Science.gov

Sample records for riskin oil-impacted soils

  1. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISKIN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W.Bogan; V. Trbovic; W. Sullivan

    2003-01-07

    The drilling and operation of gas/petroleum exploratory wells and the operations of natural gas and petroleum production wells generate a number of waste materials that are usually stored and/or processed at the drilling/operations site. Contaminated soils result from drilling operations, production operations, and pipeline breaks or leaks where crude oil and petroleum products are released into the surrounding soil or sediments. In many cases, intrinsic biochemical remediation of these contaminated soils is either not effective or is too slow to be an acceptable approach. This project targeted petroleum-impacted soil and other wastes, such as soil contaminated by: accidental release of petroleum and natural gas-associated organic wastes from pipelines or during transport of crude oil or natural gas; production wastes (such as produced waters, and/or fuels or product gas). Our research evaluated the process designated Chemically-Accelerated Biotreatment (CAB) that can be applied to remediate contaminated matrices, either on-site or in situ. The Gas Technology Institute (GTI) had previously developed a form of CAB for the remediation of hydrocarbons and metals at Manufactured Gas Plant (MGP) sites and this research project expanded its application into Exploration and Production (E&P) sites. The CAB treatment was developed in this project using risk-based endpoints, a.k.a. environmentally acceptable endpoints (EAE) as the treatment goal. This goal was evaluated, compared, and correlated to traditional analytical methods (Gas Chromatography (GC), High Precision Liquid Chromatography (HPLC), or Gas Chromatography-Mass Spectrometry (CGMS)). This project proved that CAB can be applied to remediate E&P contaminated soils to EAE, i.e. those concentrations of chemical contaminants in soil below which there is no adverse affect to human health or the environment. Conventional approaches to risk assessment to determine ''how clean is clean'' for soils undergoing remediation

  2. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    SciTech Connect

    Paterek, J.R.; Bogan, W.W.; Lahner, L.M.; Trbovic, V.

    2003-03-06

    Conducted research in the following major focus areas: (1) Development of mild extraction approaches to estimate bioavailable fraction of crude oil residues in contaminated soils; (2) Application of these methods to understand decreases in toxicity and increases in sequestration of hydrocarbons over time, as well as the influence of soil properties on these processes; (3) Measurements of the abilities of various bacteria (PAH-degraders and others more representative of typical soil bacteria) to withstand oxidative treatments (i.e. Fenton's reaction) which would occur in CBT; and (4) Experiments into the biochemical/genetic inducibility of PAH degradation by compounds formed by the chemical oxidation of PAH.

  3. The potential of Chromolaena odorata (L) to decontaminate used engine oil impacted soil under greenhouse conditions.

    PubMed

    Atagana, Harrison Ifeanyichukwu

    2011-08-01

    This study reports on the use of Chromolaena odorata (L) R.M. King and H. Robinson, an Asteraceae (compositae) and an invasive alien weed in Africa for the remediation of soil contaminated with used engine oil. Used engine oilfrom a motor service garage was used to artificially contaminate soil taken from a garden to give total petroleum hydrocarbon (TPH) of between 1 and 40 g kg(-1). Chromolaena odorata (L), propagated by stem cuttings were transplanted into the contaminated soil and watered just enough to keep the soil at about 70% water holding capacity for 90 day. A set of control experiments containing 40 g kg(-1) used engine oil but without plants was set up. All experiments were set up in triplicates. Although the plants in the experiments containing higher than 30 g kg(-1) used engine oil showed relatively slower growth (fewer branches and leaves, and shorter in height) compared to those containing lower concentrations, the plants in all the experiments continued to grow until the end of the 90 day period. Residual TPH after 90 days showed that between 21 and 100% of oil was lost from the planted soil while only 11.5% was lost in the control, which did not contain plants during the same period. Analysis of plant tissues showed that both shoot and root tissues contained detectable levels of TPH and selected PAHs were also detectable. Biomass accumulation by Chromolaena odorata was affected adversely by concentrations of oil higher than 20 g kg(-1). Results of germination rates and germination energy measurements showed that Chromolaena odorata was able to reduce the toxicity of the contaminated soil after 90 days as compared to soils containing freshly contaminated soiL

  4. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; A. May

    2000-04-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  5. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    SciTech Connect

    Paterek, J.R.; Bogan, W.W.; Sirivedhin; Tanita

    2003-03-06

    Research was conducted in six major focus areas: (1) Evaluation of the process using 6 test soils with full chemical and physical characteristics to determine controlling factors for biodegradation and chemical oxidation; (2) Determination of the sequestration time on chemical treatment suspectability; (3) Risk factors, i.e. toxicity after chemical and biological treatment; (4) Impact of chemical treatment (Fenton's Reagent) on the agents of biodegradation; (5) Description of a new genus and its type species that degrades hydrocarbons; and (6) Intermediates generate from Fenton's reagent treatment of various polynuclear aromatic hydrocarbons.

  6. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  7. Shift in microbial group during remediation by enhanced natural attenuation (RENA) of a crude oil-impacted soil: a case study of Ikarama Community, Bayelsa, Nigeria.

    PubMed

    Chikere, Chioma Blaise; Azubuike, Christopher Chibueze; Fubara, Evan Miebaka

    2017-06-01

    Acute and chronic pollution of environments with crude oil does not bode well for biota living within the vicinity of polluted environments. This is due to environmental and public health concerns on the negative impact of crude oil pollution on living organisms. Enhancing microbial activities by adding nutrients and other amendments had proved effective in pollutant removal during bioremediation. This study was carried out to determine how microbial group respond during remediation by enhanced natural attenuation (RENA) during a field-scale bioremediation. Crude oil-polluted soil samples were collected (before, during, and after remediation) from a site undergoing remediation by enhanced natural attenuation (RENA) at Ikarama Community, Bayelsa State, Nigeria, and were analyzed for total petroleum hydrocarbon (TPH), polyaromatic hydrocarbon (PAH), and a shift in microbial community. The gas chromatography-flame ionization detector (GC-FID) results showed that the pollutant concentrations (TPH and PAH) reduced by 98 and 85%, respectively, after the remediation. Culturable hydrocarbon utilizing bacteria (CHUB) was highest (8.3 × 10(4) cfu/g) for sample collected during the remediation studies, whilst sample collected after remediation had low CHUB (6.1 × 10(4) cfu/g) compared to that collected before remediation (7.7 × 10(4) cfu/g). Analysis of 16S rRNA of the isolated CHUB showed they belonged to eight bacterial genera namely: Achromobacter, Alcaligenes, Azospirillus, Bacillus, Lysinibacillus, Ochrobactrum, Proteus, and Pusillimonas, with Alcaligenes as the dominant genus. In this study, it was observed that the bacterial community shifted from mixed group (Gram-positive and -negative) before and during the remediation, to only the latter group after the remediation studies. The betaproteobacteria groups were the dominant isolated bacterial phylotype. This study showed that RENA is an effective method of reducing pollutant concentration in crude oil

  8. Responses of freshwater ecosystems to crude oil impaction

    SciTech Connect

    Werner, M.D.

    1983-01-01

    Responses of two freshwater lake ecosystems of the Intermountain West to crude oil impaction were investigated. Effects of crude oil on an ecosystem established in three phase laboratory microcosms (gaseous-aqueous-sediment), which simulated the natural lakes, were studied. Notable responses of the microcosm ecosystem to oil impaction included: an increased oxygen demand by the biological community, nutrient immobilization, a reduction in plant biomass accumulation and a heterotrophically dominated ecosystem. Nutrient immobilization, rather than toxic effects of oil on plants, was the primary factor leading to the long-term imbalance between autotrophs and heterotrophs following oil impaction. Crude oil reduced the rate and extent of in situ litter decomposition, but activity of oil-litter associated decomposer communities was greater than or equal to that of unoiled-litter over a year's period. Differences in the degree of crude oils' impacts between litter types and lakes were explained by factors such as biochemical structure of the plants, sediment types of the lakes and physical energy (e.g., wind) to the lakes. Increased rates of oxygen utilization because of the crude oil were identified as a potential primary detrimental effect of oil pollution. Crude oil did not affect the nutrient content of plant litter at any given stage of litter decomposition, but the rate of nutrient loss from the litter was reduced because of a reduction in the rate of litter decomposition.Of the nitrogen and phosphorus lost from plant litter, much less was released to ambient water in inorganic form from oiled litter than from unoiled litter. Nitrogen limitation to decomposers may have been the primary factor reducing the rate of oiled litter decomposition. Environmental ramifications of oil pollution concerning litter-environment nutrient exchange are discussed.

  9. In situ burning restores the ecological function and structure of an oil-impacted coastal marsh.

    PubMed

    Baustian, Joseph; Mendelssohn, Irving; Lin, Qianxin; Rapp, John

    2010-11-01

    As the use of in situ burning for oil spill remediation in coastal wetlands accelerates, the capacity of this procedure to restore the ecological structure and function of oil-impacted wetlands becomes increasingly important. Thus, our research focused on evaluating the functional and structural recovery of a coastal marsh in South Louisiana to an in situ burn following a Hurricane Katrina-induced oil spill. Permanent sampling plots were set up to monitor marsh recovery in the oiled and burned areas as well as non-oiled and non-burned (reference) marshes. Plots were monitored for species composition, stem density, above- and belowground productivity, marsh resiliency, soil chemistry, soil residual oil, and organic matter decomposition. The burn removed the majority of the oil from the marsh, and structurally the marsh recovered rapidly. Plant biomass and species composition returned to control levels within 9 months; however, species richness remained somewhat lower in the oiled and burned areas compared to the reference areas. Recovery of ecological function was also rapid following the in situ burn. Aboveground and belowground plant productivity recovered within one growing season, and although decomposition rates were initially higher in the oiled areas, over time they became equivalent to those in reference sites. Also, marsh resiliency, i.e., the rate of recovery from our applied disturbances, was not affected by the in situ burn. We conclude that in situ burning is an effective way to remove oil and allow ecosystem recovery in coastal marshes.

  10. In Situ Burning Restores the Ecological Function and Structure of an Oil-Impacted Coastal Marsh

    NASA Astrophysics Data System (ADS)

    Baustian, Joseph; Mendelssohn, Irving; Lin, Qianxin; Rapp, John

    2010-11-01

    As the use of in situ burning for oil spill remediation in coastal wetlands accelerates, the capacity of this procedure to restore the ecological structure and function of oil-impacted wetlands becomes increasingly important. Thus, our research focused on evaluating the functional and structural recovery of a coastal marsh in South Louisiana to an in situ burn following a Hurricane Katrina-induced oil spill. Permanent sampling plots were set up to monitor marsh recovery in the oiled and burned areas as well as non-oiled and non-burned (reference) marshes. Plots were monitored for species composition, stem density, above- and belowground productivity, marsh resiliency, soil chemistry, soil residual oil, and organic matter decomposition. The burn removed the majority of the oil from the marsh, and structurally the marsh recovered rapidly. Plant biomass and species composition returned to control levels within 9 months; however, species richness remained somewhat lower in the oiled and burned areas compared to the reference areas. Recovery of ecological function was also rapid following the in situ burn. Aboveground and belowground plant productivity recovered within one growing season, and although decomposition rates were initially higher in the oiled areas, over time they became equivalent to those in reference sites. Also, marsh resiliency, i.e., the rate of recovery from our applied disturbances, was not affected by the in situ burn. We conclude that in situ burning is an effective way to remove oil and allow ecosystem recovery in coastal marshes.

  11. Application of bioventing at a fuel oil impacted site

    SciTech Connect

    Reisinger, H.J.; Massengill, D.G.

    1994-12-31

    Misdelivery of approximately 8,700 gallons of fuel oil into an underground storage tank compliance monitoring well at a manufacturing facility in the Piedmont Physiographic Province of Virginia resulted in contamination of site soils and ground water. Attempts to remediate the site using conventional ground-water pump and treat technology succeeded in containing the fuel oil within the site boundaries, but did little to remove soil residual and dissolved phase hydrocarbon. Bioventing was considered as an option to address the residual hydrocarbon in the vadose zone. Results of a pilot test suggested that a viable indigenous population of heterotrophic organisms capable of utilizing hydrocarbon as a cell growth and energy source was present in the subsurface. Based on this conclusion and the data generated in the pilot test, a bioventing system was designed and installed at the site. At the conclusion of six months of operation, 6,097 kg of hydrocarbon were removed by in situ biodegradation, 30 kg by vacuum extraction, and 4 kg by separate recovery.

  12. Soils

    Treesearch

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  13. Soil

    USDA-ARS?s Scientific Manuscript database

    Soil is a diverse natural material characterized by solid, liquid, and gas phases that impart unique chemical, physical, and biological properties. Soil provides many key functions, including supporting plant growth and providing environmental remediation. Monitoring key soil properties and processe...

  14. MICROBIAL DYNAMICS IN OIL-IMPACTED PRAIRIE SOIL. (R827015C002)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Soils

    Treesearch

    John R. Jones; Norbert V. DeByle

    1985-01-01

    Edaphic and climatic characteristics of a site quite well define the quality of that site for plant growth. The importance of soil characteristics to the growth and well-being of aspen in the West is apparent from observations by many authors, from inferences resulting from work with other trees and agricultural crops, and from detailed study of aspen soils and site...

  16. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish

    PubMed Central

    Incardona, John P.; Gardner, Luke D.; Linbo, Tiffany L.; Brown, Tanya L.; Esbaugh, Andrew J.; Mager, Edward M.; Stieglitz, John D.; French, Barbara L.; Labenia, Jana S.; Laetz, Cathy A.; Tagal, Mark; Sloan, Catherine A.; Elizur, Abigail; Benetti, Daniel D.; Grosell, Martin; Block, Barbara A.; Scholz, Nathaniel L.

    2014-01-01

    The Deepwater Horizon disaster released more than 636 million L of crude oil into the northern Gulf of Mexico. The spill oiled upper surface water spawning habitats for many commercially and ecologically important pelagic fish species. Consequently, the developing spawn (embryos and larvae) of tunas, swordfish, and other large predators were potentially exposed to crude oil-derived polycyclic aromatic hydrocarbons (PAHs). Fish embryos are generally very sensitive to PAH-induced cardiotoxicity, and adverse changes in heart physiology and morphology can cause both acute and delayed mortality. Cardiac function is particularly important for fast-swimming pelagic predators with high aerobic demand. Offspring for these species develop rapidly at relatively high temperatures, and their vulnerability to crude oil toxicity is unknown. We assessed the impacts of field-collected Deepwater Horizon (MC252) oil samples on embryos of three pelagic fish: bluefin tuna, yellowfin tuna, and an amberjack. We show that environmentally realistic exposures (1–15 µg/L total PAH) cause specific dose-dependent defects in cardiac function in all three species, with circulatory disruption culminating in pericardial edema and other secondary malformations. Each species displayed an irregular atrial arrhythmia following oil exposure, indicating a highly conserved response to oil toxicity. A considerable portion of Gulf water samples collected during the spill had PAH concentrations exceeding toxicity thresholds observed here, indicating the potential for losses of pelagic fish larvae. Vulnerability assessments in other ocean habitats, including the Arctic, should focus on the developing heart of resident fish species as an exceptionally sensitive and consistent indicator of crude oil impacts. PMID:24706825

  17. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish.

    PubMed

    Incardona, John P; Gardner, Luke D; Linbo, Tiffany L; Brown, Tanya L; Esbaugh, Andrew J; Mager, Edward M; Stieglitz, John D; French, Barbara L; Labenia, Jana S; Laetz, Cathy A; Tagal, Mark; Sloan, Catherine A; Elizur, Abigail; Benetti, Daniel D; Grosell, Martin; Block, Barbara A; Scholz, Nathaniel L

    2014-04-15

    The Deepwater Horizon disaster released more than 636 million L of crude oil into the northern Gulf of Mexico. The spill oiled upper surface water spawning habitats for many commercially and ecologically important pelagic fish species. Consequently, the developing spawn (embryos and larvae) of tunas, swordfish, and other large predators were potentially exposed to crude oil-derived polycyclic aromatic hydrocarbons (PAHs). Fish embryos are generally very sensitive to PAH-induced cardiotoxicity, and adverse changes in heart physiology and morphology can cause both acute and delayed mortality. Cardiac function is particularly important for fast-swimming pelagic predators with high aerobic demand. Offspring for these species develop rapidly at relatively high temperatures, and their vulnerability to crude oil toxicity is unknown. We assessed the impacts of field-collected Deepwater Horizon (MC252) oil samples on embryos of three pelagic fish: bluefin tuna, yellowfin tuna, and an amberjack. We show that environmentally realistic exposures (1-15 µg/L total PAH) cause specific dose-dependent defects in cardiac function in all three species, with circulatory disruption culminating in pericardial edema and other secondary malformations. Each species displayed an irregular atrial arrhythmia following oil exposure, indicating a highly conserved response to oil toxicity. A considerable portion of Gulf water samples collected during the spill had PAH concentrations exceeding toxicity thresholds observed here, indicating the potential for losses of pelagic fish larvae. Vulnerability assessments in other ocean habitats, including the Arctic, should focus on the developing heart of resident fish species as an exceptionally sensitive and consistent indicator of crude oil impacts.

  18. “I'm Riskin' It”: Teachers Take on Consumerism

    ERIC Educational Resources Information Center

    Harste, Jerome C.; Albers, Peggy

    2013-01-01

    This qualitative study investigates how 90 teachers explored critical curriculum through their reading, analysis and creation of counter advertisements. Located in visual discourse analysis, we designed a study to investigate the question "To what extent can teachers engaged in a critical literacy curriculum talk back to messages of consumerism,…

  19. “I'm Riskin' It”: Teachers Take on Consumerism

    ERIC Educational Resources Information Center

    Harste, Jerome C.; Albers, Peggy

    2013-01-01

    This qualitative study investigates how 90 teachers explored critical curriculum through their reading, analysis and creation of counter advertisements. Located in visual discourse analysis, we designed a study to investigate the question "To what extent can teachers engaged in a critical literacy curriculum talk back to messages of consumerism,…

  20. Shoreline surveys of oil-impacted marsh in southern Louisiana, July to August 2010

    USGS Publications Warehouse

    Kokaly, Raymond F.; Heckman, David; Holloway, JoAnn; Piazza, Sarai C.; Couvillion, Brady R.; Steyer, Gregory D.; Mills, Christopher T.; Hoefen, Todd M.

    2011-01-01

    This report describes shoreline surveys conducted in the marshes of Louisiana in areas impacted by oil spilled from the Deepwater Horizon offshore oil drilling platform in the Gulf of Mexico. Three field expeditions were conducted on July 7-10, August 12-14, and August 24-26, 2010, in central Barataria Bay and the Bird's Foot area at the terminus of the Mississippi River delta. This preliminary report includes locations of survey points, a photographic record of each site, field observations of vegetation cover and descriptions of oil coverage in the water and on plants, including measurements of the distance of oil penetration from the shoreline. Oiling in Barataria Bay marshes ranged from lightly oiled sections of stems of the predominant species Spartina alterniflora and Juncus roemerianus to wide zones of oil-damaged canopies and broken stems penetrating as far as 19 m into the marsh. For the 34 survey points in Barataria Bay where dimensions of oil damaged zones were measured, the depth of the oil-damaged zone extended, on average, 6.7 m into the marsh, with a standard deviation of 4.5 m. The median depth of penetration was 5.5 m. The extent to which the oil-damaged zone stretched along the shore varied with location but often extended more than 100 m parallel to the shoreline. Oil was observed on the marsh sediment at some sites in Barataria Bay. This oiled sediment was observed both above and a few centimeters below the water surface depending on the level of the tide. Phragmites australis was the dominant vegetation in oil-impacted zones in the Bird's Foot area of the Mississippi River delta. Oiling of the leaves and portions of the thick stems of P. australis was observed during field surveys. In contrast to the marshes of Barataria Bay, fewer areas of oil-damaged canopy were documented in the Bird's Foot area. In both areas, oil was observed to be persistent on the marsh plants from the earliest (July 7) to the latest (August 24) surveys. At sites

  1. Vegetation recovery in an oil-impacted and burned Phragmites australis tidal freshwater marsh.

    PubMed

    Zengel, Scott; Weaver, Jennifer; Wilder, Susan L; Dauzat, Jeff; Sanfilippo, Chris; Miles, Martin S; Jellison, Kyle; Doelling, Paige; Davis, Adam; Fortier, Barret K; Harris, James; Panaccione, James; Wall, Steven; Nixon, Zachary

    2017-08-26

    In-situ burning of oiled marshes is a cleanup method that can be more effective and less damaging than intrusive manual and mechanical methods. In-situ burning of oil spills has been examined for several coastal marsh types; however, few published data are available for Phragmites australis marshes. Following an estimated 4200gallon crude oil spill and in-situ burn in a Phragmites tidal freshwater marsh at Delta National Wildlife Refuge (Mississippi River Delta, Louisiana), we examined vegetation impacts and recovery across 3years. Oil concentrations in marsh soils were initially elevated in the oiled-and-burned sites, but were below background levels within three months. Oiling and burning drastically affected the marsh vegetation; the formerly dominant Phragmites, a non-native variety in our study sites, had not fully recovered by the end of our study. However, overall vegetation recovery was rapid and local habitat quality in terms of native plants, particularly Sagittaria species, and wildlife value was enhanced by burning. In-situ burning appears to be a viable response option to consider for future spills in marshes with similar plant species composition, hydrogeomorphic settings, and oiling conditions. In addition, likely Phragmites stress from high water levels and/or non-native scale insect damage was also observed during our study and has recently been reported as causing widespread declines or loss of Phragmites stands in the Delta region. It remains an open question if these stressors could lead to a shift to more native vegetation, similar to what we observed following the oil spill and burn. Increased dominance by native plants may be desirable as local patches, but widespread loss of Phragmites, even if replaced by native species, could further acerbate coastal erosion and wetland loss, a major concern in the region. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.

    PubMed

    Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana

    2017-02-15

    Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons C21, decreased. During these experiments, soils were moderately toxic during the first three months, then earthworms survived well, were active and reproduced with petroleum hydrocarbons present. This study demonstrated that earthworms accelerate bioremediation of crude oil in soils, including the degradation of the heaviest polyaromatic fractions.

  3. Forest soils

    Treesearch

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  4. Conserving Soil.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Designed as enrichment materials for grades six through nine, this program is an interdisciplinary study of soils. As part of the program students: (1) examine soil organisms; (2) research history of local Native Americans to see how they and others have used the land and its soils; (3) investigate how soils are degraded and how they are conserved…

  5. Soil carbonates and soil water

    USDA-ARS?s Scientific Manuscript database

    The presence of soil carbonates occurring as solidified masses or dispersed particles can alter soil water dynamics from what would be expected based on non-carbonate soil properties. Carbonate minerals in the soil can be derived from high carbonate parent material, additions in the form of carbonat...

  6. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  7. Soil properties, soil functions and soil security

    NASA Astrophysics Data System (ADS)

    Poggio, Laura; Gimona, Alessandro

    2017-04-01

    Soil plays a crucial role in the ecosystem functioning such as food production, capture and storage of water, carbon and nutrients and in the realisation of a number of UN Sustainable Developments Goals. In this work we present an approach to spatially and jointly assess the multiple contributions of soil to the delivery of ecosystem services within multiple land-use system. We focussed on the modelling of the impact of soil on sediment retention, carbon storage, storing and filtering of nutrients, habitat for soil organisms and water regulation, taking into account examples of land use and climate scenarios. Simplified models were used for the single components. Spatialised Bayesian Belief networks were used for the jointly assessment and mapping of soil contribution to multiple land use and ecosystem services. We integrated continuous 3D soil information derived from digital soil mapping approaches covering the whole of mainland Scotland, excluding the Northern Islands. Uncertainty was accounted for and propagated across the whole process. The Scottish test case highlights the differences in roles between mineral and organic soils and provides an example of integrated study assessing the contributions of soil. The results show the importance of the multi-functional analysis of the contribution of soils to the ecosystem service delivery and UN SDGs.

  8. Soil Ecology

    NASA Astrophysics Data System (ADS)

    Killham, Ken

    1994-04-01

    Soil Ecology is designed to meet the increasing challenge faced by today's environmental scientists, ecologists, agriculturalists, and biotechnologists for an integrated approach to soil ecology. It emphasizes the interrelations among plants, animals, and microbes, by first establishing the fundamental physical and chemical properties of the soil habitat and then functionally characterizing the major components of the soil biota and some of their most important interactions. The fundamental principles underpinning soil ecology are established and this then enables an integrated approach to explore and understand the processes of soil nutrient (carbon, nitrogen, and phosphorus) cycling and the ecology of extreme soil conditions such as soil-water stress. Two of the most topical aspects of applied soil ecology are then selected. First, the ecology of soil pollution is examined, focusing on acid deposition and radionuclide pollution. Second, manipulation of soil ecology through biotechnology is discussed, illustrating the use of pesticides and microbial inocula in soils and pointing toward the future by considering the impact of genetically modified inocula on soil ecology.

  9. Soil penetrometer

    NASA Technical Reports Server (NTRS)

    Howard, E. A.; Hotz, G. M.; Bryson, R. P. (Inventor)

    1968-01-01

    An auger-type soil penetrometer for burrowing into soil formations is described. The auger, while initially moving along a predetermined path, may deviate from the path when encountering an obstruction in the soil. Alterations and modifications may be made in the structure so that it may be used for other purposes.

  10. Soil microbiology and soil health assessment

    USDA-ARS?s Scientific Manuscript database

    Soil scientists have long recognized the importance of soil biology in ecological health. In particular, soil microbes are crucial for many soil functions including decomposition, nutrient cycling, synthesis of plant growth regulators, and degradation of synthetic chemicals. Currently, soil biologis...

  11. (Contaminated soil)

    SciTech Connect

    Siegrist, R.L.

    1991-01-08

    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  12. Soil biology for resilient healthy soil

    USDA-ARS?s Scientific Manuscript database

    What is a resilient healthy soil? A resilient soil is capable of recovering or adapting to stress; the health of the living/biological component of the soil is crucial for soil resiliency. Soil health is tightly coupled to the concept of soil quality (Text Box 1) and the terms are frequently used ...

  13. Soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Carrier, W. D., III; Houston, W. N.; Scott, R. F.; Bromwell, L. G.; Durgunoglu, H. T.; Hovland, H. J.; Treadwell, D. D.; Costes, N. C.

    1972-01-01

    Preliminary results are presented of an investigation of the physical and mechanical properties of lunar soil on the Descartes slopes, and the Cayley Plains in the vicinity of the LM for Apollo 16. The soil mechanics data were derived form (1) crew commentary and debriefings, (2) television, (3) lunar surface photography, (4) performance data and observations of interactions between soil and lunar roving vehicle, (5) drive-tube and deep drill samples, (6) sample characteristics, and (7) measurements using the SRP. The general characteristics, stratigraphy and variability are described along with the core samples, penetrometer test results, density, porosity and strength.

  14. Agriculture: Soils

    EPA Pesticide Factsheets

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  15. Schoolground Soil Studies.

    ERIC Educational Resources Information Center

    Doyle, Charles

    1978-01-01

    Outlined are simple activities for studying soil, which can be conducted in the schoolyard. Concepts include soil profiles, topsoil, soil sizes, making soil, erosion, slope, and water absorption. (SJL)

  16. Basic Soils. Revision.

    ERIC Educational Resources Information Center

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  17. Soil Surveys

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An accurate method of surveying the soil was developed by NASA and the Department of Agriculture. The method involves using ground penetrating radar to produce subsurface graphs. By examining printouts from the system's recorder, scientists can determine whether a site is appropriate for building, etc.

  18. Soil moisture

    Treesearch

    L. L. Boersma; D. Kirkham; D. Norum; R. Ziemer; J. C. Guitjens; J. Davidson; J. N. Luthin

    1971-01-01

    Infiltration continues to occupy the attention of soil physicists and engineers. A theoretical and experimental analysis of the effect of surface sealing on infiltration by Edwards and Larson [1969] showed that raindrops reduced the infiltration rate by as much as 50% for a two-hour period of infiltration. The effect of raindrops on the surface infiltration rate of...

  19. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.; Hovland, H. J.

    1972-01-01

    The study to identify and define recognizable fabrics in lunar soil in order to determine the history of the lunar regolith in different locations is reported. The fabric of simulated lunar soil, and lunar soil samples are discussed along with the behavior of simulated lunar soil under dynamic and static loading. The planned research is also included.

  20. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  1. Indicators: Soil Chemistry

    EPA Pesticide Factsheets

    The chemical makeup of the soil can provide information on wetland condition, wetland water quality and services being provided by the wetland ecosystem. Analyzing soil chemistry reveals if the soil is contaminated with a toxic chemical or heavy metal.

  2. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    NASA Technical Reports Server (NTRS)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  3. NOrth AMerica Soil (NOAM-SOIL) Database

    NASA Astrophysics Data System (ADS)

    Miller, D. A.; Waltman, S. W.; Geng, X.; James, D.; Hernandez, L.

    2009-05-01

    NOAM-SOIL is being created by combining the CONUS-SOIL database with pedon data and soil geographic data coverages from Canada and Mexico. Completion of the in-progress NOrth AMerica Soil (NOAM-SOIL) database will provide complete North America coverage comparable to CONUS. Canadian pedons, which number more than 500, have been painstakingly transcribed to a common format, from hardcopy, and key- entered. These data, along with map unit polygons from the 1:1,000,000 Soil Landscapes of Canada, will be used to create the required spatial data coverages. The Mexico data utilizes the INEGI 1:1,000,000 scale soil map that was digitized by U. S. Geological Survey EROS Data Center in the mid 1990's plus about 20,000 pedons. The pedon data were published on the reverse side of the paper 1:250,000 scale Soil Map of Mexico and key entered by USDA and georeferenced by Penn State to develop an attribute database that can be linked to the 1:1,000,000 scale Soil Map of Mexico based on taxonomic information and geographic proximity. The essential properties that will be included in the NOAM-SOIL data base are: layer thickness (depth to bedrock or reported soil depth); available water capacity; sand, silt, clay; rock fragment volume; and bulk density. For quality assurance purposes, Canadian and Mexican soil scientists will provide peer review of the work. The NOAM-SOIL project will provide a standard reference dataset of soil properties for use at 1km resolution by NACP modelers for all of North America. All data resources, including metadata and selected raw data, will be provided through the Penn State web site: Soil Information for Environmental Modeling and Ecosystem Management (www.soilinfo.psu.edu). Progress on database completion is reported.

  4. Usable science: soil health

    USDA-ARS?s Scientific Manuscript database

    Healthy soils are fundamental to sustainable rangelands, but soils toil in obscurity and this is reflected in the belowground “black-box” mentality often attributed to soils. Transformational changes get attention for land managers and public. For example, soil erosion associated with Dust Bowl of 1...

  5. Soil: Conservation practices

    USDA-ARS?s Scientific Manuscript database

    The primary source to meet global food and fiber demands is production agriculture, but accelerated soil erosion threatens its sustainability. Soil erosion is an important contributor to the normal soil formation process, but erosion becomes problematic when it is accelerated. Soil conservation prac...

  6. Soil Classification and Treatment.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This instructional unit was designed to enable students, primarily at the secondary level, to (1) classify soils according to current capability classifications of the Soil Conservation Service, (2) select treatments needed for a given soil class according to current recommendations provided by the Soil Conservation Service, and (3) interpret a…

  7. Lunar Soil Particle Separator

    NASA Technical Reports Server (NTRS)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  8. Teaching Science with Soil.

    ERIC Educational Resources Information Center

    Schatz, Albert; Kriebs, Jean Oak

    Prepared primarily for junior high school students and utilizing an integrated science approach, this manual offers activities for examining the ecosystem and environmental problems. With organic aspects of soils as the main subject field, it includes study of soil formation, soil fertility, soil contamination, and edaphic relationships. Most of…

  9. Fundamentals of soil science

    USDA-ARS?s Scientific Manuscript database

    This study guide provides comments and references for professional soil scientists who are studying for the soil science fundamentals exam needed as the first step for certification. The performance objectives were determined by the Soil Science Society of America's Council of Soil Science Examiners...

  10. Teaching Science with Soil.

    ERIC Educational Resources Information Center

    Schatz, Albert; Kriebs, Jean Oak

    Prepared primarily for junior high school students and utilizing an integrated science approach, this manual offers activities for examining the ecosystem and environmental problems. With organic aspects of soils as the main subject field, it includes study of soil formation, soil fertility, soil contamination, and edaphic relationships. Most of…

  11. Atlas of soil reflectance properties

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Biehl, L. L.; Robinson, B. F.

    1979-01-01

    A compendium of soil spectral reflectance curves together with soil test results and site information is presented in an abbreviated manner listing those soil properties most important in influencing soil reflectance. Results are presented for 251 soils from 39 states and Brazil. A narrative key describes relationships between soil parameters and reflectance curves. All soils are classified according to the U.S. soil taxonomy and soil series name for ease of identification.

  12. Connecting soil microbial communities to soil functioning and soil health

    USDA-ARS?s Scientific Manuscript database

    One of the most important functions soils perform, is the capacity to buffer anthropogenic disturbances to sustain productivity while improving water and air quality. At the core of a healthy soil is a biological active and diverse community that provides internal nutrient cycling and is resilient t...

  13. Shales and swelling soils

    NASA Astrophysics Data System (ADS)

    Franklin, J. A.; Dimillio, A. F.; Strohm, W. E., Jr.; Vandre, B. C.; Anderson, L. R.

    The thirteen (13) papers in this report deal with the following areas: a shale rating system and tentative applications to shale performance; technical guidelines for the design and construction of shale embankments; stability of waste shale embankments; dynamic response of raw and stabilized Oklahoma shales; laboratory studies of the stabilization of nondurable shales; swelling shale and collapsing soil; development of a laboratory compaction degradation test for shales; soil section approach for evaluation of swelling potential soil moisture properties of subgrade soils; volume changes in compacted clays and shales on saturation; characterization of expansive soils; pavement roughness on expansive clays; and deep vertical fabric moisture barriers in swelling soils.

  14. Soil washing technology evaluation

    SciTech Connect

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

  15. Trafficability and workability of soils

    USDA-ARS?s Scientific Manuscript database

    Trafficability and workability are soil capabilities supporting operations of agricultural machinery. Trafficability is a soil's capability to support agricultural traffic without degrading soils and ecosystems. Workability is a soil capability supporting tillage. Agriculture is associated with mech...

  16. What are Soil Fumigants?

    EPA Pesticide Factsheets

    These pesticides, when applied to soil, form a gas to control pests including nematodes, fungi, bacteria, insects, and weeds, that live in the soil and can disrupt plant growth and crop production. Required safety measures reduce exposure risks.

  17. Soils of Roztocze

    NASA Astrophysics Data System (ADS)

    Uziak, Stanisław; Poznyak, Stepan P.; Wyszniewskij, Josip

    2010-01-01

    The publication outlines the characteristics of the soils found in Roztocze on the Polish and Ukrainian territory. The map enclosed (scale 1:500 000) illustrates their location. It shows that the complex from lessives and brown soils formed of loess dominates in Roztocze on the Polish side, mainly in its western part. Both in Central and Eastern Roztocze, predominant areas are covered with brown loamy soils, formed of cretaceous gaizes. The same applies to rusty and podzolic soils formed from loose sands and slightly loamy and loamy sands. Other soil units do not cover significant areas. In general, in Roztocze on the Ukrainian territory there are the same soils with a few exceptions. Large areas are covered with lessives and brown soils formed from non-uniform silt formations and rusty with podzolic soils formed from slightly loamy, loamy and loose sands.

  18. Soil and Litter Animals.

    ERIC Educational Resources Information Center

    Lippert, George

    1991-01-01

    A lesson plan for soil study utilizes the Tullgren extraction method to illustrate biological concepts. It includes background information, equipment, collection techniques, activities, and references for identification guides about soil fauna. (MCO)

  19. Enterovirus inactivation in soil.

    PubMed Central

    Yeager, J G; O'Brien, R T

    1979-01-01

    The inactivation of radioactively labeled poliovirus type 1 and coxsackievirus B 1 in soils saturated with surface water, groundwater, and septic tank liquor was directly proportional to temperature. Virus persistence was also related to soil type and the liquid amendment in which viruses were suspended. At 37 degrees C, no infectivity was recovered from saturated soil after 12 days; at 4 degrees C, viruses persisted for at least 180 days. No infectivity was recovered from dried soil regardless of temperature, soil type, or liquid amendment. Additional experiments showed that evaporation of soil water was largely responsible for the decreased recovery of infectivity from drying soil. Increased rates of virus inactivation at low soil moisture levels were also demonstrated. PMID:44178

  20. Soil and Litter Animals.

    ERIC Educational Resources Information Center

    Lippert, George

    1991-01-01

    A lesson plan for soil study utilizes the Tullgren extraction method to illustrate biological concepts. It includes background information, equipment, collection techniques, activities, and references for identification guides about soil fauna. (MCO)

  1. The Soil Is Alive!

    ERIC Educational Resources Information Center

    Science and Children, 1989

    1989-01-01

    Describes activities which demonstrate the abundance of organisms living underground. Provides outlined directions, lists of materials, and a soil ecosystem transparency for delving into the properties of soil. (RT)

  2. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    NASA Astrophysics Data System (ADS)

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta

    2010-05-01

    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the

  3. Soil organic matter mineralization in frozen soils

    NASA Astrophysics Data System (ADS)

    Harrysson Drotz, S.; Sparrman, T.; Schleucher, J.; Nilsson, M.; Öquist, M. G.

    2009-12-01

    Boreal forest soils are frozen for a large part of the year and soil organic matter mineralization during this period has been shown to significantly influence the C balance of boreal forest ecosystems. Mineralization proceeds through heterotrophic microbial activity, but the understanding of the environmental controls regulating soil organic matter mineralization under frozen conditions is poor. Through a series of investigations we have addressed this issue in order to elucidate to what extent a range of environmental factors control mineralization processes in frozen soils and also the microbial communities potential to oxidize organic substrates and grow under such conditions. The unfrozen water content in the frozen soils was shown to be an integral control on the temperature response of biogenic CO2 production across the freezing point of bulk soil water. We found that osmotic potential was an important contributor to the total water potential and, hence, the unfrozen water content of frozen soil. From being low and negligible in an unfrozen soil, the osmotic potential was found to contribute up to 70% of the total water potential in frozen soil, greatly influencing the volume of liquid water. The specific factors of how soil organic matter composition affected the unfrozen water content and CO2 production of frozen soil were studied by CP-MAS NMR. We concluded that abundance of aromatics and recalcitrant compounds showed a significant positive correlation with unfrozen water content and these were also the major soil organic fractions that similarly correlated with the microbial CO2 production of the frozen soils. Thus, the hierarchy of environmental factors controlling SOM mineralization changes as soils freeze and environmental controls elucidated from studies of unfrozen systems can not be added on frozen conditions. We have also investigated the potential activity of soil microbial communities under frozen conditions in order to elucidate temperature

  4. Conserving Soil. Revised.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    This book of enrichment materials is an interdisciplinary study of soil designed for students in grades 6-9. The materials are presented in three units. Unit 1 contains eight activities in which students investigate soil science and study the social impact of soil by examining the history of land use by local Native Americans. Unit 2 contains 10…

  5. Soil microscopy and micromorphology

    SciTech Connect

    FitzPatrick, E.A.

    1993-12-31

    This book is a valuable resource to help geologists integrate knowledge of soil science into the endeavor of identifying paleosols. Attention is focused on the following: soil micromorphology, including sample preparation techniques; and physical and chemical properties. Various applications are presented of micromorphological soil study. Included is coverage on the disciplines of agriculture, archeology, engineering, geomorphology, paleoclimatology, paleopedology, and microbiology.

  6. Thermal Properties of Soils

    DTIC Science & Technology

    1981-12-01

    plagio - clase feldspar and pyroxene. The tine fraction may Surface area and its effects contain the clay "sheet" minerals (i.e. kaolinite. illite...Pyroxene, Kaoliniwe Unified By By Ortho. Plagio . amphibole, Basic clay min. Hematite Soil Soil soil petrogr. X.ray clase clase and Igneous and clay and no

  7. Understanding Soil Moisture

    USDA-ARS?s Scientific Manuscript database

    Understanding soil moisture is critical for landscape irrigation management. This landscaep irrigation seminar will compare volumetric and matric potential soil-moisture sensors, discuss the relationship between their readings and demonstrate how to use these data. Soil water sensors attempt to sens...

  8. Measuring Soil Temperature

    USDA-ARS?s Scientific Manuscript database

    Soil temperature is a critical factor in the germination and early growth of many crops including corn, cotton, small grains, and vegetable crops. Soil temperature strongly influences the rate of critical biological reactions in the soil such as the rates of nitrification and microbial respiration. ...

  9. Soil penetrometers and penetrability

    USDA-ARS?s Scientific Manuscript database

    Soil penetrometers are useful tools that measure the penetrability, or strength, of a soil. They can be as simple as a rod or shaft with a blunt or sharp end, or complicated mechanically driven instruments with digital data collection systems. Regardless of their design, soil penetrometers measure s...

  10. Conserving Soil. Revised.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    This book of enrichment materials is an interdisciplinary study of soil designed for students in grades 6-9. The materials are presented in three units. Unit 1 contains eight activities in which students investigate soil science and study the social impact of soil by examining the history of land use by local Native Americans. Unit 2 contains 10…

  11. Factors affecting soil cohesion

    USDA-ARS?s Scientific Manuscript database

    Soil erodibility is a measure of a soil’s resistance against erosive forces and is affected by both intrinsic (or inherent) soil property and the extrinsic condition at the time erodibility measurement is made. Since soil erodibility is usually calculated from results obtained from erosion experimen...

  12. Cleaning soil without incineration

    SciTech Connect

    Valenti, M.

    1994-05-01

    This article addresses the clean up of contaminated soil without burning. The topics of the article include the problems associated with incineration at depths requiring excavation, a description of the contaminated site, pilot testing of the remediation soil washing process, full-scale cleanup, a description of the soil separation and washing process.

  13. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site.

    PubMed

    Akbari, Ali; Ghoshal, Subhasis

    2014-09-15

    Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day(-1) in biopile tank compared to 0.11 day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems.

  14. Climate-smart soils.

    PubMed

    Paustian, Keith; Lehmann, Johannes; Ogle, Stephen; Reay, David; Robertson, G Philip; Smith, Pete

    2016-04-07

    Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight 'state of the art' soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.

  15. Soil bioturbation. A commentary

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Wilkinson, Marshall

    2010-05-01

    Organisms such as trees, ants, earthworms, termites are important components of the earth systems that have dominantly been thought of as abiotic. Despite an early focus on soil bioturbation by heavy-weights such as Charles Darwin and Nathanial Shaler in the late 19th century, sporadic attention to this theme has subsequently followed. Recent compilations demonstrate that soil bioturbation by fauna and flora is widespread across Earths terrestrial surface, and operates at geologically rapid rates that warrant further attention. Such biotic activity contributes to soil creep, soil carbon dynamics, and is critical in engineering the medium through which ecosystems draw their abiotic requirements. Soil and its biota are fundamental components of the Earth System. However, soil scientist focussed on the dominant paradigm of landscape evolution, and bioturbation was relegated. In fact, bioturbation is still not widely appreciated within the soil and earth system research community. Nevertheless, within the last decade a review of the impact of bioturbation was launched by authors such as Geoff S. Humphreys. Bioturbation is a complex process as new soil is formed, mounds are developed, soil is buried and a downslope transport of material is done. Bioturbation modify the soil texture and porosity, increase the nutrients and encourage the soil creep flux. A review of the State-of-the-Art of Bioturbation will be presented.

  16. From soil in art towards Soil Art

    NASA Astrophysics Data System (ADS)

    Feller, C.; Landa, E. R.; Toland, A.; Wessolek, G.

    2015-02-01

    The range of art forms and genres dealing with soil is wide and diverse, spanning many centuries and artistic traditions, from prehistoric painting and ceramics to early Renaissance works in Western literature, poetry, paintings, and sculpture, to recent developments in cinema, architecture and contemporary art. Case studies focused on painting, installation, and cinema are presented with the view of encouraging further exploration of art about, in, with, or featuring soil or soil conservation issues, created by artists, and occasionally scientists, educators or collaborative efforts thereof.

  17. Mass Transport within Soils

    SciTech Connect

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone

  18. Mycorrhizas and soil structure.

    PubMed

    Rillig, Matthias C; Mummey, Daniel L

    2006-01-01

    In addition to their well-recognized roles in plant nutrition and communities, mycorrhizas can influence the key ecosystem process of soil aggregation. Here we review the contribution of mycorrhizas, mostly focused on arbuscular mycorrhizal fungi (AMF), to soil structure at various hierarchical levels: plant community; individual root; and the soil mycelium. There are a suite of mechanisms by which mycorrhizal fungi can influence soil aggregation at each of these various scales. By extension of these mechanisms to the question of fungal diversity, it is recognized that different species or communities of fungi can promote soil aggregation to different degrees. We argue that soil aggregation should be included in a more complete 'multifunctional' perspective of mycorrhizal ecology, and that in-depth understanding of mycorrhizas/soil process relationships will require analyses emphasizing feedbacks between soil structure and mycorrhizas, rather than a uni-directional approach simply addressing mycorrhizal effects on soils. We finish the discussion by highlighting new tools, developments and foci that will probably be crucial in further understanding mycorrhizal contributions to soil structure.

  19. Radiogeochemistry of Kamchatka soils

    NASA Astrophysics Data System (ADS)

    Zakharikhina, L. V.; Litvinenko, Yu. S.

    2016-01-01

    Background concentrations of Th and U in volcanic soils (Andosols) of Kamchatka are much lower than their clarkes in continental soils. The dose rate of gamma radiation above the soil surface (10-11.5 µR/h in the south and 8-9.5 [m]R/h in the north of Kamchatka Peninsula) is lower than the natural level of this index for the mountainous areas in the boreal zone of Russia. The natural radiogeochemical background of Kamchatka soils is controlled by the petrochemical composition of volcanic ash composing the mineral basis of Kamchatka soils. It is higher in the southern soil province, where soils develop from acidic ashes, in comparison with the northern province, with a predominance of soils developing from ashes of basic and intermediate composition. This agrees with Th and U clarkes for the corresponding types of volcanic rocks and explains the natural origin of the elevated radiogeochemical background in the southern part of Kamchatka as compared with its northern part. The soils of the northern province developing from relatively fresh volcanic ashes show a lower Th/U ratio as compared to the soils of southern Kamchatka because of higher uranium content in the newly deposited ashes.

  20. Soil organic matter as sole indicator of soil degradation

    Treesearch

    S.E. Obalum; G.U. Chibuike; S. Peth; Ying Ouyang

    2017-01-01

    Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a...

  1. A whole soil stability index (WSSI) for evaluating soil aggregation

    USDA-ARS?s Scientific Manuscript database

    Soil aggregate stability is an indicator of soil quality. However, there is no standard methodology for measuring soil aggregation or aggregate stability, particularly for determining a whole soil stability index. A whole soil stability index (WSSI) was developed here which combined data from dry ...

  2. Should soil testing services measure soil biological activity

    USDA-ARS?s Scientific Manuscript database

    Health of agricultural soils depends largely on conservation management to promote soil organic C accumulation. Total soil organic C changes slowly, but active fractions are more dynamic. A key indicator of healthy soil is potential biological activity, which could be measured rapidly with soil te...

  3. Should there be a "Wet" Soil Order in Soil Taxonomy?

    NASA Astrophysics Data System (ADS)

    Rabenhorst, Martin; Wessel, Barret; Stolt, Mark; Lindbo, David

    2017-04-01

    Early soil classification systems recognized wet soils at the highest categorical level. Among the Intrazonal Soils of the US classification utilized between the 1920s and 1960, were included as Great Soil Groups, the Wiesenboden, Bog, Half-Bog, Ground-Water Podzols and Ground-Water Laterites. In other systems, groups named with such terms as ground water gley and pseudogley were also used. With the advent of Soil Taxonomy and it's precursor (1960, 1975), Histosols (organic soils) were distinguished as one of the initial 10 soil orders, and while many of these organic soils are wet soils, some are not (Folists for example). Thus, for over 50 years, with the exception of Histosols, wet soils (which typically represent the wettest end of subaerial wet soils) have not been collectively recognized within taxa at the highest categorical level (order) in the US soil classification system. Rather, the wettest soils were designated at the second categorical level as wet (Aqu) suborders among the various soil orders, and more recently, subaqueous soils as "Wass" suborders of Entisols and Histosols. Soils with less-wet conditions have been recognized at the subgroup (4th) level. Further, in impoundments and regions of transgressing coastlines, submerged upland soils have been found that still classify in soil orders that do not accommodate subaqueous soils ("Wass" suborders). Notwithstanding, other contemporary soil classification systems do (have continued to) recognize wet soils at the highest level. In the World Reference Base (WRB) for example, wet soils are designated as Gleysols or Stagnosols. As efforts are underway to revisit, simplify, and revise Soil Taxonomy, questions have been raised regarding whether wet soils should again be moved back with a place among taxa at the highest category using a name such as Hydrasols, Aquasols, etc. This paper will explore and consider the questions and arguments for and against such proposals and the difficult question regarding

  4. Evaluating soil contamination

    SciTech Connect

    Beyer, W.

    1990-07-01

    The compilation was designed to help U.S. Fish and Wildlife Service contaminant specialists evaluate the degree of contamination of a soil, based on chemical analyses. Included are regulatory criteria, opinions, brief descriptions of scientific articles, and miscellaneous information that might be useful in making risk assessments. The intent was to make hard-to-obtain material readily available to contaminant specialists, but not to critique the material or develop new criteria. The compilation is to be used with its index, which includes about 200 contaminants. Entries include soil contaminant criteria from other countries, contaminant guidelines for applying sewage sludge to soil, guidelines for evaluating sediments, background soil concentrations for various elements, citations to scientific articles that may help estimate the potential movement of soil contaminants into wildlife food chains, and a few odds and ends. Articles on earthworms were emphasized because they are a natural bridge between soil and many species of wildlife.

  5. Soil in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Richter, Daniel deB; Bacon, Allan R.; Brecheisen, Zachary; Mobley, Megan L.

    2015-07-01

    With scholars deliberating a new name for our geologic epoch, i.e., the Anthropocene, soil scientists whether biologists, chemists, or physicists are documenting significant changes accruing in a majority of Earth's soils. Such global soil changes interact with the atmosphere, biosphere, hydrosphere, and lithosphere (i.e., Earth's Critical Zone), and these developments are significantly impacting the Earth's stratigraphic record as well. In effect, soil scientists study such global soil changes in a science of anthropedology, which leads directly to the need to transform pedostratigraphyinto an anthro-pedostratigraphy, a science that explores how global soil change alters Earth's litho-, bio-, and chemostratigraphy. These developments reinforce perspectives that the planet is indeed crossing into the Anthropocene.

  6. Soil Microbial Forensics.

    PubMed

    Santiago-Rodriguez, Tasha M; Cano, Raúl J

    2016-08-01

    Soil microbial forensics can be defined as the study of how microorganisms can be applied to forensic investigations. The field of soil microbial forensics is of increasing interest and applies techniques commonly used in diverse disciplines in order to identify microbes and determine their abundances, complexities, and interactions with soil and surrounding objects. Emerging new techniques are also providing insights into the complexity of microbes in soil. Soil may harbor unique microbes that may reflect specific physical and chemical characteristics indicating site specificity. While applications of some of these techniques in the field of soil microbial forensics are still in early stages, we are still gaining insight into how microorganisms may be more robustly used in forensic investigations.

  7. Soil Management for Hardwood Production

    Treesearch

    W. M. Broadfoot; B. G. Blackmon; J. B. Baker

    1971-01-01

    Soil management is the key to successful hardwood management because soil properties are probably the most important determinants of forest productivity. Because of the lack of soil uniformity, however, many foresters have become frustrated with attempts to relate soil to satisfactory growth. Since soil scientists have been unable to predict site quality for trees in...

  8. Soil microbiota of the prairie

    USDA-ARS?s Scientific Manuscript database

    The prairie ecosystem is often used as a benchmark ecosystem to provide a reference soil quality or soil health assessment. Current soil health assessments include measurements of soil chemical and physical indicators and of selected microbiological activities but no characterization of soil microbi...

  9. Managing to enhance soil health

    USDA-ARS?s Scientific Manuscript database

    Healthy soils are critical for meeting current and future societal demands. Management strategies that protect the soil against erosion, build soil organic matter and promote nutrient cycling are ways to enhance soil health. Keeping soils covered and judicious use of agrochemicals are akin to us “hu...

  10. Soil moisture modeling review

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W.

    1978-01-01

    A determination of the state of the art in soil moisture transport modeling based on physical or physiological principles was made. It was found that soil moisture models based on physical principles have been under development for more than 10 years. However, these models were shown to represent infiltration and redistribution of soil moisture quite well. Evapotranspiration has not been as adequately incorporated into the models.

  11. Earthworms and Soil Pollutants

    PubMed Central

    Hirano, Takeshi; Tamae, Kazuyoshi

    2011-01-01

    Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short review, we describe recent studies concerning the relationship between earthworms and soil pollutants, and discuss the possibility of using the earthworm as a bio-monitoring organism for soil pollution. PMID:22247659

  12. Multi-step soil washing to remove contaminants from soil

    SciTech Connect

    Skriba, M.C.

    1993-12-31

    The advantage of the soil washing approach to remove contaminants from soils is discussed. This report also describes 2 cases in which uranium and plutonium are dispersed in soils. Removal efficiencies are described.

  13. Soil vital signs: A new Soil Quality Index (SQI) for assessing forest soil health

    Treesearch

    Michael C. Amacher; Katherine P. O' Neil; Charles H. Perry

    2007-01-01

    The Forest Inventory and Analysis (FIA) program measures a number of chemical and physical properties of soils to address specific questions about forest soil quality or health. We developed a new index of forest soil health, the soil quality index (SQI), that integrates 19 measured physical and chemical properties of forest soils into a single number that serves as...

  14. Classiology and soil classification

    NASA Astrophysics Data System (ADS)

    Rozhkov, V. A.

    2012-03-01

    Classiology can be defined as a science studying the principles and rules of classification of objects of any nature. The development of the theory of classification and the particular methods for classifying objects are the main challenges of classiology; to a certain extent, they are close to the challenges of pattern recognition. The methodology of classiology integrates a wide range of methods and approaches: from expert judgment to formal logic, multivariate statistics, and informatics. Soil classification assumes generalization of available data and practical experience, formalization of our notions about soils, and their representation in the form of an information system. As an information system, soil classification is designed to predict the maximum number of a soil's properties from the position of this soil in the classification space. The existing soil classification systems do not completely satisfy the principles of classiology. The violation of logical basis, poor structuring, low integrity, and inadequate level of formalization make these systems verbal schemes rather than classification systems sensu stricto. The concept of classification as listing (enumeration) of objects makes it possible to introduce the notion of the information base of classification. For soil objects, this is the database of soil indices (properties) that might be applied for generating target-oriented soil classification system. Mathematical methods enlarge the prognostic capacity of classification systems; they can be applied to assess the quality of these systems and to recognize new soil objects to be included in the existing systems. The application of particular principles and rules of classiology for soil classification purposes is discussed in this paper.

  15. Evaluation of Soil Venting Application

    EPA Pesticide Factsheets

    The ability of soil venting to inexpensively remove large amounts of volatile organic compounds (VOCs) from contaminated soils is well established. However, the time required using venting to remediate soils to low contaminant levels often required by..

  16. The Global Soil Partnership

    NASA Astrophysics Data System (ADS)

    Montanarella, Luca

    2015-07-01

    The Global Soil Partnership (GSP) has been established, following an intensive preparatory work of the Food and Agriculture Organization of the United Nations (FAO) in collaboration with the European Commission (EC), as a voluntary partnership coordinated by the FAO in September 2011 [1]. The GSP is open to all interested stakeholders: Governments (FAO Member States), Universities, Research Organizations, Civil Society Organizations, Industry and private companies. It is a voluntary partnership aiming towards providing a platform for active engagement in sustainable soil management and soil protection at all scales: local, national, regional and global. As a “coalition of the willing” towards soil protection, it attempts to make progress in reversing soil degradation with those partners that have a genuine will of protecting soils for our future generations. It openly aims towards creating an enabling environment, despite the resistance of a minority of national governments, for effective soil protection in the large majority of the countries that are genuinely concerned about the rapid depletion of their limited soil resources.

  17. Soil and vegetation surveillance

    SciTech Connect

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  18. Soils, peatlands, and biomonitoring

    Treesearch

    James Doolittle

    2009-01-01

    Soils are three-dimensional (3D) natural bodies conSlStmg of unconsolidated mineral and organic materials that form a continuous blanket over most of the earth's land sUlface. At all sca les of measurements, soils are exceedingly complex and variable in biological, chemical, physical, mineralogical, and electromagnetic properties....

  19. Economics of Soil Disturbance

    Treesearch

    Han-Sup Han

    2007-01-01

    Economic implications of soil disturbance are discussed in four categories: planning and layout, selection of harvesting systems and equipment, long-term site productivity loss, and rehabilitation treatments. Preventive measures are more effective in minimizing impacts on soils than rehabilitation treatments because of the remedial expenses, loss of productivity until...

  20. Creative Soil Conservation

    ERIC Educational Resources Information Center

    Smith, Martha

    2010-01-01

    Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…

  1. Soil salination indicators

    USDA-ARS?s Scientific Manuscript database

    Salts are naturally present in soils, and many salt elements are essential nutrients for plants. The most common soluble salts in soil include major cations of sodium (Na+), magnesium (Mg2+), calcium (Ca2+), potassium (K+), and anions of chloride (Cl-), sulfate (SO42-), bicarbonate (HCO3-) and carbo...

  2. Soil Health Educational Resources

    ERIC Educational Resources Information Center

    Hoorman, James J.

    2015-01-01

    Soil health and cover crops are topics of interest to farmers, gardeners, and students. Three soil health and cover crop demonstrations provide educational resources. Demonstrations one outlines two educational cover crop seed displays, including the advantages and disadvantages. Demonstration two shows how to construct and grow a cover crop root…

  3. Creative Soil Conservation

    ERIC Educational Resources Information Center

    Smith, Martha

    2010-01-01

    Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…

  4. Chapter 3: Soil Chemistry

    Treesearch

    Jennifer D. Knoepp; Leonard F. DeBano; Daniel G. Neary

    2005-01-01

    The chemical properties of the soil that are affected by fire include individual chemical characteristics, chemical reactions, and chemical processes (DeBano and others 1998). The soil chemical characteristics most commonly affected by fire are organic matter, carbon (C), nitrogen (N), phosphorus (P), sulfur (S), cations, cation exchange capacity, pH, and buffer power...

  5. Soil Health Educational Resources

    ERIC Educational Resources Information Center

    Hoorman, James J.

    2015-01-01

    Soil health and cover crops are topics of interest to farmers, gardeners, and students. Three soil health and cover crop demonstrations provide educational resources. Demonstrations one outlines two educational cover crop seed displays, including the advantages and disadvantages. Demonstration two shows how to construct and grow a cover crop root…

  6. Soil and Culture

    USDA-ARS?s Scientific Manuscript database

    Editors Ed Landa and Christian Feller have assembled an international ensemble cast of writers, artists, historians, philosophers, and scientists of broad perspective to create a book of truly fascinating reading for any soils enthusiast. When so little we see in print is truly new or original, Soil...

  7. Soils [Chapter 5

    Treesearch

    R. W. E. Hopper; P. M. Walthall

    1994-01-01

    This report describes the soils of the Lost Lake, West Glacier Lake, and East Glacier Lake watersheds of GLEES and presents the methods used in conducting both the field and laboratory work. In addition, general statements about the nature of the mapping units used in making the soil maps are provided.

  8. Ecological Soil Screening Level

    EPA Pesticide Factsheets

    The Eco-SSL derivation process is used to derive a set of risk-based ecological soil screening levels (Eco-SSLs) for many of the soil contaminants that are frequently of ecological concern for plants and animals at hazardous waste sites.

  9. Small Soil Animals.

    ERIC Educational Resources Information Center

    Seevers, Elmer R.

    1978-01-01

    Describes an inexpensive technique for providing student opportunities to observe and identify the variety of small animals living in the first few inches below the surface of the soil. A classification key to some small soil animals is also presented. (HM)

  10. Soils and nutrient considerations

    Treesearch

    Thomas H. DeLuca

    2000-01-01

    Fire suppression has resulted in a buildup of forest litter and an accumulation of organic nitrogen, and a decrease in available potassium. This has changed the historic structure of soils and their nutrient content. Studies at 15 sites in Montana have looked at a wide range of changes in soil productivity following prescribed fire. Results indicate obvious benefits to...

  11. The Soil Series in Soil Classifications of the United States

    NASA Astrophysics Data System (ADS)

    Indorante, Samuel; Beaudette, Dylan; Brevik, Eric C.

    2014-05-01

    Organized national soil survey began in the United States in 1899, with soil types as the units being mapped. The soil series concept was introduced into the U.S. soil survey in 1903 as a way to relate soils being mapped in one area to the soils of other areas. The original concept of a soil series was all soil types formed in the same parent materials that were of the same geologic age. However, within about 15 years soil series became the primary units being mapped in U.S. soil survey. Soil types became subdivisions of soil series, with the subdivisions based on changes in texture. As the soil series became the primary mapping unit the concept of what a soil series was also changed. Instead of being based on parent materials and geologic age, the soil series of the 1920s was based on the morphology and composition of the soil profile. Another major change in the concept of soil series occurred when U.S. Soil Taxonomy was released in 1975. Under Soil Taxonomy, the soil series subdivisions were based on the uses the soils might be put to, particularly their agricultural uses (Simonson, 1997). While the concept of the soil series has changed over the years, the term soil series has been the longest-lived term in U.S. soil classification. It has appeared in every official classification system used by the U.S. soil survey (Brevik and Hartemink, 2013). The first classification system was put together by Milton Whitney in 1909 and had soil series at its second lowest level, with soil type at the lowest level. The second classification system used by the U.S. soil survey was developed by C.F. Marbut, H.H. Bennett, J.E. Lapham, and M.H. Lapham in 1913. It had soil series at the second highest level, with soil classes and soil types at more detailed levels. This was followed by another system in 1938 developed by M. Baldwin, C.E. Kellogg, and J. Thorp. In this system soil series were again at the second lowest level with soil types at the lowest level. The soil type

  12. Soil invertebrates as bioindicators of urban soil quality.

    PubMed

    Santorufo, Lucia; Van Gestel, Cornelis A M; Rocco, Annamaria; Maisto, Giulia

    2012-02-01

    This study aimed at relating the abundance and diversity of invertebrate communities of urban soils to chemical and physical soil characteristics and to identify the taxa most sensitive or tolerant to soil stressors. The invertebrate community of five urban soils in Naples, Italy, was sampled. To assess soil quality invertebrate community indices (Shannon, Simpson, Menhinick and Pielou indices), Acarina/Collembola ratios, and the soil biological quality index (QBS) were calculated. The chemical and physical characteristics of the soils strongly differed. Abundance rather than taxa richness of invertebrates were more affected by soil characteristics. The community was more abundant and diverse in the soils with high organic matter and water content and low metal (Cu, Pb, Zn) concentrations. The taxa more resistant to the urban environment included Acarina, Enchytraeids, Collembola and Nematoda. Collembolans appeared particularly sensitive to changing soil properties. Among the investigated indices, QBS seems most appropriate for soil quality assessment.

  13. The Changing Model of Soil

    NASA Astrophysics Data System (ADS)

    Richter, D. D.; Yaalon, D.

    2012-12-01

    The contemporary genetic model of soil is changing rapidly in response to advances in soil science and to human and environmental forcings in the 21st century (Richter and Yaalon, 2012). Three ongoing changes in the model of soil include that: (1) lower soil boundaries are much deeper than the solum, historically the O to B horizons, (2) most soils are polygenetic paleosols, products of soil-forming processes that have ranged widely over soils' lifetimes, and (3) soils are globally human-natural bodies, no longer natural bodies. Together, these changes in the model of soil mean that human forcings are a global wave of soil polygenesis altering fluxes of matter and energy and transforming soil thermodynamics as potentially very deep systems. Because soils are non-linear systems resulting from high-order interactions of physics, chemistry, and biology, trajectories of how human forcings alter soils over decades are not readily predictable and require long-term soil observations. There is much to learn about how soils are changing internally as central components of management systems and externally in relation to wider environments. To be critical, research has been remarkably superficial in studies of soil, reductionist in approach, and lacking in time-series observations of responses to soil management. While this criticism may sound negative, it creates significant opportunities for contemporary soil scientists.

  14. Soil Moisture Project Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Gilbert, R. H. (Editor)

    1980-01-01

    Approaches planned or being developed for measuring and modeling soil moisture parameters are discussed. Topics cover analysis of spatial variability of soil moisture as a function of terrain; the value of soil moisture information in developing stream flow data; energy/scene interactions; applications of satellite data; verifying soil water budget models; soil water profile/soil temperature profile models; soil moisture sensitivity analysis; combinations of the thermal model and microwave; determing planetary roughness and field roughness; how crust or a soil layer effects microwave return; truck radar; and truck/aircraft radar comparison.

  15. Cultural Patterns of Soil Understanding

    NASA Astrophysics Data System (ADS)

    Patzel, Nikola; Feller, Christian

    2017-04-01

    Living soil supports all terrestrial ecosystems. The only global threat to earth's soils comes from human societies' land use and resource consuming activities. Soil perception and understanding by soil scientists are mainly drawn from biophysical parameters and found within Cartesian rationality, and not, or much less consciously from its rather intangible cultural dimension. But nevertheless, human soil perception, soil awareness, and soil relation are a cultural phenomenon, too. Aiming at soil awareness and education, it is of first order importance for the soil science community and the IUSS to study, discuss and communicate also about the cultural perceptions and representations of soil. For any society, cultural patterns in their relation to soil encompass: (i) General culturally underlying structures like (religious or 'secular') myths and belief systems. (ii) The personal, individual relation to/with and behaviour towards soil. This includes implicit concepts of soil being part integral concepts of landscape because the large majority of humans don't see soil as a distinct object. This communication would be to make evident: (i) the importance of cultural patterns and psychic/psychological background concerning soil, by case studies and overviews on different cultural areas, (ii) the necessity to develop reflections on this topic as well to communicate about soil with large public, as to raise awareness soil scientists to the cultural dimension of soils. A working group was recently founded at IUSS (Division 4) on this topic.

  16. Climate-smart soils

    NASA Astrophysics Data System (ADS)

    Paustian, Keith; Lehmann, Johannes; Ogle, Stephen; Reay, David; Robertson, G. Philip; Smith, Pete

    2016-04-01

    Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight ‘state of the art’ soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.

  17. Soil Transport Implement

    NASA Technical Reports Server (NTRS)

    Dixon, William; Fan, William; Lloyd, Joey; Pham, Nam-Anh; Stevens, Michael

    1988-01-01

    The design of the Soil Transport Implement (STI) for SKITTER is presented. The purpose of STI is to provide a protective layer of lunar soil for the lunar modules. The objective is to cover the lunar module with a layer of soil approximately two meters thick within a two week period. The amount of soil required to cover the module is roughly 77 dump truck loads or three million earth pounds. A spinning disk is employed to accomplish its task. STI is an autonomous, teleoperated system. The design incorporates the latest advances in composite materials and high strength, light weight alloys to achieve a high strength to weight ratio. The preliminary design should only be used to assess the feasibility of employing a spinning wheel as a soil transport implement. A mathematical model of the spinning wheel was used to evaluate the performance of this design.

  18. Relaxometry in soil science

    NASA Astrophysics Data System (ADS)

    Schaumann, G. E.; Jaeger, F.; Bayer, J. V.

    2009-04-01

    NMR relaxometry is a sensitive, informative and promising method to study pore size distribution in soils as well as many kinds of soil physicochemical processes, among which are wetting, swelling or changes in the macromolecular status. Further, it is a very helpful method to study interactions between molecules in soil organic matter and it can serve to study the state of binding of water or organic chemicals to soil organic matter. The method of Relaxometry excite the nuclei of interest and their relaxation kinetics are observed. The relaxation time is the time constant of this first order relaxation process. Most applications of relaxometry concentrate on protons, addressing water molecules or H-containing organic molecules. In this context, 1H-NMR relaxometry may be used as an analysis method to determine water uptake characteristics of soils, thus gaining information about water distribution and mobility as well as pore size distribution in wet and moist samples. Additionally, it can also serve as a tool to study mobility of molecular segments in biopolymers. Principally, relaxometry is not restricted to protons. In soil science, relaxometry is also applied using deuterium, xenon and other nuclei to study pore size distribution and interactions. The relaxation time depends on numerous parameters like surface relaxivity, diffusion and interactions between nuclei as well as between nuclei and the environment. One- and two-dimensional methods address the relation between relaxation time and diffusion coefficients and can give information about the interconnectivity of pores. More specific information can be gained using field cycling techniques. Although proton NMR relaxometry is a very promising method in soil science, it has been applied scarcely up to now. It was used to assess changes in molecular rigidity of humic substances. A very recent study shows the potential of NMR relaxometry to assess the pore size distribution of soils in a fast and non

  19. Glyphosate bioavailability in soil.

    PubMed

    Shushkova, Tatyana; Ermakova, Inna; Leontievsky, Alexey

    2010-06-01

    Biodegradation of glyphosate in sod-podzol soil by both the indigenous micro flora and the introduced strain Ochrobactrum anthropi GPK 3 was studied with respect to its sorption and mobility. The experiments were carried out in columns simulating the vertical soil profile. Soil samples studied were taken from soil horizons 0-10, 10-20, and 20-30 cm deep. It was found out that the most of the herbicide (up to 84%) was adsorbed by soil during the first 24 h; the rest (16%) remained in the soluble fraction. The adsorbed glyphosate was completely extractable by alkali. No irreversible binding of glyphosate was observed. By the end of the experiment (21st day), glyphosate was only found in extractable fractions. The comparison of the effect of the introduced O. anthropi GPK 3 and indigenous microbial community on the total toxicant content (both soluble and absorbed) in the upper 10 cm soil layer showed its reduction by 42% (21 mg/kg soil) and 10-12% (5 mg/kg soil), respectively. Simultaneously, 14-18% glyphosate moved to a lower 10-20 cm layer. Watering (that simulated rainfall) resulted in a 20% increase of its content at this depth; 6-8% of herbicide was further washed down to the 20-30 cm layer. The glyphosate mobility down the soil profile reduced its density in the upper layer, where it was available for biodegradation, and resulted in its concentration in lower horizons characterized by the absence (or low level) of biodegradative processes. It was shown for the first time how the herbicide biodegradation in soil can be increased manifold by introduction of the selected strain O. anthropi GPK 3.

  20. Degradation and resilience of soils

    PubMed Central

    Lal, R.

    1997-01-01

    Debate on global soil degradation, its extent and agronomic impact, can only be resolved through understanding of the processes and factors leading to establishment of the cause-effect relationships for major soils, ecoregions, and land uses. Systematic evaluation through long-term experimentation is needed for establishing quantitative criteria of (i) soil quality in relation to specific functions; (ii) soil degradation in relation to critical limits of key soil properties and processes; and (iii) soil resilience in relation to the ease of restoration through judicious management and discriminate use of essential input. Quantitative assessment of soil degradation can be obtained by evaluating its impact on productivity for different land uses and management systems. Interdisciplinary research is needed to quantify soil degradation effects on decrease in productivity, reduction in biomass, and decline in environment quality throught pollution and eutrophication of natural waters and emission of radiatively-active gases from terrestrial ecosystems to the atmosphere. Data from long-term field experiments in principal ecoregions are specifically needed to (i) establish relationships between soil quality versus soil degradation and soil quality versus soil resilience; (ii) identify indicators of soil quality and soil resilience; and (iii) establish critical limits of important properties for soil degradation and soil resilience. There is a need to develop and standardize techniques for measuring soil resilience.

  1. Soil management: The key to soil quality and sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Basch, Gottlieb; Barão, Lúcia; Soares, Miguel

    2017-04-01

    Today, after the International Year of Soils in 2015 and the proclamation by the International Union of Soil Sciences of the International Decade of Soils 2015-2020, much attention is paid to soil quality. Often used interchangeably, both terms, soil quality and soil health, refer to dynamic soil properties such as soil organic matter or pH, while soil quality also includes inherent soil properties such as texture or mineral composition. However, it is the dynamic or manageable properties that adequate soil management can influence and thus contribute to a well-functioning soil environment capable to deliver the soil-mediated provisioning, regulating and supporting ecosystem services and soil functions. This contribution intends to highlight the key principles of sustainable soil management and provide evidence that they are compliant with a productive, resource efficient and ecologically friendly agriculture. Paradoxically, and despite benefitting from good soil quality, agriculture itself when based on conventional, especially intensive tillage-based soil management practices contributes decisively to soil degradation and to several of the soil threats as identified by the Soil Thematic Strategy, being soil erosion and soil organic matter decline the most notorious ones. To mitigate soil degradation, the European Union's Common Agricultural Policy has introduced conservation measures, mainly through cross-compliance measures supposed to guarantee minimum soil cover, to limit soil erosion and to maintain the levels of soil organic matter. However, it remains unclear to what extent EU member states apply these 'Good Agricultural and Environmental Condition' (GAEC) measures to their utilized agricultural areas. Effective and cost-efficient soil management systems able to conserve or to restore favourable soil conditions, to minimize soil erosion and to invert soil organic matter and soil biodiversity decline and improve soil structure are those capable to mimic as

  2. Soil fauna, soil properties and geo-ecosystem functioning

    NASA Astrophysics Data System (ADS)

    Cammeraat, L. H.

    2012-04-01

    The impact of soil fauna on soil processes is of utmost importance, as the activity of soil fauna directly affects soil quality. This is expressed by the direct effects of soil fauna on soil physical and soil chemical properties that not only have great importance to food production and ecosystems services, but also on weathering and hydrological and geomorphological processes. Soil animals can be perceived as ecosystem engineers that directly affect the flow of water, sediments and nutrients through terrestrial ecosystems. The biodiversity of animals living in the soil is huge and shows a huge range in size, functions and effects. Most work has been focused on only a few species such as earthworms and termites, but in general the knowledge on the effect of soil biota on soil ecosystem functioning is limited as it is for their impact on processes in the soil and on the soil surface. In this presentation we would like to review some of the impacts of soil fauna on soil properties that have implications for geo-ecosystem functioning and soil formation processes.

  3. Describing Soils: Calibration Tool for Teaching Soil Rupture Resistance

    ERIC Educational Resources Information Center

    Seybold, C. A.; Harms, D. S.; Grossman, R. B.

    2009-01-01

    Rupture resistance is a measure of the strength of a soil to withstand an applied stress or resist deformation. In soil survey, during routine soil descriptions, rupture resistance is described for each horizon or layer in the soil profile. The lower portion of the rupture resistance classes are assigned based on rupture between thumb and…

  4. Introductory Soil Science Exercises Using USDA Web Soil Survey

    ERIC Educational Resources Information Center

    Post, Christopher J.; Mikhailova, Elena; McWhorter, Christopher M.

    2007-01-01

    The USDA, Natural Resource Conservation Service (NRCS) Web Soil Survey is a valuable teaching tool for soil science education. By incorporating the Web Soil Survey into an undergraduate-level course, students are able to use the most detailed digital soil survey information without the steep learning curve associated with geographic information…

  5. Describing Soils: Calibration Tool for Teaching Soil Rupture Resistance

    ERIC Educational Resources Information Center

    Seybold, C. A.; Harms, D. S.; Grossman, R. B.

    2009-01-01

    Rupture resistance is a measure of the strength of a soil to withstand an applied stress or resist deformation. In soil survey, during routine soil descriptions, rupture resistance is described for each horizon or layer in the soil profile. The lower portion of the rupture resistance classes are assigned based on rupture between thumb and…

  6. Introductory Soil Science Exercises Using USDA Web Soil Survey

    ERIC Educational Resources Information Center

    Post, Christopher J.; Mikhailova, Elena; McWhorter, Christopher M.

    2007-01-01

    The USDA, Natural Resource Conservation Service (NRCS) Web Soil Survey is a valuable teaching tool for soil science education. By incorporating the Web Soil Survey into an undergraduate-level course, students are able to use the most detailed digital soil survey information without the steep learning curve associated with geographic information…

  7. Proximal soil sensing and sensor fusion for soil health assessment

    USDA-ARS?s Scientific Manuscript database

    Assessment of soil health involves determining how well a soil is performing its biological, chemical, and physical functions relative to its inherent potential. Due to high costs, labor requirements, and soil disturbance, traditional laboratory analyses cannot provide high resolution soil health da...

  8. Anaerobic soil disinfestation and soil borne pest management

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD; also referred to as Biological Soil Disinfestation (BSD)) is a pre-plant soil treatment method developed to control plant disease and manage yield decline in many crop production systems. The practice involves induction of anaerobic soil conditions by increasing m...

  9. Soil disturbance increases soil microbial enzymatic activity in arid ecoregion

    USDA-ARS?s Scientific Manuscript database

    Functional diversity of the soil microbial community is commonly used in the assessment of soil health as it relates to the activity of soil microflora involved in carbon cycling. Soil microbes in different microenvironments will have varying responses to different substrates, thus catabolic fingerp...

  10. [Trophic chains in soil].

    PubMed

    Goncharov, A A; Tiunov, A V

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems.

  11. Soil washing treatability study

    SciTech Connect

    Krstich, M.

    1995-12-01

    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS.

  12. Infiltration in Swelling Soils

    NASA Astrophysics Data System (ADS)

    Giraldez, Juan V.; Sposito, Garrison

    1985-01-01

    Infiltration phenomena in swelling soils were investigated theoretically. The approach taken consisted of applying both the approximate analytical techniques developed by J.-Y. Parlange and co-workers and conventional finite difference numerical methods to study the generalized Richards equation for one-dimensional infiltration in a swelling soil. Equations were derived for the ponding time and the post-ponding infiltration rate that are generalizations of the Parlange-Smith model expressions for rigid soils. Ponding times for swelling soils were shown to be shorter than those for nonswelling analogs, and post-ponding infiltration rates in swelling soils were shown to approach zero instead of becoming equal to the hydraulic conductivity, as in rigid soils. These results were confirmed, both qualitatively and quantitatively, with the numerical model, which also provided instantaneous moisture profiles and surface swelling predictions in agreement with field observations. A three-parameter infiltration equation proposed recently by J.-Y. Parlange et al. (1982) was generalized to describe swelling soils and shown to be in good agreement with published laboratory and field data. It appears that the generalized analytical model equations developed can be employed conveniently in hydrologic applications which do not require high accuracy in predictions.

  13. Ultrasound enhanced soil washing

    SciTech Connect

    Meegoda, J.; Ho, W.; Bhattacharajee, M.; Wei, C.F.; Cohen, D.M.; Magee, R.S.; Frederick, R.M.

    1995-12-31

    The development of an ultrasonic enhanced soil-washing process requires a comprehensive, well-designed experimental program, with the results carefully analyzed on the basis of known ultrasonic cleaning mechanisms. There has been no systematic work carried out to develop information on the important variables that can affect the efficacy of ultrasonic enhancement of contaminant removal from soil. The goal of this study is to examine the potential of ultrasonic energy to enhance soil washing and to optimize conditions. Ultrasonic energy potentially can be used in enhancing contaminant removal from the entire soil mix, or it can be used as a polishing operation on the fines portion of the soil mixture after traditional soil washing operations. The research study was designed to demonstrate that ultrasonic energy can: improve process performance, e.g., remove contaminants to lower residual concentrations; and improve process economics, e.g., shorter treatment (residence) times, less surfactant use. This process was demonstrated using soil contaminated with polycyclic aromatic hydrocarbons.

  14. SOIL Geo-Wiki: A tool for improving soil information

    NASA Astrophysics Data System (ADS)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference

  15. Remediating munitions contaminated soils

    SciTech Connect

    Shea, P.J.; Comfort, S.D.

    1995-10-01

    The former Nebraska Ordnance Plant (NOP) at Mead, NE was a military loading, assembling, and packing facility that produced bombs, boosters and shells during World War II and the Korean War (1942-1945, 1950-1956). Ordnances were loaded with 2,4,6-trinitrotoluene (TNT), amatol (TNT and NH{sub 4}NO{sub 3}), tritonal (TNT and Al) and Composition B (hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX] and TNT). Process waste waters were discharged into wash pits and drainage ditches. Soils within and surrounding these areas are contaminated with TNT, RDX and related compounds. A continuous core to 300 cm depth obtained from an NOP drainage ditch revealed high concentrations of TNT in the soil profile and substantial amounts of monoamino reduction products, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT). Surface soil contained TNT in excess of 5000 mg kg{sup -1} and is believed to contain solid phase TNT. This is supported by measuring soil solution concentrations at various soil to solution ratios (1:2 to 1:9) and obtaining similar TNT concentrations (43 and 80 mg L{sup -1}). Remediating munitions-contaminated soil at the NOP and elsewhere is of vital interest since many of the contaminants are carcinogenic, mutagenic or otherwise toxic to humans and the environment. Incineration, the most demonstrated remediation technology for munitions-containing soils, is costly and often unacceptable to the public. Chemical and biological remediation offer potentially cost-effective and more environmentally acceptable alternatives. Our research objectives are to: (a) characterize the processes affecting the transport and fate of munitions in highly contaminated soil; (b) identify effective chemical and biological treatments to degrade and detoxify residues; and (c) integrate these approaches for effective and practical remediation of soil contaminated with TNT, RDX, and other munitions residues.

  16. Soil chromatographic movement of technetium-99 through selected Minnesota soils

    SciTech Connect

    Balogh, J.C.; Grigal, D.F.

    1980-11-01

    We monitored the movement of technetium-99 through 41 samples of Minnesota soils, using soil column layer chromatography (CLC), a modification of soil thin layer chromatography. Under the aerobic conditions of soil CLC, /sup 99/Tc occurs as the pertechnetate anion. Pertechnetate movement in the soils was characterized by the traditional R/sub f/ chromatographic parameter. Reduced R/sub f/ values were statistically related to elevated levels of soil organic matter. Complexation of /sup 99/Tc, related to soil organic matter, was weak. Elution patterns of /sup 99/Tc in the soil CLC columns were asymmetric, with pertechnetate retardation associated with both hydrodynamic dispersion and weak retention. Pertechnetate was less mobile than was Cl/sup -/ in selected soils by soil CLC.

  17. Development of soil taxation and soil classification as furthered by the Austrian Soil Science Society

    NASA Astrophysics Data System (ADS)

    Baumgarten, Andreas

    2013-04-01

    Soil taxation and soil classification are important drivers of soil science in Austria. However, the tasks are quite different: whereas soil taxation aims at the evaluation of the productivity potential of the soil, soil classification focusses on the natural development and - especially nowadays - on functionality of the soil. Since the foundation of the Austrian Soil Science Society (ASSS), representatives both directions of the description of the soil have been involved in the common actions of the society. In the first years it was a main target to improve and standardize field descriptions of the soil. Although both systems differ in the general layout, the experts should comply with identical approaches. According to this work, a lot of effort has been put into the standardization of the soil classification system, thus ensuring a common basis. The development, state of the art and further development of both classification and taxation systems initiated and carried out by the ASSS will be shown.

  18. Soil Moisture Workshop

    NASA Technical Reports Server (NTRS)

    Heilman, J. L. (Editor); Moore, D. G. (Editor); Schmugge, T. J. (Editor); Friedman, D. B. (Editor)

    1978-01-01

    The Soil Moisture Workshop was held at the United States Department of Agriculture National Agricultural Library in Beltsville, Maryland on January 17-19, 1978. The objectives of the Workshop were to evaluate the state of the art of remote sensing of soil moisture; examine the needs of potential users; and make recommendations concerning the future of soil moisture research and development. To accomplish these objectives, small working groups were organized in advance of the Workshop to prepare position papers. These papers served as the basis for this report.

  19. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    PubMed

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils.

  20. Developing Intepretive Soil Education Displays.

    ERIC Educational Resources Information Center

    Hansmeyer, T. L.; Cooper, T. H.

    1993-01-01

    Describes several soil educational displays developed for park and nature center trails. Displays include full-scale soil monoliths displayed along the trails with explanations on why and how the soils are different, and micro-monoliths exhibiting the different soil types. (MDH)

  1. Two Centuries of Soil Conservation.

    ERIC Educational Resources Information Center

    Helms, Douglas

    1991-01-01

    Narrates U.S. soil conservation history since the late eighteenth century. Discusses early practices such as contour plowing. Profiles individuals who promoted soil conservation and were largely responsible for the creation of the Soil Conservation Service. Explains the causes of erosion and how soil conservation districts help farmers prevent…

  2. Two Centuries of Soil Conservation.

    ERIC Educational Resources Information Center

    Helms, Douglas

    1991-01-01

    Narrates U.S. soil conservation history since the late eighteenth century. Discusses early practices such as contour plowing. Profiles individuals who promoted soil conservation and were largely responsible for the creation of the Soil Conservation Service. Explains the causes of erosion and how soil conservation districts help farmers prevent…

  3. Soil and forest floor characteristics

    Treesearch

    Ralph E. J. Boerner; Sherri J. Morris; Kelly L. M. Decker; Todd F. Hutchinson

    2003-01-01

    The soils of the four study areas in southern Ohio were dominated by silt loams derived from sandstones and shales. The soils at Bluegrass Ridge (BR) had significantly more clay and sand and significantly less silt than soils of the other study areas. Total inorganic N (TIN) and available NH4 were greatest in soils from Watch Rock (WR) and least...

  4. Soil and soil environmental quality monitoring in China: a review.

    PubMed

    Teng, Yanguo; Wu, Jin; Lu, Sijin; Wang, Yeyao; Jiao, Xudong; Song, Liuting

    2014-08-01

    Over the past few decades, numerous concerns have been raised in China over the issue of environmental sustainability. Various soil survey and monitoring programs have been carried out in China to study soil quality, and to provide a scientific basis for environment policy making. This paper provides an overview of past and current soil quality surveys and monitoring activities in China. This paper includes a summary of concerns over background concentrations of elements in soil, and soil environmental standards and guidelines in China. Levels of pollution in urban soil, agricultural soil, and soil in mining and smelting areas were compared using the concentrations and pollution indexes. In addition to soil surveys, soil monitoring is essential to study the data and to examine the effects of contaminants in soils. However, the current soil quality monitoring system was insufficient to accurately determine the soil quality status of soils across China. For accurate soil monitoring in China, it will be necessary to set up routine monitoring systems at various scales (national, provincial, and local scales), taking into consideration monitoring indicators and quality assurance. This is currently an important priority for the environmental protection administration of China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Soil and soil organic carbon redistribution on the landscape

    NASA Astrophysics Data System (ADS)

    Ritchie, Jerry C.; McCarty, Gregory W.; Venteris, Erik R.; Kaspar, T. C.

    2007-09-01

    Patterns of soil organic carbon (SOC) vary widely across the landscape leading to large uncertainties in the SOC budget especially for agricultural landscapes where water, tillage and wind erosion redistributes soil and SOC across the landscape. It is often assumed that soil erosion results in a loss of SOC from the agricultural ecosystem but recent studies indicate that soil erosion and its subsequent redistribution within fields can stimulate carbon sequestration in agricultural ecosystems. This study investigates the relationship between SOC and soil redistribution patterns on agricultural landscapes. Soil redistribution (erosion and deposition) patterns were estimated in three tilled agricultural fields using the fallout 137Cesium technique. 137Cs and SOC concentrations of upland soils are significantly correlated in our study areas. Upland areas (eroding) have significantly less SOC than soils in deposition areas. SOC decreased as gradient slope increases and soils on concave slopes had higher SOC than soils on convex slopes. These data suggest that soil redistribution patterns and topographic patterns may be used to help understand SOC dynamics on the landscape. Different productivity and oxidation rates of SOC of eroded versus deposited soils also contribute to SOC spatial patterns. However, the strong significant relationships between soil redistribution and SOC concentrations in the upland soil suggest that they are moving along similar physical pathways in these systems. Our study also indicates that geomorphic position is important for understanding soil movement and redistribution patterns within a field or watershed. Such information can help develop or implement management systems to increase SOC in agricultural ecosystems.

  6. Soil colloidal behavior

    USDA-ARS?s Scientific Manuscript database

    Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...

  7. Soil Gas Sampling

    EPA Pesticide Factsheets

    Field Branches Quality System and Technical Procedures: This document describes general and specific procedures, methods and considerations to be used and observed when collecting soil gas samples for field screening or laboratory analysis.

  8. THE DIRT ON SOILS

    EPA Science Inventory

    This keynote presentation will provide basic information regarding the physical, chemical, and biological importance of soils to 50 second grade teachers within the Cincinnati Public School System as part of a Hamilton County Department of Environmenatl Services Sois Workshop.

  9. Soil Organic Chemistry.

    ERIC Educational Resources Information Center

    Anderson, G.

    1979-01-01

    A brief review is presented of some of the organic compounds and reactions that occur in soil. Included are nitrogenous compounds, compounds of phosphorus and sulfur, carbohydrates, phenolic compounds, and aliphatic acids. (BB)

  10. Soil Fumigant Chemicals

    EPA Pesticide Factsheets

    The main soil fumigant pesticide chemicals are chloropicrin, dazomet, 1,3-dichloropropene (telone), dimethyl disulfide (DMDS), metam sodium, metam potassium, and methyl bromide. Find label requirements, reregistration eligibility decisions (REDs), and more

  11. THE DIRT ON SOILS

    EPA Science Inventory

    This keynote presentation will provide basic information regarding the physical, chemical, and biological importance of soils to 50 second grade teachers within the Cincinnati Public School System as part of a Hamilton County Department of Environmenatl Services Sois Workshop.

  12. Inspecting Soils Across Mars

    NASA Image and Video Library

    2012-12-03

    This graph compares the elemental composition of typical soils at three landing regions on Mars: Gusev Crater, from Spirit; Meridiani Planum, from Opportunity; and now Gale Crater, where NASA newest Curiosity rover is currently investigating.

  13. Ripples in The Soil

    NASA Image and Video Library

    2004-02-10

    This is a three-dimensional stereo anaglyph of an image taken by the front navigation camera onboard NASA Mars Exploration Rover Spirit, showing an interesting patch of rippled soil. 3D glasses are necessary to view this image.

  14. SAMPLING VIRUSES FROM SOIL

    EPA Science Inventory

    This chapter describes in detail methods for detecting viruses of bacteria and humans in soil. Methods also are presented for the assay of these viruses. Reference sources are provided for information on viruses of plants.

  15. Soil Organic Chemistry.

    ERIC Educational Resources Information Center

    Anderson, G.

    1979-01-01

    A brief review is presented of some of the organic compounds and reactions that occur in soil. Included are nitrogenous compounds, compounds of phosphorus and sulfur, carbohydrates, phenolic compounds, and aliphatic acids. (BB)

  16. Iodine dynamics in soils

    NASA Astrophysics Data System (ADS)

    Shetaya, W. H.; Young, S. D.; Watts, M. J.; Ander, E. L.; Bailey, E. H.

    2012-01-01

    We investigated changes in iodine (129I) solubility and speciation in nine soils with contrasting properties (pH, Fe/Mn oxides, organic carbon and iodine contents), incubated for nine months at 10 and 20 °C. The rate of 129I sorption was greater in soils with large organic carbon contents (%SOC), low pH and at higher temperatures. Loss of iodide (I-) from solution was extremely rapid, apparently reaching completion over minutes-hours; iodate (IO3-) loss from solution was slower, typically occurring over hours-days. In all soils an apparently instantaneous sorption reaction was followed by a slower sorption process for IO3-. For iodide a faster overall reaction meant that discrimination between the two processes was less clear. Instantaneous sorption of IO3- was greater in soils with high Fe/Mn oxide content, low pH and low SOC content, whereas the rate of time-dependent sorption was greatest in soils with higher SOC contents. Phosphate extraction (0.15 M KH2PO4) of soils, ∼100 h after 129I spike addition, indicated that concentrations of sorbed inorganic iodine (129I) were very low in all soils suggesting that inorganic iodine adsorption onto oxide phases has little impact on the rate of iodine assimilation into humus. Transformation of dissolved inorganic 129IO3- and 129I- to sorbed organic forms was modelled using a range of reaction- and diffusion-based approaches. Irreversible and reversible first order kinetic models, and a spherical diffusion model, adequately described the kinetics of both IO3- and I- loss from the soil solution but required inclusion of a distribution coefficient (kd) to allow for instantaneous adsorption. A spherical diffusion model was also collectively parameterised for all the soils studied by using pH, soil organic carbon concentration and combined Fe + Mn oxide content as determinants of the model parameters (kd and D/r2). The kinetic model parameters were not directly related to a single soil parameter; inclusion of pH, SOC, oxide

  17. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  18. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  19. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  20. Soil geomorphic classification, soil taxonomy, and effects on soil richness assessments

    Treesearch

    Jonathan D. Phillips; Daniel A. Marion

    2007-01-01

    The study of pedodiversity and soil richness depends on the notion of soils as discrete entities. Soil classifications are often criticized in this regard because they depend in part on arbitrary or subjective criteria. In this study soils were categorized on the basis of the presence or absence of six lithological and morphological characteristics. Richness vs. area...

  1. Rock and soil mechanics

    SciTech Connect

    Derski, W.; Izbicki, R.; Kisiel, I.; Mroz, Z.

    1988-01-01

    Although theoretical in character, this book provides a useful source of information for those dealing with practical problems relating to rock and soil mechanics - a discipline which, in the view of the authors, attempts to apply the theory of continuum to the mechanical investigation of rock and soil media. The book is in two separate parts. The first part, embodying the first three chapters, is devoted to a description of the media of interest. Chapter 1 introduces the main argument and discusses the essence of the discipline and its links with other branches of science which are concerned, on the one hand, with technical mechanics and, on the other, with the properties, origins, and formation of rock and soil strata under natural field conditions. Chapter 2 describes mechanical models of bodies useful for the purpose of the discourse and defines the concept of the limit shear resistance of soils and rocks. Chapter 3 gives the actual properties of soils and rocks determined from experiments in laboratories and in situ. Several tests used in geotechnical engineering are described and interconnections between the physical state of rocks and soils and their rheological parameters are considered.

  2. Evaluating soil contamination

    USGS Publications Warehouse

    Beyer, W.N.

    1990-01-01

    This compilation was designed to help U.S. Fish and Wildlife Service contaminant specialists evaluate the degree of contamination of a soil, based on chemical analyses. Included are regulatory criteria, opinions, brief descriptions of scientific articles, and miscellaneous information that might be useful in making risk assessments. The intent was to make hard-to-obtain material readily available to contaminant specialists, but not to critique the material or develop new criteria. The compilation is to be used with its index, which includes about 200 contaminants. There are several entries for a few of the most thoroughly studied contaminants, but for most of them the information available is meager. Entries include soil contaminant criteria from other countries, contaminant guidelines for applying sewage sludge to soil, guidelines for evaluating sediments, background soil concentrations for various elements, citations to scientific articles that may help estimate the potential movement of soil contaminants into wildlife food chains, and a few odds and ends. Articles on earthworms were emphasized because they are a natural bridge between soil and many species of wildlife.

  3. Soil bioventing demonstration project

    SciTech Connect

    Cho, J.S.; Kampbell, D.H.; Wilson, J.T.; DiGiulio, D.C.

    1990-01-01

    A pilot scale demonstration project of a soil bioventing system, which utilizes the biodegradation in soil and physical removal of VOC by induced air flow, is in operation at the U.S. Coast Guard Aviation Field in Traverse City, Michigan. The system is being tested to determine its suitability for remediation of the vadose zone in conjunction with aquifer remediation at a site contaminated by an aviation gas spill. Several microcosm studies with soil obtained from the vertical profile of the contaminated site showed rapid microbial decompositions of hydrocarbon fumes with NPK nutrient and moisture addition. Basic removal kinetics data were obtained from these experiments. Field pneumatic pump tests for soil-air characterization have been conducted. The soil-air permeability and pressure distributions under the air injection/withdrawal systems were obtained. On the basis of information from the laboratory and field tests, a conceptual design at a field scale was made. The system will be implemented on the selected study site and the operation will start in fall, 1990. Additional soil core samplings and continuous monitoring of operation are planned.

  4. ENGINEERING CHARACTERISTICS OF SOME SOUTHEAST ASIAN SOILS.

    DTIC Science & Technology

    soil samples were mostly sandy soils and lateritic soils, composed mainly of quartz, perthite, kaolinite, illite, and goethite, or some combination of...mainly on gradation of the soils and was not affected adversely by the sesquioxides in the lateritic soils. Additional tests are required to more accurately delineate the most beneficial soil gradations for soil-cements. (Author)

  5. Soil degradation effect on biological activity in Mediterranean calcareous soils

    NASA Astrophysics Data System (ADS)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  6. A modified soil water based Richards equation for layered soils

    NASA Astrophysics Data System (ADS)

    Kalinka, F.; Ahrens, B.

    2010-09-01

    Most Soil-Vegetation-Atmosphere-Transfer (SVAT) models like TERRA-ML (implemented e.g. in the CCLM model (www.clm-community.eu)) use the soil moisture based Richards equation to simulate vertical water fluxes in soils, assuming a homogeneous soil type. Recently, high-resolution soil type datasets (e.g. BüK 1000, only for Germany (Federal Institute for Geosciences and Natural Resources, BGR, www.bgr.bund.de) or Harmonized World Soil Database (HWSD, version 1.1, FAO/IIASA/ISRIC/ISSCAS/JRC, March 2009)) have been developed. Deficiencies in the numerical solution of the soil moisture based Richards equation may occur if inhomogeneous soil type data is implemented, because there are possibly discontinuities in soil moisture due to various soil type characteristics. One way to fix this problem is to use the potential based Richards equation, but this may lead to problems in conservation of mass. This presentation will suggest a possible numerical solution of the soil moisture based Richards equation for inhomogeneous soils. The basic idea is to subtract the equilibrium state of it from soil moisture fluxes. This should reduce discontinuities because each soil layer aspires the equilibrium state and therefore differences might be of the same order. First sensitivity studies have been done for the Main river basin, Germany.

  7. Soil organic matter as sole indicator of soil degradation.

    PubMed

    Obalum, S E; Chibuike, G U; Peth, S; Ouyang, Y

    2017-04-01

    Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a soil that impairs its quality. This paper aims at providing a generalized assessment of the current state of knowledge on the usefulness of SOM in monitoring soil degradation, based on its influence on the physical, chemical and biological properties and processes of soils. Emphasis is placed particularly on the effect of SOM on soil structure and availability of plant nutrients. Although these properties are discussed separately, the soil system is of dynamic and interactive nature, and changes in one property will likely affect other soil properties as well. Thus, functions of SOM almost always affect various soil properties and processes and engage in multiple reactions. In view of its role in soil aggregation and erosion control, in availability of plant nutrients and in ameliorating other forms of soil degradation than erosion, SOM has proven to be an important indicator of soil degradation. It has been suggested, however, that rather than the absolute amount, temporal change and potential amount of SOM be considered in its use as indicator of soil degradation, and that SOM may not be an all-purpose indicator. Whilst SOM remains a candidate without substitute as long as a one-parameter indicator of soil degradation is needed, narrowing down to the use of its labile and microbial components could be more appropriate, since early detection is important in the control and management of soil degradation.

  8. Soil biodiversity and human health

    NASA Astrophysics Data System (ADS)

    Six, Johan; Pereg, Lily; Brevik, Eric

    2017-04-01

    Biodiversity is important for the maintenance of soil quality. Healthy, biodiverse soils are crucial for human health and wellbeing from several reasons, for example: biodiversity has been shown to be important in controlling populations of pathogens; healthy, well-covered soils can reduce disease outbreaks; carbon-rich soils may also reduce outbreaks of human and animal parasites; exposure to soil microbes can reduce allergies; soils have provided many of our current antibiotics; soil organisms can provide biological disease and pest control agents, healthy soils mean healthier and more abundant foods; soil microbes can enhance crop plant resilience; healthy soils promote good clean air quality, less prone to wind and water erosion; and healthy soils provide clean and safe water through filtration, decontamination by microbes and removal of pollutants. Soil microbes and other biota provide many benefits to human health. Soil microbes are a source of medicines, such as antibiotics, anticancer drugs and many more. Organisms that affect soil health and thus human health include those involved in nutrient cycling, decomposition of organic matter and determining soil structure (e.g. aggregation). Again these are related to food security but also affect human health in other ways. Many beneficial organisms have been isolated from soil - plant growth promoting and disease suppressive microbes used as inoculants, foliar inoculants for improvement of ruminant digestion systems and inoculants used in bioremediation of toxic compounds in the environment. Soil biodiversity is highly recognised now as an important feature of healthy soil and imbalances have been shown to give advantage to harmful over beneficial organisms. This presentation will highlight the many connections of biodiversity to soil quality and human health.

  9. Soil ingestion by dairy cattle

    SciTech Connect

    Darwin, R.

    1990-02-15

    Ingested soil may be a source of minerals to grazing cattle; it may also be a source of radionuclides, heavy metals, and organic toxins. The importance of soil ingestion in the milk pathway depends on the amount of soil ingested, the ratio of the mineral concentration in soil to that in herbage, and the ability of the cattle to solubilize and absorb the soil-derived minerals. The amount of soil ingested by cattle on pasture, in turn, depends upon the stocking level, the quantity of forage available, and the soil ingesting propensity of individual cows. The objective of this note is to summarize some of the information about soil ingestion by dairy cattle and to suggest methods for incorporating soil ingestion into the Hanford Environmental Dose Reconstruction (HEDR) Phase I milk model. 5 refs., 4 tabs.

  10. Soil functional types: surveying the biophysical dimensions of soil security

    NASA Astrophysics Data System (ADS)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or

  11. Prediction of soil organic carbon concentration and soil bulk density of mineral soils for soil organic carbon stock estimation

    NASA Astrophysics Data System (ADS)

    Putku, Elsa; Astover, Alar; Ritz, Christian

    2016-04-01

    Soil monitoring networks provide a powerful base for estimating and predicting nation's soil status in many aspects. The datasets of soil monitoring are often hierarchically structured demanding sophisticated data analyzing methods. The National Soil Monitoring of Estonia was based on a hierarchical data sampling scheme as each of the monitoring site was divided into four transects with 10 sampling points on each transect. We hypothesized that the hierarchical structure in Estonian Soil Monitoring network data requires a multi-level mixed model approach to achieve good prediction accuracy of soil properties. We used this database to predict soil bulk density and soil organic carbon concentration of mineral soils in arable land using different statistical methods: median approach, linear regression and mixed model; additionally, random forests for SOC concentration. We compared the prediction results and selected the model with the best prediction accuracy to estimate soil organic carbon stock. The mixed model approach achieved the best prediction accuracy in both soil organic carbon (RMSE 0.22%) and bulk density (RMSE 0.09 g cm-3) prediction. Other considered methods under- or overestimated higher and lower values of soil parameters. Thus, using these predictions we calculated the soil organic carbon stock of mineral arable soils and applied the model to a specific case of Tartu County in Estonia. Average estimated SOC stock of Tartu County is 54.8 t C ha-1 and total topsoil SOC stock 1.8 Tg in humus horizon.

  12. Soil Microbial Mineralization of Cellulose in Frozen Soils

    NASA Astrophysics Data System (ADS)

    Segura, J.; Haei, M.; Sparrman, T.; Nilsson, M. B.; Schleucher, J.; Oquist, M. G.

    2014-12-01

    Soils of high-latitude ecosystems store a large fraction of the global soil carbon pool. In boreal forests, the mineralization of soil organic matter (SOM) during winter by soil heterotrophic activity can affect the ecosystems net carbon balance. Recent research has shown that microorganisms in the organic surface layer of boreal forest soil can mineralize and grow on simple, monomeric substrates under frozen conditions. However, any substantial impacts of microbial activity in frozen soils on long-term soil carbon balances depend on whether soil microorganisms can utilize the more complex, polymeric substrates in SOM. In order to evaluate the potential for soil microorganisms to metabolize carbon polymers at low temperatures, we incubated boreal forest soil samples amended with [13C]-cellulose and studied the microbial catabolic and anabolic utilization of the substrate under frozen and unfrozen conditions (-4 and +4°C). The [13C]-CO2 production rate in the samples at +4°C were 0.524 mg CO2 SOM -1 day-1 while rates in the frozen samples (-4°C) were 0.008 mg CO2 SOM -1 day-1. Thus, freezing of the soil markedly reduced microbial utilization of the cellulose. However, newly synthetized [13C]-enriched cell membrane lipids, PLFAs, were detected in soil samples incubated both above and below freezing, confirming microbial growth also in the frozen soil matrix. The reduced metabolic rates induced by freezing indicate constraints on exoenzymatic activity, as well as substrate diffusion rates that we can attribute to reduced liquid water content of the frozen soil. We conclude that the microbial population in boreal forest soil has the capacity to metabolize, and grow, on polymeric substrates at temperatures below zero. This also involves maintaining exoenzymatic activity in frozen soils. This capacity manifests the importance of SOM mineralization during the winter season and its importance for the net carbon balance of soils of high-latitude ecosystems.

  13. Soils and the soil cover of the Valley of Geysers

    NASA Astrophysics Data System (ADS)

    Kostyuk, D. N.; Gennadiev, A. N.

    2014-06-01

    The results of field studies of the soil cover within the tourist part of the Valley of Geysers in Kamchatka performed in 2010 and 2011 are discussed. The morphology of soils, their genesis, and their dependence on the degree of hydrothermal impact are characterized; the soil cover patterns developing in the valley are analyzed. On the basis of the materials provided by the Kronotskii Biospheric Reserve and original field data, the soil map of the valley has been developed. The maps of vegetation conditions, soil temperature at the depth of 15 cm, and slopes of the surface have been used for this purpose together with satellite imagery and field descriptions of reference soil profiles. The legend to the soil map includes nine soil units and seven units of parent materials and their textures. Soil names are given according to the classification developed by I.L. Goldfarb (2005) for the soils of hydrothermal fields. The designation of soil horizons follows the new Classification and Diagnostic System of Russian Soils (2004). It is suggested that a new horizon—a thermometamorphic horizon TRM—can be introduced into this system by analogy with other metamorphic (transformed in situ) horizons distinguished in this system. This horizon is typical of the soils partly or completely transformed by hydrothermal impacts.

  14. A soil-inventory of agricultural used soils of Germany

    NASA Astrophysics Data System (ADS)

    Siebner, Clemens; Gensior, Andreas; Evertsbusch, Sven; Freibauer, Annette; Flessa, Heiner

    2010-05-01

    In the framework of UNFCCC reports for greenhouse gas emissions of land use and land use change also soil organic carbon stocks and stock changes of have to be reported. Since 1990 a forest soil inventory exists for Germany, but similar data are still missing for agricultural land. Up till now, a very rough estimation of the soil organic carbon stocks based on the soil map of Germany at the scale of 1:1,000,000 and estimated soil organic carbon contents and bulk densities have been used for the national inventory reports. Now we are starting an extended agricultural soil inventory for Germany which is explicitly designed to detect soil organic carbon stocks and stock changes. We will use a grid of 8x8 km, like it was used for the forest soil inventory. In order to extrapolate from point data and perform regionalisations, not only soil type, soil parent material and basic climate parameters will be taken into account, but under agricultural land use different agricultural management practices will be considered. Management data, like crop rotation, depth and intensity of soil tillage and application of fertilizers, manure and composts are collected from farmers during the inventory via questionnaires. It was shown that those data are essential to estimate and extrapolate point data to report soil organic carbon stocks and stock changes on regional scale. The concept of this soil carbon inventory will be presented.

  15. Effect of soil texture on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1980-01-01

    The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.

  16. Soil mechanics and analysis of soils overlying cavitose bedrock

    SciTech Connect

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs.

  17. Soil property effects on wind erosion of organic soils

    NASA Astrophysics Data System (ADS)

    Zobeck, Ted M.; Baddock, Matthew; Scott Van Pelt, R.; Tatarko, John; Acosta-Martinez, Veronica

    2013-09-01

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (OM > 20%) in half or more of the upper 80 cm. Forty two states have a total of 21 million ha of Histosols in the United States. These soils, when intensively cropped, are subject to wind erosion resulting in loss of crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service (NRCS) as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to understand how soil properties vary among organic soils and to calibrate and validate estimates of wind erosion of organic soils using WEPS. Soil properties and sediment flux were measured in six soils with high organic contents located in Michigan and Florida, USA. Soil properties observed included organic matter content, particle density, dry mechanical stability, dry clod stability, wind erodible material, and geometric mean diameter of the surface aggregate distribution. A field portable wind tunnel was used to generate suspended sediment and dust from agricultural surfaces for soils ranging from 17% to 67% organic matter. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was sampled using a Grimm optical particle size analyzer. Particle density of the saltation-sized material (>106 μm) was inversely related to OM content and varied from 2.41 g cm-3 for the soil with the lowest OM content to 1.61 g cm-3 for the soil with highest OM content. Wind erodible material and the geometric mean diameter of the surface soil were inversely related to dry clod

  18. Remediation of contaminated soils

    SciTech Connect

    Radhakrishnan, R.; Ariza, C.H.

    1997-07-01

    At least three types of zones of contamination exist whenever there is a chemical release. The impact of Non-Aqueous-Phase Liquids (NAPL) on soils and groundwater, together with the ultimate transport and migration of constituent chemicals in their dissolved or sorbed states, had led environmentalists to develop several techniques for cleaning a contaminated soil. Zone 1 represents the unsaturated zone which could be contaminated to retention capacity by both Dense Non-Aqueous-Phase Liquids (DNAPL) and Light Non-Aqueous-Phase Liquids (LNAPL). Zone 2 represents residual DNAPL or LNAPL contamination found below the groundwater table in the saturated zone. Zone 3 is represented by either the presence of NAPL dissolved in the aqueous phase, volatilized in the unsaturated zone or sorbed to either saturated or unsaturated soils. Cleanup of petroleum contaminated soils is presented in this paper. Among several techniques developed for this purpose, in-situ biological remediation is discussed in detail as a technique that does not involve excavation, thus, the costs and disruption of excavating soil are eliminated.

  19. Ferrihydrite in soils

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Shoba, S. A.

    2016-07-01

    Ferrihydrite—an ephemeral mineral—is the most active Fe-hydroxide in soils. According to modern data, the ferrihydrite structure contains tetrahedral lattice in addition to the main octahedral lattice, with 10-20% of Fe being concentrated in the former. The presence of Fe tetrahedrons influences the surface properties of this mineral. The chemical composition of ferrihydrite samples depends largely on the size of lattice domains ranging from 2 to 6 nm. Chemically pure ferrihydrite rarely occurs in the soil; it usually contains oxyanion (SiO14 4-, PO4 3-) and cation (Al3+) admixtures. Aluminum replace Fe3+ in the structure with a decrease in the mineral particle size. Oxyanions slow down polymerization of Fe3+ aquahydroxomonomers due to the films at the surface of mineral nanoparticles. Si- and Al-ferrihydrites are more resistant to the reductive dissolution than the chemically pure ferrihydrite. In addition, natural ferrihydrite contains organic substance that decreases the grain size of the mineral. External organic ligands favor ferrihydrite dissolution. In the European part of Russia, ferrihydrite is more widespread in the forest soils than in the steppe soils. Poorly crystallized nanoparticles of ferrihydrite adsorb different cations (Zn, Cu) and anions (phosphate, uranyl, arsenate) to immobilize them in soils; therefore, ferrihydrite nanoparticles play a significant role in the biogeochemical cycle of iron and other elements.

  20. Soil microstructure and electron microscopy

    NASA Technical Reports Server (NTRS)

    Smart, P.; Fryer, J. R.

    1988-01-01

    As part of the process of comparing Martian soils with terrestial soils, high resolution electron microscopy and associated techniques should be used to examine the finer soil particles, and various techniques of electron and optical microscopy should be used to examine the undisturbed structure of Martian soils. To examine the structure of fine grained portions of the soil, transmission electron microscopy may be required. A striking feature of many Martian soils is their red color. Although the present-day Martian climate appears to be cold, this color is reminiscent of terrestial tropical red clays. Their chemical contents are broadly similar.

  1. Soil cultivation in vineyards alters interactions between soil biota and soil physical and hydrological properties

    NASA Astrophysics Data System (ADS)

    Zaller, Johann G.; Buchholz, Jacob; Querner, Pascal; Winter, Silvia; Kratschmer, Sophie; Pachinger, Bärbel; Strauss, Peter; Bauer, Thomas; Stiper, Katrin; Potthoff, Martin; Guernion, Muriel; Scimia, Jennifer; Cluzeau, Daniel

    2016-04-01

    Several ecosystem services provided by viticultural landscapes result from interactions between soil organisms and soil parameters. However, to what extent different soil cultivation intensities in vineyards compromise soil organisms and their interactions between soil physical and hydrological properties is not well understood. In this study we examined (i) to what extent different soil management intensities affect the activity and diversity of soil biota (earthworms, Collembola, litter decomposition), and (ii) how soil physical and hydrological properties influence these interactions, or vice versa. Investigating 16 vineyards in Austria, earthworms were assessed by hand sorting, Collembola via pitfall trapping and soil coring, litter decomposition by using the tea bag method. Additionally, soil physical (water infiltration, aggregate stability, porosity, bulk density, soil texture) and chemical (pH, soil carbon content, cation exchange capacity, potassium, phosphorus) parameters were assessed. Results showed complex ecological interactions between soil biota and various soil characteristics altered by management intensity. These investigations are part of the transdisciplinary BiodivERsA project VineDivers and will ultimately lead into management recommendations for various stakeholders.

  2. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  3. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties.

    PubMed

    Xian, Yu; Wang, Meie; Chen, Weiping

    2015-11-01

    Soil enzyme activities are greatly influenced by soil properties and could be significant indicators of heavy metal toxicity in soil for bioavailability assessment. Two groups of experiments were conducted to determine the joint effects of heavy metals and soil properties on soil enzyme activities. Results showed that arylsulfatase was the most sensitive soil enzyme and could be used as an indicator to study the enzymatic toxicity of heavy metals under various soil properties. Soil organic matter (SOM) was the dominant factor affecting the activity of arylsulfatase in soil. A quantitative model was derived to predict the changes of arylsulfatase activity with SOM content. When the soil organic matter content was less than the critical point A (1.05% in our study), the arylsulfatase activity dropped rapidly. When the soil organic matter content was greater than the critical point A, the arylsulfatase activity gradually rose to higher levels showing that instead of harm the soil microbial activities were enhanced. The SOM content needs to be over the critical point B (2.42% in our study) to protect its microbial community from harm due to the severe Pb pollution (500mgkg(-1) in our study). The quantitative model revealed the pattern of variation of enzymatic toxicity due to heavy metals under various SOM contents. The applicability of the model under wider soil properties need to be tested. The model however may provide a methodological basis for ecological risk assessment of heavy metals in soil.

  4. Shaping an Optimal Soil by Root-Soil Interaction.

    PubMed

    Jin, Kemo; White, Philip J; Whalley, William R; Shen, Jianbo; Shi, Lei

    2017-10-01

    Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils

    USDA-ARS?s Scientific Manuscript database

    Cadmium (Cd) loading in soil and the environment has been accelerated worldwide due to enhanced industrialization and intensified agricultural production, particularly in the developing countries. Soil Cd pollution, resulting from both anthropogenic and geogenic sources, has posed an increasing chal...

  6. SOIL WASHING TREATABILITY TESTS FOR PESTICIDE- CONTAMINATED SOIL

    EPA Science Inventory

    The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability...

  7. Soil compaction effects on soil health and cropproductivity: an overview.

    PubMed

    Shah, Adnan Noor; Tanveer, Mohsin; Shahzad, Babar; Yang, Guozheng; Fahad, Shah; Ali, Saif; Bukhari, Muhammad Adnan; Tung, Shahbaz Atta; Hafeez, Abdul; Souliyanonh, Biangkham

    2017-04-01

    Soil compaction causes substantial reduction in agriculture productivity and has always been of great distress for farmers. Intensive agriculture seems to be more crucial in causing compaction. High mechanical load, less crop diversification, intensive grazing, and irrigation methods lead to soil compaction. It is further exasperated when these factors are accompanied with low organic matter, animal trampling, engine vibrations, and tillage at high moisture contents. Soil compaction increases soil bulk density and soil strength, while decreases porosity, aggregate stability index, soil hydraulic conductivity, and nutrient availability, thus reduces soil health. Consequently, it lowers crop performance via stunted aboveground growth coupled with reduced root growth. This paper reviews the potential causes of compaction and its consequences that have been published in last two decades. Various morphological and physiological alterations in plant as result of soil compaction have also been discussed in this review.

  8. SOIL WASHING TREATABILITY TESTS FOR PESTICIDE- CONTAMINATED SOIL

    EPA Science Inventory

    The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability...

  9. Keys to soil taxonomy by soil survey staff (sixth edition)

    SciTech Connect

    1994-12-31

    This publication, Keys to Soil Taxonomy, serves two purposes. It provides the taxonomic keys necessary for the classification of soils according to Soil Taxonomy in a form that can be used easily in the field, and it also acquaints users of Soil Taxonomy with recent changes in the classification system. This volume includes all revisions of the keys that have so far been approved, replacing the original keys in Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys (1975), the work on which this abridged version, first published in 1983, is based. This publication incorporates all amendments approved to date and published in National Soil Taxonomy Handbook (NSTH) Issues 1-17.

  10. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    NASA Astrophysics Data System (ADS)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  11. Soil macrofauna webmasters of ecosystem

    NASA Astrophysics Data System (ADS)

    Frouz, Jan

    2015-04-01

    The role of plant roots and microflora in shaping many ecosystem processes is generally appreciated in the contrary rho role of soil mcrofauna in this context is assumed to be negligible and rather anecdotic. But more than half of the litter fall is consumed by soil fauna and soil fauna can also consume and or translocation substantial amount of soil. Here we demonstrate on example of post mining chronosequences how site colonization by soil fauna affect composition of whole soil biota community, plant succession and soil formation. Filed and laboratory experiments show that decomposition of fauna feces may be sped up compare to litter at the very beginning but in long term fauna feces decompose slower than litter. This is also supported by micro morphological observation which shows that fauna feces form substantial part of soil. Fauna feces also induce lover or even negative priming effect when introduced in soil in comparison with litter that triggers positive priming effect. Laboratory experiment show that fauna effect is context sensitive and is more pronounced in systems already affected by soil fauna. Soil mixing by soil fauna consequently affect environmental conditions in soils such as water holding capacity or nutrient availability, it also affect composition of decomposer food web including microbial community (fungal bacterial ratio) which feed back in alternation of plant community composition during succession This fauna activity is not constant everywhere the higher effect of fauna activity on litter layer was observed in temperate soils of deciduous forests and with litter having CN between 20-30. In conclusion soil fauna use directly only small proportion of energy in the litter but can substantially affect soil carbon turnover, soil formation, decomposer food web and plant community.

  12. Soils, time, and primate paleoenvironments

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    Soils are the skin of the earth. From both poles to the equator, wherever rocks or sediment are exposed at the surface, soils are forming through the physical and chemical action of climate and living organisms. The physical attributes (color, texture, thickness) and chemical makeup of soils vary considerably, depending on the composition of the parent material and other variables: temperature, rainfall and soil moisture, vegetation, soil fauna, and the length of time that soil-forming processes have been at work. United States soil scientists1 have classified modern soils into ten major groups and numerous subgroups, each reflecting the composition and architecture of the soils and, to some extent, the processes that led to their formation. The physical and chemical processes of soil formation have been active throughout geologic time; the organic processes have been active at least since the Ordovician.2 Consequently, nearly all sedimentary rocks that were deposited in nonmarine settings and exposed to the elements contain a record of ancient, buried soils or paleosols. A sequence of these rocks, such as most ancient fluvial (stream) deposits, provides a record of soil paleoenvironments through time. Paleosols are also repositories of the fossils of organisms (body fossils) and the traces of those organisms burrowing, food-seeking, and dwelling activities (ichnofossils). Indeed, most fossil primates are found in paleosols. Careful study of ancient soils gives new, valuable insights into the correct temporal reconstruction of the primate fossil record and the nature of primate paleoenvironments. ?? 1993 Wiley-Liss, Inc.

  13. Method to measure soil matrix infiltration in forest soil

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Lei, Tingwu; Qu, Liqin; Chen, Ping; Gao, Xiaofeng; Chen, Chao; Yuan, Lili; Zhang, Manliang; Su, Guangxu

    2017-09-01

    Infiltration of water into forest soil commonly involves infiltration through the matrix body and preferential passages. Determining the matrix infiltration process is important in partitioning water infiltrating into the soil through the soil body and macropores to evaluate the effects of soil and water conservation practices on hillslope hydrology and watershed sedimentation. A new method that employs a double-ring infiltrometer was applied in this study to determine the matrix infiltration process in forest soil. Field experiments were conducted in a forest field on the Loess Plateau at Tianshui Soil and Water Conservation Experimental Station. Nylon cloth was placed on the soil surface in the inner ring and between the inner and outer rings of infiltrometers. A thin layer of fine sands were placed onto the nylon cloth to shelter the macropores and ensure that water infiltrates the soil through the matrix only. Brilliant Blue tracers were applied to examine the exclusion of preferential flow occurrences in the measured soil body. The infiltration process was measured, computed, and recorded through procedures similar to those of conventional methods. Horizontal and vertical soil profiles were excavated to check the success of the experiment and ensure that preferential flow did not occur in the measured soil column and that infiltration was only through the soil matrix. The infiltration processes of the replicates of five plots were roughly the same, thereby indicating the feasibility of the methodology to measure soil matrix infiltration. The measured infiltration curves effectively explained the transient process of soil matrix infiltration. Philip and Kostiakov models fitted the measured data well, and all the coefficients of determination were greater than 0.9. The wetted soil bodies through excavations did not present evidence of preferential flow. Therefore, the proposed method can determine the infiltration process through the forest soil matrix. This

  14. Working with Soil - Soil science in the field

    NASA Astrophysics Data System (ADS)

    Hannam, Jacqueline; Lacelles, Bruce; Owen, Jason; Thompson, Dick; Jones, Bob; Towers, Willie

    2015-04-01

    Working with Soil is the Professional Competency Scheme developed by the British Society of Soil Science's Professional Practice Committee, formerly the Institute of Professional Soil Scientists. Ten competency documents cover the required qualifications, skills and knowledge for different aspects of applied soil science. The Society is currently engaged in a five year plan to translate the competency documents into a comprehensive set of training courses. Foundation skills in field-based science are covered by three separate training courses - Exposing and describing a soil profile (Course 1), Soil classification (Course 2), and Soil survey techniques (Course 3). Course 1 has run successfully twice a year since 2013. The other two courses are under development and are scheduled to start in 2015. The primary objective of Foundation Skills Course 1 is to develop confidence and familiarity with field soil investigation and description, understanding the soil underfoot and putting soils into a wider landscape context. Delegates excavate a soil profile pit, and describe and sample the exposed soil to standard protocols. Delegates work in teams of 4 or 5 so that an element of shared learning is part of the process. This has been a very positive aspect of the courses we have run to date. The course has attracted professionals from agricultural and environmental consultancies but is also very popular with research students and has formed a part of an Advanced Training Programme in Soil Science for postgraduates. As there is only one soil science degree course remaining in the UK, many students on their admission do not have a background in field-based pedology and lack an understanding of soil in the context of landscape scale soil functions. Feedback to date has been very positive.

  15. ANAEROBIC SOIL DISINFESTATION IN MICROCOSMS OF TWO SANDY SOILS.

    PubMed

    Stremińska, M A; Runia, W T; Termorshuizen, A J; Feil, H; Van Der Wurff, A W G

    2014-01-01

    In recent years, anaerobic soil disinfestation (ASD) has been proposed as an alternative control method of soil-borne plant pathogens. It involves adding a labile carbon source, irrigating the soil to stimulate decomposition of organic material and then covering the soil with air-tight plastic to limit gas exchange. During the ASD process, soil microorganisms switch from aerobic to anaerobic metabolism. As a result, by-products of anaerobic metabolism are released into the soil environment such as various organic acids and gases. These by-products are reported to have a negative effect on survival of soil-borne plant pathogens. However, the efficacy of ASD to reduce soil-borne pathogens in practice may vary significantly. Therefore, we studied the efficacy of the ASD process in two different soils. In addition, it was investigated whether a pre-treatment with an anaerobic bacterial inoculum prior to ASD affected the efficacy of the process. Two sandy soils (dune sand and glacial sand) were inoculated in 2 L soil microcosms. We tested the efficacy of ASD treatment against the potato cyst nematode Globodera pallida. For each soil, three treatments were used: control treatment (no Herbie addition, aerobic incubation), ASD 1 (organic substrate addition, anaerobic incubation) and ASD 2 (organic substrate and anaerobic bacterial inoculum addition, anaerobic incubation). Soil microcosms were incubated in the dark at 20°C for two weeks. We observed that anaerobic soil disinfestation treatments were highly effective against Potato Cyst Nematode (PCN), with pathogen being eradicated totally in all but one ASD treatment (glacial sand ASD2) within two weeks. The relative abundance of Firmicutes (spore-forming bacteria, often fermentative) in total bacteria increased significantly in ASD treated soils. Numbers of these bacteria correlated positively with increased concentrations of acetic and butyric acids in soil water phase in ASD treatments.

  16. Sorption of Pahs To Soil Minerals and Subsurface Soil

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Totsche, K. U.; Koegel-Knabner, I.

    In subsurface soil horizons, the sorption of hydrophobic organic contaminants may primarily be controlled by the composition and the properties of the soil minerals. Therefore this study aimed to elucidate the sorption and the sorption kinetics of hydrophobic organic contaminants to different inorganic soil constituents and subsurface soil horizons. Batch sorption experiments are conducted with three poly- cyclic aromatic hydrocarbons (PAHS; phenanthrene, pyrene and benzo(a)pyrene), with the model minerals quartz sand, quartz sand coated with goethite and a quartz sand - mont- morillonite mixture, and with b and c horizons of different soil types developped in the temperate climate. Batch experiments show a considerable sorption of PAHS to all soil minerals and soil horizons except for the sorption of phenanthrene to quartz sand. The sorption process of PAHS to single minerals is rapid and completed after 4 hours of contact time. The sorption to subsurface soil horizons, however, is not in equilibrium after 120h of contact time and shows a considerable sorption kinetic. Sorption capacity is higher for clay minerals and iron oxides than for quartz sand which corresponds with a higher sorption capacity of soil horizons with a high clay content. Sorption isotherms of the soil minerals are best described by a nonlinear isotherm whereas the sorption isotherms of the subsurface soil horizons are more or less linear indicating different sorption mechanisms for mineral sorbents and soil horizons.

  17. Soil Genesis and Development, Lesson 5 - Soil Geography and Classification

    USDA-ARS?s Scientific Manuscript database

    The system of soil classification developed by the United States Department of Agriculture (USDA) is called Soil Taxonomy. Soil Taxonomy consists of a hierarchy of six levels which, from highest to lowest, are: Order, Suborder, Great Group, Subgroup, family, and series. This lesson will focus on bro...

  18. Soil quality demonstrations for building economically and environmentally sustainable soil

    USDA-ARS?s Scientific Manuscript database

    Soil quality, soil health, and soil sustainability are widely used terms but are difficult to define and illustrate, especially to a non-technical audience. A packet of a dozen demonstrations for the field and classroom was compiled and titled ‘Building a Sustainable Soil’. In this packet, new meth...

  19. Soil texture classification algorithm using RGB characteristics of soil images

    USDA-ARS?s Scientific Manuscript database

    Soil texture has an important influence on agriculture, affecting crop selection, movement of nutrients and water, soil electrical conductivity, and crop growth. Soil texture has traditionally been determined in the laboratory using pipette and hydrometer methods that require a considerable amount o...

  20. Soils in Schools: Embedding Soil Science in STEM

    ERIC Educational Resources Information Center

    Bryce, Alisa

    2015-01-01

    Soil science, though relevant to a variety of subjects including science, geography, mathematics, social sciences and history, is typically perceived as a subgenre of agriculture. With a global need for soil scientists, and declining numbers in university soil courses, there's a growing gap between science needs and providers. One way to promote…

  1. Soils in Schools: Embedding Soil Science in STEM

    ERIC Educational Resources Information Center

    Bryce, Alisa

    2015-01-01

    Soil science, though relevant to a variety of subjects including science, geography, mathematics, social sciences and history, is typically perceived as a subgenre of agriculture. With a global need for soil scientists, and declining numbers in university soil courses, there's a growing gap between science needs and providers. One way to promote…

  2. A Laboratory Exercise Relating Soil Energy Budgets to Soil Temperature

    ERIC Educational Resources Information Center

    Koenig, Richard T.; Cerny-Koenig, Teresa; Kotuby-Amacher, Janice; Grossl, Paul R.

    2008-01-01

    Enrollment by students in degree programs other than traditional horticulture, agronomy, and soil science has increased in basic plant and soil science courses. In order to broaden the appeal of these courses to students from majors other than agriculture, we developed a hands-on laboratory exercise relating the basic concepts of a soil energy…

  3. SOIL VAPOR EXTRACTION COLUMN EXPERIMENTS ON GASOLINE CONTAMINATED SOIL

    EPA Science Inventory

    Soil vapor extraction (SVE) is a technique that is used to remove volatile organic compounds from unsaturated soils. Air is pumped through and from the contaminated zone to remove vapor phase constituents. In the work, laboratory soil column experiments were conducted using a gas...

  4. SOIL VAPOR EXTRACTION COLUMN EXPERIMENTS ON GASOLINE CONTAMINATED SOIL

    EPA Science Inventory

    Soil vapor extraction (SVE) is a technique that is used to remove volatile organic compounds from unsaturated soils. Air is pumped through and from the contaminated zone to remove vapor phase constituents. In the work, laboratory soil column experiments were conducted using a gas...

  5. A Laboratory Exercise Relating Soil Energy Budgets to Soil Temperature

    ERIC Educational Resources Information Center

    Koenig, Richard T.; Cerny-Koenig, Teresa; Kotuby-Amacher, Janice; Grossl, Paul R.

    2008-01-01

    Enrollment by students in degree programs other than traditional horticulture, agronomy, and soil science has increased in basic plant and soil science courses. In order to broaden the appeal of these courses to students from majors other than agriculture, we developed a hands-on laboratory exercise relating the basic concepts of a soil energy…

  6. Soil solution assessment of the soil availability of xenobiotics

    SciTech Connect

    Wolt, J.D.

    1993-12-01

    Soil solution displacement provides a means whereby xenobiotic availability in the soil environment can be evaluated rapidly and effectively. The displacement and analysis of soil solution provides (a) refined measurements of the bioavailability of soil active xenobiotics, (b) static measurements of phase partitioning of xenobiotics under conditions which closely mimic soil moisture regimes in field environments, and (c) dynamic measurements of xenobiotic availability as a function of residence time in the soil. The biological availability (efficacy/toxicity) and the geochemical availability (environmental fate) of biologically active molecules are both a function of the xenobiotic effective concentration (that is, chemical activity) and solid-liquid distribution in soils is possible based on knowledge of xenobiotic pK{sub a} and mole weight, and measurement of soil solution xenobiotic intensity, pH, and ionic strength. Dynamic measures based on soil solution displacement with time offer a means to assess time domain influences on xenobiotic availability. Soil solution displacement and analysis has been employed successfully for refined assessments of leachability, phytotoxicity, and sorptivity of xenobiotics and offers a useful adjunct to more traditional whole soil extractions for determination of xenobiotic fate and behavior in soil.

  7. Soil Genesis and Development, Lesson 4 - Soil Profile Development

    USDA-ARS?s Scientific Manuscript database

    The history of a soil is reflected in the arrangement of its constituent parts. Largely the arrangement is related to the movement, or lack of movement, of water through the soil in all directions. Understanding the processes that result in a specific soil type allows for more precise and effectiv...

  8. Soil mechanics experiment

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Bromwell, L. G.; Carrier, W. D., III; Costes, N. C.; Houston, W. N.; Scott, R. F.

    1972-01-01

    The Apollo 15 soil-mechanics experiment has offered greater opportunity for study of the mechanical properties of the lunar soil than previous missions, not only because of the extended lunar-surface stay time and enhanced mobility provided by the lunar roving vehicle (rover), but also because four new data sources were available for the first time. These sources were: (1) the self-recording penetrometer (SRP), (2) new, larger diameter, thin-walled core tubes, (3) the rover, and (4) the Apollo lunar-surface drill (ALSD). These data sources have provided the best bases for quantitative analyses thus far available in the Apollo Program.

  9. Advanced Soil Mechanics

    NASA Astrophysics Data System (ADS)

    Sterrett, Robert J.

    The fields of soil mechanics and foundation engineering already have many significant textbooks on these subjects; thus it seems that it would be difficult to produce a new textbook in this area. Braja Das, however, has strived and succeeded in producing a work with a refreshing approach to the subject.The text is intended as an introductory graduate text. The book, as described by the author, has as its basis class notes that he prepared for teaching; thus the text is organized as a logical progression in the development of engineering thought in soil mechanics.

  10. Soil tension mediates isotope fractionation during soil water evaporation

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  11. World's soils are under threat

    NASA Astrophysics Data System (ADS)

    Montanarella, Luca; Pennock, Daniel Jon; McKenzie, Neil; Badraoui, Mohamed; Chude, Victor; Baptista, Isaurinda; Mamo, Tekalign; Yemefack, Martin; Singh Aulakh, Mikha; Yagi, Kazuyuki; Hong, Suk Young; Vijarnsorn, Pisoot; Zhang, Gan-Lin; Arrouays, Dominique; Black, Helaina; Krasilnikov, Pavel; Sobocká, Jaroslava; Alegre, Julio; Henriquez, Carlos Roberto; de Lourdes Mendonça-Santos, Maria; Taboada, Miguel; Espinosa-Victoria, David; AlShankiti, Abdullah; Kazem AlaviPanah, Sayed; El Mustafa Elsheikh, Elsiddig Ahmed; Hempel, Jon; Camps Arbestain, Marta; Nachtergaele, Freddy; Vargas, Ronald

    2016-02-01

    The Intergovernmental Technical Panel on Soils has completed the first State of the World's Soil Resources Report. Globally soil erosion was identified as the gravest threat, leading to deteriorating water quality in developed regions and to lowering of crop yields in many developing regions. We need to increase nitrogen and phosphorus fertilizer use in infertile tropical and semi-tropical soils - the regions where the most food insecurity among us are found - while reducing global use of these products overall. Stores of soil organic carbon are critical in the global carbon balance, and national governments must set specific targets to stabilize or ideally increase soil organic carbon stores. Finally the quality of soil information available for policy formulation must be improved - the regional assessments in the State of the World's Soil Resources Report frequently base their evaluations on studies from the 1990s based on observations made in the 1980s or earlier.

  12. Tools for proximal soil sensing

    USDA-ARS?s Scientific Manuscript database

    Proximal soil sensing (i.e. near-surface geophysical methods) are used to study soil phenomena across spatial scales. Geophysical methods exploit contrasts in physical properties (dielectric permittivity, apparent electrical conductivity or resistivity, magnetic susceptibility) to indirectly measur...

  13. Soil Vapor Extraction Implementation Experiences

    EPA Pesticide Factsheets

    This issue paper identifies issues and summarizes experiences with soil vapor extraction (SVE) as a remedy for volatile organic compounds (VOCs) in soils. The issues presented here reflect discussions with over 30 Remedial Project Managers (RPMs)...

  14. Soil-Transmitted Helminth Infections

    MedlinePlus

    ... files Questions & answers Features Multimedia Contacts Soil-transmitted helminth infections Fact sheet Updated September 2017 Key facts Soil-transmitted helminth infections are caused by different species of parasitic ...

  15. A Sampling of Martian Soils

    NASA Image and Video Library

    2012-12-03

    This collage shows the variety of soils found at landing sites on Mars. The elemental composition of the typical, reddish soils were investigated by NASA Viking, Pathfinder and Mars Exploration Rover missions, and now with the Curiosity rover.

  16. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  17. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  18. Innovative methods speed soil cleanup

    SciTech Connect

    Alexander, T.G.

    1994-05-01

    Innovative technolgies for soil remediation are discussed, as well as hurdles towards their use. Technologies include soil washing, vapor extraction, bioremediation, chemical treatment, and other forms of themal treatment. Use at Superfund sites is described.

  19. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    PubMed

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Relationships between soil physicochemical, microbiological properties, and nutrient release in buffer soils compared to field soils.

    PubMed

    Stutter, Marc I; Richards, Samia

    2012-01-01

    The retention of nutrients in narrow, vegetated riparian buffer strips (VBS) is uncertain and underlying processes are poorly understood. Evidence suggests that buffer soils are poor at retaining dissolved nutrients, especially phosphorus (P), necessitating management actions if P retention is not to be compromised. We sampled 19 buffer strips and adjacent arable field soils. Differences in nutrient retention between buffer and field soils were determined using a combined assay for release of dissolved P, N, and C forms and particulate P. We then explored these differences in relation to changes in soil bulk density (BD), moisture, organic matter by loss on ignition (OM), and altered microbial diversity using molecular fingerprinting (terminal restriction fragment length polymorphism [TRFLP]). Buffer soils had significantly greater soil OM (89% of sites), moisture content (95%), and water-soluble nutrient concentrations for dissolved organic C (80%), dissolved organic N (80%), dissolved organic P (55%), and soluble reactive P (70%). Buffer soils had consistently smaller bulk densities than field soils. Soil fine particle release was generally greater for field than buffer soils. Significantly smaller soil bulk density in buffer soils than in adjacent fields indicated increased porosity and infiltration in buffers. Bacterial, archaeal, and fungal communities showed altered diversity between the buffer and field soils, with significant relationships with soil BD, moisture, OM, and increased solubility of buffer nutrients. Current soil conditions in VBS appear to be leading to potentially enhanced nutrient leaching via increasing solubility of C, N, and P. Manipulating soil microbial conditions (by management of soil moisture, vegetation type, and cover) may provide options for increasing the buffer storage for key nutrients such as P without increasing leaching to adjacent streams.

  1. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    NASA Astrophysics Data System (ADS)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold

    2015-04-01

    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website www.soil.org/IYS. The site will be updated constantly throughout the year.

  2. Soil structural quality assessment for soil protection regulation

    NASA Astrophysics Data System (ADS)

    Johannes, Alice; Boivin, Pascal

    2017-04-01

    Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality

  3. Tannins Influence Soil Chemical Processes

    USDA-ARS?s Scientific Manuscript database

    Tannins, plant secondary compounds, can affect soil and water quality by interacting with inorganic and organic compounds. However, the fate of tannins and their effect on soil metal cycling dynamics and soil chemical processes is poorly understood. We examined the effects of commercial available ...

  4. Soil-disturbance field guide

    Treesearch

    Carolyn Napper; Steven Howes; Deborah Page-Dumroese

    2009-01-01

    The San Dimas Technology and Development Center of the Forest Service, U. S. Department of Agriculture, developed the soil-disturbance field guide as a soil monitoring tool to identify soildisturbance classes. The field guide provides detailed descriptions and photographic examples - over a wide range of climatic and vegetative conditions - of the undisturbed soil...

  5. Acid precipitation and forest soils

    Treesearch

    C. O. Tamm

    1976-01-01

    Many soil processes and properties may be affected by a change in chemical climate such as that caused by acidification of precipitation. The effect of additions of acid precipitation depends at first on the extent to which this acid is really absorbed by the soil and on the changes in substances with actual or potential acidity leaving the soil. There is for instance...

  6. Sensor based soil health assessment

    USDA-ARS?s Scientific Manuscript database

    Quantification and assessment of soil health involves determining how well a soil is performing its biological, chemical, and physical functions relative to its inherent potential. Due to high cost, labor requirements, and soil disturbance, traditional laboratory analyses cannot provide high resolut...

  7. Soils [Chapter 4.2

    Treesearch

    Daniel G. Neary; Johannes W. A. Langeveld

    2015-01-01

    Soils are crucial for profitable and sustainable biomass feedstock production. They provide nutrients and water, give support for plants, and provide habitat for enormous numbers of biota. There are several systems for soil classification. FAO has provided a generic classification system that was used for a global soil map (Bot et al., 2000). The USDA Natural Resources...

  8. Container Soil-Water Reactions.

    ERIC Educational Resources Information Center

    Spomer, L. Art; Hershey, David R.

    1990-01-01

    Presented is an activity that illustrates the relationship between the soil found in containers and soil in the ground including the amount of air and water found in each. Sponges are used to represent soil. Materials, procedures, and probable results are described. (KR)

  9. Minnesota's Soils and Their Uses.

    ERIC Educational Resources Information Center

    Halsey, Clifton

    There is an increasing need for land planning and understanding soil is one step toward assuring proper land use. This publication, written by soil scientists and teachers, is designed as a reference for high school teachers. It is designed to be a comprehensive collection about Minnesota soils (although the information can be applied to other…

  10. Soils and Foundations: A Syllabus.

    ERIC Educational Resources Information Center

    Long, Melvin J.

    The teaching guide and course outline for a 12-week course in soils and foundations is designed to help student technicians in a two-year associate degree civil engineering technology program to obtain entry level employment as highway engineering aides, soil testing technicians, soil mappers, or construction inspectors. The seven teaching units…

  11. Biochar effects on soil hydrology

    USDA-ARS?s Scientific Manuscript database

    Biochar has the potential to alter soil hydrology, and these alterations may lead to significant changes in water cycling and ecosystem processes mediated by water. Biochar soil amendment may change infiltration and drainage in both sandy and clay soils, may increase or decrease plant-available wate...

  12. Crop Residue and Soil Water

    USDA-ARS?s Scientific Manuscript database

    Crop yield is greatly influenced by the amount of water that moves from the soil, through the plant, and out into the atmosphere. Winter wheat yield responds linearly to available soil water content at planting (bu/a = 5.56 + 5.34*inches). Therefore, storing precipitation in the soil during non-crop...

  13. EVALUATION OF SOIL VENTING APPLICATION

    EPA Science Inventory

    The ability of soil venting to inexpensively remove large amounts of volatile organic compounds (VOCs) from contaminated soils is well established. However, the time required using venting to remediate soils to low contaminant levels often required by state and federal regulators...

  14. Evaluation of soil moisture sensors

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the measurement accuracy and repeatability of the EC-5 and 5TM soil volumetric water content (SVWC) sensors, MPS-2 and 200SS soil water potential (SWP) sensors, and 200TS soil temperature sensor. Six 183cm x 183cm x 71cm wooden compartments were built inside a greenhouse, and e...

  15. Soil Respiration - A Geochemist's Perspective

    NASA Astrophysics Data System (ADS)

    Van Cappellen, P.

    2015-12-01

    Soil biogeochemistry is largely driven by the decomposition of plant-derived organic matter by soil microorganisms. In addition to its effects on water quality and soil fertility, the decomposition of organic matter couples soil processes to climate, via the production and emission of greenhouse gases. In this presentation, I will review a number of key factors controlling the rate of decomposition of soil organic matter. In particular, I will discuss the importance of the spatial and temporal variations in redox conditions as drivers of soil respiration. The discussion will highlight the limitations of current soil respiration models based on partitioning soil organic matter in a finite number of pools of different degradability. In order to predict the sensitivity of soil respiration to anthropogenic pressures - including climate warming - it is crucial to relate the apparent degradability of soil organic matter to the geochemical and hydrological dynamics of the soil environment. Overall, there remains much scope for geochemists to help develop more robust, process-based, representations of soil respiration in global carbon models and climate predictions.

  16. Stability of Biochar in Soil

    USDA-ARS?s Scientific Manuscript database

    Conversion of biomass to biochar followed by application of the biochar to the soil increases the residence time of carbon (C) in the soil relative to application of the same biomass directly to the soil, and therefore can be considered over particular timescales to result in a net withdrawal of atm...

  17. Container Soil-Water Reactions.

    ERIC Educational Resources Information Center

    Spomer, L. Art; Hershey, David R.

    1990-01-01

    Presented is an activity that illustrates the relationship between the soil found in containers and soil in the ground including the amount of air and water found in each. Sponges are used to represent soil. Materials, procedures, and probable results are described. (KR)

  18. Soil and Water: Some Teaching Suggestions.

    ERIC Educational Resources Information Center

    Fischer, Richard B.

    1987-01-01

    Outlines six soil and water investigations that students can pursue outdoors, in nature centers, or in classrooms: soil characteristics; relationship between soil ph and plant life; what aggregates tell us; differences in soil structure; differences in rate of water absorption by soil; and soil exploration with a Berlesi funnel. (NEC)

  19. Soil and Water: Some Teaching Suggestions.

    ERIC Educational Resources Information Center

    Fischer, Richard B.

    1987-01-01

    Outlines six soil and water investigations that students can pursue outdoors, in nature centers, or in classrooms: soil characteristics; relationship between soil ph and plant life; what aggregates tell us; differences in soil structure; differences in rate of water absorption by soil; and soil exploration with a Berlesi funnel. (NEC)

  20. SoilInfo App: global soil information on your palm

    NASA Astrophysics Data System (ADS)

    Hengl, Tomislav; Mendes de Jesus, Jorge

    2015-04-01

    ISRIC ' World Soil Information has released in 2014 and app for mobile de- vices called 'SoilInfo' (http://soilinfo-app.org) and which aims at providing free access to the global soil data. SoilInfo App (available for Android v.4.0 Ice Cream Sandwhich or higher, and Apple v.6.x and v.7.x iOS) currently serves the Soil- Grids1km data ' a stack of soil property and class maps at six standard depths at a resolution of 1 km (30 arc second) predicted using automated geostatistical mapping and global soil data models. The list of served soil data includes: soil organic carbon (), soil pH, sand, silt and clay fractions (%), bulk density (kg/m3), cation exchange capacity of the fine earth fraction (cmol+/kg), coarse fragments (%), World Reference Base soil groups, and USDA Soil Taxonomy suborders (DOI: 10.1371/journal.pone.0105992). New soil properties and classes will be continuously added to the system. SoilGrids1km are available for download under a Creative Commons non-commercial license via http://soilgrids.org. They are also accessible via a Representational State Transfer API (http://rest.soilgrids.org) service. SoilInfo App mimics common weather apps, but is also largely inspired by the crowdsourcing systems such as the OpenStreetMap, Geo-wiki and similar. Two development aspects of the SoilInfo App and SoilGrids are constantly being worked on: Data quality in terms of accuracy of spatial predictions and derived information, and Data usability in terms of ease of access and ease of use (i.e. flexibility of the cyberinfrastructure / functionalities such as the REST SoilGrids API, SoilInfo App etc). The development focus in 2015 is on improving the thematic and spatial accuracy of SoilGrids predictions, primarily by using finer resolution covariates (250 m) and machine learning algorithms (such as random forests) to improve spatial predictions.

  1. Biochar addition impacts soil microbial community in tropical soils

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel

    2014-05-01

    Studies on the effect of biochar on soil microbial activity and community structure in tropical areas are scarce. In this study we report the effect of several types of biochar (sewage sludge biochar, paper mill waste biochar, miscanthus biochar and pinewood biochar) in the soil microbial community of two tropical soils, an Acrisol and an Oxisol. In addition we study the effect of the presence or absence of earthworms in soil microbial community. Soil microbial community was more strongly affected by biochar than by the presence or absence of macrofauna.

  2. Soil-ecological risks for soil degradation estimation

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana; Shirkin, Leonid; Kust, German; Andreeva, Olga

    2016-04-01

    Soil degradation includes the processes of soil properties and quality worsening, primarily from the point of view of their productivity and decrease of ecosystem services quality. Complete soil cover destruction and/or functioning termination of soil forms of organic life are considered as extreme stages of soil degradation, and for the fragile ecosystems they are normally considered in the network of their desertification, land degradation and droughts /DLDD/ concept. Block-model of ecotoxic effects, generating soil and ecosystem degradation, has been developed as a result of the long-term field and laboratory research of sod-podzol soils, contaminated with waste, containing heavy metals. The model highlights soil degradation mechanisms, caused by direct and indirect impact of ecotoxicants on "phytocenosis- soil" system and their combination, frequently causing synergistic effect. The sequence of occurring changes here can be formalized as a theory of change (succession of interrelated events). Several stages are distinguished here - from heavy metals leaching (releasing) in waste and their migration downward the soil profile to phytoproductivity decrease and certain phytocenosis composition changes. Phytoproductivity decrease leads to the reduction of cellulose content introduced into the soil. The described feedback mechanism acts as a factor of sod-podzolic soil self-purification and stability. It has been shown, that using phytomass productivity index, integrally reflecting the worsening of soil properties complex, it is possible to solve the problems dealing with the dose-reflecting reactions creation and determination of critical levels of load for phytocenosis and corresponding soil-ecological risks. Soil-ecological risk in "phytocenosis- soil" system means probable negative changes and the loss of some ecosystem functions during the transformation process of dead organic substance energy for the new biomass composition. Soil-ecological risks estimation is

  3. Airbag Impressions in Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbags left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  4. Soils. Transparency Masters.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This document is a collection of 43 overhead transparency masters to be used as teaching aids in a course of study involving soils such as geology, agronomy, hydrology, earth science, or land use study. Some transparencies are in color. Selected titles of transparencies may give the reader a better understanding of the graphic content. Titles are:…

  5. Spending our soil resources

    USDA-ARS?s Scientific Manuscript database

    A third of the world's population suffers from food insecurity. With an expected 2 billion population increase in the next few decades, that number is expected to rise significantly, leading to more people that are insecure and starving unless our soils can produce more food. Added to the problem ar...

  6. Airbag Impressions in Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbags left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  7. Humus and soil fertility

    Treesearch

    Kevin T. Smith

    2010-01-01

    Humus is a Latin word, meaning on or in the ground, but what is humus in the context of tree and landscape care? Is humus the same as soil organic matter? With the increased emphasis on biologically-based products for sustainable landscapes and tree care, the sources and quality of humus products have greatly increased in recent years.

  8. Soils. Transparency Masters.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This document is a collection of 43 overhead transparency masters to be used as teaching aids in a course of study involving soils such as geology, agronomy, hydrology, earth science, or land use study. Some transparencies are in color. Selected titles of transparencies may give the reader a better understanding of the graphic content. Titles are:…

  9. Soil on Phoenix's MECA

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows soil delivery to NASA's Phoenix Mars Lander's Microscopy, Electrochemistry and Conductivity Analyzer (MECA). The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008).

    At the bottom of the image is the chute for delivering samples to MECA's microscopes. It is relatively clean due to the Phoenix team using methods such as sprinkling to minimize cross-contamination of samples. However, the cumulative effect of several sample deliveries can be seen in the soil piles on either side of the chute.

    On the right side are the four chemistry cells with soil residue piled up on exposed surfaces. The farthest cell has a large pile of material from an area of the Phoenix workspace called 'Stone Soup.' This area is deep in the trough at a polygon boundary, and its soil was so sticky it wouldn't even go through the funnel.

    One of Phoenix's solar panels is shown in the background of this image.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Soil, An Environmental Investigation.

    ERIC Educational Resources Information Center

    National Wildlife Federation, Washington, DC.

    This environmental unit is one of a series designed for integration within an existing curriculum. The unit is self-contained and requires minimal teacher preparation. The philosophy of the series is based on an experience-oriented process that encourages self-paced independent student work. This particular unit investigates soil in relation to…

  11. Improved Biosensors for Soils

    NASA Astrophysics Data System (ADS)

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  12. Exploring Soil Ecosystems.

    ERIC Educational Resources Information Center

    Finley, Deborah R.

    1991-01-01

    Describes a soil lab that can be performed with a minimum of equipment and time, utilizing a lawn, field, or woodlot. Students dig a 1-meter-deep pit and observe the litter and humus layers where most microbial and fungal decomposition occurs. Describes comparing different locations by pH level and concentration of potassium, phosphorous, and…

  13. Irwin Scoops up Soil

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, uses a scoop in making a trench in the lunar soil during Apollo 15 extravehicular activity (EVA). Mount Hadley rises approximately 14,765 feet (about 4,500 meters) above the plain in the background.

  14. Seismic Soil Liquefaction Studies.

    DTIC Science & Technology

    1979-12-01

    Soil Mechanics, series no. 88: Liquefac- tion and cyclic deformation of sands; a critical review, by A. Casagrande. Cambridge, Mass., Jan 1976. 8...Houghton. MI (Haas) MIT Cambridge MA; Cambridge MA (Rm 10-500. Tech. Reports, Engr. Lib.); Cambridge MA (Whitman) NORTHWESTERN UNIV Z.P. Bazant

  15. Hydrology and soil erosion

    Treesearch

    Leonard J. Lane; Mary R. Kidwell

    2003-01-01

    We review research on surface water hydrology and soil erosion at the Santa Rita Experimental Range (SRER). Almost all of the research was associated with eight small experimental watersheds established from 1974 to 1975 and operated until the present. Analysis of climatic features of the SRER supports extending research findings from the SRER to broad areas of the...

  16. Opportunity Trenches Martian Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Opportunity dragged one of its wheels back and forth across the sandy soil at Meridiani Planum to create a hole (bottom left corner) approximately 50 centimeters (19.7 inches) long by 20 centimeters (7.9 inches) wide by 9 centimeters (3.5 inches) deep. The rover's instrument deployment device, or arm, will begin studying the fresh soil at the bottom of this trench later today for clues to its mineral composition and history. Scientists chose this particular site for digging because previous data taken by the rover's miniature thermal emission spectrometer indicated that it contains crystalline hematite, a mineral that sometimes forms in the presence of water. The brightness of the newly-exposed soil is thought to be either intrinsic to the soil itself, or a reflection of the Sun. Opportunity's lander is in the center of the image, and to the left is the rock outcrop lining the inner edge of the small crater that encircles the rover and lander. This mosaic image is made up of data from the rover's navigation and hazard-avoidance cameras.

  17. Exploring Soil Ecosystems.

    ERIC Educational Resources Information Center

    Finley, Deborah R.

    1991-01-01

    Describes a soil lab that can be performed with a minimum of equipment and time, utilizing a lawn, field, or woodlot. Students dig a 1-meter-deep pit and observe the litter and humus layers where most microbial and fungal decomposition occurs. Describes comparing different locations by pH level and concentration of potassium, phosphorous, and…

  18. Inland wetland mineral soils

    Treesearch

    Kimberly P. Wickland; Alex V. Krusche; Randall K. Kolka; Ayaka W. Kishimoto-Mo; Rodney A. Chimner; Stephen Ogle; Nalin. Srivastava

    2013-01-01

    This chapter provides supplementary guidance for estimating and reporting greenhouse gas (GHG) emissions and removals from managed lands with Inland Wetland Mineral Soils (IWMS) for all land-use categories (see Chapter 1 and decision tree in Chapter 1 in this supplement for what is specifically covered in this chapter in relationship to other chapters in this...

  19. Spirit Sees Salty Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph compares amounts of magnesium and sulfur in the soil lining the trenches dug by the Mars Exploration Rover Spirit on sols 114 and 140 (April 28 and May 25, 2004) at Gusev Crater. Measurements were taken of the soil at the surface, floor and walls of the trench dug on sol 140 (squares), and at the surface and floor of the trench dug on sol 114 (diamonds). Non-trenched soil samples from Gusev Crater are represented as dots. The more recently made trench is located near the base of the 'Columbia Hills.'

    Because concentrations of magnesium and sulfur occur in the same ratio throughout the trench dug on sol 140, scientists believe the soil there contains the salt magnesium sulfate. The walls of this trench appear to contain the highest concentrations of the salt. The trench from sol 114 may also possess magnesium sulfate, but the data is less clear. These data were taken by Spirit's alpha particle X-ray spectrometer.

    One possible explanation for these findings is that water percolated through underground material and dissolved out minerals, then as the water evaporated near the surface, it left concentrated salts behind.

  20. Soil on Phoenix's MECA

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows soil delivery to NASA's Phoenix Mars Lander's Microscopy, Electrochemistry and Conductivity Analyzer (MECA). The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008).

    At the bottom of the image is the chute for delivering samples to MECA's microscopes. It is relatively clean due to the Phoenix team using methods such as sprinkling to minimize cross-contamination of samples. However, the cumulative effect of several sample deliveries can be seen in the soil piles on either side of the chute.

    On the right side are the four chemistry cells with soil residue piled up on exposed surfaces. The farthest cell has a large pile of material from an area of the Phoenix workspace called 'Stone Soup.' This area is deep in the trough at a polygon boundary, and its soil was so sticky it wouldn't even go through the funnel.

    One of Phoenix's solar panels is shown in the background of this image.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Soil Moisture Sensing

    USDA-ARS?s Scientific Manuscript database

    Soil moisture monitoring can be useful as an irrigation management tool for both landscapes and agriculture, sometimes replacing an evapotranspiration (ET) based approach or as a useful check on ET based approaches since the latter tend to drift off target over time. All moisture sensors, also known...

  2. How soil shapes the landscape

    NASA Astrophysics Data System (ADS)

    Minasny, Budiman; Finke, Peter; Vanwalleghem, Tom Tom; Stockmann, Uta; McBratney, Alex

    2014-05-01

    There has been an increase in interest in quantitative modelling of soil genesis, which can provide prediction of environmental changes through numerical models. Modelling soil formation is a difficult task because soil itself is highly complex with interactions between water, inorganic materials and organic matter. This paper will provide a review on the research efforts of modelling soil genesis, their connection with landscape models and the inexorable genesis of the IUSS soil landscape modelling working group. Quantitative modelling soil formation using mechanistic models have begun in the 1980s such as the 'soil deficit' model by Kirkby (1985), Hoosbeek & Bryant's pedodynamic model (1992), and recently the SoilGen model by Finke (2008). These profile models considered the chemical reactions and physical processes in the soil at the horizon and pedon scale. The SoilGen model is an integration of sub-models, such as water and solute movement, heat transport, soil organic matter decomposition, mineral dissolution, ion exchange, adsorption, speciation, complexation and precipitation. The model can calculate with detail the chemical changes and materials fluxes in a profile and has been successfully applied. While they can simulate soil profile development in detail, there is still a gap how the processes act in the landscape. Meanwhile research in landscape formation in geomorphology is progressing steadily over time, slope development models model have been developed since 1970s (Ahnert, 1977). Soil was also introduced in a landscape, however soil processes are mainly modelled through weathering and transport processes (Minasny & McBratney 1999, 2001). Recently, Vanwalleghem et al. (2013) are able to combine selected physical, chemical and biological processes to simulate a full 3-D soil genesis in the landscape. Now there are research gaps between the 2 approaches: the landscape modellers increasingly recognise the importance of soil and need more detailed soil

  3. Biomarker in archaeological soils

    NASA Astrophysics Data System (ADS)

    Wiedner, Katja; Glaser, Bruno; Schneeweiß, Jens

    2015-04-01

    The use of biomarkers in an archaeological context allow deeper insights into the understanding of anthropogenic (dark) earth formation and from an archaeological point of view, a completely new perspective on cultivation practices in the historic past. During an archaeological excavation of a Slavic settlement (10th/11th C. A.D.) in Brünkendorf (Wendland region in Northern Germany), a thick black soil (Nordic Dark Earth) was discovered that resembled the famous terra preta phenomenon. For the humid tropics, terra preta could act as model for sustainable agricultural practices and as example for long-term CO2-sequestration into terrestrial ecosystems. The question was whether this Nordic Dark Earth had similar properties and genesis as the famous Amazonian Dark Earth in order to find a model for sustainable agricultural practices and long term CO2-sequestration in temperate zones. For this purpose, a multi-analytical approach was used to characterize the sandy-textured Nordic Dark Earth in comparison to less anthropogenically influenced soils in the adjacent area in respect of ecological conditions (e.g. amino sugar), input materials (faeces) and the presence of stable soil organic matter (black carbon). Amino sugar analyses showed that Nordic Dark Earth contained higher amounts of microbial residues being dominated by soil fungi. Faecal biomarkers such as stanols and bile acids indicated animal manure from omnivores and herbivores but also human excrements. Black carbon content of about 30 Mg ha-1 in the Nordic Dark Earth was about four times higher compared to the adjacent soil and in the same order of magnitude compared to terra preta. Our data strongly suggest parallels to anthropogenic soil formation in Amazonia and in Europe by input of organic wastes, faecal material and charred organic matter. An obvious difference was that in terra preta input of human-derived faecal material dominated while in NDE human-derived faecal material played only a minor role

  4. Soil warming alters microbial substrate use in alpine soils.

    PubMed

    Streit, Kathrin; Hagedorn, Frank; Hiltbrunner, David; Portmann, Magdalena; Saurer, Matthias; Buchmann, Nina; Wild, Birgit; Richter, Andreas; Wipf, Sonja; Siegwolf, Rolf T W

    2014-04-01

    Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C-rich alpine soils? We studied soil microbial community composition, activity, and substrate use after 3 and 4 years of soil warming (+4 °C, 2007-2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO2 enrichment experiment using depleted (13)CO2 (δ(13)C = -30‰, 2001-2009). We traced this depleted (13)C label in phospholipid fatty acids (PLFA) of the organic layer (0-5 cm soil depth) and in C mineralized from root-free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 ('old'), from 2001 to 2009 ('new') or in 2010 ('recent'). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root-free soils, implying a shift in microbial substrate use toward a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem.

  5. Impact of Soil Texture on Soil Ciliate Communities

    NASA Astrophysics Data System (ADS)

    Chau, J. F.; Brown, S.; Habtom, E.; Brinson, F.; Epps, M.; Scott, R.

    2014-12-01

    Soil water content and connectivity strongly influence microbial activities in soil, controlling access to nutrients and electron acceptors, and mediating interactions between microbes within and between trophic levels. These interactions occur at or below the pore scale, and are influenced by soil texture and structure, which determine the microscale architecture of soil pores. Soil protozoa are relatively understudied, especially given the strong control they exert on bacterial communities through predation. Here, ciliate communities in soils of contrasting textures were investigated. Two ciliate-specific primer sets targeting the 18S rRNA gene were used to amplify DNA extracted from eight soil samples collected from Sumter National Forest in western South Carolina. Primer sets 121F-384F-1147R (semi-nested) and 315F-959R were used to amplify soil ciliate DNA via polymerase chain reaction (PCR), and the resulting PCR products were analyzed by gel electrophoresis to obtain quantity and band size. Approximately two hundred ciliate 18S rRNA sequences were obtained were obtained from each of two contrasting soils. Sequences were aligned against the NCBI GenBank database for identification, and the taxonomic classification of best-matched sequences was determined. The ultimate goal of the work is to quantify changes in the ciliate community under short-timescale changes in hydrologic conditions for varying soil textures, elucidating dynamic responses to desiccation stress in major soil ciliate taxa.

  6. Soil washing results for mixed waste pond soils at Hanford

    SciTech Connect

    Gerber, M.A.

    1991-09-01

    Soil washing technology was assessed as a means for remediating soil contaminated with mixed wastes primarily composed of heavy metals and radionuclides. The soils at the US Department of Energy's Hanford Site are considered suitable for soil washing because of their relatively low quantities of silt and clay. However, in a limited number of soil washing experiments using soils from different locations in the north pond of the 300 Area, the degree of decontamination achieved for the coarse fraction of the soil varied considerably. Part of this variation appears to be due to the presence of a discrete layer of contaminated sediment found in some of the samples. 7 refs., 2 figs., 4 tabs.

  7. Soil moisture estimation with limited soil characterization for decision making

    NASA Astrophysics Data System (ADS)

    Chanzy, A.; Richard, G.; Boizard, H.; Défossez, P.

    2009-04-01

    Many decisions in agriculture are conditional to soil moisture. For instance in wet conditions, farming operations as soil tillage, organic waste spreading or harvesting may lead to degraded results and/or induce soil compaction. The development of a tool that allows the estimation of soil moisture is useful to help farmers to organize their field work in a context where farm size tends to increase as well as the need to optimize the use of expensive equipments. Soil water transfer models simulate soil moisture vertical profile evolution. These models are highly sensitive to site dependant parameters. A method to implement the mechanistic soil water and heat flow model (the TEC model) in a context of limited information (soil texture, climatic data, soil organic carbon) is proposed [Chanzy et al., 2008]. In this method the most sensitive model inputs were considered i.e. soil hydraulic properties, soil moisture profile initialization and the lower boundary conditions. The accuracy was estimated by implementing the method on several experimental cases covering a range of soils. Simulated soil moisture results were compared to soil moisture measurements. The obtained accuracy in surface soil moisture (0-30 cm) was 0.04 m3/m3. When a few soil moisture measurements are available (collected for instance by the farmer using a portable moisture sensor), significant improvement in soil moisture accuracy is obtained by assimilating the results into the model. Two assimilation strategies were compared and led to comparable results: a sequential approach, where the measurement were used to correct the simulated moisture profile when measurements are available and a variational approach which take moisture measurements to invert the TEC model and so retrieve soil hydraulic properties of the surface layer. The assimilation scheme remains however heavy in terms of computing time and so, for operational purposed fast code should be taken to simulate the soil moisture as with the

  8. Digital Soil Mapping - A platform for enhancing soil learning

    NASA Astrophysics Data System (ADS)

    Owens, Phillip; Libohova, Zamir; Monger, Curtis; Lindbo, David; Schmidt, Axel

    2017-04-01

    The expansion of digital infrastructure and tools has generated massive data and information as well as a need for reliable processing and accurate interpretations. Digital Soil Mapping is no exception in that it has provided opportunities for professionals and the public to interact at field and training/workshop levels in order to better understand soils and their benefits. USDA-NRCS National Cooperative Soil Survey regularly conducts training and workshops for soil scientists and other professionals in the US and internationally. A combination of field experiences with workshops conducted in a class environment offers ideal conditions for enhancing soil learning experiences. Examples from US, Haiti and Central America show that Digital Soil Mapping (DSM) tools are very effective for understanding and visualizing soils and their functioning at different scales.

  9. Soil physics: a Moroccan perspective

    NASA Astrophysics Data System (ADS)

    Lahlou, Sabah; Mrabet, Rachid; Ouadia, Mohamed

    2004-06-01

    Research on environmental pollution and degradation of soil and water resources is now of highest priority worldwide. To address these problems, soil physics should be conceived as a central core to this research. This paper objectives are to: (1) address the role and importance of soil physics, (2) demonstrate progress in this discipline, and (3) present various uses of soil physics in research, environment and industry. The study of dynamic processes at and within the soil vadose zone (flow, dispersion, transport, sedimentation, etc.), and ephemeral phenomena (deformation, compaction, etc.), form an area of particular interest in soil physics. Soil physics has changed considerably over time. These changes are due to needed precision in data collection for accurate interpretation of space and time variation of soil properties. Soil physics interacts with other disciplines and sciences such as hydro(geo)logy, agronomy, environment, micro-meteorology, pedology, mathematics, physics, water sciences, etc. These interactions prompted the emergence of advanced theories and comprehensive mechanisms of most natural processes, development of new mathematical tools (modeling and computer simulation, fractals, geostatistics, transformations), creation of high precision instrumentation (computer assisted, less time constraint, increased number of measured parameters) and the scale sharpening of physical measurements which ranges from micro to watershed. The environment industry has contributed to an enlargement of many facets of soil physics. In other words, research demand in soil physics has increased considerably to satisfy specific and environmental problems (contamination of water resources, global warming, etc.). Soil physics research is still at an embryonic stage in Morocco. Consequently, soil physicists can take advantage of developments occurring overseas, and need to build up a database of soil static and dynamic properties and to revise developed models to meet

  10. Soil phosphorus landscape models for precision soil conservation.

    PubMed

    Hong, Jinseok; Grunwald, Sabine; Vasques, Gustavo M

    2015-05-01

    Phosphorus (P) enrichment in soils has been documented in the Santa Fe River watershed (SFRW, 3585 km) in north-central Florida. Yet the environmental factors that control P distribution in soils across the landscape, with potential contribution to water quality impairment, are not well understood. The main goal of this study was to develop soil-landscape P models to support a "precision soil conservation" approach combining fine-scale (i.e., site-specific) and coarse-scale (i.e., watershed-extent) assessment of soil P. The specific objectives were to: (i) identify those environmental properties that impart the most control on the spatial distribution of soil Mehlich-1 extracted P (MP) in the SFRW; (ii) model the spatial patterns of soil MP using geostatistical methods; and (iii) assess model quality using independent validation samples. Soil MP data at 137 sites were fused with spatially explicit environmental covariates to develop soil MP prediction models using univariate (lognormal kriging, LNK) and multivariate methods (regression kriging, RK, and cokriging, CK). Incorporation of exhaustive environmental data into multivariate models (RK and CK) improved the prediction of soil MP in the SFRW compared with the univariate model (LNK), which relies solely on soil measurements. Among all tested environmental covariates, land use and vegetation related properties (topsoil) and geologic data (subsoil) showed the largest predictive power to build inferential models for soil MP. Findings from this study contribute to a better understanding of spatially explicit interactions between soil P and other environmental variables, facilitating improved land resource management while minimizing adverse risks to the environment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Soil burial contribution to deep soil organic carbon storage

    NASA Astrophysics Data System (ADS)

    Chaopricha, N. T.; Marin-Spiotta, E.

    2013-12-01

    Previous reviews of deep soil C have focused on root inputs and the vertical transport of particulate and dissolved organic matter through mixing, gravity, and preferential flowpaths as the main modes of delivery of C to the deep subsoil. Depositional processes have received considerable attention in the context of long-range soil erosion and sedimentation on land, but the role of soil burial in the sequestration of C photosynthesized in situ at depositional sites has been largely absent from discussions of deep soil organic C (SOC) dynamics. Burial can disconnect a soil from atmospheric conditions and slow or inhibit microbial decomposition. Buried soil horizons, which are former surface soils that have been buried through various depositional processes, can store more SOC than would exist at such depths from in situ root inputs and leaching from upper horizons. Here, we discuss factors contributing to SOC storage in soils below 1 m with a focus on soil burial. We review the contributions of geomorphic and anthropogenic depositional processes to deep SOC storage and describe how environmental conditions or state factors during and since burial influence SOC persistence in buried soils. We draw from examples in the paleosol and geomorphology literature to identify the effects of soil burial by volcanic, aeolian, alluvial, colluvial, glacial, and anthropogenic processes on soil C storage. Buried soils have been traditionally studied for information about past environments and can also serve as useful case studies for understanding both the sensitivity of landscape processes to future environmental change and the mechanisms contributing to soil organic matter stabilization. Soil burial can store SOC at any depth. Here, we focus particularly on buried soil horizons at ≥ 1 m depth to highlight how much SOC exists at depths below those typically considered in SOC inventories, studies of soil organic matter dynamics, and most biogeochemical models. Understanding the

  12. Evaluation-of soil enzyme activities as soil quality indicators in sludge-amended soils.

    PubMed

    Dindar, Efsun; Şağban, Fatma Olcay Topaç; Başkaya, Hüseyin Savaş

    2015-07-01

    Soil enzymatic activities are commonly used as biomarkers of soil quality. Several organic and inorganic compounds found in municipal wastewater sludges can possibly be used as fertilizers. Monitoring and evaluating the quality of sludge amended soils with enzyme activities accepted as a beneficial practice with respect to sustainable soil management. In the present study, variation of some enzyme activities (Alkaline phosphatase, dehydrogenase, urease and beta-glucosidase activities) in soils amended with municipal wastewater sludge at different application rates (50, 100 and 200 t ha(-1) dry sludge) was evaluated. Air dried sludge samples were applied to soil pots and sludge-soil mixtures were incubated during a period of three months at 28 degrees C. The results of the study showed that municipal wastewater sludge amendment apparently increased urease, dehydrogenase, alkaline phosphatase and P-glucosidase activities in soil by 48-70%, 14-47%, 33-66% and 9-14%, respectively. The maximum activity was generally observed in sludge amended soil with dose of 200 t ha(-1). Urease activity appeared to be a better indicator of soil enhancement with wastewater sludge, as its activity was more strongly increased by sludge amendment. Accordingly, urease activity is suggested to be soil quality indicator best suited for measuring existing conditions and potential changes in sludge-amended soil.

  13. Soil biological indicators of soil health for a national soil health assessment

    USDA-ARS?s Scientific Manuscript database

    Soil is one of our nation's most valuable resources that provides life-sustaining functions. Billions of organisms live belowground and perform critical soil processes to support plant, animal, and human health aboveground. By shifting our view of soils from an inert growing material to a biological...

  14. Enhancing soil begins with soil biology and a stable soil microclimate

    USDA-ARS?s Scientific Manuscript database

    Protection of the soil resource from erosion requires reducing the surface impact from raindrop energy and maintaining soil structure and stability to allow more efficient infiltration of water into the soil column. These two processes are linked with practices associated with enhancing and maintain...

  15. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content

    Treesearch

    Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith

    2007-01-01

    Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...

  16. Soil survey and resource inventory guide for dynamic soil properties and soil change

    USDA-ARS?s Scientific Manuscript database

    Data and information about how soils change are needed by producers, land managers, and decision makers in order to plan for long-term productivity, interpret indicators used in monitoring and assessments, and manage human impacts on soil. In order to meet these needs, the National Cooperative Soil ...

  17. Soil strength response of select soil disturbance classes on a wet pine flat in South Carolina

    Treesearch

    Emily A. Carter; W. Michael Aust; James A. Burger

    2007-01-01

    Harvest operations conducted under conditions of high soil moisture on a et pine flat in South Carolina resulted in a high degree of soil surface disturbance. Less soil surface disturbance occurred when soil moisture content was lower. Soil strength varied by soil disturbance class in wet harvested locations and highly disturbed areas were associated with low soil...

  18. Soil biodiversity and human health.

    PubMed

    Wall, Diana H; Nielsen, Uffe N; Six, Johan

    2015-12-03

    Soil biodiversity is increasingly recognized as providing benefits to human health because it can suppress disease-causing soil organisms and provide clean air, water and food. Poor land-management practices and environmental change are, however, affecting belowground communities globally, and the resulting declines in soil biodiversity reduce and impair these benefits. Importantly, current research indicates that soil biodiversity can be maintained and partially restored if managed sustainably. Promoting the ecological complexity and robustness of soil biodiversity through improved management practices represents an underutilized resource with the ability to improve human health.

  19. Soil Erosion and Agricultural Sustainability

    NASA Astrophysics Data System (ADS)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  20. Soil biodiversity and human health

    NASA Astrophysics Data System (ADS)

    Wall, Diana H.; Nielsen, Uffe N.; Six, Johan

    2015-12-01

    Soil biodiversity is increasingly recognized as providing benefits to human health because it can suppress disease-causing soil organisms and provide clean air, water and food. Poor land-management practices and environmental change are, however, affecting belowground communities globally, and the resulting declines in soil biodiversity reduce and impair these benefits. Importantly, current research indicates that soil biodiversity can be maintained and partially restored if managed sustainably. Promoting the ecological complexity and robustness of soil biodiversity through improved management practices represents an underutilized resource with the ability to improve human health.

  1. Mine soil classification and mapping

    SciTech Connect

    Darmody, R.

    1998-12-31

    This presentation covers the history of surface coal mining and reclamation methods and equipment for the pre-Federal law, interim-Federal law, and post-Federal law periods. It discusses the difficulties with traditional mine soil mapping methods on five soils series in Illinois. These methods fail to recognize the effects of compaction and methods to ameliorate compaction. The current status of mine soil mapping methods on eight soil series in Illinois are presented. Areas where additional work is needed and future potential difficulties are identified for mine soil mapping efforts.

  2. The role of biological soil crusts on soil moisture

    NASA Astrophysics Data System (ADS)

    Chamizo, S.; Cantón, Y.; Lázaro, R.; Rodriguez-Caballero, E.; Domingo, F.

    2012-04-01

    In water-limited ecosystems, water becomes the most important driver for plant productivity. In these systems, spatial distribution of water resources is not random but organized into a mosaic of water-depletion areas linked to water-accumulation areas. In other words, water is transferred from interplant patches that act as source areas to vegetation patches that act as sinks of this resource. Thus, structure and functioning of interplant patches have a decisive role in water redistribution and distribution patterns of vegetation. Soil surface in the interplant spaces of most arid and semiarid ecosystems is covered by biological soil crusts (BSCs). These organisms regulate water fluxes into and through soils and play major roles in local hydrological processes. In the last years, the role of these organisms in infiltration and runoff has gained increased importance and a better knowledge about their effects on these processes has been acquired. However, the role of BSCs in other important components of the water balance such as evaporation or soil moisture has been scarcely studied, so that their effects on these processes remain unknown. The objective of this work is to examine the influence of BSCs on soil moisture regimes in the top profile of the soil in two semiarid ecosystems of SE Spain with contrasting soil texture and where BSCs are well-represented. Soil moisture content at 0.03 and 0.10 m was monitored under two representative types of BSCs, a dark cyanobacteria-dominated BSC and a light-coloured lichen-dominated BSC, and in soils where these BSCs were removed by scraping, at both study sites. Our results show that, under high water conditions, removal of BSCs leads to a decrease in soil moisture compared to soils covered by BSCs. Decrease in soil moisture due to BSC removal namely affects moisture in the upper layer of the soil (0.03 m), but has little impact in deeper soil (0.10 m). Evaporation is also generally faster in soils with no BSCs than in

  3. Soil Temperature Reemergence in Permafrost

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Schaefer, K.

    2007-12-01

    Soil temperature reemergence is the disappearance and subsequent reappearance of near surface soil temperature anomalies, driven by soil freeze-thaw processes. Reemergence of past soil temperature anomalies is a new class of time-delayed, land-atmosphere feedbacks influencing surface fluxes of latent and sensible heat. Anomalous energy is stored, isolated from diffusion processes, as variations in latent heat of fusion. Schaefer et al. [2007] found that past soil temperature anomalies in seasonally frozen soils are stored as variations in the amount of ground ice and can reemerge at the surface after soil thaw in spring. Schaefer et al. [2007] also hypothesized that temperature anomalies in permafrost would be stored as variations in the active layer depth, reappearing after the soil column completely freezes in winter. Essentially, a warm summer produces a deeper active layer, which requires more energy to freeze in autumn, resulting in warmer soils in winter. Here, we explore this hypothesis using statistical analysis of long-term, in situ soil temperature measurements at 37 permafrost hydro-meteorological stations across Siberia. The observations span 30-40 years at depths of 2-320 cm. We also use a simple soil thermodynamic model with phase changes to explore the detailed thermodynamic processes driving temperature reemergence in permafrost.

  4. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  5. Soil adherence to human skin

    SciTech Connect

    Driver, J.H.; Konz, J.J.; Whitmyre, G.K. )

    1989-12-01

    Dermal exposure to soils contaminated with toxic chemicals represents a potential public health hazard. These soils, contaminated with chemicals such as PCBs and dioxins, may be found at various locations throughout the US. Furthermore, dermal contact with pesticide-containing particles and contaminated soil particles is of importance for exposures to agricultural workers who reenter fields after pesticide application. With respect to dermal exposure to pesticide-contaminated particulate matter, several occurrences of human toxicity to ethyl parathion in citrus groves have been reported. These exposures resulted from dermal contact with high concentrations of the toxic transformation product paraoxon in soil dust contaminated as a result of application of pesticide to the overhead foliage of trees. To assess dermal exposure to chemically-contaminated soil at sites of concern, dermal adherence of soil must be determined prior to the assessment of dermal absorption. The purpose of the experiment reported herein was to determine the amount of soil (mg/cm{sup 2}) that adheres to adult hands under various soil conditions. These conditions include the type of soil, the organic content of the soil, and the particle size of the soil.

  6. Soil Security Assessment of Tasmania

    NASA Astrophysics Data System (ADS)

    Field, Damien; Kidd, Darren; McBratney, Alex

    2017-04-01

    The concept of soil security aligns well with the aspirational and marketing policies of the Tasmanian Government, where increased agricultural expansion through new irrigation schemes and multiple-use State managed production forests co-exists beside pristine World Heritage conservation land, a major drawcard of the economically important tourism industry . Regarding the Sustainable Development Gaols (SDG's) this could be seen as a exemplar of the emerging tool for quantification of spatial soil security to effectively protect our soil resource in terms of food (SDG 2.4, 3.9) and water security (SDG 6.4, 6.6), biodiversity maintenance and safeguarding fragile ecosystems (SDG 15.3, 15.9). The recent development and application of Digital Soil Mapping and Assessment capacities in Tasmania to stimulate agricultural production and better target appropriate soil resources has formed the foundational systems that can enable the first efforts in quantifying and mapping Tasmanian Soil Security, in particular the five Soil Security dimensions (Capability, Condition, Capital, Codification and Connectivity). However, to provide a measure of overall soil security, it was necessary to separately assess the State's three major soil uses; Agriculture, Conservation and Forestry. These products will provide an indication of where different activities are sustainable or at risk, where more soil data is needed, and provide a tool to better plan for a State requiring optimal food and fibre production, without depleting its natural soil resources and impacting on the fragile ecosystems supporting environmental benefits and the tourism industry.

  7. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  8. World's soils are under threat

    NASA Astrophysics Data System (ADS)

    Montanarella, L.; Pennock, D. J.; McKenzie, N. J.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Singh Aulakh, M.; Yagi, K.; Hong, S. Young; Vijarnsorn, P.; Zhang, G.-L.; Arrouays, D.; Black, H.; Krasilnikov, P.; Sobocká, J.; Alegre, J.; Henriquez, C. R.; Mendonça-Santos, M. L.; Taboada, M.; Espinosa-Victoria, D.; AlShankiti, A.; AlaviPanah, S. K.; Elsheikh, E. A. E.; Hempel, J.; Camps Arbestain, M.; Nachtergaele, F.; Vargas, R.

    2015-12-01

    The Intergovernmental Technical Panel on Soils has completed the first State of the World's Soil Resources report. Globally soil erosion was identified as the gravest threat, leading to deteriorating water quality in developed regions and to lowering of crop yields in many developing regions. We need to increase nitrogen and phosphorus fertilizer use in infertile tropical and semi-tropical soils - the regions where the most food insecure among us are found - while reducing global use of these products overall. Stores of soil organic carbon are critical in the global carbon balance, and national governments must set specific targets to stabilize or ideally increase soil organic carbon stores. Finally the quality of soil information available for policy formulation must be improved - the regional assessments in the SWSR report frequently base their evaluations on studies from the 1990s based on observations made in the 1980s or earlier.

  9. Soil washing and radioactive contamination

    SciTech Connect

    Gombert, D.; Bosley, J.B.

    1992-03-20

    Soil washing, a technique combining both physical and chemical processes to produce significant volume reduction of contaminated soils, is widely regarded as a panacea for the huge inventory of contaminated soils in the DOE Complex. While the technology has been demonstrated for organics and to some extent for metals, review of the publications available on the practical applications to radioactive sites, indicates that most volume reduction is a product of unique circumstances such as screening or floating out non-soil materials containing most of the contaminants, or leaching contaminants (uranium or TRU) that exist as anionic complexes (Grant, 1991) which are not held by the soil cation-exchange-capacity. In either case, the potential for success of the technology is extremely site and contaminant specific. The Environmental Protection Agency's (EPA) guidance on soil washing treatability studies suggests a 50% reduction of contamination in particles over 2mm as a reasonable cutoff for choosing soil washing for further development (EPA, 1991).

  10. Communicating soil property variability in heterogeneous soil mapping units

    NASA Astrophysics Data System (ADS)

    Farewell, Timothy

    2014-05-01

    Soil properties and classes can change over very short distances. For the purpose of scale, clarity and field sampling density, soil maps in England and Wales commonly use mapping units which are groupings of taxonomic soil series, commonly found in association with each other in the landscape. These mixed units (Soil Associations), typically contain between 3 and 7 soil series with physical or chemical properties, which can vary across the mapping unit, or may be relatively homogeneous. The degree of variation is not constant between soil properties, for instance, pH may be relatively constant, but volumetric shrinkage potential may be highly variable. Over the past ten years, the number of users of GIS soil property maps has dramatically increased, yet the vast majority of these users do not have a soil or geoscience background. They are instead practitioners in specific industries. As a result, new techniques have been developed to communicate the variation in maps of soil properties to a non-expert audience. GIS data structures allow more flexibility in the reporting of uncertainty or variation in soil mapping units than paper-based maps. Some properties are categorical, others continuous. In England and Wales, the national and regional memberships of soil associations are available, with areal percentages of the comprising soil series being estimated for each association by a combination of expert judgment and field observations. Membership at a local scale can vary considerably from the national average. When summarizing across a whole map unit, for continuous variables, rarely is it appropriate to provide a mean value, or even a weighted average based on membership percentage of the association. Such approaches can make a nonsense of wide-ranging data. For instance a soil association comprising soil series with highly different percentages of sand, silt and clay may result in a 'loamy' mean soil texture which is not reflective of any of the comprising soils

  11. Inoculation of soil native cyanobacteria to restore arid degraded soils

    NASA Astrophysics Data System (ADS)

    Raúl Román Fernández, José; Roncero Ramos, Beatriz; Chamizo de la Piedra, Sonia; Rodríguez Caballero, Emilio; Ángeles Muñoz Martín, M.; Mateo, Pilar; Cantón Castilla, Yolanda

    2017-04-01

    Restoration projects in semiarid lands often yield poor results. Water scarcity, low soil fertility, and poor soil structure strongly limit the survival and growth of planted seedlings in these areas. Under these conditions, a previous stage that improves edaphic conditions would turn out to a successful plant restoration. By successfully colonizing arid soils, cyanobacteria naturally provide suitable edaphic conditions, enhancing water availability, soil fertility and soil stability. Furthermore, cyanobacteria can be easily isolated and cultured ex-situ to produce high quantities of biomass, representing a potential tool to restore large areas efficiently. The objective of this study was to test the effect of inoculated cyanobacteria on degraded soils at three different semiarid areas from southeast Spain: Tabernas badlands, a limestone quarry located in Gádor, and grazed grassland in Las Amoladeras (Cabo de Gata). Soil native cyanobacteria belonging to three representative N-fixing genera (Nostoc, Scytonema and Tolypothrix) were isolated from such soils and cultured in BG110 medium. Each strain was inoculated (6 g m-2), separately and mixed (all in the same proportion), on Petri dishes with 80 g of each soil. Biocrust development was monitored during 3 months in these soils under laboratory conditions, at a constant temperature of 25oC. During the experiment, two irrigation treatments were applied simulating a dry (180 mm) and a wet (360 mm) rainfall year (average recorded in the study sites). After 3 months, net CO2 flux, spectral response and soil surface microtopography (1 mm spatial resolution) of inoculated and control soils was measured under wet conditions, all of them as a surrogate of biocrust development. Samples of the surface crust were collected in order to determine total soil organic carbon (SOC) content. The inoculated soils showed positive values of net CO2 flux, thus indicating a net CO2 uptake, whereas control soils showed CO2 fluxes closed to

  12. Delineation of colluvial soils in different soil regions

    NASA Astrophysics Data System (ADS)

    Zádorová, Tereza; Penížek, Vít; Vašát, Radim

    2015-04-01

    Colluvial soils are considered to be the direct result of accelerated soil erosion in agricultural landscape, resulting in accumulation of humus-rich soil material in terrain depressions and toe slopes. They represent an important soil cover element in landscapes influenced by soil erosion and form an important soil organic carbon (SOC) pool. Delineation of colluvial soils can identify areas with high sediment input and potential deep organic carbon storage and thus improve our knowledge on soil mass and SOC stock redistribution in dissected landscapes. Different prediction methods (ordinary kriging, multiple linear regression, supervised fuzzy classification, artificial neural network, support vector machines) for colluvial soils delineation have been tested in three different soil regions (Cambisol, Luvisol and Chernozem) at two scales (plot and watershed) in the Czech Republic. The approach is based on exploitation of relationship between soil and terrain units and assumes that colluvial soil can be defined by particular range of terrain attributes values. Terrain attributes derived from precise DEMs were used as predictors in applied models. The soil-terrain relationship was assessed using a large dataset of field investigations (300 cores at each plot and 100 cores at each watershed). Models were trained at plot scale (15-33 ha) and the best performing model was then calibrated and validated at watershed scale (25-55 km2). The study proved high potential of terrain variables as predictors in colluvial soil delineation. Support vector machines method was the best performing method for colluvial soil occurrence prediction at all the three sites. However, significant differences in performance have been identified among the studied plots. The best results were obtained in Luvisol region where both determination coefficient and prediction accuracy reached the highest values. The model performance was satisfactory also in Chernozem region. The model showed its

  13. Soil organic matter and soil biodiversity spots in urban and semi urban soils of southeast Mexico

    NASA Astrophysics Data System (ADS)

    Huerta, Esperanza

    2015-04-01

    We have observed how the constant use of compost or vermicompost has created spots of soil restoration in urban and semiurban soils of Chiapas (Huitepec and Teopisca), increasing soil organic matter amount, soil moisture and soil porosity, and enhancing then the presence of soil biodiversity; for example, in a Milpa with vermicompost (polyculture of Zea mays with Curcubita pepo, and Fasolius vulgaris) we have found a high density of an epigeic earthworm (640 ind.m2), Dichogaster bolahui, not present in the same type of soil just some meters of distance, in an Oak forest, where soil macroinvertebrates abundance decreased drastically. In another ecosystem within a Persea Americana culture, we found how above and below ground soil biodiversity is affected by the use of vermicompost, having clearly different microcosmos with and without vermicompost (30-50% more micro and macro invertebrates with vermicompost). So now in Campeche, within those soils that are classified by the mayas as tzequel, soils not use for agriculture, we have implemented home gardens and school gardens by the use of compost of vermicomposts in urban and semiurban soils. In school gardens (mainly primary schools) students have cultivated several plants with alimentary purposes; teachers have observed how the increase of soil biodiversity by the use of compost or vermicompost has enhanced the curiosity of children, even has promoted a more friendly behavior among students, they have learned how to do compost and how to apply it. Urban and semiurban soils can be modified by the use of compost and vermicompost, and soil biodiversity has extremely increased.

  14. Sensitivity of soil organic matter in anthropogenically disturbed organic soils

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Bechtold, Michel; Don, Axel; Freibauer, Annette

    2016-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. However, the variability of CO2 emissions increases with disturbance, and little is known on the soil properties causing differences between seemingly similar sites. Furthermore the driving factors for carbon cycling are well studied for both genuine peat and mineral soil, but there is a lack of information concerning soils at the boundary between organic and mineral soils. Examples for such soils are both soils naturally relatively high in soil organic matter (SOM) such as Humic Gleysols and former peat soils with a relative low SOM content due to intensive mineralization or mixing with underlying or applied mineral soil. The study aims to identify drivers for the sensitivity of soil organic matter and therefore for respiration rates of anthropogenically disturbed organic soils, especially those near the boundary to mineral soils. Furthermore, we would like to answer the question whether there are any critical thresholds of soil organic carbon (SOC) concentrations beyond which the carbon-specific respiration rates change. The German agricultural soil inventory samples all agricultural soils in Germany in an 8x8 km² grid following standardized protocols. From this data and sample base, we selected 120 different soil samples from more than 80 sites. As reference sites, three anthropogenically undisturbed peatlands were sampled as well. We chose samples from the soil inventory a) 72 g kg-1 SOC and b) representing the whole range of basic soil properties: SOC (72 to 568 g kg-1), total nitrogen (2 to 29 g kg-1), C-N-ratio (10 to 80) bulk density (0.06 to 1.41 g/cm³), pH (2.5 to 7.4), sand (0 to 95 %) and clay (2 to 70 %) content (only determined for samples with less than 190 g kg-1 SOC) as well as the botanical origin of the peat (if determinable). Additionally, iron oxides were determined for all samples. All samples were sieved (2 mm) and incubated at standardized water content and

  15. Soils in art as a teaching tool in soil science

    NASA Astrophysics Data System (ADS)

    Poch, Rosa M.

    2017-04-01

    The representation of soils in the different artistic expressions occurs much less often than that of other naturalistic scientific disciplines, like botany or zoology, due to the minor perception of soils as a natural body since the humans started to express themselves through art. Nevertheless, painters, writers and even musicians and film directors have been forced to deal with soils in their works, as a component of the landscape and as the main actor of the various soil functions. Even if the artists are not aware of soils in the sense of soil science - a study object - their observation of nature invariably leads to express their properties, the problems due to their misuse or degradation and their management practices. These art works have a great value when teaching soil science to students, because the latter can learn to intepret and go beyond the artist's observation and therefore they can appreciate the perception of soils and soil properties along the history of humankind. Paintings from various periods can be used as exercises, mainly those depicting landscapes or agricultural works. Some examples are Dutch landscape painters, as Brueghel the Young showing detailed soil erosion features; or Wijnants (XVII century) depicting very clear podzols on sand dunes. Also the impressionists (Van Gogh, Cézanne, Gaugin), or the landscapes of the romantic nationalists (XIX- early XX century) show forest or agricultural soils that can be used either to deduce soil forming processes and describe horizons, or to discuss the effectivity of soil management practices (deforestation, burning, plowing, terracing). Also some pieces of literature can be used either for illustrating real soil landscapes and soil-water relationships (Steinbeck's "The Grapes of Wrath") or in case of fiction literature, as exercice for soil mapping (Tolkien's Middle Earth in "The Hobbit" and "The Lord of the Rings"). Films as "The field" (Jim Sheridan, 1990) or "Corn Island" (George Ovasvili

  16. Soil Water Retention Curve

    NASA Astrophysics Data System (ADS)

    Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.

    2016-12-01

    Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first

  17. Ephemeral gully: soil control factors

    NASA Astrophysics Data System (ADS)

    Ollobarren, Paul; Giménez, Rafael; Ángel Campo, Miguel; Casalí, Javier

    2014-05-01

    Soil erosion on hillslopes has been divided traditionally into sheet, rill, and (ephemeral) gully erosion. In sheet erosion, a relatively shallow overland flow acts on a hillslope and removes sediment particles uniformly from the land surface. Usually, rill erosion occur in uncertain points within sloping surfaces, whereas gullies occur in more specific places in the landscapes, i.e., within topographic swales or hollows. So that, current models for prediction of (ephemeral) gully initiation and development rely mainly on topographic factors while soil conditions are almost neglected. However, the assessment of the erodibility of soil materials is essential for analyzing and properly modeling gully erosion. But, despite the wealth of studies to characterize soil vulnerability to (gully) erosion, a universal approach is still lacking. This is due to the complexity of soil conditions and erosion phenomenon and their interactions. A useful and feasible soil characterization for gully erosion prediction at large scale should be based on simple, quick, repeatable and relatively inexpensive tests to perform. This work proposes a methodology for conducting simple tests in the field and laboratory to detect soil conditions prone to gully initiation. This approach for assessing soil erodibility includes the use of vane shear apparatus, penetrometers and a mini-rain simulator as well as some current (modified) laboratory tests for assessing soil crustability and erodibility. A pool of simple soil variables to assess soils prone to gully development is proposed. Among the main variables we have the granulometric composition of the top soil (textural fractions and gravel), organic matter content, soil cohesiveness and relative sensitivity of topsoils for crusting. Our finding may be particularly useful for erosion modelling when gully initiation and development do not largely rely on topographic features but in soil conditions.

  18. Discovering the essence of soil

    NASA Astrophysics Data System (ADS)

    Frink, D.

    2012-04-01

    Science, and what it can learn, is constrained by its paradigms and premises. Similarly, teaching and what topics can be addressed are constrained by the paradigms and premises of the subject matter. Modern soil science is founded on the five-factor model of Dokuchaev and Jenny. Combined with Retallack's universal definition of soil as geologic detritus affected by weathering and/or biology, modern soil science emphasizes a descriptive rather than an interpretive approach. Modern soil science however, emerged from the study of plants and the need to improve crop yields in the face of chronic and wide spread famine in Europe. In order to teach that dirt is fascinating we must first see soils in their own right, understand their behavior and expand soil science towards an interpretive approach rather than limited as a descriptive one. Following the advice of James Hutton given over two centuries ago, I look at soils from a physiological perspective. Digestive processes are mechanical and chemical weathering, the resulting constituents reformed into new soil constituents (e.g. clay and humus), translocated to different regions of the soil body to serve other physiological processes (e.g. lamellae, argillic and stone-line horizons), or eliminated as wastes (e.g. leachates and evolved gasses). Respiration is described by the ongoing and diurnal exchange of gasses between the soil and its environment. Circulatory processes are evident in soil pore space, drainage capacity and capillary capability. Reproduction of soil is evident at two different scales: the growth of clay crystals (with their capacity for mutation) and repair of disturbed areas such as result from the various pedo-perturbations. The interactions between biotic and abiotic soil components provide examples of both neurological and endocrine systems in soil physiology. Through this change in perspective, both biotic and abiotic soil processes become evident, providing insight into the possible behavior of

  19. Soil biodiversity and soil community composition determine ecosystem multifunctionality.

    PubMed

    Wagg, Cameron; Bender, S Franz; Widmer, Franco; van der Heijden, Marcel G A

    2014-04-08

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth's biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability.

  20. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    PubMed Central

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  1. Organic wastes as soil amendments - Effects assessment towards soil invertebrates.

    PubMed

    Renaud, Mathieu; Chelinho, Sónia; Alvarenga, Paula; Mourinha, Clarisse; Palma, Patrícia; Sousa, José Paulo; Natal-da-Luz, Tiago

    2017-05-15

    Using organic wastes, as soil amendments, is an important alternative to landfilling with benefits to soil structure, water retention, soil nutrient and organic matter concentrations. However, this practice should be monitored for its environmental risk due to the frequent presence, of noxious substances to soil organisms. To evaluate the potential of eight organic wastes with different origins, as soil amendments, reproduction tests with four soil invertebrate species (Folsomia candida, Enchytraeus crypticus, Hypoaspis aculeifer, Eisenia fetida) were performed using gradients of soil-waste mixtures. Results obtained demonstrated that contaminant concentrations required by current legislation might not be a protective measure for the soil ecosystem, as they do not properly translate the potential toxicity of wastes to soil invertebrates. Some wastes with contaminant loadings below thresholds showed higher toxicity than wastes with contaminants concentrations above legal limits. Also, test organism reproduction was differently sensitive to the selected wastes, which highlights the need to account for different organism sensitivities and routes of exposure when evaluating the toxicity of such complex mixtures. Finally this study shows that when combining chemical and ecotoxicological data, it is possible to postulate on potential sources of toxicity, contributing to better waste management practices and safer soil organic amendment products.

  2. Spatial variability of soil hydraulics and remotely sensed soil parameters

    NASA Technical Reports Server (NTRS)

    Lascano, R. J.; Van Bavel, C. H. M.

    1982-01-01

    The development of methods to correctly interpret remotely sensed information about soil moisture and soil temperature requires an understanding of water and energy flow in soil, because the signals originate from the surface, or from a shallow surface layer, but reflect processes in the entire profile. One formidable difficulty in this application of soil physics is the spatial heterogeneity of natural soils. Earlier work has suggested that the heterogeneity of soil hydraulic properties may be described by the frequency distribution of a single scale factor. The sensitivity of hydraulic and energetic processes to the variation of this scale factor is explored with a suitable numerical model. It is believed that such an analysis can help in deciding how accurately and extensively basic physical properties of field soils need to be known in order to interpret thermal or radar waveband signals. It appears that the saturated hydraulic conductivity needs to be known only to its order of magnitude, and that the required accuracy of the soil water retention function is about 0.02 volume fraction. Furthermore, the results may be helpful in deciding how the total scene or view field, as perceived through a sensor, is composed from the actual mosaic of transient soil properties, such as surface temperature or surface soil moisture. However, the latter proposition presupposes a random distribution of permanent properties, a condition that may not be met in many instances, and no solution of the problem is apparent.

  3. Chelant soil-washing technology for metal-contaminated soil.

    PubMed

    Voglar, David; Lestan, Domen

    2014-01-01

    We demonstrate here, in a pilot-scale experiment, the feasibility of ethylenediaminetetraacetate (EDTA)based washing technology for soils contaminated with potentially toxic metals. Acid precipitation coupled to initial alkaline toxic metal removal and an electrochemical advanced oxidation process were used for average recovery of 76 +/- 2% of EDTA per batch and total recycle of water in a closed process loop. No waste water was generated; solid wastes were efficiently bitumen-stabilized before disposal. The technology embodiment, using conventional process equipment, such as a mixer for soil extraction, screen for soil/gravel separation, filter chamber presses for soil/liquid and recycled EDTA separation and soil rinsing, continuous centrifuge separator for removal of precipitated metals and electrolytic cells for process water cleansing, removed up to 72%, 25% and 66% of Pb, Zn and Cd from garden soil contaminated with up to 6960, 3797 and 32.6 mg kg(-1) of Pb, Zn and Cd, respectively, in nine 60kg soil batches. Concentrations of Pb and Zn remaining in the remediated soil and bioaccessible from the simulated human intestinal phase soil were reduced by 97% and 96% and were brought under the level of determination for Cd. In the most cost-effective operation mode, the material and energy costs of remediation amounted to 50.5 Euros ton(-1) soil and the total cost to 299 Euros ton(-1).

  4. Soil and soil water studies at the HUMEX site

    SciTech Connect

    Vogt, R.D.; Seip, H.M.; Ranneklev, S. )

    1992-01-01

    Changes to natural organic compounds by acid deposition and subsequent effects on Al mobilization are not well understood. The HUMEX catchment-scale acidification experiment in western Norway offers a unique possibility for an integrated assessment of these interactions. In this report, the soil and soil water chemical data from the HUMEX site, from before and after the onset of experimental acidification, are used to characterize the catchment. Changes in soil water chemistry are discussed and controls on dissolved organic carbon are addressed in relation to Al mobilization. Decreases in the concentration of dissolved organic carbon (DOC) and organic Al fractions were found in soil water after the treatment started. These changes were related to an increase in soil water sulfate concentrations. The sulfate levels showed a significant increase (on a 95% level) in four of ten soil horizons while nitrate remained nearly unchanged. In organic soils, where the dissolved organic carbon content was high, the major control for monomeric aluminum concentration appeared to be the amount of exchangeable aluminum in the soil. In mineral soils, the gibbsite dissolution may govern inorganic Al concentrations in soil water, though substantial undersaturation was found when DOC was high. 32 refs., 6 figs., 3 tabs.

  5. Polycyclic hydrocarbon biomarkers confirm selective incorporation of petroleum in soil and kangaroo rat liver samples near an oil well blowout site in the western San Joaquin Valley, California

    SciTech Connect

    Kaplan, I.; Lu, S.T.; Lee, R.P.; Warrick, G.

    1996-05-01

    Following an accidental oil well blow out at an oil field in the western part of the San Joaquin Valley, soil samples and specimens of Heermann`s kangaroo rats (Dipodomys heermanni) were collected from two oil-impacted areas and one control area. Fingerprinting by GC-MS and quantitative evaluation of metabolized petroleum hydrocarbons was performed on oil, soil extracts, and rat livers. A liver from a domestically raised rabbit was used as an experimental control. The results show that there is no significant incorporation of PAHs or low molecular weight n-alkanes (C{sub 13}--C{sub 25}) into the liver tissues. The C{sub 25}--C{sub 35} n-alkane range for all soil samples, kangaroo rat livers, and rabbit liver, is dominated by a high abundance of C{sub 27}, C{sub 29}, C{sub 31}, and C{sub 33} hydrocarbons typical of epicuticular plant waxes. In all liver tissue samples, squalene, the cholesterol precursor, is the dominant hydrocarbon. Although evidence is lacking for metabolism of PAHs and paraffinic petroleum hydrocarbons, very strong evidence is available for incorporation of a set of polycyclic hydrocarbons (biomarkers) belonging to the terpane, sterane, and monoaromatic and triaromatic sterane families, identified by ion monitoring at 191, 217, 253, and 231 m/z, respectively. Because these hydrocarbons are not known to exist in the biosphere, but are only synthesized during oil- and coal-forming processes, their presence in the liver samples constitutes proof for crude oil incorporation into tissues. This conclusion is further substantiated by the selective incorporation of only the 20S enantiomer of C{sub 28} and C{sub 29} steranes and aromatic steranes into the livers, with the exclusion of the 20R enantiomer. The results from the study conclusively demonstrate that polycyclic hydrocarbon biomarkers provide excellent indices for proof of petroleum exposure and metabolism in some terrestrial herbivores.

  6. Pneumatic soil removal tool

    DOEpatents

    Neuhaus, John E.

    1992-01-01

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

  7. Pneumatic soil removal tool

    DOEpatents

    Neuhaus, J.E.

    1992-10-13

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

  8. The soils of Mars

    NASA Astrophysics Data System (ADS)

    Banin, A.

    A mineralogical model for the Mars fine soil that includes as major components smectite clays absorbed and coated with amorphous iron oxyhydroxides and perhaps mixed with small amounts of better-crystalized iron oxides as separate phases is proposed. Also present as accessory minerals are sulfate minerals such as kieserite (MgSO4.H2O) and/or anhydrite (CaSO4), rutile (TiO2), and maghemite (Fe2O3) or magnetite (Fe3O4), the last two as magnetic components. Carbonates may be present at low concentrations only (less than 1 to 2 pct). However, a prime question to be addressed by a Mars Sample Return Mission shall be related to the mineralogical composition of the soil, and its spatial variability.

  9. The soils of Mars

    NASA Technical Reports Server (NTRS)

    Banin, A.

    1988-01-01

    A mineralogical model for the Mars fine soil that includes as major components smectite clays absorbed and coated with amorphous iron oxyhydroxides and perhaps mixed with small amounts of better-crystalized iron oxides as separate phases is proposed. Also present as accessory minerals are sulfate minerals such as kieserite (MgSO4.H2O) and/or anhydrite (CaSO4), rutile (TiO2), and maghemite (Fe2O3) or magnetite (Fe3O4), the last two as magnetic components. Carbonates may be present at low concentrations only (less than 1 to 2 pct). However, a prime question to be addressed by a Mars Sample Return Mission shall be related to the mineralogical composition of the soil, and its spatial variability.

  10. Impacts of soil moisture content on visual soil evaluation

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick

    2017-04-01

    Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References

  11. Soil carbon in the hyperarid soils from the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Fletcher, Lauren; Perez, Saul; Condori, Rene; Conley, Catharine; Navarro-Gonzalez, Rafael; McKay, Chris

    Soil carbon content and its relation to site characteristics are important in evaluating current regional, continental, and global soil C stores and projecting future changes. Data from 485 soil samples were compiled for 6 different types of hyperarid soils of the Atacama desert located in South America, along the western slopes of the Andes and the Pacific Ocean from 16° S to 30° S. The soil organic carbon (SOC) of sandy soil ranged from 0.004 to 0.012% C/gr of soil, which is normally distributed in the study (mean = 0.136 g C m-2) for the 0-0.1 m profile and 0.001 to 0.029% C/gr of soil (mean = 2.998 g C m-2) for the 0-0.9 m profile. Variability in SOC contents and bulk density contributed substantially to SOC variation. Regression analysis of climatic and pedological characteristics associated with hyperarid soils with respect to their SOC indicated that combinations of site characteristics explained up to 90% of the SOC variability. The SOC increased with precipitation, and decreasing evaporation and temperature. Climatic zones, and carbonate carbon were noted for different desert soil types. The largest accumulations of carbonates (SIC) were found in calcic soils and in warm, arid areas. SIC contents ranged from 0.017 to 0.14% C/gr of soil (mean = 1.93 g C m-2) for the 0-0.1 m profile and 0.02 to 0.48% Carbon/g of soil (mean = 6.66 g C m-2) for the 0-0.9 m profile. The top 1.0-m soil layer of hyperarid lands contains some 1.13 Tg of organic carbon and 3.1 Tg of carbonate carbon. The total stored carbon was 3.7-fold the organic carbon alone. Thus, the carbon stored in soil carbonates in desertification prone lands in Atacama Desert is an important factor affecting changes in concentrations of atmospheric carbon dioxide. Key words: Soil organic carbon, carbonates, hyperarid soils, Atacama Desert.

  12. Soil Rock Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A redesigned version of a soil/rock analyzer developed by Martin Marietta under a Langley Research Center contract is being marketed by Aurora Tech, Inc. Known as the Aurora ATX-100, it has self-contained power, an oscilloscope, a liquid crystal readout, and a multichannel spectrum analyzer. It measures energy emissions to determine what elements in what percentages a sample contains. It is lightweight and may be used for mineral exploration, pollution monitoring, etc.

  13. The Mystery Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click for larger view

    This high-resolution image from the panoramic camera on the Mars Exploration Rover Spirit shows the region containing the patch of soil scientists examined at Gusev Crater just after Spirit rolled off the Columbia Memorial Station. Scientists examined this patch on the 13th and 15th martian days, or sols, of Spirit's journey. Using nearly all the science instruments located on the rover's instrument deployment device or 'arm,' scientists yielded some puzzling results including the detection of a mineral called olivine and the appearance that the soil is stronger and more cohesive than they expected. Like detectives searching for clues, the science team will continue to peruse the landscape for explanations of their findings.

    Data taken from the camera's red, green and blue filters were combined to create this approximate true color picture, acquired on the 12th martian day, or sol, of Spirit's journey.

    The yellow box (see inset above) in this high-resolution image from the panoramic camera on the Mars Exploration Rover Spirit outlines the patch of soil scientists examined at Gusev Crater just after Spirit rolled off the Columbia Memorial Station.

  14. Contaminated soil stabilization demonstration

    SciTech Connect

    Kemp, C.J.; Sackschewsky, M.R.; Sampson, A.E.; Phillips, S.J.

    1991-10-01

    Long-term herbicide control along with a shotcrete cover was constructed at the Hanford Site in May 1991. The cover system allows for maintenance-free containment of contaminants by preventing wind and water transport of contaminants from the soil surface, preventing plant uptake of contaminants, and minimizing water infiltration through the soil column. The cover is composed of two parts: a commercial nonwoven geotextile material impregnated with trifluralin, and a >5-centimeter top cover of shotcrete containing polyethylene fibers. The herbicide-impregnated geotextile functions to prevent plant root growth into contaminated soil if any holes or cracks develop in the shotcrete layer. The herbicide component, trifluralin, is mixed into polymer nodules that degrade slowly over many years, thus releasing trifluralin slowly over time. The shotcrete topcover was sprayed using a sludge pump and air compressor to form a hard, impenetrable surface that prevents wind erosion and reduces water infiltration through the contaminated materials underneath. The benefits of the cover system are expected to last 20 to 30 years. 2 refs., 4 figs.

  15. The Mystery Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click for larger view

    This high-resolution image from the panoramic camera on the Mars Exploration Rover Spirit shows the region containing the patch of soil scientists examined at Gusev Crater just after Spirit rolled off the Columbia Memorial Station. Scientists examined this patch on the 13th and 15th martian days, or sols, of Spirit's journey. Using nearly all the science instruments located on the rover's instrument deployment device or 'arm,' scientists yielded some puzzling results including the detection of a mineral called olivine and the appearance that the soil is stronger and more cohesive than they expected. Like detectives searching for clues, the science team will continue to peruse the landscape for explanations of their findings.

    Data taken from the camera's red, green and blue filters were combined to create this approximate true color picture, acquired on the 12th martian day, or sol, of Spirit's journey.

    The yellow box (see inset above) in this high-resolution image from the panoramic camera on the Mars Exploration Rover Spirit outlines the patch of soil scientists examined at Gusev Crater just after Spirit rolled off the Columbia Memorial Station.

  16. Plant diversity increases soil microbial activity and soil carbon storage.

    PubMed

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

    2015-04-07

    Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon.

  17. Inference of Soil Hydrologic Parameters from Soil Moisture Monitoring Records

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; Seyfried, M. S.; McNamara, J. P.; Hwang, K.

    2015-12-01

    Soil moisture is an important control on hydrologic function, as it governs flux through the soil and responds to and determines vertical fluxes from and to the atmosphere, groundwater recharge and lateral fluxes through the soil. Most physically based hydrologic models require parameters to represent soil physical properties governing flow and retention of vadose water. The presented analysis compares four methods of objective analysis to determine field capacity, plant extraction limit (or permanent wilting point) and field saturated soil moisture content from decadal records of volumetric water content. These values are found as either data attractors or limits in the VWC records and may vary with interannual moisture availability. Results are compared to values from pedotransfer functions and discussed in terms of historic methods of measurement in soil physics.

  18. Permeability of soils in Mississippi

    USGS Publications Warehouse

    O'Hara, Charles G.

    1994-01-01

    The permeability of soils in Mississippi was determined and mapped using a geographic information system (GIS). Soil permeabilities in Mississippi were determined to range in value from nearly 0.0 to values exceeding 5.0 inches per hour. The U.S. Soil Conservation Service's State Soil Geographic Data Base (STATSGO) was used as the primary source of data for the determination of area-weighted soil permeability. STATSGO provides soil layer properties that are spatially referenced to mapped areas. These mapped areas are referred to as polygons in the GIS. The polygons arc boundaries of soils mapped as a group and are given unique Map Unit Identifiers (MUIDs). The data describing the physical characteristics of the soils within each polygon are stored in a tabular data base format and are referred to as attributes. The U.S. Soil Conservation Service developed STATSGO to be primarily used as a guide for regional resource planning, management, and monitoring. STATSGO was designed so that soil information could be extracted from properties tables at the layer level, combined by component, and statistically expanded to cover the entire map unit. The results of this study provide a mapped value for permeability which is representative of the vertical permeability of soils in that area. The resultant permeability map provides a representative vertical soil permeability for a given area sufficient for county, multi- county, and area planning, and will be used as the soil permeability data component in the evaluation of the susceptibility of major aquifers to contami- nation in Mississippi.

  19. Making sense of soil ecotoxicology

    USGS Publications Warehouse

    Beyer, W. Nelson; Linder, Greg L.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    The toxicity of pesticides and environmental contaminants to soil organisms has been measured in studies on earthworms,1 soil arthropods,3-6 soil microorganisms,7 and other soil organisms.8 Toxicity data on earthworms produced in the pesticide registration procedure required by the OECD (Organization for economic cooperation and Development) will provide data on many additional chemicals.9 Deciding how to use the data generated is troublesome. In 1965, Edwards10 suggested that the effects of soil insecticides on soils may remain long after the pesticides have disappeared, and that it was clear that pesticides could drastically change the populations of soil organisms; Edwards noted, however, that the effects did not seem to be serious when compared with the benefits to crop production of using pesticides. Since 1965, many studies have been conducted on changes in soil ecosystems caused by environmental contaminants, but we still know little about what the toxicity to particular groups of soil organisms means to the functioning of the soil ecosystem. the problem was illustrated in discussions at the International Conference on Earthworm Ecotoxicology in Sheffield, England, in 1991. there was general agreement that earthworms ahould be taken into account when evaluating pesticides. However, it was unclear what level of reduction in earthworm populations would reduce soil quality or crop yeild. Because populations of earthworms naturally fluctuate greatly even in the absence of pesticides, and because some soils are fertile without any earthworms, it is difficult to equate their population decreases with damage to the soil ecosystem. Broadbent and Tomlin found that the insecticide carbofuran caused fluctuations in the populations of some microarthropods in a cornfield but, in comparing the effects to those of cultivation or adding compost, they concluded that it was unlikely that litter decomposition was significantly affected.3

  20. A Handbook on Artificial Soils for Indoor Photovoltaic Soiling Tests

    SciTech Connect

    Burton, Patrick D.; King, Bruce Hardison

    2014-10-01

    This manuscript is intended to serve as a practical guide to conducting repeatable indoor soiling experiments for PV applications. An outline of techniques, materials and equipment used in prior studies [1-3] is presented. Additional recommendations and practical guidance has been presented. Major sections include techniques to formulate soil simulants, ('standard grime') and feedstocks from traceable components, spray application, and quantitative measurement methodologies at heavy and minimal soil loadings.

  1. An alternative to soil taxonomy for describing key soil characteristics

    USGS Publications Warehouse

    Duniway, Michael C.; Miller, Mark E.; Brown, Joel R.; Toevs, Gordon

    2013-01-01

    is not a simple task. Furthermore, because the US system of soil taxonomy is not applied universally, its utility as a means for effectively describing soil characteristics to readers in other countries is limited. Finally, and most importantly, even at the finest level of soil classification there are often large within-taxa variations in critical properties that can determine ecosystem responses to drivers such as climate and land-use change.

  2. Incineration of PCB-contaminated soils: Effect on soil properties

    SciTech Connect

    Chaouki, J.; Guy, C.; Gonzalez, A.; Mourot, P.; Masciotra, P.

    1995-12-31

    An experimental program was conducted to determine the effect of fluidized bed combustion on the properties and characteristics of a soil lightly contaminated with PCBs. The following properties of a soil sample and its leachate were characterized before and after incineration: pH, particle size distribution, and contaminant content. Three runs were carried out on a pilot scale fluidized bed at identical conditions, with three different soil samples: set point temperature of 870 {+-} 40 C and minimal residence time of 30 min. The main conclusions can be summarized as follows: under the operating conditions of the test, PCBs present in soil are eliminated to below the detection level; the runs showed good reproducibility; soil pH increases from 8.6 {+-} 0.1 to 10.7 {+-} 0.2 because of the natural limestone (CaCO{sub 3}), which calcines and then hydrolyzes to basic calcium hydroxide (Ca(OH){sub 2}); the incineration seems to lead to soil agglomeration; soil heavy metal content is decreased significantly after incineration; soil leachate heavy metal content is not significantly affected by incineration, except for chromium (from 0.02 to 0.06 mg/L) and zinc (from 0.1 to 0.25 mg/L); treated soil leachate content for organics and organochlorines is below the detection level.

  3. Derivation of Soil Ecological Criteria for Copper in Chinese Soils.

    PubMed

    Wang, Xiaoqing; Wei, Dongpu; Ma, Yibing; McLaughlin, Mike J

    2015-01-01

    Considerable information on copper (Cu) ecotoxicity as affected by biological species and abiotic properties of soils has been collected from the last decade in the present study. The information on bioavailability/ecotoxicity, species sensitivity and differences in laboratory and field ecotoxicity of Cu in different soils was collated and integrated to derive soil ecological criteria for Cu in Chinese soils, which were expressed as predicted no effect concentrations (PNEC). First, all ecotoxicity data of Cu from bioassays based on Chinese soils were collected and screened with given criteria to compile a database. Second, the compiled data were corrected with leaching and aging factors to minimize the differences between laboratory and field conditions. Before Cu ecotoxicity data were entered into a species sensitivity distribution (SSD), they were normalized with Cu ecotoxicity predictive models to modify the effects of soil properties on Cu ecotoxicity. The PNEC value was set equal to the hazardous concentration for x% of the species (HCx), which could be calculated from the SSD curves, without an additional assessment factor. Finally, predictive models for HCx based on soil properties were developed. The soil properties had a significant effect on the magnitude of HCx, with HC5 varying from 13.1 mg/kg in acidic soils to 51.9 mg/kg in alkaline non-calcareous soils. The two-factor predictive models based on soil pH and cation exchange capacity could predict HCx with determination coefficients (R2) of 0.82-0.91. The three-factor predictive models--that took into account the effect of soil organic carbon--were more accurate than two-factor models, with R2 of 0.85-0.99. The predictive models obtained here could be used to calculate soil-specific criteria. All results obtained here could provide a scientific basis for revision of current Chinese soil environmental quality standards, and the approach adopted in this study could be used as a pragmatic framework for

  4. Soil organic carbon distribution in roadside soils of Singapore.

    PubMed

    Ghosh, Subhadip; Scharenbroch, Bryant C; Ow, Lai Fern

    2016-12-01

    Soil is the largest pool of organic carbon in terrestrial systems and plays a key role in carbon cycle. Global population living in urban areas are increasing substantially; however, the effects of urbanization on soil carbon storage and distribution are largely unknown. Here, we characterized the soil organic carbon (SOC) in roadside soils across the city-state of Singapore. We tested three hypotheses that SOC contents (concentration and density) in Singapore would be positively related to aboveground tree biomass, soil microbial biomass and land-use patterns. Overall mean SOC concentrations and densities (0-100 cm) of Singapore's roadside soils were 29 g kg(-1) (4-106 g kg(-1)) and 11 kg m(-2) (1.1-42.5 kg m(-2)) with median values of 26 g kg(-1) and 10 kg m(-2), respectively. There was significantly higher concentration of organic carbon (10.3 g kg(-1)) in the top 0-30 cm soil depth compared to the deeper (30-50 cm, and 50-100 cm) soil depths. Singapore's roadside soils represent 4% of Singapore's land, but store 2.9 million Mg C (estimated range of 0.3-11 million Mg C). This amount of SOC is equivalent to 25% of annual anthropogenic C emissions in Singapore. Soil organic C contents in Singapore's soils were not related to aboveground vegetation or soil microbial biomass, whereas land-use patterns to best explain variance in SOC in Singapore's roadside soils. We found SOC in Singapore's roadside soils to be inversely related to urbanization. We conclude that high SOC in Singapore roadside soils are probably due to management, such as specifications of high quality top-soil, high use of irrigation and fertilization and also due to an optimal climate promoting rapid growth and biological activity.

  5. A soil quality index for reclaimed mine soils.

    PubMed

    Asensio, Verónica; Guala, S D; Vega, Flora A; Covelo, Emma F

    2013-10-01

    The quality of soils found in mines is low if they do not receive any reclamation treatment; yet, to the authors’ knowledge, there are still no equations to evaluate the quality of metal-contaminated mine soils after the application of the most widely used reclamation treatments (planting vegetation and amending with wastes). Therefore, the purposes of the present study were 1) to propose a method for developing soil quality indexes (SQIs); 2) to develop the SQIs for 2 types of mine soils (settling pond and mine tailing) reclaimed by planting trees, amending with wastes, or both; and 3) to assess the quality of these soils under field conditions. The results obtained after the use of an SQI developed for reclaimed mine soils through the selection of an SQI with a factor analysis and the totaling of the scores of the selected variables revealed that this method is a valid tool for developing SQIs. Applying this index with reclaimed mine soils showed that the untreated sites had a very low quality and that the treatment that most improved the soils was amending with wastes (sewage sludges and paper mill residues). The authors recommend the periodic addition of sewage sludges and paper mill residues to degraded sites as they increase the quality of soils, but the effects decrease over time.

  6. Quantifying Shrink Swell Capacity of Soil Using Soil Moisture Isotherms

    NASA Astrophysics Data System (ADS)

    Rivera, L. D.; Cobos, D. R.; Campbell, C. S.; Morgan, C.

    2013-12-01

    Vertisols, soils instinctively known for their expansive clays that cause them to have a high shrink swell potential, cover 2.4% of the earths ice-free land. In the United States these expansive soils can cause upwards of 6 billion in damages to pavements, foundations, and utility lines annually (Brady & Weil, 2010). Because of this, it is especially important that a soils ability to shrink and swell is well characterized when making engineering decisions. One traditional method for measuring a soil's expansive potential, the Coefficient of Linear Extensibility (COLE), can take weeks to months to complete (Grossman et al., 1968; Schafer and Singer, 1976b). Use of soil moisture isotherms, or the Soil Moisture Characteristic Curve (SMCC), in recent research has shown that the slope of the SMCC is related to a soils swelling potential (McKeen, 1992). The goal of this research is to evaluate the robustness of the relationship between the SMCC and COLE for a set of well-characterized test soils with COLE ranging from 0 to 0.176. If expansive potential can be reliably predicted from the SMCC, then data from recently developed automatic soil moisture isotherm generators could be used to characterize expansive potential with a fraction of the time and effort necessary for traditional techniques.

  7. Effect of soil reclamation process on soil C fractions.

    PubMed

    Asensio, V; Vega, F A; Covelo, E F

    2014-01-01

    Mine soils are notable for their low organic matter content. Soils in the depleted copper mine in Touro (Galicia, Spain) were vegetated with trees (eucalyptuses and pines) and amended with wastes (sewage sludge and paper mill residues) to increase their carbon concentration. Two different zones at the mine (settling pond and mine tailing) and their respective treated areas (vegetated and/or amended) were sampled and analysed with the aim of evaluating in depth the effect of the reclamation treatments on both the concentration and quality of soil organic matter under field conditions. The results showed that the two treatments (tree vegetation and waste amendment) significantly increased the organic C in the mine soils from 1.4-6.6 to 10-112 g kg(-1). However, only the soil amended with wastes in the settling pond reached the usual values of undisturbed soils (92-126 g TOC kg(-1) soil). Amending with wastes was also the only treatment that increased the soil humified organic C concentration to proper values and therefore also the microbial biomass C. We recommend the use of organic wastes for amending soils poor in organic matter as well as the regular application of this treatment, as the nitrogen supply can be more limiting for plant growth than the organic C.

  8. Derivation of Soil Ecological Criteria for Copper in Chinese Soils

    PubMed Central

    Wang, Xiaoqing; Wei, Dongpu; Ma, Yibing; McLaughlin, Mike J.

    2015-01-01

    Considerable information on copper (Cu) ecotoxicity as affected by biological species and abiotic properties of soils has been collected from the last decade in the present study. The information on bioavailability/ecotoxicity, species sensitivity and differences in laboratory and field ecotoxicity of Cu in different soils was collated and integrated to derive soil ecological criteria for Cu in Chinese soils, which were expressed as predicted no effect concentrations (PNEC). First, all ecotoxicity data of Cu from bioassays based on Chinese soils were collected and screened with given criteria to compile a database. Second, the compiled data were corrected with leaching and aging factors to minimize the differences between laboratory and field conditions. Before Cu ecotoxicity data were entered into a species sensitivity distribution (SSD), they were normalized with Cu ecotoxicity predictive models to modify the effects of soil properties on Cu ecotoxicity. The PNEC value was set equal to the hazardous concentration for x% of the species (HCx), which could be calculated from the SSD curves, without an additional assessment factor. Finally, predictive models for HCx based on soil properties were developed. The soil properties had a significant effect on the magnitude of HCx, with HC5 varying from 13.1 mg/kg in acidic soils to 51.9 mg/kg in alkaline non-calcareous soils. The two-factor predictive models based on soil pH and cation exchange capacity could predict HCx with determination coefficients (R2) of 0.82–0.91. The three-factor predictive models – that took into account the effect of soil organic carbon – were more accurate than two-factor models, with R2 of 0.85–0.99. The predictive models obtained here could be used to calculate soil-specific criteria. All results obtained here could provide a scientific basis for revision of current Chinese soil environmental quality standards, and the approach adopted in this study could be used as a pragmatic

  9. Working with soils: soil science continuing professional development

    NASA Astrophysics Data System (ADS)

    Hannam, Jacqueline; Thompson, Dick

    2017-04-01

    The British Society of Soil Science launched the Working with Soils professional competency programme in 2011. This was in response to concerns from practitioners and professionals of a significant skills gap in various sectors that require soil science skills. The programme includes one and two day courses that cover the qualifications, knowledge and skills required of a professional scientist or engineer conducting a range of contract work. All courses qualify for continuing professional development points with various professional practice schemes. Three courses cover the foundations of soil science namely; describing a soil profile, soil classification and understanding soil variability in the field and landscape. Other tailored courses relate to specific skills required from consultants particularly in the planning process where land is assessed for agricultural quality (agricultural land classification). New courses this year include soil handling and restoration that provides practitioners with knowledge of the appropriate management of large volumes of soil that are disturbed during development projects. The courses have so far successfully trained over 100 delegates ranging from PhD students, environmental consultants and government policy advisors.

  10. Soil salinity prediction using electromagnetic induction method in gypsiferous soil

    NASA Astrophysics Data System (ADS)

    Bouksila, Fethi; Persson, Magnus; Bahri, Akiça; Berndtsson, Ronny; Ben Slimane, Abir

    2017-04-01

    In arid and semiarid regions, secondary soil salinization is considered a main danger to the sustainability of irrigated land and agricultural production. Thus, accurate and rapid estimation of soil salinity should be readily available to farmers during crop development to increase productivity and to contribute to sustainable land planning aimed at mitigating soil degradation. Measurement of electrical conductivity in saturated paste extracts (ECe) is a standard method for which other salinity estimation methods are referenced. In the present study, we investigated the possibilities to use the EM38 to predict field ECe in a saline gypsiferous soil of the Saharian-climate Fatnassa oasis (Tunisia) under shallow and saline groundwater. On the 114 ha oasis, an experimental network system of 27 agricultural plots was chosen for monitoring soil properties (ECa-EM38, soil particle size, gypsum content, soil moisture, and ECe) and groundwater (depth, Dgw, electrical conductivity, and ECgw). Samples were taken during 4 years (2001 to 2004) at experimental plots and soil profiles were sampled at 0.2 m depth intervals to 1.2 m for physical and chemical analysis. The results showed that significant lnECe-EM relationships could be developed. However, results also indicated that for better accuracy of soil salinity prediction using the EM38, it is advisable to perform calibrations for each measurement period.

  11. Minute tubular forms in soil

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.; Liu, K.-C.

    1979-01-01

    Large numbers of long, straight, flattened structures were observed during an electron-microscope study of bacteriophage in aqueous extracts. These structures were called tubules and ranged in width from 10 to 50 nm. Materials and methods were discussed relative to extraction of tubules from soil, electron microscopy, quantitation of tubules in filtrate suspension, tests performed on tubules, plaque formation, and nutrient amendments. It is found that all of the tubules recovered from soil are broken at one or both ends. They are present in surface soils but not in a subsurface sample. Their numbers decrease during bacterial multiplication in soil or broth-containing soil. The tubules appear to be composed of protein that could be disintegrated to liberate nonprotein fibers. A possible clue to the nature of the tubules is their apparent relation to soil bacteria.

  12. Minute tubular forms in soil

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.; Liu, K.-C.

    1979-01-01

    Large numbers of long, straight, flattened structures were observed during an electron-microscope study of bacteriophage in aqueous extracts. These structures were called tubules and ranged in width from 10 to 50 nm. Materials and methods were discussed relative to extraction of tubules from soil, electron microscopy, quantitation of tubules in filtrate suspension, tests performed on tubules, plaque formation, and nutrient amendments. It is found that all of the tubules recovered from soil are broken at one or both ends. They are present in surface soils but not in a subsurface sample. Their numbers decrease during bacterial multiplication in soil or broth-containing soil. The tubules appear to be composed of protein that could be disintegrated to liberate nonprotein fibers. A possible clue to the nature of the tubules is their apparent relation to soil bacteria.

  13. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    USGS Publications Warehouse

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  14. Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification.

    PubMed

    Li, Yong; Sun, Jian; Tian, Dashuan; Wang, Jinsong; Ha, Denglong; Qu, Yuxi; Jing, Guangwei; Niu, Shuli

    2017-09-16

    Atmospheric nitrogen (N) deposition and soil acidification both can largely change soil microbial activity and root growth with a consequent impact on soil respiration (Rs). However, it remains unclear which one, N enrichment or soil acidification, plays more important role in impacting soil respiration. We conducted a manipulative experiment to simulate N enrichment (10gm(-2)yr(-1) NH4NO3) and soil acidity (0.552molH(+)m(-2)yr(-1) sulfuric acid) and compared their effects on Rs and its components in a subtropical forest. The results showed that soil pH was reduced by 0.4 similarly under N addition or acid addition after 3years' treatment. Acid addition decreased autotrophic respiration (Ra) by 22-35% and heterotrophic respiration (Rh) by 22-23%, resulting in a reduction of Rs by 22-26% in the two years. N addition reduced Ra, Rh, Rs less than acid addition did. The reductions of Rs and its components were attributed to increase of soil acid cations and reduction of cellulose degrading enzymes activity. N addition and soil acidification significantly enhanced fungal to bacterial ratio. All the cellulose degrading enzymes were reduced more by soil acidity (43-50%) than N addition (30-39%). The principal component scores of degrading enzymes activity showed significantly positive relationships with Rh. Structural equation model showed that soil acidification played more important role than N enrichment in changing Rs and its components. We therefore suggest that soil acidification is an important mechanism underlying soil respiration changes, and should be incorporated into biogeochemical models to improve the prediction of ecosystem C cycling in the future scenarios of anthropogenic N deposition and acid enrichment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. SITE TECHNOLOGY CAPSULE: BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. The BloGenesis™ soil washing technology uses a proprietary surfactant solution to transfer organic contaminants from soil to wastewater. The surfactant used in the soil washing process wa...

  16. Soils and environmental quality, Second edition

    SciTech Connect

    Pierzynski, G.M.; Sims, J.T.; Vance, G.F.

    2000-07-01

    The contents of this book include the following: introduction to environmental quality; soil nitrogen and environmental quality; soil phosphorus and environmental quality; soil sulfur and environmental quality; trace elements; organic chemicals in the environment; biogeochemical cycles and soil management; remediation of contaminated soils and groundwater; global climate change and acid rain; and risk assessment.

  17. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Soil replacement. 823.14 Section 823.14 Mineral...

  18. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Soil replacement. 823.14 Section 823.14 Mineral...

  19. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Soil replacement. 823.14 Section 823.14 Mineral...

  20. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Soil replacement. 823.14 Section 823.14 Mineral...

  1. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Soil replacement. 823.14 Section 823.14 Mineral...

  2. Dairy manure applications and soil health implications

    USDA-ARS?s Scientific Manuscript database

    Dairy manure applications can potentially improve soil health by adding organic matter (OM) to the soil. However, intensive dairy manure applications can cause salt accumulations on arid, irrigated soils, impairing soil health, which can reduce crop growth and yield. Soil organic matter, a major c...

  3. In-situ vitrification of soil

    DOEpatents

    Brouns, Richard A.; Buelt, James L.; Bonner, William F.

    1983-01-01

    A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried waste, can thereby be effectively immobilized.

  4. Assessing quality in volcanic ash soils

    Treesearch

    Terry L. Craigg; Steven W. Howes

    2007-01-01

    Forest managers must understand how changes in soil quality resulting from project implementation affect long-term productivity and watershed health. Volcanic ash soils have unique properties that affect their quality and function; and which may warrant soil quality standards and assessment techniques that are different from other soils. We discuss the concept of soil...

  5. Do invasive plant species alter soil health?

    USDA-ARS?s Scientific Manuscript database

    Invasive species may alter soil characteristics or interact with the soil microbial community to yield a competitive advantage. Our objectives were to determine: if invasive plant species alter soil properties important to soil health; and the long-term effects of invasive plant species on soil pro...

  6. SITE TECHNOLOGY CAPSULE: BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. The BloGenesis™ soil washing technology uses a proprietary surfactant solution to transfer organic contaminants from soil to wastewater. The surfactant used in the soil washing process wa...

  7. Aflatoxin decomposition in various soils

    SciTech Connect

    Angle, J.S.

    1986-08-01

    The persistence of aflatoxin in the soil environment could potentially result in a number of adverse environmental consequences. To determine the persistence of aflatoxin in soil, /sup 14/C-labeled aflatoxin B1, was added to silt loam, sandy loam, and silty clay loam soils and the subsequent release of /sup 14/CO/sub 2/ was determined. After 120 days of incubation, 8.1% of the original aflatoxin added to the silt loam soil was released as CO/sub 2/. Aflatoxin decomposition in the sandy loam soil proceeded more quickly than the other two soils for the first 20 days of incubation. After this time, the decomposition rate declined and by the end of the study, 4.9% of the aflatoxin was released as CO/sub 2/. Aflatoxin decomposition proceeded most slowly in the silty clay loam soil. Only 1.4% of aflatoxin added to the soil was released as CO/sub 2/ after 120 days incubation. To determine whether aflatoxin was bound to the silty clay loam soil, aflatoxin B1 was added to this soil and incubated for 20 days. The soil was periodically extracted and the aflatoxin species present were determined using thin layer chromatographic (TLC) procedures. After one day of incubation, the degradation products, aflatoxins B2 and G2, were observed. It was also found that much of the aflatoxin extracted from the soil was not mobile with the TLC solvent system used. This indicated that a conjugate may have formed and thus may be responsible for the lack of aflatoxin decomposition.

  8. Soil Science and Global Issues

    NASA Astrophysics Data System (ADS)

    Lal, Rattan

    2015-04-01

    Sustainable management of soil is integral to any rational approach to addressing global issues of the 21st century. A high quality soil is essential to: i) advancing food and nutritional security, ii) mitigating and adapting to climate change, iii) improving quality and renewability of water, iv) enriching biodiversity, v) producing biofuel feedstocks for reducing dependence on fossil fuel, and vi) providing cultural, aesthetical and recreational opportunities. Being the essence of all terrestrial life, soil functions and ecosystem services are essential to wellbeing of all species of plants and animals. Yet, soil resources are finite, unequally distributed geographically, and vulnerable to degradation by natural and anthropogenic perturbations. Nonetheless, soil has inherent resilience, and its ecosystem functions and services can be restored over time. However, soil resilience depends on several key soil properties including soil organic carbon (SOC) concentration and pool, plant-available water capacity (PWAC), nutrient reserves, effective rooting depth, texture and clay mineralogy, pH, cation exchange capacity (CEC) etc. There is a close inter-dependence among these properties. For example, SOC concentration strongly affects, PWAC, nutrient reserve, activity and species diversity of soil flora and fauna, CEC etc. Thus, judicious management of SOC concentration to maintain it above the threshold level (~1.5-2%) in the root zone is critical to sustaining essential functions and ecosystem services. Yet, soils of some agroecosystems (e.g., those managed by resources-poor farmers and small landholders in the tropics and sub-tropics) are severely depleted of their SOC reserves. Consequently. Agronomic productivity and wellbeing of people dependent on degraded soils is jeopardized. The ecosystem C pool of the terrestrial biosphere has been mined by extractive practices, the nature demands recarbonization of its biosphere for maintenance of its functions and

  9. Acoustic behaviors of unsaturated soils

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2011-12-01

    Soils are unconsolidated granular materials, consisting of solid particles, water and air. Their mechanical and dynamic behaviors are determined by the discrete nature of the media as well as external and inter-particle forces. For unsaturated soils, two factors significantly affect soils acoustic/seismic responses: external pressure and internal water potential/matric suction. In triaxial cell tests, unsaturated soils were subjected to predefined stress paths to undergo stages of normal consolidation, unload-reload cycles, and failure. The stress deformation curve and stress-P-wave velocity were measured and compared. The study revealed that soil's dynamic response to external pressure are similar to those of the load-deformation behaviors and demonstrated that acoustic velocity can be used to monitor the state of stress of soils. In a long term field soil survey, the P-wave velocities were found to be correlated with water potential as expressed as a power-law relationship. The above phenomena can be understood by using the Terzaghi' s the principle of effective stress. The measured results were in good agreement with Brutsaert theory. The effective stress concept can also be applied to explain the observations in a soil pipe flow study in which soil internal erosion processes were monitored and interpreted by the temporal evolution of the P-wave velocity. In addition to above linear acoustic behaviors, soils, like other earth materials, exhibit astonishing non-classical nonlinear behaviors such as end-point memory, hysteresis, strain -dependent shear modulus, resonant frequency shift, and phase shift, harmonics generation, etc. A nonlinear acoustic study of a soil as a function of water content showed that the nonlinear acoustic parameter are much sensitive to the variations of soil water content than that of the acoustic velocity.

  10. Enzymatic activities in a semiarid soil amended with different soil treatment: Soil quality improvement

    NASA Astrophysics Data System (ADS)

    Hueso González, Paloma; Elbl, Jakub; Dvořáčková, Helena; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose

    2017-04-01

    The use of soil quality indicators may be an effective approach to assess the positive effect of the organic amendment as good restoration methods. Relying on the natural fertility of the soil, the most commonly chemical and physical parameters used to evaluate soil quality are depend to the soil biological parameters. The measurement of soil basal respiration and the mineralization of organic matter are commonly accepted as a key indicator for measuring changes to soil quality. Thus, the simultaneous measurement of various enzymes seems to be useful to evaluate soil biochemical activity and related processes. In this line, Dehydrogenase activity is widely used in evaluating the metabolic activity of soil microorganisms and to evaluate the effects caused by the addition of organic amendments. Variations in phosphatase activity, apart from indicating changes in the quantity and quality of soil phosphorated substrates, are also good indicators of soil biological status. This study assesses the effect of five soil amendments as restoration techniques for semiarid Mediterrenean ecosystems. The goal is to interpret the status of biological and chemical parameters in each treatment as soil quality indicators in degraded forests. The main objectives were to: i) analyze the effect of various organic amendments on the enzimatic activity of soil; ii) analyze the effect of the amendments on soil respiration; iii) assess the effect of these parameters on the soil chemical properties which are indicative of soil healthy; and iv) evaluated form the land management point of view which amendment could result a effective method to restore Mediterranean degraded areas. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis Mill.); TerraCotten hydroabsobent polymers; sewage

  11. Approximating Phosphorus Leaching from Agricultural Organic Soils by Soil Testing.

    PubMed

    Zheng, Z M; Zhang, T Q; Kessel, C; Tan, C S; O'Halloran, I P; Wang, Y T; Speranzini, D; Van Eerd, L L

    2015-11-01

    Phosphorus applied to soils in excess of crop requirement could create situations favorable to P enrichment in subsurface flow that contributes to eutrophication of surface water. This pathway of P loss can be more severe in muck (i.e., organic) soils where agricultural production is intensive. This study evaluated the suitability of various environmental and agronomic soil P tests initially designed for mineral soils to predict dissolved reactive P (DRP) in subsurface flow from organic soils. Intact soil columns were collected from 44 muck soils in Ontario to provide a wide range of soil test P levels. A lysimeter leaching study was conducted by evenly adding water in an amount equivalent to 5 mm of rainfall. The leachate DRP concentration was linearly related to soil water-extractable P and CaCl-extractable P with values of 0.90 and 0.93, respectively, and to Bray-1 P and FeO-impregnated filter paper extractable P in a split-line model with a change point. Mehlich-3 P and Olsen P, a method recommended for agronomic P calibration in Ontario, were not related to leachate DRP concentration. All P sorption index (PSI) based degree of P saturation (DPS) values were closely related to leachate DRP in split-line models, with the DPS indices expressed as Bray-1 P/PSI and FeO-P/PSI having the highest correlation with leachate DRP concentration. Because it is desirable from practical and economic standpoints that the environmental risk assessment shares the same soil test with agronomic P calibration, the two PSI-based DPS indices as presented can be considered as environmental risk indicators of DRP subsurface loss from organic soils.

  12. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    The AgRISTARS Soil Moisture Project has made significant progress in the quantification of microwave sensor capabilities for soil moisture remote sensing. The 21-cm wavelength has been verified to be the best single channel for radiometric observations of soil moisture. It has also been found that other remote sensing approaches used in conjunction with L-band passive data are more successful than multiple wavelength microwave radiometry in this application. AgRISTARS studies have also improved current understanding of noise factors affecting the interpretability of microwave emission data. The absorption of soil emission by vegetation has been quantified, although this effect is less important than absorption effects for microwave radiometry.

  13. The Biotoxicity of Mars Soils

    NASA Technical Reports Server (NTRS)

    Kerney, Krystal

    2010-01-01

    Recent evidence from the Opportunity and Spirit rovers suggests that the soils on Mars might be very high in biotoxic materials induding sulfate salts, chlorides, and acidifying agents. Yet, very little is known about how the chemistries of Mars soils might affect the survival and growth of terrestrial microorganisms. The primary objectives of the proposed research will be to: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, chlorides, and acidifying minerals; (2) use the stimulants to conduct a series of toxicology assays to determine if terrestrial microorganisms from spacecraft or extreme environments can survive direct exposure to the biotoxic soils, and (3) mix soils from extreme environments on Earth into Mars analog soils to determine if terrestrial microorganisms can grow and replicate under Martian conditions. The Mars analog soils will be thoroughly characterized by a wide diversity of soil chemistry assays to determine the exact nature of the soluble biotoxic components following hydration. The microbial experiments will be designed to test the effects of Mars stimulants on microbial survival, growth and replication during direct challenge experiments. Toxicology experiments will be designed to mimic terrestrial microbes coming into contact with biotoxic soils with and without liquid water. Results are expected to help" ... characterize the limits of life in ... planetary environments ... " and may help constrain the search for life on Mars.

  14. Magnetic beneficiation of lunar soils

    NASA Technical Reports Server (NTRS)

    Mckay, D. S; Oder, R. R.; Graf, J.; Taylor, L. A.

    1992-01-01

    We will present a review of recent laboratory results obtained in dry magnetic separation of one gram samples of the minus 1 mm size fraction of five lunar soils of widely differing maturities. Two highland soils were investigated as potential sources of low iron content feed stocks for space manufacture of metals, including aluminum, silicon, and calcium. Pure anorthite was separated from the diamagnetic fraction of immature highland regolith. Three high titanium mare soils were investigated as potential sources of ilmenite for production of hydrogen and for recovery of He-3. Ilmenite and pyroxene were separated from the paramagnetic fractions of the mare basalts. Agglutinates and other fused soil components containing metallic iron were separated from the strongly magnetic fractions of all soils. We will present conceptual magnetic separation flow sheets developed from the laboratory data and designed for production of anorthite from highland soils and for production of ilmenite from mare soils. Using these flow sheets, we will discuss problems and opportunities associated with the magnetic separation of lunar soils. Separation of high-grade anorthite or other diamagnetic components at moderately high recovery can be achieved in processing immature highland soils. Further, while magnet weight is always an issue in magnetic separation technology, recent developments in both low temperature and high temperature superconductivity present unusual opportunities for magnet design specific to the lunar environment.

  15. Micromorphology of pelletized soil conditioners

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Dietrich, Nils; Knoop, Christine; Raab, Thomas

    2017-04-01

    Soil conditioners produced by anaerobic digestion and subsequent composting of organic household waste, bear the potential to improve unproductive farmland together with a reduced input risk of unwanted pollutants into the soils. Within the VeNGA project (http://www.biogas-network.de/venga), soil conditioners from anaerobically digested organic household waste are tested for their potential to increase plant growth in glasshouse and field experiments. Because the production techniques of these soil conditioners may influence their physical and chemical behaviour in the soil, two different techniques for pelletizing the soil conditioners where applied. We present findings from a pot experiment with cereal that has been sampled after two months for micromorphological analyses. We visualize the decomposition and the physical behaviour of the soil conditioners. Pellets produced in an agglomeration mixer result in dense balls, that are only slightly decomposed after the trial. But the soil conditioners created under pressure in a screw extruder are rich in voids and have the potential of retaining more soil water.

  16. The Systems Mapping of Soils

    NASA Astrophysics Data System (ADS)

    Nikiforova, Alexandra; Fleis, Maria; Borisov, Mickail

    2013-04-01

    Soil, together with rocks, waters, air, and living organisms, is one of the natural elements, which make up landscapes. At the same time soil is a unique (derivative) natural element because only it originates from the interaction of all the other (basic) natural elements. Reasoning from this fact, soil maps must be unique too - fundamentally different from geological, geomorphological, natural vegetation, and other thematic maps of the basic natural elements. It is suggested creating conceptually new soil maps, namely the systems soil maps, which are derived from the systems landscape maps. Legends of such maps are based on hierarchical classification of natural landscapes-systems. The last-mentioned are regarded as elementary structural units of the Earth's landscape envelope comprised of interacting landscape elements. The landscapes-systems step by step are divided into divisions and subdivisions of different hierarchical levels unless reaching separate and isolated landscapes-systems, which can not be divided further because of their homogeneity. Criteria used to differentiate between landscapes-systems include the most prominent properties of natural landscape elements, for instance: sequence of the elements, range of altitudes and slopes, zonal vegetation types associated with effective heat sum and precipitation ratio, the main genetic soil horizons, genetic types and forms of relief, lithology of parent materials, depth of humus horizons, chemical composition of ground waters, and so forth. Levels at which criteria of classification are soil properties are named the "soil" one; they are the lowest one in each scale range. The systems soil maps are produced for "soil" levels and show certain soil properties in connection with those properties of the basic natural elements, which cause these soil properties. In GIS environment the systems soil maps are produced automatically from an integrated polygon layer created manually on the basis of expert analysis of

  17. Is soil carbon storage underestimated?

    PubMed

    Díaz-Hernández, José Luis

    2010-06-01

    An accurate evaluation of the carbon stored in soils is essential to fully understand the role of soils as source or sink of atmospheric CO(2), as well as the feedback processes involved in soil-atmosphere CO(2) exchange. Depth and strategies of sampling have been, and still are, sources of uncertainties, because most current estimates of carbon storage in soils are based on conventional soil surveys and data sets compiled primarily for agricultural purposes. In a study of the Guadix-Baza basin, a semiarid area of southern Spain, sizeable amounts of carbon have been found stored in the subsoil. Total carbon estimated within 2-m was 141.3 kg Cm(-2) compared to 36.1 kg Cm(-2) if estimates were based solely on conventional soil depths (e.g. 40-cm in Regosols and 100-cm in Fluvisols). Thus, the insufficient sampling depth could lead to considerable underestimation of global soil carbon. In order to correctly evaluate the carbon content in world soils, more specific studies must be planned and carried out, especially in those soils where caliche and other carbonated cemented horizons are present.

  18. Apollo 11 soil mechanics investigation.

    PubMed

    Costes, N C; Carrier, W D; Mitchell, J K; Scott, R F

    1970-01-30

    The fine-grained surface material at the Apollo 11 landing site is a brownish, medium-gray, slightly cohesive granular soil, with bulky grains in the silt-to-fine-sand range, having a specific gravity of 3.1 and exhibiting adhesive characteristics. Within the upper few centimeters, the lunar soil has an average density of about 1.6 grams per cubic centimeter and is similar in appearance and behavior to the soils studied at the Surveyor equatorial landing sites. Althouglh considerably different in composition and in range of particle shapes, it is similar in its mechanical behavior to terrestrial soils of the same grain size distribution.

  19. Radiation Resistance of Soil Azotobacter

    PubMed Central

    Vela, Gerard R.; Wyss, Orville

    1965-01-01

    Vela, Gerard R. (School of Aerospace Medicine, Brooks Air Force Base, Tex.), and Orville Wyss. Radiation resistance of soil Azotobacter. J. Bacteriol. 89:1280–1285. 1965.—Quantitative recovery of Azotobacter from soils subjected to γ-radiation from a cobalt-60 source showed the soil populations to be much more highly resistant than isolates from such cultures grown on laboratory media. Even in the encysted state, the laboratory populations were reduced 10,000-fold by exposure to 200 kr, whereas the soil populations were not measurably reduced by that dose. PMID:14292998

  20. Soil fauna community in the black soil of northeast China under different conservation tillage systems

    USDA-ARS?s Scientific Manuscript database

    Soil fauna is an important component in soil ecosystem. Through the soil moisture changes, soil environment is changed under different tillage systems, and then the population of soil fauna also is changed. This study tested whether conservation tillage or conventional tillage (CT) of black soil fie...

  1. Soil Organic Matter and Soil Productivity: Searching for the Missing Link

    Treesearch

    Felipe G. Sanchez

    1998-01-01

    Soil-organic matter (SOM) is a complex array of components including soil fauna and flora at different stages of decomposition (Berg et al., 1982). Its concentration in soils can vary from 0.5% in mineral soils to almost 100% in peat soils (Brady, 1974). Organic matter (OM) in the surface mineral soil is considered a major determinant of forest ecosystem productivity...

  2. Field Identification of Andic Soil Properties for Soils of North-central Idaho

    Treesearch

    Brian Gardner

    2007-01-01

    Currently, laboratory measurements are definitive for identifying andic soil properties in both the USDA Soil Taxonomy (Soil Survey Staff 1999) and the World Reference Base for Soil Resources (FAO/ISRIC/ISSS 1998). Andic soil properties, as described in Soil Taxonomy, result mainly from the presence of significant amounts of allophone, imogolite, ferrihydrite or...

  3. Environmental Controls of Soil Organic Carbon in Soils Across Amazonia

    NASA Astrophysics Data System (ADS)

    Quesada, Carlos Alberto; Paz, Claudia; Phillips, Oliver; Nonato Araujo Filho, Raimundo; Lloyd, Jon

    2015-04-01

    Amazonian forests store and cycle a significant amount of carbon on its soils and vegetation. Yet, Amazonian forests are now subject to strong environmental pressure from both land use and climate change. Some of the more dramatic model projections for the future of the Amazon predict a major change in precipitation followed by savanization of most currently forested areas, resulting in major carbon losses to the atmosphere. However, how soil carbon stocks will respond to climatic and land use changes depend largely on how soil carbon is stabilized. Amazonian soils are highly diverse, being very variable in their weathering levels and chemical and physical properties, and thus it is important to consider how the different soils of the Basin stabilize and store soil organic carbon (SOC). The wide variation in soil weathering levels present in Amazonia, suggests that soil groups with contrasting pedogenetic development should differ in their predominant mechanism of SOC stabilization. In this study we investigated the edaphic, mineralogical and climatic controls of SOC concentration in 147 pristine forest soils across nine different countries in Amazonia, encompassing 14 different WRB soil groups. Soil samples were collected in 1 ha permanent plots used for forest dynamics studies as part of the RAINFOR project. Only 0-30 cm deep averages are reported here. Soil samples were analyzed for carbon and nitrogen and for their chemical (exchangeable bases, phosphorus, pH) and physical properties, (particle size, bulk density) and mineralogy through standard selective dissolution techniques (Fe and Al oxides) and by semi-quantitative X-Ray diffraction. In Addition, selected soils from each soil group had SOC fractionated by physical and chemical techniques. Our results indicate that different stabilization mechanisms are responsible for SOC stabilization in Amazonian soils with contrasting pedogenetic level. Ferralsols and Acrisols were found to have uniform mineralogy

  4. SOIL moisture data intercomparison

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Rodriguez-Frenandez, Nemesio; Al-Yaari, Amen; Parens, Marie; Molero, Beatriz; Mahmoodi, Ali; Mialon, Arnaud; Richaume, Philippe; Bindlish, Rajat; Mecklenburg, Susanne; Wigneron, Jean-Pierre

    2016-04-01

    The Soil Moisture and Ocean Salinity satellite (SMOS) was launched in November 2009 and started delivering data in January 2010. Subsequently, the satellite has been in operation for over 6 years while the retrieval algorithms from Level 1 to Level 2 underwent significant evolutions as knowledge improved. Other approaches for retrieval at Level 2 over land were also investigated while Level 3 and 4 were initiated. In this présentation these improvements are assessed by inter-comparisons of the current Level 2 (V620) against the previous version (V551) and new products either using neural networks or Level 3. In addition a global evaluation of different SMOS soil moisture (SM) products is performed comparing products with those of model simulations and other satellites (AMSR E/ AMSR2 and ASCAT). Finally, all products were evaluated against in situ measurements of soil moisture (SM). The study demonstrated that the V620 shows a significant improvement (including those at level1 improving level2)) with respect to the earlier version V551. Results also show that neural network based approaches can yield excellent results over areas where other products are poor. Finally, global comparison indicates that SMOS behaves very well when compared to other sensors/approaches and gives consistent results over all surfaces from very dry (African Sahel, Arizona), to wet (tropical rain forests). RFI (Radio Frequency Interference) is still an issue even though detection has been greatly improved while RFI sources in several areas of the world are significantly reduced. When compared to other satellite products, the analysis shows that SMOS achieves its expected goals and is globally consistent over different eco climate regions from low to high latitudes and throughout the seasons.

  5. Oil degradation in soil.

    PubMed Central

    Raymond, R L; Hudson, J O; Jamison, V W

    1976-01-01

    The environmental effects of adding certain selected petroleum products to field soils at widely separated geographical locations under optimum conditions for biodegradation were studied. The locations selected for study of soil biodegradation of six oils (used crankcase oil from cars, used crankcase oil from trucks, an Arabian Heavy crude oil, a Coastal Mix crude oil, a home heating oil no. 2, and a residual fuel oil no. 6) were Marcus Hook, Pennsylvania, Tulsa, Oklahoma, and Corpus Christi, Texas. The investigative process, covering a period of 1 year at each location, was conducted in 14 fields plots (1.7 by 3.0 m) to which the oils were added in a single application at a rate of 11.9 m3/4 X 10(3) m2. One-half of the plots at each location were fertilized, and the incorporation of the oils and fertilizers was accomplished with rototillers to a depth of 10 to 15 cm. Concentrations of all oils decreased significantly at all locations. The average reduction ranged from 48.5 to 90.0% depending upon the type of oil and location. Rates of degradation did not exceed 2.4 m3/4 X 10(3) m2 per month. Compositional changes in the oil with time were investigated using silica gel fractionation, gas chromatography, and ultraviolet absorbance. With the possible exception of the two fuel oils, the compositional changes were generally in the same direction for all of the oils. The silica gel fractionation and gravimetric data on residual oils show that all classes of compounds were degraded, but the more polar type degrade more slowly. Analysis of runoff water, leachate, and soils indicated that at the concentration applied no oil less was observed from these plots via water movement. No significant movement of lead compounds added to the soils in the used crankcase oils was observed. Significant increases in hydrocarbon-utilizing microorganisms were demonstrated in all treated plots using either the pure hydrocarbon, n-hexadecane, or the applied oils as the growth substrate

  6. Manufactured soil screening test

    SciTech Connect

    1999-05-01

    The purpose of this technical note is to provide a screening test that can be used to evaluate the potential for manufacturing artificial soil using dredged material, cellulose waste materials (e.g., yard waste compost, sawdust, wastepaper), and biosolids (e.g., N-Viro-reconditioned sewage sludge, BIONSOIL-reconstituted cow manure). This procedure will allow the most productive blend of any dredged material (uncontaminated or contaminated), cellulose, and biosolids to be determined and recommended for use in an environmentally productive and beneficial manner.

  7. Saxton soil remediation project

    SciTech Connect

    Holmes, R.D.

    1995-12-31

    The Saxton Nuclear Experimental Facility (SNEF) consists of a 23-MW(thermal) pressurized light water thermal reactor located in south central Pennsylvania. The Saxton Nuclear Experimental Corporation (SNEC), a wholly owned subsidiary of the General Public Utilities (GPU) Corporation, is the licensee for the SNEF. Maintenance and decommissioning activities at the site are conducted by GPU Nuclear, also a GPU subsidiary and operator of the Three Mile Island and Oyster Creek nuclear facilities. The remediation and radioactive waste management of contaminated soils is described.

  8. Oil degradation in soil.

    PubMed

    Raymond, R L; Hudson, J O; Jamison, V W

    1976-04-01

    The environmental effects of adding certain selected petroleum products to field soils at widely separated geographical locations under optimum conditions for biodegradation were studied. The locations selected for study of soil biodegradation of six oils (used crankcase oil from cars, used crankcase oil from trucks, an Arabian Heavy crude oil, a Coastal Mix crude oil, a home heating oil no. 2, and a residual fuel oil no. 6) were Marcus Hook, Pennsylvania, Tulsa, Oklahoma, and Corpus Christi, Texas. The investigative process, covering a period of 1 year at each location, was conducted in 14 fields plots (1.7 by 3.0 m) to which the oils were added in a single application at a rate of 11.9 m3/4 X 10(3) m2. One-half of the plots at each location were fertilized, and the incorporation of the oils and fertilizers was accomplished with rototillers to a depth of 10 to 15 cm. Concentrations of all oils decreased significantly at all locations. The average reduction ranged from 48.5 to 90.0% depending upon the type of oil and location. Rates of degradation did not exceed 2.4 m3/4 X 10(3) m2 per month. Compositional changes in the oil with time were investigated using silica gel fractionation, gas chromatography, and ultraviolet absorbance. With the possible exception of the two fuel oils, the compositional changes were generally in the same direction for all of the oils. The silica gel fractionation and gravimetric data on residual oils show that all classes of compounds were degraded, but the more polar type degrade more slowly. Analysis of runoff water, leachate, and soils indicated that at the concentration applied no oil less was observed from these plots via water movement. No significant movement of lead compounds added to the soils in the used crankcase oils was observed. Significant increases in hydrocarbon-utilizing microorganisms were demonstrated in all treated plots using either the pure hydrocarbon, n-hexadecane, or the applied oils as the growth substrate

  9. Soil on Phoenix's TEGA

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows soil on the doors of the Thermal and Evolved Gas Analyzer (TEGA) onboard NASA's Phoenix Mars Lander. The image was taken by the lander's Robotic Arm Camera on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). This sample delivered to TEGA was named 'Rosy Red.'

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. NATURAL ATTENUATION OF COPPER IN SOILS AND SOIL MINERALS - I

    EPA Science Inventory

    The bioavailability and toxicity of Cu in soils is controlled by a number of soil properties and processes. Some of these such as pH, adsorption/desorption and competition with beneficial cations have been extensively studied. However, the effects of natural attenuation (or aging...

  11. NATURAL ATTENUATION OF COPPER IN SOILS AND SOIL MINERALS - II

    EPA Science Inventory

    The bioabailability and toxicity of Cu in soils is controlled by a number of soil properties and processes. Some of these such as pH, adsorption/desorption and competition with beneficial cations have been extensively studied. However, the effects of natural attenuation (or aging...

  12. Correlations between soil characteristics and radioactivity content of Vojvodina soil.

    PubMed

    Forkapic, S; Vasin, J; Bikit, I; Mrdja, D; Bikit, K; Milić, S

    2017-01-01

    During the years 2001 and 2010, the content of (238)U, (226)Ra, (232)Th, (40)K and (137)Cs in agricultural soil and soil geochemical characteristics were measured on 50 locations in Northern Province of Serbia - Vojvodina. The locations for sampling were selected so that they proportionately represent all geomorphologic units in the region. The content of clay and humus varied within wide limits depending on soil type and influence the activity concentrations of radionuclides. In this paper we analyzed correlations between radionuclides content and geochemical characteristics of the soil. Possible influence of fertilizers on (238)U content in soil was discussed. The main conclusion is that measured maximal activity concentrations for (238)U (87 Bq/kg), (226)Ra (44.7 Bq/kg), (232)Th (55.5 Bq/kg) and (137)Cs (29 Bq/kg) at 30 cm depth could not endanger the safety of food production. The process of genesis of soil and cultivation mode plays a dominant role on the characteristics of the soil. The most significant correlation was found between the activity concentrations of (40)K and clay content in agricultural soil.

  13. Biological soil crusts as soil stabilizers: Chapter 16

    USGS Publications Warehouse

    Belnap, Jayne; Buedel, Burkhard; Weber, Bettina; Buedel, Burkhard; Belnap, Jayne

    2016-01-01

    Soil erosion is of particular concern in dryland regions, as the sparse cover of vascular plants results in large interspaces unprotected from the erosive forces of wind and water. Thus, most of these soil surfaces are stabilized by physical or biological soil crusts. However, as drylands are extensively used by humans and their animals, these crusts are often disturbed, compromising their stabilizing abilities. As a result, approximately 17.5% of the global terrestrial lands are currently being degraded by wind and water erosion. All components of biocrusts stabilize soils, including green algae, cyanobacteria, fungi, lichens, and bryophytes, and as the biomass of these organisms increases, so does soil stability. In addition, as lichens and bryophytes live atop the soil surface, they provide added protection from raindrop impact that cyanobacteria and fungi, living within the soil, cannot. Much research is still needed to determine the relative ability of individual species and suites of species to stabilize soils. We also need a better understanding of why some individuals or combination of species are better than others, especially as these organisms become more frequently used in restoration efforts.

  14. NATURAL ATTENUATION OF COPPER IN SOILS AND SOIL MINERALS - I

    EPA Science Inventory

    The bioavailability and toxicity of Cu in soils is controlled by a number of soil properties and processes. Some of these such as pH, adsorption/desorption and competition with beneficial cations have been extensively studied. However, the effects of natural attenuation (or aging...

  15. NATURAL ATTENUATION OF COPPER IN SOILS AND SOIL MINERALS - II

    EPA Science Inventory

    The bioabailability and toxicity of Cu in soils is controlled by a number of soil properties and processes. Some of these such as pH, adsorption/desorption and competition with beneficial cations have been extensively studied. However, the effects of natural attenuation (or aging...

  16. Soil microbial community structure: mechanical disturbance alters soil microbial community

    USDA-ARS?s Scientific Manuscript database

    Soil microbes are responsible for soil nutrient cycling in both perennial and annual management systems for beef cattle and grain production. In the Southern Plains of Oklahoma, producers plant winter wheat (Triticum aestivum) in rotation with winter canola (Brassica rapa). Producers in the Southern...

  17. Inference of soil hydrologic parameters from electronic soil moisture records

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is an important control on hydrologic function, as it governs vertical fluxes from and to the atmosphere, groundwater recharge, and lateral fluxes through the soil. Historically, the traditional model parameters of saturation, field capacity, and permanent wilting point have been deter...

  18. Inference of Soil Hydrologic Parameters from Electronic Soil Moisture Records

    NASA Astrophysics Data System (ADS)

    Chandler, David G.; Seyfried, Mark S.; McNamara, James P.; Hwang, Kyotaek

    2017-04-01

    Soil moisture is an important control on hydrologic function, as it governs vertical fluxes from and to the atmosphere, groundwater recharge and lateral fluxes through the soil. Historically, the traditional model parameters of saturation, field capacity and permanent wilting point have been determined by laboratory methods. This approach is challenged by issues of scale, boundary conditions and soil disturbance. We develop and compare four methods to determine values of field saturation, field capacity, plant extraction limit and initiation of plant water stress from long term in-situ monitoring records of TDR-measured volumetric water content (Q). The monitoring sites represent a range of soil textures, soil depths, effective precipitation and plant cover types in a semi-arid climate. The Q records exhibit attractors (high frequency values) that correspond to field capacity and the plant extraction limit at both annual and longer time scales, but the field saturation values vary by year depending on seasonal wetness in the semi-arid setting. The analysis for five sites in two watersheds is supported by comparison to values determined by a common pedotransfer function and measured soil characteristic curves. Frozen soil is identified as a complicating factor for the analysis and users are cautioned to filter data by temperature, especially for near surface soils.

  19. Desert soil collection at the JPL soil science laboratory

    NASA Technical Reports Server (NTRS)

    Blank, G. B.; Cameron, R. E.

    1969-01-01

    Collection contains desert soils and other geologic materials collected from sites in the United States and foreign countries. Soils are useful for test purposes in research related to extraterrestrial life detection, sampling, harsh environmental studies, and determining suitable areas for training astronauts for lunar exploration.

  20. Soil spatial heterogeneity effect on soil electrical resistivity

    USDA-ARS?s Scientific Manuscript database

    Electrical resistivity (ER) is growing in popularity due to its ease of use and because of its non-invasive techniques, which are used to reveal and map soil heterogeneity. The objective of this work was to evaluate how differing soil properties affect the electric resistivity and to observe these e...

  1. ECOLOGICAL SOIL SCREENING LEVELS FOR SOIL INVERTEBRATES AND PLANTS

    EPA Science Inventory

    Ecological Soil Screening Levels (Eco-SSLs) are being developed for 24 inorganic and inorganic chemicals for soil invertebrates and plants using procedures developed by a Task Group of the USEPA Eco-SSL Work Group. The Eco-SSL Work Group is a collaboration among USEPA, DoD, DOE, ...

  2. Soil carbon sequestration estimated with the soil conditioning index

    USDA-ARS?s Scientific Manuscript database

    Rapid and reliable assessments of the potential of different agricultural management systems to sequester soil organic carbon are needed to promote conservation and help mitigate greenhouse gas emissions. The soil conditioning index (SCI) is a relatively simple model to parameterize and is currentl...

  3. Copper activity in soil solutions of calcareous soils.

    PubMed

    Ponizovsky, Alexander A; Allen, Herbert E; Ackerman, Amanda J

    2007-01-01

    Copper partitioning was studied in seven calcareous soils at moisture content corresponding to 1.2 times the field moisture content (soil water potential 7.84 J kg(-1)). Copper retention was accompanied by the release in soil solution of Ca(2+), Mg(2+), Na(+), and H(+), and the total amount of these cations released was 0.8 to 1.09 times the amount of Cu sorbed (mol(c):mol(c)). The relationships between Cu activity and pH, and the balance of cations in soils correspond with the surface precipitation of CuCO(3) as the main mechanism of Cu retention. The values of ion activity product of surface precipitate were close for all studied soils with the average log(IAP(CuCO(3)))=-15.51. The relationship between copper activity in soil solutions and soil properties is well fit by a regression relating pCu (-log copper ion activity) with soil pH, total Cu, and carbonate content.

  4. In situ soil pipeflow experiments on contrasting streambank soils

    USDA-ARS?s Scientific Manuscript database

    Soil piping has been attributed as a potential mechanism of instability of embankments and streambanks. Limited field work has been conducted on quantifying and modeling pipeflow and internal erosion processes in the field with either natural or artificially created soil pipes. This research utilize...

  5. Online Soil Science Lesson 3: Soil Forming Factors

    USDA-ARS?s Scientific Manuscript database

    This lesson explores the five major factors of soil formation, namely: 1) climate; 2) organisms; 3) time; 4) topography; and 5) parent material and their influence in forming soil. The distinction between active and passive factors, moisture and temperature regimes, organism and topographic influen...

  6. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  7. Chemical evaluation of soil-solution in acid forest soils

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.

    1996-01-01

    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally < 15%), (ii) variations in the length of reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and

  8. The interdisciplinary nature of SOIL

    NASA Astrophysics Data System (ADS)

    Brevik, E. C.; Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J. N.; Six, J.; Van Oost, K.

    2015-01-01

    The holistic study of soils requires an interdisciplinary approach involving biologists, chemists, geologists, and physicists, amongst others, something that has been true from the earliest days of the field. In more recent years this list has grown to include anthropologists, economists, engineers, medical professionals, military professionals, sociologists, and even artists. This approach has been strengthened and reinforced as current research continues to use experts trained in both soil science and related fields and by the wide array of issues impacting the world that require an in-depth understanding of soils. Of fundamental importance amongst these issues are biodiversity, biofuels/energy security, climate change, ecosystem services, food security, human health, land degradation, and water security, each representing a critical challenge for research. In order to establish a benchmark for the type of research that we seek to publish in each issue of SOIL, we have outlined the interdisciplinary nature of soil science research we are looking for. This includes a focus on the myriad ways soil science can be used to expand investigation into a more holistic and therefore richer approach to soil research. In addition, a selection of invited review papers are published in this first issue of SOIL that address the study of soils and the ways in which soil investigations are essential to other related fields. We hope that both this editorial and the papers in the first issue will serve as examples of the kinds of topics we would like to see published in SOIL and will stimulate excitement among our readers and authors to participate in this new venture.

  9. Pyrogenic carbon in Australian soils.

    PubMed

    Qi, Fangjie; Naidu, Ravi; Bolan, Nanthi S; Dong, Zhaomin; Yan, Yubo; Lamb, Dane; Bucheli, Thomas D; Choppala, Girish; Duan, Luchun; Semple, Kirk T

    2017-02-16

    Pyrogenic carbon (PyC), the combustion residues of fossil fuel and biomass, is a versatile soil fraction active in biogeochemical processes. In this study, the chemo-thermal oxidation method (CTO-375) was applied to investigate the content and distribution of PyC in 30 Australian agricultural, pastoral, bushland and parkland soil with various soil types. Soils were sampled incrementally to 50cm in 6 locations and at another 7 locations at 0-10cm. Results showed that PyC in Australian soils typically ranged from 0.27-5.62mg/g, with three Dermosol soils ranging within 2.58-5.62mg/g. Soil PyC contributed 2.0-11% (N=29) to the total organic carbon (TOC), with one Ferrosol as high as 26%. PyC was concentrated either in the top (0-10cm) or bottom (30-50cm) soil layers, with the highest PyC:TOC ratio in the bottom (30-50cm) soil horizon in all soils. Principal component analysis - multiple linear regression (PCA-MLR) suggested the silt-associated organic C factor accounted for 38.5% of the variation in PyC. Our findings suggest that PyC is an important fraction of the TOC (2.0-11%, N=18) and chemically recalcitrant organic C (ROC) obtained by chemical C fractionation method accounts for a significant proportion of soil TOC (47.3-84.9%, N=18). This is the first study comparing these two methods, and it indicates both CTO-375 and C speciation methods can determine a fraction of recalcitrant organic C. However, estimated chemically recalcitrant organic carbon pool (ROC) was approximately an order of magnitude greater than that of thermally stable organic carbon (PyC).

  10. Soil washing of fluorine contaminated soil using various washing solutions.

    PubMed

    Moon, Deok Hyun; Jo, Raehyun; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Park, Jeong-Hun

    2015-03-01

    Bench-scale soil washing experiments were conducted to remove fluoride from contaminated soils. Five washing solutions including hydrochloric acid (HCl), nitric acid (HNO3), sodium hydroxide (NaOH), sulfuric acid (H2SO4) and tartaric acid (C4H6O6) were tested. The concentration of the washing solutions used ranged from 0.1 to 3 M with a liquid to solid ratio of 10. The soil washing results showed that the most effective washing solution for the removal of fluoride from contaminated soils was HCl. The highest fluoride removal results of approximately 97 % from the contaminated soil were obtained using 3 M HCl. The fluoride removal efficiency of the washing solution increases in the following order: C4H6O6 < NaOH < H2SO4 < HNO3 < HCl.

  11. Thermal stability of soils and detectability of intrinsic soil features

    NASA Astrophysics Data System (ADS)

    Siewert, Christian; Kucerik, Jiri

    2014-05-01

    Soils are products of long term pedogenesis in ecosystems. They are characterized by a complex network of interactions between organic and inorganic constituents, which influence soil properties and functions. However, the interrelations cannot easily be determined. Our search for unifying principles of soil formation focuses on water binding. This approach was derived from water-dependent soil formation. It considers the importance of water binding in theories about the origin of genes, in the structural arrangement and functionality of proteins, and in the co-evolution of organism species and the biosphere during the history of earth. We used thermogravimetry as a primary experimental technique. It allows a simple determi-nation of bound water together with organic and inorganic components in whole soil samples without a special preparation. The primary goal was to search for fingerprinting patterns using dynamics of thermal mass losses (TML) caused by water vaporization from natural soils, as a reference base for soil changes under land use. 301 soil samples were collected in biosphere reserves, national parks and other areas as-sumingly untouched by human activity in Siberia, North and South America, Antarctica, and in several long term agricultural experiments. The results did not support the traditional data evaluation procedures used in classical differ-ential thermogravimetry. For example, peak positions and amplitudes did not provide useful information. In contrast, using thermal mass losses (TML) in prefixed smaller, e.g. 10 °C temperature intervals allowed the determination of the content of carbon, clay, nitrogen and carbonates with high accuracy. However, this approach was applicable for soils and neither for soil-like carbon containing mineral substrates without pedogenetic origin, nor for plant residues or soils containing ashes, cinder, or charcoal. Therefore, intrinsic soil regulation processes are discussed as a possible factor causing

  12. Linking soil bacterial biodiversity and soil carbon stability.

    PubMed

    Mau, Rebecca L; Liu, Cindy M; Aziz, Maliha; Schwartz, Egbert; Dijkstra, Paul; Marks, Jane C; Price, Lance B; Keim, Paul; Hungate, Bruce A

    2015-06-01

    Native soil carbon (C) can be lost in response to fresh C inputs, a phenomenon observed for decades yet still not understood. Using dual-stable isotope probing, we show that changes in the diversity and composition of two functional bacterial groups occur with this 'priming' effect. A single-substrate pulse suppressed native soil C loss and reduced bacterial diversity, whereas repeated substrate pulses stimulated native soil C loss and increased diversity. Increased diversity after repeated C amendments contrasts with resource competition theory, and may be explained by increased predation as evidenced by a decrease in bacterial 16S rRNA gene copies. Our results suggest that biodiversity and composition of the soil microbial community change in concert with its functioning, with consequences for native soil C stability.

  13. Soil Tillage as a Factor of Soil Conservation

    NASA Astrophysics Data System (ADS)

    Sherer, D. V.; Chumanova, N. N.

    2017-05-01

    The work describes the question of the soil treatment system influence on agro-physical and microbiological properties of gray forest soils, and yield of barley in Western Siberia. Research works were carried out in 2013-2014 in Yaya region of the Kemerovo region. Tillage affects soil structure. The water stability in zero tillage conditions was poor (15.7%). Soil density corresponding to the optimum rate for barley is formed by the zonal processing system, while at the zero tillage soil remains solid. The best indicators of phosphataze, catalysis and amylase activity are formed with minimum processing system. In the experiment the highest yield of barley was obtained with minimum tillage - 12.1 c/ha.

  14. Soil immobilization: New concept for biotreatment of soil contaminants

    SciTech Connect

    Karamanev, D.G.; Chavarie, C.; Samson, R.

    1998-02-20

    A new concept for the development of microbial consortia for the degradation of persistent soil pollutants and for pollutant treatment is proposed. The concept defined as soil immobilization is based on the entrapment of soil particles, showing microbial activity in degrading the target pollutant, into a solid membrane with a large pore size distribution. The particular hydrodynamic and mass transfer properties of this system result in a very efficient process. A new type of bioreactor is proposed for carrying out the immobilized soil process. The performance of the system was tested by developing a microbial system for the mineralization of pentachlorophenol (PCP). The results show that the volumetric efficiency of the process for PCP mineralization in the immobilized soil bioreactor is 1--3 orders of magnitude higher than reported literature values. Chlorine and carbon atoms of PCP are both nearly completely (99%) mineralized.

  15. Estimating root zone soil water content using limited soils information and surface soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Heathman, Gary Claude

    2001-10-01

    The various hydrologic processes of infiltration, redistribution, drainage, evaporation, and water uptake by plants are strongly interdependent, as they occur sequentially or simultaneously. An important state variable that strongly influences the magnitude to which these rate processes occur is the amount of water present within the root zone, and in particular, the top few centimeters near the soil surface. Traditionally, measurements of soil moisture have been limited to point measurements made in the field. In general, averages of point measurements are used to characterize the soil moisture of an area, but these averages seldom yield information that is adequate to characterize large scale hydrologic processes. Recent advancements in remote sensing now make it possible to obtain areal estimates of surface soil moisture. The use of remotely sensed data to estimate surface soil moisture, combined with soil water and hydrologic modeling, provides a unique opportunity to advance our understanding of hydrologic processes at a much larger scale. Standard techniques for measuring soil moisture have been well documented, with commercial instrumentation being widely available. Various computer models have been developed to estimate soil moisture in the root and vadose zone, although their application over large scales is limited due to varying spatial and temporal field conditions. It is the combination of ground-based data (in-situ measurements), near-surface soil moisture data, and modeling that form the basis for this research. The interactive use of field research, remote sensing ground truth data, and integrated systems modeling is used to describe surface and profile soil moisture conditions at several locations within a large watershed. Successful application of this approach should improve our capabilities for estimating soil hydraulic properties and to better estimate water and chemical transport in the root zone, thus enhancing water use efficiency and plant

  16. Sampling and handling of desert soils

    NASA Technical Reports Server (NTRS)

    Blank, G. B.; Cameron, R. E.

    1969-01-01

    Report on sampling and handling desert soils includes sections on selection, characterization, and photography of area, site, and soil, sterilization of sampling equipment and containers, and soil sample collection, transport, storage, and dispersal.

  17. Relating soil biochemistry to sustainable crop production

    USDA-ARS?s Scientific Manuscript database

    Amino acids, amino sugars, carbohydrates, phenols, and fatty acids together comprise appreciable proportions of soil organic matter (SOM). Their cycling contribute to soil processes, including nitrogen availability, carbon sequestration and aggregation. For example, soil accumulation of phenols has ...

  18. Biogeochemistry: Soil carbon in a beer can

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.

    2015-10-01

    Decomposition of soil organic matter could be an important positive feedback to climate change. Geochemical properties of soils can help determine what fraction of soil carbon may be protected from climate-induced decomposition.

  19. Plant-soil-microbe interactions regulating soil C storage

    NASA Astrophysics Data System (ADS)

    Hofmockel, K. S.; Bach, E.; Williams, R.

    2016-12-01

    Integration across disciplines is required to identify the emergent microbial scale properties that regulate the release or occlusion of plant inputs in soil organic matter. To investigate how micro-scale processes influence soil carbon cycling, we measured microbial community composition and activity within soil aggregates monthly over two growing seasons of a long-term bioenergy field experiment. Using a biologically sensitive sieving technique, soil aggregates were isolated and microbial community activity and composition were measured. This aggregate approach revealed biogeochemical processes regulating C cycling that are not detected using whole soil approaches. Soil aggregation influenced microbe-substrate interactions, where diversified perennial grassland systems supported greater aggregation and reduced severity of aggregate turnover compared to corn systems. Aggregate turnover and concurrent increases in activity resulted in greater microbial biomass and physical protection of soil organic matter in prairie systems, especially fertilized prairies. Fertilized prairie enhanced microbial biomass, enzyme activity, and soil aggregation despite greater root biomass in unfertilized prairie. Independent of ecosystem or sampling date, N-acetyl-glucosaminidase activity and Nitrospirae abundance was greatest in large macroaggregates (>2000 µm), which harbored the highest C:N; cellobiohydrolase activity and Acidobacteria abundance was greatest in microaggregates (<250 µm) which had the lowest C:N. Aggregate fractions differed in microbial community composition (bacteria, archaea, and fungi) and potential enzyme activity, independent of cropping system. Microaggregates harbored significantly greater microbial diversity and richness across all bioenergy cropping systems. Together these results suggest that by mediating access to substrates, soil structure (aggregates) can influence the microbial community composition and extracellular enzyme activity to regulate

  20. Soil solid-phase controls lead activity in soil solution.

    PubMed

    Badawy, S H; Helal, M I D; Chaudri, A M; Lawlor, K; McGrath, S P

    2002-01-01

    Lead pollution of the environment is synonymous with civilization. It has no known biological function, and is naturally present in soil, but its presence in food crops is deemed undesirable. The concern regarding Pb is mostly due to chronic human and animal health effects, rather then phytotoxicity. However, not much is known about the chemistry and speciation of Pb in soils. We determined the activity of Pb2+, in near neutral and alkaline soils, representative of alluvial, desertic and calcareous soils of Egypt, using the competitive chelation method. Lead activity ranged from 10(-6.73) to 10(-4.83) M, and was negatively correlated with soil and soil solution pH (R2 = -0.92, P < 0.01 and R2 = -0.89, P < 0.01, respectively). It could be predicted in soil solution from the equation: log(Pb2+) = 9.9 - 2pH. A solubility diagram for the various Pb minerals found in soil was constructed using published thermodynamic data obtained from the literature, and our measured Pb2+ activities compared with this information. The measured Pb2+ activities were undersaturated with regard to the solubility of PbSiO3 in equilibrium with SiO2 (soil). However, they were supersaturated with regard to the solubilities of the Pb carbonate minerals PbCO3 (cerussite) and Pb3(CO3)2(OH)2 in equilibrium with atmospheric CO2 and hydroxide Pb(OH)2. They were also supersaturated with regard to the solubilities of the Pb phosphate minerals Pb3(PO4)2, Pb5(PO4)3OH, and Pb4O(PO4)2 in equilibrium with tricalcium phosphate and CaCO3. The activity of Pb2+ was not regulated by any mineral of known solubility in our soils, but possibly by a mixture of Pb carbonate and phosphate minerals.

  1. Soil invertebrate fauna affect N2 O emissions from soil.

    PubMed

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P < 0.001), but the cumulative N2 O emissions remained unaffected. We propose that increased soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies.

  2. Soil physical land degradation processes

    NASA Astrophysics Data System (ADS)

    Horn, Rainer

    2017-04-01

    According to the European Soil Framework Directive (2006) soil compaction is besides water and wind erosion one of the main physical reasons and threats of soil degradation. It is estimated, that 32% of the subsoils in Europe are highly degraded and 18% moderately vulnerable to compaction. The problem is not limited to crop land or forest areas (especially because of non-site adjusted harvesting machines) but is also prevalent in rangelands and grassland, and even in so called natural non-disturbed systems. The main reasons for an intense increase in compacted agricultural or forested regions are the still increasing masses of the machines as well the increased frequency of wheeling under non favorable site conditions. Shear and vibration induced soil deformation enhances the deterioration of soil properties especially if the soil water content is very high and the internal soil strength very low. The same is true for animal trampling in combination with overgrazing of moist to wet pastures which subsequently causes a denser (i.e. reduced proportion of coarse pores with smaller continuity) but still structured soil horizons and will finally end in a compacted platy structure. In combination with high water content and shearing due to trampling therefore results in a complete muddy homogeneous soil with no structure at all. (Krümmelbein et al. 2013) Site managements of arable, forestry or horticulture soils requires a sufficiently rigid pore system which guarantees water, gas and heat exchange, nutrient transport and adsorption as well as an optimal rootability in order to avoid subsoil compaction. Such pore system also guarantees a sufficient microbial activity and composition in order to also decompose the plant etc. debris. It is therefore essential that well structured horizons dominate in soils with at best subangular blocky structure or in the top A- horizons a crumbly structure due to biological activity. In contrast defines the formation of a platy

  3. Managing soil remediation problems.

    PubMed

    Okx, J P; Hordijk, L; Stein, A

    1996-12-01

    Soil remediation has only a short history but the problem addressed is a significant one. Cost estimates for the clean-up of contaminated sites in the European Union and the United States are in the order of magnitude of 1,400 billion ECU. Such an enormous operation deserves the best management it can get. Reliable cost estimations per contaminated site are an important prerequisite. This paper addresses the problems related to site-wise estimations.When solving soil remediation problems, we have to deal with a large number of scientific disciplines. Too often solutions are presented from the viewpoint of only one discipline. In order to benefit from the combined disciplinary knowledge and experience, we think that it is necessary to describe the interrelations between these disciplines. This can be realized by developing an adequate model of the desired process which enables to consider and evaluate the essential factors as interdependent components of the total system.The resulting model provides a binding paradigm to the contributing disciplines which will result in improved efficiency and effectivity of the decision and the cost estimation process. In the near future, we will release the "Biosparging and Bioventing Expert Support System", an expert support system for problem owners, consultants and authorities dealing with the design and operation of a biosparging and/or a bioventing system.

  4. Soils as relative-age dating tools

    USGS Publications Warehouse

    Markewich, Helaine Walsh; Pavich, Milan J.; Wysocki, Douglas A.

    2017-01-01

    Soils develop at the earth's surface via multiple processes that act through time. Precluding burial or disturbance, soil genetic horizons form progressively and reflect the balance among formation processes, surface age, and original substrate composition. Soil morphology provides a key link between process and time (soil age), enabling soils to serve as both relative and numerical dating tools for geomorphic studies and landscape evolution. Five major factors define the contemporary state of all soils: climate, organisms, topography, parent material, and time. Soils developed on similar landforms and parent materials within a given landscape comprise what we term a soil/landform/substrate complex. Soils on such complexes that differ in development as a function of time represent a soil chronosequence. In a soil chronosequence, time constitutes the only independent formation factor; the other factors act through time. Time dictates the variations in soil development or properties (field or laboratory measured) on a soil/landform/substrate complex. Using a dataset within the chronosequence model, we can also formulate various soil development indices based upon one or a combination of soil properties, either for individual soil horizons or for an entire profile. When we evaluate soil data or soil indices mathematically, the resulting equation creates a chronofunction. Chronofunctions help quantify processes and mechanisms involved in soil development, and relate them mathematically to time. These rigorous kinds of comparisons among and within soil/landform complexes constitute an important tool for relative-age dating. After determining one or more absolute ages for a soil/landform complex, we can calculate quantitative soil formation, and or landform-development rates. Multiple dates for several complexes allow rate calculations for soil/landform-chronosequence development and soil-chronofunction calibration.

  5. Ants: the supreme soil manipulators

    USDA-ARS?s Scientific Manuscript database

    This review focuses on the semiochemical interactions between ants and their soil environment. Ants occupy virtually every ecological niche and have evolved mechanisms to not just cope with, but also manipulate soil organisms. The metapleural gland, specific to ants was thought to be the major sourc...

  6. Approved Practices in Soil Conservation.

    ERIC Educational Resources Information Center

    Foster, Albert B.

    This book is written for individuals who wish to apply conservation practices, especially those of soil and water conservation, without technical assistance, to meet one's own conditions, and within his own capability to apply them. To meet these needs, the book includes a discussion and description of soil and water conservation methods for the…

  7. BACTERIAL TRANSPORT THROUGH HOMOGENEOUS SOIL

    EPA Science Inventory

    The transport of microorganisms in soils is of major importance for bioremediation of subsurface polluted zones and for pollution of groundwater with pathogens. A procedure for evaluating the relative mobility and recovery of bacteria in the soil matrix was developed. In the meth...

  8. Geotechnical characteristics of residual soils

    SciTech Connect

    Townsend, F.C.

    1985-01-01

    Residual soils are products of chemical weathering and thus their characteristics are dependent upon environmental factors of climate, parent material, topography and drainage, and age. These conditions are optimized in the tropics where well-drained regions produce reddish lateritic soils rich in iron and aluminum sesquioxides and kaolinitic clays. Conversely, poorly drained areas tend towards montmorillonitic expansive black clays. Andosols develop over volcanic ash and rock regions and are rich in allophane (amorphous silica) and metastable halloysite. The geological origins greatly affect the resulting engineering characteristics. Both lateritic soils and andosols are susceptible to property changes upon drying, and exhibit compaction and strength properties not indicative of their classification limits. Both soils have been used successfully in earth dam construction, but attention must be given to seepage control through the weathered rock. Conversely, black soils are unpopular for embankments. Lateritic soils respond to cement stabilization and, in some cases, lime stabilization. Andosols should also respond to lime treatment and cement treatments if proper mixing can be achieved. Black expansive residual soils respond to lime treatment by demonstrating strength gains and decreased expansiveness. Rainfall induced landslides are typical of residual soil deposits.

  9. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  10. Phytoremediation of Soil Trace Elements

    USDA-ARS?s Scientific Manuscript database

    This chapter summarizes research progress in development of phytoremediation technologies. Some soils have become contaminated by trace elements enough to kill plants, inhibit soil organisms, and/or threaten wildlife, humans or the environment. Traditional remediation by dig and haul methods are v...

  11. MUTATIONS IN SOIL: A REVIEW

    EPA Science Inventory

    The intentional and accidental discharges of toxic pollutants into the lithosphere results in soil contamination. In some cases (e.g., wood preserving wastes, coal-tar, airborne combustion by-products) the contaminated soil constitutes a genotoxic hazard. This work is a comprehen...

  12. Soil productivity and harvest operations

    Treesearch

    Deborah Page-Dumroese

    2007-01-01

    Concern over changes in soil productivity due to forest management is often debated by forest managers and the public. One key element in the discussion is use of mechanized equipment (such as rubber-tired skidders, log forwarders, or tracked vehicles) to remove timber products from the forest. Part of the debate focuses on soil compaction, removal of nutrients when...

  13. Hydraulic Properties of Unsaturated Soils

    USDA-ARS?s Scientific Manuscript database

    Many agrophysical applications require knowledge of the hydraulic properties of unsaturated soils. These properties reflect the ability of a soil to retain or transmit water and its dissolved constituents. The objective of this work was to develop an entry for the Encyclopedia of Agrophysics that w...

  14. Soils and water [Chapter 18

    Treesearch

    Goran Berndes; Heather Youngs; Maria Victoria Ramos Ballester; Heitor Cantarella; Annette L. Cowie; Graham Jewitt; Luiz Antonio Martinelli; Dan Neary

    2015-01-01

    Bioenergy production can have positive or negative impacts on soil and water. To best understand these impacts, the effects of bioenergy systems on water and soil resources should be assessed as part of an integrated analysis considering environmental, social and economic dimensions. Bioenergy production systems that are strategically integrated in the landscape to...

  15. MUTATIONS IN SOIL: A REVIEW

    EPA Science Inventory

    The intentional and accidental discharges of toxic pollutants into the lithosphere results in soil contamination. In some cases (e.g., wood preserving wastes, coal-tar, airborne combustion by-products) the contaminated soil constitutes a genotoxic hazard. This work is a comprehen...

  16. The Science of Soil Textures

    ERIC Educational Resources Information Center

    Bigham, Gary

    2010-01-01

    Off-road motorcycle racing and ATV riding. Gardening and fishing. What do these high-adrenaline and slower-paced pastimes have in common? Each requires soil, and the texture of that soil has an effect on all of them. In the inquiry-based lessons described here, students work both in the field or laboratory and in the classroom to collect soil…

  17. Approved Practices in Soil Conservation.

    ERIC Educational Resources Information Center

    Foster, Albert B.

    This book is written for individuals who wish to apply conservation practices, especially those of soil and water conservation, without technical assistance, to meet one's own conditions, and within his own capability to apply them. To meet these needs, the book includes a discussion and description of soil and water conservation methods for the…

  18. Profiling soil water content sensor

    USDA-ARS?s Scientific Manuscript database

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  19. BACTERIAL TRANSPORT THROUGH HOMOGENEOUS SOIL

    EPA Science Inventory

    The transport of microorganisms in soils is of major importance for bioremediation of subsurface polluted zones and for pollution of groundwater with pathogens. A procedure for evaluating the relative mobility and recovery of bacteria in the soil matrix was developed. In the meth...

  20. Soil Microbiology, Ecology, and Biochemistry

    USDA-ARS?s Scientific Manuscript database

    The 4th edition of Soil Microbiology, Ecology, and Biochemistry Edited by Eldor Paul continues in the vein of the 3rd edition by providing an excellent, broad-reaching introduction to soil biology. The new edition improves on the previous by providing extensive supplementary materials, links to outs...

  1. Feed your soil through diversity

    USDA-ARS?s Scientific Manuscript database

    Our soil resource is fundamental to plant and animal life, therefore, proper management is essential. One of the key tools to maintain our soil resource is diversity both below and above ground. Diversity is an important concept in all areas of our lives, from the food we eat, to the weather we ex...

  2. Survival of shigellae in soil.

    PubMed

    Leonardopoulos, J; Papakonstantinou, A; Kourti, H; Papavassiliou, J

    1980-09-01

    The survival of four Shigella strains in soil (Sh. sonnei, Sh. boydii, Sh. flexneri and Sh. dysenteriae) was studied under various conditions. Their survival period was tested in two different types of sterile soil at 18-20 degrees C and in one type of soil at 4 and 37 degrees C. This latter type of soil, after enrichment with casaminoacids or (NH4)2HPO4 was also used for testing again the survival of the strains at 18-20 degrees C. Though the initial number of the inoculated microorganisms was quite high (10(7) to 10(8) micr. per g of soil) the survival periods were generally short (6 to 39 days). It was found that their viability depended mainly on the bacterial species and not so much on the type of soil, enriched or not, and the temperature. Thus the survival period in soil was always longer for Sh. sonnei and Sh. boydii and shorter for Sh. flexneri and Sh. dysenteriae. The incubations at 4 degrees C or in enriched soil increased and in 37 degrees C decreased the longevity of the strains but for a few days.

  3. Semiarid soil and water conservation

    SciTech Connect

    Finkel, H.J.

    1986-01-01

    This book provides an overview of soil and water conservation and emphasizes practical control measures. Contents include surface hydrology, analysis of the erosion process, and practical control measures through: correct land use; crop rotations; shifting cultivation; contour farming; and strip cropping; Water harvesting, recently developed systems now in use, and rangeland management for soil and water conservation in semi-arid regions are reviewed.

  4. Fractal radar scattering from soil.

    PubMed

    Oleschko, Klaudia; Korvin, Gabor; Figueroa, Benjamin; Vuelvas, Marco Antonio; Balankin, Alexander S; Flores, Lourdes; Carreón, Dora

    2003-04-01

    A general technique is developed to retrieve the fractal dimension of self-similar soils through microwave (radar) scattering. The technique is based on a mathematical model relating the fractal dimensions of the georadargram to that of the scattering structure. Clear and different fractal signatures have been observed over four geosystems (soils and sediments) compared in this work.

  5. The Science of Soil Textures

    ERIC Educational Resources Information Center

    Bigham, Gary

    2010-01-01

    Off-road motorcycle racing and ATV riding. Gardening and fishing. What do these high-adrenaline and slower-paced pastimes have in common? Each requires soil, and the texture of that soil has an effect on all of them. In the inquiry-based lessons described here, students work both in the field or laboratory and in the classroom to collect soil…

  6. Bottom ash boosts poor soil

    SciTech Connect

    Stanley, D.

    1993-04-01

    This article describes agricultural uses of fluidized bed bottom ash residue from burning limestone and coal in electric power generating plants: as a limestone substitute, to increase calcium levels in both soil and plants, and as a gypsom-containing soil amendment. Apples and tomatoes are the crops used. The industrial perspective and other uses of bottom ash are also briefly described.

  7. Proximal soil sensing: global perspective

    USDA-ARS?s Scientific Manuscript database

    As a result of a number of naturally occurring processes and cultural practices, the characteristics of soils demonstrate substantial spatial heterogeneity that affects current land use. From infrastructure development to agriculture, spatial variability in soils must be taken into account in order ...

  8. Combining soil washing with bioremediation

    SciTech Connect

    Moore, F.

    1994-12-31

    This paper reports on soil washing system equipment fabricated by GLIC Environmental. Applications focus on soil washing to remove hydrocarbon contaminants followed by bioremediation of wash waters to reduce the volume of materials requiring disposal. Other soil washing applications include the removal of selected metals. The EPA has identified both soil washing and bioremediation as ``innovative technologies`` in its efforts to promote alternative treatment technologies within the Superfund program. Recent EPA literature has described the merits of ``treatment trains`` where contaminated materials are treated with successive treatment methods to meet such objectives as reduction of total volume of regulated materials requiring disposal. The combination of soil washing with bioremediation is an effective ``treatment train``. Specialized soil washing equipment has been assembled utilizing the soil washing field experience in remediation of GLIC Environmental personnel together with the fabrication shop capabilities of a sister company. Typically a job has $750--900,000 worth of equipment on site, and treats more than 5,000 yd{sup 3} of contaminated soil at a rate of 250--300 yd{sup 3} in a 10-hour shift.

  9. The impact of soil degradation on soil functioning in Europe

    NASA Astrophysics Data System (ADS)

    Montanarella, Luca

    2010-05-01

    The European Commission has presented in September 2006 its Thematic Strategy for Soil Protection.The Thematic Strategy for Soil Protection consists of a Communication from the Commission to the other European Institutions, a proposal for a framework Directive (a European law), and an Impact Assessment. The Communication (COM(2006) 231) sets the frame. It defines the relevant soil functions for Europe and identifies the major threats. It explains why further action is needed to ensure a high level of soil protection, sets the overall objective of the Strategy and explains what kind of measures must be taken. It establishes a ten-year work program for the European Commission. The proposal for a framework Directive (COM(2006) 232) sets out common principles for protecting soils across the EU. Within this common framework, the EU Member States will be in a position to decide how best to protect soil and how use it in a sustainable way on their own territory. The Impact Assessment (SEC (2006) 1165 and SEC(2006) 620) contains an analysis of the economic, social and environmental impacts of the different options that were considered in the preparatory phase of the strategy and of the measures finally retained by the Commission. Since 2006 a large amount of new evidence has allowed to further document the extensive negative impacts of soil degradation on soil functioning in Europe. Extensive soil erosion, combined with a constant loss of soil organic carbon, have raised attention to the important role soils are playing within the climate change related processes. Other important processes are related to the loss of soil biodiversity, extensive soil sealing by housing and infrastructure, local and diffuse contamination by agricultural and industrial sources, compaction due to unsustainable agricultural practices and salinization by unsustainable irrigation practices. The extended impact assessment by the European Commission has attempted to quantify in monetary terms the

  10. Soil properties controlling Zn speciation and fractionation in contaminated soils

    NASA Astrophysics Data System (ADS)

    Jacquat, Olivier; Voegelin, Andreas; Kretzschmar, Ruben

    2009-09-01

    We determined the speciation of Zn in 49 field soils differing widely in pH (4.1-7.7) and total Zn content (251-30,090 mg/kg) by using extended X-ray absorption fine structure (EXAFS) spectroscopy. All soils had been contaminated since several decades by inputs of aqueous Zn with runoff-water from galvanized power line towers. Pedogenic Zn species identified by EXAFS spectroscopy included Zn in hydroxy-interlayered minerals (Zn-HIM), Zn-rich phyllosilicates, Zn-layered double hydroxide (Zn-LDH), hydrozincite, and octahedrally and tetrahedrally coordinated sorbed or complexed Zn. Zn-HIM was only observed in (mostly acidic) soils containing less than 2000 mg/kg of Zn, reflecting the high affinity but limited sorption capacity of HIM. Zn-bearing precipitates, such as Zn-LDH and Zn-rich trioctahedral phyllosilicates, became more dominant with increasing pH and increasing total Zn content relative to available adsorption sites. Zn-LDH was the most abundant Zn-precipitate and was detected in soils with pH > 5.2. Zn-rich phyllosilicates were detected even at lower soil pH, but were generally less abundant than Zn-LDH. Hydrozincite was only identified in two calcareous soils with extremely high Zn contents. In addition to Zn-LDH, large amounts of Zn in highly contaminated soils were mainly accumulated as sorbed/complexed Zn in tetrahedral coordination. Soils grouped according to their Zn speciation inferred from EXAFS spectroscopy mainly differed with respect to soil pH and total Zn content. Clear differences were observed with respect to Zn fractionation by sequential extraction: From Zn-HIM containing soils, most of the total Zn was recovered in the exchangeable and the most recalcitrant fractions. In contrast, from soils containing the highest percentage of Zn-precipitates, Zn was mainly extracted in intermediate extraction steps. The results of this study demonstrate that soil pH and Zn contamination level relative to available adsorption sites are the most important

  11. Mapping specific soil functions based on digital soil property maps

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Fodor, Nándor; Farkas-Iványi, Kinga; Szabó, József; Bakacsi, Zsófia; Koós, Sándor

    2016-04-01

    Quantification of soil functions and services is a great challenge in itself even if the spatial relevance is supposed to be identified and regionalized. Proxies and indicators are widely used in ecosystem service mapping. Soil services could also be approximated by elementary soil features. One solution is the association of soil types with services as basic principle. Soil property maps however provide quantified spatial information, which could be utilized more versatilely for the spatial inference of soil functions and services. In the frame of the activities referred as "Digital, Optimized, Soil Related Maps and Information in Hungary" (DOSoReMI.hu) numerous soil property maps have been compiled so far with proper DSM techniques partly according to GSM.net specifications, partly by slightly or more strictly changing some of its predefined parameters (depth intervals, pixel size, property etc.). The elaborated maps have been further utilized, since even DOSoReMI.hu was intended to take steps toward the regionalization of higher level soil information (secondary properties, functions, services). In the meantime the recently started AGRAGIS project requested spatial soil related information in order to estimate agri-environmental related impacts of climate change and support the associated vulnerability assessment. One of the most vulnerable services of soils in the context of climate change is their provisioning service. In our work it was approximated by productivity, which was estimated by a sequential scenario based crop modelling. It took into consideration long term (50 years) time series of both measured and predicted climatic parameters as well as accounted for the potential differences in agricultural practice and crop production. The flexible parametrization and multiple results of modelling was then applied for the spatial assessment of sensitivity, vulnerability, exposure and adaptive capacity of soils in the context of the forecasted changes in

  12. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    PubMed

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (rC , Mg C ha(-1)  yr(-1) ). Among these variables, we found that the most influential variables on rC were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on rC , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining rC . The direct correlation of rC with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  13. Liquefaction mechanism for layered soils

    SciTech Connect

    Fiegel, G.L.; Kutter, B.L. . Dept. of Civil and Environmental Engineering)

    1994-04-01

    Results from four centrifuge model tests are presented. Three of the model tests involve layered soil deposits subject to base shaking; one model test involves a uniform soil deposit of sand subject to base shaking. The layered soil models consisted of fine sand overlain by a layer of relatively impermeable silica flour (silt). Pore-water pressures, accelerations, and settlements were measured during all four tests. Results from the model tests involving layered soils suggest that during liquefaction a water interlayer or very loose zone of soil may develop at the sand-silt interface due to the difference in permeabilities. In each layered model test, boils were observed on the surface of the silt layer. These boils were concentrated in the thinnest zones of the overlying silt layer and provided a vent for the excess pore-water pressure generated in the fine sand.

  14. Phytoremediation for Oily Desert Soils

    NASA Astrophysics Data System (ADS)

    Radwan, Samir

    This chapter deals with strategies for cleaning oily desert soils through rhizosphere technology. Bioremediation involves two major approaches; seeding with suitable microorganisms and fertilization with microbial growth enhancing materials. Raising suitable crops in oil-polluted desert soils fulfills both objectives. The rhizosphere of many legume and non-legume plants is richer in oil-utilizing micro-organisms than non-vegetated soils. Furthermore, these rhizospheres also harbour symbiotic and asymbiotic nitrogen-fixing bacteria, and are rich in simple organic compounds exuded by plant roots. Those exudates are excellent nutrients for oil-utilizing microorganisms. Since many rhizospheric bacteria have the combined activities of hydrocarbon-utilization and nitrogen fixation, phytoremediation provides a feasible and environmentally friendly biotechnology for cleaning oil-polluted soils, especially nitrogen-poor desert soils.

  15. Soil Nematodes in Terrestrial Ecosystems

    PubMed Central

    Yeates, G. W.

    1979-01-01

    There has been much work on plant-feeding nematodes, and less on other soil nematodes, their distribution, abundance, intrinsic properties, and interactions with biotic and abiotic factors. Seasonal variation in nematode fauna as a whole is correlated with factors such as moisture, temperature, and plant growth; at each site nematode distribution generally reflects root distribution. There is a positive correlation between average nematode abundance and primary production as controlled by moisture, temperature, nutrients, etc. Soil nematodes, whether bacterial feeders, fungivores, plant feeders, omnivores, or predators, all influence the populations of the organisms they feed on. Although soil trematodes probably contribute less than 1% to soil respiration they may play an important role in nutrient cycling in the soil through their influence on bacterial growth and plant nutrient availability. PMID:19300638

  16. Soil erosion and agricultural sustainability

    PubMed Central

    Montgomery, David R.

    2007-01-01

    Data drawn from a global compilation of studies quantitatively confirm the long-articulated contention that erosion rates from conventionally plowed agricultural fields average 1–2 orders of magnitude greater than rates of soil production, erosion under native vegetation, and long-term geological erosion. The general equivalence of the latter indicates that, considered globally, hillslope soil production and erosion evolve to balance geologic and climate forcing, whereas conventional plow-based agriculture increases erosion rates enough to prove unsustainable. In contrast to how net soil erosion rates in conventionally plowed fields (≈1 mm/yr) can erode through a typical hillslope soil profile over time scales comparable to the longevity of major civilizations, no-till agriculture produces erosion rates much closer to soil production rates and therefore could provide a foundation for sustainable agriculture. PMID:17686990

  17. The Presence of Plants Alters the Effect of Soil Moisture on Soil C Decomposition in Two Different Soil Types

    NASA Astrophysics Data System (ADS)

    Dijkstra, F. A.; Cheng, W.

    2005-12-01

    While it is well known that soil moisture directly affects microbial activity and soil C decomposition, it is unclear if the presence of plants alters these effects through rhizosphere processes. We studied soil moisture effects on soil C decomposition with and without sunflower and soybean. Plants were grown in two different soil types with soil moisture contents of 45 and 85% of field capacity in a greenhouse experiment. We continuously labeled plants with depleted 13C, which allowed us to separate plant-derived CO2-C from original soil-derived CO2-C in soil respiration measurements. We observed an overall increase in soil-derived CO2-C efflux in the presence of plants (priming effect) in both soils with on average a greater priming effect in the high soil moisture treatment (60% increase in soil-derived CO2-C compared to control) than in the low soil moisture treatment (37% increase). Greater plant biomass in the high soil moisture treatment contributed to greater priming effects, but priming effects remained significantly higher after correcting for plant biomass. Possibly, root exudation of labile C may have increased more than plant biomass and may have become more effective in stimulating microbial decomposition in the higher soil moisture treatment. Our results indicate that changing soil moisture conditions can significantly alter rhizosphere effects on soil C decomposition.

  18. Soil Phosphorus Stoichiometry Drives Carbon Turnover Along a Soil C Gradient Spanning Mineral and Organic Soils Under Rice Cultivation

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Ye, R.; Horwath, W. R.; Tringe, S. G.

    2014-12-01

    Soil carbon (C) cycling is linked to the availability of nutrients like nitrogen (N) and phosphorus (P). However, the role of soil P in influencing soil C turnover and accumulation is poorly understood, with most models focusing on C:N ratios based on the assumption that terrestrial ecosystems are N limited. To determine the effects of N and P availability on soil C turnover, we compared soil respiration over the course of a growing season in four adjacent rice fields with 5%, 10%, 20% and 25% soil C. In each of these fields, plots were established to test the effect of N additions on plant growth, using control and N addition treatments (80 kg N/ha urea). Although soil P was not manipulated in parallel, prior work has shown soil P concentrations decline markedly with increasing soil C content. Soil CO2 flux was monitored using static chambers at biweekly intervals during the growing season, along with porewater dissolved organic C and ammonium. Soils were collected at the end of the growing season, and tested for total C, N, and P, extractable N and P, pH, base cations and trace metals. Soil DNA was also extracted for 16S rRNA sequencing to profile microbial communities. Soil N additions significantly increased CO2 flux and soil C turnover (seasonal CO2 flux per unit soil C) in 5% and 10% C fields, but not in 20% or 25% C fields. Soil C content was closely related to soil N:P stoichiometry, with N:P ratios of ca. 12, 16, 24, and 56 respectively in the 5, 10, 20 and 25% C fields. Seasonal CO2 fluxes (per m2) were highest in 10% C soils. However, soil C turnover was inversely related to soil C concentrations, with the greatest C turnover at the lowest values of soil C. Soil C turnover showed stronger relationships with soil chemical parameters than seasonal CO2 fluxes alone, and the best predictors of soil C turnover were soil total and extractable N:P ratios, along with extractable P alone. Our results show that soil P availability and stoichiometry influence the

  19. Evaluation of soil washing for radiologically contaminated soils

    SciTech Connect

    Gombert, D. II

    1994-03-01

    Soil washing has been applied internationally to decontaminate soils due to the widespread increase in environmental awareness manifested in the United States by promulgation of the Comprehensive Environmental Response, Compensation and Liability Act, yet we continue to lack understanding on why the technique works in one application and not in another. A soil washing process typically integrates a variety of modules, each designed to decontaminate the matrix by destroying a particular phase or segregating a particle size fraction in which the contaminants are concentrated. The more known about how the contaminants are fixed, the more likely the process will succeed. Much can be learned from bioavailability studies on heavy metals in soils. Sequential extraction experiments designed to destroy one fixation mechanism at a time can be used to determine how contaminants are bound. This knowledge provides a technical basis for designing a processing strategy to efficiently decontaminate soil while creating a minimum of secondary wastes. In this study, a soil from the Idaho National Engineering Laboratory was physically and chemically characterized, then sequentially extracted to determine if soil washing could be effectively used to remove cesium, cobalt and chromium.

  20. Effects of soil tillage on the microwave emission of soils

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Koopman, G. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    In order to understand the interactions of soil properties and microwave emission better, a series of field experiments were conducted in 1984. Small plots were measured with a truck-mounted passive microwave radiometer operating at 1.4 GHz. These data were collected concurrent with ground observations of soil moisture and bulk density. Treatment effects studied included different soil moisture contents and bulk densities. Evaluations of the data have shown that commonly used models of the dielectric properties of wet soils do not explain the observations obtained in these experiments. This conclusion was based on the fact that the roughness parameters determined through optimization were significantly larger than those observed in similar investigations. These discrepancies are most likely due to the soil structure. Commonly used models assume a homogeneous three phase mixture of soil solids, air and water. Under tilled conditions the soil is actually a two phase mixture of aggregates and voids. Appropriate dielectric models for this tilled condition were evaluated and found to explain the observations. These results indicate that previous conclusions concerning the effects of surface roughness in tilled fields may be incorrect, and they may explain some of the inconsistencies encountered in roughness modeling.

  1. Soil loosening and drainage of structurally unstable silty soils

    NASA Astrophysics Data System (ADS)

    Twomlow, Stephen J.; Parkinson, Robert J.; Reid, Ian

    1990-12-01

    Secondary drainage treatments are carried out with the objective of enhancing the performance of permanent piped schemes. In this study, a drainage experiment was designed to investigate the effect of soil loosening on storm water redistribution in a structurally unstable silt soil following the installation of underdrainage. Results show that even though loosening reduced dry bulk density between 0.2 and 0.4 m depth by 15%, with a 270% increase in transmission pores (> 60 μm equivalent diameter) at the interface of what was the cultivated and undisturbed soil, drainage efficiency was not enhanced, as might have been expected from the 10- to 20-fold increase in hydraulic conductivity. Loosening not only lengthens the median time of concentration by 0.42 and 0.33 h for simple and secondary winter storms, respectively, but also caused lower peak discharges when compared with unloosened soil. Measurements of soil water energetics reveal that a greater proportion of rainfall is diverted into the loosened zone below the plough layer and detained there, reducing the 24 h drainage efficiency. On a seasonal timescale, the greater storage between 0.2 and 0.4 m depth causes a 6.3% increase in the winter mean water content, and means that the rooting environment of the loosened soil is wetter prior to a rainstorm. Consequently, in wet autumns and springs, loosened soils will be more susceptible to structural damage by animal poaching or the traffic of farm machinery.

  2. Soil in the City: Sustainably Improving Urban Soils.

    PubMed

    Kumar, Kuldip; Hundal, Lakhwinder S

    2016-01-01

    Large tracts of abandoned urban land, resulting from the deindustrialization of metropolitan areas, are generating a renewed interest among city planners and community organizations envisioning the productive use of this land not only to produce fresh food but to effectively manage stormwater and mitigate the impact of urban heat islands. Healthy and productive soils are paramount to meet these objectives. However, these urban lands are often severely degraded due to anthropogenic activities and are generally contaminated with priority pollutants, especially heavy metals and polycyclic aromatic hydrocarbons. Characterizing these degraded and contaminated soils and making them productive again to restore the required ecosystem services was the theme of the "Soil in the City- 2014" conference organized by W-2170 Committee (USDA's Sponsored Multi-State Research Project: Soil-Based Use of Residuals, Wastewater, & Reclaimed Water). This special section of comprises 12 targeted papers authored by conference participants to make available much needed information about the characteristics of urban soils. Innovative ways to mitigate the risks from pollutants and to improve the soil quality using local resources are discussed. Such practices include the use of composts and biosolids to grow healthy foods, reclaim brownfields, manage stormwater, and improve the overall ecosystem functioning of urban soils. These papers provide a needed resource for educating policymakers, practitioners, and the general public about using locally available resources to restore fertility, productivity, and ecosystem functioning of degraded urban land to revitalize metropolitan areas for improving the overall quality of life for a large segment of a rapidly growing urban population.

  3. know Soil Know Life - Getting Kids Excited About Soils

    NASA Astrophysics Data System (ADS)

    Lindbo, David L.; Robinson, Clay; Kozlowski, Deborah

    2014-05-01

    In the United States soils are often taught in primary school (grade 3-6) but with little excitement or passion. We have been working with schools and teachers to bring our passion about soils to this audience. The methods and message can be conveyed simply and effectively by engaging the students in a dialog and through kinematic learning. Our approach is to begin with a simple question - what are 4 things we cannot live without. The answer - Air, Water, Sunlight, and Soil. Most students say "food, shelter, clothing, plants, animals etc." so we then explain all of those come from soil. This leads us to a quick "dance" illustrating that without soils we would be 'Hungry. Homeless, and Naked". The results are that students and teachers remember this simple message. From this point it is our hope that students will continue to understand the importance of soils and stop treating soils like dirt. Other simple exercises for this younger audience will also be presented.

  4. Effects of soil tillage on the microwave emission of soils

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Koopman, G. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    In order to understand the interactions of soil properties and microwave emission better, a series of field experiments were conducted in 1984. Small plots were measured with a truck-mounted passive microwave radiometer operating at 1.4 GHz. These data were collected concurrent with ground observations of soil moisture and bulk density. Treatment effects studied included different soil moisture contents and bulk densities. Evaluations of the data have shown that commonly used models of the dielectric properties of wet soils do not explain the observations obtained in these experiments. This conclusion was based on the fact that the roughness parameters determined through optimization were significantly larger than those observed in similar investigations. These discrepancies are most likely due to the soil structure. Commonly used models assume a homogeneous three phase mixture of soil solids, air and water. Under tilled conditions the soil is actually a two phase mixture of aggregates and voids. Appropriate dielectric models for this tilled condition were evaluated and found to explain the observations. These results indicate that previous conclusions concerning the effects of surface roughness in tilled fields may be incorrect, and they may explain some of the inconsistencies encountered in roughness modeling.

  5. Historical climate controls soil respiration responses to current soil moisture.

    PubMed

    Hawkes, Christine V; Waring, Bonnie G; Rocca, Jennifer D; Kivlin, Stephanie N

    2017-06-13

    Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40-70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration-moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall.

  6. Soil characteristics driving arbuscular mycorrhizal fungi communities in semiarid soils

    NASA Astrophysics Data System (ADS)

    Torrecillas, Emma; del Mar Alguacil, Maria; Torres, Pilar; Díaz, Gisela; Caravaca, Fuensanta; Montesinos, Alicia; Roldán, Antonio

    2014-05-01

    Arbuscular mycorrhizal fungi (AMF) are an important soil microbial group that affects multiple ecosystems functions and processes, including nutrient cycling, plant productivity and competition, and plant diversity. We carried out a study to investigate AMF communities in the roots and the rhizosphere of Brachypodium retusum (Pers.) Beauv., a common plant species of great ecological importance that grows in different type of soils in semiarid Mediterranean areas with similar climatic conditions. We hypothesized that if both factors, host plant species and climatic conditions, cannot influence the differences in AMF communities in the roots and in the rhizosphere of Brachypodium retusum, variances in AMF richness and diversity could be due to soil characteristics. Hence we study the relationships between physical, chemical and biological soil characteristics and AMF community composition found in the roots and in the rhizospheres. We recorded sixty-seven AMF operational taxonomical units (OTUs). Each soil type presented a different AMF community composition and thus, can be characterized by its own AMF communities. A combination among some of the soil parameters could define the AMF species present in the roots and the rhizosphere of B. retusum. It was the case for calcium, urease, protease and ß-glucosidase which explained the variation in the AMF communities. In conclusion, soil charactristics can be decisive in the assembling of the AMF communities, managing the diversity and composition of these communities.

  7. Effect of Soil Washing for Lead and Zinc Removal on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Kammerer, Gerhard; Zupanc, Vesna; Gluhar, Simon; Lestan, Domen

    2017-04-01

    Soil washing as a metal pollution remediation process, especially part with intensive mixing of the soil slurry and soil compression after de-watering, significantly deteriorates physical properties of soil compared to those of non-remediated soil. Furthermore, changed physical characteristics of remediated soil influence interaction of plant roots with soil system and affect soil water regime. Remediated soils showed significant differences to their original state in water retention properties and changed structure due to the influence of artificial structure created during remediation process. Disturbed and undisturbed soil samples of remediated and original soils were analyzed. We evaluated soil hydraulic properties as a possible constraint for re-establishing soil structure and soil fertility after the remediation procedure.

  8. Helping People Understand Soils - Perspectives from the US National Cooperative Soil Survey

    NASA Astrophysics Data System (ADS)

    Reich, Paul; Cheever, Tammy; Greene, Linda; Southard, Susan; Levin, Maxine; Lindbo, David L.; Monger, Curtis

    2017-04-01

    Throughout the history of the US National Cooperative Soil Survey (NCSS), soil science education has been a part of the mission to better understand one of our most precious natural resources: the Soil. The poster will highlight the many products and programs related to soils that USDA NRCS (soils.usda.gov) has developed over the years for K-12 and college/professional education. NRCS scientific publications covering topics on soil properties, soil classification, soil health and soil quality have become an important part of the university soil science curriculum. Classroom lesson plans and grade appropriate materials help K-12 teachers introduce soil concepts to students and include detailed instructions and materials for classroom demonstrations of soil properties. A Handbook for Collegiate Soils Contests support universities that conduct Collegiate Soil Judging contests.

  9. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    PubMed

    Sanderman, Jonathan; Chappell, Adrian

    2013-01-01

    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities. © 2012 Blackwell Publishing Ltd.

  10. Soil moisture-soil temperature interrelationships on a sandy-loam soil exposed to full sunlight

    Treesearch

    David A. Marquis

    1967-01-01

    In a study of birch regeneration in New Hampshire, soil moisture and temperature were found to be intimately related. Not only does low moisture lead to high temperature, but high temperature undoubtedly accelerates soil drying, setting up a vicious cycle of heating and drying that may prevent seed germination or kill seedlings.

  11. Developments and departures in the philosophy of soil science

    USDA-ARS?s Scientific Manuscript database

    Traditional soil science curriculums provide comprehensive instruction on soil properties, soil classification, and the physical, chemical, and biological processes that occur in soils. This reductionist perspective is sometimes balanced with a more holistic perspective that focuses on soils as natu...

  12. Remote sensing of soil moisture - Recent advances

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1983-01-01

    Recent advancements in microwave remote sensing of soil moisture include a method for estimating the dependence of the soil dielectric constant on its texture, the use of a percent of field capacity to express soil moisture magnitudes independently of soil texture, methods of estimating soil moisture sampling depth, and models for describing the effect of surface roughness on microwave response in terms of surface height variance and horizontal correlation length, as well as the verification of radiative transfer model predictions of microwave emission from soils and methods for the estimation of vegetation effects on the microwave response to soil moisture. Such researches have demonstrated that it is possible to remotely sense soil moisture in the 0-5 cm soil surface layer, and simulation studies have indicated how remotely sensed surface soil moisture may be used to estimate evapotranspiration rates and root-zone soil moisture.

  13. Soil mesofauna of taiga burozems

    NASA Astrophysics Data System (ADS)

    Gryuntal', S. Yu.

    2009-11-01

    In the burozems of the plains, the composition of the invertebrates and saprophages (the prevailing primary destroyers) differed from that in the mountainous soils only by the absence of millipedes of the Geophilomorpha order. At the same time, the differences in these characteristics between the burozems and soddypodzolic soils of the neighboring coniferous-broad-leaved forests were more significant: in the latter, the composition of the ecological groups of earthworms was more diverse. Among the earthworms, secondary destroyers (detritophages) consuming well-decomposed residues of plants and animals predominated: Aporrectodea caliginosa, A. rosea, and Octolasium lacteum. In the taiga burozems, among the secondary destroyers, very few O. lacteum among the earthworms, and Polyzonium germanicum among the millipede diplopods were found. Primary destroyers that only comminute plant tissues ( Dendrobaena octaedra and Dendrodrilus rubidus f. tenuis) were the main representatives in the invertebrate population of these soils. The differences also concerned the group composition and the proportion between the life forms of the earthworms. In the southern taiga burozems, only the litter ( Dendrobaena octaedra and Dendrodrilus rubidus f. tenuis) earthworms and species of the upper soil layer ( Octolasium lacteum) were present. In the mountainous burozems of the Transcarpathian region, litter inhabitants ( Dendrobaena attemsi and Aporrectodea submontana), soil-litter inhabitants ( Dendrobaena alpina—Transcarpathian region), and inhabitants of the upper ( Helodrilus cernosvitovianus) and middle ( Aporrectodea carpathica and A. sturanyi) soil layers (in the Primorskii region, only the soil-litter Eisenia nordenskioldi) were identified. In the soddy-podzolic soils, dwellers of the middle soil layers ( Aporrectodea caliginosa, A. rosea, and Lumbricus terrestris) were constantly present along with the species dwelling in the litter and in the upper soil layers (in the litter

  14. SoilNet - A Zigbee based soil moisture sensor network

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Weuthen, A.; Rosenbaum, U.; Huisman, J. A.; Vereecken, H.

    2007-12-01

    Soil moisture plays a key role in partitioning water and energy fluxes, in providing moisture to the atmosphere for precipitation, and controlling the pattern of groundwater recharge. Large-scale soil moisture variability is driven by variation of precipitation and radiation in space and time. At local scales, land cover, soil conditions, and topography act to redistribute soil moisture. Despite the importance of soil moisture, it is not yet measured in an operational way, e.g. for a better prediction of hydrological and surface energy fluxes (e.g. runoff, latent heat) at larger scales and in the framework of the development of early warning systems (e.g. flood forecasting) and the management of irrigation systems. The SoilNet project aims to develop a sensor network for the near real-time monitoring of soil moisture changes at high spatial and temporal resolution on the basis of the new low-cost ZigBee radio network that operates on top of the IEEE 802.15.4 standard. The sensor network consists of soil moisture sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee wireless sensor network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. such as rainfall occurrences. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. We will present first results of experiments to verify network stability and the accuracy of the soil moisture sensors. Simultaneously, we have developed a data management and visualisation system. We tested the wireless network on a 100 by 100 meter forest plot equipped with 25

  15. Comparing global soil models to soil carbon profile databases

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Harden, J. W.; He, Y.; Lawrence, D. M.; Nave, L. E.; O'Donnell, J. A.; Treat, C.; Sulman, B. N.; Kane, E. S.

    2015-12-01

    As global soil models begin to consider the dynamics of carbon below the surface layers, it is crucial to assess the realism of these models. We focus on the vertical profiles of soil C predicted across multiple biomes form the Community Land Model (CLM4.5), using different values for a parameter that controls the rate of decomposition at depth versus at the surface, and compare these to observationally-derived diagnostics derived from the International Soil Carbon Database (ISCN) to assess the realism of model predictions of carbon depthattenuation, and the ability of observations to provide a constraint on rates of decomposition at depth.

  16. Soil organic carbon covariance with soil water content; a geostatistical analysis in cropland fields

    NASA Astrophysics Data System (ADS)

    Manns, H. R.; Berg, A. A.; von Bertoldi, P.

    2013-12-01

    Soil texture has traditionally represented the rate of soil water drainage influencing soil water content (WC) in the soil characteristic curves, hydrological models and remote sensing field studies. Although soil organic carbon (OC) has been shown to significantly increase the water holding capacity of soil in individual field studies, evidence is required to consider soil OC as a significant factor in soil WC variability at the scale of a remote sensing footprint (25 km2). The relationship of soil OC to soil WC was evaluated over 50 fields during the Soil Moisture Active Passive (SMAP) soil WC field sampling campaign over southern Manitoba, Canada. On each field, soil WC was measured at 16 sample points, at 100 m spacing to 5 cm depth with Stevens hydra probe sensors on 16 sampling dates from June 7 to July 19, 2012. Soil cores were also taken at sampling sites on each field, each sampling day, to determine gravimetric moisture, bulk density and particle size distribution. On 4 of the sampling dates, soil OC was also determined by loss on ignition on the dried soil samples from all fields. Semivariograms were created from the field mean soil OC and field mean surface soil WC sampled at midrow, over all cropland fields and averaged over all sampling dates. The semivariogram models explained a distinct relationship of both soil OC and WC within the soil over a range of 5 km with a Gaussian curve. The variance in soil that soil OC and WC have in common was a similar Gaussian curve in the cross variogram. Following spatial interpolation with Kriging, the spatial maps of soil OC and WC were also very similar with high covariance over the majority of the sampling area. The close correlation between soil OC and WC suggests they are structurally related in the soil. Soil carbon could thus assist in improving downscaling methods for remotely sensed soil WC and act as a surrogate for interpolation of soil WC.

  17. Soil column leaching of pesticides.

    PubMed

    Katagi, Toshiyuki

    2013-01-01

    In this review, I address the practical and theoretical aspects of pesticide soil mobility.I also address the methods used to measure mobility, and the factors that influence it, and I summarize the data that have been published on the column leaching of pesticides.Pesticides that enter the unsaturated soil profile are transported downwards by the water flux, and are adsorbed, desorbed, and/or degraded as they pass through the soil. The rate of passage of a pesticide through the soil depends on the properties of the pesticide, the properties of the soil and the prevailing environmental conditions.Because large amounts of many different pesticides are used around the world, they and their degradates may sometimes contaminate groundwater at unacceptable levels.It is for this reason that assessing the transport behavior and soil mobility of pesticides before they are sold into commerce is important and is one indispensable element that regulators use to assess probable pesticide safety. Both elementary soil column leaching and sophisticated outdoor lysimeter studies are performed to measure the leaching potential for pesticides; the latter approach more reliably reflects probable field behavior, but the former is useful to initially profile a pesticide for soil mobility potential.Soil is physically heterogeneous. The structure of soil varies both vertically and laterally, and this variability affects the complex flow of water through the soil profile, making it difficult to predict with accuracy. In addition, macropores exist in soils and further add to the complexity of how water flow occurs. The degree to which soil is tilled, the density of vegetation on the surface, and the type and amounts of organic soil amendments that are added to soil further affect the movement rate of water through soil, the character of soil adsorption sites and the microbial populations that exist in the soil. Parameters that most influence the rate of pesticide mobility in soil are

  18. Soil on Phoenix Deck

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken by the Surface Stereo Imager (SSI) of NASA's Phoenix Lander, shows Martian soil piled on top of the spacecraft's deck and some of its instruments. Visible in the upper-left portion of the image are several wet chemistry cells of the lander's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument on the lower right of the image is the Thermal and Evolved-Gas Analyzer. The excess sample delivered to the MECA's sample stage can be seen on the deck in the lower left portion of the image.

    This image was taken on Martian day, or sol, 142, on Saturday, Oct. 19, 2008. Phoenix landed on Mars' northern plains on May 25, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Soil on Phoenix Deck

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken by the Surface Stereo Imager (SSI) of NASA's Phoenix Lander, shows Martian soil piled on top of the spacecraft's deck and some of its instruments. Visible in the upper-left portion of the image are several wet chemistry cells of the lander's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument on the lower right of the image is the Thermal and Evolved-Gas Analyzer. The excess sample delivered to the MECA's sample stage can be seen on the deck in the lower left portion of the image.

    This image was taken on Martian day, or sol, 142, on Saturday, Oct. 19, 2008. Phoenix landed on Mars' northern plains on May 25, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Estimation of Surface Soil Moisture Using Fractal

    NASA Astrophysics Data System (ADS)

    Chen, Yen Chang; He, Chun Hsuan

    2016-04-01

    This study establishes the relationship between surface soil moisture and fractal dimension. The surface soil moisture is one of important factors in the hydrological cycle of surface evaporation. It could be used in many fields, such as reservoir management, early drought warning systems, irrigation scheduling and management, and crop yield estimations. Soil surface cracks due to dryness can be used to describe drought conditions. Soil cracking phenomenon and moisture have a certain relationship, thus this study makes used the fractal theory to interpret the soil moisture represented by soil cracks. The fractal dimension of surface soil cracking is a measure of the surface soil moisture. Therefore fractal dimensions can also be used to indicate how dry of the surface soil is. This study used the sediment in the Shimen Reservoir to establish the fractal dimension and soil moisture relation. The soil cracking is created under the control of temperature and thickness of surface soil layers. The results show the increase in fractal dimensions is accompanied by a decreases in surface soil moisture. However the fractal dimensions will approach a constant even the soil moisture continually decreases. The sigmoid function is used to fit the relation of fractal dimensions and surface soil moistures. The proposed method can be successfully applied to estimate surface soil moisture. Only a photo taken from the field is needed and is sufficient to provide the fractal dimension. Consequently, the surface soil moisture can be estimated quickly and accurately.

  1. Biodegradation of petroleum hydrocarbons in contaminated clayey soils from a sub-arctic site: the role of aggregate size and microstructure.

    PubMed

    Chang, Wonjae; Akbari, Ali; Snelgrove, Jessica; Frigon, Dominic; Ghoshal, Subhasis

    2013-06-01

    This study investigates the extent of biodegradation of non-volatile petroleum hydrocarbons (C16-C34) and the associated microbial activity in predominant aggregate sizes during a pilot-scale biopile experiment conducted at 15 °C, with a clayey soil, from a crude oil-impacted site in northern Canada. The in situ aggregate microstructure was characterized by N2 adsorption and X-ray CT scanning. The soils in the nutrient (N)-amended and unamended biopile tanks were comprised of macroaggregates (>2 mm) and mesoaggregates (0.25-2 mm). Nutrient addition significantly enhanced petroleum hydrocarbon biodegradation in macroaggregates, but not in mesoaggregates. At the end of 65-d biopile experiment, 42% of the C16-C34 hydrocarbons were degraded in the nutrient-amended macroaggregates, compared to 13% in the mesoaggregates. Higher microbial activity in the macroaggregates of the nutrient amended biopile was inferred from a larger increase in extractable protein concentrations, compared to the other aggregates. Terminal Restriction Fragment Length Polymorphism (T-RFLP) of 16S rRNA genes showed that there was no selection of bacterial populations in any of the aggregates during biopile treatment, suggesting that the enhanced biodegradation in nutrient-amended macroaggregates was likely due to metabolic stimulation. X-ray micro CT scanning revealed that the number of pores wider than 4 μm, which would be easily accessible by bacteria, were an order of magnitude higher in macroaggregates. Also, N2 adsorption analyses showed that pore surface areas and pore volumes per unit weight were four to five-times larger, compared to the mesoaggregates. Thus the higher porosity microstructure in macroaggregates allowed greater hydrocarbon degradation upon biostimulation by nutrient addition and aeration.

  2. Advancing Towards a Universal Soil Classification System

    NASA Astrophysics Data System (ADS)

    Owens, Phillip R.; Hempel, Jon; Micheli, Erika; McBratney, Alex

    2014-05-01

    Within the variability of soils across the globe, there are common soil attributes that pedologists have used to group soil within taxonomic classifications. Classification systems are necessary for the communication of information about soils. There are many national classification systems used within designated countries and two classification systems used globally, the US Soil Taxonomy and the World Reference Base. There is a great need for soil scientists to develop one common language or taxonomic system to communicate information within soil science as well as to other scientists in other disciplines. The International Union of Soil Sciences Working Group for Universal Soil Classification was officially established by an IUSS Council decision in August of 2010 at the World Congress of Soil Science in Brisbane, Australia. The charge for the Working Group includes development of common standards for methods and terminology in soil observations and investigations and the development of a universal soil classification system. The Universal Soil Classification Working Group was established and the initial meeting was held at Purdue University in West Lafayette, Indiana USA. The Working Group has evaluated the current national systems and the two international systems to identify gaps in knowledge. Currently, it was determined that gaps in knowledge exists in cold soil, hydromorphic, salt affected, anthropengic, and tropical soil groups. Additionally, several members of the Working Group have utilized taxonomic distance calculations from large databases to determine the clusters of similar taxonomic groupings utilizing the classification. Additionally, the databases are being used to make allocations into logical groups to recognize "Great Soil Groups". The great soil groups will be equivalent to great groups level from Soil Taxonomy along with similar levels in the World Reference Base, Australian Soil Classification and other defined soil classification systems

  3. Tracing soil erosion impacts on soil organisms using 137Cs and soil nematodes

    NASA Astrophysics Data System (ADS)

    Baxter, Craig; Rowan, John S.; McKenzie, Blair M.; Neilson, Roy

    2014-05-01

    The application of environmental radionuclides in soil tracing and erosion studies is now well established in geomorphology. Sediment and erosion-tracing studies are undertaken for a range of purposes in the earth sciences but until now few studies have used the technique to answer biological questions. An experiment was undertaken to measure patterns of soil loss and gain over 50 years, effectively calculating a field-scale sediment budget, to investigate soil erosion relationships between physical and biological soil components. Soil nematodes were identified as a model organism, a ubiquitous and abundant group sensitive to disturbance and thus useful indicator taxa of biological and physico-chemical changes. A field site was selected at the James Hutton Institute's experimental Balruddery Farm in NE Scotland. 10 metre-resolution topographical data was collected with differential GPS. Based on these data, a regular 30 m-resolution sampling grid was constructed in ArcGIS, and a field-sampling campaign undertaken. 104 soil cores (~50 cm-deep) were collected with a percussion corer. Radio-caesium (137Cs) activity concentrations were measured using high-purity germainum gamma-ray spectroscopy, and 137Cs areal activities derived from these values. Organic matter content by loss on ignition and grain-size distribution by laser granulometry were also measured. Additional samples were collected to characterise the soil nematode community, both for abundance and functional (trophic) composition using a combination of low-powered microscopy and molecular identification techniques (dTRFLP). Results were analysed with ArcGIS software using the Spatial Analyst package. Results show that spatial relationships between physical, chemical and biological parameters were complex and interrelated. Previous field management was found to influence these relationships. The results of this experiment highlight the role that soil erosion processes play in medium-term restructuring of the

  4. The hysteresis response of soil respiration and soil CO2 concentration to soil temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Q., Sr.; Katul, G. G.; Oren, R.; Daly, E.; Manzoni, S.; Yang, D.

    2015-12-01

    Diurnal hysteresis between soil temperature (Ts) and both CO2 concentration ([CO2]) and soil respiration rate (Rs) were reported across different field experiments. However, the causes of these hysteresis patterns remain a subject of debate, with biotic and abiotic factors both invoked as explanations. To address these issues, a CO2 gas transport model is developed by combining layer-wise mass conservation for subsurface gas-phase CO2, Fickian diffusion for gas transfer, and a CO2 source term that depends on soil temperature, moisture, and photosynthetic rate. Using this model, a hierarchy of numerical experiments were employed to disentangle the causes of the hysteretic [CO2]-Ts and CO2 flux-Ts (i.e., F -Ts) relations. Model results show that gas transport alone can introduce both [CO2]-Ts and F-Ts hysteresis, and also confirm prior findings that heat flow in soils lead to [CO2] and F(z) being out of phase with Ts, thereby providing another reason for the occurrence of both hysteresis. The area (Ahys) of the [CO2]-Ts hysteresis near the surface increases, while the Ahys of the Rs-Ts hysteresis decreases as soils become wetter. Moreover, a time-lagged carbon input from photosynthesis deformed the [CO2]-Ts and Rs-Ts patterns, causing a change in the loop direction from counterclockwise to clockwise with decreasing time lag. An asymmetric 8-shaped pattern emerged as the transition state between the two loop directions. Tracing the pattern and direction of the hysteretic [CO2]-Ts and Rs-Ts relations can provide new ways to fingerprint the effects of photosynthesis stimulation on soil microbial activity and detect the corresponding time lags. Key words: Hysteresis; Photosynthesis; Soil CO2 concentration; Soil respiration; Soil temperature; Soil moisture

  5. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas

    2016-04-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  6. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above.

  7. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    PubMed Central

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  8. Anaerobic Soil Disinfestation (ASD) Combined with Soil Solarization as a Methyl Bromide Alternative: Vegetable Crop Performance and Soil Nutrient Dynamics

    USDA-ARS?s Scientific Manuscript database

    Soil treatment by anaerobic soil disinfestation (ASD) combined with soil solarization can effectively control soilborne plant pathogens and plant-parasitic nematodes in specialty crop production systems. At the same time, research is limited on the impact of soil treatment by ASD + solarization on c...

  9. Mycelial bacteria of saline soils

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, D. G.; Zenova, G. M.; Oborotov, G. V.

    2008-10-01

    The actinomycetal complexes of saline soils comprise the representatives of the Streptomyces and Micromonospora genera, the number of which are hundreds and thousands of CFU/g soil. Complexes of mycelial bacteria in saline soils are poorer in terms of number (by 1-3 orders of magnitude) and taxonomic composition than the complexes of the zonal soil types. A specific feature of the actinomycetal complexes of saline soils is the predominance of halophilic, alkaliphilic, and haloalkaliphilic streptomycetes that well grow at pH 8-9 and concentrations of NaCl close to 5%. Actinomycetes in saline soils grow actively, and the length of their mycelium reaches 140 m in 1 gram of soil. The haloalkaliphilic streptomycetes grow fast and inhibit the formation of spores at pH 9 and high concentrations of salts (Na2SO4 and MgCl2, 5%) as compared to their behavior on a neutral medium with a salt concentration of 0.02%. They are characterized by the maximal radial growth rate of colonies on an alkaline medium with 5% NaCl.

  10. Finnish Society of Soil Sciences

    NASA Astrophysics Data System (ADS)

    Rankinen, Katri; Hänninen, Pekka; Soinne, Helena; Leppälammi-Kujansuu, Jaana; Salo, Tapio; Pennanen, Taina

    2017-04-01

    In 1998 the organization of the International Union of Soil Sciences (IUSS) was renewed to better support national activities. That was also the new start in the operation of the Finnish Society of Soil Sciences, which became affiliated to the IUSS. The society was originally established in 1971 but it remained relatively inactive. Currently, there are around 200 members in the Finnish Society of Soil Sciences. The members of the executive board cover different fields of soil science from geology to microbiology. Mission statement of the society is to promote the soil sciences and their application in Finland, to act as a forum for creation of better links between soil scientists, interested end users and the public, and to promote distribution and appreciation of general and Finnish research findings in soil science. Every second year the society organizes a national two-day long conference. In 2017 the theme 'circular economy' collected all together 57 presentations. The members of the incoming student division carried responsibility in practical co-ordination committee, acting also as session chairs. In the intervening years the society organizes a weekend excursion to neighboring areas. Lately we have explored the use of biochar in landscaping of Stockholm.

  11. Sustaining "the Genius of Soils"

    NASA Astrophysics Data System (ADS)

    Sposito, G.

    2011-12-01

    Soils are weathered porous earth surficial materials that exhibit an approximately vertical stratification reflecting the continual action of percolating water and living organisms. They are complex open, multicomponent, multiphase biogeochemical systems which function as both provisioning and regulatory agents in terrestrial ecosystems while influencing aquatic ecosystems through their impacts on evapotranspiration and runoff. The ability of soils to engage in their supportive ecosystem functions depends on what has been termed metaphorically as their "natural capital," the defining properties that condition soil response to biological, geological, and hydrological processes as well as human-driven activities. Natural capital must necessarily differ among soils depending on how they have developed under the five soil-forming processes, but it also can be determined by land use and by the flows of matter and energy that link the global atmosphere, biosphere, and hydrosphere. These latter two determinants have in recent decades begun to exhibit strong variability that exceeds what has been characteristic of them during the past 10 millennia of earth history, thereby raising the apocalyptic issue of whether a deleterious or even catastrophic undermining of the ability of soils to function supportively in ecosystems is in the offing. Resolving this issue will require deeper understanding of how soils perform their provisioning and regulatory functions, how they respond to land-use changes, and how they mediate the global flows of matter and energy.

  12. Bioventing reduces soil cleanup costs

    SciTech Connect

    Leahy, M.C.; Erickson, G.P.

    1995-08-01

    An offshoot technology from soil venting, bioventing offers a win-win solution for soils contaminated with volatile organic compounds (VOCs) and nonvolatile contaminants such as diesel and fuel oil. Using low air flowrates through permeable soils, bioventing injects sufficient oxygen to support naturally-occurring bacteria, which biodegraded the VOCs and other contaminants into benign byproducts. Waste gas can be directly discharged to atmosphere without further treatment. This results in no offgas treatment required. Bioventing is a cost-effective alternative to traditional soil-venting techniques. Soil venting uses air to volatilize organic-compound contamination from the vadose zone, the unsaturated soil layer above groundwater. Unfortunately, this simple-and-fast approach creates a waste offgas that requires further treatment before discharge, thus adding significantly to overall project costs. In contrast, bioventing uses low air flowrates, which require lower capital and operating costs. No offgas treatment further reduces equipment and operating costs and often eliminates air permitting. As in all treatment strategies, the process must meet the cleanup objectives. Bioventing is an alternative technique making inroads into refining and petrochemical soil-remediation applications.

  13. Soil washing and radioactive contamination

    SciTech Connect

    Gombert, D.; Bosley, J.B.

    1992-03-20

    Soil washing, a technique combining both physical and chemical processes to produce significant volume reduction of contaminated soils, is widely regarded as a panacea for the huge inventory of contaminated soils in the DOE Complex. While the technology has been demonstrated for organics and to some extent for metals, review of the publications available on the practical applications to radioactive sites, indicates that most volume reduction is a product of unique circumstances such as screening or floating out non-soil materials containing most of the contaminants, or leaching contaminants (uranium or TRU) that exist as anionic complexes (Grant, 1991) which are not held by the soil cation-exchange-capacity. In either case, the potential for success of the technology is extremely site and contaminant specific. The Environmental Protection Agency`s (EPA) guidance on soil washing treatability studies suggests a 50% reduction of contamination in particles over 2mm as a reasonable cutoff for choosing soil washing for further development (EPA, 1991).

  14. Hillslope Soils and Life (Invited)

    NASA Astrophysics Data System (ADS)

    Amundson, R.; Owen, J. J.; Heimsath, A. M.; Yoo, K.; Dietrich, W. E.

    2013-12-01

    That hillslope processes are impacted by biology has been long understood, but the complexities of the abiotic-biotic processes and their feedbacks are quantitatively emerging with the growing body of pertinent literature. The concept that plants modulate both the disaggregation and transport of soil particles on hillslopes was clearly articulated by G.K. Gilbert. Yet earlier, James Hutton (starting from very different intellectual boundary conditions) argued that soil, which results from the dynamic balance of rock destruction and removal, is a prerequisite for plants - a concept that underscores the need to more deeply examine the feedback of geomorphic processes on terrestrial ecosystems. We compiled the results of recent studies that have been conducted on gentle convex hillslopes across a broad range of rainfall. We found that vegetated landscapes appear to have strong controls on hillslope soil thickness, landscape denudation rates, and soil residence times. The restricted range in residence times - despite large differences in climate - appear in turn to sustain relatively high levels of both nitrogen (N) and phosphorus (P) fertility, suggesting ecological resilience and resistance to non-anthropogenic environmental perturbations. At the most arid end of Earth's climate vegetation disappears, but not all water. The loss of plants shifts soil erosion to abiotic processes, with a corresponding thinning or loss of the soil mantle. This reinforces the hypothesis that a planet without vegetation, but with a hydrologic cycle, would be largely devoid of soil-mantled hillslopes and would be driven toward hillslope morphologies that differ from the familiar convex-up forms of biotic landscapes. While our synthesis of the effects of vegetation on soil production and soil thickness provides a quantitative view of the suggestions of Gilbert, it also identifies that vegetation itself responds to the geomorphic processes, as believed by Hutton. There is a complex

  15. Soil carbon determination by thermogravimetrics.

    PubMed

    Pallasser, Robert; Minasny, Budiman; McBratney, Alex B

    2013-01-01

    Determination of soil constituents and structure has a vital role in agriculture generally. Methods for the determination of soil carbon have in particular gained greater currency in recent times because of the potential that soils offer in providing offsets for greenhouse gas (CO2-equivalent) emissions. Ideally, soil carbon which can also be quite diverse in its makeup and origin, should be measureable by readily accessible, affordable and reliable means. Loss-on-ignition is still a widely used method being suitably simple and available but may have limitations for soil C monitoring. How can these limitations be better defined and understood where such a method is required to detect relatively small changes during soil-C building? Thermogravimetric (TGA) instrumentation to measure carbonaceous components has become more interesting because of its potential to separate carbon and other components using very precise and variable heating programs. TGA related studies were undertaken to assist our understanding in the quantification of soil carbon when using methods such as loss-on-ignition. Combining instrumentation so that mass changes can be monitored by mass spectrometer ion currents has elucidated otherwise hidden features of thermal methods enabling the interpretation and evaluation of mass-loss patterns. Soil thermogravimetric work has indicated that loss-on-ignition methods are best constrained to temperatures from 200 to 430 °C for reliable determination for soil organic carbon especially where clay content is higher. In the absence of C-specific detection where mass only changes are relied upon, exceeding this temperature incurs increasing contributions from inorganic sources adding to mass losses with diminishing contributions related to organic matter. The smaller amounts of probably more recalcitrant organic matter released at the higher temperatures may represent mineral associated material and/or simply more refractory forms.

  16. Soil carbon determination by thermogravimetrics

    PubMed Central

    Pallasser, Robert; McBratney, Alex B.

    2013-01-01

    Determination of soil constituents and structure has a vital role in agriculture generally. Methods for the determination of soil carbon have in particular gained greater currency in recent times because of the potential that soils offer in providing offsets for greenhouse gas (CO2-equivalent) emissions. Ideally, soil carbon which can also be quite diverse in its makeup and origin, should be measureable by readily accessible, affordable and reliable means. Loss-on-ignition is still a widely used method being suitably simple and available but may have limitations for soil C monitoring. How can these limitations be better defined and understood where such a method is required to detect relatively small changes during soil-C building? Thermogravimetric (TGA) instrumentation to measure carbonaceous components has become more interesting because of its potential to separate carbon and other components using very precise and variable heating programs. TGA related studies were undertaken to assist our understanding in the quantification of soil carbon when using methods such as loss-on-ignition. Combining instrumentation so that mass changes can be monitored by mass spectrometer ion currents has elucidated otherwise hidden features of thermal methods enabling the interpretation and evaluation of mass-loss patterns. Soil thermogravimetric work has indicated that loss-on-ignition methods are best constrained to temperatures from 200 to 430 °C for reliable determination for soil organic carbon especially where clay content is higher. In the absence of C-specific detection where mass only changes are relied upon, exceeding this temperature incurs increasing contributions from inorganic sources adding to mass losses with diminishing contributions related to organic matter. The smaller amounts of probably more recalcitrant organic matter released at the higher temperatures may represent mineral associated material and/or simply more refractory forms. PMID:23638398

  17. Hydroxyatrazine in soils and sediments

    USGS Publications Warehouse

    Lerch, R.N.; Thurman, E.M.; Blanchard, P.E.

    1999-01-01

    Hydroxyatrazine (HA) is the major metabolite of atrazine in most surface soils. Knowledge of HA sorption to soils, and its pattern of stream water contamination suggest that it is persistent in the environment. Soils with different atrazine use histories were collected from four sites, and sediments were collected from an agricultural watershed. Samples were exhaustively extracted with a mixed-mode extractant, and HA was quantitated using high performance liquid chromatography with UV detection. Atrazine, deethylatrazine (DEA), and deisopropylatrazine (DIA) were also measured in all samples. Concentrations of HA were considerably greater than concentrations of atrazine, DEA, and DIA in all soils and sediments studied. Soil concentrations of HA ranged from 14 to 640 ??g/kg with a median concentration of 84 ??g/kg. Sediment concentrations of HA ranged from 11 to 96 ??g/kg, with a median concentration of 14 ??g/kg. Correlations of HA and atrazine concentrations to soil properties indicated that HA levels in soils were controlled by sorption of atrazine. Because atrazine hydrolysis is known to be enhanced by sorption and pH extremes, soils with high organic matter (OM) and clay content and low pH will result in greater atrazine sorption and subsequent hydrolysis. Significant correlation of HA concentrations to OM, pH, and cation exchange capacity of sediments indicated that mixed-mode sorption (i.e., binding by cation exchange and hydrophobic interactions) was the mechanism controlling HA levels in sediment. The presence of HA in soils and stream sediments at the levels observed support existing hypotheses regarding its transport in surface runoff. These results also indicated that persistence of HA in terrestrial and aquatic ecosystems is an additional risk factor associated with atrazine usage.

  18. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    NASA Astrophysics Data System (ADS)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  19. Uranium soils integrated demonstration: Soil characterization project report

    SciTech Connect

    Cunnane, J.C.; Gill, V.R.; Lee, S.Y.; Morris, D.E.; Nickelson, M.D.; Perry, D.L.; Tidwell, V.C.

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

  20. Cave-soils, the soils forming underneath the surface

    NASA Astrophysics Data System (ADS)

    Dobos, Endre; Bertóti, Diána; Kovács, Károly; Vadnai, Péter

    2015-04-01

    Limestone cave sediments of the Bükk-mountain in the North-Eastern part of Hungary were described, analysed and classified using WRB soil classification system. Cave sediments can be considered as soils, partly on the basis of their origin, partly of processes taking place in them. Based on the results, it can be concluded that cave soils are often shallow, lying directly above the continuous rock. In general they are layered, with clearly distinct layers of alluvial origin. Their organic matter content depends on the nature of the sediment. They often contain considerable quantities of undecomposed organic sediment, acting as the basis for very intensive soil life, which can be detected in the soil structure and may in some cases result in Vermic characteristics. The texture is very variable, ranging from clay to rough gravelly sand. Almost 100% of the soils are calcareous, the lime content is of secondary origin and its amount is at least 2%. Therefore, the pH values fluctuate from neutral to 8.5, mostly having a value around 8. In rare cases gley formation also occurs, especially on poorly drained areas, where there is no water flow to refresh the dissolved oxygen content. In the "oxy-aquic" state, characterized by high dissolved oxygen content, the iron is not reduced, so gley formation is not induced. From pedological point of view, cave sediments show a very diverse picture. Besides sedimentary layers, numerous soil formation processes can be detected, which can be considered analogue with surface processes, therefore they definitely need to be classified as soils. According to all these, in the Hungarian classification cave soils are primarily classified as alluvial, colluvial or lithomorphic soils. The WRB classification places them mainly in the Fluvisol and Leptosol Reference Groups, and according to the soils examined in the present work, they can be described with the Leptic (Epileptic), Fluvic (in rare cases Colluvic), Vermic, Calcaric, Eutric, Gleyic

  1. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Oneill, P. E.; Wang, J. R.

    1986-01-01

    During the four years of the AgRISTARS Program, significant progress was made in quantifying the capabilities of microwave sensors for the remote sensing of soil moisture. In this paper, a discussion is provided of the results of numerous field and aircraft experiments, analysis of spacecraft data, and modeling activities which examined the various noise factors such as roughness and vegetation that affect the interpretability of microwave emission measurements. While determining that a 21-cm wavelength radiometer was the best single sensor for soil moisture research, these studies demonstrated that a multisensor approach will provide more accurate soil moisture information for a wider range of naturally occurring conditions.

  2. Increasing Soil Calcium Availability Alters Forest Soil Carbon Stocks

    NASA Astrophysics Data System (ADS)

    Melvin, A.; Goodale, C. L.

    2011-12-01

    Acid deposition in the Northeastern U.S. has been linked to a loss of soil base cations, especially calcium (Ca). While much research has addressed the effects of Ca depletion on soil and stream acidification, few studies have investigated its effects on ecosystem carbon (C) balance. We studied the long-term effects of increased Ca availability on C cycling in a northern hardwood forest in the Adirondack Park, NY. In 1989, calcium carbonate (lime) was added to ~ 100 ha of the Woods Lake Watershed to ameliorate the effects of soil Ca depletion. An additional 100 ha were maintained as controls. We hypothesized that the lime addition would improve forest health and that this improvement would be evident in increased tree biomass, leaf litter, and fine root production. Within the forest floor, we anticipated that the increased pH associated with liming would stimulate microbial activity resulting in increased decomposition and basal soil respiration, and reduced C stocks. Additionally, we hypothesized that increased Ca availability could enhance Ca-OM complexation in the upper mineral soils, leading to increased C stocks in these horizons. Eighteen years after liming, soil pH and exchangeable Ca pools remained elevated in the forest floor and upper mineral soil of the limed plots. Forest floor C stocks were significantly larger in limed plots (68 vs. 31 t C ha-1), and were driven primarily by greater C accumulation in the forest floor Oa horizon. Mineral soil C stocks did not differ between limed and control soils. Liming did not affect tree growth, however a net decline in biomass was observed across the entire watershed. There was a trend for larger fine root and foliar litter inputs in limed plots relative to controls, but the observed forest floor accumulation appears to be driven primarily by a suppression of decomposition. Liming reduced basal soil respiration rates by 17 and 43 % in the Oe and Oa horizons, respectively. This research suggests that Ca may

  3. Soil Albedo in Relation to Soil Color, Moisture and Roughness

    NASA Astrophysics Data System (ADS)

    Fontes, Adan Fimbres

    Land surface albedo is the ratio of reflected to incident solar radiation. It is a function of several surface parameters including soil color, moisture, roughness and vegetation cover. A better understanding of albedo and how it changes in relation to variations in these parameters is important in order to help improve our ability to model the effects of land surface modifications on climate. The objectives of this study were (1) To determine empirical relationships between smooth bare soil albedo and soil color, (2) To develop statistical relationships between albedo and ground-based thematic mapper (TM) measurements of spectral reflectances, (3) To determine how increased surface roughness caused by tillage reduces bare soil albedo and (4) To empirically relate albedo with TM data and other physical characteristics of mixed grass/shrubland sites at Walnut Gulch Watershed. Albedos, colors and spectral reflectances were measured by Eppley pyranometer, Chroma Meter CR-200 and a Spectron SE-590, respectively. Measurements were made on two field soils (Gila and Pima) at the Campus Agricultural Center (CAC), Tucson, AZ. Soil surface roughness was measured by a profile meter developed by the USDA/ARS. Additional measurements were made at the Maricopa Agricultural Center (MAC) for statistical model testing. Albedos of the 15 smooth, bare soils (plus silica sand) were determined by linear regression to be highly correlated (r^2 = 0.93, p > 0.01) with color values for both wet and dry soil conditions. Albedos of the same smooth bare soils were also highly correlated (r^2>=q 0.86, p > 0.01) with spectral reflectances. Testing of the linear regression equations relating albedo to soil color and spectral reflectances using the data from MAC showed a high correlation. A general nonlinear relationship given by y = 8.366ln(x) + 37.802 r^2 = 0.71 was determined between percent reduction in albedo (y) and surface roughness index (x) for wet and dry Pima and Gila field soils

  4. Soil contamination evaluations: Earthworms as indicators of soil quality

    SciTech Connect

    Linder, G.; Wilbom, D.

    1995-12-31

    Earthworms have frequently been evaluated in the field and laboratory as representatives of the soil community that are indicative of their habitat`s quality. Within a landscape or at a contaminated site, soil quality, or soil health, has become increasingly critical to cleanup-related issues that revolve around questions of ``how clean is clean`` and the bioaccumulation of soil contaminants. Through an overview of numerous field and laboratory studies, the role that earthworms have played in evaluating soil contamination will be reviewed with a particular focus on evaluations of the bioaccumulation potential of chemicals in soil. Within ecological contexts, earthworms can provide information regarding immediately observable adverse affects related, for example, to acute toxicity. Additionally, earthworms can provide information directly related to the bioaccumulation potential of a chemical and trophic transfer of environmental chemicals, especially through the food-chain. Within the decision-making process, soil contamination evaluations must consider future land-use, as well as current and future expressions of adverse biological and ecological effects under field conditions, potentially following remediation. Through integrated field and laboratory studies using earthworms, the authors have been able to identify adversely affected soil communities and have been able to provide information for assessing adverse ecological effects potentially caused by contaminants. Field surveys and on-site or in situ biological testing with earthworms, however, can not alone identify causes of effects. As such, standardized biological tests have been routinely completed in the laboratory so linkages between expression of effects and contaminants could be more readily addressed in conjunction with appropriate chemical data from the field.

  5. Soils of Walker Branch Watershed

    SciTech Connect

    Lietzke, D.A.

    1994-01-01

    The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1200 using a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed. WBW is underlain by dolostones of the Knox Group, but only a very small part of the surface area contains outcroppings of rock and most outcrops were located in the lower part. Soil mapping revealed the presence of both ancient alluvium and ancient colluvium deposits, not recognized in previous soil surveys, that have been preserved in high-elevation stable portions of present-day landforms. An erosional geomorphic process of topographic inversion requiring several millions of years within the Pleistocene is necessary to bring about the degree of inversion that is expressed in the watershed. Indeed, some of these ancient alluvial and colluvial remnants may date back into the Tertiary. Also evident in the watershed, and preserved in the broad, nearly level bottoms of dolines, are multiple deposits of silty material either devoid or nearly devoid of coarse fragments. Recent research

  6. The Influence of Biochar on Soil Processes

    USDA-ARS?s Scientific Manuscript database

    Biochar may be a good soil amendment with the potential to sequester Carbon (C) for long periods of time. In addition, biochar added to soils could increase water infiltration and retention, increase cation exchange capacity and perhaps soil aggregation. However the effects of biochar on soil biol...

  7. Pedotransfer functions in soil electrical resistivity estimation

    USDA-ARS?s Scientific Manuscript database

    Surface electrical resistivity tomography (ERT) is recognized as a powerful non-invasive soil survey and monitoring method. Relationships between ER and soil water contents that are needed to infer the spatial distribution of soil moisture from the ERT results, are known to reflect soil properties. ...

  8. Hyperspectral remote sensing of postfire soil properties

    Treesearch

    Sarah A. Lewis; Peter R. Robichaud; William J. Elliot; Bruce E. Frazier; Joan Q. Wu

    2004-01-01

    Forest fires may induce changes in soil organic properties that often lead to water repellent conditions within the soil profile that decrease soil infiltration capacity. The remote detection of water repellent soils after forest fires would lead to quicker and more accurate assessment of erosion potential. An airborne hyperspectral image was acquired over the Hayman...

  9. Careers in Science: Being a Soil Scientist

    ERIC Educational Resources Information Center

    Bryce, Alisa

    2015-01-01

    Being a soil scientist is a fascinating and certainly diverse career, which can indeed involve working in a laboratory or diagnosing sick orange trees. However it often involves much, much more. In 2015, as part of the United Nations' "International Year of Soils," Soil Science Australia's (SSA) "Soils in Schools" program…

  10. Field-scale apparent soil electrical conductivity

    USDA-ARS?s Scientific Manuscript database

    Soils are notoriously spatially heterogeneous and many soil properties (e.g., salinity, water content, trace element concentration, etc.) are temporally variable, making soil a complex media. Spatial variability of soil properties has a profound influence on agricultural and environmental processes ...

  11. Soil Erosion. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  12. Characterizing Soil Cracking at the Field Scale

    USDA-ARS?s Scientific Manuscript database

    Physical characterization of the soil cracking has always been a major challenge in scaling soil water interaction to the field level. This scaling would allow for the soil water flow in the field to be modeled in two distinct pools: across the soil matrix and in preferential flows thus tackling maj...

  13. Bio-energy and Soil Quality

    USDA-ARS?s Scientific Manuscript database

    Soils are an important natural resource allowing the production of food, feed, fiber and fuel. The growing demand for these services or products requires that we protect the soil resource. Many characteristics of high quality soils can be related to the quantity and quality of soil organic matter (o...

  14. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  15. Careers in Science: Being a Soil Scientist

    ERIC Educational Resources Information Center

    Bryce, Alisa

    2015-01-01

    Being a soil scientist is a fascinating and certainly diverse career, which can indeed involve working in a laboratory or diagnosing sick orange trees. However it often involves much, much more. In 2015, as part of the United Nations' "International Year of Soils," Soil Science Australia's (SSA) "Soils in Schools" program…

  16. Sensor data fusion for soil health assessment

    USDA-ARS?s Scientific Manuscript database

    Assessment of soil health involves determining how well a soil is performing its biological, chemical, and physical functions relative to its inherent potential. Due to high cost, labor requirements, and soil disturbance, traditional laboratory analyses cannot provide high resolution soil health dat...

  17. Interpreting, measuring, and modeling soil respiration

    Treesearch

    Michael G. Ryan; Beverly E. Law

    2005-01-01

    This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of...

  18. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  19. Sorption of polyphenolics (tannins) to natural soils

    USDA-ARS?s Scientific Manuscript database

    Tannins enter soil systems via rainfall through the leaf canopy, leaf litter decomposition, and root exudation and decomposition. For tannins released into soils, the relative importance of sorption to soil; chemical reactions with soil minerals; and biological decomposition is unknown. Determinin...

  20. Surface Soil Moisture Assimilation with SWAT

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is one of the most critical state variables in hydrologic modeling. Certain studies have demonstrated that assimilating observed surface soil moisture into a hydrologic model results in improved predictions of profile soil water content. With the Soil and Water Assessment Tool (SWAT), ...