit, Guillermo; Martínez, Jaime D; Mingo, David; Mahillo-Fernández, Ignacio; Jiménez-Alfaro, Ignacio

    2017-01-01

    To analyze the relationship between the score obtained in the Risk Score System (RSS) proposed by Hicks et al with penetrating keratoplasty (PKP) graft failure at 1y postoperatively and among each factor in the RSS with the risk of PKP graft failure using univariate and multivariate analysis. The retrospective cohort study had 152 PKPs from 152 patients. Eighteen cases were excluded from our study due to primary failure (10 cases), incomplete medical notes (5 cases) and follow-up less than 1y (3 cases). We included 134 PKPs from 134 patients stratified by preoperative risk score. Spearman coefficient was calculated for the relationship between the score obtained and risk of failure at 1y. Univariate and multivariate analysis were calculated for the impact of every single risk factor included in the RSS over graft failure at 1y. Spearman coefficient showed statistically significant correlation between the score in the RSS and graft failure ( P <0.05). Multivariate logistic regression analysis showed no statistically significant relationship ( P >0.05) between diagnosis and lens status with graft failure. The relationship between the other risk factors studied and graft failure was significant ( P <0.05), although the results for previous grafts and graft failure was unreliable. None of our patients had previous blood transfusion, thus, it had no impact. After the application of multivariate analysis techniques, some risk factors do not show the expected impact over graft failure at 1y.

  17. Weighing of risk factors for penetrating keratoplasty graft failure: application of Risk Score System

    PubMed Central

    Tourkmani, Abdo Karim; Sánchez-Huerta, Valeria; De Wit, Guillermo; Martínez, Jaime D.; Mingo, David; Mahillo-Fernández, Ignacio; Jiménez-Alfaro, Ignacio

    2017-01-01

    AIM To analyze the relationship between the score obtained in the Risk Score System (RSS) proposed by Hicks et al with penetrating keratoplasty (PKP) graft failure at 1y postoperatively and among each factor in the RSS with the risk of PKP graft failure using univariate and multivariate analysis. METHODS The retrospective cohort study had 152 PKPs from 152 patients. Eighteen cases were excluded from our study due to primary failure (10 cases), incomplete medical notes (5 cases) and follow-up less than 1y (3 cases). We included 134 PKPs from 134 patients stratified by preoperative risk score. Spearman coefficient was calculated for the relationship between the score obtained and risk of failure at 1y. Univariate and multivariate analysis were calculated for the impact of every single risk factor included in the RSS over graft failure at 1y. RESULTS Spearman coefficient showed statistically significant correlation between the score in the RSS and graft failure (P<0.05). Multivariate logistic regression analysis showed no statistically significant relationship (P>0.05) between diagnosis and lens status with graft failure. The relationship between the other risk factors studied and graft failure was significant (P<0.05), although the results for previous grafts and graft failure was unreliable. None of our patients had previous blood transfusion, thus, it had no impact. CONCLUSION After the application of multivariate analysis techniques, some risk factors do not show the expected impact over graft failure at 1y. PMID:28393027

  18. Train integrity detection risk analysis based on PRISM

    NASA Astrophysics Data System (ADS)

    Wen, Yuan

    2018-04-01

    GNSS based Train Integrity Monitoring System (TIMS) is an effective and low-cost detection scheme for train integrity detection. However, as an external auxiliary system of CTCS, GNSS may be influenced by external environments, such as uncertainty of wireless communication channels, which may lead to the failure of communication and positioning. In order to guarantee the reliability and safety of train operation, a risk analysis method of train integrity detection based on PRISM is proposed in this article. First, we analyze the risk factors (in GNSS communication process and the on-board communication process) and model them. Then, we evaluate the performance of the model in PRISM based on the field data. Finally, we discuss how these risk factors influence the train integrity detection process.

  19. Fault tree analysis for system modeling in case of intentional EMI

    NASA Astrophysics Data System (ADS)

    Genender, E.; Mleczko, M.; Döring, O.; Garbe, H.; Potthast, S.

    2011-08-01

    The complexity of modern systems on the one hand and the rising threat of intentional electromagnetic interference (IEMI) on the other hand increase the necessity for systematical risk analysis. Most of the problems can not be treated deterministically since slight changes in the configuration (source, position, polarization, ...) can dramatically change the outcome of an event. For that purpose, methods known from probabilistic risk analysis can be applied. One of the most common approaches is the fault tree analysis (FTA). The FTA is used to determine the system failure probability and also the main contributors to its failure. In this paper the fault tree analysis is introduced and a possible application of that method is shown using a small computer network as an example. The constraints of this methods are explained and conclusions for further research are drawn.

  20. CRISP: Catheterization RISk score for Pediatrics: A Report from the Congenital Cardiac Interventional Study Consortium (CCISC).

    PubMed

    Nykanen, David G; Forbes, Thomas J; Du, Wei; Divekar, Abhay A; Reeves, Jaxk H; Hagler, Donald J; Fagan, Thomas E; Pedra, Carlos A C; Fleming, Gregory A; Khan, Danyal M; Javois, Alexander J; Gruenstein, Daniel H; Qureshi, Shakeel A; Moore, Phillip M; Wax, David H

    2016-02-01

    We sought to develop a scoring system that predicts the risk of serious adverse events (SAE's) for individual pediatric patients undergoing cardiac catheterization procedures. Systematic assessment of risk of SAE in pediatric catheterization can be challenging in view of a wide variation in procedure and patient complexity as well as rapidly evolving technology. A 10 component scoring system was originally developed based on expert consensus and review of the existing literature. Data from an international multi-institutional catheterization registry (CCISC) between 2008 and 2013 were used to validate this scoring system. In addition we used multivariate methods to further refine the original risk score to improve its predictive power of SAE's. Univariate analysis confirmed the strong correlation of each of the 10 components of the original risk score with SAE attributed to a pediatric cardiac catheterization (P < 0.001 for all variables). Multivariate analysis resulted in a modified risk score (CRISP) that corresponds to an increase in value of area under a receiver operating characteristic curve (AUC) from 0.715 to 0.741. The CRISP score predicts risk of occurrence of an SAE for individual patients undergoing pediatric cardiac catheterization procedures. © 2015 Wiley Periodicals, Inc.

  1. Evaluation of an inpatient fall risk screening tool to identify the most critical fall risk factors in inpatients.

    PubMed

    Hou, Wen-Hsuan; Kang, Chun-Mei; Ho, Mu-Hsing; Kuo, Jessie Ming-Chuan; Chen, Hsiao-Lien; Chang, Wen-Yin

    2017-03-01

    To evaluate the accuracy of the inpatient fall risk screening tool and to identify the most critical fall risk factors in inpatients. Variations exist in several screening tools applied in acute care hospitals for examining risk factors for falls and identifying high-risk inpatients. Secondary data analysis. A subset of inpatient data for the period from June 2011-June 2014 was extracted from the nursing information system and adverse event reporting system of an 818-bed teaching medical centre in Taipei. Data were analysed using descriptive statistics, receiver operating characteristic curve analysis and logistic regression analysis. During the study period, 205 fallers and 37,232 nonfallers were identified. The results revealed that the inpatient fall risk screening tool (cut-off point of ≥3) had a low sensitivity level (60%), satisfactory specificity (87%), a positive predictive value of 2·0% and a negative predictive value of 99%. The receiver operating characteristic curve analysis revealed an area under the curve of 0·805 (sensitivity, 71·8%; specificity, 78%). To increase the sensitivity values, the Youden index suggests at least 1·5 points to be the most suitable cut-off point for the inpatient fall risk screening tool. Multivariate logistic regression analysis revealed a considerably increased fall risk in patients with impaired balance and impaired elimination. The fall risk factor was also significantly associated with days of hospital stay and with admission to surgical wards. The findings can raise awareness about the two most critical risk factors for falls among future clinical nurses and other healthcare professionals and thus facilitate the development of fall prevention interventions. This study highlights the needs for redefining the cut-off points of the inpatient fall risk screening tool to effectively identify inpatients at a high risk of falls. Furthermore, inpatients with impaired balance and impaired elimination should be closely monitored by nurses to prevent falling during hospitalisations. © 2016 John Wiley & Sons Ltd.

  2. [The workplace injury trends in the petrochemical industry: from data analysis to risk management].

    PubMed

    Campo, Giuseppe; Martini, Benedetta

    2013-01-01

    The most recent INAIL data show that, in 2009-2011, the accident frequency rate and the severity rate of workplace injuries in the chemical industry are lower than for the total non-agricultural workforce. The chemical industry, primarily because of the complex and hazardous work processes, requires an appropriate system for assessing and monitoring specific risks.The implementation of Responsible Care, a risk management system specific for the chemical industry, in 1984, has represented a historical step in the process of critical awareness of risk management by the chemical companies. Responsible Care is a risk management system specifically designed on the risk profiles of this type of enterprise, which integrates safety, health and environment. A risk management system, suitable for the needs of a chemical company, should extend its coverage area, beyond the responsible management of products throughout the entire production cycle, to the issues of corporate responsibility.

  3. Occupant and crash characteristics for case occupants with cervical spine injuries sustained in motor vehicle collisions.

    PubMed

    Stein, Deborah M; Kufera, Joseph A; Ho, Shiu M; Ryb, Gabriel E; Dischinger, Patricia C; O'Connor, James V; Scalea, Thomas M

    2011-02-01

    Motor vehicle collisions (MVCs) are the leading cause of spine and spinal cord injuries in the United States. Traumatic cervical spine injuries (CSIs) result in significant morbidity and mortality. This study was designed to evaluate both the epidemiologic and biomechanical risk factors associated with CSI in MVCs by using a population-based database and to describe occupant and crashes characteristics for a subset of severe crashes in which a CSI was sustained as represented by the Crash Injury Research Engineering Network (CIREN) database. Prospectively collected CIREN data from the eight centers were used to identify all case occupants between 1996 and November 2009. Case occupants older than 14 years and case vehicles of the four most common vehicle types were included. The National Automotive Sampling System's Crashworthiness Data System, a probability sample of all police-reported MVCs in the United States, was queried using the same inclusion criteria between 1997 and 2008. Cervical spinal cord and spinal column injuries were identified using Abbreviated Injury Scale (AIS) score codes. Data were abstracted on all case occupants, biomechanical crash characteristics, and injuries sustained. Univariate analysis was performed using a χ analysis. Logistic regression was used to identify significant risk factors in a multivariate analysis to control for confounding associations. CSIs were identified in 11.5% of CIREN case occupants. Case occupants aged 65 years or older and those occupants involved in rollover crashes were more likely to sustain a CSI. In univariate analysis of the subset of severe crashes represented by CIREN, the use of airbag and seat belt together (reference) were more protective than seat belt alone (odds ratio [OR]=1.73, 95% confidence interval [CI]=1.32-2.27) or the use of neither restraint system (OR=1.45, 95% CI=1.02-2.07). The most frequent injury sources in CIREN crashes were roof and its components (24.8%) and noncontact sources (15.5%). In multivariate analysis, age, rollover impact, and airbag-only restraint systems were associated with an increased odds of CSI. Using the population-based National Automotive Sampling System's Crashworthiness Data System data, 0.35% of occupants sustained a CSI. In univariate analysis, older age was noted to be a significant risk factor for CSI. Airbag-only restraint systems and both rollover and lateral crashes were also identified as risk factors for CSI. In addition, increasing delta v was highly associated with CSIs. In multivariate analysis, similar risk factors were noted. Of all the restraint systems, seat belt use without airbag deployment was found to be the most protective restraint system (OR=0.29, 95% CI=0.16-0.50), whereas airbag-only restraint was associated with the highest risk of CSI (OR=3.54, 95% CI=2.29-5.46). Despite advances in automotive safety, CSIs sustained in MVC continue to occur too often. Older case occupants are at an increased risk of CSI. Rollover crashes and severe crashes led to a much higher risk of CSI than other types and severity of MVCs. Seat belt use is very effective in preventing CSI, whereas airbag deployment may increase the risk of occupants sustaining a CSI. More protection for older occupants is needed and protection in both rollover and lateral crashes should remain a focus of the automotive industry. The design of airbag restraint systems should be evaluated so that they are not causative of serious injury. In addition, engineers should continue to focus on improving automotive design to minimize the risk of spinal injury to occupants in high severity crashes.

  4. The Use of Object-Oriented Analysis Methods in Surety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, Richard L.; Funkhouser, Donald R.; Wyss, Gregory D.

    1999-05-01

    Object-oriented analysis methods have been used in the computer science arena for a number of years to model the behavior of computer-based systems. This report documents how such methods can be applied to surety analysis. By embodying the causality and behavior of a system in a common object-oriented analysis model, surety analysts can make the assumptions that underlie their models explicit and thus better communicate with system designers. Furthermore, given minor extensions to traditional object-oriented analysis methods, it is possible to automatically derive a wide variety of traditional risk and reliability analysis methods from a single common object model. Automaticmore » model extraction helps ensure consistency among analyses and enables the surety analyst to examine a system from a wider variety of viewpoints in a shorter period of time. Thus it provides a deeper understanding of a system's behaviors and surety requirements. This report documents the underlying philosophy behind the common object model representation, the methods by which such common object models can be constructed, and the rules required to interrogate the common object model for derivation of traditional risk and reliability analysis models. The methodology is demonstrated in an extensive example problem.« less

  5. Risk assessment techniques with applicability in marine engineering

    NASA Astrophysics Data System (ADS)

    Rudenko, E.; Panaitescu, F. V.; Panaitescu, M.

    2015-11-01

    Nowadays risk management is a carefully planned process. The task of risk management is organically woven into the general problem of increasing the efficiency of business. Passive attitude to risk and awareness of its existence are replaced by active management techniques. Risk assessment is one of the most important stages of risk management, since for risk management it is necessary first to analyze and evaluate risk. There are many definitions of this notion but in general case risk assessment refers to the systematic process of identifying the factors and types of risk and their quantitative assessment, i.e. risk analysis methodology combines mutually complementary quantitative and qualitative approaches. Purpose of the work: In this paper we will consider as risk assessment technique Fault Tree analysis (FTA). The objectives are: understand purpose of FTA, understand and apply rules of Boolean algebra, analyse a simple system using FTA, FTA advantages and disadvantages. Research and methodology: The main purpose is to help identify potential causes of system failures before the failures actually occur. We can evaluate the probability of the Top event.The steps of this analize are: the system's examination from Top to Down, the use of symbols to represent events, the use of mathematical tools for critical areas, the use of Fault tree logic diagrams to identify the cause of the Top event. Results: In the finally of study it will be obtained: critical areas, Fault tree logical diagrams and the probability of the Top event. These results can be used for the risk assessment analyses.

  6. Reliability and Probabilistic Risk Assessment - How They Play Together

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal; Stutts, Richard; Huang, Zhaofeng

    2015-01-01

    Since the Space Shuttle Challenger accident in 1986, NASA has extensively used probabilistic analysis methods to assess, understand, and communicate the risk of space launch vehicles. Probabilistic Risk Assessment (PRA), used in the nuclear industry, is one of the probabilistic analysis methods NASA utilizes to assess Loss of Mission (LOM) and Loss of Crew (LOC) risk for launch vehicles. PRA is a system scenario based risk assessment that uses a combination of fault trees, event trees, event sequence diagrams, and probability distributions to analyze the risk of a system, a process, or an activity. It is a process designed to answer three basic questions: 1) what can go wrong that would lead to loss or degraded performance (i.e., scenarios involving undesired consequences of interest), 2) how likely is it (probabilities), and 3) what is the severity of the degradation (consequences). Since the Challenger accident, PRA has been used in supporting decisions regarding safety upgrades for launch vehicles. Another area that was given a lot of emphasis at NASA after the Challenger accident is reliability engineering. Reliability engineering has been a critical design function at NASA since the early Apollo days. However, after the Challenger accident, quantitative reliability analysis and reliability predictions were given more scrutiny because of their importance in understanding failure mechanism and quantifying the probability of failure, which are key elements in resolving technical issues, performing design trades, and implementing design improvements. Although PRA and reliability are both probabilistic in nature and, in some cases, use the same tools, they are two different activities. Specifically, reliability engineering is a broad design discipline that deals with loss of function and helps understand failure mechanism and improve component and system design. PRA is a system scenario based risk assessment process intended to assess the risk scenarios that could lead to a major/top undesirable system event, and to identify those scenarios that are high-risk drivers. PRA output is critical to support risk informed decisions concerning system design. This paper describes the PRA process and the reliability engineering discipline in detail. It discusses their differences and similarities and how they work together as complementary analyses to support the design and risk assessment processes. Lessons learned, applications, and case studies in both areas are also discussed in the paper to demonstrate and explain these differences and similarities.

  7. The use of cluster analysis techniques in spaceflight project cost risk estimation

    NASA Technical Reports Server (NTRS)

    Fox, G.; Ebbeler, D.; Jorgensen, E.

    2003-01-01

    Project cost risk is the uncertainty in final project cost, contingent on initial budget, requirements and schedule. For a proposed mission, a dynamic simulation model relying for some of its input on a simple risk elicitation is used to identify and quantify systemic cost risk.

  8. Innovative neuro-fuzzy system of smart transport infrastructure for road traffic safety

    NASA Astrophysics Data System (ADS)

    Beinarovica, Anna; Gorobetz, Mikhail; Levchenkov, Anatoly

    2017-09-01

    The proposed study describes applying of neural network and fuzzy logic in transport control for safety improvement by evaluation of accidents’ risk by intelligent infrastructure devices. Risk evaluation is made by following multiple-criteria: danger, changeability and influence of changes for risk increasing. Neuro-fuzzy algorithms are described and proposed for task solution. The novelty of the proposed system is proved by deep analysis of known studies in the field. The structure of neuro-fuzzy system for risk evaluation and mathematical model is described in the paper. The simulation model of the intelligent devices for transport infrastructure is proposed to simulate different situations, assess the risks and propose the possible actions for infrastructure or vehicles to minimize the risk of possible accidents.

  9. Pitfalls and Precautions When Using Predicted Failure Data for Quantitative Analysis of Safety Risk for Human Rated Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hatfield, Glen S.; Hark, Frank; Stott, James

    2016-01-01

    Launch vehicle reliability analysis is largely dependent upon using predicted failure rates from data sources such as MIL-HDBK-217F. Reliability prediction methodologies based on component data do not take into account system integration risks such as those attributable to manufacturing and assembly. These sources often dominate component level risk. While consequence of failure is often understood, using predicted values in a risk model to estimate the probability of occurrence may underestimate the actual risk. Managers and decision makers use the probability of occurrence to influence the determination whether to accept the risk or require a design modification. The actual risk threshold for acceptance may not be fully understood due to the absence of system level test data or operational data. This paper will establish a method and approach to identify the pitfalls and precautions of accepting risk based solely upon predicted failure data. This approach will provide a set of guidelines that may be useful to arrive at a more realistic quantification of risk prior to acceptance by a program.

  10. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes, These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  11. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  12. A clinical economics workstation for risk-adjusted health care cost management.

    PubMed Central

    Eisenstein, E. L.; Hales, J. W.

    1995-01-01

    This paper describes a healthcare cost accounting system which is under development at Duke University Medical Center. Our approach differs from current practice in that this system will dynamically adjust its resource usage estimates to compensate for variations in patient risk levels. This adjustment is made possible by introducing a new cost accounting concept, Risk-Adjusted Quantity (RQ). RQ divides case-level resource usage variances into their risk-based component (resource consumption differences attributable to differences in patient risk levels) and their non-risk-based component (resource consumption differences which cannot be attributed to differences in patient risk levels). Because patient risk level is a factor in estimating resource usage, this system is able to simultaneously address the financial and quality dimensions of case cost management. In effect, cost-effectiveness analysis is incorporated into health care cost management. PMID:8563361

  13. Global computer-assisted appraisal of osteoporosis risk in Asian women: an innovative study.

    PubMed

    Chang, Shu F; Hong, Chin M; Yang, Rong S

    2011-05-01

    To develop a computer-assisted appraisal system of osteoporosis that can predict osteoporosis health risk in community-dwelling women and to use it in an empirical analysis of the risk in Asian women. As the literature indicates, health risk assessment tools are generally applied in clinical practice for patient diagnosis. However, few studies have explored how to assist community-dwelling women to understand the risk of osteoporosis without invasive data. A longitudinal, evidence-based study. The first stage of this study is to establish a system that combines expertise in nursing, medicine and information technology. This part includes information from random samples (n = 700), including data on bone mineral density, osteoporosis risk factors, knowledge, beliefs and behaviour, which are used as the health risk appraisal system database. The second stage is to apply an empirical study. The relative risks of osteoporosis of the participants (n = 300) were determined with the system. The participants that were classified as at-risk were randomly grouped into experimental and control groups. Each group was treated using different nursing intervention methods. The sensitivity and specificity of the analytical tools was 75%. In empirical study, analysis results indicate that the prevalence of osteoporosis was 14.0%. Data indicate that strategic application of multiple nursing interventions can promote osteoporosis prevention knowledge in high-risk women and enhance the effectiveness of preventive action. The system can also provide people in remote areas or with insufficient medical resources a simple and effective means of managing health risk and implement the idea of self-evaluation and self-caring among community-dwelling women at home to achieve the final goal of early detection and early treatment of osteoporosis. This study developed a useful approach for providing Asia women with a reliable, valid, convenient and economical self-health management model. Health care professionals can explore the use of advanced information systems and nursing interventions to increase the effectiveness of osteoporosis prevention programmes for women. © 2011 Blackwell Publishing Ltd.

  14. The Functional Resonance Analysis Method for a systemic risk based environmental auditing in a sinter plant: A semi-quantitative approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patriarca, Riccardo, E-mail: riccardo.patriarca@uniroma1.it; Di Gravio, Giulio; Costantino, Francesco

    Environmental auditing is a main issue for any production plant and assessing environmental performance is crucial to identify risks factors. The complexity of current plants arises from interactions among technological, human and organizational system components, which are often transient and not easily detectable. The auditing thus requires a systemic perspective, rather than focusing on individual behaviors, as emerged in recent research in the safety domain for socio-technical systems. We explore the significance of modeling the interactions of system components in everyday work, by the application of a recent systemic method, i.e. the Functional Resonance Analysis Method (FRAM), in order tomore » define dynamically the system structure. We present also an innovative evolution of traditional FRAM following a semi-quantitative approach based on Monte Carlo simulation. This paper represents the first contribution related to the application of FRAM in the environmental context, moreover considering a consistent evolution based on Monte Carlo simulation. The case study of an environmental risk auditing in a sinter plant validates the research, showing the benefits in terms of identifying potential critical activities, related mitigating actions and comprehensive environmental monitoring indicators. - Highlights: • We discuss the relevance of a systemic risk based environmental audit. • We present FRAM to represent functional interactions of the system. • We develop a semi-quantitative FRAM framework to assess environmental risks. • We apply the semi-quantitative FRAM framework to build a model for a sinter plant.« less

  15. Changes in Cross-Correlations as an Indicator for Systemic Risk

    NASA Astrophysics Data System (ADS)

    Zheng, Zeyu; Podobnik, Boris; Feng, Ling; Li, Baowen

    2012-11-01

    The 2008-2012 global financial crisis began with the global recession in December 2007 and exacerbated in September 2008, during which the U.S. stock markets lost 20% of value from its October 11 2007 peak. Various studies reported that financial crisis are associated with increase in both cross-correlations among stocks and stock indices and the level of systemic risk. In this paper, we study 10 different Dow Jones economic sector indexes, and applying principle component analysis (PCA) we demonstrate that the rate of increase in principle components with short 12-month time windows can be effectively used as an indicator of systemic risk--the larger the change of PC1, the higher the increase of systemic risk. Clearly, the higher the level of systemic risk, the more likely a financial crisis would occur in the near future.

  16. SMART: A Propositional Logic-Based Trade Analysis and Risk Assessment Tool for a Complex Mission

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Nicholas, Austin; Alibay, Farah; Parrish, Joseph

    2015-01-01

    This paper introduces a new trade analysis software called the Space Mission Architecture and Risk Analysis Tool (SMART). This tool supports a high-level system trade study on a complex mission, such as a potential Mars Sample Return (MSR) mission, in an intuitive and quantitative manner. In a complex mission, a common approach to increase the probability of success is to have redundancy and prepare backups. Quantitatively evaluating the utility of adding redundancy to a system is important but not straightforward, particularly when the failure of parallel subsystems are correlated.

  17. Development of economic consequence methodology for process risk analysis.

    PubMed

    Zadakbar, Omid; Khan, Faisal; Imtiaz, Syed

    2015-04-01

    A comprehensive methodology for economic consequence analysis with appropriate models for risk analysis of process systems is proposed. This methodology uses loss functions to relate process deviations in a given scenario to economic losses. It consists of four steps: definition of a scenario, identification of losses, quantification of losses, and integration of losses. In this methodology, the process deviations that contribute to a given accident scenario are identified and mapped to assess potential consequences. Losses are assessed with an appropriate loss function (revised Taguchi, modified inverted normal) for each type of loss. The total loss is quantified by integrating different loss functions. The proposed methodology has been examined on two industrial case studies. Implementation of this new economic consequence methodology in quantitative risk assessment will provide better understanding and quantification of risk. This will improve design, decision making, and risk management strategies. © 2014 Society for Risk Analysis.

  18. Reducing Risk of Noise-Induced Hearing Loss in Collegiate Music Ensembles Using Ambient Technology.

    PubMed

    Powell, Jason; Chesky, Kris

    2017-09-01

    Student musicians are at risk for noise-induced hearing loss (NIHL) as they develop skills and perform during instructional activities. Studies using longitudinal dosimeter data show that pedagogical procedures and instructor behaviors are highly predictive of NIHL risk, thus implying the need for innovative approaches to increase instructor competency in managing instructional activities without interfering with artistic and academic freedom. Ambient information systems, an emerging trend in human-computer interaction that infuses psychological behavioral theories into technologies, can help construct informative risk-regulating systems. The purpose of this study was to determine the effects of introducing an ambient information system into the ensemble setting. The system used two ambient displays and a counterbalanced within-subjects treatment study design with six jazz ensemble instructors to determine if the system could induce a behavior change that alters trends in measures resulting from dosimeter data. This study assessed efficacy using time series analysis to determine changes in eight statistical measures of behavior over a 9-wk period. Analysis showed that the system was effective, as all instructors showed changes in a combination of measures. This study is in an important step in developing non-interfering technology to reduce NIHL among academic musicians.

  19. An Online Risk Monitor System (ORMS) to Increase Safety and Security Levels in Industry

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Rahman, Khalil Ur; Hassan, Mehmood Ul

    2013-12-01

    The main idea of this research is to develop an Online Risk Monitor System (ORMS) based on Living Probabilistic Safety Assessment (LPSA). The article highlights the essential features and functions of ORMS. The basic models and modules such as, Reliability Data Update Model (RDUM), running time update, redundant system unavailability update, Engineered Safety Features (ESF) unavailability update and general system update have been described in this study. ORMS not only provides quantitative analysis but also highlights qualitative aspects of risk measures. ORMS is capable of automatically updating the online risk models and reliability parameters of equipment. ORMS can support in the decision making process of operators and managers in Nuclear Power Plants.

  20. Relative risk analysis of the use of radiation-emitting medical devices: A preliminary application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.D.

    This report describes the development of a risk analysis approach for evaluating the use of radiation-emitting medial devices. This effort was performed by Lawrence Livermore National Laboratory for the US Nuclear Regulatory Commission (NRC). The assessment approach has bee applied to understand the risks in using the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step to evaluate the potential role of risk analysis for developing regulations and quality assurance requirements in the use of nuclear medical devices. The risk approach identifies and assesses the most likely risk contributors and their relative importance for the medicalmore » system. The approach uses expert screening techniques and relative risk profiling to incorporate the type, quality, and quantity of data available and to present results in an easily understood form.« less

  1. Staging of intestinal- and diffuse-type gastric cancers with the OLGA and OLGIM staging systems.

    PubMed

    Cho, S-J; Choi, I J; Kook, M-C; Nam, B-H; Kim, C G; Lee, J Y; Ryu, K W; Kim, Y-W

    2013-11-01

    Operative link on gastritis assessment (OLGA) and Operative link on gastric intestinal metaplasia assessment (OLGIM) staging systems have been proposed for gastric cancer (GC) risk estimation. To validate the OLGA and OLGIM staging systems in a region with high risk of GC. This retrospective study included 474 GC patients and age- and sex-matched health screening control persons in a cancer centre hospital. We classified gastritis patterns according to the OLGA and OLGIM systems using the histological database that a pathologist prospectively evaluated using the updated Sydney system. GC risk according to the OLGA and OLGIM stages was evaluated using logistic regression analysis. More GC patients had OLGA stages III-IV (46.2%) than controls (26.6%, P < 0.001), particularly among patients with intestinal-type GCs (62.2%) compared with diffuse-type GCs (30.9%). OLGA stages III and IV were significantly associated with increased risk of GC [odds ratios (ORs), 2.09; P = 0.008 and 2.04; P = 0.014 respectively] in multivariate analysis. The association was more significant for intestinal-type (ORs, 4.76; P = 0.001 and 4.19; P = 0.002 respectively), but not diffuse-type GC. OLGIM stages from I to IV were significantly associated with increased risk of both intestinal-type (ORs, 3.64, 5.15, 7.89 and 13.20 respectively) and diffuse-type GC (ORs, 1.84, 2.59, 5.08 and 6.32 respectively) with a significantly increasing trend. As high OLGA and OLGIM stages are independent risk factors for gastric cancer, the staging systems may be useful for risk assessment in high-risk regions, especially for intestinal-type gastric cancer. © 2013 John Wiley & Sons Ltd.

  2. Enhancing Public Helicopter Safety as a Component of Homeland Security

    DTIC Science & Technology

    2016-12-01

    Risk Assessment Tool GPS Global Positioning System IFR instrument flight rules ILS instrument landing system IMC instrument meteorological...flight rules ( IFR ) flying and the lack of a pre-flight risk assessment. Pilot fatigue is a factor that appeared in two of the accident reports (New...three common factors that emerged from the qualitative analysis of coding: inadequate proficiency of IFR flying, lack of a pre- flight risk assessment

  3. A hierarchical-multiobjective framework for risk management

    NASA Technical Reports Server (NTRS)

    Haimes, Yacov Y.; Li, Duan

    1991-01-01

    A broad hierarchical-multiobjective framework is established and utilized to methodologically address the management of risk. United into the framework are the hierarchical character of decision-making, the multiple decision-makers at separate levels within the hierarchy, the multiobjective character of large-scale systems, the quantitative/empirical aspects, and the qualitative/normative/judgmental aspects. The methodological components essentially consist of hierarchical-multiobjective coordination, risk of extreme events, and impact analysis. Examples of applications of the framework are presented. It is concluded that complex and interrelated forces require an analysis of trade-offs between engineering analysis and societal preferences, as in the hierarchical-multiobjective framework, to successfully address inherent risk.

  4. Information Management Functional Economic Analysis for Finance Workstations to the Defense Information Technology Services Organization

    DTIC Science & Technology

    1993-03-01

    values themselves. The Wools perform risk-adjusted present-value comparisons and compute the ROI using discount factors. The assessment of risk in a...developed X Window system, the de facto industry standard window system in the UNIX environment. An X- terminal’s use is limited to display. It has no...2.1 IT HARDWARE The DOS-based PC used in this analysis costs $2,060. It includes an ASL 486DX-33 Industry Standard Architecture (ISA) computer with 8

  5. Optical and system engineering in the development of a high-quality student telescope kit

    NASA Astrophysics Data System (ADS)

    Pompea, Stephen M.; Pfisterer, Richard N.; Ellis, Scott; Arion, Douglas N.; Fienberg, Richard Tresch; Smith, Thomas C.

    2010-07-01

    The Galileoscope student telescope kit was developed by a volunteer team of astronomers, science education experts, and optical engineers in conjunction with the International Year of Astronomy 2009. This refracting telescope is in production with over 180,000 units produced and distributed with 25,000 units in production. The telescope was designed to be able to resolve the rings of Saturn and to be used in urban areas. The telescope system requirements, performance metrics, and architecture were established after an analysis of current inexpensive telescopes and student telescope kits. The optical design approaches used in the various prototypes and the optical system engineering tradeoffs will be described. Risk analysis, risk management, and change management were critical as was cost management since the final product was to cost around 15 (but had to perform as well as 100 telescopes). In the system engineering of the Galileoscope a variety of analysis and testing approaches were used, including stray light design and analysis using the powerful optical analysis program FRED.

  6. Risk analysis based on hazards interactions

    NASA Astrophysics Data System (ADS)

    Rossi, Lauro; Rudari, Roberto; Trasforini, Eva; De Angeli, Silvia; Becker, Joost

    2017-04-01

    Despite an increasing need for open, transparent, and credible multi-hazard risk assessment methods, models, and tools, the availability of comprehensive risk information needed to inform disaster risk reduction is limited, and the level of interaction across hazards is not systematically analysed. Risk assessment methodologies for different hazards often produce risk metrics that are not comparable. Hazard interactions (consecutive occurrence two or more different events) are generally neglected, resulting in strongly underestimated risk assessment in the most exposed areas. This study presents cases of interaction between different hazards, showing how subsidence can affect coastal and river flood risk (Jakarta and Bandung, Indonesia) or how flood risk is modified after a seismic event (Italy). The analysis of well documented real study cases, based on a combination between Earth Observation and in-situ data, would serve as basis the formalisation of a multi-hazard methodology, identifying gaps and research frontiers. Multi-hazard risk analysis is performed through the RASOR platform (Rapid Analysis and Spatialisation Of Risk). A scenario-driven query system allow users to simulate future scenarios based on existing and assumed conditions, to compare with historical scenarios, and to model multi-hazard risk both before and during an event (www.rasor.eu).

  7. Ontology-based specification, identification and analysis of perioperative risks.

    PubMed

    Uciteli, Alexandr; Neumann, Juliane; Tahar, Kais; Saleh, Kutaiba; Stucke, Stephan; Faulbrück-Röhr, Sebastian; Kaeding, André; Specht, Martin; Schmidt, Tobias; Neumuth, Thomas; Besting, Andreas; Stegemann, Dominik; Portheine, Frank; Herre, Heinrich

    2017-09-06

    Medical personnel in hospitals often works under great physical and mental strain. In medical decision-making, errors can never be completely ruled out. Several studies have shown that between 50 and 60% of adverse events could have been avoided through better organization, more attention or more effective security procedures. Critical situations especially arise during interdisciplinary collaboration and the use of complex medical technology, for example during surgical interventions and in perioperative settings (the period of time before, during and after surgical intervention). In this paper, we present an ontology and an ontology-based software system, which can identify risks across medical processes and supports the avoidance of errors in particular in the perioperative setting. We developed a practicable definition of the risk notion, which is easily understandable by the medical staff and is usable for the software tools. Based on this definition, we developed a Risk Identification Ontology (RIO) and used it for the specification and the identification of perioperative risks. An agent system was developed, which gathers risk-relevant data during the whole perioperative treatment process from various sources and provides it for risk identification and analysis in a centralized fashion. The results of such an analysis are provided to the medical personnel in form of context-sensitive hints and alerts. For the identification of the ontologically specified risks, we developed an ontology-based software module, called Ontology-based Risk Detector (OntoRiDe). About 20 risks relating to cochlear implantation (CI) have already been implemented. Comprehensive testing has indicated the correctness of the data acquisition, risk identification and analysis components, as well as the web-based visualization of results.

  8. The reliability-quality relationship for quality systems and quality risk management.

    PubMed

    Claycamp, H Gregg; Rahaman, Faiad; Urban, Jason M

    2012-01-01

    Engineering reliability typically refers to the probability that a system, or any of its components, will perform a required function for a stated period of time and under specified operating conditions. As such, reliability is inextricably linked with time-dependent quality concepts, such as maintaining a state of control and predicting the chances of losses from failures for quality risk management. Two popular current good manufacturing practice (cGMP) and quality risk management tools, failure mode and effects analysis (FMEA) and root cause analysis (RCA) are examples of engineering reliability evaluations that link reliability with quality and risk. Current concepts in pharmaceutical quality and quality management systems call for more predictive systems for maintaining quality; yet, the current pharmaceutical manufacturing literature and guidelines are curiously silent on engineering quality. This commentary discusses the meaning of engineering reliability while linking the concept to quality systems and quality risk management. The essay also discusses the difference between engineering reliability and statistical (assay) reliability. The assurance of quality in a pharmaceutical product is no longer measured only "after the fact" of manufacturing. Rather, concepts of quality systems and quality risk management call for designing quality assurance into all stages of the pharmaceutical product life cycle. Interestingly, most assays for quality are essentially static and inform product quality over the life cycle only by being repeated over time. Engineering process reliability is the fundamental concept that is meant to anticipate quality failures over the life cycle of the product. Reliability is a well-developed theory and practice for other types of manufactured products and manufacturing processes. Thus, it is well known to be an appropriate index of manufactured product quality. This essay discusses the meaning of reliability and its linkages with quality systems and quality risk management.

  9. Hazard Analysis and Safety Requirements for Small Drone Operations: To What Extent Do Popular Drones Embed Safety?

    PubMed

    Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimihailidou, Maria Mikela

    2018-03-01

    Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this article presents: (1) a set of safety requirements generated from the application of the systems theoretic process analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; and (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, or drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights. © 2017 Society for Risk Analysis.

  10. System for decision analysis support on complex waste management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shropshire, D.E.

    1997-10-01

    A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs,more » or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.« less

  11. Combined EDL-Mobility Planning for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kuwata, Yoshiaki; Balaram, Bob

    2011-01-01

    This paper presents an analysis framework for planetary missions that have coupled mobility and EDL (Entry-Descent-Landing) systems. Traditional systems engineering approaches to mobility missions such as MERs (Mars Exploration Rovers) and MSL (Mars Science Laboratory) independently study the EDL system and the mobility system, and does not perform explicit trade-off between them or risk minimization of the overall system. A major challenge is that EDL operation is inherently uncertain and its analysis results such as landing footprint are described using PDF (Probability Density Function). The proposed approach first builds a mobility cost-to-go map that encodes the driving cost of any point on the map to a science target location. The cost could include variety of metrics such as traverse distance, time, wheel rotation on soft soil, and closeness to hazards. It then convolves the mobility cost-to-go map with the landing PDF given by the EDL system, which provides a histogram of driving cost, which can be used to evaluate the overall risk of the mission. By capturing the coupling between EDL and mobility explicitly, this analysis framework enables quantitative tradeoff between EDL and mobility system performance, as well as the characterization of risks in a statistical way. The simulation results are presented with a realistic Mars terrain data

  12. Influence of Injury Risk Thresholds on the Performance of an Algorithm to Predict Crashes with Serious Injuries

    PubMed Central

    Bahouth, George; Digges, Kennerly; Schulman, Carl

    2012-01-01

    This paper presents methods to estimate crash injury risk based on crash characteristics captured by some passenger vehicles equipped with Advanced Automatic Crash Notification technology. The resulting injury risk estimates could be used within an algorithm to optimize rescue care. Regression analysis was applied to the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) to determine how variations in a specific injury risk threshold would influence the accuracy of predicting crashes with serious injuries. The recommended thresholds for classifying crashes with severe injuries are 0.10 for frontal crashes and 0.05 for side crashes. The regression analysis of NASS/CDS indicates that these thresholds will provide sensitivity above 0.67 while maintaining a positive predictive value in the range of 0.20. PMID:23169132

  13. Potentially functional COX-2-1195G>A polymorphism increases the risk of digestive system cancers: a meta-analysis.

    PubMed

    Dong, Jing; Dai, Juncheng; Zhang, Mingfeng; Hu, Zhibin; Shen, Hongbing

    2010-06-01

    Three potentially functional polymorphisms: -765G>C, -1195G>A, and 8473T>C in the cyclooxygenase-2 (COX-2) gene were identified and proposed to be associated with cancer susceptibility. The aim of this meta-analysis was to evaluate the association between these three polymorphisms and the risk of cancer in diverse populations. All case-control studies published up to November 2009 on the association between the three polymorphisms of COX-2 and cancer risk were identified by searching PubMed. The cancer risk associated with the three polymorphisms of the COX-2 gene was estimated for each study by OR together with its 95% confidence interval (CI), respectively. A total of 47 case-control studies were included, and variant genotypes GA/AA of -1195G>A were associated with a significantly increased cancer risk (GA/AA vs GG: odds ratio [OR], 1.29; 95% CI, 1.18-1.41; P(heterogeneity) = 0.113), and this significant association was mainly observed within cancers of the digestive system (e.g. colorectal, gastric, esophageal, oral, biliary tract, gallbladder, and pancreatic) without between-study heterogeneity (GA/AA vs GG: OR, 1.36; 95% CI; 1.23-1.51; P(heterogeneity) = 0.149). Furthermore, a stratification analysis showed that the risk of COX-2-1195G>A associated with cancers in the digestive system was more evident among Asians than Caucasians. However, for COX-2-765G>C and 8473T>C, no convincing association between the two polymorphisms and risk of cancer or cancer type was observed. The effect of three potentially functional polymorphisms (-765G>C, -1195G>A, and 8473T>C) in the COX-2 gene on cancer risk provided evidence that the COX-2-1195G>A polymorphism was significantly associated with increased risk of digestive system cancers, especially among Asian populations.

  14. [A systemic risk analysis of hospital management processes by medical employees--an effective basis for improving patient safety].

    PubMed

    Sobottka, Stephan B; Eberlein-Gonska, Maria; Schackert, Gabriele; Töpfer, Armin

    2009-01-01

    Due to the knowledge gap that exists between patients and health care staff the quality of medical treatment usually cannot be assessed securely by patients. For an optimization of safety in treatment-related processes of medical care, the medical staff needs to be actively involved in preventive and proactive quality management. Using voluntary, confidential and non-punitive systematic employee surveys, vulnerable topics and areas in patient care revealing preventable risks can be identified at an early stage. Preventive measures to continuously optimize treatment quality can be defined by creating a risk portfolio and a priority list of vulnerable topics. Whereas critical incident reporting systems are suitable for continuous risk assessment by detecting safety-relevant single events, employee surveys permit to conduct a systematic risk analysis of all treatment-related processes of patient care at any given point in time.

  15. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  16. Assessing wildfire risks at multiple spatial scales

    Treesearch

    Justin Fitch

    2008-01-01

    In continuation of the efforts to advance wildfire science and develop tools for wildland fire managers, a spatial wildfire risk assessment was carried out using Classification and Regression Tree analysis (CART) and Geographic Information Systems (GIS). The analysis was performed at two scales. The small-scale assessment covered the entire state of New Mexico, while...

  17. Flood risk analysis for flood control and sediment transportation: a case study in the catchments of the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Chang, J.; Guo, A.

    2017-12-01

    Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on flood control systems. Given this focus, a univariate and copula-based bivariate hydrological risk framework focusing on flood control and sediment transport is proposed in the current work. Additionally, the conditional probabilities of occurrence of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula model. Moreover, a Monte Carlo-based algorithm is used to evaluate the uncertainties of univariate and bivariate hydrological risk. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The results indicate that (1) 2-day and 3-day consecutive rainfall are highly correlated with the annual maximum flood discharge (AMF) in UCX and UCH, respectively; and (2) univariate and bivariate return periods, risk and reliability for the purposes of flood control and sediment transport are successfully estimated. Sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the AMF, exceeding the design flood of downstream hydraulic structures in the UCX and UCH. Most importantly, there was considerable sampling uncertainty in the univariate and bivariate hydrologic risk analysis, which would greatly challenge measures of future flood mitigation. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.

  18. Risk Factors for Venous Thromboembolism in Pediatric Trauma Patients and Validation of a Novel Scoring System: The Risk of Clots in Kids with Trauma (ROCKIT score)

    PubMed Central

    Yen, Jennifer; Van Arendonk, Kyle J.; Streiff, Michael B.; McNamara, LeAnn; Stewart, F. Dylan; Conner G, Kim G; Thompson, Richard E.; Haut, Elliott R.; Takemoto, Clifford M.

    2017-01-01

    OBJECTIVES Identify risk factors for venous thromboembolism (VTE) and develop a VTE risk assessment model for pediatric trauma patients. DESIGN, SETTING, AND PATIENTS We performed a retrospective review of patients 21 years and younger who were hospitalized following traumatic injuries at the John Hopkins level 1 adult and pediatric trauma center (1987-2011). The clinical characteristics of patients with and without VTE were compared, and multivariable logistic regression analysis was used to identify independent risk factors for VTE. Weighted risk assessment scoring systems were developed based on these and previously identified factors from patients in the National Trauma Data Bank (NTDB 2008-2010); the scoring systems were validated in this cohort from Johns Hopkins as well as a cohort of pediatric admissions from the NTDB (2011-2012). MAIN RESULTS Forty-nine of 17,366 pediatric trauma patients (0.28%) were diagnosed with VTE after admission to our trauma center. After adjusting for potential confounders, VTE was independently associated with older age, surgery, blood transfusion, higher Injury Severity Score (ISS), and lower Glasgow Coma Scale (GCS) score. These and additional factors were identified in 402,329 pediatric patients from the NTDB from 2008-2010; independent risk factors from the logistic regression analysis of this NTDB cohort were selected and incorporated into weighted risk assessment scoring systems. Two models were developed and were cross-validated in 2 separate pediatric trauma cohorts: 1) 282,535 patients in the NTDB from 2011 to 2012 2) 17,366 patients from Johns Hopkins. The receiver operator curve using these models in the validation cohorts had area under the curves that ranged 90% to 94%. CONCLUSIONS VTE is infrequent after trauma in pediatric patients. We developed weighted scoring systems to stratify pediatric trauma patients at risk for VTE. These systems may have potential to guide risk-appropriate VTE prophylaxis in children after trauma. PMID:26963757

  19. Flood risk analysis and adaptive strategy in context of uncertainties: a case study of Nhieu Loc Thi Nghe Basin, Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Ho, Long-Phi; Chau, Nguyen-Xuan-Quang; Nguyen, Hong-Quan

    2013-04-01

    The Nhieu Loc - Thi Nghe basin is the most important administrative and business area of Ho Chi Minh City. Due to system complexity of the basin such as the increasing trend of rainfall intensity, (tidal) water level and land subsidence, the simulation of hydrological, hydraulic variables for flooding prediction seems rather not adequate in practical projects. The basin is still highly vulnerable despite of multi-million USD investment for urban drainage improvement projects since the last decade. In this paper, an integrated system analysis in both spatial and temporal aspects based on statistical, GIS and modelling approaches has been conducted in order to: (1) Analyse risks before and after projects, (2) Foresee water-related risk under uncertainties of unfavourable driving factors and (3) Develop a sustainable flood risk management strategy for the basin. The results show that given the framework of risk analysis and adaptive strategy, certain urban developing plans in the basin must be carefully revised and/or checked in order to reduce the highly unexpected loss in the future

  20. Infection, Alveolar Osteitis, and Adverse Effects Using Metronidazole in Healthy Patients Undergoing Third Molar Surgery: A Meta-analysis.

    PubMed

    Isiordia-Espinoza, Mario Alberto; Aragon-Martinez, Othoniel H; Bollogna-Molina, Ronell E; Alonso-Castro, Ángel J

    2018-06-01

    The aim of this systematic review and meta-analysis was to evaluate the risk of surgical infection, alveolar osteitis, and adverse effects using systemic metronidazole in comparison with placebo in healthy patients undergoing third molar surgery. The eligible reports were identified from diverse science sources. Clinical trials meeting the inclusion and exclusion criteria and an acceptable Oxford Quality Score were included in this study. The evaluation of risk was done using the Risk Reduction Calculator and Review Manager 5.3., from the Cochrane Library. A significant risk reduction was assumed when the upper limit of the 95% confidence intervals was <1 and the lower limit did not cross zero (negative number) alongside a p value of <0.05 for the overall test. Data of 667 patients from five clinical trials were used for the assessment of risk. Our analysis showed no reduction of the risk of infection or dry socket in patients receiving metronidazole compared to whom took placebo. Meanwhile, the adverse effects did not exhibit a difference between the studied groups. The routine use of systemic metronidazole to prevent surgical site infection and/or dry socket in healthy patients undergoing third molar surgery is not recommended.

  1. Belgium: risk adjustment and financial responsibility in a centralised system.

    PubMed

    Schokkaert, Erik; Van de Voorde, Carine

    2003-07-01

    Since 1995 Belgian sickness funds are partially financed through a risk adjustment system and are held partially financially responsible for the difference between their actual and their risk-adjusted expenditures. However, they did not get the necessary instruments for exerting a real influence on expenditures and the health insurance market has not been opened for new entrants. At the same time the sickness funds have powerful tools for risk selection, because they also dominate the market for supplementary health insurance. The present risk-adjustment system is based on the results of a regression analysis with aggregate data. The main proclaimed purpose of this system is to guarantee a fair treatment to all the sickness funds. Until now the danger of risk selection has not been taken seriously. Consumer mobility has remained rather low. However, since the degree of financial responsibility is programmed to increase in the near future, the potential profits from cream skimming will increase.

  2. DTREEv2, a computer-based support system for the risk assessment of genetically modified plants.

    PubMed

    Pertry, Ine; Nothegger, Clemens; Sweet, Jeremy; Kuiper, Harry; Davies, Howard; Iserentant, Dirk; Hull, Roger; Mezzetti, Bruno; Messens, Kathy; De Loose, Marc; de Oliveira, Dulce; Burssens, Sylvia; Gheysen, Godelieve; Tzotzos, George

    2014-03-25

    Risk assessment of genetically modified organisms (GMOs) remains a contentious area and a major factor influencing the adoption of agricultural biotech. Methodologically, in many countries, risk assessment is conducted by expert committees with little or no recourse to databases and expert systems that can facilitate the risk assessment process. In this paper we describe DTREEv2, a computer-based decision support system for the identification of hazards related to the introduction of GM-crops into the environment. DTREEv2 structures hazard identification and evaluation by means of an Event-Tree type of analysis. The system produces an output flagging identified hazards and potential risks. It is intended to be used for the preparation and evaluation of biosafety dossiers and, as such, its usefulness extends to researchers, risk assessors and regulators in government and industry. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Mid-term financial impact of animal welfare improvements in Dutch broiler production.

    PubMed

    Gocsik, E; Lansink, A G J M Oude; Saatkamp, H W

    2013-12-01

    This study used a stochastic bioeconomic simulation model to simulate the business and financial risk of different broiler production systems over a 5-yr period. Simulation analysis was conducted using the @Risk add-in in MS Excel. To compare the impact of different production systems on economic feasibility, 2 cases were considered. The first case focused on the economic feasibility of a completely new system, whereas the second examined economic feasibilities when a farm switches from a conventional to an animal welfare-improving production system. A sensitivity analysis was conducted to assess the key drivers of economic feasibility and to reveal systematic differences across production systems. The study shows that economic feasibility of systems with improved animal welfare predominantly depends on the price that farmers receive. Moreover, the study demonstrates the importance of the level and variation of the price premium for improved welfare, particularly in the first 5 yr after conversion. The economic feasibility of the production system increases with the level of welfare improvements for a sufficiently high price level for broiler meat and low volatility in producer prices. If this is not the case, however, risk attitudes of farmers become important as well as the use of potential risk management instruments.

  4. Fault tree analysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory in Iran☆

    PubMed Central

    Nouri.Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad

    2014-01-01

    Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed. PMID:26779433

  5. Fault tree analysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory in Iran.

    PubMed

    Nouri Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad

    2014-04-01

    Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed.

  6. Quantitative assessment of the association between the angiotensin-converting enzyme gene insertion/deletion polymorphism and digestive system cancer risk.

    PubMed

    Wang, J; Yang, S; Guo, F H; Mao, X; Zhou, H; Dong, Y Q; Wang, Z M; Luo, F

    2015-11-13

    The angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism has been reported to be associated with digestive system cancer; however, the results from previous studies have been conflicting. The present study aimed to investigate the association between the ACE I/D polymorphism and the risk of digestive system cancer using a meta-analysis of previously published studies. Databases were systematically searched to identify relevant studies published prior to December 2014. We estimated the pooled OR with its 95%CI to assess the association. The meta-analysis consisted of thirteen case-control studies that included 2557 patients and 4356 healthy controls. Meta-analysis results based on all the studies showed no significant association between the ACE I/D polymorphism and the risk of digestive system cancer (DD vs II: OR = 0.85, 95%CI = 0.59-1.24; DI vs II: OR = 0.94, 95%CI = 0.78-1.15; dominant model: OR = 0.96, 95%CI = 0.81- 1.15; recessive model: OR = 1.06, 95%CI = 0.76-1.48). Subgroup analyses by race and cancer type did not detect an association between the ACE I/D polymorphism and digestive system cancer risk. However, when the analyses were restricted to smaller studies (N < 500 patients), the summary OR of DI vs II was 0.80 (95%CI = 0.66-0.97). Our analyses detected a possibility of publication bias with a misestimate of the true association by smaller studies. Overall, meta-analysis results suggest the ACE I/D polymorphism might not be associated with susceptibility to digestive system cancer. Further large and well-designed studies are needed to confirm these conclusions.

  7. RNAV (GPS) total system error models for use in wake encounter risk analysis of candidate CSPR pairs for inclusion in FAA Order 7110.308

    DOT National Transportation Integrated Search

    2013-08-01

    The purpose of this memorandum is to provide recommended Total System Error (TSE) models for : aircraft using RNAV (GPS) guidance when analyzing the wake encounter risk of proposed simultaneous : dependent (paired) approaches, with 1.5 Nautical...

  8. RNAV (GPS) total system error models for use in wake encounter risk analysis of dependent paired approaches to closely-spaced parallel runways : Project memorandum - February 2014

    DOT National Transportation Integrated Search

    2014-02-01

    The purpose of this memorandum is to provide recommended Total System Error (TSE) models : for aircraft using RNAV (GPS) guidance when analyzing the wake encounter risk of proposed : simultaneous dependent (paired) approach operations to Closel...

  9. Ximelagatran compared with warfarin for the prevention of systemic embolism and stroke. An imputed placebo analysis.

    PubMed

    Berry, Colin; Norrie, John; McMurray, John J V

    2005-03-01

    The active control trials, SPORTIF III and SPORTIF V, compared the direct thrombin inhibitor ximelagatran to warfarin, where each was given as a treatment to prevent systemic embolism and stroke in patients with atrial fibrillation. Because warfarin has previously been compared to placebo in similar patients and ximelagatran has now been compared to warfarin, an indirect comparison between ximelagatran and placebo is possible (imputed placebo analysis). In this analysis, ximelagatran reduces the risk of stroke and systemic embolism by 66% (hazard ratio 0.338; 95% confidence interval [CI] 0.204-0.560). Ximelagatran preserves 102% (95% CI 72-132%) of the benefit of warfarin. Based on these data, ximelagatran may be an effective alternative to warfarin for the prevention of stroke and systemic embolism in high-risk patients with atrial fibrillation.

  10. Health risks of energy systems.

    PubMed

    Krewitt, W; Hurley, F; Trukenmüller, A; Friedrich, R

    1998-08-01

    Health risks from fossil, renewable and nuclear reference energy systems are estimated following a detailed impact pathway approach. Using a set of appropriate air quality models and exposure-effect functions derived from the recent epidemiological literature, a methodological framework for risk assessment has been established and consistently applied across the different energy systems, including the analysis of consequences from a major nuclear accident. A wide range of health impacts resulting from increased air pollution and ionizing radiation is quantified, and the transferability of results derived from specific power plants to a more general context is discussed.

  11. Interaction of Reward Seeking and Self-Regulation in the Prediction of Risk Taking: A Cross-National Test of the Dual Systems Model

    ERIC Educational Resources Information Center

    Duell, Natasha; Steinberg, Laurence; Chein, Jason; Al-Hassan, Suha M.; Bacchini, Dario; Lei, Chang; Chaudhary, Nandita; Di Giunta, Laura; Dodge, Kenneth A.; Fanti, Kostas A.; Lansford, Jennifer E.; Malone, Patrick S.; Oburu, Paul; Pastorelli, Concetta; Skinner, Ann T.; Sorbring, Emma; Tapanya, Sombat; Uribe Tirado, Liliana Maria; Alampay, Liane Peña

    2016-01-01

    In the present analysis, we test the dual systems model of adolescent risk taking in a cross-national sample of over 5,200 individuals aged 10 through 30 (M = 17.05 years, SD = 5.91) from 11 countries. We examine whether reward seeking and self-regulation make independent, additive, or interactive contributions to risk taking, and ask whether…

  12. Multi Criteria Evaluation Module for RiskChanges Spatial Decision Support System

    NASA Astrophysics Data System (ADS)

    Olyazadeh, Roya; Jaboyedoff, Michel; van Westen, Cees; Bakker, Wim

    2015-04-01

    Multi-Criteria Evaluation (MCE) module is one of the five modules of RiskChanges spatial decision support system. RiskChanges web-based platform aims to analyze changes in hydro-meteorological risk and provides tools for selecting the best risk reduction alternative. It is developed under CHANGES framework (changes-itn.eu) and INCREO project (increo-fp7.eu). MCE tool helps decision makers and spatial planners to evaluate, sort and rank the decision alternatives. The users can choose among different indicators that are defined within the system using Risk and Cost Benefit analysis results besides they can add their own indicators. Subsequently the system standardizes and prioritizes them. Finally, the best decision alternative is selected by using the weighted sum model (WSM). The Application of this work is to facilitate the effect of MCE for analyzing changing risk over the time under different scenarios and future years by adopting a group decision making into practice and comparing the results by numeric and graphical view within the system. We believe that this study helps decision-makers to achieve the best solution by expressing their preferences for strategies under future scenarios. Keywords: Multi-Criteria Evaluation, Spatial Decision Support System, Weighted Sum Model, Natural Hazard Risk Management

  13. Meta-analysis of gender differences in residual stroke risk and major bleeding in patients with nonvalvular atrial fibrillation treated with oral anticoagulants.

    PubMed

    Pancholy, Samir B; Sharma, Parikshit S; Pancholy, Dipti S; Patel, Tejas M; Callans, David J; Marchlinski, Francis E

    2014-02-01

    Studies comparing gender-specific outcomes in patients with atrial fibrillation (AF) have reported conflicting results. Gender differences in cerebrovascular accident/systemic embolism (CVA/SE) or major bleeding outcomes with novel oral anticoagulant (NOAC) use are not known. The goal of this analysis was to perform a systematic review and meta-analysis evaluating gender differences in residual risk of CVA/SE and major bleeding outcomes in patients with nonvalvular AF treated with either warfarin or NOAC. Sixty-four randomized studies were identified using keywords "gender," "AF," and "CVA." Using the Preferred Reporting Items for Systemic Reviews and Meta-analysis method, 6 studies met criteria for inclusion in this meta-analysis. CVA/SE and major bleeding outcomes were separately analyzed in cohorts receiving warfarin and NOAC agents, comparing men with women. Women with AF taking warfarin were at a significantly greater residual risk of CVA/SE compared with men (odds ratio 1.279, 95% confidence interval 1.111 to 1.473, Z = -3.428, p = 0.001). No gender difference in residual risk of CVA/SE was noted in patients with AF receiving NOAC agents (odds ratio 1.146, 95% confidence interval 0.97 to 1.354, p = 0.109). Major bleeding was less frequent in women with AF treated with NOAC. In conclusion, women with AF treated with warfarin have a greater residual risk of CVA/SE and an equivalent major bleeding risk, whereas those treated with NOAC agents deemed superior to warfarin are at equivalent residual risk of CVA/SE and less major bleeding risk compared with men. These results suggest an increased net clinical benefit of NOAC agents compared with warfarin in treating women with AF. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Recursive partition analysis of peritoneal and systemic recurrence in patients with gastric cancer who underwent D2 gastrectomy: Implications for neoadjuvant therapy consideration.

    PubMed

    Chang, Jee Suk; Kim, Kyung Hwan; Keum, Ki Chang; Noh, Sung Hoon; Lim, Joon Seok; Kim, Hyo Song; Rha, Sun Young; Lee, Yong Chan; Hyung, Woo Jin; Koom, Woong Sub

    2016-12-01

    To classify patients with nonmetastatic advanced gastric cancer who underwent D2-gastrectomy into prognostic groups based on peritoneal and systemic recurrence risks. Between 2004 and 2007, 1,090 patients with T3-4 or N+ gastric cancer were identified from our registry. Recurrence rates were estimated using a competing-risk analysis. Different prognostic groups were defined using recursive partitioning analysis (RPA). Median follow-up was 7 years. In the RPA-model for peritoneal recurrence risk, the initial node was split by T stage, indicating that differences between patients with T1-3 and T4 cancer were the greatest. The 5-year peritoneal recurrence rates for patients with T4 (n = 627) and T1-3 (n = 463) disease were 34.3% and 9.1%, respectively. N stage and neural invasion had an additive impact on high-risk patients. The RPA model for systemic relapse incorporated N stage alone and gave two terminal nodes: N0-2 (n = 721) and N3 (n = 369). The 5-year cumulative incidences were 7.7% and 24.5%, respectively. We proposed risk stratification models of peritoneal and systemic recurrence in patients undergoing D2-gastrectomy. This classification could be used for stratification protocols in future studies evaluating adjuvant therapies such as preoperative chemoradiotherapy. J. Surg. Oncol. 2016;114:859-864. © 2016 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Flood risk analysis for flood control and sediment transportation in sandy regions: A case study in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Guo, Aijun; Chang, Jianxia; Wang, Yimin; Huang, Qiang; Zhou, Shuai

    2018-05-01

    Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on regional flood control systems. This work advances traditional flood risk analysis by proposing a univariate and copula-based bivariate hydrological risk framework which incorporates both flood control and sediment transport. In developing the framework, the conditional probabilities of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula-based model. Moreover, a Monte Carlo-based algorithm is designed to quantify the sampling uncertainty associated with univariate and bivariate hydrological risk analyses. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The univariate and bivariate return periods, risk and reliability in the context of uncertainty for the purposes of flood control and sediment transport are assessed for the study regions. The results indicate that sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the event that AMF exceeds the design flood of downstream hydraulic structures in the UCX and UCH. Moreover, there is considerable sampling uncertainty affecting the univariate and bivariate hydrologic risk evaluation, which greatly challenges measures of future flood mitigation. In addition, results also confirm that the developed framework can estimate conditional probabilities associated with different flood events under various extreme precipitation scenarios aiming for flood control and sediment transport. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.

  16. Nonvitamin-K-antagonist oral anticoagulants versus warfarin in patients with atrial fibrillation and previous stroke or transient ischemic attack: An updated systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Ntaios, George; Papavasileiou, Vasileios; Diener, Hans-Chris; Makaritsis, Konstantinos; Michel, Patrik

    2017-08-01

    Background In a previous systematic review and meta-analysis, we assessed the efficacy and safety of nonvitamin-K antagonist oral anticoagulants versus warfarin in patients with atrial fibrillation and stroke or transient ischemic attack. Since then, new information became available. Aim The aim of the present work was to update the results of the previous systematic review and meta-analysis. Methods We searched PubMed until 24 August 2016 for randomized controlled trials using the following search items: "atrial fibrillation" and "anticoagulation" and "warfarin" and "previous stroke or transient ischemic attack." Eligible studies had to be phase III trials in patients with atrial fibrillation comparing warfarin with nonvitamin-K antagonist oral anticoagulants currently on the market or with the intention to be brought to the market in North America or Europe. The outcomes assessed in the efficacy analysis included stroke or systemic embolism, stroke, ischemic or unknown stroke, disabling or fatal stroke, hemorrhagic stroke, cardiovascular death, death from any cause, and myocardial infarction. The outcomes assessed in the safety analysis included major bleeding, intracranial bleeding, and major gastrointestinal bleeding. We performed fixed effects analyses on intention-to-treat basis. Results Among 183 potentially eligible articles, four were included in the meta-analysis. In 20,500 patients, compared to warfarin, nonvitamin-K antagonist oral anticoagulants were associated with a significant reduction of stroke/systemic embolism (relative risk reduction: 13.7%, absolute risk reduction: 0.78%, number needed to treat to prevent one event: 127), hemorrhagic stroke (relative risk reduction: 50.0%, absolute risk reduction: 0.63%, number needed to treat: 157), any stroke (relative risk reduction: 13.1%, absolute risk reduction: 0.7%, number needed to treat: 142), and intracranial hemorrhage (relative risk reduction: 46.1%, absolute risk reduction: 0.88%, number needed to treat: 113) over 1.8-2.8 years. Conclusions This updated meta-analysis in 20,500 atrial fibrillation patients with previous stroke or transient ischemic attack shows that compared to warfarin non-vitamin-K antagonist oral anticoagulants are associated with a significant reduction of stroke, stroke or systemic embolism, hemorrhagic stroke, and intracranial bleeding.

  17. Comparative health and safety assessment of the SPS and alternative electrical generation systems

    NASA Astrophysics Data System (ADS)

    Habegger, L. J.; Gasper, J. R.; Brown, C. D.

    1980-07-01

    A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.

  18. Comparative health and safety assessment of the SPS and alternative electrical generation systems

    NASA Technical Reports Server (NTRS)

    Habegger, L. J.; Gasper, J. R.; Brown, C. D.

    1980-01-01

    A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.

  19. A Risk-Based Approach for Aerothermal/TPS Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; Grinstead, Jay H.; Bose, Deepak

    2007-01-01

    The current status of aerothermal and thermal protection system modeling for civilian entry missions is reviewed. For most such missions, the accuracy of our simulations is limited not by the tools and processes currently employed, but rather by reducible deficiencies in the underlying physical models. Improving the accuracy of and reducing the uncertainties in these models will enable a greater understanding of the system level impacts of a particular thermal protection system and of the system operation and risk over the operational life of the system. A strategic plan will be laid out by which key modeling deficiencies can be identified via mission-specific gap analysis. Once these gaps have been identified, the driving component uncertainties are determined via sensitivity analyses. A Monte-Carlo based methodology is presented for physics-based probabilistic uncertainty analysis of aerothermodynamics and thermal protection system material response modeling. These data are then used to advocate for and plan focused testing aimed at reducing key uncertainties. The results of these tests are used to validate or modify existing physical models. Concurrently, a testing methodology is outlined for thermal protection materials. The proposed approach is based on using the results of uncertainty/sensitivity analyses discussed above to tailor ground testing so as to best identify and quantify system performance and risk drivers. A key component of this testing is understanding the relationship between the test and flight environments. No existing ground test facility can simultaneously replicate all aspects of the flight environment, and therefore good models for traceability to flight are critical to ensure a low risk, high reliability thermal protection system design. Finally, the role of flight testing in the overall thermal protection system development strategy is discussed.

  20. Constellation Probabilistic Risk Assessment (PRA): Design Consideration for the Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Prassinos, Peter G.; Stamatelatos, Michael G.; Young, Jonathan; Smith, Curtis

    2010-01-01

    Managed by NASA's Office of Safety and Mission Assurance, a pilot probabilistic risk analysis (PRA) of the NASA Crew Exploration Vehicle (CEV) was performed in early 2006. The PRA methods used follow the general guidance provided in the NASA PRA Procedures Guide for NASA Managers and Practitioners'. Phased-mission based event trees and fault trees are used to model a lunar sortie mission of the CEV - involving the following phases: launch of a cargo vessel and a crew vessel; rendezvous of these two vessels in low Earth orbit; transit to th$: moon; lunar surface activities; ascension &om the lunar surface; and return to Earth. The analysis is based upon assumptions, preliminary system diagrams, and failure data that may involve large uncertainties or may lack formal validation. Furthermore, some of the data used were based upon expert judgment or extrapolated from similar componentssystemsT. his paper includes a discussion of the system-level models and provides an overview of the analysis results used to identify insights into CEV risk drivers, and trade and sensitivity studies. Lastly, the PRA model was used to determine changes in risk as the system configurations or key parameters are modified.

  1. Method of assessing a lipid-related health risk based on ion mobility analysis of lipoproteins

    DOEpatents

    Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.

    2010-12-14

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  2. Quantitative Risk Analysis on the Transport of Dangerous Goods Through a Bi-Directional Road Tunnel.

    PubMed

    Caliendo, Ciro; De Guglielmo, Maria Luisa

    2017-01-01

    A quantitative risk analysis (QRA) regarding dangerous goods vehicles (DGVs) running through road tunnels was set up. Peak hourly traffic volumes (VHP), percentage of heavy goods vehicles (HGVs), and failure of the emergency ventilation system were investigated in order to assess their impact on the risk level. The risk associated with an alternative route running completely in the open air and passing through a highly populated urban area was also evaluated. The results in terms of social risk, as F/N curves, show an increased risk level with an increase the VHP, the percentage of HGVs, and a failure of the emergency ventilation system. The risk curves of the tunnel investigated were found to lie both above and below those of the alternative route running in the open air depending on the type of dangerous goods transported. In particular, risk was found to be greater in the tunnel for two fire scenarios (no explosion). In contrast, the risk level for the exposed population was found to be greater for the alternative route in three possible accident scenarios associated with explosions and toxic releases. Therefore, one should be wary before stating that for the transport of dangerous products an itinerary running completely in the open air might be used if the latter passes through a populated area. The QRA may help decisionmakers both to implement additional safety measures and to understand whether to allow, forbid, or limit circulation of DGVs. © 2016 Society for Risk Analysis.

  3. Analysis of risk factors in the development of retinopathy of prematurity.

    PubMed

    Knezević, Sanja; Stojanović, Nadezda; Oros, Ana; Savić, Dragana; Simović, Aleksandra; Knezević, Jasmina

    2011-01-01

    Retinopathy of prematurity (ROP) is a multifactorial disease that occurs most frequently in very small and very sick preterm infants, and it has been identified as the major cause of childhood blindness. The aim of this study was to evaluate ROP incidence and risk factors associated with varying degrees of illness. The study was conducted at the Centre for Neonatology, Paediatric Clinic of the Clinical Centre Kragujevac, Serbia, in the period from June 2006 to December 2008. Ophthalmologic screening was performed in all children with body weight lower than 2000 g or gestational age lower than 36 weeks. We analyzed eighteen postnatal and six perinatal risk factors and the group correlations for each of the risk factors. Out of 317 children that were screened, 56 (17.7%) developed a mild form of ROP, while 68 (21.5%) developed a severe form. Univariate analysis revealed a large number of statistically significant risk factors for the development of ROP, especially the severe form. Multivariate logistical analysis further separated two independent risk factors: small birth weight (p = 0.001) and damage of central nervous system (p = 0.01). Independent risk factors for transition from mild to severe forms of ROP were identified as: small birth weight (p = 0.05) and perinatal risk factors (p = 0.02). Small birth weight and central nervous system damage were risk factors for the development of ROP, perinatal risk factors were identified as significant for transition from mild to severe form of ROP.

  4. Evaluating the Effectiveness of Auditing Rules for Electronic Health Record Systems

    PubMed Central

    Hedda, Monica; Malin, Bradley A.; Yan, Chao; Fabbri, Daniel

    2017-01-01

    Healthcare organizations (HCOs) often deploy rule-based auditing systems to detect insider threats to sensitive patient health information in electronic health record (EHR) systems. These rule-based systems define behavior deemed to be high-risk a priori (e.g., family member, co-worker access). While such rules seem logical, there has been little scientific investigation into the effectiveness of these auditing rules in identifying inappropriate behavior. Thus, in this paper, we introduce an approach to evaluate the effectiveness of individual high-risk rules and rank them according to their potential risk. We investigate the rate of high-risk access patterns and minimum rate of high-risk accesses that can be explained with appropriate clinical reasons in a large EHR system. An analysis of 8M accesses from one-week of data shows that specific high-risk flags occur more frequently than theoretically expected and the rate at which accesses can be explained away with five simple reasons is 16 - 43%. PMID:29854153

  5. Evaluating the Effectiveness of Auditing Rules for Electronic Health Record Systems.

    PubMed

    Hedda, Monica; Malin, Bradley A; Yan, Chao; Fabbri, Daniel

    2017-01-01

    Healthcare organizations (HCOs) often deploy rule-based auditing systems to detect insider threats to sensitive patient health information in electronic health record (EHR) systems. These rule-based systems define behavior deemed to be high-risk a priori (e.g., family member, co-worker access). While such rules seem logical, there has been little scientific investigation into the effectiveness of these auditing rules in identifying inappropriate behavior. Thus, in this paper, we introduce an approach to evaluate the effectiveness of individual high-risk rules and rank them according to their potential risk. We investigate the rate of high-risk access patterns and minimum rate of high-risk accesses that can be explained with appropriate clinical reasons in a large EHR system. An analysis of 8M accesses from one-week of data shows that specific high-risk flags occur more frequently than theoretically expected and the rate at which accesses can be explained away with five simple reasons is 16 - 43%.

  6. A genetic variant in MiR-146a modifies digestive system cancer risk: a meta-analysis.

    PubMed

    Li, Ying-Jun; Zhang, Zhen-Yu; Mao, Ying-Ying; Jin, Ming-Juan; Jing, Fang-Yuan; Ye, Zhen-Hua; Chen, Kun

    2014-01-01

    MicroRNAs (miRNAs) negatively regulate gene expression and act as tumor suppressors or oncogenes in oncogenesis. The association between a single nucleotide polymorphism (SNP) in miR-146a rs2910164 and susceptibility to digestive system cancers was inconsistent in previous studies. In this study, we conducted a literature search of PubMed to identify all relevant studies published before August 31, 2013. A total of 21 independent case-control studies were included in this updated meta-analysis with 9,558 cases and 10,614 controls. We found that the miR-146a rs2910164 polymorphism was significantly associated with decreased risk of digestive system cancers in an allele model (OR=0.90, 95%CI 0.87-0.94), homozygote model (OR=0.84, 95%CI 0.77-0.91), dominant model (OR=0.90, 95%CI 0.84-0.96), and recessive model (OR=0.85, 95%CI 0.79-0.91), while in a heterozygous model (OR = 0.99, 95% CI 0.89-1.11) the association showed marginal significance. Subgroup analysis by cancer site revealed decreased risk in colorectal cancer above allele model (OR=0.90, 95%CI 0.83- 0.97) and homozygote model (OR=0.85, 95%CI 0.72-1.00). Similarly, decreased cancer risk was observed when compared with allele model (OR=0.87, 95%CI 0.81-0.93) and recessive model (OR=0.81, 95%CI 0.72-0.90) in gastric cancer. When stratified by ethnicity, genotyping methods and quality score, decreased cancer risks were also observed. This current meta-analysis indicated that miR-146a rs2910164 polymorphism may decrease the susceptibility to digestive system cancers, especially in Asian populations.

  7. Higher complication risk of totally implantable venous access port systems in patients with advanced cancer - a single institution retrospective analysis.

    PubMed

    Chang, Yi-Fang; Lo, An-Chi; Tsai, Chung-Hsin; Lee, Pei-Yi; Sun, Shen; Chang, Te-Hsin; Chen, Chien-Chuan; Chang, Yuan-Shin; Chen, Jen-Ruei

    2013-02-01

    Totally implantable port systems are generally recommended for prolonged central venous access in diverse settings, but their risk of complications remains unclear for patients with advanced cancer. The aim of this study was to assess the risk of port system failure in patients with advanced cancer. We conducted a retrospective cohort study in a comprehensive cancer centre. A detailed chart review was conducted among 566 patients with 573 ports inserted during January-June, 2009 (average 345.3 catheter-days). Cox regression analysis was applied to evaluate factors during insertion and early maintenance that could lead to premature removal of the port systems due to infection or occlusion. Port system-related infection was significantly associated with receiving palliative care immediately after implantation (hazard ratio, HR = 7.3, 95% confidence interval, 95% CI = 1.2-46.0), after adjusting for probable confounders. Primary cancer site also impacted the occurrence of device-related infection. Receiving oncologic/palliative care (HR = 3.0, P = 0.064), advanced cancer stage (HR = 6.5, P = 0.077) and body surface area above 1.71 m(2) (HR = 3.4, P = 0.029) increased the risk of port system occlusion. Our study indicates that totally implantable port systems yield a higher risk of complications in terminally ill patients. Further investigation should be carefully conducted to compare outcomes of various central venous access devices in patients with advanced cancer and to develop preventive strategies against catheter failure.

  8. A Probabilistic Risk Analysis (PRA) of Human Space Missions for the Advanced Integration Matrix (AIM)

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Dillon-Merrill, Robin L.; Thomas, Gretchen A.

    2003-01-01

    The Advanced Integration Matrix (AIM) Project u7ill study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO), through the design and development of a ground-based facility for developing revolutionary integrated systems for joint human-robotic missions. This paper describes a Probabilistic Risk Analysis (PRA) of human space missions that was developed to help define the direction and priorities for AIM. Risk analysis is required for all major NASA programs and has been used for shuttle, station, and Mars lander programs. It is a prescribed part of early planning and is necessary during concept definition, even before mission scenarios and system designs exist. PRA cm begin when little failure data are available, and be continually updated and refined as detail becomes available. PRA provides a basis for examining tradeoffs among safety, reliability, performance, and cost. The objective of AIM's PRA is to indicate how risk can be managed and future human space missions enabled by the AIM Project. Many critical events can cause injuries and fatalities to the crew without causing loss of vehicle or mission. Some critical systems are beyond AIM's scope, such as propulsion and guidance. Many failure-causing events can be mitigated by conducting operational tests in AIM, such as testing equipment and evaluating operational procedures, especially in the areas of communications and computers, autonomous operations, life support, thermal design, EVA and rover activities, physiological factors including habitation, medical equipment, and food, and multifunctional tools and repairable systems. AIM is well suited to test and demonstrate the habitat, life support, crew operations, and human interface. Because these account for significant crew, systems performance, and science risks, AIM will help reduce mission risk, and missions beyond LEO are far enough in the future that AIM can have significant impact.

  9. Investigation of the Study Characteristics Affecting Clinical Trial Quality Using the Protocol Deviations Leading to Exclusion of Subjects From the Per Protocol Set Data in Studies for New Drug Application: A Retrospective Analysis.

    PubMed

    Kohara, Norihito; Kaneko, Masayuki; Narukawa, Mamoru

    2018-01-01

    The concept of the risk-based approach has been introduced as an effort to secure the quality of clinical trials. In the risk-based approach, identification and evaluation of risk in advance are considered important. For recently completed clinical trials, we investigated the relationship between study characteristics and protocol deviations leading to the exclusion of subjects from Per Protocol Set (PPS) efficacy analysis. New drugs approved in Japan in the fiscal year 2014-2015 were targeted in the research. The reasons for excluding subjects from the PPS efficacy analysis were described in 102 trials out of 492 in the summary of new drug application documents, which was publicly disclosed after the drug's regulatory approval. The author extracted these reasons along with the numbers of the cases and the study characteristics of each clinical trial. Then, the direct comparison, univariate regression analysis, and multivariate regression analysis was carried out based on the exclusion rate. The study characteristics for which exclusion of subjects from the PPS efficacy analysis were frequently observed was multiregional clinical trials in study region; inhalant and external use in administration route; Anti-infective for systemic use; Respiratory system, Dermatologicals, and Nervous system in therapeutic drug under the Anatomical Therapeutic Chemical Classification. In the multivariate regression analysis, the clinical trial variables of inhalant, Respiratory system, or Dermatologicals were selected as study characteristics leading to a higher exclusion rate. The characteristics of the clinical trial that is likely to cause protocol deviations that will affect efficacy analysis were suggested. These studies should be considered for specific attention and priority observation in the trial protocol or its monitoring plan and execution, such as a clear description of inclusion/exclusion criteria in the protocol, development of training materials to site staff, and/or trial subjects as specific risk-alleviating measures.

  10. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 3: Structure and listing of programs

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  11. A Risk Analysis Approach to Prioritizing Epidemics: Ebola Virus Disease in West Africa as a Case Study

    PubMed Central

    Chughtai, Abrar Ahmad; MacIntyre, C. Raina

    2017-01-01

    Abstract The 2014 Ebola virus disease (EVD) outbreak affected several countries worldwide, including six West African countries. It was the largest Ebola epidemic in the history and the first to affect multiple countries simultaneously. Significant national and international delay in response to the epidemic resulted in 28,652 cases and 11,325 deaths. The aim of this study was to develop a risk analysis framework to prioritize rapid response for situations of high risk. Based on findings from the literature, sociodemographic features of the affected countries, and documented epidemic data, a risk scoring framework using 18 criteria was developed. The framework includes measures of socioeconomics, health systems, geographical factors, cultural beliefs, and traditional practices. The three worst affected West African countries (Guinea, Sierra Leone, and Liberia) had the highest risk scores. The scores were much lower in developed countries that experienced Ebola compared to West African countries. A more complex risk analysis framework using 18 measures was compared with a simpler one with 10 measures, and both predicted risk equally well. A simple risk scoring system can incorporate measures of hazard and impact that may otherwise be neglected in prioritizing outbreak response. This framework can be used by public health personnel as a tool to prioritize outbreak investigation and flag outbreaks with potentially catastrophic outcomes for urgent response. Such a tool could mitigate costly delays in epidemic response. PMID:28810081

  12. Disproportionality in Special Education: Effects of Individual and School Variables on Disability Risk

    ERIC Educational Resources Information Center

    Sullivan, Amanda L.; Bal, Aydin

    2013-01-01

    We examined the risk of disability identification associated with individual and school variables. The sample included 18,000 students in 39 schools of an urban K-12 school system. Descriptive analysis showed racial minority risk varied across 7 disability categories, with males and students from low-income backgrounds at highest risk in most…

  13. Adapting risk management and computational intelligence network optimization techniques to improve traffic throughput and tail risk analysis.

    DOT National Transportation Integrated Search

    2014-04-01

    Risk management techniques are used to analyze fluctuations in uncontrollable variables and keep those fluctuations from impeding : the core function of a system or business. Examples of this are making sure that volatility in copper and aluminum pri...

  14. Risk analysis of the governance system affecting outcomes in the Great Barrier Reef.

    PubMed

    Dale, Allan P; Vella, Karen; Pressey, Robert L; Brodie, Jon; Gooch, Margaret; Potts, Ruth; Eberhard, Rachel

    2016-12-01

    The state and trend of the Great Barrier Reef's (GBR's) ecological health remains problematic, influencing United Nations Educational, Scientific and Cultural Organization (UNESCO) statements regarding GBR governance. While UNESCO's concerns triggered separate strategic assessments by the Australian and Queensland governments, there has been no independent and integrated review of the key risks within the overall system of governance influencing GBR outcomes. As a case study of international significance, this paper applies Governance Systems Analysis (GSA), a novel analytical framework that identifies the governance themes, domains and subdomains most likely to influence environmental and socio-economic outcomes in complex natural systems. This GBR-focussed application of GSA identifies governance subdomains that present high, medium, or low risk of failure to produce positive outcomes for the Reef. This enabled us to determine that three "whole of system" governance problems could undermine GBR outcomes. First, we stress the integrative importance of the Long Term Sustainability Plan (LTSP) Subdomain. Sponsored by the Australian and Queensland governments, this subdomain concerns the primary institutional arrangements for coordinated GBR planning and delivery, but due to its recent emergence, it faces several internal governance challenges. Second, we find a major risk of implementation failure in the achievement of GBR water quality actions due to a lack of system-wide focus on building strong and stable delivery systems at catchment scale. Finally, we conclude that the LTSP Subdomain currently has too limited a mandate/capacity to influence several high-risk subdomains that have not been, but must be more strongly aligned with Reef management (e.g. the Greenhouse Gas Emission Management Subdomain). Our analysis enables exploration of governance system reforms needed to address environmental trends in the GBR and reflects on the potential application of GSA in other complex land and sea-scapes across the globe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Using Latent Class Analysis to Identify Academic and Behavioral Risk Status in Elementary Students

    ERIC Educational Resources Information Center

    King, Kathleen R.; Lembke, Erica S.; Reinke, Wendy M.

    2016-01-01

    Identifying classes of children on the basis of academic and behavior risk may have important implications for the allocation of intervention resources within Response to Intervention (RTI) and Multi-Tiered System of Support (MTSS) models. Latent class analysis (LCA) was conducted with a sample of 517 third grade students. Fall screening scores in…

  16. Guidelines for developing NASA (National Aeronautics and Space Administration) ADP security risk management plans

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1983-01-01

    This report presents guidance to NASA Computer security officials for developing ADP security risk management plans. The six components of the risk management process are identified and discussed. Guidance is presented on how to manage security risks that have been identified during a risk analysis performed at a data processing facility or during the security evaluation of an application system.

  17. Increased risk of mortality in systemic sclerosis-associated digital ulcers: a systematic review and meta-analysis.

    PubMed

    Meunier, Pauline; Dequidt, Laure; Barnetche, Thomas; Lazaro, Estibaliz; Duffau, Pierre; Richez, Christophe; Couzi, Lionel; Truchetet, Marie-Elise; Seneschal, Julien

    2018-06-10

    Survival can be threatened in certain forms of systemic sclerosis (SSc) so clear prognostic factors are needed. The aim of this meta-analysis was to assess the association between the presence of digital ulcers (DUs) and mortality in SSc. We performed a systematic review and meta-analysis in the Pubmed and Scopus databases from the earliest records to May 2017. Two research strategies were performed: « systemic sclerosis » and « digital ulcers » (strategy A); « systemic sclerosis » and « mortality » (strategy B). The primary outcome was the mortality associated with the presence of DUs in patients with SSc. The literature search identified 1473 citations. Fifty-nine studies were examined for full text. Ten articles were included for the meta-analysis. SSc patients with DUs had an increased pooled mortality risk: RR = 1.53 (IC 95%: [1.23-1.90]). This meta-analysis revealed a higher mortality in SSc patients with associated DUs. Having DUs may be a predictive factor of developing organ involvement such as pulmonary or cardiovascular events that could be associated with poor survival. It suggests that early screening of DUs in SSc patients is important to identify patients most at risk of poor survival. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. On the complex quantification of risk: systems-based perspective on terrorism.

    PubMed

    Haimes, Yacov Y

    2011-08-01

    This article highlights the complexity of the quantification of the multidimensional risk function, develops five systems-based premises on quantifying the risk of terrorism to a threatened system, and advocates the quantification of vulnerability and resilience through the states of the system. The five premises are: (i) There exists interdependence between a specific threat to a system by terrorist networks and the states of the targeted system, as represented through the system's vulnerability, resilience, and criticality-impact. (ii) A specific threat, its probability, its timing, the states of the targeted system, and the probability of consequences can be interdependent. (iii) The two questions in the risk assessment process: "What is the likelihood?" and "What are the consequences?" can be interdependent. (iv) Risk management policy options can reduce both the likelihood of a threat to a targeted system and the associated likelihood of consequences by changing the states (including both vulnerability and resilience) of the system. (v) The quantification of risk to a vulnerable system from a specific threat must be built on a systemic and repeatable modeling process, by recognizing that the states of the system constitute an essential step to construct quantitative metrics of the consequences based on intelligence gathering, expert evidence, and other qualitative information. The fact that the states of all systems are functions of time (among other variables) makes the time frame pivotal in each component of the process of risk assessment, management, and communication. Thus, risk to a system, caused by an initiating event (e.g., a threat) is a multidimensional function of the specific threat, its probability and time frame, the states of the system (representing vulnerability and resilience), and the probabilistic multidimensional consequences. © 2011 Society for Risk Analysis.

  19. Estimating the concordance probability in a survival analysis with a discrete number of risk groups.

    PubMed

    Heller, Glenn; Mo, Qianxing

    2016-04-01

    A clinical risk classification system is an important component of a treatment decision algorithm. A measure used to assess the strength of a risk classification system is discrimination, and when the outcome is survival time, the most commonly applied global measure of discrimination is the concordance probability. The concordance probability represents the pairwise probability of lower patient risk given longer survival time. The c-index and the concordance probability estimate have been used to estimate the concordance probability when patient-specific risk scores are continuous. In the current paper, the concordance probability estimate and an inverse probability censoring weighted c-index are modified to account for discrete risk scores. Simulations are generated to assess the finite sample properties of the concordance probability estimate and the weighted c-index. An application of these measures of discriminatory power to a metastatic prostate cancer risk classification system is examined.

  20. System review: a method for investigating medical errors in healthcare settings.

    PubMed

    Alexander, G L; Stone, T T

    2000-01-01

    System analysis is a process of evaluating objectives, resources, structure, and design of businesses. System analysis can be used by leaders to collaboratively identify breakthrough opportunities to improve system processes. In healthcare systems, system analysis can be used to review medical errors (system occurrences) that may place patients at risk for injury, disability, and/or death. This study utilizes a case management approach to identify medical errors. Utilizing an interdisciplinary approach, a System Review Team was developed to identify trends in system occurrences, facilitate communication, and enhance the quality of patient care by reducing medical errors.

  1. Comparative Risk Analysis for Metropolitan Solid Waste Management Systems

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Wang, S. F.

    1996-01-01

    Conventional solid waste management planning usually focuses on economic optimization, in which the related environmental impacts or risks are rarely considered. The purpose of this paper is to illustrate the methodology of how optimization concepts and techniques can be applied to structure and solve risk management problems such that the impacts of air pollution, leachate, traffic congestion, and noise increments can be regulated in the iong-term planning of metropolitan solid waste management systems. Management alternatives are sequentially evaluated by adding several environmental risk control constraints stepwise in an attempt to improve the management strategies and reduce the risk impacts in the long run. Statistics associated with those risk control mechanisms are presented as well. Siting, routing, and financial decision making in such solid waste management systems can also be achieved with respect to various resource limitations and disposal requirements.

  2. Analysis of Risks in a Learning Management System: A Case Study in the Spanish National University of Distance Education (UNED)

    ERIC Educational Resources Information Center

    Vázquez-Cano, Esteban; Sevillano García, Ma. Luisa

    2015-01-01

    This article presents a research that examines the university students' risk perception when using a Learning Management System called "aLF" and implemented by the Spanish National University of Distance Education (UNED) for the development of its university distance studies. The development of comprehensive Learning Management Systems…

  3. The application of seismic risk-benefit analysis to land use planning in Taipei City.

    PubMed

    Hung, Hung-Chih; Chen, Liang-Chun

    2007-09-01

    In the developing countries of Asia local authorities rarely use risk analysis instruments as a decision-making support mechanism during planning and development procedures. The main purpose of this paper is to provide a methodology to enable planners to undertake such analyses. We illustrate a case study of seismic risk-benefit analysis for the city of Taipei, Taiwan, using available land use maps and surveys as well as a new tool developed by the National Science Council in Taiwan--the HAZ-Taiwan earthquake loss estimation system. We use three hypothetical earthquakes to estimate casualties and total and annualised direct economic losses, and to show their spatial distribution. We also characterise the distribution of vulnerability over the study area using cluster analysis. A risk-benefit ratio is calculated to express the levels of seismic risk attached to alternative land use plans. This paper suggests ways to perform earthquake risk evaluations and the authors intend to assist city planners to evaluate the appropriateness of their planning decisions.

  4. Inconsistencies in reporting risk information: a pilot analysis of online news coverage of West Nile Virus.

    PubMed

    Birnbrauer, Kristina; Frohlich, Dennis Owen; Treise, Debbie

    2017-09-01

    West Nile Virus (WNV) has been reported as one of the worst epidemics in US history. This study sought to understand how WNV news stories were framed and how risk information was portrayed from its 1999 arrival in the US through the year 2012. The authors conducted a quantitative content analysis of online news articles obtained through Google News ( N = 428). The results of this analysis were compared to the CDC's ArboNET surveillance system. The following story frames were identified in this study: action, conflict, consequence, new evidence, reassurance and uncertainty, with the action frame appearing most frequently. Risk was communicated quantitatively without context in the majority of articles, and only in 2006, the year with the third-highest reported deaths, was risk reported with statistical accuracy. The results from the analysis indicated that at-risk communities were potentially under-informed as accurate risks were not communicated. This study offers evidence about how disease outbreaks are covered in relation to actual disease surveillance data.

  5. Application of ISO22000, failure mode, and effect analysis (FMEA) cause and effect diagrams and pareto in conjunction with HACCP and risk assessment for processing of pastry products.

    PubMed

    Varzakas, Theodoros H

    2011-09-01

    The Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of pastry processing. A tentative approach of FMEA application to the pastry industry was attempted in conjunction with ISO22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (pastry processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and fishbone diagram). In this work a comparison of ISO22000 analysis with HACCP is carried out over pastry processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the Risk Priority Number (RPN) per identified processing hazard. Storage of raw materials and storage of final products at -18°C followed by freezing were the processes identified as the ones with the highest RPN (225, 225, and 144 respectively) and corrective actions were undertaken. Following the application of corrective actions, a second calculation of RPN values was carried out leading to considerably lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO22000 system of a pastry processing industry is considered imperative.

  6. Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA)

    NASA Technical Reports Server (NTRS)

    Thigpen, Eric B.; Boyer, Roger L.; Stewart, Michael A.; Fougere, Pete

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Safety & Mission Assurance (S&MA) directorate at the Johnson Space Center (JSC) has applied its knowledge and experience with Probabilistic Risk Assessment (PRA) to projects in industries ranging from spacecraft to nuclear power plants. PRA is a comprehensive and structured process for analyzing risk in complex engineered systems and/or processes. The PRA process enables the user to identify potential risk contributors such as, hardware and software failure, human error, and external events. Recent developments in the oil and gas industry have presented opportunities for NASA to lend their PRA expertise to both ongoing and developmental projects within the industry. This paper provides an overview of the PRA process and demonstrates how this process was applied in estimating the probability that a Mobile Offshore Drilling Unit (MODU) operating in the Gulf of Mexico and equipped with a generically configured Dynamic Positioning System (DPS) loses location and needs to initiate an emergency disconnect. The PRA described in this paper is intended to be generic such that the vessel meets the general requirements of an International Maritime Organization (IMO) Maritime Safety Committee (MSC)/Circ. 645 Class 3 dynamically positioned vessel. The results of this analysis are not intended to be applied to any specific drilling vessel, although provisions were made to allow the analysis to be configured to a specific vessel if required.

  7. Multiple pregnancies achieved with IVF/ICSI and risk of specific congenital malformations: a meta-analysis of cohort studies.

    PubMed

    Zheng, Zan; Chen, Letao; Yang, Tubao; Yu, Hong; Wang, Hua; Qin, Jiabi

    2018-04-01

    Studies comparing risk of specific congenital malformations (CM) between multiple pregnancies resulting from IVF/intracytoplasmic sperm injection (ICSI) and those conceived naturally report conflicting results; furthermore, there is a lack of a complete overview. This meta-analysis aimed to address which types of CM are increased in IVF/ICSI multiple pregnancies compared with those conceived naturally. All studies testing the association between IVF/ICSI multiple pregnancies and specific CM identified in various databases were considered. The literature search yielded 856 records, of which 21 cohort studies were included for analysis. Overall, multiple pregnancies achieved with IVF/ICSI experienced a significantly higher risk of chromosomal defects (relative risk [RR] = 1.36; 95% confidence interval [CI]: 1.04-1.77), urogenital (RR = 1.18; 95% CI: 1.03-1.36) and circulatory (RR = 1.22; 95% CI: 1.01-1.47) system malformations. However, the remaining specific CM, such as cleft lip and/or palate, eye, ear, face and neck, respiratory, musculoskeletal, nervous and digestive system malformations, were similar in the two groups. No substantial heterogeneity was observed for most outcomes except for digestive (P = 0.094; I 2 = 38.3%) and circulatory (P = 0.070; I 2 = 35.2%) system malformations. These findings provide additional information on risks of IVF/ICSI for use when counselling patients. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  8. WE-B-BRC-01: Current Methodologies in Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rath, F.

    Prospective quality management techniques, long used by engineering and industry, have become a growing aspect of efforts to improve quality management and safety in healthcare. These techniques are of particular interest to medical physics as scope and complexity of clinical practice continue to grow, thus making the prescriptive methods we have used harder to apply and potentially less effective for our interconnected and highly complex healthcare enterprise, especially in imaging and radiation oncology. An essential part of most prospective methods is the need to assess the various risks associated with problems, failures, errors, and design flaws in our systems. Wemore » therefore begin with an overview of risk assessment methodologies used in healthcare and industry and discuss their strengths and weaknesses. The rationale for use of process mapping, failure modes and effects analysis (FMEA) and fault tree analysis (FTA) by TG-100 will be described, as well as suggestions for the way forward. This is followed by discussion of radiation oncology specific risk assessment strategies and issues, including the TG-100 effort to evaluate IMRT and other ways to think about risk in the context of radiotherapy. Incident learning systems, local as well as the ASTRO/AAPM ROILS system, can also be useful in the risk assessment process. Finally, risk in the context of medical imaging will be discussed. Radiation (and other) safety considerations, as well as lack of quality and certainty all contribute to the potential risks associated with suboptimal imaging. The goal of this session is to summarize a wide variety of risk analysis methods and issues to give the medical physicist access to tools which can better define risks (and their importance) which we work to mitigate with both prescriptive and prospective risk-based quality management methods. Learning Objectives: Description of risk assessment methodologies used in healthcare and industry Discussion of radiation oncology-specific risk assessment strategies and issues Evaluation of risk in the context of medical imaging and image quality E. Samei: Research grants from Siemens and GE.« less

  9. WE-B-BRC-03: Risk in the Context of Medical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, E.

    Prospective quality management techniques, long used by engineering and industry, have become a growing aspect of efforts to improve quality management and safety in healthcare. These techniques are of particular interest to medical physics as scope and complexity of clinical practice continue to grow, thus making the prescriptive methods we have used harder to apply and potentially less effective for our interconnected and highly complex healthcare enterprise, especially in imaging and radiation oncology. An essential part of most prospective methods is the need to assess the various risks associated with problems, failures, errors, and design flaws in our systems. Wemore » therefore begin with an overview of risk assessment methodologies used in healthcare and industry and discuss their strengths and weaknesses. The rationale for use of process mapping, failure modes and effects analysis (FMEA) and fault tree analysis (FTA) by TG-100 will be described, as well as suggestions for the way forward. This is followed by discussion of radiation oncology specific risk assessment strategies and issues, including the TG-100 effort to evaluate IMRT and other ways to think about risk in the context of radiotherapy. Incident learning systems, local as well as the ASTRO/AAPM ROILS system, can also be useful in the risk assessment process. Finally, risk in the context of medical imaging will be discussed. Radiation (and other) safety considerations, as well as lack of quality and certainty all contribute to the potential risks associated with suboptimal imaging. The goal of this session is to summarize a wide variety of risk analysis methods and issues to give the medical physicist access to tools which can better define risks (and their importance) which we work to mitigate with both prescriptive and prospective risk-based quality management methods. Learning Objectives: Description of risk assessment methodologies used in healthcare and industry Discussion of radiation oncology-specific risk assessment strategies and issues Evaluation of risk in the context of medical imaging and image quality E. Samei: Research grants from Siemens and GE.« less

  10. WE-B-BRC-00: Concepts in Risk-Based Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Prospective quality management techniques, long used by engineering and industry, have become a growing aspect of efforts to improve quality management and safety in healthcare. These techniques are of particular interest to medical physics as scope and complexity of clinical practice continue to grow, thus making the prescriptive methods we have used harder to apply and potentially less effective for our interconnected and highly complex healthcare enterprise, especially in imaging and radiation oncology. An essential part of most prospective methods is the need to assess the various risks associated with problems, failures, errors, and design flaws in our systems. Wemore » therefore begin with an overview of risk assessment methodologies used in healthcare and industry and discuss their strengths and weaknesses. The rationale for use of process mapping, failure modes and effects analysis (FMEA) and fault tree analysis (FTA) by TG-100 will be described, as well as suggestions for the way forward. This is followed by discussion of radiation oncology specific risk assessment strategies and issues, including the TG-100 effort to evaluate IMRT and other ways to think about risk in the context of radiotherapy. Incident learning systems, local as well as the ASTRO/AAPM ROILS system, can also be useful in the risk assessment process. Finally, risk in the context of medical imaging will be discussed. Radiation (and other) safety considerations, as well as lack of quality and certainty all contribute to the potential risks associated with suboptimal imaging. The goal of this session is to summarize a wide variety of risk analysis methods and issues to give the medical physicist access to tools which can better define risks (and their importance) which we work to mitigate with both prescriptive and prospective risk-based quality management methods. Learning Objectives: Description of risk assessment methodologies used in healthcare and industry Discussion of radiation oncology-specific risk assessment strategies and issues Evaluation of risk in the context of medical imaging and image quality E. Samei: Research grants from Siemens and GE.« less

  11. A risk-based decision support framework for selection of appropriate safety measure system for underground coal mines.

    PubMed

    Samantra, Chitrasen; Datta, Saurav; Mahapatra, Siba Sankar

    2017-03-01

    In the context of underground coal mining industry, the increased economic issues regarding implementation of additional safety measure systems, along with growing public awareness to ensure high level of workers safety, have put great pressure on the managers towards finding the best solution to ensure safe as well as economically viable alternative selection. Risk-based decision support system plays an important role in finding such solutions amongst candidate alternatives with respect to multiple decision criteria. Therefore, in this paper, a unified risk-based decision-making methodology has been proposed for selecting an appropriate safety measure system in relation to an underground coal mining industry with respect to multiple risk criteria such as financial risk, operating risk, and maintenance risk. The proposed methodology uses interval-valued fuzzy set theory for modelling vagueness and subjectivity in the estimates of fuzzy risk ratings for making appropriate decision. The methodology is based on the aggregative fuzzy risk analysis and multi-criteria decision making. The selection decisions are made within the context of understanding the total integrated risk that is likely to incur while adapting the particular safety system alternative. Effectiveness of the proposed methodology has been validated through a real-time case study. The result in the context of final priority ranking is seemed fairly consistent.

  12. Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market.

    PubMed

    Long, Haiming; Zhang, Ji; Tang, Nengyu

    2017-01-01

    This study considers the effect of an industry's network topology on its systemic risk contribution to the stock market using data from the CSI 300 two-tier industry indices from the Chinese stock market. We first measure industry's conditional-value-at-risk (CoVaR) and the systemic risk contribution (ΔCoVaR) using the fitted time-varying t-copula function. The network of the stock industry is established based on dynamic conditional correlations with the minimum spanning tree. Then, we investigate the connection characteristics and topology of the network. Finally, we utilize seemingly unrelated regression estimation (SUR) of panel data to analyze the relationship between network topology of the stock industry and the industry's systemic risk contribution. The results show that the systemic risk contribution of small-scale industries such as real estate, food and beverage, software services, and durable goods and clothing, is higher than that of large-scale industries, such as banking, insurance and energy. Industries with large betweenness centrality, closeness centrality, and clustering coefficient and small node occupancy layer are associated with greater systemic risk contribution. In addition, further analysis using a threshold model confirms that the results are robust.

  13. Application of hazard analysis and critical control point methodology and risk-based grading to consumer food safety surveys.

    PubMed

    Røssvoll, Elin Halbach; Ueland, Øydis; Hagtvedt, Therese; Jacobsen, Eivind; Lavik, Randi; Langsrud, Solveig

    2012-09-01

    Traditionally, consumer food safety survey responses have been classified as either "right" or "wrong" and food handling practices that are associated with high risk of infection have been treated in the same way as practices with lower risks. In this study, a risk-based method for consumer food safety surveys has been developed, and HACCP (hazard analysis and critical control point) methodology was used for selecting relevant questions. We conducted a nationally representative Web-based survey (n = 2,008), and to fit the self-reported answers we adjusted a risk-based grading system originally developed for observational studies. The results of the survey were analyzed both with the traditional "right" and "wrong" classification and with the risk-based grading system. The results using the two methods were very different. Only 5 of the 10 most frequent food handling violations were among the 10 practices associated with the highest risk. These 10 practices dealt with different aspects of heat treatment (lacking or insufficient), whereas the majority of the most frequent violations involved storing food at room temperature for too long. Use of the risk-based grading system for survey responses gave a more realistic picture of risks associated with domestic food handling practices. The method highlighted important violations and minor errors, which are performed by most people and are not associated with significant risk. Surveys built on a HACCP-based approach with risk-based grading will contribute to a better understanding of domestic food handling practices and will be of great value for targeted information and educational activities.

  14. Geo-hazard harmonised data a driven process to environmental analysis system

    NASA Astrophysics Data System (ADS)

    Cipolloni, Carlo; Iadanza, Carla; Pantaloni, Marco; Trigila, Alessandro

    2015-04-01

    In the last decade an increase of damage caused by natural disasters has been recorded in Italy. To support environmental safety and human protection, by reducing vulnerability of exposed elements as well as improving the resilience of the involved communities, it need to give access to harmonized and customized data that is one of several steps towards delivering adequate support to risk assessment, reduction and management. In this contest has been developed SEIS and Copernicus-GEMES as infrastructure based on web services for environmental analysis, to integrates in its own system specifications and results from INSPIRE. The two landslide risk scenarios developed in different European projects driven the harmonization process of data that represents the basic element to have interoperable web services in environmental analysis system. From two different perspective we have built a common methodology to analyse dataset and transform them into INSPIRE compliant format following the Data Specification on Geology and on Natural Risk Zone given by INSPIRE. To ensure the maximum results and re-usability of data we have also applied to the landslide and geological datasets a wider Data model standard like GeoSciML, that represents the natural extension of INSPIRE data model to provide more information. The aim of this work is to present the first results of two projects concerning the data harmonisation process, where an important role is played by the semantic harmonisation using the ontology service and/or the hierarchy vocabularies available as Link Data or Link Open Data by means of URI directly in the data spatial services. It will be presented how the harmonised web services can provide an add value in a risk scenario analysis system, showing the first results of the landslide environmental analysis developed by the eENVplus and LIFE+IMAGINE projects.

  15. Integrating Household Risk Mitigation Behavior in Flood Risk Analysis: An Agent-Based Model Approach.

    PubMed

    Haer, Toon; Botzen, W J Wouter; de Moel, Hans; Aerts, Jeroen C J H

    2017-10-01

    Recent studies showed that climate change and socioeconomic trends are expected to increase flood risks in many regions. However, in these studies, human behavior is commonly assumed to be constant, which neglects interaction and feedback loops between human and environmental systems. This neglect of human adaptation leads to a misrepresentation of flood risk. This article presents an agent-based model that incorporates human decision making in flood risk analysis. In particular, household investments in loss-reducing measures are examined under three economic decision models: (1) expected utility theory, which is the traditional economic model of rational agents; (2) prospect theory, which takes account of bounded rationality; and (3) a prospect theory model, which accounts for changing risk perceptions and social interactions through a process of Bayesian updating. We show that neglecting human behavior in flood risk assessment studies can result in a considerable misestimation of future flood risk, which is in our case study an overestimation of a factor two. Furthermore, we show how behavior models can support flood risk analysis under different behavioral assumptions, illustrating the need to include the dynamic adaptive human behavior of, for instance, households, insurers, and governments. The method presented here provides a solid basis for exploring human behavior and the resulting flood risk with respect to low-probability/high-impact risks. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  16. Minutes of the Explosives Safety Seminar (20th) Held at OMNI international Hotel, Norfolk, Virginia on 24-26 August 1982. Volume I

    DTIC Science & Technology

    1982-08-01

    between one that provides for total protection of life and property and one that per- mits operators to conduct activities in a " laisse - faire " manner...Workers. AD-PO00 456 General Risk Analysis Methodological Implications to Explosives Risk Management Systems. AD-PO0O 457 Risk Analysis for Explosives...THE EFFECTS OF THE HEALTH AND SAFETY AT WORK ACT, 1974, ON MILITARY EXPLOSIVES SAFETY MANAGEMENT IN THE UNITED KINGDOM ........................ 7 Air

  17. Credit networks and systemic risk of Chinese local financing platforms: Too central or too big to fail?. -based on different credit correlations using hierarchical methods

    NASA Astrophysics Data System (ADS)

    He, Fang; Chen, Xi

    2016-11-01

    The accelerating accumulation and risk concentration of Chinese local financing platforms debts have attracted wide attention throughout the world. Due to the network of financial exposures among institutions, the failure of several platforms or regions of systemic importance will probably trigger systemic risk and destabilize the financial system. However, the complex network of credit relationships in Chinese local financing platforms at the state level remains unknown. To fill this gap, we presented the first complex networks and hierarchical cluster analysis of the credit market of Chinese local financing platforms using the ;bottom up; method from firm-level data. Based on balance-sheet channel, we analyzed the topology and taxonomy by applying the analysis paradigm of subdominant ultra-metric space to an empirical data in 2013. It is remarked that we chose to extract the network of co-financed financing platforms in order to evaluate the effect of risk contagion from platforms to bank system. We used the new credit similarity measure by combining the factor of connectivity and size, to extract minimal spanning trees (MSTs) and hierarchical trees (HTs). We found that: (1) the degree distributions of credit correlation backbone structure of Chinese local financing platforms are fat tailed, and the structure is unstable with respect to targeted failures; (2) the backbone is highly hierarchical, and largely explained by the geographic region; (3) the credit correlation backbone structure based on connectivity and size is significantly heterogeneous; (4) key platforms and regions of systemic importance, and contagion path of systemic risk are obtained, which are contributed to preventing systemic risk and regional risk of Chinese local financing platforms and preserving financial stability under the framework of macro prudential supervision. Our approach of credit similarity measure provides a means of recognizing ;systemically important; institutions and regions for a targeted policy with risk minimization which gives a flexible and comprehensive consideration to both aspects of ;too big to fail; and ;too central to fail;.

  18. A risk-factor analysis of medical litigation judgments related to fall injuries in Korea.

    PubMed

    Kim, Insook; Won, Seonae; Lee, Mijin; Lee, Won

    2018-01-01

    The aim of this study was to find out the risk factors through analysis of seven medical malpractice judgments related to fall injuries. The risk factors were analysed by using the framework that approaches falls from a systems perspective and comprised people, organisational or environmental factors, with each factor being comprised of subfactors. The risk factors found in each of the seven judgments were aggregated into one framework. The risk factors related to patients (i.e. the people factor) were age, pain, related disease, activities and functional status, urination state, cognitive function impairment, past history of fall, blood transfusion, sleep endoscopy state and uncooperative attitude. The risk factors related to the medical staff and caregivers (i.e. people factor) were observation negligence, no fall prevention activities and negligence in managing high-risk group for fall. Organisational risk factors were a lack of workforce, a lack of training, neglecting the management of the high-risk group, neglecting the management of caregivers and the absence of a fall prevention procedure. Regarding the environment, the risk factors were found to be the emergency room, chairs without a backrest and the examination table. Identifying risk factors is essential for preventing fall accidents, since falls are preventable patient-safety incidents. Falls do not happen as a result of a single risk factor. Therefore, a systems approach is effective to identify risk factors, especially organisational and environmental factors.

  19. NASA System Safety Handbook. Volume 2: System Safety Concepts, Guidelines, and Implementation Examples

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Feather, Martin; Rutledge, Peter; Sen, Dev; Youngblood, Robert

    2015-01-01

    This is the second of two volumes that collectively comprise the NASA System Safety Handbook. Volume 1 (NASASP-210-580) was prepared for the purpose of presenting the overall framework for System Safety and for providing the general concepts needed to implement the framework. Volume 2 provides guidance for implementing these concepts as an integral part of systems engineering and risk management. This guidance addresses the following functional areas: 1.The development of objectives that collectively define adequate safety for a system, and the safety requirements derived from these objectives that are levied on the system. 2.The conduct of system safety activities, performed to meet the safety requirements, with specific emphasis on the conduct of integrated safety analysis (ISA) as a fundamental means by which systems engineering and risk management decisions are risk-informed. 3.The development of a risk-informed safety case (RISC) at major milestone reviews to argue that the systems safety objectives are satisfied (and therefore that the system is adequately safe). 4.The evaluation of the RISC (including supporting evidence) using a defined set of evaluation criteria, to assess the veracity of the claims made therein in order to support risk acceptance decisions.

  20. Inventory Control System for a Healthcare Apparel Service Centre with Stockout Risk: A Case Analysis

    PubMed Central

    Hui, Chi-Leung

    2017-01-01

    Based on the real-world inventory control problem of a capacitated healthcare apparel service centre in Hong Kong which provides tailor-made apparel-making services for the elderly and disabled people, this paper studies a partial backordered continuous review inventory control problem in which the product demand follows a Poisson process with a constant lead time. The system is controlled by an (Q,r) inventory policy which incorporate the stockout risk, storage capacity, and partial backlog. The healthcare apparel service centre, under the capacity constraint, aims to minimize the inventory cost and achieving a low stockout risk. To address this challenge, an optimization problem is constructed. A real case-based data analysis is conducted, and the result shows that the expected total cost on an order cycle is reduced substantially at around 20% with our proposed optimal inventory control policy. An extensive sensitivity analysis is conducted to generate additional insights. PMID:29527283

  1. Inventory Control System for a Healthcare Apparel Service Centre with Stockout Risk: A Case Analysis.

    PubMed

    Pan, An; Hui, Chi-Leung

    2017-01-01

    Based on the real-world inventory control problem of a capacitated healthcare apparel service centre in Hong Kong which provides tailor-made apparel-making services for the elderly and disabled people, this paper studies a partial backordered continuous review inventory control problem in which the product demand follows a Poisson process with a constant lead time. The system is controlled by an ( Q , r ) inventory policy which incorporate the stockout risk, storage capacity, and partial backlog. The healthcare apparel service centre, under the capacity constraint, aims to minimize the inventory cost and achieving a low stockout risk. To address this challenge, an optimization problem is constructed. A real case-based data analysis is conducted, and the result shows that the expected total cost on an order cycle is reduced substantially at around 20% with our proposed optimal inventory control policy. An extensive sensitivity analysis is conducted to generate additional insights.

  2. [Economic effects of integrated RIS-PACS solution in the university environment].

    PubMed

    Kröger, M; Nissen-Meyer, S; Wetekam, V; Reiser, M

    1999-04-01

    The goal of the current article is to demonstrate how qualitative and monetary effects resulting from an integrated RIS/PACS installation can be evaluated. First of all, the system concept of a RIS/PACS solution for a university hospital is defined and described. Based on this example, a generic method for the evaluation of qualitative and monetary effects as well as associated risks is depicted and demonstrated. To this end, qualitative analyses, investment calculations and risk analysis are employed. The sample analysis of a RIS/PACS solution specially designed for a university hospital demonstrates positive qualitative and monetary effects of the system. Under ideal conditions the payoff time of the investments is reached after 4 years of an assumed 8 years effective life of the system. Furthermore, under conservative assumptions, the risk analysis shows a probability of 0% for realising a negative net present value at the end of the payoff time period. It should be pointed out that the positive result of this sample analysis will not necessarily apply to other clinics or hospitals. However, the same methods may be used for the individual evaluation of the qualitative and monetary effects of a RIS/PACS installation in any clinic.

  3. Bridging the gap between individual-level risk for HIV and structural determinants: using root cause analysis in strategic planning.

    PubMed

    Willard, Nancy; Chutuape, Kate; Stines, Stephanie; Ellen, Jonathan M

    2012-01-01

    HIV prevention efforts have expanded beyond individual-level interventions to address structural determinants of risk. Coalitions have been an important vehicle for addressing similar intractable and deeply rooted health-related issues. A root cause analysis process may aid coalitions in identifying fundamental, structural-level contributors to risk and in identifying appropriate solutions. For this article, strategic plans for 13 coalitions were analyzed both before and after a root cause analysis approach was applied to determine the coalitions' strategic plans potential impact and comprehensiveness. After root cause analysis, strategic plans trended toward targeting policies and practices rather than on single agency programmatic changes. Plans expanded to target multiple sectors and several changes within sectors to penetrate deeply into a sector or system. Findings suggest that root cause analysis may be a viable tool to assist coalitions in identifying structural determinants and possible solutions for HIV risk.

  4. Critical asset and portfolio risk analysis: an all-hazards framework.

    PubMed

    Ayyub, Bilal M; McGill, William L; Kaminskiy, Mark

    2007-08-01

    This article develops a quantitative all-hazards framework for critical asset and portfolio risk analysis (CAPRA) that considers both natural and human-caused hazards. Following a discussion on the nature of security threats, the need for actionable risk assessments, and the distinction between asset and portfolio-level analysis, a general formula for all-hazards risk analysis is obtained that resembles the traditional model based on the notional product of consequence, vulnerability, and threat, though with clear meanings assigned to each parameter. Furthermore, a simple portfolio consequence model is presented that yields first-order estimates of interdependency effects following a successful attack on an asset. Moreover, depending on the needs of the decisions being made and available analytical resources, values for the parameters in this model can be obtained at a high level or through detailed systems analysis. Several illustrative examples of the CAPRA methodology are provided.

  5. Screening Analysis for the Environmental Risk Evaluation System Fiscal Year 2011 Report Environmental Effects of Offshore Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copping, Andrea E.; Hanna, Luke A.

    2011-11-01

    Potential environmental effects of offshore wind (OSW) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and avian and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2011, Pacific Northwest National Laboratory (PNNL) scientists adapted and applied the Environmental Risk Evaluation System (ERES), first developed to examine the effects of marine and hydrokinetic energymore » devices on aquatic environments, to offshore wind development. PNNL scientists conducted a risk screening analysis on two initial OSW cases: a wind project in Lake Erie and a wind project off the Atlantic coast of the United States near Atlantic City, New Jersey. The screening analysis revealed that top-tier stressors in the two OSW cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device, such as alterations in bottom habitats. Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted during FY 2012. The ERES screening analysis provides an assessment of the vulnerability of environmental receptors to stressors associated with OSW installations; a probability analysis is needed to determine specific risk levels to receptors. As more data become available that document effects of offshore wind farms on specific receptors in U.S. coastal and Great Lakes waters, probability analyses will be performed.« less

  6. Conversion of Questionnaire Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Elwood Jr, Robert H

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relativemore » risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.« less

  7. Analysis and Assessment of Operation Risk for Hybrid AC/DC Power System based on the Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Hu, Xiaojing; Li, Qiang; Zhang, Hao; Guo, Ziming; Zhao, Kun; Li, Xinpeng

    2018-06-01

    Based on the Monte Carlo method, an improved risk assessment method for hybrid AC/DC power system with VSC station considering the operation status of generators, converter stations, AC lines and DC lines is proposed. According to the sequential AC/DC power flow algorithm, node voltage and line active power are solved, and then the operation risk indices of node voltage over-limit and line active power over-limit are calculated. Finally, an improved two-area IEEE RTS-96 system is taken as a case to analyze and assessment its operation risk. The results show that the proposed model and method can intuitively and directly reflect the weak nodes and weak lines of the system, which can provide some reference for the dispatching department.

  8. Risk Assessment of Groundwater Contamination: A Multilevel Fuzzy Comprehensive Evaluation Approach Based on DRASTIC Model

    PubMed Central

    Zhang, Yan; Zhong, Ming

    2013-01-01

    Groundwater contamination is a serious threat to water supply. Risk assessment of groundwater contamination is an effective way to protect the safety of groundwater resource. Groundwater is a complex and fuzzy system with many uncertainties, which is impacted by different geological and hydrological factors. In order to deal with the uncertainty in the risk assessment of groundwater contamination, we propose an approach with analysis hierarchy process and fuzzy comprehensive evaluation integrated together. Firstly, the risk factors of groundwater contamination are identified by the sources-pathway-receptor-consequence method, and a corresponding index system of risk assessment based on DRASTIC model is established. Due to the complexity in the process of transitions between the possible pollution risks and the uncertainties of factors, the method of analysis hierarchy process is applied to determine the weights of each factor, and the fuzzy sets theory is adopted to calculate the membership degrees of each factor. Finally, a case study is presented to illustrate and test this methodology. It is concluded that the proposed approach integrates the advantages of both analysis hierarchy process and fuzzy comprehensive evaluation, which provides a more flexible and reliable way to deal with the linguistic uncertainty and mechanism uncertainty in groundwater contamination without losing important information. PMID:24453883

  9. Results of research on development of an intellectual information system of bankruptcy risk assessment of the enterprise

    NASA Astrophysics Data System (ADS)

    Telipenko, E.; Chernysheva, T.; Zakharova, A.; Dumchev, A.

    2015-10-01

    The article represents research results about the knowledge base development for the intellectual information system for the bankruptcy risk assessment of the enterprise. It is described the process analysis of the knowledge base development; the main process stages, some problems and their solutions are given. The article introduces the connectionist model for the bankruptcy risk assessment based on the analysis of industrial enterprise financial accounting. The basis for this connectionist model is a three-layer perceptron with the back propagation of error algorithm. The knowledge base for the intellectual information system consists of processed information and the processing operation method represented as the connectionist model. The article represents the structure of the intellectual information system, the knowledge base, and the information processing algorithm for neural network training. The paper shows mean values of 10 indexes for industrial enterprises; with the help of them it is possible to carry out a financial analysis of industrial enterprises and identify correctly the current situation for well-timed managerial decisions. Results are given about neural network testing on the data of both bankrupt and financially strong enterprises, which were not included into training and test sets.

  10. LOX, GOX and Pressure Relief

    NASA Technical Reports Server (NTRS)

    McLeod, Ken; Stoltzfus, Joel

    2006-01-01

    Oxygen relief systems present a serious fire hazard risk with often severe consequences. This presentation offers a risk management solution strategy which encourages minimizing ignition hazards, maximizing best materials, and utilizing good practices. Additionally, the relief system should be designed for cleanability and ballistic flow. The use of the right metals, softgoods, and lubricants, along with the best assembly techniques, is stressed. Materials should also be tested if data is not available and a full hazard analysis should be conducted in an effort to minimize risk and harm.

  11. Enhancing Interdisciplinary Human System Risk Research Through Modeling and Network Approaches

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark

    2015-01-01

    NASA's Human Research Program (HRP) supports research to reduce human health and performance risks inherent in future human space exploration missions. Understanding risk outcomes and contributing factors in an integrated manner allows HRP research to support development of efficient and effective mitigations from cross-disciplinary perspectives, and to enable resilient human and engineered systems for spaceflight. The purpose of this work is to support scientific collaborations and research portfolio management by utilizing modeling for analysis and visualization of current and potential future interdisciplinary efforts.

  12. Integrated Hybrid System Architecture for Risk Analysis

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.; Fonseca, Daniel J.; Ray, Paul S.

    2010-01-01

    A conceptual design has been announced of an expert-system computer program, and the development of a prototype of the program, intended for use as a project-management tool. The program integrates schedule and risk data for the purpose of determining the schedule applications of safety risks and, somewhat conversely, the effects of changes in schedules on changes on safety. It is noted that the design has been delivered to a NASA client and that it is planned to disclose the design in a conference presentation.

  13. Retrieval medicine: a review and guide for UK practitioners. Part 2: safety in patient retrieval systems

    PubMed Central

    Hearns, S; Shirley, P J

    2006-01-01

    Retrieval and transfer of critically ill and injured patients is a high risk activity. Risk can be minimised with robust safety and clinical governance systems in place. This article describes the various governance systems that can be employed to optimise safety and efficiency in retrieval services. These include operating procedure development, equipment management, communications procedures, crew resource management, significant event analysis, audit and training. PMID:17130608

  14. Intraoperative adaptation and visualization of preoperative risk analyses for oncologic liver surgery

    NASA Astrophysics Data System (ADS)

    Hansen, Christian; Schlichting, Stefan; Zidowitz, Stephan; Köhn, Alexander; Hindennach, Milo; Kleemann, Markus; Peitgen, Heinz-Otto

    2008-03-01

    Tumor resections from the liver are complex surgical interventions. With recent planning software, risk analyses based on individual liver anatomy can be carried out preoperatively. However, additional tumors within the liver are frequently detected during oncological interventions using intraoperative ultrasound. These tumors are not visible in preoperative data and their existence may require changes to the resection strategy. We propose a novel method that allows an intraoperative risk analysis adaptation by merging newly detected tumors with a preoperative risk analysis. To determine the exact positions and sizes of these tumors we make use of a navigated ultrasound-system. A fast communication protocol enables our application to exchange crucial data with this navigation system during an intervention. A further motivation for our work is to improve the visual presentation of a moving ultrasound plane within a complex 3D planning model including vascular systems, tumors, and organ surfaces. In case the ultrasound plane is located inside the liver, occlusion of the ultrasound plane by the planning model is an inevitable problem for the applied visualization technique. Our system allows the surgeon to focus on the ultrasound image while perceiving context-relevant planning information. To improve orientation ability and distance perception, we include additional depth cues by applying new illustrative visualization algorithms. Preliminary evaluations confirm that in case of intraoperatively detected tumors a risk analysis adaptation is beneficial for precise liver surgery. Our new GPU-based visualization approach provides the surgeon with a simultaneous visualization of planning models and navigated 2D ultrasound data while minimizing occlusion problems.

  15. SEU System Analysis: Not Just the Sum of All Parts

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Label, Kenneth

    2014-01-01

    Single event upset (SEU) analysis of complex systems is challenging. Currently, system SEU analysis is performed by component level partitioning and then either: the most dominant SEU cross-sections (SEUs) are used in system error rate calculations; or the partition SEUs are summed to eventually obtain a system error rate. In many cases, system error rates are overestimated because these methods generally overlook system level derating factors. The problem with overestimating is that it can cause overdesign and consequently negatively affect the following: cost, schedule, functionality, and validation/verification. The scope of this presentation is to discuss the risks involved with our current scheme of SEU analysis for complex systems; and to provide alternative methods for improvement.

  16. [Development of whole process quality control and management system of traditional Chinese medicine decoction pieces based on traditional Chinese medicine quality tree].

    PubMed

    Yu, Wen-Kang; Dong, Ling; Pei, Wen-Xuan; Sun, Zhi-Rong; Dai, Jun-Dong; Wang, Yun

    2017-12-01

    The whole process quality control and management of traditional Chinese medicine (TCM) decoction pieces is a system engineering, involving the base environment, seeds and seedlings, harvesting, processing and other multiple steps, so the accurate identification of factors in TCM production process that may induce the quality risk, as well as reasonable quality control measures are very important. At present, the concept of quality risk is mainly concentrated in the aspects of management and regulations, etc. There is no comprehensive analysis on possible risks in the quality control process of TCM decoction pieces, or analysis summary of effective quality control schemes. A whole process quality control and management system for TCM decoction pieces based on TCM quality tree was proposed in this study. This system effectively combined the process analysis method of TCM quality tree with the quality risk management, and can help managers to make real-time decisions while realizing the whole process quality control of TCM. By providing personalized web interface, this system can realize user-oriented information feedback, and was convenient for users to predict, evaluate and control the quality of TCM. In the application process, the whole process quality control and management system of the TCM decoction pieces can identify the related quality factors such as base environment, cultivation and pieces processing, extend and modify the existing scientific workflow according to their own production conditions, and provide different enterprises with their own quality systems, to achieve the personalized service. As a new quality management model, this paper can provide reference for improving the quality of Chinese medicine production and quality standardization. Copyright© by the Chinese Pharmaceutical Association.

  17. Analysis of space systems study for the space disposal of nuclear waste. Study report, volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Space systems concepts were identified and defined and evaluated as to their performance, risks, and technical viability in order to select the most attractive approach for disposal of high level nuclear wastes in space. Major study areas discussed include: (1) mission and operations analysis; (2) waste payload systems; (3) flight support system; (4) launch site systems; (5) launch vehicle systems; (6) orbit transfer system; (7) space disposal destinations; and (8) systems integration and evaluation.

  18. A methodology for evacuation design for urban areas: theoretical aspects and experimentation

    NASA Astrophysics Data System (ADS)

    Russo, F.; Vitetta, A.

    2009-04-01

    This paper proposes an unifying approach for the simulation and design of a transportation system under conditions of incoming safety and/or security. Safety and security are concerned with threats generated by very different factors and which, in turn, generate emergency conditions, such as the 9/11, Madrid and London attacks, the Asian tsunami, and the Katrina hurricane; just considering the last five years. In transportation systems, when exogenous events happen and there is a sufficient interval time between the instant when the event happens and the instant when the event has effect on the population, it is possible to reduce the negative effects with the population evacuation. For this event in every case it is possible to prepare with short and long term the evacuation. For other event it is possible also to plan the real time evacuation inside the general risk methodology. The development of models for emergency conditions in transportation systems has not received much attention in the literature. The main findings in this area are limited to only a few public research centres and private companies. In general, there is no systematic analysis of the risk theory applied in the transportation system. Very often, in practice, the vulnerability and exposure in the transportation system are considered as similar variables, or in other worse cases the exposure variables are treated as vulnerability variables. Models and algorithms specified and calibrated in ordinary conditions cannot be directly applied in emergency conditions under the usual hypothesis considered. This paper is developed with the following main objectives: (a) to formalize the risk problem with clear diversification (for the consequences) in the definition of the vulnerability and exposure in a transportation system; thus the book offers improvements over consolidated quantitative risk analysis models, especially transportation risk analysis models (risk assessment); (b) to formalize a system of models for evacuation simulation; (c) to calibrate and validate system of model for evacuation simulation from a real experimentation. In relation to the proposed objectives in this paper: (a) a general framework about risk analysis is reported in the first part, with specific methods and models to analyze urban transportation system performances in emergency conditions when exogenous phenomena occur and for the specification of the risk function; (b) a formulation of the general evacuation problem in the standard simulation context of "what if" approach is specified in the second part with reference to the model considered for the simulation of transportation system in ordinary condition; (c) a set of models specified in the second part are calibrated and validated from a real experimentation in the third part. The experimentation was developed in the central business district of an Italian village and about 1000 inhabitants were evacuated, in order to construct a complete data-base. Our experiment required that socioeconomic information (population, number employed, public buildings, schools, etc.) and ‎transport supply characteristics (infrastructures, etc.) be measured before and during experimentation. The real data of evacuation were recorded with 30 video cameras for laboratory analysis. The results are divided into six strictly connected tasks: Demand models; Supply and supply-demand interaction models for users; Simulation of refuge areas for users; Design of path choice models for emergency vehicles; Pedestrian outflow models in a building; Planning process and guidelines.

  19. Risk analysis of information security in a mobile instant messaging and presence system for healthcare.

    PubMed

    Bønes, Erlend; Hasvold, Per; Henriksen, Eva; Strandenaes, Thomas

    2007-09-01

    Instant messaging (IM) is suited for immediate communication because messages are delivered almost in real time. Results from studies of IM use in enterprise work settings make us believe that IM based services may prove useful also within the healthcare sector. However, today's public instant messaging services do not have the level of information security required for adoption of IM in healthcare. We proposed MedIMob, our own architecture for a secure enterprise IM service for use in healthcare. MedIMob supports IM clients on mobile devices in addition to desktop based clients. Security threats were identified in a risk analysis of the MedIMob architecture. The risk analysis process consists of context identification, threat identification, analysis of consequences and likelihood, risk evaluation, and proposals for risk treatment. The risk analysis revealed a number of potential threats to the information security of a service like this. Many of the identified threats are general when dealing with mobile devices and sensitive data; others are threats which are more specific to our service and architecture. Individual threats identified in the risks analysis are discussed and possible counter measures presented. The risk analysis showed that most of the proposed risk treatment measures must be implemented to obtain an acceptable risk level; among others blocking much of the additional functionality of the smartphone. To conclude on the usefulness of this IM service, it will be evaluated in a trial study of the human-computer interaction. Further work also includes an improved design of the proposed MedIMob architecture. 2006 Elsevier Ireland Ltd

  20. Uncertainty characterization approaches for risk assessment of DBPs in drinking water: a review.

    PubMed

    Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James

    2009-04-01

    The management of risk from disinfection by-products (DBPs) in drinking water has become a critical issue over the last three decades. The areas of concern for risk management studies include (i) human health risk from DBPs, (ii) disinfection performance, (iii) technical feasibility (maintenance, management and operation) of treatment and disinfection approaches, and (iv) cost. Human health risk assessment is typically considered to be the most important phase of the risk-based decision-making or risk management studies. The factors associated with health risk assessment and other attributes are generally prone to considerable uncertainty. Probabilistic and non-probabilistic approaches have both been employed to characterize uncertainties associated with risk assessment. The probabilistic approaches include sampling-based methods (typically Monte Carlo simulation and stratified sampling) and asymptotic (approximate) reliability analysis (first- and second-order reliability methods). Non-probabilistic approaches include interval analysis, fuzzy set theory and possibility theory. However, it is generally accepted that no single method is suitable for the entire spectrum of problems encountered in uncertainty analyses for risk assessment. Each method has its own set of advantages and limitations. In this paper, the feasibility and limitations of different uncertainty analysis approaches are outlined for risk management studies of drinking water supply systems. The findings assist in the selection of suitable approaches for uncertainty analysis in risk management studies associated with DBPs and human health risk.

  1. Assessing risk factors in the organic control system: evidence from inspection data in Italy.

    PubMed

    Zanoli, Raffaele; Gambelli, Danilo; Solfanelli, Francesco

    2014-12-01

    Certification is an essential feature in organic farming, and it is based on inspections to verify compliance with respect to European Council Regulation-EC Reg. No 834/2007. A risk-based approach to noncompliance that alerts the control bodies to activate planning inspections would contribute to a more efficient and cost-effective certification system. An analysis of factors that can affect the probability of noncompliance in organic farming has thus been developed. This article examines the application of zero-inflated count data models to farm-level panel data from inspection results and sanctions obtained from the Ethical and Environmental Certification Institute, one of the main control bodies in Italy. We tested many a priori hypotheses related to the risk of noncompliance. We find evidence of an important role for past noncompliant behavior in predicting future noncompliance, while farm size and the occurrence of livestock also have roles in an increased probability of noncompliance. We conclude the article proposing that an efficient risk-based inspection system should be designed, weighting up the known probability of occurrence of a given noncompliance according to the severity of its impact. © 2014 Society for Risk Analysis.

  2. The use of aquatic bioconcentration factors in ecological risk assessments: Confounding issues, laboratory v/s modeled results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Blanton, M.L.; Dirkes, R.

    1995-12-31

    Bioconcentration in aquatic systems is generally taken to refer to contaminant uptake through non-ingestion pathways (i.e., dermal and respiration uptake). Ecological risk assessments performed on aquatic systems often rely on published data on bioconcentration factors to calibrate models of exposure. However, many published BCFs, especially those from in situ studies, are confounded by uptake from ingestion of prey. As part of exposure assessment and risk analysis of the Columbia River`s Hanford Reach, the authors tested a methodology to estimate radionuclide BCFs for several aquatic species in the Hanford Reach of the Columbia River. The iterative methodology solves for BCFs frommore » known body burdens and environmental media concentrations. This paper provides BCF methodology description comparisons of BCF from literature and modeled values and how they were used in the exposure assessment and risk analysis of the Columbia River`s Hanford Reach.« less

  3. Risk perception and communication in sub-Saharan Africa.

    PubMed

    Dodoo, Alexander; Hugman, Bruce

    2012-11-01

    In this narrative review, a brief summary of theoretical approaches to risk perception is followed by an analysis of some of the special factors influencing risk perception and risk communication in sub-Saharan Africa. Examples of recent and emergent local medicines and vaccine controversies in several countries are given along with evidence and analysis of how they were managed. These demonstrate, among other things, the extent to which ethnic, religious and cultural issues influence popular perception, and the power of rumour and anecdote in shaping public opinion and official responses to events. Where safety monitoring systems exist, they are in their infancy, with limited capacity for data collection, credible scientific review, effective public communication and robust crisis management. Although increasing democratic freedoms, including less restricted media, and evolving health systems are addressing the challenges and give hope for further progress, there are still deep and intractable issues that inhibit transparent and effective risk communication and stand in the way of African populations comprehending medicines and their risks in safer and more balanced ways. Some proposals for future change and action are offered, including the pursuit of a deeper understanding of local and national values, assumptions and beliefs that drive risk perception; tailoring public health planning and communications to specifically-targeted regions and populations; strengthening of safety surveillance and data-collection systems; giving higher priority to medicines safety issues in healthcare training and public education.

  4. Evaluation of a Real-Time Monitoring System for River Quality-A Trade-off between Risk Attitudes, Costs, and Uncertainly.

    ERIC Educational Resources Information Center

    Varis, Olli; And Others

    1993-01-01

    Presents one approach to handling the trade-off between reducing uncertainty in environmental assessment and management and additional expenses. Uses the approach in the evaluation of three alternatives for a real time river water quality forecasting system. Analysis of risk attitudes, costs and uncertainty indicated the levels of socioeconomic…

  5. A COMPARATIVE RISK REDUCTION ANALYSIS OF THE OFFICE OF SOLID WASTE'S WASTE MINIMIZATION PRIORITY CHEMICALS INITIATIVE USING THE 3MRA MULTIMEDIA MODELING SYSTEM

    EPA Science Inventory

    A study was initiated by the EPA/ORD National Exposure Research Lab (NERL) in FY05 to quantify risk reduction resulting from this national EPA initiative to reduce WMPC disposal. Using the 3MRA modeling system, which was recommended for use by the EPA Science Advisory Board for ...

  6. Development Risk Methodology for Whole Systems Trade Analysis

    DTIC Science & Technology

    2016-08-01

    Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding...JCIDS - Joint Capabilities Integration and Development System L - Likelihood MS - Milestone O&S - Operations and Sustainment P.95 - 95th...and their consequences. These dimensions are: performance, unit cost, operations & sustainment (O&S) cost, development risk, and growth potential

  7. Psychiatric disorders, acne and systemic retinoids: comparison of risks.

    PubMed

    Le Moigne, M; Bulteau, S; Grall-Bronnec, Marie; Gerardin, M; Fournier, Jean-Pascal; Jonville-Bera, A P; Jolliet, Pascale; Dreno, Brigitte; Victorri-Vigneau, C

    2017-09-01

    The link between isotretinoin, treatment of a severe form of acne, and psychiatric disorders remains controversial, as acne itself could explain the occurrence of psychiatric disorders. This study aims at assessing the disproportionality of psychiatric adverse events reported with isotretinoin in the French National PharmacoVigilance Database, compared with other systemic acne treatments and systemic retinoids. Data were extracted from the French National PharmacoVigilance Database for systemic acne treatments, systemic retinoids and drugs used as comparators. Each report was subjected to double-blind analysis by two psychiatric experts. A disproportionality analysis was performed, calculating the number of psychiatric ADRs divided by the total number of notifications for each drug of interest. Concerning acne systemic treatments: all 71 reports of severe psychiatric disorders involved isotretinoin, the highest proportion of mild/moderate psychiatric adverse events was reported with isotretinoin (14.1%). Among systemic retinoids, the highest proportion of severe and mild/moderate psychiatric events occurred with isotretinoin and alitretinoin. Our study raises the hypothesis that psychiatric disorders associated with isotretinoin are related to a class effect of retinoids, as a signal emerges for alitretinoin. Complementary studies are necessary to estimate the risk and further determine at-risk populations.

  8. Risk-informed Maintenance for Non-coherent Systems

    NASA Astrophysics Data System (ADS)

    Tao, Ye

    Probabilistic Safety Assessment (PSA) is a systematic and comprehensive methodology to evaluate risks associated with a complex engineered technological entity. The information provided by PSA has been increasingly implemented for regulatory purposes but rarely used in providing information for operation and maintenance activities. As one of the key parts in PSA, Fault Tree Analysis (FTA) attempts to model and analyze failure processes of engineering and biological systems. The fault trees are composed of logic diagrams that display the state of the system and are constructed using graphical design techniques. Risk Importance Measures (RIMs) are information that can be obtained from both qualitative and quantitative aspects of FTA. Components within a system can be ranked with respect to each specific criterion defined by each RIM. Through a RIM, a ranking of the components or basic events can be obtained and provide valuable information for risk-informed decision making. Various RIMs have been applied in various applications. In order to provide a thorough understanding of RIMs and interpret the results, they are categorized with respect to risk significance (RS) and safety significance (SS) in this thesis. This has also tied them into different maintenance activities. When RIMs are used for maintenance purposes, it is called risk-informed maintenance. On the other hand, the majority of work produced on the FTA method has been concentrated on failure logic diagrams restricted to the direct or implied use of AND and OR operators. Such systems are considered as coherent systems. However, the NOT logic can also contribute to the information produced by PSA. The importance analysis of non-coherent systems is rather limited, even though the field has received more and more attention over the years. The non-coherent systems introduce difficulties in both qualitative and quantitative assessment of the fault tree compared with the coherent systems. In this thesis, a set of RIMs is analyzed and investigated. The 8 commonly used RIMs (Birnbaum's Measure, Criticality Importance Factor, Fussell-Vesely Measure, Improvement Potential, Conditional Probability, Risk Achievement, Risk Achievement Worth, and Risk Reduction Worth) are extended to non-coherent forms. Both coherent and non-coherent forms are classified into different categories in order to assist different types of maintenance activities. The real systems such as the Steam Generator Level Control System in CANDU Nuclear Power Plant (NPP), a Gas Detection System, and the Automatic Power Control System of the experimental nuclear reactor are presented to demonstrate the application of the results as case studies.

  9. Vaccinations and risk of systemic lupus erythematosus and rheumatoid arthritis: A systematic review and meta-analysis.

    PubMed

    Wang, Bin; Shao, Xiaoqing; Wang, Dan; Xu, Donghua; Zhang, Jin-An

    2017-07-01

    In the past several years, more and more studies proposed some concerns on the possibly increased risk of autoimmune diseases in individuals receiving vaccinations, but published studies on the associations of vaccinations with risks of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) reported conflicting findings. A systematic review and meta-analysis was carried out to comprehensively evaluate the relationship between vaccinations and risk of SLE and RA. Pubmed, Web of Science and Embase were searched for observational studies assessing the associations of vaccinations with risks of RA and SLE. Two authors independently extracted data from those eligible studies. The quality of eligible studies was assessed by using the Newcastle-Ottawa Scale (NOS). The pooled relative risk (RR) with 95% confidence intervals (CIs) was used to measure the risk of RA and SLE associated with vaccinations, and was calculated through random-effect meta-analysis. Sixteen observational studies were finally considered eligible, including 12 studies on the association between vaccinations and SLE risk and 13 studies on the association between vaccinations and RA risk. The pooled findings suggested that vaccinations significantly increased risk of SLE (RR=1.50; 95%CI 1.05-2.12, P=0.02). In addition, there was an obvious association between vaccinations and increased risk of RA (RR=1.32; 95%CI 1.09-1.60, P=0.004). Meta-analysis of studies reporting outcomes of short vaccinated time also suggested that vaccinations could significantly increase risk of SLE (RR=1.93; 95%CI 1.07-3.48, P=0.028) and RA (RR=1.48; 95%CI 1.08-2.03, P=0.015). Sensitivity analyses in studies with low risk of bias also found obvious associations of vaccinations with increased risk of RA and SLE. This study suggests that vaccinations are related to increased risks of SLE and RA. More and larger observational studies are needed to further verify the findings above and to assess the associations of vaccinations with other rheumatic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. EVALUATION OF VADOSE ZONE AND SORUCE MODULES FOR MULTI-MEDIA, MULTI-PATHWAY, AND MULTI-RECEPTOR RISK ASSESSMENT USING LARGE-SOIL-COLUMN EXPERIMENTAL DATA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) is developing a comprehensive environmental exposure and risk analysis software system for agency-wide application using the methodology of a Multi-media, Multi-pathway, Multi-receptor Risk Assessment (3MRA) model. This sof...

  11. Carbon Fiber Risk Analysis. [conference

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The scope and status of the effort to assess the risks associated with the accidental release of carbon/graphite fibers from civil aircraft is presented. Vulnerability of electrical and electronic equipment to carbon fibers, dispersal of carbon fibers, effectiveness of filtering systems, impact of fiber induced failures, and risk methodology are among the topics covered.

  12. EVALUATION OF VADOSE ZONE AND SOURCE MODELS FOR MULTI-MEDIA, MULTI-PATHWAY, MULTI-RECEPTOR RISK ASSESSMENT USING LARGE SOIL COLUMN EXPERIMENT DATA

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is developing a comprehensive environmental exposure and risk analysis software system for agency-wide application using the methodology of a Multi-media, Multi-pathway, Multi-receptor Risk Assessment (3MRA) model. This software sys...

  13. Household portfolio choices, health status and health care systems: A cross-country analysis based on SHARE.

    PubMed

    Atella, Vincenzo; Brunetti, Marianna; Maestas, Nicole

    2012-05-01

    Health risk is increasingly viewed as an important form of background risk that affects household portfolio decisions. However, its role might be mediated by the presence of a protective full-coverage national health service that could reduce households' probability of incurring current and future out-of-pocket medical expenditures. We use SHARE data to study the influence of current health status and future health risk on the decision to hold risky assets, across ten European countries with different health systems, each offering a different degree of protection against out-of-pocket medical expenditures. We find robust empirical evidence that perceived health status matters more than objective health status and, consistent with the theory of background risk, health risk affects portfolio choices only in countries with less protective health care systems. Furthermore, portfolio decisions consistent with background risk models are observed only with respect to middle-aged and highly-educated investors.

  14. Constellation Program (CxP) Crew Exploration Vehicle (CEV) Project Integrated Landing System

    NASA Technical Reports Server (NTRS)

    Baker, John D.; Yuchnovicz, Daniel E.; Eisenman, David J.; Peer, Scott G.; Fasanella, Edward L.; Lawrence, Charles

    2009-01-01

    Crew Exploration Vehicle (CEV) Chief Engineer requested a risk comparison of the Integrated Landing System design developed by NASA and the design developed by Contractor- referred to as the LM 604 baseline. Based on the results of this risk comparison, the CEV Chief engineer requested that the NESC evaluate identified risks and develop strategies for their reduction or mitigation. The assessment progressed in two phases. A brief Phase I analysis was performed by the Water versus Land-Landing Team to compare the CEV Integrated Landing System proposed by the Contractor against the NASA TS-LRS001 baseline with respect to risk. A phase II effort examined the areas of critical importance to the overall landing risk, evaluating risk to the crew and to the CEV Crew Module (CM) during a nominal land-landing. The findings of the assessment are contained in this report.

  15. Screening Analysis for the Environmental Risk Evaluation System Task 2.1.1.2: Evaluating Effects of Stressors Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copping, Andrea E.; Blake, Kara M.; Anderson, Richard M.

    2011-09-01

    Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases.more » During FY 2011, two additional cases were added: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. Through an iterative process, the screening analysis revealed that top-tier stressors in the two FY 2011 cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted in early FY 2012. The ERES screening analysis provides an analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis is needed to determine specific risk levels to receptors. “Risk” has two components: (1) The likelihood, or “probability”, of the occurrence of a given interaction or event, and (2) the potential “consequence” if that interaction or event were to occur. During FY 2011, the ERES screening analysis focused primarily on the second component of risk, “consequence”, with focused probability analysis for interactions where data was sufficient for probability modeling. Consequence analysis provides an assessment of vulnerability of environmental receptors to stressors associated with MHK installations. Probability analysis is needed to determine specific risk levels to receptors and requires significant data inputs to drive risk models. During FY 2011, two stressor-receptor interactions were examined for the probability of occurrence. The two interactions (spill probability due to an encounter between a surface vessel and an MHK device; and toxicity from anti-biofouling paints on MHK devices) were seen to present relatively low risks to marine and freshwater receptors of greatest concern in siting and permitting MHK devices. A third probability analysis was scoped and initial steps taken to understand the risk of encounter between marine animals and rotating turbine blades. This analysis will be completed in FY 2012.« less

  16. Integrated operations payloads/fleet analysis study extension report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An analysis of the factors affecting the cost effectiveness of space shuttle operations is presented. The subjects discussed are: (1)payload data bank, (2) program risk analysis, (3)navigation satellite program, and (4) reusable launch systems.

  17. Risk, Robustness and Water Resources Planning Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Borgomeo, Edoardo; Mortazavi-Naeini, Mohammad; Hall, Jim W.; Guillod, Benoit P.

    2018-03-01

    Risk-based water resources planning is based on the premise that water managers should invest up to the point where the marginal benefit of risk reduction equals the marginal cost of achieving that benefit. However, this cost-benefit approach may not guarantee robustness under uncertain future conditions, for instance under climatic changes. In this paper, we expand risk-based decision analysis to explore possible ways of enhancing robustness in engineered water resources systems under different risk attitudes. Risk is measured as the expected annual cost of water use restrictions, while robustness is interpreted in the decision-theoretic sense as the ability of a water resource system to maintain performance—expressed as a tolerable risk of water use restrictions—under a wide range of possible future conditions. Linking risk attitudes with robustness allows stakeholders to explicitly trade-off incremental increases in robustness with investment costs for a given level of risk. We illustrate the framework through a case study of London's water supply system using state-of-the -art regional climate simulations to inform the estimation of risk and robustness.

  18. Uncertainty as Knowledge: Constraints on Policy Choices Provided by Analysis of Uncertainty

    NASA Astrophysics Data System (ADS)

    Lewandowsky, S.; Risbey, J.; Smithson, M.; Newell, B. R.

    2012-12-01

    Uncertainty forms an integral part of climate science, and it is often cited in connection with arguments against mitigative action. We argue that an analysis of uncertainty must consider existing knowledge as well as uncertainty, and the two must be evaluated with respect to the outcomes and risks associated with possible policy options. Although risk judgments are inherently subjective, an analysis of the role of uncertainty within the climate system yields two constraints that are robust to a broad range of assumptions. Those constraints are that (a) greater uncertainty about the climate system is necessarily associated with greater expected damages from warming, and (b) greater uncertainty translates into a greater risk of the failure of mitigation efforts. These ordinal constraints are unaffected by subjective or cultural risk-perception factors, they are independent of the discount rate, and they are independent of the magnitude of the estimate for climate sensitivity. The constraints mean that any appeal to uncertainty must imply a stronger, rather than weaker, need to cut greenhouse gas emissions than in the absence of uncertainty.

  19. Space Shuttle Main Engine Quantitative Risk Assessment: Illustrating Modeling of a Complex System with a New QRA Software Package

    NASA Technical Reports Server (NTRS)

    Smart, Christian

    1998-01-01

    During 1997, a team from Hernandez Engineering, MSFC, Rocketdyne, Thiokol, Pratt & Whitney, and USBI completed the first phase of a two year Quantitative Risk Assessment (QRA) of the Space Shuttle. The models for the Shuttle systems were entered and analyzed by a new QRA software package. This system, termed the Quantitative Risk Assessment System(QRAS), was designed by NASA and programmed by the University of Maryland. The software is a groundbreaking PC-based risk assessment package that allows the user to model complex systems in a hierarchical fashion. Features of the software include the ability to easily select quantifications of failure modes, draw Event Sequence Diagrams(ESDs) interactively, perform uncertainty and sensitivity analysis, and document the modeling. This paper illustrates both the approach used in modeling and the particular features of the software package. The software is general and can be used in a QRA of any complex engineered system. The author is the project lead for the modeling of the Space Shuttle Main Engines (SSMEs), and this paper focuses on the modeling completed for the SSMEs during 1997. In particular, the groundrules for the study, the databases used, the way in which ESDs were used to model catastrophic failure of the SSMES, the methods used to quantify the failure rates, and how QRAS was used in the modeling effort are discussed. Groundrules were necessary to limit the scope of such a complex study, especially with regard to a liquid rocket engine such as the SSME, which can be shut down after ignition either on the pad or in flight. The SSME was divided into its constituent components and subsystems. These were ranked on the basis of the possibility of being upgraded and risk of catastrophic failure. Once this was done the Shuttle program Hazard Analysis and Failure Modes and Effects Analysis (FMEA) were used to create a list of potential failure modes to be modeled. The groundrules and other criteria were used to screen out the many failure modes that did not contribute significantly to the catastrophic risk. The Hazard Analysis and FMEA for the SSME were also used to build ESDs that show the chain of events leading from the failure mode occurence to one of the following end states: catastrophic failure, engine shutdown, or siccessful operation( successful with respect to the failure mode under consideration).

  20. A Bayesian Framework for Analysis of Pseudo-Spatial Models of Comparable Engineered Systems with Application to Spacecraft Anomaly Prediction Based on Precedent Data

    NASA Astrophysics Data System (ADS)

    Ndu, Obibobi Kamtochukwu

    To ensure that estimates of risk and reliability inform design and resource allocation decisions in the development of complex engineering systems, early engagement in the design life cycle is necessary. An unfortunate constraint on the accuracy of such estimates at this stage of concept development is the limited amount of high fidelity design and failure information available on the actual system under development. Applying the human ability to learn from experience and augment our state of knowledge to evolve better solutions mitigates this limitation. However, the challenge lies in formalizing a methodology that takes this highly abstract, but fundamentally human cognitive, ability and extending it to the field of risk analysis while maintaining the tenets of generalization, Bayesian inference, and probabilistic risk analysis. We introduce an integrated framework for inferring the reliability, or other probabilistic measures of interest, of a new system or a conceptual variant of an existing system. Abstractly, our framework is based on learning from the performance of precedent designs and then applying the acquired knowledge, appropriately adjusted based on degree of relevance, to the inference process. This dissertation presents a method for inferring properties of the conceptual variant using a pseudo-spatial model that describes the spatial configuration of the family of systems to which the concept belongs. Through non-metric multidimensional scaling, we formulate the pseudo-spatial model based on rank-ordered subjective expert perception of design similarity between systems that elucidate the psychological space of the family. By a novel extension of Kriging methods for analysis of geospatial data to our "pseudo-space of comparable engineered systems", we develop a Bayesian inference model that allows prediction of the probabilistic measure of interest.

  1. Analysis of Risks to Oxygen Systems from Particulate and Fiber Contaminants and Derivation of Cleanliness Requirements

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2016-01-01

    It has been well documented in the literature that contamination within oxygen systems can create significant fire hazards. Cleanliness limits for nonvolatile residues, ranging from 10 to 500 milligrams per square meter, have been established for various industries and types of oxygen systems to reduce the risk of ignition of flammable organic films. Particulate cleanliness limits used for oxygen systems, however, vary considerably, notably within the aerospace industry. Maximum allowed particle size, quantity limits, and allocations for fibers or metallic particles are all variables seen in aerospace cleanliness limits. Particles are known to have the potential to ignite within oxygen systems and must be limited to prevent fires. Particulate contamination may also pose risks to the performance of oxygen systems that are unrelated to ignition hazards. An extensive literature search was performed to better understand the relative importance of particle ignition mechanisms versus other deleterious effects of particles on oxygen systems and to identify rationale for derivation of particulate cleanliness limits for specific systems. The identified risks of different types and sizes of particles and fibers were analyzed. This paper summarizes the risks identified and rationale that may be used to derive particulate cleanliness limits for specific oxygen systems.

  2. Analysis of Risks to Oxygen Systems from Particulate and Fiber Contaminants and Derivation of Cleanliness Requirements

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2016-01-01

    It has been well documented in the literature that contamination within oxygen systems can create significant fire hazards. Cleanliness limits for nonvolatile residues, ranging from 10 to 500 mg/sq m, have been established for various industries and types of oxygen systems to reduce the risk of ignition of flammable organic films. Particulate cleanliness limits used for oxygen systems vary considerably. Maximum allowed particle size, quantity limits, and allocations for fibers or metallic particles are all variables seen in aerospace cleanliness limits. Particles are known to have the potential to ignite within oxygen systems and must be limited to prevent fires. Particulate contamination may also pose risks to the performance of oxygen systems that are unrelated to ignition hazards. An extensive literature search was performed to better understand the relative importance of particle ignition mechanisms versus other deleterious effects of particles on oxygen systems and to identify rationale for derivation of particulate cleanliness limits for specific systems. The identified risks of different types and sizes of particles and fibers were analyzed. This paper summarizes the risks identified and rationale that may be used to derive particulate cleanliness limits for specific oxygen systems.

  3. Changes in Cross-Correlations as an Indicator for Systemic Risk

    PubMed Central

    Zheng, Zeyu; Podobnik, Boris; Feng, Ling; Li, Baowen

    2012-01-01

    The 2008–2012 global financial crisis began with the global recession in December 2007 and exacerbated in September 2008, during which the U.S. stock markets lost 20% of value from its October 11 2007 peak. Various studies reported that financial crisis are associated with increase in both cross-correlations among stocks and stock indices and the level of systemic risk. In this paper, we study 10 different Dow Jones economic sector indexes, and applying principle component analysis (PCA) we demonstrate that the rate of increase in principle components with short 12-month time windows can be effectively used as an indicator of systemic risk—the larger the change of PC1, the higher the increase of systemic risk. Clearly, the higher the level of systemic risk, the more likely a financial crisis would occur in the near future. PMID:23185692

  4. Reliability and Probabilistic Risk Assessment - How They Play Together

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Stutts, Richard G.; Zhaofeng, Huang

    2015-01-01

    PRA methodology is one of the probabilistic analysis methods that NASA brought from the nuclear industry to assess the risk of LOM, LOV and LOC for launch vehicles. PRA is a system scenario based risk assessment that uses a combination of fault trees, event trees, event sequence diagrams, and probability and statistical data to analyze the risk of a system, a process, or an activity. It is a process designed to answer three basic questions: What can go wrong? How likely is it? What is the severity of the degradation? Since 1986, NASA, along with industry partners, has conducted a number of PRA studies to predict the overall launch vehicles risks. Planning Research Corporation conducted the first of these studies in 1988. In 1995, Science Applications International Corporation (SAIC) conducted a comprehensive PRA study. In July 1996, NASA conducted a two-year study (October 1996 - September 1998) to develop a model that provided the overall Space Shuttle risk and estimates of risk changes due to proposed Space Shuttle upgrades. After the Columbia accident, NASA conducted a PRA on the Shuttle External Tank (ET) foam. This study was the most focused and extensive risk assessment that NASA has conducted in recent years. It used a dynamic, physics-based, integrated system analysis approach to understand the integrated system risk due to ET foam loss in flight. Most recently, a PRA for Ares I launch vehicle has been performed in support of the Constellation program. Reliability, on the other hand, addresses the loss of functions. In a broader sense, reliability engineering is a discipline that involves the application of engineering principles to the design and processing of products, both hardware and software, for meeting product reliability requirements or goals. It is a very broad design-support discipline. It has important interfaces with many other engineering disciplines. Reliability as a figure of merit (i.e. the metric) is the probability that an item will perform its intended function(s) for a specified mission profile. In general, the reliability metric can be calculated through the analyses using reliability demonstration and reliability prediction methodologies. Reliability analysis is very critical for understanding component failure mechanisms and in identifying reliability critical design and process drivers. The following sections discuss the PRA process and reliability engineering in detail and provide an application where reliability analysis and PRA were jointly used in a complementary manner to support a Space Shuttle flight risk assessment.

  5. The HSE management system in practice-implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Primrose, M.J.; Bentley, P.D.; Sykes, R.M.

    1996-11-01

    This paper sets out the necessary strategic issues that must be dealt with when setting up a management system for HSE. It touches on the setting of objectives using a form of risk matrix and the establishment of corporate risk tolerability levels. Such issue management is vital but can be seen as yet another corporate HQ initiative. It must therefore be linked, and made relevant to those in middle management tasked with implementing the system and also to those at risk {open_quote}at the sharp end{close_quote} of the business. Setting acceptance criteria is aimed at demonstrating a necessary and sufficient levelmore » of control or coverage for those hazards considered as being within the objective setting of the Safety or HSE Case. Critical risk areas addressed via the Safety Case, within Shell companies at least, must show how this coverage is extended to critical health and environmental issues. Methods of achieving this are various ranging from specific Case deliverables (like the Hazard Register and Accountability Matrices) through to the incorporation of topics from the hazard analysis in toolbox talks and meetings. Risk analysis techniques are increasingly seen as complementary rather than separate with environmental assessments, health risk assessment sand safety risk analyses taking place together and results being considered jointly. The paper ends with some views on the way ahead regarding the linking of risk decisions to target setting at the workplace and views on how Case information may be retrieved and used on a daily basis.« less

  6. RiskChanges Spatial Decision Support system for the analysis of changing multi-hazard risk

    NASA Astrophysics Data System (ADS)

    van Westen, Cees; Zhang, Kaixi; Bakker, Wim; Andrejchenko, Vera; Berlin, Julian; Olyazadeh, Roya; Cristal, Irina

    2015-04-01

    Within the framework of the EU FP7 Marie Curie Project CHANGES and the EU FP7 Copernicus project INCREO a spatial decision support system was developed with the aim to analyse the effect of risk reduction planning alternatives on reducing the risk now and in the future, and support decision makers in selecting the best alternatives. Central to the SDSS are the stakeholders. The envisaged users of the system are organizations involved in planning of risk reduction measures, and that have staff capable of visualizing and analyzing spatial data at a municipal scale. The SDSS should be able to function in different countries with different legal frameworks and with organizations with different mandates. These could be subdivided into Civil protection organization with the mandate to design disaster response plans, Expert organizations with the mandate to design structural risk reduction measures (e.g. dams, dikes, check-dams etc), and planning organizations with the mandate to make land development plans. The SDSS can be used in different ways: analyzing the current level of risk, analyzing the best alternatives for risk reduction, the evaluation of the consequences of possible future scenarios to the risk levels, and the evaluation how different risk reduction alternatives will lead to risk reduction under different future scenarios. The SDSS is developed based on open source software and following open standards, for code as well as for data formats and service interfaces. Code development was based upon open source software as well. The architecture of the system is modular. The various parts of the system are loosely coupled, extensible, using standards for interoperability, flexible and web-based. The Spatial Decision Support System is composed of a number of integrated components. The Risk Assessment component allows to carry out spatial risk analysis, with different degrees of complexity, ranging from simple exposure (overlay of hazard and assets maps) to quantitative analysis (using different hazard types, temporal scenarios and vulnerability curves) resulting into risk curves. The platform does not include a component to calculate hazard maps, and existing hazard maps are used as input data for the risk component. The second component of the SDSS is a risk reduction planning component, which forms the core of the platform. This component includes the definition of risk reduction alternatives (related to disaster response planning, risk reduction measures and spatial planning) and links back to the risk assessment module to calculate the new level of risk if the measure is implemented, and a cost-benefit (or cost-effectiveness/ Spatial Multi Criteria Evaluation) component to compare the alternatives and make decision on the optimal one. The third component of the SDSS is a temporal scenario component, which allows to define future scenarios in terms of climate change, land use change and population change, and the time periods for which these scenarios will be made. The component doesn't generate these scenarios but uses input maps for the effect of the scenarios on the hazard and assets maps. The last component is a communication and visualization component, which can compare scenarios and alternatives, not only in the form of maps, but also in other forms (risk curves, tables, graphs)

  7. Conceptual Launch Vehicle and Spacecraft Design for Risk Assessment

    NASA Technical Reports Server (NTRS)

    Motiwala, Samira A.; Mathias, Donovan L.; Mattenberger, Christopher J.

    2014-01-01

    One of the most challenging aspects of developing human space launch and exploration systems is minimizing and mitigating the many potential risk factors to ensure the safest possible design while also meeting the required cost, weight, and performance criteria. In order to accomplish this, effective risk analyses and trade studies are needed to identify key risk drivers, dependencies, and sensitivities as the design evolves. The Engineering Risk Assessment (ERA) team at NASA Ames Research Center (ARC) develops advanced risk analysis approaches, models, and tools to provide such meaningful risk and reliability data throughout vehicle development. The goal of the project presented in this memorandum is to design a generic launch 7 vehicle and spacecraft architecture that can be used to develop and demonstrate these new risk analysis techniques without relying on other proprietary or sensitive vehicle designs. To accomplish this, initial spacecraft and launch vehicle (LV) designs were established using historical sizing relationships for a mission delivering four crewmembers and equipment to the International Space Station (ISS). Mass-estimating relationships (MERs) were used to size the crew capsule and launch vehicle, and a combination of optimization techniques and iterative design processes were employed to determine a possible two-stage-to-orbit (TSTO) launch trajectory into a 350-kilometer orbit. Primary subsystems were also designed for the crewed capsule architecture, based on a 24-hour on-orbit mission with a 7-day contingency. Safety analysis was also performed to identify major risks to crew survivability and assess the system's overall reliability. These procedures and analyses validate that the architecture's basic design and performance are reasonable to be used for risk trade studies. While the vehicle designs presented are not intended to represent a viable architecture, they will provide a valuable initial platform for developing and demonstrating innovative risk assessment capabilities.

  8. Options and Risk for Qualification of Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle; Daniel, Charles; Cook, Steve (Technical Monitor)

    2002-01-01

    Electric propulsion vehicle systems envelop a wide range of propulsion alternatives including solar and nuclear, which present unique circumstances for qualification. This paper will address the alternatives for qualification of electric propulsion spacecraft systems. The approach taken will be to address the considerations for qualification at the various levels of systems definition. Additionally, for each level of qualification the system level risk implications will be developed. Also, the paper will explore the implications of analysis verses test for various levels of systems definition, while retaining the objectives of a verification program. The limitations of terrestrial testing will be explored along with the risk and implications of orbital demonstration testing. The paper will seek to develop a template for structuring of a verification program based on cost, risk and value return. A successful verification program should establish controls and define objectives of the verification compliance program. Finally the paper will seek to address the political and programmatic factors, which may impact options for system verification.

  9. Identifying increased risk of post-infarct people with diabetes using multi-lag Tone-Entropy analysis.

    PubMed

    Karmakar, Chandan; Jelinek, Herbert; Khandoker, Ahsan; Tulppo, Mikko; Makikallio, Timo; Kiviniemi, Antti; Huikuri, Heikki; Palaniswami, Marimuthu

    2012-01-01

    Diabetes mellitus is associated with multi-organ system dysfunction. One of the key causative factors is the increased blood sugar level that leads to an increase in free radical activity and organ damage including the cardiovascular and nervous system. Heart rhythm is extrinsically modulated by the autonomic nervous system and cardiac autonomic neuropathy or dysautonomia has been shown to lead to sudden cardiac death in people with diabetes due to the decrease in heart rate variability (HRV). Current algorithms for determining HRV describe only beat-to-beat variation and therefore do not consider the ability of a heart beat to influence a train of succeeding beats. Therefore mortality risk analysis based on HRV has often not been able to discern the presence of an increased risk. This study used a novel innovation of the tone-entropy algorithm by incorporating increased lag intervals and found that both the sympatho-vagal balance and total activity changed at larger lag intervals. Tone-Entropy was found to be better risk identifier of cardiac mortality in people with diabetes at lags higher than one and best at lag seven.

  10. Using Fuzzy Analytic Hierarchy Process multicriteria and Geographical information system for coastal vulnerability analysis in Morocco: The case of Mohammedia

    NASA Astrophysics Data System (ADS)

    Tahri, Meryem; Maanan, Mohamed; Hakdaoui, Mustapha

    2016-04-01

    This paper shows a method to assess the vulnerability of coastal risks such as coastal erosion or submarine applying Fuzzy Analytic Hierarchy Process (FAHP) and spatial analysis techniques with Geographic Information System (GIS). The coast of the Mohammedia located in Morocco was chosen as the study site to implement and validate the proposed framework by applying a GIS-FAHP based methodology. The coastal risk vulnerability mapping follows multi-parametric causative factors as sea level rise, significant wave height, tidal range, coastal erosion, elevation, geomorphology and distance to an urban area. The Fuzzy Analytic Hierarchy Process methodology enables the calculation of corresponding criteria weights. The result shows that the coastline of the Mohammedia is characterized by a moderate, high and very high level of vulnerability to coastal risk. The high vulnerability areas are situated in the east at Monika and Sablette beaches. This technical approach is based on the efficiency of the Geographic Information System tool based on Fuzzy Analytical Hierarchy Process to help decision maker to find optimal strategies to minimize coastal risks.

  11. BNSF San Bernardino case study : positive train control risk assessment.

    DOT National Transportation Integrated Search

    2014-09-01

    The Federal Railroad Administration funded the BNSF San Bernardino Case Study to verify its Generalized Train Movement : Simulator (GTMS) risk assessment capabilities on a planned implementation of the I-ETMS PTC system. The analysis explicitly : sim...

  12. The impact of inertial navigation on air safety.

    DOT National Transportation Integrated Search

    1971-05-01

    An analysis of inertial navigation system performance data was carried out to assess the probable impact of inertial navigation on the aircraft collision risk in the North Atlantic region. These data were used to calculate the collision risk between ...

  13. Continuous Risk Management: A NASA Program Initiative

    NASA Technical Reports Server (NTRS)

    Hammer, Theodore F.; Rosenberg, Linda

    1999-01-01

    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions.

  14. Asset Management: Roof Maintenance and Facility Energy Retrofits

    DTIC Science & Technology

    2012-03-01

    vapor low emission coatings. Floor finishes completed in ceramic stone tile were the most efficient floor coverings. Fixed insulated fiberglass window...been coined Asset Management which utilizes organizational levels of service, business case analysis, and risk analysis to address urgent...Force have left a number of facility systems such as roofs at risk to disrepair due to a lack of maintenance. Under the principles of asset

  15. 32 CFR 701.117 - Changes to PA systems of records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wishing to create a new PA system of records must conduct a risk analysis of the proposed system to consider the sensitivity and use of the records; present and projected threats and vulnerabilities; and...

  16. Identifying Behaviors and Situations Associated With Increased Crash Risk for Older Drivers

    DOT National Transportation Integrated Search

    2009-06-01

    This report reviews published literature and analyzes the most recent Fatality Analysis Reporting : System (FARS) and National Automotive Sampling System (NASS)/General Estimates System : (GES) data to identify specific driving behaviors (performance...

  17. Molecular Classification Substitutes for the Prognostic Variables Stage, Age, and MYCN Status in Neuroblastoma Risk Assessment.

    PubMed

    Rosswog, Carolina; Schmidt, Rene; Oberthuer, André; Juraeva, Dilafruz; Brors, Benedikt; Engesser, Anne; Kahlert, Yvonne; Volland, Ruth; Bartenhagen, Christoph; Simon, Thorsten; Berthold, Frank; Hero, Barbara; Faldum, Andreas; Fischer, Matthias

    2017-12-01

    Current risk stratification systems for neuroblastoma patients consider clinical, histopathological, and genetic variables, and additional prognostic markers have been proposed in recent years. We here sought to select highly informative covariates in a multistep strategy based on consecutive Cox regression models, resulting in a risk score that integrates hazard ratios of prognostic variables. A cohort of 695 neuroblastoma patients was divided into a discovery set (n=75) for multigene predictor generation, a training set (n=411) for risk score development, and a validation set (n=209). Relevant prognostic variables were identified by stepwise multivariable L1-penalized least absolute shrinkage and selection operator (LASSO) Cox regression, followed by backward selection in multivariable Cox regression, and then integrated into a novel risk score. The variables stage, age, MYCN status, and two multigene predictors, NB-th24 and NB-th44, were selected as independent prognostic markers by LASSO Cox regression analysis. Following backward selection, only the multigene predictors were retained in the final model. Integration of these classifiers in a risk scoring system distinguished three patient subgroups that differed substantially in their outcome. The scoring system discriminated patients with diverging outcome in the validation cohort (5-year event-free survival, 84.9±3.4 vs 63.6±14.5 vs 31.0±5.4; P<.001), and its prognostic value was validated by multivariable analysis. We here propose a translational strategy for developing risk assessment systems based on hazard ratios of relevant prognostic variables. Our final neuroblastoma risk score comprised two multigene predictors only, supporting the notion that molecular properties of the tumor cells strongly impact clinical courses of neuroblastoma patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Barriers and facilitators of suicide risk assessment in emergency departments: a qualitative study of provider perspectives.

    PubMed

    Petrik, Megan L; Gutierrez, Peter M; Berlin, Jon S; Saunders, Stephen M

    2015-01-01

    To understand emergency department (ED) providers' perspectives regarding the barriers and facilitators of suicide risk assessment and to use these perspectives to inform recommendations for best practices in ED suicide risk assessment. Ninety-two ED providers from two hospital systems in a Midwestern state responded to open-ended questions via an online survey that assessed their perspectives on the barriers and facilitators to assess suicide risk as well as their preferred assessment methods. Responses were analyzed using an inductive thematic analysis approach. Qualitative analysis yielded six themes that impact suicide risk assessment. Time, privacy, collaboration and consultation with other professionals and integration of a standard screening protocol in routine care exemplified environmental and systemic themes. Patient engagement/participation in assessment and providers' approach to communicating with patients and other providers also impacted the effectiveness of suicide risk assessment efforts. The findings inform feasible suicide risk assessment practices in EDs. Appropriately utilizing a collaborative, multidisciplinary approach to assess suicide-related concerns appears to be a promising approach to ameliorate the burden placed on ED providers and facilitate optimal patient care. Recommendations for clinical care, education, quality improvement and research are offered. Published by Elsevier Inc.

  19. A Synthetic Vision Preliminary Integrated Safety Analysis

    NASA Technical Reports Server (NTRS)

    Hemm, Robert; Houser, Scott

    2001-01-01

    This report documents efforts to analyze a sample of aviation safety programs, using the LMI-developed integrated safety analysis tool to determine the change in system risk resulting from Aviation Safety Program (AvSP) technology implementation. Specifically, we have worked to modify existing system safety tools to address the safety impact of synthetic vision (SV) technology. Safety metrics include reliability, availability, and resultant hazard. This analysis of SV technology is intended to be part of a larger effort to develop a model that is capable of "providing further support to the product design and development team as additional information becomes available". The reliability analysis portion of the effort is complete and is fully documented in this report. The simulation analysis is still underway; it will be documented in a subsequent report. The specific goal of this effort is to apply the integrated safety analysis to SV technology. This report also contains a brief discussion of data necessary to expand the human performance capability of the model, as well as a discussion of human behavior and its implications for system risk assessment in this modeling environment.

  20. Enhancing Safety of Artificially Ventilated Patients Using Ambient Process Analysis.

    PubMed

    Lins, Christian; Gerka, Alexander; Lüpkes, Christian; Röhrig, Rainer; Hein, Andreas

    2018-01-01

    In this paper, we present an approach for enhancing the safety of artificially ventilated patients using ambient process analysis. We propose to use an analysis system consisting of low-cost ambient sensors such as power sensor, RGB-D sensor, passage detector, and matrix infrared temperature sensor to reduce risks for artificially ventilated patients in both home and clinical environments. We describe the system concept and our implementation and show how the system can contribute to patient safety.

  1. An Integrated Web-based Decision Support System in Disaster Risk Management

    NASA Astrophysics Data System (ADS)

    Aye, Z. C.; Jaboyedoff, M.; Derron, M. H.

    2012-04-01

    Nowadays, web based decision support systems (DSS) play an essential role in disaster risk management because of their supporting abilities which help the decision makers to improve their performances and make better decisions without needing to solve complex problems while reducing human resources and time. Since the decision making process is one of the main factors which highly influence the damages and losses of society, it is extremely important to make right decisions at right time by combining available risk information with advanced web technology of Geographic Information System (GIS) and Decision Support System (DSS). This paper presents an integrated web-based decision support system (DSS) of how to use risk information in risk management efficiently and effectively while highlighting the importance of a decision support system in the field of risk reduction. Beyond the conventional systems, it provides the users to define their own strategies starting from risk identification to the risk reduction, which leads to an integrated approach in risk management. In addition, it also considers the complexity of changing environment from different perspectives and sectors with diverse stakeholders' involvement in the development process. The aim of this platform is to contribute a part towards the natural hazards and geosciences society by developing an open-source web platform where the users can analyze risk profiles and make decisions by performing cost benefit analysis, Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) with the support of others tools and resources provided. There are different access rights to the system depending on the user profiles and their responsibilities. The system is still under development and the current version provides maps viewing, basic GIS functionality, assessment of important infrastructures (e.g. bridge, hospital, etc.) affected by landslides and visualization of the impact-probability matrix in terms of socio-economic dimension.

  2. Effects of changes along the risk chain on flood risk

    NASA Astrophysics Data System (ADS)

    Duha Metin, Ayse; Apel, Heiko; Viet Dung, Nguyen; Guse, Björn; Kreibich, Heidi; Schröter, Kai; Vorogushyn, Sergiy; Merz, Bruno

    2017-04-01

    Interactions of hydrological and socio-economic factors shape flood disaster risk. For this reason, assessment of flood risk ideally takes into account the whole flood risk chain from atmospheric processes, through the catchment and river system processes to the damage mechanisms in the affected areas. Since very different processes at various scales are interacting along the flood risk, the impact of the single components is rather unclear. However for flood risk management, it is required to know the controlling factor of flood damages. The present study, using the flood-prone Mulde catchment in Germany, discusses the sensitivity of flood risk to disturbances along the risk chain: How do disturbances propagate through the risk chain? How do different disturbances combine or conflict and affect flood risk? In this sensitivity analysis, the five components of the flood risk change are included. These are climate, catchment, river system, exposure and vulnerability. A model framework representing the complete risk chain is combined with observational data to understand how the sensitivities evolve along the risk chain by considering three plausible change scenarios for each of five components. The flood risk is calculated by using the Regional Flood Model (RFM) which is based on a continuous simulation approach, including rainfall-runoff, 1D river network, 2D hinterland inundation and damage estimation models. The sensitivity analysis covers more than 240 scenarios with different combinations of the five components. It is investigated how changes in different components affect risk indicators, such as the risk curve and expected annual damage (EAD). In conclusion, it seems that changes in exposure and vulnerability seem to outweigh changes in hazard.

  3. Functional polymorphisms in the CYP2C19 gene contribute to digestive system cancer risk: evidence from 11,042 subjects.

    PubMed

    Zhou, Bo; Song, Zhenshun; Qian, Mingping; Li, Liang; Gong, Jian; Zou, Shaowu

    2013-01-01

    CYP2C19 belongs to the cytochrome P450 superfamily of enzymes involved in activating and detoxifying many carcinogens and endogenous compounds, which has attracted considerable attention as a candidate gene for digestive system cancer. CYP2C19 has two main point mutation sites (CYP2C19*2, CYP2C19*3) leading to poor metabolizer (PM) phenotype. In the past decade, the relationship between CYP2C19 polymorphism and digestive system cancer has been reported in various ethnic groups; however, these studies have yielded contradictory results. To clarify this inconsistency, we performed this meta-analysis. Databases including Pubmed, EMBASE, Web of Science and China National Knowledge Infrastructure (CNKI) were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. In total, 18 studies with 4,414 cases and 6,628 controls were included. Overall, significantly elevated digestive system cancer risk was associated CYP2C19 PM with OR of 1.66 (95%CI: 1.31-2.10, P<10(-5)) when all studies were pooled into the meta-analysis. There was strong evidence of heterogeneity (P = 0.006), which largely disappeared after stratification by cancer type. In the stratified analyses according to cancer type, ethnicity, control source and sample size, significantly increased risks were found. In summary, our meta-analysis suggested that the PM phenotype caused by the variation on CYP2C19 gene is associated with increased risk of digestive system cancer, especially in East Asians.

  4. Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market

    PubMed Central

    Long, Haiming; Tang, Nengyu

    2017-01-01

    This study considers the effect of an industry’s network topology on its systemic risk contribution to the stock market using data from the CSI 300 two-tier industry indices from the Chinese stock market. We first measure industry’s conditional-value-at-risk (CoVaR) and the systemic risk contribution (ΔCoVaR) using the fitted time-varying t-copula function. The network of the stock industry is established based on dynamic conditional correlations with the minimum spanning tree. Then, we investigate the connection characteristics and topology of the network. Finally, we utilize seemingly unrelated regression estimation (SUR) of panel data to analyze the relationship between network topology of the stock industry and the industry’s systemic risk contribution. The results show that the systemic risk contribution of small-scale industries such as real estate, food and beverage, software services, and durable goods and clothing, is higher than that of large-scale industries, such as banking, insurance and energy. Industries with large betweenness centrality, closeness centrality, and clustering coefficient and small node occupancy layer are associated with greater systemic risk contribution. In addition, further analysis using a threshold model confirms that the results are robust. PMID:28683130

  5. Multivariate logistic regression analysis of postoperative complications and risk model establishment of gastrectomy for gastric cancer: A single-center cohort report.

    PubMed

    Zhou, Jinzhe; Zhou, Yanbing; Cao, Shougen; Li, Shikuan; Wang, Hao; Niu, Zhaojian; Chen, Dong; Wang, Dongsheng; Lv, Liang; Zhang, Jian; Li, Yu; Jiao, Xuelong; Tan, Xiaojie; Zhang, Jianli; Wang, Haibo; Zhang, Bingyuan; Lu, Yun; Sun, Zhenqing

    2016-01-01

    Reporting of surgical complications is common, but few provide information about the severity and estimate risk factors of complications. If have, but lack of specificity. We retrospectively analyzed data on 2795 gastric cancer patients underwent surgical procedure at the Affiliated Hospital of Qingdao University between June 2007 and June 2012, established multivariate logistic regression model to predictive risk factors related to the postoperative complications according to the Clavien-Dindo classification system. Twenty-four out of 86 variables were identified statistically significant in univariate logistic regression analysis, 11 significant variables entered multivariate analysis were employed to produce the risk model. Liver cirrhosis, diabetes mellitus, Child classification, invasion of neighboring organs, combined resection, introperative transfusion, Billroth II anastomosis of reconstruction, malnutrition, surgical volume of surgeons, operating time and age were independent risk factors for postoperative complications after gastrectomy. Based on logistic regression equation, p=Exp∑BiXi / (1+Exp∑BiXi), multivariate logistic regression predictive model that calculated the risk of postoperative morbidity was developed, p = 1/(1 + e((4.810-1.287X1-0.504X2-0.500X3-0.474X4-0.405X5-0.318X6-0.316X7-0.305X8-0.278X9-0.255X10-0.138X11))). The accuracy, sensitivity and specificity of the model to predict the postoperative complications were 86.7%, 76.2% and 88.6%, respectively. This risk model based on Clavien-Dindo grading severity of complications system and logistic regression analysis can predict severe morbidity specific to an individual patient's risk factors, estimate patients' risks and benefits of gastric surgery as an accurate decision-making tool and may serve as a template for the development of risk models for other surgical groups.

  6. Determining the risk of cardiovascular disease using ion mobility of lipoproteins

    DOEpatents

    Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.

    2010-05-11

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  7. Risk Perception as the Quantitative Parameter of Ethics and Responsibility in Disaster Study

    NASA Astrophysics Data System (ADS)

    Kostyuchenko, Yuriy; Movchan, Dmytro

    2014-05-01

    Intensity of impacts of natural disasters is increasing with climate and ecological changes spread. Frequency of disasters is increasing, and recurrence of catastrophes characterizing by essential spatial heterogeneity. Distribution of losses is fundamentally non-linear and reflects complex interrelation of natural, social and environmental factor in the changing world on multi scale range. We faced with new types of risks, which require a comprehensive security concept. Modern understanding of complex security, and complex risk management require analysis of all natural and social phenomena, involvement of all available data, constructing of advanced analytical tools, and transformation of our perception of risk and security issues. Traditional deterministic models used for risk analysis are difficult applicable for analysis of social issues, as well as for analysis of multi scale multi-physics phenomena quantification. Also parametric methods are not absolutely effective because the system analyzed is essentially non-ergodic. The stochastic models of risk analysis are applicable for quantitative analysis of human behavior and risk perception. In framework of risk analysis models the risk perception issues were described. Risk is presented as the superposition of distribution (f(x,y)) and damage functions (p(x,y)): P →δΣ x,yf(x,y)p(x,y). As it was shown risk perception essentially influents to the damage function. Basing on the prospect theory and decision making under uncertainty on cognitive bias and handling of risk, modification of damage function is proposed: p(x,y|α(t)). Modified damage function includes an awareness function α(t), which is the system of risk perception function (rp) and function of education and log-term experience (c) as: α(t) → (c - rp). Education function c(t) describes the trend of education and experience. Risk perception function rp reflects security concept of human behavior, is the basis for prediction of socio-economic and socio-ecological processes. Also there is important positive feedback of risk perception function to distribution function. Risk perception is essentially depends of short-term recent events impact in multi agent media. This is managed function. The generalized view of awareness function is proposed: α(t) = δΣ ic - rpi. Using this form separate parameters has been calculated. For example, risk perception function is about 15-55% of awareness function depends of education, age and social status of people. Also it was estimated that fraction of awareness function in damage function, and so in function of risk is about 15-20%. It means that no less than 8-12% of direct losses depend of short-term responsible behavior of 'information agents': social activity of experts, scientists, correct discussions on ethical issues in geo-sciences and media. Other 6-9% of losses are connected with level of public and professional education. This area is also should be field of responsibility of geo-scientists.

  8. Access to Heart Transplantation: A Proper Analysis of the Competing Risks of Death and Transplantation Is Required to Optimize Graft Allocation.

    PubMed

    Cantrelle, Christelle; Legeai, Camille; Latouche, Aurélien; Tuppin, Philippe; Jasseron, Carine; Sebbag, Laurent; Bastien, Olivier; Dorent, Richard

    2017-08-01

    Heart allocation systems are usually urgency-based, offering grafts to candidates at high risk of waitlist mortality. In the context of a revision of the heart allocation rules, we determined observed predictors of 1-year waitlist mortality in France, considering the competing risk of transplantation, to determine which candidate subgroups are favored or disadvantaged by the current allocation system. Patients registered on the French heart waitlist between 2010 and 2013 were included. Cox cause-specific hazards and Fine and Gray subdistribution hazards were used to determine candidate characteristics associated with waitlist mortality and access to transplantation. Of the 2053 candidates, 7 variables were associated with 1-year waitlist mortality by the Fine and Gray method including 4 candidate characteristics related to heart failure severity (hospitalization at listing, serum natriuretic peptide level, systolic pulmonary artery pressure, and glomerular filtration rate) and 3 characteristics not associated with heart failure severity but with lower access to transplantation (blood type, age, and body mass index). Observed waitlist mortality for candidates on mechanical circulatory support was like that of others. The heart allocation system strongly modifies the risk of pretransplant mortality related to heart failure severity. An in-depth competing risk analysis is therefore a more appropriate method to evaluate graft allocation systems. This knowledge should help to prioritize candidates in the context of a limited donor pool.

  9. Systems Architectures for a Tactical Naval Command and Control System

    DTIC Science & Technology

    2009-03-01

    Supplement TST Time-sensitive Targeting TTP Tactics, Techniques, and Procedures WTP Weapons-target pairing xix GLOSSARY Analysis...target pairings ( WTPs ) and are presented to OTC [a]. 24. OTC conducts risk assessment of engagement options [a]. 25. OTC orders confirmed surface...engagement options are generated through weapon- target pairings ( WTPs ) and are presented to OTC [a]. 24. OTC conducts risk assessment of engagement

  10. Earth Sciences Data and Information System (ESDIS) program planning and evaluation methodology development

    NASA Technical Reports Server (NTRS)

    Dickinson, William B.

    1995-01-01

    An Earth Sciences Data and Information System (ESDIS) Project Management Plan (PMP) is prepared. An ESDIS Project Systems Engineering Management Plan (SEMP) consistent with the developed PMP is also prepared. ESDIS and related EOS program requirements developments, management and analysis processes are evaluated. Opportunities to improve the effectiveness of these processes and program/project responsiveness to requirements are identified. Overall ESDIS cost estimation processes are evaluated, and recommendations to improve cost estimating and modeling techniques are developed. ESDIS schedules and scheduling tools are evaluated. Risk assessment, risk mitigation strategies and approaches, and use of risk information in management decision-making are addressed.

  11. Portfolio analysis of layered security measures.

    PubMed

    Chatterjee, Samrat; Hora, Stephen C; Rosoff, Heather

    2015-03-01

    Layered defenses are necessary for protecting the public from terrorist attacks. Designing a system of such defensive measures requires consideration of the interaction of these countermeasures. In this article, we present an analysis of a layered security system within the lower Manhattan area. It shows how portfolios of security measures can be evaluated through portfolio decision analysis. Consideration is given to the total benefits and costs of the system. Portfolio diagrams are created that help communicate alternatives among stakeholders who have differing views on the tradeoffs between security and economic activity. © 2014 Society for Risk Analysis.

  12. Design and implementation of a risk assessment module in a spatial decision support system

    NASA Astrophysics Data System (ADS)

    Zhang, Kaixi; van Westen, Cees; Bakker, Wim

    2014-05-01

    The spatial decision support system named 'Changes SDSS' is currently under development. The goal of this system is to analyze changing hydro-meteorological hazards and the effect of risk reduction alternatives to support decision makers in choosing the best alternatives. The risk assessment module within the system is to assess the current risk, analyze the risk after implementations of risk reduction alternatives, and analyze the risk in different future years when considering scenarios such as climate change, land use change and population growth. The objective of this work is to present the detailed design and implementation plan of the risk assessment module. The main challenges faced consist of how to shift the risk assessment from traditional desktop software to an open source web-based platform, the availability of input data and the inclusion of uncertainties in the risk analysis. The risk assessment module is developed using Ext JS library for the implementation of user interface on the client side, using Python for scripting, as well as PostGIS spatial functions for complex computations on the server side. The comprehensive consideration of the underlying uncertainties in input data can lead to a better quantification of risk assessment and a more reliable Changes SDSS, since the outputs of risk assessment module are the basis for decision making module within the system. The implementation of this module will contribute to the development of open source web-based modules for multi-hazard risk assessment in the future. This work is part of the "CHANGES SDSS" project, funded by the European Community's 7th Framework Program.

  13. Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis L; Mandelli, Diego; Zhegang Ma

    2014-11-01

    As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe themore » RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.« less

  14. Predicting the occurrence of embolic events: an analysis of 1456 episodes of infective endocarditis from the Italian Study on Endocarditis (SEI).

    PubMed

    Rizzi, Marco; Ravasio, Veronica; Carobbio, Alessandra; Mattucci, Irene; Crapis, Massimo; Stellini, Roberto; Pasticci, Maria Bruna; Chinello, Pierangelo; Falcone, Marco; Grossi, Paolo; Barbaro, Francesco; Pan, Angelo; Viale, Pierluigi; Durante-Mangoni, Emanuele

    2014-04-29

    Embolic events are a major cause of morbidity and mortality in patients with infective endocarditis. We analyzed the database of the prospective cohort study SEI in order to identify factors associated with the occurrence of embolic events and to develop a scoring system for the assessment of the risk of embolism. We retrospectively analyzed 1456 episodes of infective endocarditis from the multicenter study SEI. Predictors of embolism were identified. Risk factors identified at multivariate analysis as predictive of embolism in left-sided endocarditis, were used for the development of a risk score: 1 point was assigned to each risk factor (total risk score range: minimum 0 points; maximum 2 points). Three categories were defined by the score: low (0 points), intermediate (1 point), or high risk (2 points); the probability of embolic events per risk category was calculated for each day on treatment (day 0 through day 30). There were 499 episodes of infective endocarditis (34%) that were complicated by ≥ 1 embolic event. Most embolic events occurred early in the clinical course (first week of therapy: 15.5 episodes per 1000 patient days; second week: 3.7 episodes per 1000 patient days). In the total cohort, the factors associated with the occurrence of embolism at multivariate analysis were prosthetic valve localization (odds ratio, 1.84), right-sided endocarditis (odds ratio, 3.93), Staphylococcus aureus etiology (odds ratio, 2.23) and vegetation size ≥ 13 mm (odds ratio, 1.86). In left-sided endocarditis, Staphylococcus aureus etiology (odds ratio, 2.1) and vegetation size ≥ 13 mm (odds ratio, 2.1) were independently associated with embolic events; the 30-day cumulative incidence of embolism varied with risk score category (low risk, 12%; intermediate risk, 25%; high risk, 38%; p < 0.001). Staphylococcus aureus etiology and vegetation size are associated with an increased risk of embolism. In left-sided endocarditis, a simple scoring system, which combines etiology and vegetation size with time on antimicrobials, might contribute to a better assessment of the risk of embolism, and to a more individualized analysis of indications and contraindications for early surgery.

  15. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas

    PubMed Central

    Li, Chaochao; Cheng, Xiaotao; Li, Na; Du, Xiaohe; Yu, Qian; Kan, Guangyuan

    2016-01-01

    Flood risk analysis is more complex in urban areas than that in rural areas because of their closely packed buildings, different kinds of land uses, and large number of flood control works and drainage systems. The purpose of this paper is to propose a practical framework for flood risk analysis and benefit assessment of flood control measures in urban areas. Based on the concept of disaster risk triangle (hazard, vulnerability and exposure), a comprehensive analysis method and a general procedure were proposed for urban flood risk analysis. Urban Flood Simulation Model (UFSM) and Urban Flood Damage Assessment Model (UFDAM) were integrated to estimate the flood risk in the Pudong flood protection area (Shanghai, China). S-shaped functions were adopted to represent flood return period and damage (R-D) curves. The study results show that flood control works could significantly reduce the flood risk within the 66-year flood return period and the flood risk was reduced by 15.59%. However, the flood risk was only reduced by 7.06% when the flood return period exceeded 66-years. Hence, it is difficult to meet the increasing demands for flood control solely relying on structural measures. The R-D function is suitable to describe the changes of flood control capacity. This frame work can assess the flood risk reduction due to flood control measures, and provide crucial information for strategy development and planning adaptation. PMID:27527202

  16. A comparative study of European insurance schemes for extreme weather risks and incentives for risk reduction

    NASA Astrophysics Data System (ADS)

    de Ruiter, Marleen; Hudson, Paul; de Ruig, Lars; Kuik, Onno; Botzen, Wouter

    2017-04-01

    This paper provides an analysis of the insurance schemes that cover extreme weather events in twelve different EU countries and the risk reduction incentives offered by these schemes. Economic impacts of extreme weather events in many regions in Europe and elsewhere are on the rise due to climate change and increasing exposure as driven by urban development. In an attempt to manage impacts from extreme weather events, natural disaster insurance schemes can provide incentives for taking measures that limit weather-related risks. Insurance companies can influence public risk management policies and risk-reducing behaviour of policyholders by "rewarding behaviour that reduces risks and potential damages" (Botzen and Van den Bergh, 2008, p. 417). Examples of insurance market systems that directly or indirectly aim to incentivize risk reduction with varying degrees of success are: the U.S. National Flood Insurance Programme; the French Catastrophes Naturelles system; and the U.K. Flood Re program which requires certain levels of protection standards for properties to be insurable. In our analysis, we distinguish between four different disaster types (i.e. coastal and fluvial floods, droughts and storms) and three different sectors (i.e. residential, commercial and agriculture). The selected case studies also provide a wide coverage of different insurance market structures, including public, private and public-private insurance provision, and different methods of coping with extreme loss events, such as re-insurance, governmental aid and catastrophe bonds. The analysis of existing mechanisms for risk reduction incentives provides recommendations about incentivizing adaptive behaviour, in order to assist policy makers and other stakeholders in designing more effective insurance schemes for extreme weather risks.

  17. Beyond compliance consolidating unclaimed property analysis and reporting.

    PubMed

    Boggs, Eric J; Herendeen, Cory M; Wiseman, Jim

    2013-02-01

    Unclaimed property audits are on the rise at hospitals and health systems. Healthcare organizations often have unclaimed property in the form of accounts payable, payroll, accounts receivable credit balances, unpaid credit balances, and more. Hospitals and health systems should consolidate unclaimed property analysis and reporting to reduce compliance risk and generate savings.

  18. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... analysis of the structures, systems, and components of the reactor to be manufactured, with emphasis upon... assumed for this evaluation should be based upon a major accident, hypothesized for purposes of site... structures, systems, and components with the objective of assessing the risk to public health and safety...

  19. Australia’s Submarine Design Capabilities and Capacities: Challenges and Options for the Future Submarine

    DTIC Science & Technology

    2011-01-01

    stealth features requiring specialised noise and vibra- tion skills and propulsion plants requiring other unique skill sets. Personnel with these...analysis Acoustic, wake , thermal, electromagnetic, and other signature analysis Combat systems and ship control Combat system integration, combat system...to-diagnose flow-induced radiated noise Own-sensor performance degradation Note: Risks can be reduced for given designs using scale models

  20. Enterprise Risk Management in the Oil and Gas Industry: An Analysis of Selected Fortune 500 Oil and Gas Companies' Reaction in 2009 and 2010

    ERIC Educational Resources Information Center

    Rogers, Violet C.; Ethridge, Jack R.

    2016-01-01

    In 2009, four of the top ten Fortune 500 companies were classified within the oil and gas industry. Organizations of this size typically have an advanced Enterprise Risk Management system in place to mitigate risk and to achieve their corporations' objectives. The companies and the article utilize the Enterprise Risk Management Integrated…

  1. Ion mobility analysis of lipoproteins

    DOEpatents

    Benner, W Henry [Danville, CA; Krauss, Ronald M [Berkeley, CA; Blanche, Patricia J [Berkeley, CA

    2007-08-21

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  2. Risk analysis of sterile production plants: a new and simple, workable approach.

    PubMed

    Gapp, Guenther; Holzknecht, Peter

    2011-01-01

    A sterile active ingredient plant and a sterile finished dosage filling plant both comprise very complex production processes and systems. The sterility of the final product cannot be assured solely by sterility testing, in-process controls, environmental monitoring of cleanrooms, and media fill validations. Based on more than 15 years experience, 4 years ago the authors created a new but very simple approach to the risk analysis of sterile plants. This approach is not a failure mode and effects analysis and therefore differs from the PDA Technical Report 44 Quality Risk Management for Aseptic Processes of 2008. The principle involves specific questions, which have been defined in the risk analysis questionnaire in advance, to be answered by an expert team. If the questionnaire item is dealt with appropriately, the answer is assigned a low-risk number (1) and if very weak or deficient it gets a high-risk number (5). In addition to the numbers, colors from green (not problematic) through orange to red (very problematic) are attributed to make the results more striking. Because the individual units of each production plant have a defined and different impact on the overall sterility of the final product, different risk emphasis factors have to be taken into account (impact factor 1, 3, or 5). In a well run cleanroom, the cleanroom operators have a lower impact than other units with regard to the contamination risk. The resulting number of the analyzed production plant and the diagram of the assessment subsequently offers very important and valuable information about a) the risk for microbiological contamination (sterility/endotoxins) of the product, and b) the compliance status of the production plant and the risk of failing lots, as well as probable observations of upcoming regulatory agency audits. Both items above are highly important for the safety of the patient. It is also an ideal tool to identify deficient or weak systems requiring improvement and upgrade, and delivers sound arguments for investments. Practical experience with this risk analysis, which has already been executed in several production sites in various countries, has demonstrated that it is simple, workable, and delivers valuable information. Many important pharmaceutical products need to be sterile because they are to be injected into the patient's bloodstream or muscle. Sterile means that the product must be free of microorganisms (i.e., bacteria, yeast, and moulds). A non-sterile injection or infusion could lead to very serious or even lethal effects on the patient. Therefore one of the biggest challenges in the pharmaceutical industry nowadays is still the sterile production process itself. Microorganisms are everywhere in the environment, and humans are known to be a significant source of microbial contamination of a sterile product. It is necessary to set up a very effective quality assurance system as well as many quality control analysis tools to assure the sterility of the produced vials/syringes or of the bulk material intended for later filling into vials (bulk material, e.g., 10 kg in bags or cans). Above all, to get an accurate indication of the risk of non-compliance of product quality, regulatory agencies such as the U.S. Food and Drug Administration and the updated E.U. Good Manufacturing Practice (GMP) Guide have made it mandatory to perform a risk analysis of the production process. This provides in advance valuable information about the potential risk of a product's non-compliance with product specifications and GMP requirements, in our case regarding sterility. The authors set up a new approach for a risk analysis 4 years ago; this approach stems from fundamental experience gained over the past 15 years. Several specific questions are asked regarding various topics that correlate to the sterile production line and associated quality assurance/control systems. If the answer for an item is satisfactory and the best system is in place with regard to sterility, it is assessed with the prime rating of 1. If the topic is not satisfactory and very weak, the response is 5. Risk numbers from 2 to 4 are for intermediate situations. Because each unit of the production process could have a different type of impact of varying severity on the total product sterility, the average of the answers regarding the unit (e.g., 1, 2) is multiplied by the risk emphasis factor, which could be 1, 3, or 5. To make the rating even more distinct, colors are assigned from green (very good) through orange to red (very weak). There are currently three different risk analyses available for three different production processes. The results provide the users, that is, production personnel and quality assurance personnel, valuable feedback about the risk for possible non-sterility in their process as well as sound arguments to present to management defending upgrades of their production line and control systems in the case of high numbers and red colors. Three years of implementation have demonstrated that this new risk analysis approach works and is very useful in identifying potentially risky components of a production process, thus preventing in advance the production of non-sterile product batches for the market, and finally protecting the patient from hazardous products.

  3. A new Geo-Information Architecture for Risk Management in the Alps

    NASA Astrophysics Data System (ADS)

    Baruffini, Mi.; Thuering, M.

    2009-04-01

    During the last decades land-use increased significantly in the Swiss (and European) mountain regions. Due to the scarceness of areas suitable for development, anthropic activities were extended into areas prone to natural hazards such as avalanches, debris flows and rockfalls (Smith 2001). Furthermore, the transalpine transport system necessity to develop effective links in an important area collides with the need to ensure the safety of travelers and the health of the population. Consequently, an increase in losses due to hazards can be observed. To mitigate these associated losses, both traditional protective measures and land-use planning policies are to be developed and implemented to optimize future investments. Efficient protection alternatives can be obtained considering the concept of integral risk management. Risk analysis, as the central part of risk management, has become gradually a generally accepted approach for the assessment of current and future scenarios (Loat & Zimmermann 2004). The procedure aims at risk reduction which can be reached by conventional mitigation on one hand and the implementation of land-use planning on the other hand: a combination of active and passive mitigation measures is applied to prevent damage to buildings, people and infrastructures. As part of the Swiss National Science Foundation Project 54 "Evaluation of the optimal resilience for vulnerable infrastructure networks - An interdisciplinary pilot study on the transalpine transportation corridors" we study the vulnerability of infrastructures due to natural hazards. The project aims to study various natural hazards (and later, even man-made) and to obtain an evaluation of the resilience according to an interdisciplinary approach, considering the possible damage by means of risk criteria and pointing out the feasibility of conceivable measures to reduce potential damage. The project consists of a geoscientific part and an application. The fist part consists in studying the dangers (natural) and related risks in terms of infrastructure vulnerability. The application considers different types of danger (logically intersected with the transport infrastructure) and compares them with fixed values to obtain a so-called deficit. As framework we adopt The Swiss system for risk analysis of gravitational natural hazards (BUWAL 1999). In this way the project develops a methodology that makes possible a risk analysis aiming to optimize the infrastructure vulnerability and therefore allows to obtain a model designed to optimize the functionality of the network infrastructure. A simulation environment, RiskBox, is developed within the open-source GIS environment GRASS (Geographic Resources Analysis Support System) and a database (PostgreSQL) in order to manage a infrastructure data catalog. The targeted simulation environment includes the elements that identify the consecutive steps of risk analysis: hazard - vulnerability - risk. The initial results of the experimental case study show how useful a GIS-based system, which identify the risk of any single vulnerable element in the corridor and to assess the risk to the global system on the basis of priorities of the actors involved, can be for effective and efficient disaster response management, as explained in (ARMONIA Project 2007). In our work we wanted to highlight the complexity of the risk analysis methodology, difficulty that is amplified by many peculiarities in the mountain areas. In particular, the illustrative performed process can give an overview of the interests and the need to act to reduce vulnerability and the hazardous nature of the Gotthard corridor. We present the concept and current state of development of our project and our application to the testbed, the Alps-crossing corridor of St. Gotthard. REFERENCES ARMONIA Project 2007: Land use plans in Risky areas fro Unwise to Wise Practices - Materials 2nd conference. Politecnico di Milano. BUWAL 1999: Risikoanalyse bei gravitativen Naturgefahren - Methode, Fallbeispiele und Daten (Risk analyses for gravitational natural hazards). Bundesamt für Umwelt, Wald und Landschaft (BUWAL). Umwelt-Materialen Nr. 107, 1-244. Loat, R. & Zimmermann, M. 2004 : La gestion des risques en Suisse (Risk Management in Switzerland). In: Veyret, Y., Garry, G., Meschinet de Richemont, N. & Armand Colin (eds) 2002: Colloque Arche de la Défense 22-24 octobre 2002, dans Risques naturels et aménagement en Europe, 108-120. Smith, K. 2001: Environmental hazards. Assessing the risk and reducing disaster. Third edition. London

  4. Landscape ecological risk assessment study in arid land

    NASA Astrophysics Data System (ADS)

    Gong, Lu; Amut, Aniwaer; Shi, Qingdong; Wang, Gary Z.

    2007-09-01

    The ecosystem risk assessment is an essential decision making system for predicting the reconstruction and recovery of a damaged ecosystem after intensive mankind activities. The sustainability of environment and resources of the lake ecosystem in arid districts have been paid close attention to by international communities as well as numerous experts and scholars. The ecological risk assessment offered a scientific foundation for making the decision and execution of ecological risk management. Bosten Lake, the largest inland freshwater lake in China, is the main water source of the industrial and agricultural production as well as the local residence in Yanqi basin, Kuara city and Yuri County in the southern Xinjiang. Bosten Lake also provides a direct water source for emergency transportation in the Lower Reaches of Tarim River. However, with the intensive utilizations of water and soil resources, the environmental condition in the Bosten Lake has become more and more serious. In this study, the theory and method of landscape ecological risk assessment has been practiced using 3S technologies combined with the frontier theory of landscape ecology. Defining the mainly risk resource including flood, drought, water pollution and rich nutrition of water has been evaluated based on the ecosystem risk assessment system. The main process includes five stages: regional natural resources analysis, risk receptor selection, risk sources evaluation, exposure and hazard analysis, and integrated risk assessment. Based on the risk assessment results, the environmental risk management countermeasure has been determined.

  5. Causation mechanism analysis for haze pollution related to vehicle emission in Guangzhou, China by employing the fault tree approach.

    PubMed

    Huang, Weiqing; Fan, Hongbo; Qiu, Yongfu; Cheng, Zhiyu; Xu, Pingru; Qian, Yu

    2016-05-01

    Recently, China has frequently experienced large-scale, severe and persistent haze pollution due to surging urbanization and industrialization and a rapid growth in the number of motor vehicles and energy consumption. The vehicle emission due to the consumption of a large number of fossil fuels is no doubt a critical factor of the haze pollution. This work is focused on the causation mechanism of haze pollution related to the vehicle emission for Guangzhou city by employing the Fault Tree Analysis (FTA) method for the first time. With the establishment of the fault tree system of "Haze weather-Vehicle exhausts explosive emission", all of the important risk factors are discussed and identified by using this deductive FTA method. The qualitative and quantitative assessments of the fault tree system are carried out based on the structure, probability and critical importance degree analysis of the risk factors. The study may provide a new simple and effective tool/strategy for the causation mechanism analysis and risk management of haze pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Y. F.

    2012-04-30

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogenmore » storage safety to provide a larger, highly coordinated effort.« less

  7. Examining Food Risk in the Large using a Complex, Networked System-of-sytems Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosiano, John; Newkirk, Ryan; Mc Donald, Mark P

    2010-12-03

    The food production infrastructure is a highly complex system of systems. Characterizing the risks of intentional contamination in multi-ingredient manufactured foods is extremely challenging because the risks depend on the vulnerabilities of food processing facilities and on the intricacies of the supply-distribution networks that link them. A pure engineering approach to modeling the system is impractical because of the overall system complexity and paucity of data. A methodology is needed to assess food contamination risk 'in the large', based on current, high-level information about manufacturing facilities, corrunodities and markets, that will indicate which food categories are most at risk ofmore » intentional contamination and warrant deeper analysis. The approach begins by decomposing the system for producing a multi-ingredient food into instances of two subsystem archetypes: (1) the relevant manufacturing and processing facilities, and (2) the networked corrunodity flows that link them to each other and consumers. Ingredient manufacturing subsystems are modeled as generic systems dynamics models with distributions of key parameters that span the configurations of real facilities. Networks representing the distribution systems are synthesized from general information about food corrunodities. This is done in a series of steps. First, probability networks representing the aggregated flows of food from manufacturers to wholesalers, retailers, other manufacturers, and direct consumers are inferred from high-level approximate information. This is followed by disaggregation of the general flows into flows connecting 'large' and 'small' categories of manufacturers, wholesalers, retailers, and consumers. Optimization methods are then used to determine the most likely network flows consistent with given data. Vulnerability can be assessed for a potential contamination point using a modified CARVER + Shock model. Once the facility and corrunodity flow models are instantiated, a risk consequence analysis can be performed by injecting contaminant at chosen points in the system and propagating the event through the overarching system to arrive at morbidity and mortality figures. A generic chocolate snack cake model, consisting of fluid milk, liquid eggs, and cocoa, is described as an intended proof of concept for multi-ingredient food systems. We aim for an eventual tool that can be used directly by policy makers and planners.« less

  8. Novel Threat-risk Index Using Probabilistic Risk Assessment and Human Reliability Analysis - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George A. Beitel

    2004-02-01

    In support of a national need to improve the current state-of-the-art in alerting decision makers to the risk of terrorist attack, a quantitative approach employing scientific and engineering concepts to develop a threat-risk index was undertaken at the Idaho National Engineering and Environmental Laboratory (INEEL). As a result of this effort, a set of models has been successfully integrated into a single comprehensive model known as Quantitative Threat-Risk Index Model (QTRIM), with the capability of computing a quantitative threat-risk index on a system level, as well as for the major components of the system. Such a threat-risk index could providemore » a quantitative variant or basis for either prioritizing security upgrades or updating the current qualitative national color-coded terrorist threat alert.« less

  9. Defining Human Failure Events for Petroleum Risk Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald L. Boring; Knut Øien

    2014-06-01

    In this paper, an identification and description of barriers and human failure events (HFEs) for human reliability analysis (HRA) is performed. The barriers, called target systems, are identified from risk significant accident scenarios represented as defined situations of hazard and accident (DSHAs). This report serves as the foundation for further work to develop petroleum HFEs compatible with the SPAR-H method and intended for reuse in future HRAs.

  10. Rotor systems research aircraft predesign study. Volume 3: Predesign report

    NASA Technical Reports Server (NTRS)

    Schmidt, S. A.; Linden, A. W.

    1972-01-01

    The features of two aircraft designs were selected to be included in the single RSRA configuration. A study was conducted for further preliminary design and a more detailed analysis of development plans and costs. An analysis was also made of foreseeable technical problems and risks, identification of parallel research which would reduce risks and/or add to the basic capability of the aircraft, and a draft aircraft specification.

  11. [Design and implementation of Geographical Information System on prevention and control of cholera].

    PubMed

    Li, Xiu-jun; Fang, Li-qun; Wang, Duo-chun; Wang, Lu-xi; Li, Ya-pin; Li, Yan-li; Yang, Hong; Kan, Biao; Cao, Wu-chun

    2012-04-01

    To build the Geographical Information System (GIS) database for prevention and control of cholera programs as well as using management analysis and function demonstration to show the spatial attribute of cholera. Data from case reporting system regarding diarrhoea, vibrio cholerae, serotypes of vibrio cholerae at the surveillance spots and seafoods, as well as surveillance data on ambient environment and climate were collected. All the data were imported to system database to show the incidence of vibrio cholerae in different provinces, regions and counties to support the spatial analysis through the spatial analysis of GIS. The epidemic trends of cholera, seasonal characteristics of the cholera and the variation of the vibrio cholerae with times were better understood. Information on hotspots, regions and time of epidemics was collected, and helpful in providing risk prediction on the incidence of vibrio cholerae. The exploitation of the software can predict and simulate the spatio-temporal risks, so as to provide guidance for the prevention and control of the disease.

  12. RAMPART (TM): Risk Assessment Method-Property Analysis and Ranking Tool v.4.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carson, Susan D.; Hunter, Regina L.; Link, Madison D.

    RAMPART{trademark}, Risk Assessment Method-property Analysis and Ranking Tool, is a new type of computer software package for the assessment of risk to buildings. RAMPART{trademark} has been developed by Sandia National Laboratories (SNL) for the U.S. General Services Administration (GSA). RAMPART {trademark} has been designed and developed to be a risk-based decision support tool that requires no risk analysis expertise on the part of the user. The RAMPART{trademark} user interface elicits information from the user about the building. The RAMPART{trademark} expert system is a set of rules that embodies GSA corporate knowledge and SNL's risk assessment experience. The RAMPART{trademark} database containsmore » both data entered by the user during a building analysis session and large sets of natural hazard and crime data. RAMPART{trademark} algorithms use these data to assess the risk associated with a given building in the face of certain hazards. Risks arising from five natural hazards (earthquake, hurricane, winter storm, tornado and flood); crime (inside and outside the building); fire and terrorism are calculated. These hazards may cause losses of various kinds. RAMPART{trademark} considers death, injury, loss of mission, loss of property, loss of contents, loss of building use, and first-responder loss. The results of each analysis are presented graphically on the screen and in a written report.« less

  13. Failure mode and effects analysis of witnessing protocols for ensuring traceability during IVF.

    PubMed

    Rienzi, Laura; Bariani, Fiorenza; Dalla Zorza, Michela; Romano, Stefania; Scarica, Catello; Maggiulli, Roberta; Nanni Costa, Alessandro; Ubaldi, Filippo Maria

    2015-10-01

    Traceability of cells during IVF is a fundamental aspect of treatment, and involves witnessing protocols. Failure mode and effects analysis (FMEA) is a method of identifying real or potential breakdowns in processes, and allows strategies to mitigate risks to be developed. To examine the risks associated with witnessing protocols, an FMEA was carried out in a busy IVF centre, before and after implementation of an electronic witnessing system (EWS). A multidisciplinary team was formed and moderated by human factors specialists. Possible causes of failures, and their potential effects, were identified and risk priority number (RPN) for each failure calculated. A second FMEA analysis was carried out after implementation of an EWS. The IVF team identified seven main process phases, 19 associated process steps and 32 possible failure modes. The highest RPN was 30, confirming the relatively low risk that mismatches may occur in IVF when a manual witnessing system is used. The introduction of the EWS allowed a reduction in the moderate-risk failure mode by two-thirds (highest RPN = 10). In our experience, FMEA is effective in supporting multidisciplinary IVF groups to understand the witnessing process, identifying critical steps and planning changes in practice to enable safety to be enhanced. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  14. An Approach to Risk-Based Design Incorporating Damage Tolerance Analyses

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Glaessgen, Edward H.; Sleight, David W.

    2002-01-01

    Incorporating risk-based design as an integral part of spacecraft development is becoming more and more common. Assessment of uncertainties associated with design parameters and environmental aspects such as loading provides increased knowledge of the design and its performance. Results of such studies can contribute to mitigating risk through a system-level assessment. Understanding the risk of an event occurring, the probability of its occurrence, and the consequences of its occurrence can lead to robust, reliable designs. This paper describes an approach to risk-based structural design incorporating damage-tolerance analysis. The application of this approach to a candidate Earth-entry vehicle is described. The emphasis of the paper is on describing an approach for establishing damage-tolerant structural response inputs to a system-level probabilistic risk assessment.

  15. Development of Rock Engineering Systems-Based Models for Flyrock Risk Analysis and Prediction of Flyrock Distance in Surface Blasting

    NASA Astrophysics Data System (ADS)

    Faramarzi, Farhad; Mansouri, Hamid; Farsangi, Mohammad Ali Ebrahimi

    2014-07-01

    The environmental effects of blasting must be controlled in order to comply with regulatory limits. Because of safety concerns and risk of damage to infrastructures, equipment, and property, and also having a good fragmentation, flyrock control is crucial in blasting operations. If measures to decrease flyrock are taken, then the flyrock distance would be limited, and, in return, the risk of damage can be reduced or eliminated. This paper deals with modeling the level of risk associated with flyrock and, also, flyrock distance prediction based on the rock engineering systems (RES) methodology. In the proposed models, 13 effective parameters on flyrock due to blasting are considered as inputs, and the flyrock distance and associated level of risks as outputs. In selecting input data, the simplicity of measuring input data was taken into account as well. The data for 47 blasts, carried out at the Sungun copper mine, western Iran, were used to predict the level of risk and flyrock distance corresponding to each blast. The obtained results showed that, for the 47 blasts carried out at the Sungun copper mine, the level of estimated risks are mostly in accordance with the measured flyrock distances. Furthermore, a comparison was made between the results of the flyrock distance predictive RES-based model, the multivariate regression analysis model (MVRM), and, also, the dimensional analysis model. For the RES-based model, R 2 and root mean square error (RMSE) are equal to 0.86 and 10.01, respectively, whereas for the MVRM and dimensional analysis, R 2 and RMSE are equal to (0.84 and 12.20) and (0.76 and 13.75), respectively. These achievements confirm the better performance of the RES-based model over the other proposed models.

  16. Probabilistic Risk Assessment of Hydraulic Fracturing in Unconventional Reservoirs by Means of Fault Tree Analysis: An Initial Discussion

    NASA Astrophysics Data System (ADS)

    Rodak, C. M.; McHugh, R.; Wei, X.

    2016-12-01

    The development and combination of horizontal drilling and hydraulic fracturing has unlocked unconventional hydrocarbon reserves around the globe. These advances have triggered a number of concerns regarding aquifer contamination and over-exploitation, leading to scientific studies investigating potential risks posed by directional hydraulic fracturing activities. These studies, balanced with potential economic benefits of energy production, are a crucial source of information for communities considering the development of unconventional reservoirs. However, probabilistic quantification of the overall risk posed by hydraulic fracturing at the system level are rare. Here we present the concept of fault tree analysis to determine the overall probability of groundwater contamination or over-exploitation, broadly referred to as the probability of failure. The potential utility of fault tree analysis for the quantification and communication of risks is approached with a general application. However, the fault tree design is robust and can handle various combinations of regional-specific data pertaining to relevant spatial scales, geological conditions, and industry practices where available. All available data are grouped into quantity and quality-based impacts and sub-divided based on the stage of the hydraulic fracturing process in which the data is relevant as described by the USEPA. Each stage is broken down into the unique basic events required for failure; for example, to quantify the risk of an on-site spill we must consider the likelihood, magnitude, composition, and subsurface transport of the spill. The structure of the fault tree described above can be used to render a highly complex system of variables into a straightforward equation for risk calculation based on Boolean logic. This project shows the utility of fault tree analysis for the visual communication of the potential risks of hydraulic fracturing activities on groundwater resources.

  17. Competing risk models in reliability systems, an exponential distribution model with Bayesian analysis approach

    NASA Astrophysics Data System (ADS)

    Iskandar, I.

    2018-03-01

    The exponential distribution is the most widely used reliability analysis. This distribution is very suitable for representing the lengths of life of many cases and is available in a simple statistical form. The characteristic of this distribution is a constant hazard rate. The exponential distribution is the lower rank of the Weibull distributions. In this paper our effort is to introduce the basic notions that constitute an exponential competing risks model in reliability analysis using Bayesian analysis approach and presenting their analytic methods. The cases are limited to the models with independent causes of failure. A non-informative prior distribution is used in our analysis. This model describes the likelihood function and follows with the description of the posterior function and the estimations of the point, interval, hazard function, and reliability. The net probability of failure if only one specific risk is present, crude probability of failure due to a specific risk in the presence of other causes, and partial crude probabilities are also included.

  18. Development of NASA's Accident Precursor Analysis Process Through Application on the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Maggio, Gaspare; Groen, Frank; Hamlin, Teri; Youngblood, Robert

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system. APA docs more than simply track experience: it systematically evaluates experience, looking for under-appreciated risks that may warrant changes to design or operational practice. This paper presents the pilot application of the NASA APA process to Space Shuttle Orbiter systems. In this effort, the working sessions conducted at Johnson Space Center (JSC) piloted the APA process developed by Information Systems Laboratories (ISL) over the last two years under the auspices of NASA's Office of Safety & Mission Assurance, with the assistance of the Safety & Mission Assurance (S&MA) Shuttle & Exploration Analysis Branch. This process is built around facilitated working sessions involving diverse system experts. One important aspect of this particular APA process is its focus on understanding the physical mechanism responsible for an operational anomaly, followed by evaluation of the risk significance of the observed anomaly as well as consideration of generalizations of the underlying mechanism to other contexts. Model completeness will probably always be an issue, but this process tries to leverage operating experience to the extent possible in order to address completeness issues before a catastrophe occurs.

  19. A Scoring System to Determine Risk of Delayed Bleeding After Endoscopic Mucosal Resection of Large Colorectal Lesions.

    PubMed

    Albéniz, Eduardo; Fraile, María; Ibáñez, Berta; Alonso-Aguirre, Pedro; Martínez-Ares, David; Soto, Santiago; Gargallo, Carla Jerusalén; Ramos Zabala, Felipe; Álvarez, Marco Antonio; Rodríguez-Sánchez, Joaquín; Múgica, Fernando; Nogales, Óscar; Herreros de Tejada, Alberto; Redondo, Eduardo; Guarner-Argente, Carlos; Pin, Noel; León-Brito, Helena; Pardeiro, Remedios; López-Roses, Leopoldo; Rodríguez-Téllez, Manuel; Jiménez, Alejandra; Martínez-Alcalá, Felipe; García, Orlando; de la Peña, Joaquín; Ono, Akiko; Alberca de Las Parras, Fernando; Pellisé, María; Rivero, Liseth; Saperas, Esteban; Pérez-Roldán, Francisco; Pueyo Royo, Antonio; Eguaras Ros, Javier; Zúñiga Ripa, Alba; Concepción-Martín, Mar; Huelin-Álvarez, Patricia; Colán-Hernández, Juan; Cubiella, Joaquín; Remedios, David; Bessa I Caserras, Xavier; López-Viedma, Bartolomé; Cobian, Julyssa; González-Haba, Mariano; Santiago, José; Martínez-Cara, Juan Gabriel; Valdivielso, Eduardo

    2016-08-01

    After endoscopic mucosal resection (EMR) of colorectal lesions, delayed bleeding is the most common serious complication, but there are no guidelines for its prevention. We aimed to identify risk factors associated with delayed bleeding that required medical attention after discharge until day 15 and develop a scoring system to identify patients at risk. We performed a prospective study of 1214 consecutive patients with nonpedunculated colorectal lesions 20 mm or larger treated by EMR (n = 1255) at 23 hospitals in Spain, from February 2013 through February 2015. Patients were examined 15 days after the procedure, and medical data were collected. We used the data to create a delayed bleeding scoring system, and assigned a weight to each risk factor based on the β parameter from multivariate logistic regression analysis. Patients were classified as being at low, average, or high risk for delayed bleeding. Delayed bleeding occurred in 46 cases (3.7%, 95% confidence interval, 2.7%-4.9%). In multivariate analysis, factors associated with delayed bleeding included age ≥75 years (odds ratio [OR], 2.36; P < .01), American Society of Anesthesiologist classification scores of III or IV (OR, 1.90; P ≤ .05), aspirin use during EMR (OR, 3.16; P < .05), right-sided lesions (OR, 4.86; P < .01), lesion size ≥40 mm (OR, 1.91; P ≤ .05), and a mucosal gap not closed by hemoclips (OR, 3.63; P ≤ .01). We developed a risk scoring system based on these 6 variables that assigned patients to the low-risk (score, 0-3), average-risk (score, 4-7), or high-risk (score, 8-10) categories with a receiver operating characteristic curve of 0.77 (95% confidence interval, 0.70-0.83). In these groups, the probabilities of delayed bleeding were 0.6%, 5.5%, and 40%, respectively. The risk of delayed bleeding after EMR of large colorectal lesions is 3.7%. We developed a risk scoring system based on 6 factors that determined the risk for delayed bleeding (receiver operating characteristic curve, 0.77). The factors most strongly associated with delayed bleeding were right-sided lesions, aspirin use, and mucosal defects not closed by hemoclips. Patients considered to be high risk (score, 8-10) had a 40% probability of delayed bleeding. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Analysis of crashes involving 15-passenger vans

    DOT National Transportation Integrated Search

    2004-05-01

    This study explores the relationship between vehicle occupancy and several other variables in the National Highway Traffic Safety Administration's (NHTSA's) Fatality Analysis Reporting System (FARS) database and a 15-passenger van's risk of rollover....

  1. Making the Hubble Space Telescope servicing mission safe

    NASA Technical Reports Server (NTRS)

    Bahr, N. J.; Depalo, S. V.

    1992-01-01

    The implementation of the HST system safety program is detailed. Numerous safety analyses are conducted through various phases of design, test, and fabrication, and results are presented to NASA management for discussion during dedicated safety reviews. Attention is given to the system safety assessment and risk analysis methodologies used, i.e., hazard analysis, fault tree analysis, and failure modes and effects analysis, and to how they are coupled with engineering and test analysis for a 'synergistic picture' of the system. Some preliminary safety analysis results, showing the relationship between hazard identification, control or abatement, and finally control verification, are presented as examples of this safety process.

  2. REDARS 2 demonstration project for seismic risk analysis of highway systems.

    DOT National Transportation Integrated Search

    2006-06-01

    Effects of earthquake damage to highway components such as bridges and roadways can go well beyond life-safety risks and costs to repair damaged structures. Such damage can also severely disrupt traffic flows that can : impact the regions economy ...

  3. WHY DO YOU NEED TO USE A CARIES RISK ASSESSMENT PROTOCOL TO PROVIDE AN EFFECTIVE CARIES PREVENTIVE REGIME?

    PubMed

    Afuakwah, Charles; Welbury, Richard

    2015-11-01

    Clinical guidelines recommend an individual is given a caries risk status based on analysis of defined clinical and social criteria before implementing a tailored preventive plan. Improve documentation of caries risk assessment (CRA) in a general dental practice setting, using a systems-based approach to quality improvement methods. Investigate the impact of quality improvement efforts on subsequent design and delivery of preventive care. Identify barriers to delivery of CRA and provision of preventive care. Data for patients aged 0-16 years was collected over two cycles using standard audit methodology. The first cycle was a retrospective analysis (n = 400) using random sampling. The second cycle a prospective analysis (n = 513) using consecutive sampling over a 15-week period. Five staff meetings with feedback occurred between cycles. In cycle one, no specific CRA system was identified. CRA status was not stated widely, risk factors were not analysed and there was variation with respect to the prescription and delivery of preventive strategies. These discrepancies were demonstrable for all four participating dentists and at all ages. In cycle two, 100% recorded CRA. All risk factors were analysed and individual caries risk was correctly annotated. There was 100% compliance with the protocol for preventive plans. The use of CRA improved documentation of caries risk status. This has improved subsequent prescription of age specific evidence-based preventive care appropriate to the risk status of that individual. Barriers were identified to the delivery of CRA and the provision of comprehensive preventive care by the dentists and other healthcare professionals.

  4. Towards responsible system development in health services: a discourse analysis study of design conflict resolution tactics.

    PubMed

    Irestig, Magnus; Timpka, Toomas

    2010-02-01

    We set out to examine design conflict resolution tactics used in development of large information systems for health services and to outline the design consequences for these tactics. Discourse analysis methods were applied to data collected from meetings conducted during the development of a web-based system in a public health context. We found that low risk tactics were characterized by design issues being managed within the formal mandate and competences of the design group. In comparison, high risk tactics were associated with irresponsible compromises, i.e. decisions being passed on to others or to later phases of the design process. The consequence of this collective disregard of issues such as responsibility and legitimacy is that the system design will be impossible to implement in factual health service contexts. The results imply that downstream responsibility issues have to be continuously dealt with in system development in health services.

  5. Difficult Decisions Made Easier

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA missions are extremely complex and prone to sudden, catastrophic failure if equipment falters or if an unforeseen event occurs. For these reasons, NASA trains to expect the unexpected. It tests its equipment and systems in extreme conditions, and it develops risk-analysis tests to foresee any possible problems. The Space Agency recently worked with an industry partner to develop reliability analysis software capable of modeling complex, highly dynamic systems, taking into account variations in input parameters and the evolution of the system over the course of a mission. The goal of this research was multifold. It included performance and risk analyses of complex, multiphase missions, like the insertion of the Mars Reconnaissance Orbiter; reliability analyses of systems with redundant and/or repairable components; optimization analyses of system configurations with respect to cost and reliability; and sensitivity analyses to identify optimal areas for uncertainty reduction or performance enhancement.

  6. Software Systems for Prediction and Immediate Assessment of Emergency Situations on Municipalities Territories

    NASA Astrophysics Data System (ADS)

    Poluyan, L. V.; Syutkina, E. V.; Guryev, E. S.

    2017-11-01

    The comparative analysis of key features of the software systems TOXI+Risk and ALOHA is presented. The authors made a comparison of domestic (TOXI+Risk) and foreign (ALOHA) software systems allowing to give the quantitative assessment of impact areas (pressure, thermal, toxic) in case of hypothetical emergencies in potentially hazardous objects of the oil, gas, chemical, petrochemical and oil-processing industry. Both software systems use different mathematical models for assessment of the release rate of a chemically hazardous substance from a storage tank and its evaporation. The comparison of the accuracy of definition of impact areas made by both software systems to verify the examples shows good convergence of both products. The analysis results showed that the ALOHA software can be actively used for forecasting and immediate assessment of emergency situations, assessment of damage as a result of emergencies on the territories of municipalities.

  7. HLA-DRB1 rheumatoid arthritis risk in African Americans at multiple levels: Hierarchical classification systems, amino acid positions and residues

    PubMed Central

    Reynolds, Richard J.; Ahmed, Altan F.; Danila, Maria I.; Hughes, Laura B.; Gregersen, Peter K.; Raychaudhuri, Soumya; Plenge, Robert M.; Bridges, S. Louis

    2014-01-01

    Objective To evaluate African American rheumatoid arthritis HLA-DRB1 genetic risk by three validated allele classification systems, and by amino acid position and residue. To compare the genetic risk between African American and European ancestries. Methods Four-digit HLA-DRB1 genotyping was performed on 561 autoantibody-positive African American cases and 776 African American controls. Association analysis was performed on Tezenas du Montcel (TdM); de Vries (DV); and Mattey classification system alleles and separately by amino acid position and individual residues. Results TdM S2 and S3P alleles were associated with RA (odds ratios (95% CI) 2.8 (2.0, 3.9) and 2.1 (1.7, 2.7), respectively). The DV (P-value=3.2 x 10−12) and Mattey (P-value=6.5 x 10−13) system alleles were both protective in African Americans. Amino acid position 11 (permutation P-value < 0.00001) accounted for nearly all variability explained by HLA-DRB1, although conditional analysis demonstrated that position 57 was also significant (0.01<= permutation P-val <=0.05). The valine and aspartic acid residues at position 11 conferred the highest risk for RA in African Americans. Conclusion With some exceptions, the genetic risk conferred by HLA-DRB1 in African Americans is similar to European ancestry at multiple levels: classification system (e.g., TdM), amino acid position (e.g. 11) and residue (Val 11). Unlike that reported from European ancestry, amino acid position 57 was associated with RA in African Americans, but positions 71 and 74 were not. Asp11 (OR = 1 in European ancestry) corresponds to the four digit classical allele, *09:01, also a risk allele for RA in Koreans. PMID:25524867

  8. The Role and Quality of Software Safety in the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Basili, Victor R.; Zelkowitz, Marvin V.

    2010-01-01

    In this study, we examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Obtaining an accurate, program-wide picture of software safety risk is difficult across multiple, independently-developing systems. We leverage one source of safety information, hazard analysis, to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. The goal of this research is two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to quantify the level of risk presented by software in the hazard analysis. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. To quantify the importance of software, we collected metrics based on the number of software-related causes and controls of hazardous conditions. To quantify the level of risk presented by software, we created a metric scheme to measure the specificity of these software causes. We found that from 49-70% of hazardous conditions in the three systems could be caused by software or software was involved in the prevention of the hazardous condition. We also found that 12-17% of the 2013 hazard causes involved software, and that 23-29% of all causes had a software control. Furthermore, 10-12% of all controls were software-based. There is potential for inaccuracy in these counts, however, as software causes are not consistently scoped, and the presence of software in a cause or control is not always clear. The application of our software specificity metrics also identified risks in the hazard reporting process. In particular, we found a number of traceability risks in the hazard reports may impede verification of software and system safety.

  9. A theoretical treatment of technical risk in modern propulsion system design

    NASA Astrophysics Data System (ADS)

    Roth, Bryce Alexander

    2000-09-01

    A prevalent trend in modern aerospace systems is increasing complexity and cost, which in turn drives increased risk. Consequently, there is a clear and present need for the development of formalized methods to analyze the impact of risk on the design of aerospace vehicles. The objective of this work is to develop such a method that enables analysis of risk via a consistent, comprehensive treatment of aerothermodynamic and mass properties aspects of vehicle design. The key elements enabling the creation of this methodology are recent developments in the analytical estimation of work potential based on the second law of thermodynamics. This dissertation develops the theoretical foundation of a vehicle analysis method based on work potential and validates it using the Northrop F-5E with GE J85-GE-21 engines as a case study. Although the method is broadly applicable, emphasis is given to aircraft propulsion applications. Three work potential figures of merit are applied using this method: exergy, available energy, and thrust work potential. It is shown that each possesses unique properties making them useful for specific vehicle analysis tasks, though the latter two are actually special cases of exergy. All three are demonstrated on the analysis of the J85-GE-21 propulsion system, resulting in a comprehensive description of propulsion system thermodynamic loss. This "loss management" method is used to analyze aerodynamic drag loss of the F-5E and is then used in conjunction with the propulsive loss model to analyze the usage of fuel work potential throughout the F-5E design mission. The results clearly show how and where work potential is used during flight and yield considerable insight as to where the greatest opportunity for design improvement is. Next, usage of work potential is translated into fuel weight so that the aerothermodynamic performance of the F-5E can be expressed entirely in terms of vehicle gross weight. This technique is then applied as a means to quantify the impact of engine cycle technologies on the F-5E airframe. Finally, loss management methods are used in conjunction with probabilistic analysis methods to quantify the impact of risk on F-5E aerothermodynamic performance.

  10. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.

    2016-01-01

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less

  11. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    DOE PAGES

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...

    2017-01-24

    We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less

  12. Security Investment in Contagious Networks.

    PubMed

    Hasheminasab, Seyed Alireza; Tork Ladani, Behrouz

    2018-01-16

    Security of the systems is normally interdependent in such a way that security risks of one part affect other parts and threats spread through the vulnerable links in the network. So, the risks of the systems can be mitigated through investments in the security of interconnecting links. This article takes an innovative look at the problem of security investment of nodes on their vulnerable links in a given contagious network as a game-theoretic model that can be applied to a variety of applications including information systems. In the proposed game model, each node computes its corresponding risk based on the value of its assets, vulnerabilities, and threats to determine the optimum level of security investments on its external links respecting its limited budget. Furthermore, direct and indirect nonlinear influences of a node's security investment on the risks of other nodes are considered. The existence and uniqueness of the game's Nash equilibrium in the proposed game are also proved. Further analysis of the model in a practical case revealed that taking advantage of the investment effects of other players, perfectly rational players (i.e., those who use the utility function of the proposed game model) make more cost-effective decisions than selfish nonrational or semirational players. © 2018 Society for Risk Analysis.

  13. Network information analysis reveals risk perception transmission in a behaviour-influenza dynamics system.

    PubMed

    Liao, C-M; You, S-H; Cheng, Y-H

    2015-01-01

    Influenza poses a significant public health burden worldwide. Understanding how and to what extent people would change their behaviour in response to influenza outbreaks is critical for formulating public health policies. We incorporated the information-theoretic framework into a behaviour-influenza (BI) transmission dynamics system in order to understand the effects of individual behavioural change on influenza epidemics. We showed that information transmission of risk perception played a crucial role in the spread of health-seeking behaviour throughout influenza epidemics. Here a network BI model provides a new approach for understanding the risk perception spread and human behavioural change during disease outbreaks. Our study allows simultaneous consideration of epidemiological, psychological, and social factors as predictors of individual perception rates in behaviour-disease transmission systems. We suggest that a monitoring system with precise information on risk perception should be constructed to effectively promote health behaviours in preparation for emerging disease outbreaks.

  14. Development of a Probabilistic Tsunami Hazard Analysis in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka

    2006-07-01

    It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present anmore » example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)« less

  15. Limitations of self-care in reducing the risk of lymphedema: supportive-educative systems.

    PubMed

    Armer, Jane M; Brooks, Constance W; Stewart, Bob R

    2011-01-01

    The purpose of this study was to examine patient perceptions of limitations related to self-care measures to reduce lymphedema risk following breast cancer surgery. Secondary analysis of survey data from a companion study to a study piloting a behavioral-educational intervention was conducted to examine the specific limitations in performing lymphedema risk-reduction self-care measures. Findings suggest a more comprehensive approach is needed if patients are to engage in self-care actions to reduce lymphedema risk. Understanding the concepts of self-care and personal support interventions that include motivational interviewing can help nurses design supportive-educative care systems that assist patients in overcoming limitations in the estimative, transitional, and productive phases of self-care necessary to reduce lymphedema risk.

  16. [Study on the risk assessment method of regional groundwater pollution].

    PubMed

    Yang, Yan; Yu, Yun-Jiang; Wang, Zong-Qing; Li, Ding-Long; Sun, Hong-Wei

    2013-02-01

    Based on the boundary elements of system risk assessment, the regional groundwater pollution risk assessment index system was preliminarily established, which included: regional groundwater specific vulnerability assessment, the regional pollution sources characteristics assessment and the health risk assessment of regional featured pollutants. The three sub-evaluation systems were coupled with the multi-index comprehensive method, the risk was characterized with the Spatial Analysis of ArcMap, and a new method to evaluate regional groundwater pollution risk that suitable for different parts of natural conditions, different types of pollution was established. Take Changzhou as an example, the risk of shallow groundwater pollution was studied with the new method, and found that the vulnerability index of groundwater in Changzhou is high and distributes unevenly; The distribution of pollution sources is concentrated and has a great impact on groundwater pollution risks; Influenced by the pollutants and pollution sources, the values of health risks are high in the urban area of Changzhou. The pollution risk of shallow groundwater is high and distributes unevenly, and distributes in the north of the line of Anjia-Xuejia-Zhenglu, the center of the city and the southeast, where the human activities are more intense and the pollution sources are intensive.

  17. Multimedia-modeling integration development environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelton, Mitchell A.; Hoopes, Bonnie L.

    2002-09-02

    There are many framework systems available; however, the purpose of the framework presented here is to capitalize on the successes of the Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) and Multi-media Multi-pathway Multi-receptor Risk Assessment (3MRA) methodology as applied to the Hazardous Waste Identification Rule (HWIR) while focusing on the development of software tools to simplify the module developer?s effort of integrating a module into the framework.

  18. Analysis of the Space Propulsion System Problem Using RAVEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    diego mandelli; curtis smith; cristian rabiti

    This paper presents the solution of the space propulsion problem using a PRA code currently under development at Idaho National Laboratory (INL). RAVEN (Reactor Analysis and Virtual control ENviroment) is a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities. It is designed to derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures) and to perform both Monte- Carlo sampling of random distributed events and Event Tree based analysis. In order to facilitate the input/output handling, a Graphical User Interface (GUI) and a post-processing data-mining module are available.more » RAVEN allows also to interface with several numerical codes such as RELAP5 and RELAP-7 and ad-hoc system simulators. For the space propulsion system problem, an ad-hoc simulator has been developed and written in python language and then interfaced to RAVEN. Such simulator fully models both deterministic (e.g., system dynamics and interactions between system components) and stochastic behaviors (i.e., failures of components/systems such as distribution lines and thrusters). Stochastic analysis is performed using random sampling based methodologies (i.e., Monte-Carlo). Such analysis is accomplished to determine both the reliability of the space propulsion system and to propagate the uncertainties associated to a specific set of parameters. As also indicated in the scope of the benchmark problem, the results generated by the stochastic analysis are used to generate risk-informed insights such as conditions under witch different strategy can be followed.« less

  19. Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system

    NASA Technical Reports Server (NTRS)

    Becker, D. D.

    1980-01-01

    The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.

  20. Shuttle user analysis (study 2.2). Volume 3: Business risk and value of operations in space (BRAVO). Part 5: Analysis of GSFC Earth Observation Satellite (EOS) system mission model using BRAVO techniques

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost comparisons were made between three modes of operation (expend, ground refurbish, and space resupply) for the Earth Observation System (EOS-B) to furnish data to NASA on alternative ways to use the shuttle/EOS. Results of the analysis are presented in tabular form.

  1. Risk assessment analysis of the future technical unit dedicated to the evaluation and treatment of motor disabilities.

    PubMed

    Grelier, S; Thetio, M; Quentin, V; Achache, V; Sanchez, N; Leroux, V; Durand, E; Pequignot, R

    2011-03-01

    The National Hospital of Saint Maurice (HNSM) for Physical Medicine and Rehabilitation aims at strengthening its position as a pivot rehabilitation and physical therapy center. The opening in 2011 of a new unit for the evaluation and treatment of motor disabilities meets this objective. This project includes several parts: clinical, financial, architectural, organizational, applied clinical research as well as dealing with medical equipments and information system. This study focuses on the risk assessment of this future technical unit. This study was conducted by a group of professionals working for the hospital. It started with the design of a functional model to better comprehend the system to be analyzed. Risk assessment consists in confronting this functional model to a list of dangers in order to determine the vulnerable areas of the system. Then the team designed some scenarios to identify the causes, securities barriers and consequences in order to rank the risks. The analysis targeted various dangers, e.g. political, strategic, financial, economical, marketing, clinical and operational. The team identified more than 70 risky scenarios. For 75% of them the criticality level was deemed initially tolerable and under control or unacceptable. The implementation of an action plan for reducing the level of risks before opening this technical unit brought the system down to an acceptable level at 66%. A year prior to opening this technical unit for the evaluation and treatment of motor disabilities, conducting this preliminary risk assessment, with its exhaustive and rigorous methodology, enabled the concerned professionals to work together around an action plan for reducing the risks. 2011 Elsevier Masson SAS. All rights reserved.

  2. Can we use GIS as a historic city's heritage management system? The case study of Hermoupolis-Syros

    NASA Astrophysics Data System (ADS)

    Chatzigrigoriou, Pavlos

    2016-08-01

    Because of the severe economic crisis, Greek historic heritage is in risk. Historic cities as Hermoupolis, were dealing with this risk years before the crisis. The current situation needed drastic action, with innovative low cost ideas. The historic building stock in Hermoupolis counts more than 1.200 buildings. By recording the pathology, the GIS and the D.B.M.S "HERMeS" with the appropriate algorithms identify the historic buildings in risk. In the first application of the system those buildings were 160, with a rate of 2.4 historic buildings collapse every year. The prioritization of interventions in these buildings is critical, as it is not possible to lower the collapsing risk simultaneously in 160 buildings, but neither the interventions can be judged solely by the reactions of local residents. Bearing in mind the fact that one, given the current economic conditions, has to make best use of the funds for this purpose, it is proved that the relevant decision requires multi criteria analysis method of prioritizing interventions. Specifically, the analysis takes into account the risk of collapse of each building, but in connection with a series of other variables, such as the role of building in Hermoupolis, the position in the city, the influence in other areas of interest, the social impact etc. The final result is a catalogue with historic buildings and a point system, which reflects the risk of loosing the building. The point system leads to a Conservation Plan for the city of Hermoupolis, giving the hierarchy of interventions that must be done in order to save the maximum architecture heritage with the minimum funds, postponing the risk of collapsing. In 2015, EU and EUROPA-NOSTRA awarded the above-mentioned project in the category of "Research and Digitization".

  3. Multi-hazard risk analysis using the FP7 RASOR Platform

    NASA Astrophysics Data System (ADS)

    Koudogbo, Fifamè N.; Duro, Javier; Rossi, Lauro; Rudari, Roberto; Eddy, Andrew

    2014-10-01

    Climate change challenges our understanding of risk by modifying hazards and their interactions. Sudden increases in population and rapid urbanization are changing exposure to risk around the globe, making impacts harder to predict. Despite the availability of operational mapping products, there is no single tool to integrate diverse data and products across hazards, update exposure data quickly and make scenario-based predictions to support both short and long-term risk-related decisions. RASOR (Rapid Analysis and Spatialization Of Risk) will develop a platform to perform multi-hazard risk analysis for the full cycle of disaster management, including targeted support to critical infrastructure monitoring and climate change impact assessment. A scenario-driven query system simulates future scenarios based on existing or assumed conditions and compares them with historical scenarios. RASOR will thus offer a single work environment that generates new risk information across hazards, across data types (satellite EO, in-situ), across user communities (global, local, climate, civil protection, insurance, etc.) and across the world. Five case study areas are considered within the project, located in Haiti, Indonesia, Netherlands, Italy and Greece. Initially available over those demonstration areas, RASOR will ultimately offer global services to support in-depth risk assessment and full-cycle risk management.

  4. Risk Costs for New Dams: Economic Analysis and Effects of Monitoring

    NASA Astrophysics Data System (ADS)

    Paté-Cornell, M. Elisabeth; Tagaras, George

    1986-01-01

    This paper presents new developments and illustrations of the introduction of risk and costs in cost-benefit analysis for new dams. The emphasis is on a method of evaluation of the risk costs based on the structure of the local economy. Costs to agricultural property as well as residential, commercial, industrial, and public property are studied in detail. Of particular interest is the case of sequential dam failure and the evaluation of the risk costs attributable to a new dam upstream from an existing one. Three real cases are presented as illustrations of the method: the Auburn Dam, the Dickey-Lincoln School Project, and the Teton Dam, which failed in 1976. This last case provides a calibration tool for the estimation of loss ratios. For these three projects, the risk-modified benefit-cost ratios are computed to assess the effect of the risk on the economic performance of the project. The role of a warning system provided by systematic monitoring of the dam is analyzed: by reducing the risk costs, the warning system attenuates their effect on the benefit-cost ratio. The precursors, however, can be missed or misinterpreted: monitoring does not guarantee that the risks to human life can be reduced to zero. This study shows, in particular, that it is critical to consider the risk costs in the decision to build a new dam when the flood area is large and densely populated.

  5. How the ownership structures cause epidemics in financial markets: A network-based simulation model

    NASA Astrophysics Data System (ADS)

    Dastkhan, Hossein; Gharneh, Naser Shams

    2018-02-01

    Analysis of systemic risks and contagions is one of the main challenges of policy makers and researchers in the recent years. Network theory is introduced as a main approach in the modeling and simulation of financial and economic systems. In this paper, a simulation model is introduced based on the ownership network to analyze the contagion and systemic risk events. For this purpose, different network structures with different values for parameters are considered to investigate the stability of the financial system in the presence of different kinds of idiosyncratic and aggregate shocks. The considered network structures include Erdos-Renyi, core-periphery, segregated and power-law networks. Moreover, the results of the proposed model are also calculated for a real ownership network. The results show that the network structure has a significant effect on the probability and the extent of contagion in the financial systems. For each network structure, various values for the parameters results in remarkable differences in the systemic risk measures. The results of real case show that the proposed model is appropriate in the analysis of systemic risk and contagion in financial markets, identification of systemically important firms and estimation of market loss when the initial failures occur. This paper suggests a new direction in the modeling of contagion in the financial markets, in particular that the effects of new kinds of financial exposure are clarified. This paper's idea and analytical results may also be useful for the financial policy makers, portfolio managers and the firms to conduct their investment in the right direction.

  6. Risk analysis and management

    NASA Technical Reports Server (NTRS)

    Smith, H. E.

    1990-01-01

    Present software development accomplishments are indicative of the emerging interest in and increasing efforts to provide risk assessment backbone tools in the manned spacecraft engineering community. There are indications that similar efforts are underway in the chemical processes industry and are probably being planned for other high risk ground base environments. It appears that complex flight systems intended for extended manned planetary exploration will drive this technology.

  7. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  8. A near real time scenario at regional scale for the hydrogeological risk

    NASA Astrophysics Data System (ADS)

    Ponziani, F.; Stelluti, M.; Zauri, R.; Berni, N.; Brocca, L.; Moramarco, T.; Salciarini, D.; Tamagnini, C.

    2012-04-01

    The early warning systems dedicated to landslides and floods represent the Umbria Region Civil Protection Service new generation tools for hydraulic and hydrogeological risk reduction. Following past analyses performed by the Functional Centre (part of the civil protection service dedicated to the monitoring and the evaluation of natural hazards) on the relationship between saturated soil conditions and rainfall thresholds, we have developed an automated early warning system for the landslide risk, called LANDWARN, which generates daily and 72h forecast risk matrix with a dense mesh of 100 x 100m, throughout the region. The system is based on: (a) the 20 days -observed and 72h -predicted rainfall, provided by the local meteorological network and the Local scale Meteorological Model COSMO ME, (b) the assessment of the saturation of soils by: daily extraction of ASCAT satellite data, data from a network of 16 TDR sensors, and a water balance model (developed by the Research Institute for Geo-Hydrological Protection, CNR, Perugia, Italy) that allows for the prediction of a saturation index for each point of the analysis grid up to a window of 72 h, (c) a Web-GIS platform that combines the data grids of calculated hazard indicators with layers of landslide susceptibility and vulnerability of the territory, in order to produce dynamic risk scenarios. The system is still under development and it's implemented at different scales: the entire region, and a set of known high-risk landslides in Umbria. The system is monitored and regularly reviewed through the back analysis of landslide reports for which the activation date is available. Up to now, the development of the system involves: a) the improvement of the reliability assessment of the condition of soil saturation, a key parameter which is used to dynamically adjust the values of rainfall thresholds used for the declaration of levels of landslide hazard. For this purpose, a procedure was created for the ASCAT satellite data daily download, used for the derivation of a soil water content index (SWI): these data are compared with instrumental ones from the TDR stations and the results of the water balance model that evaluates the contributions of water infiltration, percolation, evapotranspiration, etc. using physically based parameters obtained through a long process of characterization of soil and rock types, for each grid point; b) The assessment of the contribution due to the melting of the snow; c) the physically based - coupling model slope stability analysis, GIS-based, developed by the Department of Civil and Environmental Engineering, University of Perugia, with the aim to introduce also the actual mechanical and physical characteristics of slopes in the analysis. As result of the system, is the daily creation of near real-time and 24, 48, 72h forecast risk scenarios, that, under the intention of the Department of Civil Protection Service, will be used by the Functional Centre for the institutional tasks of hydrogeological risk evaluation and management, but also by local Administrations involved in the monitoring and assessment of landslide risk, in order to receive feedback on the effectiveness of the scenarios produced.

  9. Association between allelic variants of the human glucocorticoid receptor gene and autoimmune diseases: A systematic review and meta-analysis.

    PubMed

    Herrera, Cristian; Marcos, Miguel; Carbonell, Cristina; Mirón-Canelo, José Antonio; Espinosa, Gerard; Cervera, Ricard; Chamorro, Antonio-Javier

    2018-05-01

    The human glucocorticoid receptor gene (NR3C1) is considered to play a role in the differences and sensitivities of the glucocorticoid response in individuals with autoimmune diseases. The objective of this study was to examine by means of a systematic review previous findings regarding allelic variants of NR3C1 in relation to the risk of developing systemic autoimmune diseases. Studies that analysed the genotype distribution of NR3C1 allelic variants among patients with systemic autoimmune diseases were retrieved. A meta-analysis was conducted with a random effects model. Odds ratios (ORs) and their confidence intervals (CIs) were calculated. In addition, sub-analysis by ethnicity, sensitivity analysis and tests for heterogeneity of the results were performed. Eleven studies met the inclusion criteria for meta-analysis. We found no evidence that the analysed NR3C1 polymorphisms, rs6198, rs56149945, and rs6189/rs6190, modulate the risk of developing a systemic autoimmune disease. Nonetheless, a protective role for the minor allele of rs41423247 was found among Caucasians (OR=0.78; 95% CI: 0.65, 0.92; P=0.004). A subgroup analysis according to underlying diseases revealed no significant association either for Behçet's disease or rheumatoid arthritis, while correlations between NR3C1 polymorphisms and disease activity or response to glucocorticoids could not be evaluated due to insufficient data. There is no clear evidence that the analysed NR3C1 allelic variants confer a risk for developing systemic autoimmune diseases although the minor G allele of rs41423247 may be protective among Caucasians. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Space Shuttle critical function audit

    NASA Technical Reports Server (NTRS)

    Sacks, Ivan J.; Dipol, John; Su, Paul

    1990-01-01

    A large fault-tolerance model of the main propulsion system of the US space shuttle has been developed. This model is being used to identify single components and pairs of components that will cause loss of shuttle critical functions. In addition, this model is the basis for risk quantification of the shuttle. The process used to develop and analyze the model is digraph matrix analysis (DMA). The DMA modeling and analysis process is accessed via a graphics-based computer user interface. This interface provides coupled display of the integrated system schematics, the digraph models, the component database, and the results of the fault tolerance and risk analyses.

  11. An Interoperable System toward Cardiac Risk Stratification from ECG Monitoring

    PubMed Central

    Mora-Jiménez, Inmaculada; Ramos-López, Javier; Quintanilla Fernández, Teresa; García-García, Antonio; Díez-Mazuela, Daniel; García-Alberola, Arcadi

    2018-01-01

    Many indices have been proposed for cardiovascular risk stratification from electrocardiogram signal processing, still with limited use in clinical practice. We created a system integrating the clinical definition of cardiac risk subdomains from ECGs and the use of diverse signal processing techniques. Three subdomains were defined from the joint analysis of the technical and clinical viewpoints. One subdomain was devoted to demographic and clinical data. The other two subdomains were intended to obtain widely defined risk indices from ECG monitoring: a simple-domain (heart rate turbulence (HRT)), and a complex-domain (heart rate variability (HRV)). Data provided by the three subdomains allowed for the generation of alerts with different intensity and nature, as well as for the grouping and scrutinization of patients according to the established processing and risk-thresholding criteria. The implemented system was tested by connecting data from real-world in-hospital electronic health records and ECG monitoring by considering standards for syntactic (HL7 messages) and semantic interoperability (archetypes based on CEN/ISO EN13606 and SNOMED-CT). The system was able to provide risk indices and to generate alerts in the health records to support decision-making. Overall, the system allows for the agile interaction of research and clinical practice in the Holter-ECG-based cardiac risk domain. PMID:29494497

  12. Bio-Terrorism: Steps to Effective Public Health Risk Communication and Fear Management

    DTIC Science & Technology

    2004-06-01

    outline the challenges of communicating risk prior to, during and following a bio-terrorism event as well as the relationship between the content of...particularly challenging for a system based on thorough research and data analysis. Risk communication in a bio-terrorism event will involve...Ultimately, the Anthrax events confirmed the difficulty in communicating risk when scientific data is not available. Adding to the challenges imposed by an

  13. 78 FR 64735 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ...The Food and Drug Administration (FDA) is proposing regulations for domestic and foreign facilities that are required to register under the Federal Food, Drug, and Cosmetic Act (the FD&C Act) to establish requirements for current good manufacturing practice in manufacturing, processing, packing, and holding of animal food. FDA also is proposing regulations to require that certain facilities establish and implement hazard analysis and risk-based preventive controls for food for animals. FDA is taking this action to provide greater assurance that animal food is safe and will not cause illness or injury to animals or humans and is intended to build an animal food safety system for the future that makes modern, science and risk-based preventive controls the norm across all sectors of the animal food system.

  14. Household portfolio choices, health status and health care systems: A cross-country analysis based on SHARE

    PubMed Central

    Atella, Vincenzo; Brunetti, Marianna; Maestas, Nicole

    2013-01-01

    Health risk is increasingly viewed as an important form of background risk that affects household portfolio decisions. However, its role might be mediated by the presence of a protective full-coverage national health service that could reduce households’ probability of incurring current and future out-of-pocket medical expenditures. We use SHARE data to study the influence of current health status and future health risk on the decision to hold risky assets, across ten European countries with different health systems, each offering a different degree of protection against out-of-pocket medical expenditures. We find robust empirical evidence that perceived health status matters more than objective health status and, consistent with the theory of background risk, health risk affects portfolio choices only in countries with less protective health care systems. Furthermore, portfolio decisions consistent with background risk models are observed only with respect to middle-aged and highly-educated investors. PMID:23885134

  15. Early Warning System for West Nile Virus Risk Areas, California, USA

    PubMed Central

    Ahearn, Sean C.; McConchie, Alan; Glaser, Carol; Jean, Cynthia; Barker, Chris; Park, Bborie; Padgett, Kerry; Parker, Erin; Aquino, Ervic; Kramer, Vicki

    2011-01-01

    The Dynamic Continuous-Area Space-Time (DYCAST) system is a biologically based spatiotemporal model that uses public reports of dead birds to identify areas at high risk for West Nile virus (WNV) transmission to humans. In 2005, during a statewide epidemic of WNV (880 cases), the California Department of Public Health prospectively implemented DYCAST over 32,517 km2 in California. Daily risk maps were made available online and used by local agencies to target public education campaigns, surveillance, and mosquito control. DYCAST had 80.8% sensitivity and 90.6% specificity for predicting human cases, and κ analysis indicated moderate strength of chance-adjusted agreement for >4 weeks. High-risk grid cells (populations) were identified an average of 37.2 days before onset of human illness; relative risk for disease was >39× higher than for low-risk cells. Although prediction rates declined in subsequent years, results indicate DYCAST was a timely and effective early warning system during the severe 2005 epidemic. PMID:21801622

  16. Ecological Risk Assessment with MCDM of Some Invasive Alien Plants in China

    NASA Astrophysics Data System (ADS)

    Xie, Guowen; Chen, Weiguang; Lin, Meizhen; Zheng, Yanling; Guo, Peiguo; Zheng, Yisheng

    Alien plant invasion is an urgent global issue that threatens the sustainable development of the ecosystem health. The study of its ecological risk assessment (ERA) could help us to prevent and reduce the invasion risk more effectively. Based on the theory of ERA and methods of the analytic hierarchy process (AHP) of multi-criteria decision-making (MCDM), and through the analyses of the characteristics and processes of alien plant invasion, this paper discusses the methodologies of ERA of alien plant invasion. The assessment procedure consisted of risk source analysis, receptor analysis, exposure and hazard assessment, integral assessment, and countermeasure of risk management. The indicator system of risk source assessment as well as the indices and formulas applied to measure the ecological loss and risk were established, and the method for comprehensively assessing the ecological risk of alien plant invasion was worked out. The result of ecological risk analysis to 9 representative invasive alien plants in China shows that the ecological risk of Erigeron annuus, Ageratum conyzoides, Alternanthera philoxeroides and Mikania midrantha is high (grade1-2), that of Oxalis corymbosa and Wedelia chinensis comes next (grade3), while Mirabilis jalapa, Pilea microphylla and Calendula officinalis of the last (grade 4). Risk strategies are put forward on this basis.

  17. USEPA’s Land‐Based Materials Management Exposure and Risk Assessment Tool System

    EPA Science Inventory

    It is recognized that some kinds of 'waste' materials can in fact be reused as input materials for making safe products that benefit society. RIMM (Risk-Informed Materials Management) provides an integrated data gathering and analysis capability to enable scientifically rigorous ...

  18. Fatality Reduction by Air Bags: Analyses of Accident Data through Early 1996

    DOT National Transportation Integrated Search

    1996-08-01

    The fatality risk of front-seat occupants of passenger cars and light trucks equipped with air bags is compared to the corresponding risk in similar vehicles without air bags, based on statistical analysis of Fatal Accident Reporting System (FARS)dat...

  19. Using an Integrated, Multi-disciplinary Framework to Support Quantitative Microbial Risk Assessments

    EPA Science Inventory

    The Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) provides the infrastructure to link disparate models and databases seamlessly, giving an assessor the ability to construct an appropriate conceptual site model from a host of modeling choices, so a numbe...

  20. Conceptual compression discussion on a multi-linear (FTA) and systematic (FRAM) method in an offshore operation's accident modeling.

    PubMed

    Toroody, Ahmad Bahoo; Abaei, Mohammad Mahdy; Gholamnia, Reza

    2016-12-01

    Risk assessment can be classified into two broad categories: traditional and modern. This paper is aimed at contrasting the functional resonance analysis method (FRAM) as a modern approach with the fault tree analysis (FTA) as a traditional method, regarding assessing the risks of a complex system. Applied methodology by which the risk assessment is carried out, is presented in each approach. Also, FRAM network is executed with regard to nonlinear interaction of human and organizational levels to assess the safety of technological systems. The methodology is implemented for lifting structures deep offshore. The main finding of this paper is that the combined application of FTA and FRAM during risk assessment, could provide complementary perspectives and may contribute to a more comprehensive understanding of an incident. Finally, it is shown that coupling a FRAM network with a suitable quantitative method will result in a plausible outcome for a predefined accident scenario.

  1. An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2003-2010 Light-Duty Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, Tom P.

    The Department of Energy’s (DOE) Vehicle Technologies Office funds research on development of technologies to improve the fuel economy of both light- and heavy-duty vehicles, including advanced combustion systems, improved batteries and electric drive systems, and new lightweight materials. Of these approaches to increase fuel economy and reduce fuel consumption, reducing vehicle mass through more extensive use of strong lightweight materials is perhaps the easiest and least expensive method; however, there is a concern that reducing vehicle mass may lead to more fatalities. Lawrence Berkeley National Laboratory (LBNL) has conducted several analyses to better understand the relationship between vehicle mass,more » size and safety, in order to ameliorate concerns that down-weighting vehicles will inherently lead to more fatalities. These analyses include recreating the regression analyses conducted by the National Highway Traffic Safety Administration (NHTSA) that estimate the relationship between mass reduction and U.S. societal fatality risk per vehicle mile of travel (VMT), while holding vehicle size (i.e. footprint, wheelbase times track width) constant; these analyses are referred to as LBNL Phase 1 analysis. In addition, LBNL has conducted additional analysis of the relationship between mass and the two components of risk per VMT, crash frequency (crashes per VMT) and risk once a crash has occurred (risk per crash); these analyses are referred to as LBNL Phase 2 analysis.« less

  2. Risk-based cost-benefit analysis for evaluating microbial risk mitigation in a drinking water system.

    PubMed

    Bergion, Viktor; Lindhe, Andreas; Sokolova, Ekaterina; Rosén, Lars

    2018-04-01

    Waterborne outbreaks of gastrointestinal diseases can cause large costs to society. Risk management needs to be holistic and transparent in order to reduce these risks in an effective manner. Microbial risk mitigation measures in a drinking water system were investigated using a novel approach combining probabilistic risk assessment and cost-benefit analysis. Lake Vomb in Sweden was used to exemplify and illustrate the risk-based decision model. Four mitigation alternatives were compared, where the first three alternatives, A1-A3, represented connecting 25, 50 and 75%, respectively, of on-site wastewater treatment systems in the catchment to the municipal wastewater treatment plant. The fourth alternative, A4, represented installing a UV-disinfection unit in the drinking water treatment plant. Quantitative microbial risk assessment was used to estimate the positive health effects in terms of quality adjusted life years (QALYs), resulting from the four mitigation alternatives. The health benefits were monetised using a unit cost per QALY. For each mitigation alternative, the net present value of health and environmental benefits and investment, maintenance and running costs was calculated. The results showed that only A4 can reduce the risk (probability of infection) below the World Health Organization guidelines of 10 -4 infections per person per year (looking at the 95th percentile). Furthermore, all alternatives resulted in a negative net present value. However, the net present value would be positive (looking at the 50 th percentile using a 1% discount rate) if non-monetised benefits (e.g. increased property value divided evenly over the studied time horizon and reduced microbial risks posed to animals), estimated at 800-1200 SEK (€100-150) per connected on-site wastewater treatment system per year, were included. This risk-based decision model creates a robust and transparent decision support tool. It is flexible enough to be tailored and applied to local settings of drinking water systems. The model provides a clear and holistic structure for decisions related to microbial risk mitigation. To improve the decision model, we suggest to further develop the valuation and monetisation of health effects and to refine the propagation of uncertainties and variabilities between the included methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Examining Cybersecurity of Cyberphysical Systems for Critical Infrastructures Through Work Domain Analysis.

    PubMed

    Wang, Hao; Lau, Nathan; Gerdes, Ryan M

    2018-04-01

    The aim of this study was to apply work domain analysis for cybersecurity assessment and design of supervisory control and data acquisition (SCADA) systems. Adoption of information and communication technology in cyberphysical systems (CPSs) for critical infrastructures enables automated and distributed control but introduces cybersecurity risk. Many CPSs employ SCADA industrial control systems that have become the target of cyberattacks, which inflict physical damage without use of force. Given that absolute security is not feasible for complex systems, cyberintrusions that introduce unanticipated events will occur; a proper response will in turn require human adaptive ability. Therefore, analysis techniques that can support security assessment and human factors engineering are invaluable for defending CPSs. We conducted work domain analysis using the abstraction hierarchy (AH) to model a generic SCADA implementation to identify the functional structures and means-ends relations. We then adopted a case study approach examining the Stuxnet cyberattack by developing and integrating AHs for the uranium enrichment process, SCADA implementation, and malware to investigate the interactions between the three aspects of cybersecurity in CPSs. The AHs for modeling a generic SCADA implementation and studying the Stuxnet cyberattack are useful for mapping attack vectors, identifying deficiencies in security processes and features, and evaluating proposed security solutions with respect to system objectives. Work domain analysis is an effective analytical method for studying cybersecurity of CPSs for critical infrastructures in a psychologically relevant manner. Work domain analysis should be applied to assess cybersecurity risk and inform engineering and user interface design.

  4. Financial and tax risks at implementation of "Chayanda- Lensk" section of "Sila Sibiri" gas transportation system construction project

    NASA Astrophysics Data System (ADS)

    Sharf, I. V.; Chukhareva, N. V.; Kuznetsova, L. P.

    2014-08-01

    High social and economic importance of large-scale projects on gasification of East Siberian regions of Russia and diversifying gas exports poses the problem of complex risk analysis of the project. This article discusses the various types of risks that could significantly affect the timing of the implementation and effectiveness of the project for the construction of the first line of "Sila Sibiri", the "Chayanda-Lensk" section. Special attention is paid to financial and tax aspects of the project. Graphically presented analysis of the dynamics of financial indicators reflect certain periods of effectiveness in implementing the project. Authors also discuss the possible causes and consequences of risks.

  5. Fault and event tree analyses for process systems risk analysis: uncertainty handling formulations.

    PubMed

    Ferdous, Refaul; Khan, Faisal; Sadiq, Rehan; Amyotte, Paul; Veitch, Brian

    2011-01-01

    Quantitative risk analysis (QRA) is a systematic approach for evaluating likelihood, consequences, and risk of adverse events. QRA based on event (ETA) and fault tree analyses (FTA) employs two basic assumptions. The first assumption is related to likelihood values of input events, and the second assumption is regarding interdependence among the events (for ETA) or basic events (for FTA). Traditionally, FTA and ETA both use crisp probabilities; however, to deal with uncertainties, the probability distributions of input event likelihoods are assumed. These probability distributions are often hard to come by and even if available, they are subject to incompleteness (partial ignorance) and imprecision. Furthermore, both FTA and ETA assume that events (or basic events) are independent. In practice, these two assumptions are often unrealistic. This article focuses on handling uncertainty in a QRA framework of a process system. Fuzzy set theory and evidence theory are used to describe the uncertainties in the input event likelihoods. A method based on a dependency coefficient is used to express interdependencies of events (or basic events) in ETA and FTA. To demonstrate the approach, two case studies are discussed. © 2010 Society for Risk Analysis.

  6. Industrial water resources management based on violation risk analysis of the total allowable target on wastewater discharge.

    PubMed

    Yue, Wencong; Cai, Yanpeng; Xu, Linyu; Yang, Zhifeng; Yin, Xin'An; Su, Meirong

    2017-07-11

    To improve the capabilities of conventional methodologies in facilitating industrial water allocation under uncertain conditions, an integrated approach was developed through the combination of operational research, uncertainty analysis, and violation risk analysis methods. The developed approach can (a) address complexities of industrial water resources management (IWRM) systems, (b) facilitate reflections of multiple uncertainties and risks of the system and incorporate them into a general optimization framework, and (c) manage robust actions for industrial productions in consideration of water supply capacity and wastewater discharging control. The developed method was then demonstrated in a water-stressed city (i.e., the City of Dalian), northeastern China. Three scenarios were proposed according to the city's industrial plans. The results indicated that in the planning year of 2020 (a) the production of civilian-used steel ships and machine-made paper & paperboard would reduce significantly, (b) violation risk of chemical oxygen demand (COD) discharge under scenario 1 would be the most prominent, compared with those under scenarios 2 and 3, (c) the maximal total economic benefit under scenario 2 would be higher than the benefit under scenario 3, and (d) the production of rolling contact bearing, rail vehicles, and commercial vehicles would be promoted.

  7. Managing Risk to Ensure a Successful Cassini/Huygens Saturn Orbit Insertion (SOI)

    NASA Technical Reports Server (NTRS)

    Witkowski, Mona M.; Huh, Shin M.; Burt, John B.; Webster, Julie L.

    2004-01-01

    I. Design: a) S/C designed to be largely single fault tolerant; b) Operate in flight demonstrated envelope, with margin; and c) Strict compliance with requirements & flight rules. II. Test: a) Baseline, fault & stress testing using flight system testbeds (H/W & S/W); b) In-flight checkout & demos to remove first time events. III. Failure Analysis: a) Critical event driven fault tree analysis; b) Risk mitigation & development of contingencies. IV) Residual Risks: a) Accepted pre-launch waivers to Single Point Failures; b) Unavoidable risks (e.g. natural disaster). V) Mission Assurance: a) Strict process for characterization of variances (ISAs, PFRs & Waivers; b) Full time Mission Assurance Manager reports to Program Manager: 1) Independent assessment of compliance with institutional standards; 2) Oversight & risk assessment of ISAs, PFRs & Waivers etc.; and 3) Risk Management Process facilitator.

  8. Risky Business and the American Climate Prospectus: Economic Risks of Climate Change in the United States"

    NASA Astrophysics Data System (ADS)

    Gordon, K.; Houser, T.; Kopp, R. E., III; Hsiang, S. M.; Larsen, K.; Jina, A.; Delgado, M.; Muir-Wood, R.; Rasmussen, D.; Rising, J.; Mastrandrea, M.; Wilson, P. S.

    2014-12-01

    The United States faces a range of economic risks from global climate change - from increased flooding and storm damage, to climate-driven changes in crop yields and labor productivity, to heat-related strains on energy and public health systems. The Risky Business Project commissioned a groundbreaking new analysis of these and other climate risks by region of the country and sector of the economy. The American Climate Prospectus (ACP) links state-of-the-art climate models with econometric research of human responses to climate variability and cutting edge private sector risk assessment tools, the ACP offers decision-makers a data driven assessment of the specific risks they face. We describe the challenge, methods, findings, and policy implications of the national risk analysis, with particular focus on methodological innovations and novel insights.

  9. Assessment of risks of EMI for personal medical electronic devices (PMEDs) from emissions of millimeter-wave security screening systems

    NASA Astrophysics Data System (ADS)

    Witters, Donald; Bassen, Howard; Guag, Joshua; Addissie, Bisrat; LaSorte, Nickolas; Rafai, Hazem

    2013-06-01

    This paper describes research and testing of a representative group of high priority body worn and implantable personal medical electronic devices (PMEDs) for exposure to millimeter wave (MMW) advanced imaging technology (AIT) security systems used at airports. The sample PMEDs included in this study were implantable cardiac pacemakers, ICDs, neurostimulators and insulin pumps. These PMEDs are designed and tested for susceptibility to electromagnetic interference (EMI) under the present standards for medical device electromagnetic compatibility (EMC). However, the present standards for medical equipment do not address exposure to the much higher frequency fields that are emitted by MMW security systems. Initial AIT emissions measurements were performed to assess the PMED and passenger exposures. Testing protocols were developed and testing methods were tailored to the type of PMED. In addition, a novel exposure simulation system was developed to allow controlled EMC testing without the need of the MMW AIT system. Methodology, test results, and analysis are presented, along with an assessment of the human exposure and risks for PMED users. The results on this study reveal no effects on the medical devices from the exposure to the MMW security system. Furthermore, the human exposure measurements and analysis showed levels well below applicable standard, and the risks for PMED users and others we assessed to be very low. These findings apply to the types of PMEDs used in the study though these findings might suggest that the risks for other, similar PMEDs would likely be similar.

  10. Comparative and Predictive Multimedia Assessments Using Monte Carlo Uncertainty Analyses

    NASA Astrophysics Data System (ADS)

    Whelan, G.

    2002-05-01

    Multiple-pathway frameworks (sometimes referred to as multimedia models) provide a platform for combining medium-specific environmental models and databases, such that they can be utilized in a more holistic assessment of contaminant fate and transport in the environment. These frameworks provide a relatively seamless transfer of information from one model to the next and from databases to models. Within these frameworks, multiple models are linked, resulting in models that consume information from upstream models and produce information to be consumed by downstream models. The Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) is an example, which allows users to link their models to other models and databases. FRAMES is an icon-driven, site-layout platform that is an open-architecture, object-oriented system that interacts with environmental databases; helps the user construct a Conceptual Site Model that is real-world based; allows the user to choose the most appropriate models to solve simulation requirements; solves the standard risk paradigm of release transport and fate; and exposure/risk assessments to people and ecology; and presents graphical packages for analyzing results. FRAMES is specifically designed allow users to link their own models into a system, which contains models developed by others. This paper will present the use of FRAMES to evaluate potential human health exposures using real site data and realistic assumptions from sources, through the vadose and saturated zones, to exposure and risk assessment at three real-world sites, using the Multimedia Environmental Pollutant Assessment System (MEPAS), which is a multimedia model contained within FRAMES. These real-world examples use predictive and comparative approaches coupled with a Monte Carlo analysis. A predictive analysis is where models are calibrated to monitored site data, prior to the assessment, and a comparative analysis is where models are not calibrated but based solely on literature or judgement and is usually used to compare alternatives. In many cases, a combination is employed where the model is calibrated to a portion of the data (e.g., to determine hydrodynamics), then used to compare alternatives. Three subsurface-based multimedia examples are presented, increasing in complexity. The first presents the application of a predictive, deterministic assessment; the second presents a predictive and comparative, Monte Carlo analysis; and the third presents a comparative, multi-dimensional Monte Carlo analysis. Endpoints are typically presented in terms of concentration, hazard, risk, and dose, and because the vadose zone model typically represents a connection between a source and the aquifer, it does not generally represent the final medium in a multimedia risk assessment.

  11. Small numbers, disclosure risk, security, and reliability issues in Web-based data query systems.

    PubMed

    Rudolph, Barbara A; Shah, Gulzar H; Love, Denise

    2006-01-01

    This article describes the process for developing consensus guidelines and tools for releasing public health data via the Web and highlights approaches leading agencies have taken to balance disclosure risk with public dissemination of reliable health statistics. An agency's choice of statistical methods for improving the reliability of released data for Web-based query systems is based upon a number of factors, including query system design (dynamic analysis vs preaggregated data and tables), population size, cell size, data use, and how data will be supplied to users. The article also describes those efforts that are necessary to reduce the risk of disclosure of an individual's protected health information.

  12. Application of Statistics in Engineering Technology Programs

    ERIC Educational Resources Information Center

    Zhan, Wei; Fink, Rainer; Fang, Alex

    2010-01-01

    Statistics is a critical tool for robustness analysis, measurement system error analysis, test data analysis, probabilistic risk assessment, and many other fields in the engineering world. Traditionally, however, statistics is not extensively used in undergraduate engineering technology (ET) programs, resulting in a major disconnect from industry…

  13. Validation of the revised International Prognostic Scoring System in patients with myelodysplastic syndrome in Japan: results from a prospective multicenter registry.

    PubMed

    Kawabata, Hiroshi; Tohyama, Kaoru; Matsuda, Akira; Araseki, Kayano; Hata, Tomoko; Suzuki, Takahiro; Kayano, Hidekazu; Shimbo, Kei; Zaike, Yuji; Usuki, Kensuke; Chiba, Shigeru; Ishikawa, Takayuki; Arima, Nobuyoshi; Nogawa, Masaharu; Ohta, Akiko; Miyazaki, Yasushi; Mitani, Kinuko; Ozawa, Keiya; Arai, Shunya; Kurokawa, Mineo; Takaori-Kondo, Akifumi

    2017-09-01

    The Japanese National Research Group on Idiopathic Bone Marrow Failure Syndromes has been conducting prospective registration, central review, and follow-up study for patients with aplastic anemia and myelodysplastic syndrome (MDS) since 2006. Using this database, we retrospectively analyzed the prognosis of patients with MDS. As of May 2016, 351 cases were registered in this database, 186 of which were eligible for the present study. Kaplan-Meier analysis showed that overall survival (OS) curves of the five risk categories stipulated by the revised international prognostic scoring system (IPSS-R) were reasonably separated. 2-year OS rates for the very low-, low-, intermediate-, high-, and very high-risk categories were 95, 89, 79, 35, and 12%, respectively. In the same categories, incidence of leukemic transformation at 2 years was 0, 10, 8, 56, and 40%, respectively. Multivariate analysis revealed that male sex, low platelet counts, increased blast percentage (>2%), and high-risk karyotype abnormalities were independent risk factors for poor OS. Based on these data, we classified Japanese MDS patients who were classified as intermediate-risk in IPSS-R, into the lower risk MDS category, highlighting the need for careful assessment of treatments within low- and high-risk treatment protocols.

  14. Central nervous system infections and stroke -- a population-based analysis.

    PubMed

    Chien, L-N; Chi, N-F; Hu, C-J; Chiou, H-Y

    2013-10-01

    Chronic central nervous system (CNS) infections have been found to associate with cerebrovascular complications. Acute CNS infections are more common than chronic CNS infections, but whether they could increase the risk of vascular diseases has not been studied. The study cohort comprised all adult patients with diagnoses of CNS infections from Taiwan National Health Insurance Research Database during 2000-2009 (n = 533). The comparison group were matched by age, sex, urbanization, diagnostic year, and vascular risk factors of cases (cases and controls = 1:5). Patients were tracked for at least 1 year. Kaplan-Meier analysis was used to compare the risk of stroke and acute myocardial infarction (AMI) after adjusting censoring subjects. After adjusting the patients demographic characteristics and comorbidities, the risk of patients with CNS infections developing stroke was 2.75-3.44 times greater than their comparison group. More than 70% of the stroke events were occurring within 1 year after CNS infections. The risk of AMI was not found as we compared patients with and without CNS infections. The population-based cohort study suggested that adult patients with CNS infections have higher risk to develop stroke but not AMI, and the risk is marked within a year after infections. © 2013 John Wiley & Sons A/S.

  15. A dynamical systems model for nuclear power plant risk

    NASA Astrophysics Data System (ADS)

    Hess, Stephen Michael

    The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of these models. Details of the development of the mathematical risk model are presented. This includes discussion of the processes included in the model and the identification of significant interprocess interactions. This is followed by analysis of the model that demonstrates that its dynamical evolution displays characteristics that have been observed at commercially operating plants. The model is analyzed using the previously described techniques from dynamical systems theory. From this analysis, several significant insights are obtained with respect to the effective control of nuclear safety risk. Finally, we present conclusions and recommendations for further research.

  16. Interdisciplinary approach for disaster risk reduction in Valtellina Valley, northern Italy

    NASA Astrophysics Data System (ADS)

    Garcia, Carolina; Blahut, Jan; Luna, Byron Quan; Poretti, Ilaria; Camera, Corrado; de Amicis, Mattia; Sterlacchini, Simone

    2010-05-01

    Inside the framework of the European research network Mountain Risks, an interdisciplinary research group has been working in the Consortium of Mountain Municipalities of Valtellina di Tirano (northern Italy). This area has been continuously affected by several mountain hazards such as landslides, debris flows and floods that directly affect the population, and in some cases caused several deaths and million euros of losses. An aim of the interdisciplinary work in this study area, is to integrate different scientific products of the research group, in the areas of risk assessment, management and governance, in order to generate, among others, risk reduction tools addressed to general public and stakeholders. Two types of phenomena have been particularly investigated: debris flows and floods. The scientific products range from modeling to mapping of hazard and risk, emergency planning based on real time decision support systems, surveying for the evaluation of risk perception and preparedness, among others. Outputs from medium scale hazard and risk modeling could be used for decision makers and spatial planners as well as civil protection authorities to have a general overview of the area and indentify hot spots for further detailed analysis. Subsequently, local scale analysis is necessary to define possible events and risk scenarios for emergency planning. As for the modeling of past events and new scenarios of debris flows, physical outputs were used as inputs into physical vulnerability assessment and quantitative risk analysis within dynamic runout models. On a pilot zone, the physical damage was quantified for each affected structure within the context of physical vulnerability and different empirical vulnerability curves were obtained. Prospective economic direct losses were estimated. For floods hazard assessment, different approaches and models are being tested, in order to produce flood maps for various return periods, and related to registered rainfalls. About Civil Protection topics, the main aim is to set up and manage contingency plans in advance; that is, to identify and prepare people in charge to take action to define the activities to be performed, to be aware of available resources and to optimize the communication system among the people involved, in order to efficiently face a prospective crisis phase. For this purpose, a real time emergency plan has been develop based GIS (Geographical Information Systems), DSS (Decision Support Systems), and ICT (Information & Communication Technology).

  17. Foreword for the Special Section on Power System Planning and Operation Towards a Low-Carbon Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Yi; Kang, Chongqing; Wang, Jianhui

    2015-03-01

    The nine papers in this special section on power system planning and operation towards a low-cost economy cover the following topics: power system planning models; power system operation methods and market behavior analysis; and risk assessment and emission management.

  18. Optimising import risk mitigation: anticipating the unintended consequences and competing risks of informal trade.

    PubMed

    Hueston, W; Travis, D; van Klink, E

    2011-04-01

    The effectiveness of risk mitigation may be compromised by informal trade, including illegal activities, parallel markets and extra-legal activities. While no regulatory system is 100% effective in eliminating the risk of disease transmission through animal and animal product trade, extreme risk aversion in formal import health regulations may increase informal trade, with the unintended consequence of creating additional risks outside regulatory purview. Optimal risk mitigation on a national scale requires scientifically sound yet flexible mitigation strategies that can address the competing risks of formal and informal trade. More robust risk analysis and creative engagement of nontraditional partners provide avenues for addressing informal trade.

  19. Traceability and Risk Analysis Strategies for Addressing Counterfeit Electronics in Supply Chains for Complex Systems.

    PubMed

    DiMase, Daniel; Collier, Zachary A; Carlson, Jinae; Gray, Robin B; Linkov, Igor

    2016-10-01

    Within the microelectronics industry, there is a growing concern regarding the introduction of counterfeit electronic parts into the supply chain. Even though this problem is widespread, there have been limited attempts to implement risk-based approaches for testing and supply chain management. Supply chain risk management tends to focus on the highly visible disruptions of the supply chain instead of the covert entrance of counterfeits; thus counterfeit risk is difficult to mitigate. This article provides an overview of the complexities of the electronics supply chain, and highlights some gaps in risk assessment practices. In particular, this article calls for enhanced traceability capabilities to track and trace parts at risk through various stages of the supply chain. Placing the focus on risk-informed decision making through the following strategies is needed, including prioritization of high-risk parts, moving beyond certificates of conformance, incentivizing best supply chain management practices, adoption of industry standards, and design and management for supply chain resilience. © 2016 Society for Risk Analysis.

  20. Validating a Prognostic Scoring System for Postmastectomy Locoregional Recurrence in Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Skye Hung-Chun, E-mail: skye@kfsyscc.org; Clinical Research Office, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan; Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina

    2013-03-15

    Purpose: This study is designed to validate a previously developed locoregional recurrence risk (LRR) scoring system and further define which groups of patients with breast cancer would benefit from postmastectomy radiation therapy (PMRT). Methods and Materials: An LRR risk scoring system was developed previously at our institution using breast cancer patients initially treated with modified radical mastectomy between 1990 and 2001. The LRR score comprised 4 factors: patient age, lymphovascular invasion, estrogen receptor negativity, and number of involved lymph nodes. We sought to validate the original study by examining a new dataset of 1545 patients treated between 2002 and 2007. Results:more » The 1545 patients were scored according to the previously developed criteria: 920 (59.6%) were low risk (score 0-1), 493 (31.9%) intermediate risk (score 2-3), and 132 (8.5%) were high risk (score ≥4). The 5-year locoregional control rates with and without PMRT in low-risk, intermediate-risk, and high-risk groups were 98% versus 97% (P=.41), 97% versus 91% (P=.0005), and 89% versus 50% (P=.0002) respectively. Conclusions: This analysis of an additional 1545 patients treated between 2002 and 2007 validates our previously reported LRR scoring system and suggests appropriate patients for whom PMRT will be beneficial. Independent validation of this scoring system by other institutions is recommended.« less

  1. Mission safety evaluation report for STS-35: Postflight edition

    NASA Technical Reports Server (NTRS)

    Hill, William C.; Finkel, Seymour I.

    1991-01-01

    Space Transportation System 35 (STS-35) safety risk factors that represent a change from previous flights that had an impact on this flight, and factors that were unique to this flight are discussed. While some changes to the safety risk baseline since the previous flight are included to highlight their significance in risk level change, the primary purpose is to insure that changes which were too late too include in formal changes through the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) and Hazard Analysis process are documented along with the safety position, which includes the acceptance rationale.

  2. Risk factors for technical failure of endoscopic double self-expandable metallic stent placement by partial stent-in-stent method.

    PubMed

    Kawakubo, Kazumichi; Kawakami, Hiroshi; Toyokawa, Yoshihide; Otani, Koichi; Kuwatani, Masaki; Abe, Yoko; Kawahata, Shuhei; Kubo, Kimitoshi; Kubota, Yoshimasa; Sakamoto, Naoya

    2015-01-01

    Endoscopic double self-expandable metallic stent (SEMS) placement by the partial stent-in-stent (PSIS) method has been reported to be useful for the management of unresectable hilar malignant biliary obstruction. However, it is technically challenging, and the optimal SEMS for the procedure remains unknown. The aim of this study was to identify the risk factors for technical failure of endoscopic double SEMS placement for unresectable malignant hilar biliary obstruction (MHBO). Between December 2009 and May 2013, 50 consecutive patients with MHBO underwent endoscopic double SEMS placement by the PSIS method. We retrospectively evaluated the rate of successful double SEMS placement and identified the risk factors for technical failure. The technical success rate for double SEMS placement was 82.0% (95% confidence interval [CI]: 69.2-90.2). On univariate analysis, the rate of technical failure was high in patients with metastatic disease and unilateral placement. Multivariate analysis revealed that metastatic disease was a significant risk factor for technical failure (odds ratio: 9.63, 95% CI: 1.11-105.5). The subgroup analysis after double guidewire insertion showed that the rate of technical success was higher in the laser-cut type SEMS with a large mesh and thick delivery system than in the braided type SEMS with a small mesh and thick delivery system. Metastatic disease was a significant risk factor for technical failure of double SEMS placement for unresectable MHBO. The laser-cut type SEMS with a large mesh and thin delivery system might be preferable for the PSIS procedure. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  3. New risk metrics and mathematical tools for risk analysis: Current and future challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skandamis, Panagiotis N., E-mail: pskan@aua.gr; Andritsos, Nikolaos, E-mail: pskan@aua.gr; Psomas, Antonios, E-mail: pskan@aua.gr

    The current status of the food safety supply world wide, has led Food and Agriculture Organization (FAO) and World Health Organization (WHO) to establishing Risk Analysis as the single framework for building food safety control programs. A series of guidelines and reports that detail out the various steps in Risk Analysis, namely Risk Management, Risk Assessment and Risk Communication is available. The Risk Analysis approach enables integration between operational food management systems, such as Hazard Analysis Critical Control Points, public health and governmental decisions. To do that, a series of new Risk Metrics has been established as follows: i) themore » Appropriate Level of Protection (ALOP), which indicates the maximum numbers of illnesses in a population per annum, defined by quantitative risk assessments, and used to establish; ii) Food Safety Objective (FSO), which sets the maximum frequency and/or concentration of a hazard in a food at the time of consumption that provides or contributes to the ALOP. Given that ALOP is rather a metric of the public health tolerable burden (it addresses the total ‘failure’ that may be handled at a national level), it is difficult to be interpreted into control measures applied at the manufacturing level. Thus, a series of specific objectives and criteria for performance of individual processes and products have been established, all of them assisting in the achievement of FSO and hence, ALOP. In order to achieve FSO, tools quantifying the effect of processes and intrinsic properties of foods on survival and growth of pathogens are essential. In this context, predictive microbiology and risk assessment have offered an important assistance to Food Safety Management. Predictive modelling is the basis of exposure assessment and the development of stochastic and kinetic models, which are also available in the form of Web-based applications, e.g., COMBASE and Microbial Responses Viewer), or introduced into user-friendly softwares, (e.g., Seafood Spoilage Predictor) have evolved the use of information systems in the food safety management. Such tools are updateable with new food-pathogen specific models containing cardinal parameters and multiple dependent variables, including plate counts, concentration of metabolic products, or even expression levels of certain genes. Then, these tools may further serve as decision-support tools which may assist in product logistics, based on their scientifically-based and “momentary” expressed spoilage and safety level.« less

  4. New risk metrics and mathematical tools for risk analysis: Current and future challenges

    NASA Astrophysics Data System (ADS)

    Skandamis, Panagiotis N.; Andritsos, Nikolaos; Psomas, Antonios; Paramythiotis, Spyridon

    2015-01-01

    The current status of the food safety supply world wide, has led Food and Agriculture Organization (FAO) and World Health Organization (WHO) to establishing Risk Analysis as the single framework for building food safety control programs. A series of guidelines and reports that detail out the various steps in Risk Analysis, namely Risk Management, Risk Assessment and Risk Communication is available. The Risk Analysis approach enables integration between operational food management systems, such as Hazard Analysis Critical Control Points, public health and governmental decisions. To do that, a series of new Risk Metrics has been established as follows: i) the Appropriate Level of Protection (ALOP), which indicates the maximum numbers of illnesses in a population per annum, defined by quantitative risk assessments, and used to establish; ii) Food Safety Objective (FSO), which sets the maximum frequency and/or concentration of a hazard in a food at the time of consumption that provides or contributes to the ALOP. Given that ALOP is rather a metric of the public health tolerable burden (it addresses the total `failure' that may be handled at a national level), it is difficult to be interpreted into control measures applied at the manufacturing level. Thus, a series of specific objectives and criteria for performance of individual processes and products have been established, all of them assisting in the achievement of FSO and hence, ALOP. In order to achieve FSO, tools quantifying the effect of processes and intrinsic properties of foods on survival and growth of pathogens are essential. In this context, predictive microbiology and risk assessment have offered an important assistance to Food Safety Management. Predictive modelling is the basis of exposure assessment and the development of stochastic and kinetic models, which are also available in the form of Web-based applications, e.g., COMBASE and Microbial Responses Viewer), or introduced into user-friendly softwares, (e.g., Seafood Spoilage Predictor) have evolved the use of information systems in the food safety management. Such tools are updateable with new food-pathogen specific models containing cardinal parameters and multiple dependent variables, including plate counts, concentration of metabolic products, or even expression levels of certain genes. Then, these tools may further serve as decision-support tools which may assist in product logistics, based on their scientifically-based and "momentary" expressed spoilage and safety level.

  5. IEEE 1982. Proceedings of the international conference on cybernetics and society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The following topics were dealt with: knowledge-based systems; risk analysis; man-machine interactions; human information processing; metaphor, analogy and problem-solving; manual control modelling; transportation systems; simulation; adaptive and learning systems; biocybernetics; cybernetics; mathematical programming; robotics; decision support systems; analysis, design and validation of models; computer vision; systems science; energy systems; environmental modelling and policy; pattern recognition; nuclear warfare; technological forecasting; artificial intelligence; the Turin shroud; optimisation; workloads. Abstracts of individual papers can be found under the relevant classification codes in this or future issues.

  6. The SAM framework: modeling the effects of management factors on human behavior in risk analysis.

    PubMed

    Murphy, D M; Paté-Cornell, M E

    1996-08-01

    Complex engineered systems, such as nuclear reactors and chemical plants, have the potential for catastrophic failure with disastrous consequences. In recent years, human and management factors have been recognized as frequent root causes of major failures in such systems. However, classical probabilistic risk analysis (PRA) techniques do not account for the underlying causes of these errors because they focus on the physical system and do not explicitly address the link between components' performance and organizational factors. This paper describes a general approach for addressing the human and management causes of system failure, called the SAM (System-Action-Management) framework. Beginning with a quantitative risk model of the physical system, SAM expands the scope of analysis to incorporate first the decisions and actions of individuals that affect the physical system. SAM then links management factors (incentives, training, policies and procedures, selection criteria, etc.) to those decisions and actions. The focus of this paper is on four quantitative models of action that describe this last relationship. These models address the formation of intentions for action and their execution as a function of the organizational environment. Intention formation is described by three alternative models: a rational model, a bounded rationality model, and a rule-based model. The execution of intentions is then modeled separately. These four models are designed to assess the probabilities of individual actions from the perspective of management, thus reflecting the uncertainties inherent to human behavior. The SAM framework is illustrated for a hypothetical case of hazardous materials transportation. This framework can be used as a tool to increase the safety and reliability of complex technical systems by modifying the organization, rather than, or in addition to, re-designing the physical system.

  7. Wallops Ship Surveillance System

    NASA Technical Reports Server (NTRS)

    Smith, Donna C.

    2011-01-01

    Approved as a Wallops control center backup system, the Wallops Ship Surveillance Software is a day-of-launch risk analysis tool for spaceport activities. The system calculates impact probabilities and displays ship locations relative to boundary lines. It enables rapid analysis of possible flight paths to preclude the need to cancel launches and allow execution of launches in a timely manner. Its design is based on low-cost, large-customer- base elements including personal computers, the Windows operating system, C/C++ object-oriented software, and network interfaces. In conformance with the NASA software safety standard, the system is designed to ensure that it does not falsely report a safe-for-launch condition. To improve the current ship surveillance method, the system is designed to prevent delay of launch under a safe-for-launch condition. A single workstation is designated the controller of the official ship information and the official risk analysis. Copies of this information are shared with other networked workstations. The program design is divided into five subsystems areas: 1. Communication Link -- threads that control the networking of workstations; 2. Contact List -- a thread that controls a list of protected item (ocean vessel) information; 3. Hazard List -- threads that control a list of hazardous item (debris) information and associated risk calculation information; 4. Display -- threads that control operator inputs and screen display outputs; and 5. Archive -- a thread that controls archive file read and write access. Currently, most of the hazard list thread and parts of other threads are being reused as part of a new ship surveillance system, under the SureTrak project.

  8. Unmanned aircraft system sense and avoid integrity and continuity

    NASA Astrophysics Data System (ADS)

    Jamoom, Michael B.

    This thesis describes new methods to guarantee safety of sense and avoid (SAA) functions for Unmanned Aircraft Systems (UAS) by evaluating integrity and continuity risks. Previous SAA efforts focused on relative safety metrics, such as risk ratios, comparing the risk of using an SAA system versus not using it. The methods in this thesis evaluate integrity and continuity risks as absolute measures of safety, as is the established practice in commercial aircraft terminal area navigation applications. The main contribution of this thesis is a derivation of a new method, based on a standard intruder relative constant velocity assumption, that uses hazard state estimates and estimate error covariances to establish (1) the integrity risk of the SAA system not detecting imminent loss of '"well clear," which is the time and distance required to maintain safe separation from intruder aircraft, and (2) the probability of false alert, the continuity risk. Another contribution is applying these integrity and continuity risk evaluation methods to set quantifiable and certifiable safety requirements on sensors. A sensitivity analysis uses this methodology to evaluate the impact of sensor errors on integrity and continuity risks. The penultimate contribution is an integrity and continuity risk evaluation where the estimation model is refined to address realistic intruder relative linear accelerations, which goes beyond the current constant velocity standard. The final contribution is an integrity and continuity risk evaluation addressing multiple intruders. This evaluation is a new innovation-based method to determine the risk of mis-associating intruder measurements. A mis-association occurs when the SAA system incorrectly associates a measurement to the wrong intruder, causing large errors in the estimated intruder trajectories. The new methods described in this thesis can help ensure safe encounters between aircraft and enable SAA sensor certification for UAS integration into the National Airspace System.

  9. A framework for understanding risk perception, explored from the perspective of the water practitioner.

    PubMed

    Dobbie, Meredith Frances; Brown, Rebekah Ruth

    2014-02-01

    Sustainable urban water systems are likely to be hybrids of centralized and decentralized infrastructure, managed as an integrated system in water-sensitive cities. The technology for many of these systems is available. However, social and institutional barriers, which can be understood as deeply embedded risk perceptions, have impeded their implementation. Risk perceptions within the water sector are often unrecognized or unacknowledged, despite their role in risk management generally in informing value judgments and specifically in ranking risks to achieve management objectives. There has been very little examination of the role of these risk perceptions in advancing more sustainable water supply management through the adoption of alternative sources. To address this gap, this article presents a framework that can be used as a tool for understanding risk perceptions. The framework is built on the relational theory of risk and presents the range of human phenomena that might influence the perception of an "object at risk" in relation to a "risk object." It has been synthesized from a critical review of theoretical, conceptual, and empirical studies of perception broadly and risk perception specifically, and interpreted in relation to water practitioners. For a water practitioner, the risk object might be an alternative water system, a component, a process, or a technology, and the object at risk could be public or environmental health, profitability, or professional reputation. This framework has two important functions: to allow practitioners to understand their own and others' risk perceptions, which might differ, and to inform further empirical research. © 2013 Society for Risk Analysis.

  10. Import Security: Assessing the Risks of Imported Food.

    PubMed

    Welburn, Jonathan; Bier, Vicki; Hoerning, Steven

    2016-11-01

    We use data on food import violations from the FDA Operational and Administrative System for Import Support (OASIS) to address rising concerns associated with imported food, quantify import risks by product and by country of origin, and explore the usefulness of OASIS data for risk assessment. In particular, we assess whether there are significant trends in violations, whether import violations can be used to quantify risks by country and by product, and how import risks depend on economic factors of the country of origin. The results show that normalizing import violations by volume of imports provides a meaningful indicator of risk. We then use regression analysis to characterize import risks.  Using this model, we analyze import risks by product type, violation type, and economic factors of the country of origin.  We find that OASIS data are useful in quantifying food import risks, and that the rate of refusals provides a useful decision tool for risk management.  Furthermore, we find that some economic factors are significant indicators of food import risk by country. © 2016 Society for Risk Analysis.

  11. Development and Validation of a Risk Scoring System for Severe Acute Lower Gastrointestinal Bleeding.

    PubMed

    Aoki, Tomonori; Nagata, Naoyoshi; Shimbo, Takuro; Niikura, Ryota; Sakurai, Toshiyuki; Moriyasu, Shiori; Okubo, Hidetaka; Sekine, Katsunori; Watanabe, Kazuhiro; Yokoi, Chizu; Yanase, Mikio; Akiyama, Junichi; Mizokami, Masashi; Uemura, Naomi

    2016-11-01

    We aimed to develop and validate a risk scoring system to determine the risk of severe lower gastrointestinal bleeding (LGIB) and predict patient outcomes. We first performed a retrospective analysis of data from 439 patients emergently hospitalized for acute LGIB at the National Center for Global Health and Medicine in Japan, from January 2009 through December 2013. We used data on comorbidities, medication, presenting symptoms, and vital signs, and laboratory test results to develop a scoring system for severe LGIB (defined as continuous and/or recurrent bleeding). We validated the risk score in a prospective study of 161 patients with acute LGIB admitted to the same center from April 2014 through April 2015. We assessed the system's accuracy in predicting patient outcome using area under the receiver operating characteristics curve (AUC) analysis. All patients underwent colonoscopy. In the first study, 29% of the patients developed severe LGIB. We devised a risk scoring system based on nonsteroidal anti-inflammatory drugs use, no diarrhea, no abdominal tenderness, blood pressure of 100 mm Hg or lower, antiplatelet drugs use, albumin level less than 3.0 g/dL, disease scores of 2 or higher, and syncope (NOBLADS), which all were independent correlates of severe LGIB. Severe LGIB developed in 75.7% of patients with scores of 5 or higher compared with 2% of patients without any of the factors correlated with severe LGIB (P < .001). The NOBLADS score determined the severity of LGIB with an AUC value of 0.77. In the validation (second) study, severe LGIB developed in 35% of patients; the NOBLADS score predicted the severity of LGIB with an AUC value of 0.76. Higher NOBLADS scores were associated with a requirement for blood transfusion, longer hospital stay, and intervention (P < .05 for trend). We developed and validated a scoring system for risk of severe LGIB based on 8 factors (NOBLADS score). The system also determined the risk for blood transfusion, longer hospital stay, and intervention. It might be used in decision making regarding intervention and management. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Liver transplantation for hepatocellular carcinoma: a proposal of a prognostic scoring system.

    PubMed

    Iwatsuki, S; Dvorchik, I; Marsh, J W; Madariaga, J R; Carr, B; Fung, J J; Starzl, T E

    2000-10-01

    The current staging system of hepatocellular carcinoma established by the International Union Against Cancer and the American Joint Committee on Cancer does not necessarily predict the outcomes after hepatic resection or transplantation. Various clinical and pathologic risk factors for tumor recurrence were examined on 344 consecutive patients who received hepatic transplantation in the presence of nonfibrolamellar hepatocellular carcinoma to establish a reliable risk scoring system. Multivariate analysis identified three factors as independently significant poor prognosticators: 1) bilobarly distributed tumors, 2) size of the greatest tumor (2 to 5 cm and > 5 cm), and 3) vascular invasion (microscopic and macroscopic). Prognostic risk score (PRS) of each patient was calculated from the relative risks of multivariate analysis. The patients were grouped into five grades of tumor recurrence risk: grade 1: PRS = 0 to < 7.5; grade 2: PRS = 7.5 to < or = 11.0; grade 3: PRS > 11.0 to 15.0; grade 4: PRS > or = 15.0; and grade 5: positive node, metastasis, or margin. The proposed PRS system correlated extremely well with tumor-free survival after liver transplantation (100%, 61%, 40%, 5%, and 0%, from grades 1 to 5, respectively, at 5 years), but current pTNM staging did not. 1) Patients with grades 1 and 2 are effectively treated with liver transplantation, 2) patients with grades 4 and 5 are poor candidates for liver transplantation, and 3) patients with grade 1 do not benefit from adjuvant chemotherapy.

  13. A semi-quantitative approach to GMO risk-benefit analysis.

    PubMed

    Morris, E Jane

    2011-10-01

    In many countries there are increasing calls for the benefits of genetically modified organisms (GMOs) to be considered as well as the risks, and for a risk-benefit analysis to form an integral part of GMO regulatory frameworks. This trend represents a shift away from the strict emphasis on risks, which is encapsulated in the Precautionary Principle that forms the basis for the Cartagena Protocol on Biosafety, and which is reflected in the national legislation of many countries. The introduction of risk-benefit analysis of GMOs would be facilitated if clear methodologies were available to support the analysis. Up to now, methodologies for risk-benefit analysis that would be applicable to the introduction of GMOs have not been well defined. This paper describes a relatively simple semi-quantitative methodology that could be easily applied as a decision support tool, giving particular consideration to the needs of regulators in developing countries where there are limited resources and experience. The application of the methodology is demonstrated using the release of an insect resistant maize variety in South Africa as a case study. The applicability of the method in the South African regulatory system is also discussed, as an example of what might be involved in introducing changes into an existing regulatory process.

  14. Oil taxation and risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Padilla, V.

    1992-01-01

    The relationship between the taxation system and the division of risks between the host country governments and the international companies is discussed. The analysis underscores the effect of taxation on the geological and political risks. These two cases are evaluated in two West-African oil-producing countries. It emerges from this that too heavy and regressive taxes greatly increase the risks supported by the two partners. The progressive character of the taxation is a necessary but not a sufficient condition for the reduction of public and private risks. A taxation burden well-balanced among small and large deposits is the best way tomore » reduce the risk due to taxation. The oil-producing countries of this region had made great advances in developing neutral taxation systems but in most cases they must progress further. 15 refs., 3 figs., 1 tab.« less

  15. Utilization Analysis in Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB)

    DOE Data Explorer

    Jordan, Teresa E.

    2015-09-30

    This submission of Utilization Analysis data to the Geothermal Data Repository (GDR) node of the National Geothermal Data System (NGDS) is in support of Phase 1 Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (project DE-EE0006726). The submission includes data pertinent to the methods and results of an analysis of the Surface Levelized Cost of Heat (SLCOH) for US Census Bureau Places within the study area. This was calculated using a modification of a program called GEOPHIRES, available at http://koenraadbeckers.net/geophires/index.php. The MATLAB modules used in conjunction with GEOPHIRES, the MATLAB data input file, the GEOPHIRES output data file, and an explanation of the software components have been provided. Results of the SLCOH analysis appear on 4 .png image files as mapped risk of heat utilization. For each of the 4 image (.png) files, there is an accompanying georeferenced TIF (.tif) file by the same name. In addition to calculating SLCOH, this Task 4 also identified many sites that may be prospects for use of a geothermal district heating system, based on their size and industry, rather than on the SLCOH. An industry sorted listing of the sites (.xlsx) and a map of these sites plotted as a layer onto different iterations of maps combining the three geological risk factors (Thermal Quality, Natural Reservoir Quality, and Risk of Seismicity) has been provided. In addition to the 6 image (.png) files of the maps in this series, a shape (.shp) file and 7 associated files are included as well. Finally, supporting files (.pdf) describing the utilization analysis methodology and summarizing the anticipated permitting for a deep district heating system are supplied. UPDATE: Newer version of the Utilization Analysis has been added here: https://gdr.openei.org/submissions/878

  16. Sensitivity Analysis of Launch Vehicle Debris Risk Model

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Lawrence, Scott L.

    2010-01-01

    As part of an analysis of the loss of crew risk associated with an ascent abort system for a manned launch vehicle, a model was developed to predict the impact risk of the debris resulting from an explosion of the launch vehicle on the crew module. The model consisted of a debris catalog describing the number, size and imparted velocity of each piece of debris, a method to compute the trajectories of the debris and a method to calculate the impact risk given the abort trajectory of the crew module. The model provided a point estimate of the strike probability as a function of the debris catalog, the time of abort and the delay time between the abort and destruction of the launch vehicle. A study was conducted to determine the sensitivity of the strike probability to the various model input parameters and to develop a response surface model for use in the sensitivity analysis of the overall ascent abort risk model. The results of the sensitivity analysis and the response surface model are presented in this paper.

  17. Risk Group Systems for Penile Cancer Management: A Study of 203 Patients With Invasive Squamous Cell Carcinoma.

    PubMed

    Chaux, Alcides

    2015-10-01

    To evaluate the accuracy of previously published risk group systems for predicting inguinal nodal metastases in patients with penile carcinoma. Two hundred three cases of invasive penile squamous cell carcinomas (SCC) were stratified using the following systems: Solsona et al (J Urol 2001;165:1509), Hungerhuber et al (Urology 2006;68:621), and the system proposed by the European Association of Urology (EAU; Eur Urol 2004;46:1). Receiver operating characteristic (ROC) analysis was carried out to compare accuracy in predicting final nodal status and cancer-related death. Most of cases were pT2/pT3 high-grade tumors with a small percentage of low-grade pT1 carcinomas. The metastatic rates for the Solsona et al, EAU, and Hungerhuber et al systems in the high-risk category were 15 of 73 (21%), 16 of 103 (16%), and 10 of 35 (29%) in patients with clinically negative inguinal lymph nodes and 52 of 75 (69%), 55 of 93 (59%), and 34 of 47 (72%) in patients with palpable inguinal lymph nodes, respectively. Performance by ROC analysis showed a low accuracy for all stratification systems although the Solsona et al and the Hungerhuber et al systems performed better than the EAU system. Patients in intermediate-risk categories and with clinically palpable inguinal lymph nodes were more likely to have nodal metastasis than patients with clinically negative lymph nodes in the same category. These stratification systems may be useful for patients with low-grade superficial tumors and less accurate for evaluating patients with high-grade locally advanced penile carcinomas. These data may be useful for therapeutic planning of patients with penile SCC. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Cyber Incidents Involving Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert J. Turk

    2005-10-01

    The Analysis Function of the US-CERT Control Systems Security Center (CSSC) at the Idaho National Laboratory (INL) has prepared this report to document cyber security incidents for use by the CSSC. The description and analysis of incidents reported herein support three CSSC tasks: establishing a business case; increasing security awareness and private and corporate participation related to enhanced cyber security of control systems; and providing informational material to support model development and prioritize activities for CSSC. The stated mission of CSSC is to reduce vulnerability of critical infrastructure to cyber attack on control systems. As stated in the Incident Managementmore » Tool Requirements (August 2005) ''Vulnerability reduction is promoted by risk analysis that tracks actual risk, emphasizes high risk, determines risk reduction as a function of countermeasures, tracks increase of risk due to external influence, and measures success of the vulnerability reduction program''. Process control and Supervisory Control and Data Acquisition (SCADA) systems, with their reliance on proprietary networks and hardware, have long been considered immune to the network attacks that have wreaked so much havoc on corporate information systems. New research indicates this confidence is misplaced--the move to open standards such as Ethernet, Transmission Control Protocol/Internet Protocol, and Web technologies is allowing hackers to take advantage of the control industry's unawareness. Much of the available information about cyber incidents represents a characterization as opposed to an analysis of events. The lack of good analyses reflects an overall weakness in reporting requirements as well as the fact that to date there have been very few serious cyber attacks on control systems. Most companies prefer not to share cyber attack incident data because of potential financial repercussions. Uniform reporting requirements will do much to make this information available to Department of Homeland Security (DHS) and others who require it. This report summarizes the rise in frequency of cyber attacks, describes the perpetrators, and identifies the means of attack. This type of analysis, when used in conjunction with vulnerability analyses, can be used to support a proactive approach to prevent cyber attacks. CSSC will use this document to evolve a standardized approach to incident reporting and analysis. This document will be updated as needed to record additional event analyses and insights regarding incident reporting. This report represents 120 cyber security incidents documented in a number of sources, including: the British Columbia Institute of Technology (BCIT) Industrial Security Incident Database, the 2003 CSI/FBI Computer Crime and Security Survey, the KEMA, Inc., Database, Lawrence Livermore National Laboratory, the Energy Incident Database, the INL Cyber Incident Database, and other open-source data. The National Memorial Institute for the Prevention of Terrorism (MIPT) database was also interrogated but, interestingly, failed to yield any cyber attack incidents. The results of this evaluation indicate that historical evidence provides insight into control system related incidents or failures; however, that the limited available information provides little support to future risk estimates. The documented case history shows that activity has increased significantly since 1988. The majority of incidents come from the Internet by way of opportunistic viruses, Trojans, and worms, but a surprisingly large number are directed acts of sabotage. A substantial number of confirmed, unconfirmed, and potential events that directly or potentially impact control systems worldwide are also identified. Twelve selected cyber incidents are presented at the end of this report as examples of the documented case studies (see Appendix B).« less

  19. Default contagion risks in Russian interbank market

    NASA Astrophysics Data System (ADS)

    Leonidov, A. V.; Rumyantsev, E. L.

    2016-06-01

    Systemic risks of default contagion in the Russian interbank market are investigated. The analysis is based on considering the bow-tie structure of the weighted oriented graph describing the structure of the interbank loans. A probabilistic model of interbank contagion explicitly taking into account the empirical bow-tie structure reflecting functionality of the corresponding nodes (borrowers, lenders, borrowers and lenders simultaneously), degree distributions and disassortativity of the interbank network under consideration based on empirical data is developed. The characteristics of contagion-related systemic risk calculated with this model are shown to be in agreement with those of explicit stress tests.

  20. Assessing the Fire Risk for a Historic Hangar

    NASA Technical Reports Server (NTRS)

    Datta, Koushik; Morrison, Richard S.

    2010-01-01

    NASA Ames Research Center (ARC) is evaluating options of reuse of its historic Hangar 1. As a part of this evaluation, a qualitative fire risk assessment study was performed to evaluate the potential threat of combustion of the historic hangar. The study focused on the fire risk trade-off of either installing or not installing a Special Hazard Fire Suppression System in the Hangar 1 deck areas. The assessment methodology was useful in discussing the important issues among various groups within the Center. Once the methodology was deemed acceptable, the results were assessed. The results showed that the risk remained in the same risk category, whether Hangar 1 does or does not have a Special Hazard Fire Suppression System. Note that the methodology assessed the risk to Hangar 1 and not the risk to an aircraft in the hangar. If one had a high value aircraft, the aircraft risk analysis could potentially show a different result. The assessed risk results were then communicated to management and other stakeholders.

  1. Some considerations on the definition of risk based on concepts of systems theory and probability.

    PubMed

    Andretta, Massimo

    2014-07-01

    The concept of risk has been applied in many modern science and technology fields. Despite its successes in many applicative fields, there is still not a well-established vision and universally accepted definition of the principles and fundamental concepts of the risk assessment discipline. As emphasized recently, the risk fields suffer from a lack of clarity on their scientific bases that can define, in a unique theoretical framework, the general concepts in the different areas of application. The aim of this article is to make suggestions for another perspective of risk definition that could be applied and, in a certain sense, generalize some of the previously known definitions (at least in the fields of technical and scientific applications). By drawing on my experience of risk assessment in different applicative situations (particularly in the risk estimation for major industrial accidents, and in the health and ecological risk assessment for contaminated sites), I would like to revise some general and foundational concepts of risk analysis in as consistent a manner as possible from the axiomatic/deductive point of view. My proposal is based on the fundamental concepts of the systems theory and of the probability. In this way, I try to frame, in a single, broad, and general theoretical context some fundamental concepts and principles applicable in many different fields of risk assessment. I hope that this article will contribute to the revitalization and stimulation of useful discussions and new insights into the key issues and theoretical foundations of risk assessment disciplines. © 2013 Society for Risk Analysis.

  2. An assessment of the geographical risks of wild and vaccine-derived poliomyelitis outbreaks in Africa and Asia.

    PubMed

    O'Reilly, Kathleen M; Lamoureux, Christine; Molodecky, Natalie A; Lyons, Hil; Grassly, Nicholas C; Tallis, Graham

    2017-05-26

    The international spread of wild poliomyelitis outbreaks continues to threaten eradication of poliomyelitis and in 2014 a public health emergency of international concern was declared. Here we describe a risk scoring system that has been used to assess country-level risks of wild poliomyelitis outbreaks, to inform prioritisation of mass vaccination planning, and describe the change in risk from 2014 to 2016. The methods were also used to assess the risk of emergence of vaccine-derived poliomyelitis outbreaks. Potential explanatory variables were tested against the reported outbreaks of wild poliomyelitis since 2003 using multivariable regression analysis. The regression analysis was translated to a risk score and used to classify countries as Low, Medium, Medium High and High risk, based on the predictive ability of the score. Indicators of population immunity, population displacement and diarrhoeal disease were associated with an increased risk of both wild and vaccine-derived outbreaks. High migration from countries with wild cases was associated with wild outbreaks. High birth numbers were associated with an increased risk of vaccine-derived outbreaks. Use of the scoring system is a transparent and rapid approach to assess country risk of wild and vaccine-derived poliomyelitis outbreaks. Since 2008 there has been a steep reduction in the number of wild poliomyelitis outbreaks and the reduction in countries classified as High and Medium High risk has reflected this. The risk of vaccine-derived poliomyelitis outbreaks has varied geographically. These findings highlight that many countries remain susceptible to poliomyelitis outbreaks and maintenance or improvement in routine immunisation is vital.

  3. The Aviation System Monitoring and Modeling (ASMM) Project: A Documentation of its History and Accomplishments: 1999-2005

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Editor)

    2007-01-01

    The Aviation System Monitoring and Modeling (ASMM) Project was one of the projects within NASA s Aviation Safety Program from 1999 through 2005. The objective of the ASMM Project was to develop the technologies to enable the aviation industry to undertake a proactive approach to the management of its system-wide safety risks. The ASMM Project entailed four interdependent elements: (1) Data Analysis Tools Development - develop tools to convert numerical and textual data into information; (2) Intramural Monitoring - test and evaluate the data analysis tools in operational environments; (3) Extramural Monitoring - gain insight into the aviation system performance by surveying its front-line operators; and (4) Modeling and Simulations - provide reliable predictions of the system-wide hazards, their causal factors, and their operational risks that may result from the introduction of new technologies, new procedures, or new operational concepts. This report is a documentation of the history of this highly successful project and of its many accomplishments and contributions to improved safety of the aviation system.

  4. The Use of Input-Output Control System Analysis for Sustainable Development of Multivariable Environmental Systems

    NASA Astrophysics Data System (ADS)

    Koliopoulos, T. C.; Koliopoulou, G.

    2007-10-01

    We present an input-output solution for simulating the associated behavior and optimized physical needs of an environmental system. The simulations and numerical analysis determined the accurate boundary loads and areas that were required to interact for the proper physical operation of a complicated environmental system. A case study was conducted to simulate the optimum balance of an environmental system based on an artificial intelligent multi-interacting input-output numerical scheme. The numerical results were focused on probable further environmental management techniques, with the objective of minimizing any risks and associated environmental impact to protect the quality of public health and the environment. Our conclusions allowed us to minimize the associated risks, focusing on probable cases in an emergency to protect the surrounded anthropogenic or natural environment. Therefore, the lining magnitude could be determined for any useful associated technical works to support the environmental system under examination, taking into account its particular boundary necessities and constraints.

  5. Risk-Return Relationship in a Complex Adaptive System

    PubMed Central

    Song, Kunyu; An, Kenan; Yang, Guang; Huang, Jiping

    2012-01-01

    For survival and development, autonomous agents in complex adaptive systems involving the human society must compete against or collaborate with others for sharing limited resources or wealth, by using different methods. One method is to invest, in order to obtain payoffs with risk. It is a common belief that investments with a positive risk-return relationship (namely, high risk high return and vice versa) are dominant over those with a negative risk-return relationship (i.e., high risk low return and vice versa) in the human society; the belief has a notable impact on daily investing activities of investors. Here we investigate the risk-return relationship in a model complex adaptive system, in order to study the effect of both market efficiency and closeness that exist in the human society and play an important role in helping to establish traditional finance/economics theories. We conduct a series of computer-aided human experiments, and also perform agent-based simulations and theoretical analysis to confirm the experimental observations and reveal the underlying mechanism. We report that investments with a negative risk-return relationship have dominance over those with a positive risk-return relationship instead in such a complex adaptive systems. We formulate the dynamical process for the system's evolution, which helps to discover the different role of identical and heterogeneous preferences. This work might be valuable not only to complexity science, but also to finance and economics, to management and social science, and to physics. PMID:22479416

  6. Integrated risk framework for onsite wastewater treatment systems.

    PubMed

    Carroll, Steven; Goonetilleke, Ashantha; Thomas, Evan; Hargreaves, Megan; Frost, Ray; Dawes, Les

    2006-08-01

    Onsite wastewater treatment systems (OWTS) are becoming increasingly important for the treatment and dispersal of effluent in new urbanised developments that are not serviced by centralised wastewater collection and treatment systems. However, the current standards and guidelines adopted by many local authorities for assessing suitable site and soil conditions for OWTS are increasingly coming under scrutiny due to the public health and environmental impacts caused by poorly performing systems, in particular septic tank-soil adsorption systems. In order to achieve sustainable onsite wastewater treatment with minimal impacts on the environment and public health, more appropriate means of assessment are required. This paper highlights an integrated risk based approach for assessing the inherent hazards associated with OWTS in order to manage and mitigate the environmental and public health risks inherent with onsite wastewater treatment. In developing a sound and cohesive integrated risk framework for OWTS, several key issues must be recognised. These include the inclusion of relevant stakeholders throughout framework development, the integration of scientific knowledge, data and analysis with risk assessment and management ideals, and identification of the appropriate performance goals for successful management and mitigation of associated risks. These issues were addressed in the development of the risk framework to provide a generic approach to assessing risk from OWTS. The utilisation of the developed risk framework for achieving more appropriate assessment and management techniques for OWTS is presented in a case study for the Gold Coast region, Queensland State, Australia.

  7. Integrated Risk Framework for Onsite Wastewater Treatment Systems

    NASA Astrophysics Data System (ADS)

    Carroll, Steven; Goonetilleke, Ashantha; Thomas, Evan; Hargreaves, Megan; Frost, Ray; Dawes, Les

    2006-08-01

    Onsite wastewater treatment systems (OWTS) are becoming increasingly important for the treatment and dispersal of effluent in new urbanised developments that are not serviced by centralised wastewater collection and treatment systems. However, the current standards and guidelines adopted by many local authorities for assessing suitable site and soil conditions for OWTS are increasingly coming under scrutiny due to the public health and environmental impacts caused by poorly performing systems, in particular septic tank-soil adsorption systems. In order to achieve sustainable onsite wastewater treatment with minimal impacts on the environment and public health, more appropriate means of assessment are required. This paper highlights an integrated risk based approach for assessing the inherent hazards associated with OWTS in order to manage and mitigate the environmental and public health risks inherent with onsite wastewater treatment. In developing a sound and cohesive integrated risk framework for OWTS, several key issues must be recognised. These include the inclusion of relevant stakeholders throughout framework development, the integration of scientific knowledge, data and analysis with risk assessment and management ideals, and identification of the appropriate performance goals for successful management and mitigation of associated risks. These issues were addressed in the development of the risk framework to provide a generic approach to assessing risk from OWTS. The utilisation of the developed risk framework for achieving more appropriate assessment and management techniques for OWTS is presented in a case study for the Gold Coast region, Queensland State, Australia.

  8. Risk-return relationship in a complex adaptive system.

    PubMed

    Song, Kunyu; An, Kenan; Yang, Guang; Huang, Jiping

    2012-01-01

    For survival and development, autonomous agents in complex adaptive systems involving the human society must compete against or collaborate with others for sharing limited resources or wealth, by using different methods. One method is to invest, in order to obtain payoffs with risk. It is a common belief that investments with a positive risk-return relationship (namely, high risk high return and vice versa) are dominant over those with a negative risk-return relationship (i.e., high risk low return and vice versa) in the human society; the belief has a notable impact on daily investing activities of investors. Here we investigate the risk-return relationship in a model complex adaptive system, in order to study the effect of both market efficiency and closeness that exist in the human society and play an important role in helping to establish traditional finance/economics theories. We conduct a series of computer-aided human experiments, and also perform agent-based simulations and theoretical analysis to confirm the experimental observations and reveal the underlying mechanism. We report that investments with a negative risk-return relationship have dominance over those with a positive risk-return relationship instead in such a complex adaptive systems. We formulate the dynamical process for the system's evolution, which helps to discover the different role of identical and heterogeneous preferences. This work might be valuable not only to complexity science, but also to finance and economics, to management and social science, and to physics.

  9. The Importance of Human Reliability Analysis in Human Space Flight: Understanding the Risks

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri L.

    2010-01-01

    HRA is a method used to describe, qualitatively and quantitatively, the occurrence of human failures in the operation of complex systems that affect availability and reliability. Modeling human actions with their corresponding failure in a PRA (Probabilistic Risk Assessment) provides a more complete picture of the risk and risk contributions. A high quality HRA can provide valuable information on potential areas for improvement, including training, procedural, equipment design and need for automation.

  10. Medical technology at home: safety-related items in technical documentation.

    PubMed

    Hilbers, Ellen S M; de Vries, Claudette G J C A; Geertsma, Robert E

    2013-01-01

    This study aimed to investigate the technical documentation of manufacturers on issues of safe use of their device in a home setting. Three categories of equipment were selected: infusion pumps, ventilators, and dialysis systems. Risk analyses, instructions for use, labels, and post market surveillance procedures were requested from manufacturers. Additionally, they were asked to fill out a questionnaire on collection of field experience, on incidents, and training activities. Specific risks of device operation by lay users in a home setting were incompletely addressed in the risk analyses. A substantial number of user manuals were designed for professionals, rather than for patients or lay carers. Risk analyses and user information often showed incomplete coherence. Post market surveillance was mainly based on passive collection of field experiences. Manufacturers of infusion pumps, ventilators, and dialysis systems pay insufficient attention to the specific risks of use by lay persons in home settings. It is expected that this conclusion is also applicable for other medical equipment for treatment at home. Manufacturers of medical equipment for home use should pay more attention to use errors, lay use and home-specific risks in design, risk analysis, and user information. Field experiences should be collected more actively. Coherence between risk analysis and user information should be improved. Notified bodies should address these aspects in their assessment. User manuals issued by institutions supervising a specific home therapy should be drawn up in consultation with the manufacturer.

  11. Integrating Climate and Risk-Informed Science to Support Critical Decisions

    ScienceCinema

    None

    2018-01-16

    The PNNL Environmental Health and Remediation Sector stewards several decision support capabilities to integrate climate- and risk-informed science to support critical decisions. Utilizing our expertise in risk and decision analysis, integrated Earth systems modeling, and remote sensing and geoinformatics, PNNL is influencing the way science informs high level decisions at national, regional and local scales to protect and preserve our most critical assets.

  12. Communicating Coastal Risk Analysis in an Age of Climate Change

    DTIC Science & Technology

    2011-10-01

    extratropical storm systems); the geometry and geomorphology of the area (regional and local bathymetry and topography, including rivers, marshes, and...at risk from coastal hazards including storm surge inundation, precipitation driven flooding, waves, and coastal erosion. This population segment...will likely be exposed to increased risk as impacts of a changing climate are felt through elevated sea levels and potentially increased storm

  13. Risk/Requirements Trade-off Guidelines for Low Cost Satellite Systems

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Man, Kin F.

    1996-01-01

    The accelerating trend toward faster, better, cheaper missions places increasing emphasis on the trade-offs between requirements and risk to reduce cost and development times, while still improving quality and reliability. The Risk/Requirement Trade-off Guidelines discussed in this paper are part of an integrated approach to address the main issues by focusing on the sum of prevention, analysis, control, or test (PACT) processes.

  14. Integrating Climate and Risk-Informed Science to Support Critical Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-07-27

    The PNNL Environmental Health and Remediation Sector stewards several decision support capabilities to integrate climate- and risk-informed science to support critical decisions. Utilizing our expertise in risk and decision analysis, integrated Earth systems modeling, and remote sensing and geoinformatics, PNNL is influencing the way science informs high level decisions at national, regional and local scales to protect and preserve our most critical assets.

  15. Classifying Nanomaterial Risks Using Multi-Criteria Decision Analysis

    NASA Astrophysics Data System (ADS)

    Linkov, I.; Steevens, J.; Chappell, M.; Tervonen, T.; Figueira, J. R.; Merad, M.

    There is rapidly growing interest by regulatory agencies and stakeholders in the potential toxicity and other risks associated with nanomaterials throughout the different stages of the product life cycle (e.g., development, production, use and disposal). Risk assessment methods and tools developed and applied to chemical and biological material may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material because of the variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as promote the safe use/handling of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. The stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different risk categories based on our current knowledge of nanomaterial's physico-chemical characteristics, variation in produced material, and best professional judgement. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.1,2

  16. Space station data system analysis/architecture study. Task 4: System definition report

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Functional/performance requirements for the Space Station Data System (SSDS) are analyzed and architectural design concepts are derived and evaluated in terms of their performance and growth potential, technical feasibility and risk, and cost effectiveness. The design concepts discussed are grouped under five major areas: SSDS top-level architecture overview, end-to-end SSDS design and operations perspective, communications assumptions and traffic analysis, onboard SSDS definition, and ground SSDS definition.

  17. Influence of dorsolateral prefrontal cortex and ventral striatum on risk avoidance in addiction: a mediation analysis.

    PubMed

    Yamamoto, Dorothy J; Woo, Choong-Wan; Wager, Tor D; Regner, Michael F; Tanabe, Jody

    2015-04-01

    Alterations in frontal and striatal function are hypothesized to underlie risky decision making in drug users, but how these regions interact to affect behavior is incompletely understood. We used mediation analysis to investigate how prefrontal cortex and ventral striatum together influence risk avoidance in abstinent drug users. Thirty-seven abstinent substance-dependent individuals (SDI) and 43 controls underwent fMRI while performing a decision-making task involving risk and reward. Analyses of a priori regions-of-interest tested whether activity in dorsolateral prefrontal cortex (DLPFC) and ventral striatum (VST) explained group differences in risk avoidance. Whole-brain analysis was conducted to identify brain regions influencing the negative VST-risk avoidance relationship. Right DLPFC (RDLPFC) positively mediated the group-risk avoidance relationship (p < 0.05); RDLPFC activity was higher in SDI and predicted higher risk avoidance across groups, controlling for SDI vs. Conversely, VST activity negatively influenced risk avoidance (p < 0.05); it was higher in SDI, and predicted lower risk avoidance. Whole-brain analysis revealed that, across group, RDLPFC and left temporal-parietal junction positively (p ≤ 0.001) while right thalamus and left middle frontal gyrus negatively (p < 0.005) mediated the VST activity-risk avoidance relationship. RDLPFC activity mediated less risky decision making while VST mediated more risky decision making across drug users and controls. These results suggest a dual pathway underlying decision making, which, if imbalanced, may adversely influence choices involving risk. Modeling contributions of multiple brain systems to behavior through mediation analysis could lead to a better understanding of mechanisms of behavior and suggest neuromodulatory treatments for addiction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Influence of dorsolateral prefrontal cortex and ventral striatum on risk avoidance in addiction: a mediation analysis*

    PubMed Central

    Yamamoto, Dorothy J.; Woo, Choong-Wan; Wager, Tor D.; Regner, Michael F.; Tanabe, Jody

    2015-01-01

    Background Alterations in frontal and striatal function are hypothesized to underlie risky decision-making in drug users, but how these regions interact to affect behavior is incompletely understood. We used mediation analysis to investigate how prefrontal cortex and ventral striatum together influence risk avoidance in abstinent drug users. Method Thirty-seven abstinent substance-dependent individuals (SDI) and 43 controls underwent fMRI while performing a decision-making task involving risk and reward. Analyses of a priori regions-of-interest tested whether activity in dorsolateral prefrontal cortex (DLPFC) and ventral striatum (VST) explained group differences in risk avoidance. Whole-brain analysis was conducted to identify brain regions influencing the negative VST-risk avoidance relationship. Results Right DLPFC (RDLPFC) positively mediated the group-risk avoidance relationship (p < 0.05); RDLPFC activity was higher in SDI and predicted higher risk avoidance across groups, controlling for SDI vs. controls. Conversely, VST activity negatively influenced risk avoidance (p < 0.05); it was higher in SDI, and predicted lower risk avoidance. Whole-brain analysis revealed that, across group, RDLPFC and left temporal-parietal junction positively (p ≤ 0.001) while right thalamus and left middle frontal gyrus negatively (p < 0.005) mediated the VST activity-risk avoidance relationship. Conclusion RDLPFC activity mediated less risky decision-making while VST mediated more risky decision-making across drug users and controls. These results suggest a dual pathway underlying decision-making, which, if imbalanced, may adversely influence choices involving risk. Modeling contributions of multiple brain systems to behavior through mediation analysis could lead to a better understanding of mechanisms of behavior and suggest neuromodulatory treatments for addiction. PMID:25736619

  19. [The urgent problems of the improvement of the environment management system based on the analysis of health risk assessment].

    PubMed

    Avaliani, S L; Novikov, S M; Shashina, T A; Dodina, N S; Kislitsin, V A; Mishina, A L

    2014-01-01

    The lack of adequate legislative and regulatory framework for ensuring minimization of the health risks in the field of environmental protection is the obstacle for the application of the risk analysis methodology as a leading tool for administrative activity in Russia. "Principles of the state policy in the sphere of ensuring chemical and biological safety of the Russian Federation for the period up to 2025 and beyond", approved by the President of the Russian Federation on 01 November 2013, No PR-25 73, are aimed at the legal support for the health risk analysis methodology. In the article there have been supposed the main stages of the operative control of the environmental quality, which lead to the reduction of the health risk to the acceptable level. The further improvement of the health risk analysis methodology in Russia should contribute to the implementation of the state policy in the sphere of chemical and biological safety through the introduction of complex measures on neutralization of chemical and biological threats to the human health and the environment, as well as evaluation of the economic effectiveness of these measures. The primary step should be the legislative securing of the quantitative value for the term: "acceptable risk".

  20. A White Paper on Global Wheat Health Based on Scenario Development and Analysis.

    PubMed

    Savary, S; Djurle, A; Yuen, J; Ficke, A; Rossi, V; Esker, P D; Fernandes, J M C; Del Ponte, E M; Kumar, J; Madden, L V; Paul, P; McRoberts, N; Singh, P K; Huber, L; Pope de Vallavielle, C; Saint-Jean, S; Willocquet, L

    2017-10-01

    Scenario analysis constitutes a useful approach to synthesize knowledge and derive hypotheses in the case of complex systems that are documented with mainly qualitative or very diverse information. In this article, a framework for scenario analysis is designed and then, applied to global wheat health within a timeframe from today to 2050. Scenario analysis entails the choice of settings, the definition of scenarios of change, and the analysis of outcomes of these scenarios in the chosen settings. Three idealized agrosystems, representing a large fraction of the global diversity of wheat-based agrosystems, are considered, which represent the settings of the analysis. Several components of global changes are considered in their consequences on global wheat health: climate change and climate variability, nitrogen fertilizer use, tillage, crop rotation, pesticide use, and the deployment of host plant resistances. Each idealized agrosystem is associated with a scenario of change that considers first, a production situation and its dynamics, and second, the impacts of the evolving production situation on the evolution of crop health. Crop health is represented by six functional groups of wheat pathogens: the pathogens associated with Fusarium head blight; biotrophic fungi, Septoria-like fungi, necrotrophic fungi, soilborne pathogens, and insect-transmitted viruses. The analysis of scenario outcomes is conducted along a risk-analytical pattern, which involves risk probabilities represented by categorized probability levels of disease epidemics, and risk magnitudes represented by categorized levels of crop losses resulting from these levels of epidemics within each production situation. The results from this scenario analysis suggest an overall increase of risk probabilities and magnitudes in the three idealized agrosystems. Changes in risk probability or magnitude however vary with the agrosystem and the functional groups of pathogens. We discuss the effects of global changes on the six functional groups, in terms of their epidemiology and of the crop losses they cause. Scenario analysis enables qualitative analysis of complex systems, such as plant pathosystems that are evolving in response to global changes, including climate change and technology shifts. It also provides a useful framework for quantitative simulation modeling analysis for plant disease epidemiology.

  1. Socio-Technical Systems Analysis in Health Care: A Research Agenda

    PubMed Central

    Bass, Ellen; Bellandi, Tommaso; Gurses, Ayse; Hallbeck, Susan; Mollo, Vanina

    2012-01-01

    Given the complexity of health care and the ‘people’ nature of healthcare work and delivery, STSA (Sociotechnical Systems Analysis) research is needed to address the numerous quality of care problems observed across the world. This paper describes open STSA research areas, including workload management, physical, cognitive and macroergonomic issues of medical devices and health information technologies, STSA in transitions of care, STSA of patient-centered care, risk management and patient safety management, resilience, and feedback loops between event detection, reporting and analysis and system redesign. PMID:22611480

  2. Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    An effective risk assessment system is needed to address the threat posed by an active or passive insider who, acting alone or in collusion, could attempt diversion or theft of nuclear material. The material control and accountability (MC&A) system effectiveness tool (MSET) is a self-assessment or inspection tool utilizing probabilistic risk assessment (PRA) methodology to calculate the system effectiveness of a nuclear facility's material protection, control, and accountability (MPC&A) system. The MSET process is divided into four distinct and separate parts: (1) Completion of the questionnaire that assembles information about the operations of every aspect of the MPC&A system; (2)more » Conversion of questionnaire data into numeric values associated with risk; (3) Analysis of the numeric data utilizing the MPC&A fault tree and the SAPHIRE computer software; and (4) Self-assessment using the MSET reports to perform the effectiveness evaluation of the facility's MPC&A system. The process should lead to confirmation that mitigating features of the system effectively minimize the threat, or it could lead to the conclusion that system improvements or upgrades are necessary to achieve acceptable protection against the threat. If the need for system improvements or upgrades is indicated when the system is analyzed, MSET provides the capability to evaluate potential or actual system improvements or upgrades. A facility's MC&A system can be evaluated at a point in time. The system can be reevaluated after upgrades are implemented or after other system changes occur. The total system or specific subareas within the system can be evaluated. Areas of potential system improvement can be assessed to determine where the most beneficial and cost-effective improvements should be made. Analyses of risk importance factors show that sustainability is essential for optimal performance and reveals where performance degradation has the greatest impact on total system risk. The risk importance factors show the amount of risk reduction achievable with potential upgrades and the amount of risk reduction achieved after upgrades are completed. Applying the risk assessment tool gives support to budget prioritization by showing where budget support levels must be sustained for MC&A functions most important to risk. Results of the risk assessment are also useful in supporting funding justifications for system improvements that significantly reduce system risk. The functional model, the system risk assessment tool, and the facility evaluation questionnaire are valuable educational tools for MPC&A personnel. These educational tools provide a framework for ongoing dialogue between organizations regarding the design, development, implementation, operation, assessment, and sustainability of MPC&A systems. An organization considering the use of MSET as an analytical tool for evaluating the effectiveness of its MPC&A system will benefit from conducting a complete MSET exercise at an existing nuclear facility.« less

  3. [Pressure distribution measurements during use of wheelchairs].

    PubMed

    Meiners, T; Friedrich, G; Krüger, A; Böhm, V

    2001-04-01

    There is a growing number of mobility-impaired and wheelchair-dependent patients caused by diseases and injuries of the central nervous system. The risk is high for pressure sores to develop due to disturbances of the motor, sensory, and autonomic nervous system. Numerous seating systems for prophylaxis and treatment of decubitus ulcer are available. To identify risk parameters, the literature on animal experiments regarding pressure ulcers was reviewed. A study on the reproducibility of the analysis method with capacitive sensors tested in ten paraplegics with 470 measurements is presented. It shows the reliability of the procedure.

  4. Fews-Risk: A step towards risk-based flood forecasting

    NASA Astrophysics Data System (ADS)

    Bachmann, Daniel; Eilander, Dirk; de Leeuw, Annemargreet; Diermanse, Ferdinand; Weerts, Albrecht; de Bruijn, Karin; Beckers, Joost; Boelee, Leonore; Brown, Emma; Hazlewood, Caroline

    2015-04-01

    Operational flood prediction and the assessment of flood risk are important components of flood management. Currently, the model-based prediction of discharge and/or water level in a river is common practice for operational flood forecasting. Based on the prediction of these values decisions about specific emergency measures are made within operational flood management. However, the information provided for decision support is restricted to pure hydrological or hydraulic aspects of a flood. Information about weak sections within the flood defences, flood prone areas and assets at risk in the protected areas are rarely used in a model-based flood forecasting system. This information is often available for strategic planning, but is not in an appropriate format for operational purposes. The idea of FEWS-Risk is the extension of existing flood forecasting systems with elements of strategic flood risk analysis, such as probabilistic failure analysis, two dimensional flood spreading simulation and the analysis of flood impacts and consequences. Thus, additional information is provided to the decision makers, such as: • Location, timing and probability of failure of defined sections of the flood defence line; • Flood spreading, extent and hydraulic values in the hinterland caused by an overflow or a breach flow • Impacts and consequences in case of flooding in the protected areas, such as injuries or casualties and/or damages to critical infrastructure or economy. In contrast with purely hydraulic-based operational information, these additional data focus upon decision support for answering crucial questions within an operational flood forecasting framework, such as: • Where should I reinforce my flood defence system? • What type of action can I take to mend a weak spot in my flood defences? • What are the consequences of a breach? • Which areas should I evacuate first? This presentation outlines the additional required workflows towards risk-based flood forecasting systems. In a cooperation between HR Wallingford and Deltares, the extended workflows are being integrated into the Delft-FEWS software system. Delft-FEWS provides modules for managing the data handling and forecasting process. Results of a pilot study that demonstrates the new tools are presented. The value of the newly generated information for decision support during a flood event is discussed.

  5. Working postures of dental students: ergonomic analysis using the Ovako Working Analysis System and rapid upper limb assessment.

    PubMed

    Petromilli Nordi Sasso Garcia, Patrícia; Polli, Gabriela Scatimburgo; Campos, Juliana Alvares Duarte Bonini

    2013-01-01

    As dentistry is a profession that demands a manipulative precision of hand movements, musculoskeletal disorders are among the most common occupational diseases. This study estimated the risk of musculoskeletal disorders developing in dental students using the Ovako Working Analysis System (OWAS) and Rapid Upper Limb Assessment (RULA) methods, and estimated the diagnostic agreement between the 2 methods. Students (n = 75), enrolled in the final undergraduate year at the Araraquara School of Dentistry--UNESP--were studied. Photographs were taken of students while performing diverse clinical procedures (n = 283) using a digital camera, which were assessed using OWAS and RULA. A risk score was attributed following each procedure performed by the student. The prevalence of the risk of musculoskeletal disorders was estimated per point and for a 95% CI. To assess the agreement between the 2 methods, Kappa statistics with linear weighting were used. The level of significance adopted was 5%. There was a high prevalence of the mean score for risk of musculoskeletal disorders in the dental students evaluated according to the OWAS method (p = 97.88%; 95% CI: 96.20-99.56%), and a high prevalence of the high score (p = 40.6; 95% CI: 34.9-46.4%) and extremely high risk (p = 59.4%; 95% CI: 53.6-65.1%) according to RULA method Null agreement was verified (k = 0) in the risk di agnosis of the tested methods. The risk of musculoskeletal disorders in dental students estimated by the OWAS method was medium, whereas the same risk by the RULA method was extremely high. There was no diagnostic agreement between the OWAS and RULA methods.

  6. 3MRA UNCERTAINTY AND SENSITIVITY ANALYSIS

    EPA Science Inventory

    This presentation discusses the Multimedia, Multipathway, Multireceptor Risk Assessment (3MRA) modeling system. The outline of the presentation is: modeling system overview - 3MRA versions; 3MRA version 1.0; national-scale assessment dimensionality; SuperMUSE: windows-based super...

  7. Waste Feed Delivery System Phase 1 Preliminary Reliability and Availability and Maintainability Analysis [SEC 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARLSON, A.B.

    The document presents updated results of the preliminary reliability, availability, maintainability analysis performed for delivery of waste feed from tanks 241-AZ-101 and 241-AN-105 to British Nuclear Fuels Limited, inc. under the Tank Waste Remediation System Privatization Contract. The operational schedule delay risk is estimated and contributing factors are discussed.

  8. Quick Fix for Managing Risks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Under a Phase II SBIR contract, Kennedy and Lumina Decision Systems, Inc., jointly developed the Schedule and Cost Risk Analysis Modeling (SCRAM) system, based on a version of Lumina's flagship software product, Analytica(R). Acclaimed as "the best single decision-analysis program yet produced" by MacWorld magazine, Analytica is a "visual" tool used in decision-making environments worldwide to build, revise, and present business models, minus the time-consuming difficulty commonly associated with spreadsheets. With Analytica as their platform, Kennedy and Lumina created the SCRAM system in response to NASA's need to identify the importance of major delays in Shuttle ground processing, a critical function in project management and process improvement. As part of the SCRAM development project, Lumina designed a version of Analytica called the Analytica Design Engine (ADE) that can be easily incorporated into larger software systems. ADE was commercialized and utilized in many other developments, including web-based decision support.

  9. Developing and Implementing the Data Mining Algorithms in RAVEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ramazan Sonat; Maljovec, Daniel Patrick; Alfonsi, Andrea

    The RAVEN code is becoming a comprehensive tool to perform probabilistic risk assessment, uncertainty quantification, and verification and validation. The RAVEN code is being developed to support many programs and to provide a set of methodologies and algorithms for advanced analysis. Scientific computer codes can generate enormous amounts of data. To post-process and analyze such data might, in some cases, take longer than the initial software runtime. Data mining algorithms/methods help in recognizing and understanding patterns in the data, and thus discover knowledge in databases. The methodologies used in the dynamic probabilistic risk assessment or in uncertainty and error quantificationmore » analysis couple system/physics codes with simulation controller codes, such as RAVEN. RAVEN introduces both deterministic and stochastic elements into the simulation while the system/physics code model the dynamics deterministically. A typical analysis is performed by sampling values of a set of parameter values. A major challenge in using dynamic probabilistic risk assessment or uncertainty and error quantification analysis for a complex system is to analyze the large number of scenarios generated. Data mining techniques are typically used to better organize and understand data, i.e. recognizing patterns in the data. This report focuses on development and implementation of Application Programming Interfaces (APIs) for different data mining algorithms, and the application of these algorithms to different databases.« less

  10. Application of Failure Mode and Effect Analysis (FMEA) and cause and effect analysis in conjunction with ISO 22000 to a snails (Helix aspersa) processing plant; A case study.

    PubMed

    Arvanitoyannis, Ioannis S; Varzakas, Theodoros H

    2009-08-01

    Failure Mode and Effect Analysis (FMEA) has been applied for the risk assessment of snails manufacturing. A tentative approach of FMEA application to the snails industry was attempted in conjunction with ISO 22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (snails processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and fishbone diagram). In this work a comparison of ISO22000 analysis with HACCP is carried out over snails processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the RPN per identified processing hazard. Sterilization of tins, bioaccumulation of heavy metals, packaging of shells and poisonous mushrooms, were the processes identified as the ones with the highest RPN (280, 240, 147, 144, respectively) and corrective actions were undertaken. Following the application of corrective actions, a second calculation of RPN values was carried out leading to considerably lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO22000 system of a snails processing industry is considered imperative.

  11. [Temporary employment and health: a multivariate analysis of occupational injury risk by job tenure].

    PubMed

    Bena, Antonella; Giraudo, Massimiliano

    2013-01-01

    To study the relationship between job tenure and injury risk, controlling for individual factors and company characteristics. Analysis of incidence and injury risk by job tenure, controlling for gender, age, nationality, economic activity, firm size. Sample of 7% of Italian workers registered in the INPS (National Institute of Social Insurance) database. Private sector employees who worked as blue collars or apprentices. First-time occupational injuries, all occupational injuries, serious occupational injuries. Our findings show an increase in injury risk among those who start a new job and an inverse relationship between job tenure and injury risk. Multivariate analysis confirm these results. Recommendations for improving this situation include the adoption of organizational models that provide periods of mentoring from colleagues already in the company and the assignment to simple and not much hazardous tasks. The economic crisis may exacerbate this problem: it is important for Italy to improve the systems of monitoring relations between temporary employment and health.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.

    We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less

  13. Predicting the occurrence of embolic events: an analysis of 1456 episodes of infective endocarditis from the Italian Study on Endocarditis (SEI)

    PubMed Central

    2014-01-01

    Background Embolic events are a major cause of morbidity and mortality in patients with infective endocarditis. We analyzed the database of the prospective cohort study SEI in order to identify factors associated with the occurrence of embolic events and to develop a scoring system for the assessment of the risk of embolism. Methods We retrospectively analyzed 1456 episodes of infective endocarditis from the multicenter study SEI. Predictors of embolism were identified. Risk factors identified at multivariate analysis as predictive of embolism in left-sided endocarditis, were used for the development of a risk score: 1 point was assigned to each risk factor (total risk score range: minimum 0 points; maximum 2 points). Three categories were defined by the score: low (0 points), intermediate (1 point), or high risk (2 points); the probability of embolic events per risk category was calculated for each day on treatment (day 0 through day 30). Results There were 499 episodes of infective endocarditis (34%) that were complicated by ≥ 1 embolic event. Most embolic events occurred early in the clinical course (first week of therapy: 15.5 episodes per 1000 patient days; second week: 3.7 episodes per 1000 patient days). In the total cohort, the factors associated with the occurrence of embolism at multivariate analysis were prosthetic valve localization (odds ratio, 1.84), right-sided endocarditis (odds ratio, 3.93), Staphylococcus aureus etiology (odds ratio, 2.23) and vegetation size ≥ 13 mm (odds ratio, 1.86). In left-sided endocarditis, Staphylococcus aureus etiology (odds ratio, 2.1) and vegetation size ≥ 13 mm (odds ratio, 2.1) were independently associated with embolic events; the 30-day cumulative incidence of embolism varied with risk score category (low risk, 12%; intermediate risk, 25%; high risk, 38%; p < 0.001). Conclusions Staphylococcus aureus etiology and vegetation size are associated with an increased risk of embolism. In left-sided endocarditis, a simple scoring system, which combines etiology and vegetation size with time on antimicrobials, might contribute to a better assessment of the risk of embolism, and to a more individualized analysis of indications and contraindications for early surgery. PMID:24779617

  14. A systematic risk management approach employed on the CloudSat project

    NASA Technical Reports Server (NTRS)

    Basilio, R. R.; Plourde, K. S.; Lam, T.

    2000-01-01

    The CloudSat Project has developed a simplified approach for fault tree analysis and probabilistic risk assessment. A system-level fault tree has been constructed to identify credible fault scenarios and failure modes leading up to a potential failure to meet the nominal mission success criteria.

  15. Guidelines for Automatic Data Processing Physical Security and Risk Management. Federal Information Processing Standards Publication 31.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    These guidelines provide a handbook for use by federal organizations in structuring physical security and risk management programs for their automatic data processing facilities. This publication discusses security analysis, natural disasters, supporting utilities, system reliability, procedural measures and controls, off-site facilities,…

  16. Economic Risk Analysis of Agricultural Tillage Systems Using the SMART Stochastic Efficiency Software Package

    USDA-ARS?s Scientific Manuscript database

    Recently, a variant of stochastic dominance called stochastic efficiency with respect to a function (SERF) has been developed and applied. Unlike traditional stochastic dominance approaches, SERF uses the concept of certainty equivalents (CEs) to rank a set of risk-efficient alternatives instead of...

  17. Risk mapping of bovine hypodermosis using geographical information system (GIS) in cattle of subtropical region, Pakistan.

    PubMed

    Khan, Mobushir Riaz; Ahmed, Haroon; Panadero-Fontan, Rosario; Lopez-Sandez, Ceferino; Khan, Muhammad Aamir; Asif, Saira; Mustafa, Irfan; Ali, Muhammad Isthiaq; Raza, Hamid; Qayyum, Mazhar

    2015-08-29

    Hypodermosis is an ectoparasitic disease of cattle caused by Hypoderma lineatum and Hypoderma bovis. It is an important health problem of cattle, leading to considerable economic losses. There are various factors that are involved in the spread of this disease such as herd size, location, temperature, humidity, and precipitation. Blood samples from 112 herds were collected to determine the presence of Hypoderma spp. infestation. For these herds, size and location were determined; temperature, humidity, and precipitation data were obtained from meteorological stations; and topographic features were obtained from existing maps and through field work. A regression analysis was then used to generate a risk factor analysis profile for hypodermosis and geographic information system (GIS) was used to map the risks. The GIS map developed showed the degree of infestation in different geographical locations at district and village levels. Cluster analysis demonstrated that hypodermosis prevalence varied within zones and across zones. The regression analysis showed that the temperature in the months of January, February, March, August, and November, and the precipitation in September and October had significant results (p < 0.05) when all the risks factors were analyzed. It is concluded that different ecological factors have an important impact on the intensity and infestation rate of hypodermosis across the globe. The present study might be used to control and eradicate the hypodermosis across the globe.

  18. The risk characteristics of solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina

    2016-04-01

    The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).

  19. Examining lung cancer risks across different industries and occupations in Ontario, Canada: the establishment of the Occupational Disease Surveillance System.

    PubMed

    Jung, James K H; Feinstein, Saul G; Palma Lazgare, Luis; Macleod, Jill S; Arrandale, Victoria H; McLeod, Christopher B; Peter, Alice; Demers, Paul A

    2018-05-07

    The Occupational Disease Surveillance System (ODSS) was established in Ontario, Canada by linking a cohort of workers with data created from Workplace Safety and Insurance Board (WSIB) claims to administrative health databases. The aim of this study was to use ODSS to identify high-risk industry and occupation groups for lung cancer in Ontario. Workers in the WSIB lost time claims database were linked to the Ontario Cancer Registry using subjects' health insurance numbers, name, sex, birthdate and death date (if applicable). Several occupations and industries known to be at increased risk were outlined a priori to examine whether ODSS could replicate these associations. Age-adjusted, sex-stratified Cox proportional hazard models compared the risk of lung cancer within one industry/occupation versus all other groups in the cohort. Workers with a lung cancer diagnosis prior to cohort entry were excluded for analysis, leaving 2 187 762 workers for analysis. During the 1983 to 2014 follow-up, 34 661 workers in the cohort were diagnosed with lung cancer. Among expected high-risk industries, elevated risks were observed among workers in quarries/sand pits and construction industries for both sexes, and among males in metal mines, iron foundries, non-metallic mineral products industries and transportation industries. Excess risk was also observed among occupations in drilling/blasting, other mining/quarrying, mineral ore treating, excavating/grading/paving, truck driving, painting, bus driving and construction. This current surveillance system identified several established high-risk groups for lung cancer and could be used for ongoing surveillance of occupational lung cancer in Ontario. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Application of the CO2-PENS risk analysis tool to the Rock Springs Uplift, Wyoming

    USGS Publications Warehouse

    Stauffer, P.H.; Pawar, R.J.; Surdam, R.C.; Jiao, Z.; Deng, H.; Lettelier, B.C.; Viswanathan, H.S.; Sanzo, D.L.; Keating, G.N.

    2011-01-01

    We describe preliminary application of the CO2-PENS performance and risk analysis tool to a planned geologic CO2 sequestration demonstration project in the Rock Springs Uplift (RSU), located in south western Wyoming. We use data from the RSU to populate CO2-PENS, an evolving system-level modeling tool developed at Los Alamos National Laboratory. This tool has been designed to generate performance and risk assessment calculations for the geologic sequestration of carbon dioxide. Our approach follows Systems Analysis logic and includes estimates of uncertainty in model parameters and Monte-Carlo simulations that lead to probabilistic results. Probabilistic results provide decision makers with a range in the likelihood of different outcomes. Herein we present results from a newly implemented approach in CO 2-PENS that captures site-specific spatially coherent details such as topography on the reservoir/cap-rock interface, changes in saturation and pressure during injection, and dip on overlying aquifers that may be impacted by leakage upward through wellbores and faults. We present simulations of CO 2 injection under different uncertainty distributions for hypothetical leaking wells and faults. Although results are preliminary and to be used only for demonstration of the approach, future results of the risk analysis will form the basis for a discussion on methods to reduce uncertainty in the risk calculations. Additionally, we present ideas on using the model to help locate monitoring equipment to detect potential leaks. By maintaining site-specific details in the CO2-PENS analysis we provide a tool that allows more logical presentations to stakeholders in the region. ?? 2011 Published by Elsevier Ltd.

Top