Science.gov

Sample records for rituximab-associated b-cell defects

  1. Rituximab does not reset defective early B cell tolerance checkpoints.

    PubMed

    Chamberlain, Nicolas; Massad, Christopher; Oe, Tyler; Cantaert, Tineke; Herold, Kevan C; Meffre, Eric

    2016-01-01

    Type 1 diabetes (T1D) patients show abnormalities in early B cell tolerance checkpoints, resulting in the accumulation of large numbers of autoreactive B cells in their blood. Treatment with rituximab, an anti-CD20 mAb that depletes B cells, has been shown to preserve β cell function in T1D patients and improve other autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. However, it remains largely unknown how anti-B cell therapy thwarts autoimmunity in these pathologies. Here, we analyzed the reactivity of Abs expressed by single, mature naive B cells from 4 patients with T1D before and 52 weeks after treatment to determine whether rituximab resets early B cell tolerance checkpoints. We found that anti-B cell therapy did not alter the frequencies of autoreactive and polyreactive B cells, which remained elevated in the blood of all patients after rituximab treatment. Moreover, the limited proliferative history of autoreactive B cells after treatment revealed that these clones were newly generated B cells and not self-reactive B cells that had escaped depletion and repopulated the periphery through homeostatic expansion. We conclude that anti-B cell therapy may provide a temporary dampening of autoimmune processes through B cell depletion. However, repletion with autoreactive B cells may explain the relapse that occurs in many autoimmune patients after anti-B cell therapy. PMID:26642366

  2. Defective PTEN regulation contributes to B cell hyperresponsiveness in systemic lupus erythematosus.

    PubMed

    Wu, Xiang-ni; Ye, Yan-xia; Niu, Jing-wen; Li, Yang; Li, Xin; You, Xin; Chen, Hua; Zhao, Li-dan; Zeng, Xiao-feng; Zhang, Feng-chun; Tang, Fu-lin; He, Wei; Cao, Xue-tao; Zhang, Xuan; Lipsky, Peter E

    2014-07-23

    PTEN regulates normal signaling through the B cell receptor (BCR). In systemic lupus erythematosus (SLE), enhanced BCR signaling contributes to increased B cell activity, but the role of PTEN in human SLE has remained unclear. We performed fluorescence-activated cell sorting analysis in B cells from SLE patients and found that all SLE B cell subsets, except for memory B cells, showed decreased expression of PTEN compared with B cells from healthy controls. Moreover, the level of PTEN expression was inversely correlated with disease activity. We then explored the mechanisms governing PTEN regulation in SLE B cells. Notably, in normal but not SLE B cells, interleukin-21 (IL-21) induced PTEN expression and suppressed Akt phosphorylation induced by anti-immunoglobulin M and CD40L stimulation. However, this deficit was not primarily at the signaling or the transcriptional level, because IL-21-induced STAT3 (signal transducer and activator of transcription 3) phosphorylation was intact and IL-21 up-regulated PTEN mRNA in SLE B cells. Therefore, we examined the expression of candidate microRNAs (miRs) that could regulate PTEN: SLE B cells were found to express increased levels of miR-7, miR-21, and miR-22. These miRs down-regulated the expression of PTEN, and IL-21 stimulation increased the expression of miR-7 and miR-22 in both normal and SLE B cells. Indeed, a miR-7 antagomir corrected PTEN-related abnormalities in SLE B cells in a manner dependent on PTEN. Therefore, defective miR-7 regulation of PTEN contributes to B cell hyperresponsiveness in SLE and could be a new target of therapeutic intervention.

  3. Inactivation of Btk by insertion of lacZ reveals defects in B cell development only past the pre-B cell stage.

    PubMed Central

    Hendriks, R W; de Bruijn, M F; Maas, A; Dingjan, G M; Karis, A; Grosveld, F

    1996-01-01

    Bruton's tyrosine kinase (Btk) is a cytoplasmic protein kinase that is defective in X-linked agammaglobulinaemia in man and in X-linked immunodeficiency in the mouse. There is controversy regarding the stages of B cell development that are dependent on Btk function. To determine the point in B cell differentiation at which defects in Btk become apparent, we generated a mouse model by inactivating the Btk gene through an in-frame insertion of a lacZ reporter by homologous recombination in embryonic stem cells. The phenomenon of X-chromosome inactivation in Btk+/- heterozygous female mice enabled us to evaluate the competition between B cell progenitors expressing wild-type Btk and those expressing the Btk-/lacZ allele in each successive step of development. Although Btk was already expressed in pro-B cells, the first selective disadvantage only became apparent at the transition from small pre-B cells to immature B cells in the bone marrow. A second differentiation arrest was found during the maturation from IgD(low)IgM(high) to IgD(high)IgM(low) stages in the periphery. Our results show that Btk expression is essential at two distinct differentiation steps, both past the pre-B cell stage. Images PMID:8890160

  4. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development.

    PubMed

    Mito, Takayuki; Kikkawa, Yoshiaki; Shimizu, Akinori; Hashizume, Osamu; Katada, Shun; Imanishi, Hirotake; Ota, Azusa; Kato, Yukina; Nakada, Kazuto; Hayashi, Jun-Ichi

    2013-01-01

    Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0)) mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

  5. DOCK8 deficient patients have a breakdown in peripheral B cell tolerance and defective regulatory T cells

    PubMed Central

    Janssen, Erin; Morbach, Henner; Ullas, Sumana; Bannock, Jason M.; Massad, Christopher; Menard, Laurence; Barlan, Isil; Lefranc, Gerard; Su, Helen; Dasouki, Majed; Al-Herz, Waleed; Keles, Sevgi; Chatila, Talal; Geha, Raif S.; Meffre, Eric

    2014-01-01

    Background Dedicator of Cytokinesis 8 (DOCK8) deficiency is typified by recurrent infections, elevated serum IgE levels, eosinophilia, and a high incidence of allergic and autoimmune manifestations. Objective We sought to determine the role of DOCK8 in the establishment and maintenance of human B cell tolerance. Methods Autoantibodies were measured in the plasma of DOCK8 deficient patients. The antibody coding genes from new emigrant/transitional and mature naive B cells were cloned and assessed for their ability to bind self-antigens. Regulatory T (Treg) cells in the blood were analyzed by flow cytometry, and their function was tested by examining their capacity to inhibit the proliferation of CD4+CD25− T effector (Teff) cells. Results DOCK8 deficient patients had increased levels of autoantibodies in their plasma. We determined that central B cell tolerance did not require DOCK8 as evidenced by the normal low frequency of polyreactive new emigrant/transitional B cells in DOCK8 deficient patients. In contrast, autoreactive B cells were enriched in the mature naïve B cell compartment, revealing a defective peripheral B cell tolerance checkpoint. In addition, we found that Treg cells were decreased and exhibited impaired suppressive activity in DOCK8 deficient patients. Conclusions Our data support a critical role for DOCK8 in Treg cell homeostasis and function and the enforcement of peripheral B cell tolerance. Clinical Implications DOCK8 deficient patients should be evaluated for autoantibodies, the possible emergence of autoimmunity, and end organ damage. PMID:25218284

  6. Rituximab-associated acute thrombocytopenia: an under-diagnosed phenomenon.

    PubMed

    Ram, Ron; Bonstein, Lilach; Gafter-Gvili, Anat; Ben-Bassat, Isaac; Shpilberg, Ofer; Raanani, Pia

    2009-04-01

    Acute infusion reactions are the most common documented adverse reactions reported with rituximab, with overt cytokine release syndrome, and hematological adverse events being much rarer. The clinical course of a patient with mantle cell lymphoma, who developed acute thrombocytopenia and leukopenia following rituximab administration, is described and the literature reviewed. Serum complement and the levels of three cytokines--TNF-alpha, IL-6, and IL-1, were measured 2 days after the infusion of rituximab by using ELISA assay. Drug-dependent antibodies against platelets were evaluated by two procedures as follows: an immunofluorescence test applying flow cytometry and Monoclonal Antibody Immobilization of Platelet Antigen (MAIPA). Serum levels of TNF-a were significantly increased compared with normal, whereas those of IL-6 and IL-1 were not increased significantly. Flow cytometry assay and the MAIPA assay failed to detect rituximab-dependent antibodies against platelets. Complement levels were decreased compared with normal. Literature search yielded 10 publications reporting on another 15 patients. The most common type of lymphoma was mantle cell lymphoma, six patients had bone marrow involvement, and 10 patients had splenomegaly. In 10 patients, acute cytopenia was preceded by cytokine release syndrome or infusion-related symptoms. Usually, thrombocytopenia was not associated with bleeding manifestations. Thrombocytopenia was the most commonly acute cytopenia reported. The postulated pathogenesis is associated with cytokine release syndrome and complement activation. Patients with potential risk factors like splenomegaly and bone marrow involvement, who develop clinical manifestations compatible with cytokine release syndrome, should be closely monitored for rituximab-associated cytopenia. PMID:19260124

  7. Reversion of a transcriptionally defective MHC class II-negative human B-cell mutant.

    PubMed Central

    Ombra, M N; Perfetto, C; Autiero, M; Anzisi, A M; Pasquinelli, R; Maffei, A; Del Pozzo, G; Guardiola, J

    1993-01-01

    RJ2.2.5, a mutant derived from the human B-lymphoma cell, Raji, is unable to express the MHC class II genes because of a recessive transcriptional defect attributed to the lack of an activator function. We report the isolation of a RJ2.2.5 revertant, namely AR, in which the expression of the mRNAs encoded by these genes is restored. Comparison of the binding of nuclear extracts or of partially purified nuclear preparations from the wild-type, the mutant and the revertant cells to a conserved MHC class II promoter element, the X-box, showed no alteration in the mobility of the complexes thus formed. However, in extracts from RJ2.2.5, and other MHC class II negative cell lines, such as HeLa, the amount of complex observed was significantly higher than in wild-type Raji cells. Furthermore, the binding activity exhibited by the AR revertant was lower than that of the RJ2.2.5 and higher than that of Raji. The use of specific monoclonal antibodies indicated that in all cases c-Jun and c-Fos or antigenically related proteins were required for binding. An inverse correlation between the level of DNA-protein complex formed and the level of MHC class II gene mRNA expressed in the three cell lines was apparent, suggesting that overexpression of a DNA binding factor forming complexes with class II promoter elements may cause repression of MHC class II transcription. A model which reconciles the previously ascertained recessivity of the phenotype of the mutation carried by RJ2.2.5 with the findings reported here is discussed. Images PMID:8441650

  8. Defective FcgammaRIIb1 signaling contributes to enhanced calcium response in B cells from patients with systemic lupus erythematosus.

    PubMed

    Enyedy, E J; Mitchell, J P; Nambiar, M P; Tsokos, G C

    2001-11-01

    B lymphocytes from patients with systemic lupus erythematosus (SLE) display enhanced B cell antigen receptor (BCR)-mediated early signal transduction events, including increased fluxes of intracytoplasmic calcium ([Ca(2+)](i)). Because crosslinking of FcgammaRIIb1 (CD32) in normal B cells suppresses the BCR-initiated signal transduction process, we investigated whether the increased BCR-initiated [Ca(2+)](i) response in SLE B cells is the consequence of decreased FcgammaRIIb1-mediated suppression. To this end, we used flow cytometry to study the [Ca(2+)](i) responses of indo-1-loaded negatively gated B cells stimulated with F(ab')(2) fragments or whole IgG anti-human micro Ab. We found that the ratio of F(ab')(2) to whole anti-micro Ab [Ca(2+)](i) response was significantly lower in SLE B cells compared to B cells from patients with other systemic rheumatic diseases or normal individuals (P < 0.01). Because the surface expressions of FcgammaRIIb1 and surface IgM were similar in B cells from SLE patients and disease and normal controls, these data indicate a decrease in FcgammaRIIb-mediated suppression in SLE B cells. In addition, the whole IgG anti-micro Ab but not its F(ab')(2) fragment caused increased redistribution of SH2 domain-containing inositol 5'phosphatase in SLE compared to normal and disease control B cells. In conclusion, deficient FcgammaRIIb1-mediated suppression contributes to the augmented [Ca(2+)](i) responses of human SLE B cells.

  9. An intrinsic B cell defect is required for the production of autoantibodies in the lpr model of murine systemic autoimmunity

    SciTech Connect

    Sobel, E.S.; Katagiri, T.; Katagiri, K.; Morris, S.C.; Cohen, P.L.; Eisenberg, R.A. )

    1991-06-01

    Mice homozygous for the gene lpr develop marked lymphadenopathy and a spectrum of autoantibodies closely resembling that of human systemic lupus erythematosus. The unusual T cell phenotype of the expanded lymphocyte population and the T-dependence of several antibodies in this strain have suggested that primary T cell abnormalities underlie the autoimmune syndrome. Using double chimeras, we now show that expression of the lpr gene in B cells is absolutely necessary for autoantibody production. Combinations of anti-Thy 1.2 + C' treated bone marrow from congenic strains of C57BL/6 mice, differing only at the immunoglobulin heavy chain (Igh) and lpr loci, were transferred into lethally irradiated B6/lpr mice. Double chimerism was documented by allotype-specific surface IgD and IgM immunofluorescence assay of peripheral blood and by allotype-specific enzyme-linked immunosorbent assay for total IgM in serum. Despite the presence of both +/+ and lpr B cells, IgM and IgG2a anti-chromatin as well as IgM anti-IgG were entirely the products of lpr B cells. Total serum IgG2a and IgG1 were also dominated by the lpr phenotype but not to the same extent. A similar experiment using B6/lpr-Igha recipients confirmed these findings. Additional experiments in which B6/lpr recipients were infused with ratios of donor bone marrow favoring B6.C20 +/+ over B6/lpr showed that even though +/+ B cells were overrepresented, autoantibodies were only of the lpr allotype. In addition, in the presence of lpr B cells, normal B cells showed little response to an exogenous, T cell-dependent antigen. The data thus indicate that lpr B cells manifest an intrinsic abnormality which is essential for autoantibody production in the lpr model.

  10. T-cell Receptor and K-deleting Recombination Excision Circles in Newborn Screening of T- and B-cell Defects: Review of the Literature and Future Challenges

    PubMed Central

    Chiarini, Marco; Zanotti, Cinzia; Serana, Federico; Sottini, Alessandra; Bertoli, Diego; Caimi, Luigi; Imberti, Luisa

    2013-01-01

    Since its introduction as a public health programme in the United States in the early 1960s, newborn blood screening (NBS) has evolved from the detection of phenylalanine levels on filter paper to the application of DNA-based technologies to identify T-cell lymphopenia in infants with severe combined immunodeficiency. This latter use of NBS has required the development of an assay for T-cell lymphopenia based on the quantification of T-cell receptor excision circles (TRECs) that could be performed on dried blood spots routinely collected from newborn infants. The TREC-based NBS was developed six years ago, and there have already been 7 successful pilot studies since then. Similarly, efforts are now being made to establish a screen for B-cell defects, in particular agammaglobulinaemia, taking advantage of the introduction of the method for the quantification of K-deleting recombination excision circles (KRECs). A further achievement of NBS could be the simultaneous recognition of T- and B-cell defects using the combined quantification of TRECs and KRECs from Guthrie card blood spots. This approach may help the early identification of infants with T- and B-cell deficiencies so that they can then be referred to specialised paediatric centres, where a precise diagnosis of severe combined immunodeficiency and agammaglobulinaemia can be performed, and where then they can immediately receive specific therapy. Simultaneous TREC and KREC quantification should also allow classification of patients into subgroups and help identify children with less serious primary immunodeficiencies. This would help avoid the opportunistic infections and frequent hospitalisations that result from a late or lack of diagnosis. PMID:25170474

  11. T-cell Receptor and K-deleting Recombination Excision Circles in Newborn Screening of T- and B-cell Defects: Review of the Literature and Future Challenges.

    PubMed

    Chiarini, Marco; Zanotti, Cinzia; Serana, Federico; Sottini, Alessandra; Bertoli, Diego; Caimi, Luigi; Imberti, Luisa

    2013-04-28

    Since its introduction as a public health programme in the United States in the early 1960s, newborn blood screening (NBS) has evolved from the detection of phenylalanine levels on filter paper to the application of DNA-based technologies to identify T-cell lymphopenia in infants with severe combined immunodeficiency. This latter use of NBS has required the development of an assay for T-cell lymphopenia based on the quantification of T-cell receptor excision circles (TRECs) that could be performed on dried blood spots routinely collected from newborn infants. The TREC-based NBS was developed six years ago, and there have already been 7 successful pilot studies since then. Similarly, efforts are now being made to establish a screen for B-cell defects, in particular agammaglobulinaemia, taking advantage of the introduction of the method for the quantification of K-deleting recombination excision circles (KRECs). A further achievement of NBS could be the simultaneous recognition of T- and B-cell defects using the combined quantification of TRECs and KRECs from Guthrie card blood spots. This approach may help the early identification of infants with T- and B-cell deficiencies so that they can then be referred to specialised paediatric centres, where a precise diagnosis of severe combined immunodeficiency and agammaglobulinaemia can be performed, and where then they can immediately receive specific therapy. Simultaneous TREC and KREC quantification should also allow classification of patients into subgroups and help identify children with less serious primary immunodeficiencies. This would help avoid the opportunistic infections and frequent hospitalisations that result from a late or lack of diagnosis.

  12. Defective disposal of immune complexes and polyclonal B cell activation persist long after exposure to bacterial lipopolysaccharide in mice

    SciTech Connect

    Granholm, N.A.; Cavallo, T. )

    1989-11-01

    Patients with systemic lupus erythematosus experience clinical exacerbation during superimposed bacterial infection. Previous studies in mice indicated that heightened immune phenomena during exposure to bacterial lipopolysaccharide (LPS) appear to be related, in part, to polyclonal B cell activation, to abnormal disposal of immune complexes (IC), and to increased localization of IC in tissues. To investigate whether such effects were reversible, we administered bacterial LPS to C57BL/6 mice for 5 weeks. Control mice received vehicle alone. We then discontinued LPS, and 6 weeks later LPS and control mice were challenged with a subsaturating dose of radiolabeled IC; the removal of IC from the circulation, their localization in the liver, spleen, and kidney were determined. In comparison to values in control mice, in mice previously exposed to LPS, serologic features of polyclonal B cell activation persisted; liver uptake of pathogenic IC (greater than Ag2Ab2) was normal, but removal of small size IC (less than or equal to Ag2Ab2) from the circulation was delayed; localization of IC in the kidneys was enhanced, and pathologic proteinuria developed. The effects of repeated exposure to bacterial LPS are partially reversible, but they last long after LPS is discontinued and may contribute to altered disposal of IC, enhanced organ localization of IC, and organ dysfunction.

  13. T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells.

    PubMed

    Azzaoui, Imane; Uhel, Fabrice; Rossille, Delphine; Pangault, Celine; Dulong, Joelle; Le Priol, Jerome; Lamy, Thierry; Houot, Roch; Le Gouill, Steven; Cartron, Guillaume; Godmer, Pascal; Bouabdallah, Krimo; Milpied, Noel; Damaj, Gandhi; Tarte, Karin; Fest, Thierry; Roussel, Mikael

    2016-08-25

    In diffuse large B-cell lymphoma (DLBCL), the number of circulating monocytes and neutrophils represents an independent prognostic factor. These cell subsets include monocytic and granulocytic myeloid-derived suppressor cells (M- and G-MDSCs) defined by their ability to suppress T-cell responses. MDSCs are a heterogeneous population described in inflammatory and infectious diseases and in numerous tumors including multiple myeloma, chronic lymphocytic leukemia, and DLBCL. However, their mechanisms of action remain unclear. We broadly assessed the presence and mechanisms of suppression of MDSC subsets in DLBCL. First, a myeloid suppressive signature was identified by gene expression profiling in DLBCL peripheral blood. Accordingly, we identified, in a cohort of 66 DLBCL patients, an increase in circulating G-MDSC (Lin(neg)HLA-DR(neg)CD33(pos)CD11b(pos)) and M-MDSC (CD14(pos)HLA-DR(low)) counts. Interestingly, only M-MDSC number was correlated with the International Prognostic Index, event-free survival, and number of circulating Tregs. Furthermore, T-cell proliferation was restored after monocyte depletion. Myeloid-dependent T-cell suppression was attributed to a release of interleukin-10 and S100A12 and increased PD-L1 expression. In summary, we identified expanded MDSC subsets in DLBCL, as well as new mechanisms of immunosuppression in DLBCL. PMID:27338100

  14. Class II-antigen-negative patient and mutant B-cell lines represent at least three, and probably four, distinct genetic defects defined by complementation analysis.

    PubMed Central

    Bénichou, B; Strominger, J L

    1991-01-01

    Expression of class II major histocompatibility complex antigens in defective B-lymphoblastoid cell lines from patients with class II antigen deficiency and from in vitro mutants generated with the same phenotype was studied. By heterogenetic fusion experiments, at least three, and probably four, complementation groups were defined. Furthermore, clone 13 (a DR-, DP-, but DQ+ cell line) appeared to belong to the RJ2.2.5 complementation group, for which all other members are DR-, DP-, and also DQ-. Thus, it is hypothesized that the cell lines of this group lack the activity of a gene that can differentially regulate the DR/DP and the DQ promoters. Images PMID:1852002

  15. B cells in transplantation

    PubMed Central

    Dijke, Esme I.; Platt, Jeffrey L.; Blair, Paul; Clatworthy, Menna R.; Patel, Jignesh K.; Kfoury, A.G.; Cascalho, Marilia

    2016-01-01

    B cell responses underlie the most vexing immunological barriers to organ transplantation. Much has been learned about the molecular mechanisms of B cell responses to antigen and new therapeutic agents that specifically target B cells or suppress their functions are available. Yet, despite recent advances, there remains an incomplete understanding about how B cell functions determine the fate of organ transplants and how, whether or when potent new therapeutics should optimally be used. This gap in understanding reflects in part the realization that besides producing antibodies, B cells can also regulate cellular immunity, contribute to the genesis of tolerance and induce accommodation. Whether non-specific depletion of B cells, their progeny or suppression of their functions would undermine these non-cognate functions and whether graft outcome would suffer as a result is unknown. These questions were discussed at a symposium on “B cells in transplantation” at the 2015 ISHLT annual meeting. Those discussions are summarized here and a new perspective is offered. PMID:26996930

  16. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells

    PubMed Central

    Rakhmanov, Mirzokhid; Keller, Baerbel; Gutenberger, Sylvia; Foerster, Christian; Hoenig, Manfred; Driessen, Gertjan; van der Burg, Mirjam; van Dongen, Jacques J.; Wiech, Elisabeth; Visentini, Marcella; Quinti, Isabella; Prasse, Antje; Voelxen, Nadine; Salzer, Ulrich; Goldacker, Sigune; Fisch, Paul; Eibel, Hermann; Schwarz, Klaus; Peter, Hans-Hartmut; Warnatz, Klaus

    2009-01-01

    The homeostasis of circulating B cell subsets in the peripheral blood of healthy adults is well regulated, but in disease it can be severely disturbed. Thus, a subgroup of patients with common variable immunodeficiency (CVID) presents with an extraordinary expansion of an unusual B cell population characterized by the low expression of CD21. CD21low B cells are polyclonal, unmutated IgM+IgD+ B cells but carry a highly distinct gene expression profile which differs from conventional naïve B cells. Interestingly, while clearly not representing a memory population, they do share several features with the recently defined memory-like tissue, Fc receptor-like 4 positive B cell population in the tonsils of healthy donors. CD21low B cells show signs of previous activation and proliferation in vivo, while exhibiting defective calcium signaling and poor proliferation in response to B cell receptor stimulation. CD21low B cells express decreased amounts of homeostatic but increased levels of inflammatory chemokine receptors. This might explain their preferential homing to peripheral tissues like the bronchoalveolar space of CVID or the synovium of rheumatoid arthritis patients. Therefore, as a result of the close resemblance to the gene expression profile, phenotype, function and preferential tissue homing of murine B1 B cells, we suggest that CD21low B cells represent a human innate-like B cell population. PMID:19666505

  17. Syk Tyrosine Kinase Is Required for the Positive Selection of Immature B Cells into the Recirculating B Cell Pool

    PubMed Central

    Turner, Martin; Gulbranson-Judge, Adam; Quinn, Marian E.; Walters, Alice E.; MacLennan, Ian C.M.; Tybulewicz, Victor L.J.

    1997-01-01

    The tyrosine kinase Syk has been implicated as a key signal transducer from the B cell antigen receptor (BCR). We show here that mutation of the Syk gene completely blocks the maturation of immature B cells into recirculating cells and stops their entry into B cell follicles. Furthermore, using radiation chimeras we demonstrate that this developmental block is due to the absence of Syk in the B cells themselves. Syk-deficient B cells are shown to have the life span of normal immature B cells. If this is extended by over-expression of Bcl-2, they accumulate in the T zone and red pulp of the spleen in increased numbers, but still fail to mature to become recirculating follicular B cells. Despite this defect in maturation, Syk-deficient B cells were seen to give rise to switched as well as nonswitched splenic plasma cells. Normally only a proportion of immature B cells is recruited into the recirculating pool. Our results suggest that Syk transduces a BCR signal that is absolutely required for the positive selection of immature B cells into the recirculating B cell pool. PMID:9396770

  18. Gallium arsenide exposure impairs splenic B cell accessory function.

    PubMed

    Gondre-Lewis, Timothy A; Hartmann, Constance B; Caffrey, Rebecca E; McCoy, Kathleen L

    2003-03-01

    Gallium arsenide (GaAs) is utilized in industries for its semiconductor and optical properties. Chemical exposure of animals systemically suppresses several immune functions. The ability of splenic B cells to activate antigen-specific helper CD4(+) T cell hybridomas was assessed, and various aspects of antigen-presenting cell function were examined. GaAs-exposed murine B cells were impaired in processing intact soluble protein antigens, and the defect was antigen dependent. In contrast, B cells after exposure competently presented peptides to the T cells, which do not require processing. Cell surface expression of major histocompatibility complex (MHC) class II molecules and several costimulatory molecules on splenic B cells, which are critical for helper T cell activation, was not affected by chemical exposure. GaAs exposure also did not influence the stability of MHC class II heterodimers, suggesting that the defect may precede peptide exchange. GaAs-exposed B cells contained a normal level of aspartyl cathepsin activity; however, proteolytic activities of thiol cathepsins B and L were approximately half the control levels. Furthermore, two cleavage fragments of invariant chain, a molecular chaperone of MHC class II molecules, were increased in GaAs-exposed B cells, indicative of defective degradation. Thus, diminished thiol proteolytic activity in B cells may be responsible for their impaired antigen processing and invariant chain degradation, which may contribute to systemic immunosuppression caused by GaAs exposure.

  19. Control of Viremia Enables Acquisition of Resting Memory B Cells with Age and Normalization of Activated B Cell Phenotypes in HIV-Infected Children

    PubMed Central

    Muema, Daniel M.; Macharia, Gladys N.; Hassan, Amin S.; Mwaringa, Shalton M.; Fegan, Greg W.; Berkley, James A.; Urban, Britta C.

    2015-01-01

    HIV affects the function of all lymphocyte populations, including B cells. Phenotypic and functional defects of B cells in HIV-infected adults have been well characterized, but defects in children have not been studied to the same extent. We determined the proportion of B cell subsets and frequencies of Ag-specific memory B cells in peripheral blood from HIV-infected children and healthy controls, using flow cytometry and B cell ELISPOT, respectively. In addition, we measured the quantities and avidities of plasma Abs against various Ags by ELISA. We also determined plasma levels of BAFF and expression of BAFF receptors on B cells. Children with high HIV viremia had increased proportions of activated mature B cells, tissue-like memory B cells and plasmablasts, and low proportions of naive B cells when compared with community controls and children with low HIV viremia, similar to adults infected with HIV. HIV-infected groups had lower proportions of resting memory B cells than did community controls. Notably, high HIV viremia prevented the age-dependent accumulation of class-switched resting memory B cells. HIV-infected children, regardless of the level of viremia, showed lower quantities and avidities of IgG and lower frequencies of memory B cells against Expanded Program on Immunization vaccines. The HIV-infected children had an altered BAFF profile that could have affected their B cell compartment. Therefore, B cell defects in HIV-infected children are similar to those seen in HIV-infected adults. However, control of HIV viremia is associated with normalization of activated B cell subsets and allows age-dependent accumulation of resting memory B cells. PMID:26116511

  20. Control of Viremia Enables Acquisition of Resting Memory B Cells with Age and Normalization of Activated B Cell Phenotypes in HIV-Infected Children.

    PubMed

    Muema, Daniel M; Macharia, Gladys N; Hassan, Amin S; Mwaringa, Shalton M; Fegan, Greg W; Berkley, James A; Nduati, Eunice W; Urban, Britta C

    2015-08-01

    HIV affects the function of all lymphocyte populations, including B cells. Phenotypic and functional defects of B cells in HIV-infected adults have been well characterized, but defects in children have not been studied to the same extent. We determined the proportion of B cell subsets and frequencies of Ag-specific memory B cells in peripheral blood from HIV-infected children and healthy controls, using flow cytometry and B cell ELISPOT, respectively. In addition, we measured the quantities and avidities of plasma Abs against various Ags by ELISA. We also determined plasma levels of BAFF and expression of BAFF receptors on B cells. Children with high HIV viremia had increased proportions of activated mature B cells, tissue-like memory B cells and plasmablasts, and low proportions of naive B cells when compared with community controls and children with low HIV viremia, similar to adults infected with HIV. HIV-infected groups had lower proportions of resting memory B cells than did community controls. Notably, high HIV viremia prevented the age-dependent accumulation of class-switched resting memory B cells. HIV-infected children, regardless of the level of viremia, showed lower quantities and avidities of IgG and lower frequencies of memory B cells against Expanded Program on Immunization vaccines. The HIV-infected children had an altered BAFF profile that could have affected their B cell compartment. Therefore, B cell defects in HIV-infected children are similar to those seen in HIV-infected adults. However, control of HIV viremia is associated with normalization of activated B cell subsets and allows age-dependent accumulation of resting memory B cells.

  1. B Cells, Antibodies, and More

    PubMed Central

    Hoffman, William; Lakkis, Fadi G.

    2016-01-01

    B cells play a central role in the immunopathogenesis of glomerulonephritides and transplant rejection. B cells secrete antibodies that contribute to tissue injury via multiple mechanisms. In addition, B cells contribute to disease pathogenesis in autoimmunity and alloimmunity by presenting antigens as well as providing costimulation and cytokines to T cells. B cells also play an immunomodulatory role in regulating the immune response by secreting cytokines that inhibit disease onset and/or progression. B cell–targeted approaches for treating immune diseases of the kidney and other organs have gained significant momentum. However, much remains to be understood about B-cell biology in order to determine the timing, duration, and context of optimal therapeutic response to B cell–targeted approaches. In this review, we discuss the multifaceted roles of B cells as enhancers and regulators of immunity with relevance to kidney disease and transplantation. PMID:26700440

  2. Translational Mini-Review Series on B cell subsets in disease. Transitional B cells in systemic lupus erythematosus and Sjögren's syndrome: clinical implications and effects of B cell-targeted therapies.

    PubMed

    Vossenkämper, A; Lutalo, P M K; Spencer, J

    2012-01-01

    Systemic lupus erythematosus (SLE) and Sjögren's syndrome are autoimmune disorders which are characterized by a disturbed B cell homeostasis which leads ultimately to dysfunction of various organs. One of the B cell subsets that appear in abnormal numbers is the population of transitional B cells, which is increased in the blood of patients with SLE and Sjögren's syndrome. Transitional B cells are newly formed B cells. In mice, transitional B cells undergo selection checks for unwanted specificity in the bone marrow and the spleen in order to eliminate autoreactive B cells from the circulating naive B cell population. In humans, the exact anatomical compartments and mechanisms of the specificity check-points for transitional B cells remain unclear, but appear to be defective in SLE and Sjögren's syndrome. This review aims to highlight the current understanding of transitional B cells and their defects in the two disorders before and after B cell-targeted therapies.

  3. Surrogate light chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by marginal zone B cells.

    PubMed

    Ren, Weicheng; Grimsholm, Ola; Bernardi, Angelina I; Höök, Nina; Stern, Anna; Cavallini, Nicola; Mårtensson, Inga-Lill

    2015-04-01

    Selection of the primary antibody repertoire takes place in pro-/pre-B cells, and subsequently in immature and transitional B cells. At the first checkpoint, μ heavy (μH) chains assemble with surrogate light (SL) chain into a precursor B-cell receptor. In mice lacking SL chain, μH chain selection is impaired, and serum autoantibody levels are elevated. However, whether the development of autoantibody-producing cells is due to an inability of the resultant B-cell receptors to induce central and/or peripheral B-cell tolerance or other factors is unknown. Here, we show that receptor editing is defective, and that a higher proportion of BM immature B cells are prone to undergoing apoptosis. Furthermore, transitional B cells are also more prone to undergoing apoptosis, with a stronger selection pressure to enter the follicular B-cell pool. Those that enter the marginal zone (MZ) B-cell pool escape selection and survive, possibly due to the B-lymphopenia and elevated levels of B-cell activating factor. Moreover, the MZ B cells are responsible for the elevated IgM anti-dsDNA antibody levels detected in these mice. Thus, the SL chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by MZ B cells.

  4. ABSENCE OF SCLEROSTIN ADVERSELY AFFECTS B CELL SURVIVAL

    PubMed Central

    Cain, Corey J.; Rueda, Randell; McLelland, Bryce; Collette, Nicole M.; Loots, Gabriela G.; Manilay, Jennifer O.

    2012-01-01

    Increased osteoblast activity in sclerostin-knockout (Sost−/−) mice results in generalized hyperostosis and bones with small bone marrow cavities due to hyperactive mineralizing osteoblast populations. Hematopoietic cell fate decisions are dependent on their local microenvironment, which contains osteoblast and stromal cell populations that support both hematopoietic stem cell quiescence and facilitate B cell development. In this study, we investigated whether high bone mass environments affect B cell development via the utilization of Sost−/− mice, a model of sclerosteosis. We found the bone marrow of Sost−/− mice to be specifically depleted of B cells, due to elevated apoptosis at all B cell developmental stages. In contrast, B cell function in the spleen was normal. Sost expression analysis confirmed that Sost is primarily expressed in osteocytes and is not expressed in any hematopoietic lineage, which indicated that the B cell defects in Sost−/− mice are non-cell autonomous and this was confirmed by transplantation of wildtype (WT) bone marrow into lethally irradiated Sost−/− recipients. WT→Sost−/− chimeras displayed a reduction in B cells, whereas reciprocal Sost−/−→WT chimeras did not, supporting the idea that the Sost−/− bone environment cannot fully support normal B cell development. Expression of the pre-B cell growth stimulating factor, Cxcl12, was significantly lower in bone marrow stromal cells of Sost−/− mice while the Wnt target genes Lef-1 and Ccnd1 remained unchanged in B cells. Taken together, these results demonstrate a novel role for Sost in the regulation of bone marrow environments that support B cells. PMID:22434688

  5. The actin-bundling protein L-plastin is essential for marginal zone B cell development

    PubMed Central

    Todd, Elizabeth M.; Deady, Lauren E.; Morley, Sharon Celeste

    2011-01-01

    B cell development is exquisitely sensitive to location within specialized niches in the bone marrow and spleen. Location within these niches is carefully orchestrated through chemotactic and adhesive cues. Here we demonstrate the requirement for the actin-bundling protein L-plastin (LPL) in B cell motility towards the chemokines CXCL12 and CXCL13 and the lipid chemoattractant sphingosine-1-phosphate, which guide normal B cell development. Impaired motility of B cells in LPL−/− mice correlated with diminished splenic maturation of B cells, with a moderate (40%) loss of follicular B cells and a profound (>80%) loss of marginal zone B cells. Entry of LPL−/− B cells into the lymph nodes and bone marrow of mice was also impaired. Furthermore, LPL was required for the integrin-mediated enhancement of transwell migration but was dispensable for integrin-mediated lymphocyte adhesion. These results suggest that LPL may participate in signaling that enables lymphocyte transmigration. In support of this hypothesis, the phosphorylation of Pyk-2, a tyrosine kinase that integrates chemotactic and adhesive cues, is diminshed in LPL−/− B cells stimulated with chemokine. Finally, a well-characterized role of marginal zone B cells is the generation of a rapid humoral response to polysaccharide antigens. LPL−/− mice exhibited a defective antibody response to Streptococcus pneumoniae, indicating a functional consequence of defective MZ B cell development in LPL−/− mice. PMID:21832165

  6. Primary Mediastinal B-Cell Lymphoma

    PubMed Central

    Pileri, Stefano A.; Gaidano, Gianluca; Zinzani, Pier Luigi; Falini, Brunangelo; Gaulard, Philippe; Zucca, Emanuele; Pieri, Federica; Berra, Eva; Sabattini, Elena; Ascani, Stefano; Piccioli, Milena; Johnson, Peter W. M.; Giardini, Roberto; Pescarmona, Edoardo; Novero, Domenico; Piccaluga, Pier Paolo; Marafioti, Teresa; Alonso, Miguel A.; Cavalli, Franco

    2003-01-01

    Although primary mediastinal (thymic) large B-cell lymphoma has been primarily studied, its precise phenotype, molecular characteristics, and histogenesis are still a matter of debate. The International Extranodal Lymphoma Study Group collected 137 such cases for extensive pathological review. Histologically, the lymphomatous growth was predominantly diffuse with fibrosis that induced compartmentalized cell aggregation. It consisted of large cells with varying degrees of nuclear polymorphism and clear to basophilic cytoplasm. On immunohistochemistry, the following phenotype was observed: CD45+, CD20+, CD79a+, PAX5/BSAP+, BOB.1+, Oct-2+, PU.1+, Bcl-2+, CD30+, HLA-DR+, MAL protein+/−, Bcl-6+/−, MUM1/IRF4+/−, CD10−/+, CD21−, CD15−, CD138−, CD68−, and CD3−. Immunoglobulins were negative both at immunohistochemistry and in situ hybridization. Molecular analysis, performed in 45 cases, showed novel findings. More than half of the cases displayed BCL-6 gene mutations, which usually occurred along with functioning somatic IgVH gene mutations and Bcl-6 and/or MUM1/IRF4 expression. The present study supports the concept that a sizable fraction of cases of this lymphoma are from activated germinal center or postgerminal center cells. However, it differs from other aggressive B-cell lymphomas in that it shows defective immunoglobulin production despite the expression of OCT-2, BOB.1, and PU.1 transcription factors and the lack of IgVH gene crippling mutations. PMID:12507907

  7. VISA is required for B cell expression of TLR7.

    PubMed

    Xu, Liang-Guo; Jin, Lei; Zhang, Bi-Cheng; Akerlund, Linda J; Shu, Hong-Bing; Cambier, John C

    2012-01-01

    B cells play a critical role in the initialization and development of the systemic lupus erythematosus that is dependent on the expression of the endosomal ssRNA receptor TLR7. Previous studies have established that B cell expression of TLR7 is controlled by the type I IFN secreted by plasmacytoid dendritic cells. In this article, we report that VISA, also known as MAVS, IPS-1, and CardIf, essential for RIG-I/MDA5-mediated signaling following sensing of cytosolic RNA, regulate B cell expression of TLR7 and CD23. We found that B cells from a VISA(-/-) mouse express reduced TLR7 but normal basal levels of type I IFN. We also show that although IFN-β and TLR7 agonists synergize to promote TLR7 expression in VISA(-/-) B cells, they do not fully complement the defect seen in VISA(-/-) cells. Cell transfer experiments revealed that the observed effects of VISA(-/-) are B cell intrinsic. The reduced TLR7 expression in B cells is correlated with impaired TLR7 agonist-induced upregulation of activation markers CD69 and CD86, cell proliferation, production of IFN-α, TNF, and IL-12, and NF-κB activation. Finally, studies indicate that genetic background may influence the observed phenotype of our VISA(-/-) mice, because VISA(-/-) B cells differ in CD23 and TLR7 expression when on C57BL/6 versus 129Sv-C57BL/6 background. Thus, our findings suggest an unexpected link between VISA-mediated cytosolic RLR signaling and autoimmunity.

  8. [Regulatory B cells in human autoimmune diseases].

    PubMed

    Miyagaki, Tomomitsu

    2015-01-01

    B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in clinical research using human samples. PMID:26725860

  9. B-Cell Dysregulation in Crohn's Disease Is Partially Restored with Infliximab Therapy

    PubMed Central

    Timmermans, Wilhelmina M. C.; van Laar, Jan A. M.; van der Houwen, Tim B.; Kamphuis, Lieke S. J.; Bartol, Sophinus J. W.; Lam, King H.; Ouwendijk, Rob J.; Sparrow, Miles P.; Gibson, Peter R.; van Hagen, P. Martin

    2016-01-01

    Background B-cell depletion can improve a variety of chronic inflammatory diseases, but does not appear beneficial for patients with Crohn’s disease. Objective To elucidate the involvement of B cells in Crohn’s disease, we here performed an ‘in depth’ analysis of intestinal and blood B-cells in this chronic inflammatory disease. Methods Patients with Crohn’s disease were recruited to study B-cell infiltrates in intestinal biopsies (n = 5), serum immunoglobulin levels and the phenotype and molecular characteristics of blood B-cell subsets (n = 21). The effects of infliximab treatment were studied in 9 patients. Results Granulomatous tissue showed infiltrates of B lymphocytes rather than Ig-secreting plasma cells. Circulating transitional B cells and CD21low B cells were elevated. IgM memory B cells were reduced and natural effector cells showed decreased replication histories and somatic hypermutation (SHM) levels. In contrast, IgG and IgA memory B cells were normally present and their Ig gene transcripts carried increased SHM levels. The numbers of transitional and natural effector cells were normal in patients who responded clinically well to infliximab. Conclusions B cells in patients with Crohn’s disease showed signs of chronic stimulation with localization to granulomatous tissue and increased molecular maturation of IgA and IgG. Therapy with TNFα-blockers restored the defect in IgM memory B-cell generation and normalized transitional B-cell levels, making these subsets candidate markers for treatment monitoring. Together, these results suggest a chronic, aberrant B-cell response in patients with Crohn’s disease, which could be targeted with new therapeutics that specifically regulate B-cell function. PMID:27468085

  10. Successful differentiation to T cells, but unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells.

    PubMed

    Wada, Haruka; Kojo, Satoshi; Kusama, Chie; Okamoto, Naoki; Sato, Yorino; Ishizuka, Bunpei; Seino, Ken-ichiro

    2011-01-01

    Forced expression of certain transcription factors in somatic cells results in generation of induced pluripotent stem (iPS) cells, which differentiate into various cell types. We investigated T-cell and B-cell lineage differentiation from iPS cells in vitro. To evaluate the impact of iPS cell source, murine splenic B-cell-derived iPS (B-iPS) cells were generated after retroviral transduction of four transcription factors (Oct4, Sox2, Klf4 and c-Myc). B-iPS cells were identical to embryonic stem (ES) cells and mouse embryonic fibroblast (MEF)-derived iPS cells in morphology, ES cell marker expression as well as teratoma and chimera mouse formation. Both B-iPS and MEF-derived iPS cells differentiated into lymphocytes in OP9 co-culture systems. Both efficiently differentiated into T-cell lineage that produced IFN-γ on T-cell receptor stimulation. However, iPS cells including B-iPS cells were relatively resistant to B-cell lineage differentiation. One of the reasons of the failure of B-cell lineage differentiation seemed due to a defect of Pax5 expression in the differentiated cells. Therefore, current in vitro differentiation systems using iPS cells are sufficient for inducing T-cell but not B-cell lineage. PMID:21135032

  11. Multiple Curricula for B Cell Developmental Programming.

    PubMed

    Rothenberg, Ellen V

    2016-09-20

    B-1 B cells differ from conventional B-2 B cells functionally, but how these differences relate to the ontogeny of these lineages has been unclear. Two recent Immunity articles, Kristiansen et al. (2016) and Montecino-Rodriguez et al. (2016), now provide insight into the origins of B-1 and B-2 B cells, revealing a multi-layered developmental program and successive waves of B cell precursors.

  12. Multiple Curricula for B Cell Developmental Programming.

    PubMed

    Rothenberg, Ellen V

    2016-09-20

    B-1 B cells differ from conventional B-2 B cells functionally, but how these differences relate to the ontogeny of these lineages has been unclear. Two recent Immunity articles, Kristiansen et al. (2016) and Montecino-Rodriguez et al. (2016), now provide insight into the origins of B-1 and B-2 B cells, revealing a multi-layered developmental program and successive waves of B cell precursors. PMID:27653594

  13. Memory B cells in mouse models.

    PubMed

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases. PMID:23679222

  14. B Cell Autonomous TLR Signaling and Autoimmunity

    PubMed Central

    Meyer-Bahlburg, Almut; Rawlings, David J

    2009-01-01

    B cells play a central role in the pathogenesis of multiple autoimmune diseases and the recognition of importance of B cells in these disorders has grown dramatically in association with the remarkable success of B-cell depletion as a treatment for autoimmunity. The precise mechanisms that promote alterations in B cell tolerance remain incompletely defined. There is increasing evidence, however, that TLRs play a major role in these events. Stimulation of B cells via the TLR pathway not only leads to an increase in antibody production but also promotes additional changes including cytokine production and upregulation of activation markers increasing the effectiveness of B cells as APCs. Understanding the role of TLRs in systemic autoimmunity will not only provide insight into the disease pathogenesis but may also lead to the development of novel therapies. This article gives an overview of TLR signaling in B cells and the possible involvement of such signals in autoimmune diseases. PMID:18295736

  15. Altered Memory Circulating T Follicular Helper-B Cell Interaction in Early Acute HIV Infection

    PubMed Central

    Muir, Roshell; Metcalf, Talibah; Tardif, Virginie; Takata, Hiroshi; Phanuphak, Nittaya; Kroon, Eugene; Colby, Donn J.; Trichavaroj, Rapee; Valcour, Victor; Robb, Merlin L.; Michael, Nelson L.; Ananworanich, Jintanat; Trautmann, Lydie; Haddad, Elias K.

    2016-01-01

    The RV254 cohort of HIV-infected very early acute (4thG stage 1 and 2) (stage 1/2) and late acute (4thG stage 3) (stage 3) individuals was used to study T helper- B cell responses in acute HIV infection and the impact of early antiretroviral treatment (ART) on T and B cell function. To investigate this, the function of circulating T follicular helper cells (cTfh) from this cohort was examined, and cTfh and memory B cell populations were phenotyped. Impaired cTfh cell function was observed in individuals treated in stage 3 when compared to stage 1/2. The cTfh/B cell cocultures showed lower B cell survival and IgG secretion at stage 3 compared to stage 1/2. This coincided with lower IL-10 and increased RANTES and TNF-α suggesting a role for inflammation in altering cTfh and B cell responses. Elevated plasma viral load in stage 3 was found to correlate with decreased cTfh-mediated B cell IgG production indicating a role for increased viremia in cTfh impairment and dysfunctional humoral response. Phenotypic perturbations were also evident in the mature B cell compartment, most notably a decrease in resting memory B cells in stage 3 compared to stage 1/2, coinciding with higher viremia. Our coculture assay also suggested that intrinsic memory B cell defects could contribute to the impaired response despite at a lower level. Overall, cTfh-mediated B cell responses are significantly altered in stage 3 compared to stage 1/2, coinciding with increased inflammation and a reduction in memory B cells. These data suggest that early ART for acutely HIV infected individuals could prevent immune dysregulation while preserving cTfh function and B cell memory. PMID:27463374

  16. Dysfunctional B-cell activation in cirrhosis due to hepatitis C infection associated with disappearance of CD27+ B-cell population

    PubMed Central

    Doi, Hiroyoshi; Iyer, Tara K.; Carpenter, Erica; Li, Hong; Chang, Kyong-Mi; Vonderheide, Robert H.; Kaplan, David E.

    2011-01-01

    Background Chronic hepatitis C virus infection is a leading cause of cirrhosis and hepatocellular carcinoma. Both advanced solid tumors and hepatitis C have previously been associated with memory B-cell dysfunction. In this study we sought to dissect the impact of viral infection, cirrhosis and liver cancer on memory B-cell frequency and function in the spectrum of HCV disease. Methods Peripheral blood from healthy donors, HCV-infected patients with F1–F2 liver fibrosis, HCV-infected patients with cirrhosis, patients with HCV-related hepatocellular carcinoma and non-HCV-infected cirrhotics were assessed for B-cell phenotype by flow cytometry. Isolated B-cells were stimulated with anti-CD40 antibodies and TLR9 agonist for assessment of costimulation marker expression, cytokine production, immunoglobulin production and CD4+ T-cell allostimulatory capacity. Results CD27+ memory B-cells, and more specifically CD27+IgM+ B-cells, were markedly less frequent in cirrhotic patients independent of HCV infection. Circulating B-cells in cirrhotics were hyporesponsive to CD40/TLR9 activation as characterized by CD70 upregulation, TNFβ secretion, IgG production and T-cell allostimulation. Lastly, blockade of TLR4 and TLR9 signaling abrogated the activation of normal donor B-cells by cirrhotic plasma suggesting a role for bacterial translocation in driving B-cell changes in cirrhosis. Conclusion Profound abnormalities in B-cell phenotype and function occur in cirrhosis independent of hepatitis C viral infection. These B-cell defects may explain in part the vaccine hyporesponsiveness and susceptibility to bacterial infection in this population. PMID:21932384

  17. Microbes and B cell development.

    PubMed

    Wesemann, Duane R

    2015-01-01

    Animals and many of their chronic microbial inhabitants form relationships of symbiotic mutualism, which occurs when coexisting life-forms derive mutual benefit from stable associations. While microorganisms receive a secure habitat and constant food source from vertebrate hosts, they are required for optimal immune system development and occupy niches otherwise abused by pathogens. Microbes have also been shown to provide vertebrate hosts with metabolic capabilities that enhance energy and nutrient uptake from the diet. The immune system plays a central role in the establishment and maintenance of host-microbe homeostasis, and B lineage cells play a key role in this regulation. Here, I reviewed the structure and function of the microbiota and the known mechanisms of how nonpathogenic microbes influence B cell biology and immunoglobulin repertoire development early in life. I also discuss what is known about how B lineage cells contribute to the process of shaping the composition of commensal/mutualistic microbe membership.

  18. Early B-cell Factor 1 Regulates the Expansion of B-cell Progenitors in a Dose-dependent Manner*

    PubMed Central

    Åhsberg, Josefine; Ungerbäck, Jonas; Strid, Tobias; Welinder, Eva; Stjernberg, Jenny; Larsson, Malin; Qian, Hong; Sigvardsson, Mikael

    2013-01-01

    Transcription factor doses are of importance for normal and malignant B-lymphocyte development; however, the understanding of underlying mechanisms and functional consequences of reduced transcription factor levels is limited. We have analyzed progenitor and B-lineage compartments in mice carrying heterozygote mutations in the E2a, Ebf1, or Pax5 gene. Although lymphoid progenitors from Ebf1 or Pax5 heterozygote mice were specified and lineage-restricted in a manner comparable with Wt progenitors, this process was severely impaired in E2a heterozygote mutant mice. This defect was not significantly enhanced upon combined deletion of E2a with Ebf1 or Pax5. Analysis of the pre-B-cell compartment in Ebf1 heterozygote mice revealed a reduction in cell numbers. These cells expressed Pax5 and other B-lineage-associated genes, and global gene expression analysis suggested that the reduction of the pre-B-cell compartment was a result of impaired pre-B-cell expansion. This idea was supported by a reduction in IL2Rα-expressing late pre-B-cells as well as by cell cycle analysis and by the finding that the complexity of the VDJ rearrangement patterns was comparable in Wt and Ebf1+/− pre-B-cells, although the number of progenitors was reduced. Heterozygote deletion of Ebf1 resulted in impaired response to IL7 in vitro and reduced expression levels of pre-BCR on the cell surface, providing possible explanations for the observed stage-specific reduction in cellular expansion. Thus, transcription factor doses are critical for specification as well as expansion of B-lymphoid progenitors, providing increased insight into the molecular regulation of B-cell development. PMID:24078629

  19. VprBP Is Required for Efficient Editing and Selection of Igκ+ B Cells, but Is Dispensable for Igλ+ and Marginal Zone B Cell Maturation and Selection.

    PubMed

    Palmer, Victoria L; Aziz-Seible, Razia; Kassmeier, Michele D; Rothermund, Mary; Perry, Greg A; Swanson, Patrick C

    2015-08-15

    B cell development past the pro-B cell stage in mice requires the Cul4-Roc1-DDB1 E3 ubiquitin ligase substrate recognition subunit VprBP. Enforced Bcl2 expression overcomes defects in distal VH-DJH and secondary Vκ-Jκ rearrangement associated with VprBP insufficiency in B cells and substantially rescues maturation of marginal zone and Igλ(+) B cells, but not Igκ(+) B cells. In this background, expression of a site-directed Igκ L chain transgene increases Igκ(+) B cell frequency, suggesting VprBP does not regulate L chain expression from a productively rearranged Igk allele. In site-directed anti-dsDNA H chain transgenic mice, loss of VprBP function in B cells impairs selection of Igκ editor L chains typically arising through secondary Igk rearrangement, but not selection of Igλ editor L chains. Both H and L chain site-directed transgenic mice show increased B cell anergy when VprBP is inactivated in B cells. Taken together, these data argue that VprBP is required for the efficient receptor editing and selection of Igκ(+) B cells, but is largely dispensable for Igλ(+) B cell development and selection, and that VprBP is necessary to rescue autoreactive B cells from anergy induction.

  20. B-Cell Hematologic Malignancy Vaccination Registry

    ClinicalTrials.gov

    2015-09-15

    Monoclonal Gammopathy of Undetermined Significance; Multiple Myeloma; Waldenstrom Macroglobulinemia; Lymphocytosis; Lymphoma, Non-Hodgkin; B-Cell Chronic Lymphocytic Leukemia; Hematological Malignancies

  1. Production of RANKL by Memory B Cells

    PubMed Central

    Meednu, Nida; Zhang, Hengwei; Owen, Teresa; Sun, Wen; Wang, Victor; Cistrone, Christopher; Rangel-Moreno, Javier; Xing, Lianping; Anolik, Jennifer H.

    2016-01-01

    Objective Rheumatoid arthritis (RA) is a systemic autoimmune disease that often leads to joint damage. The mechanisms of bone damage in RA are complex, involving activation of bone-resorbing osteoclasts (OCs) by synoviocytes and Th17 cells. This study was undertaken to investigate whether B cells play a direct role in osteoclastogenesis through the production of RANKL, the essential cytokine for OC development. Methods RANKL production by total B cells or sorted B cell subpopulations in the peripheral blood and synovial tissue from healthy donors or anti–cyclic citrullinated peptide–positive patients with RA was examined by flow cytometry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical analysis. To define direct effects on osteoclastogenesis, B cells were cocultured with CD14+ monocytes, and OCs were enumerated by tartrate-resistant acid phosphatase staining. Results Healthy donor peripheral blood B cells were capable of expressing RANKL upon stimulation, with switched memory B cells (CD27+IgD−) having the highest propensity for RANKL production. Notably, switched memory B cells in the peripheral blood from RA patients expressed significantly more RANKL compared to healthy controls. In RA synovial fluid and tissue, memory B cells were enriched and spontaneously expressed RANKL, with some of these cells visualized adjacent to RANK+ OC precursors. Critically, B cells supported OC differentiation in vitro in a RANKL-dependent manner, and the number of OCs was higher in cultures with RA B cells than in those derived from healthy controls. Conclusion These findings reveal the critical importance of B cells in bone homeostasis and their likely contribution to joint destruction in RA. PMID:26554541

  2. The CD40 ligand expressed by human B cells costimulates B cell responses.

    PubMed

    Grammer, A C; Bergman, M C; Miura, Y; Fujita, K; Davis, L S; Lipsky, P E

    1995-05-15

    The possibility that activated B cells might express a ligand for CD40 that was of functional importance for B cell responses was examined by using highly purified human peripheral blood B cells, as well as a variety of B lymphoblastoid cell lines and hybridomas. Following stimulation with the combination of a calcium ionophore and a phorbol ester, human B cells bound a soluble fusion protein containing the extracellular portion of CD40 and the Fc region of IgG1 (CD40.Ig). A variety of B cell lines and hybridomas also bound CD40.Ig, either constitutively or after activation. In addition, CD40.Ig specifically immunoprecipitated a 33-kDa glycoprotein from surface 125I-labeled activated B cells. The nucleotide sequence of the coding region of the CD40 ligand mRNA amplified by RT-PCR from activated T cells and B cell lines was identical. The CD40 ligand expressed on human B cells was important functionally because homotypic aggregation of CD40 ligand-expressing B cells was inhibited by the CD40.Ig construct. Additionally, RNA and DNA synthesis as well as Ig production by polyclonally activated, highly purified peripheral B cells and a variety of B cell lines were inhibited significantly by the CD40.Ig construct. Finally, B cell lines expressing the CD40 ligand induced Ig production from resting normal B cells in a CD40-dependent manner. These results indicate that human B cells express a ligand for CD40 that is identical with that expressed by activated T cells and that the B cell-expressed CD40 ligand plays an important role in facilitating responses of activated B cells.

  3. PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development.

    PubMed

    Venigalla, Ram K C; McGuire, Victoria A; Clarke, Rosemary; Patterson-Kane, Janet C; Najafov, Ayaz; Toth, Rachel; McCarthy, Pierre C; Simeons, Frederick; Stojanovski, Laste; Arthur, J Simon C

    2013-04-01

    Phosphoinositide-dependent kinase-1 (PDK1) controls the activation of a subset of AGC kinases. Using a conditional knockout of PDK1 in haematopoietic cells, we demonstrate that PDK1 is essential for B cell development. B-cell progenitors lacking PDK1 arrested at the transition of pro-B to pre-B cells, due to a cell autonomous defect. Loss of PDK1 decreased the expression of the IgH chain in pro-B cells due to impaired recombination of the IgH distal variable segments, a process coordinated by the transcription factor Pax5. The expression of Pax5 in pre-B cells was decreased in PDK1 knockouts, which correlated with reduced expression of the Pax5 target genes IRF4, IRF8 and Aiolos. As a result, Ccnd3 is upregulated in PDK1 knockout pre-B cells and they have an impaired ability to undergo cell-cycle arrest, a necessary event for Ig light chain rearrangement. Instead, these cells underwent apoptosis that correlated with diminished expression of the pro-survival gene Bcl2A1. Reintroduction of both Pax5 and Bcl2A1 together into PDK1 knockout pro-B cells restored their ability to differentiate in vitro into mature B cells.

  4. Mechanistic insights into the impairment of memory B cells and antibody production in the elderly.

    PubMed

    Aberle, Judith H; Stiasny, Karin; Kundi, Michael; Heinz, Franz X

    2013-04-01

    It is well established that immunologic memory generated early in life can be maintained into old age and mediate robust anamnestic antibody responses. Little is known, however, about the initiation of memory B cells in the elderly. We have conducted a prospective analysis of the quantities and functionalities of antigen-specific B cell responses and its association with the functional helper CD4(+)T cell responses. The ability of naïve B cells from old (60-80 years) and young (20-31 years) humans to establish functional memory was examined following primary and booster vaccination with an inactivated-virus vaccine against tick-borne encephalitis. Our data show that the number of antigen-specific memory B cells generated during primary vaccination was ~3-fold lower in old than in young individuals. The maintenance and booster responsiveness of these memory B cells were not compromised, as evidenced by similar increases in specific memory B cell frequencies upon revaccination in old and young adults. In contrast, the Ab response mediated per memory B cell after revaccination was dramatically diminished in the elderly. Also, antigen-specific IL-2-positive CD4(+)T cell responses were strongly reduced in the elderly and displayed an excellent correlation with Ab titres. The data suggest that the dramatically lower antibody response in the elderly could only partially be accounted for by the reduced B cell numbers and was strongly correlated with profound functional defects in CD4 help.

  5. PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development.

    PubMed

    Venigalla, Ram K C; McGuire, Victoria A; Clarke, Rosemary; Patterson-Kane, Janet C; Najafov, Ayaz; Toth, Rachel; McCarthy, Pierre C; Simeons, Frederick; Stojanovski, Laste; Arthur, J Simon C

    2013-04-01

    Phosphoinositide-dependent kinase-1 (PDK1) controls the activation of a subset of AGC kinases. Using a conditional knockout of PDK1 in haematopoietic cells, we demonstrate that PDK1 is essential for B cell development. B-cell progenitors lacking PDK1 arrested at the transition of pro-B to pre-B cells, due to a cell autonomous defect. Loss of PDK1 decreased the expression of the IgH chain in pro-B cells due to impaired recombination of the IgH distal variable segments, a process coordinated by the transcription factor Pax5. The expression of Pax5 in pre-B cells was decreased in PDK1 knockouts, which correlated with reduced expression of the Pax5 target genes IRF4, IRF8 and Aiolos. As a result, Ccnd3 is upregulated in PDK1 knockout pre-B cells and they have an impaired ability to undergo cell-cycle arrest, a necessary event for Ig light chain rearrangement. Instead, these cells underwent apoptosis that correlated with diminished expression of the pro-survival gene Bcl2A1. Reintroduction of both Pax5 and Bcl2A1 together into PDK1 knockout pro-B cells restored their ability to differentiate in vitro into mature B cells. PMID:23463102

  6. The unexpected evolution of a case of diffuse large B-cell non-Hodgkin lymphoma.

    PubMed

    Găman, Amelia; Bold, Adriana; Găman, G

    2011-01-01

    The diffuse large B-cell lymphoma (DLBCL) represents the most common type of aggressive non-Hodgkin's lymphoma with a heterogeneous morphology, biology and clinical presentation. Gene expression profiling studies identified three distinct molecular subtypes of DLCBL arisen from B-cells at different stages of differentiation: germinal center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, primary mediastinal B-cell lymphoma (PMBL). The most relevant oncogenic pathways in diffuse large B-cell lymphoma are: deregulated B-cell receptor/proliferation signaling, BCL6 and NF-kB constitutive expression, defects in apoptosis and neoangiogenesis. The treatment of DLBCL has been completely modified in the last ten years by combination of anti-CD20 monoclonal antibody (rituximab) and CHOP chemotherapy, which is now the first line therapy. In the last years, there have been reported several cases of progressive multifocal leukoencephalopathy (PML) at patients with rheumatoid arthritis treated with rituximab. Progressive multifocal leukoencephalopathy is possible as an adverse reaction to rituximab at patients treated with R-CHOP for diffuse large B-cell lymphoma. PMID:21655667

  7. Molecular underpinning of B-cell anergy

    PubMed Central

    Yarkoni, Yuval; Getahun, Andrew; Cambier, John C.

    2010-01-01

    Summary A byproduct of the largely stochastic generation of a diverse B-cell specificity repertoire is production of cells that recognize autoantigens. Indeed, recent studies indicate that more than half of the primary repertoire consists of autoreactive B cells that must be silenced to prevent autoimmunity. While this silencing can occur by multiple mechanisms, it appears that most autoreactive B cells are silenced by anergy, wherein they populate peripheral lymphoid organs and continue to express unoccupied antigen receptors yet are unresponsive to antigen stimulation. Here we review molecular mechanisms that appear operative in maintaining the antigen unresponsiveness of anergic B cells. In addition, we present new data indicating that the failure of anergic B cells to mobilize calcium in response to antigen stimulation is not mediated by inactivation of stromal interacting molecule 1, a critical intermediary in intracellular store depletion-induced calcium influx. PMID:20727040

  8. B-cell markers in malignant B-cell lymphoma with scleroderma-like manifestation.

    PubMed

    Van Joost, T; Stolz, E; Blog, F B; Van der Kwast, T H; Vuzevski, V D; Van Dongen, J M

    1984-12-01

    A case is described of malignant B-cell lymphoma with scleroderma-like manifestation. Using different monoclonals as B-cell markers the tumor appeared to be positive for surface immunoglobulins (SmIg) and for B2-antigen, but negative for intracytoplasmic immunoglobulin (CIg), BA2- and FMC7-antigens. Therefore, the tumor could be determined as a highly differentiated Sm-positive early B-cell type of B-cell lymphoma. In this clinically rare manifestation of cutaneous B-cell lymphoma aspects of the cell morphology and of cellular mediated immunity are briefly discussed.

  9. Expression cloning of human B cell immunoglobulins.

    PubMed

    Wardemann, Hedda; Kofer, Juliane

    2013-01-01

    The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.

  10. Primary cutaneous B-cell lymphoma.

    PubMed

    Bogle, Melissa A; Riddle, Christy C; Triana, Emily M; Jones, Dan; Duvic, Madeleine

    2005-09-01

    Primary cutaneous B-cell lymphomas include extranodal marginal zone B-cell lymphoma, follicular lymphoma, large B-cell lymphoma, and, rarely, mantle cell lymphoma. Our purpose in conducting this review was to determine the clinical and behavioral characteristics of primary cutaneous B-cell lymphomas, their relationship to infectious triggers, and therapeutic response. We conducted a retrospective chart review of 23 adult patients presenting to the dermatology clinic at M. D. Anderson Cancer Center with primary cutaneous B-cell lymphoma between January 1999 and May 2003. Primary cutaneous B-cell lymphomas generally present on the head and neck, with the trunk and extremities afflicted to a lesser extent. Patients were found to have serologic evidence of prior infection with Borrelia burgdorferi (n = 10), Helicobacter pylori (n = 5), and Epstein-Barr virus (n = 6). Overall, treatment of primary cutaneous B-cell lymphoma should involve multiple modalities; however, specific treatment aimed at concurrent or suspected infection, particularly B burgdorferi, is a helpful adjunct and may achieve complete remission in a small subset of patients.

  11. Patients with Tuberculosis Have a Dysfunctional Circulating B-Cell Compartment, Which Normalizes following Successful Treatment

    PubMed Central

    del Nonno, Franca; Baiocchini, Andrea; Petrone, Linda; Vanini, Valentina; Smits, Hermelijn H.; Palmieri, Fabrizio; Goletti, Delia; Ottenhoff, Tom H. M.

    2016-01-01

    B-cells not only produce immunoglobulins and present antigens to T-cells, but also additional key roles in the immune system. Current knowledge on the role of B-cells in infections caused by intracellular bacteria is fragmentary and contradictory. We therefore analysed the phenotypical and functional properties of B-cells during infection and disease caused by Mycobacterium tuberculosis (Mtb), the bacillus causing tuberculosis (TB), and included individuals with latent TB infection (LTBI), active TB, individuals treated successfully for TB, and healthy controls. Patients with active or treated TB disease had an increased proportion of antibodies reactive with mycobacteria. Patients with active TB had reduced circulating B-cell frequencies, whereas only minor increases in B-cells were detected in the lungs of individuals deceased from TB. Both active TB patients and individuals with LTBI had increased relative fractions of B-cells with an atypical phenotype. Importantly, these B-cells displayed impaired proliferation, immunoglobulin- and cytokine- production. These defects disappeared upon successful treatment. Moreover, T-cell activity was strongest in individuals successfully treated for TB, compared to active TB patients and LTBI subjects, and was dependent on the presence of functionally competent B-cells as shown by cellular depletion experiments. Thus, our results reveal that general B-cell function is impaired during active TB and LTBI, and that this B-cell dysfunction compromises cellular host immunity during Mtb infection. These new insights may provide novel strategies for correcting Mtb infection-induced immune dysfunction towards restored protective immunity. PMID:27304615

  12. Enhanced Cultivation Of Stimulated Murine B Cells

    NASA Technical Reports Server (NTRS)

    Sammons, David W.

    1994-01-01

    Method of in vitro cultivation of large numbers of stimulated murine B lymphocytes. Cells electrofused with other cells to produce hybridomas and monoclonal antibodies. Offers several advantages: polyclonally stimulated B-cell blasts cultivated for as long as 14 days, hybridomas created throughout culture period, yield of hybridomas increases during cultivation, and possible to expand polyclonally in vitro number of B cells specific for antigenic determinants first recognized in vivo.

  13. IL-21 is the primary common γ chain-binding cytokine required for human B-cell differentiation in vivo

    PubMed Central

    Recher, Mike; Berglund, Lucinda J.; Avery, Danielle T.; Cowan, Morton J.; Gennery, Andrew R.; Smart, Joanne; Peake, Jane; Wong, Melanie; Pai, Sung-Yun; Baxi, Sachin; Walter, Jolan E.; Palendira, Umaimainthan; Tangye, Gillian A.; Rice, Michael; Brothers, Shannon; Al-Herz, Waleed; Oettgen, Hans; Eibel, Hermann; Puck, Jennifer M.; Cattaneo, Federica; Ziegler, John B.; Giliani, Silvia

    2011-01-01

    SCID resulting from mutations in IL2RG or JAK3 is characterized by lack of T and natural killer cells; B cells are present in normal number, but antibody responses are defective. Hematopoietic cell transplantation (HCT) is curative for SCID. However, B-cell dysfunction persists in a substantial proportion of patients. We hypothesized that impaired B-cell responses after HCT in IL2RG/JAK3 deficiency results from poor donor B-cell engraftment and defective γc-dependent cytokine signaling in host B cells. To test this, and to identify which γc cytokine(s) is critical for humoral immunity, we studied 28 transplanted patients with IL2RG/JAK3 deficiency. Lack of donor B-cell engraftment associated with persistent humoral dysfunction and significantly reduced memory B cells. B-cell proliferation induced by CD40L alone or together with CpG, anti-Ig, IL-4, IL-10, or IL-13 was comparable in healthy controls and in post-HCT SCID patients, irrespective of their chimerism status. However, in vitro stimulation with CD40L/IL-21 induced B-cell proliferation, plasmablast differentiation, and antibody secretion in patients with donor B cells, but not in patients with autologous B cells. These data imply that IL-21–mediated signaling is critical for long-lived humoral immunity and to restore antibody responses in IL2RG/JAK3-deficient patients after HCT. Furthermore, in vitro stimulation with CD40L/IL-21 can predict in vivo B-cell immunity in IL2RG/JAK3 SCID after transplantation. PMID:22039266

  14. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors.

    PubMed

    Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James

    2015-12-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.

  15. A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCR(-) B cells.

    PubMed

    Boisson, Bertrand; Wang, Yong-Dong; Bosompem, Amma; Ma, Cindy S; Lim, Annick; Kochetkov, Tatiana; Tangye, Stuart G; Casanova, Jean-Laurent; Conley, Mary Ellen

    2013-11-01

    Approximately 90% of patients with isolated agammaglobulinemia and failure of B cell development have mutations in genes required for signaling through the pre–B cell and B cell receptors. The nature of the gene defect in the majority of remaining patients is unknown. We recently identified 4 patients with agammaglobulinemia and markedly decreased numbers of peripheral B cells. The B cells that could be detected had an unusual phenotype characterized by the increased expression of CD19 but the absence of a B cell receptor. Genetic studies demonstrated that all 4 patients had the exact same de novo mutation in the broadly expressed transcription factor E47. The mutant protein (E555K) was stable in patient-derived EBV-transformed cell lines and cell lines transfected with expression vectors. E555K in the transfected cells localized normally to the nucleus and resulted in a dominant negative effect when bound to DNA as a homodimer with wild-type E47. Mutant E47 did permit DNA binding by a tissue-specific heterodimeric DNA-binding partner, myogenic differentiation 1 (MYOD). These findings document a mutational hot-spot in E47 and represent an autosomal dominant form of agammaglobulinemia. Further, they indicate that E47 plays a critical role in enforcing the block in development of B cell precursors that lack functional antigen receptors. PMID:24216514

  16. Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses.

    PubMed

    Deal, Emily M; Lahl, Katharina; Narváez, Carlos F; Butcher, Eugene C; Greenberg, Harry B

    2013-06-01

    B cell-dependent immunity to rotavirus, an important intestinal pathogen, plays a significant role in viral clearance and protects against reinfection. Human in vitro and murine in vivo models of rotavirus infection were used to delineate the role of primary plasmacytoid DCs (pDCs) in initiating B cell responses. Human pDCs were necessary and sufficient for B cell activation induced by rotavirus. Type I IFN recognition by B cells was essential for rotavirus-mediated B cell activation in vitro and murine pDCs and IFN-α/β-mediated B cell activation after in vivo intestinal rotavirus infection. Furthermore, rotavirus-specific serum and mucosal antibody responses were defective in mice lacking functional pDCs at the time of infection. These data demonstrate that optimal B cell activation and virus-specific antibody secretion following mucosal infection were a direct result of pDC-derived type I IFN. Importantly, viral shedding significantly increased in pDC-deficient mice, suggesting that pDC-dependent antibody production influences viral clearance. Thus, mucosal pDCs critically influence the course of rotavirus infection through rotavirus recognition and subsequent IFN production and display powerful adjuvant properties to initiate and enhance humoral immunity.

  17. Responses of neonatal rat islets to streptozotocin: limited B-cell regeneration and hyperglycemia.

    PubMed

    Bonner-Weir, S; Trent, D F; Honey, R N; Weir, G C

    1981-01-01

    Streptozotocin (SZ) was given to 2-day-old neonatal rats, and, during their subsequent development, the interrelationships between plasma glucose, plasma insulin, pancreatic islet morphology, and hormone content were examined. At 4 days of age, a peak of hyperglycemia was observed (SZ, 349 plus or minus 8 mg/dl versus control (C), 127 plus or minus 2) that was associated with a marked reduction of B-cell numbers (SZ, 26.5 plus or minus 2.6% B-cell per islet versus C, 72.8 plus or minus 0.8%). By 10 days of age the SZ animals became normoglycemia with partial recovery of the B-cell number (SZ, 39.6 plus or minus 2.1% versus, C, 64.0 plus or minus 2.6%). By six weeks hyperglycemia returned (SZ, 345 plus or minus 5.2 mg/dl versus C, 171 plus or minus 6.2) with B-cell number of the SZ being 72% of the C (SZ, 48.8 plus or minus 2.4% versus C, 67.5 plus or minus 1.5%). This hyperglycemia and reduced B-cell number persisted to at least 13 wk age. Despite a marked reduction of pancreatic insulin content observed during development, there was little effect upon glucagon or somatostatin content. At 6 wk of age, the plasma insulin concentration was only 30% of C, which suggests as insulin secretory defect beyond that which could be accounted for by the modest B-cell reduction. The present study indicates that even though active regeneration of B-cells occurred after early injury, the capacity for ultimate normalization was limited. The resultant moderate reduction in B-cell number may be associated with a functional defect in glucose-stimulated insulin secretion.

  18. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy.

    PubMed

    Li, Rui; Rezk, Ayman; Miyazaki, Yusei; Hilgenberg, Ellen; Touil, Hanane; Shen, Ping; Moore, Craig S; Michel, Laure; Althekair, Faisal; Rajasekharan, Sathy; Gommerman, Jennifer L; Prat, Alexandre; Fillatreau, Simon; Bar-Or, Amit

    2015-10-21

    B cells are not limited to producing protective antibodies; they also perform additional functions relevant to both health and disease. However, the relative contribution of functionally distinct B cell subsets in human disease, the signals that regulate the balance between such subsets, and which of these subsets underlie the benefits of B cell depletion therapy (BCDT) are only partially elucidated. We describe a proinflammatory, granulocyte macrophage-colony stimulating factor (GM-CSF)-expressing human memory B cell subset that is increased in frequency and more readily induced in multiple sclerosis (MS) patients compared to healthy controls. In vitro, GM-CSF-expressing B cells efficiently activated myeloid cells in a GM-CSF-dependent manner, and in vivo, BCDT resulted in a GM-CSF-dependent decrease in proinflammatory myeloid responses of MS patients. A signal transducer and activator of transcription 5 (STAT5)- and STAT6-dependent mechanism was required for B cell GM-CSF production and reciprocally regulated the generation of regulatory IL-10-expressing B cells. STAT5/6 signaling was enhanced in B cells of untreated MS patients compared with healthy controls, and B cells reemerging in patients after BCDT normalized their STAT5/6 signaling as well as their GM-CSF/IL-10 cytokine secretion ratios. The diminished proinflammatory myeloid cell responses observed after BCDT persisted even as new B cells reconstituted. These data implicate a proinflammatory B cell/myeloid cell axis in disease and underscore the rationale for selective targeting of distinct B cell populations in MS and other human autoimmune diseases. PMID:26491076

  19. Human norovirus culture in B cells.

    PubMed

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-12-01

    Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires ∼6 h.

  20. B cells in autoimmune diseases: Insights from analyses of immunoglobulin variable (Ig V) gene usage

    PubMed Central

    Foreman, Angela Lee; Van de Water, Judy; Gougeon, Marie-Lise; Gershwin, M. Eric

    2007-01-01

    The role of B cells in autoimmune diseases has not been fully elucidated. It is also unclear whether breaking of B cell tolerance in patients with autoimmune diseases is due to underlying defects in the molecular mechanisms involved in the arrangement of antibody genes or deficiencies in the subsequent selective influences that shape the antibody repertoire. Analysis of immunoglobulin (Ig) variable (V) gene usage is beginning to provide answers to some of these questions. Such analyses have identified some differences in the basic Ig V gene repertoire of patients with autoimmune diseases compared to healthy controls, even though none of these differences can be considered major. Defects in positive and negative selection, mutational targeting and, in some cases, receptor editing have also been detected. In addition, analysis of Ig V gene usage in target organs and tissues of patients with autoimmune diseases have clearly demonstrated that there is a highly compartmentalized clonal expansion of B cells driven by a limited number of antigens in these tissues. Great progress has been made in the structural and functional characterization of disease-associated antibodies, largely because of the development of the combinatorial library technique. Use of antibodies generated by this technique offers great promise in identifying B cell epitopes on known target antigens and in gaining greater insights into the pathogenic role of B cells in both B- and T-cell-mediated autoimmune diseases. PMID:17537385

  1. Comparative Study of Bone Marrow and Blood B Cells in Infantile and Acquired Agammaglobulinemia

    PubMed Central

    Abdou, Nabih I.; Casella, Salvatore R.; Abdou, Nancy L.; Abrahamsohn, Ises A.

    1973-01-01

    The status of immunoglobulin (Ig) receptors of the bone marrow dependent (B) cells present in either the bone marrow (BM) or peripheral blood (PB) of three patients with infantile agammaglobulinemia (I-AGG), or seven patients with acquired agammaglobulinemia (A-AGG) is compared with those of 12 controls. Quantitative and qualitative changes of the different classes of Ig receptors on B cells were evaluated by their capacity to bind [125I]anti-Ig, to be stained with fluorescinated anti-Ig and their in vitro proliferative capacity upon incubation with the anti-Ig. Patients with I-AGG lacked B cells in both the BM and PB. Whereas BM cells of patients with A-AGG carried receptors similar to control cells, their blood B cells had fewer IgM, IgG, and IgA cells which failed to proliferate in vitro in the presence of the anti-Ig. An anti-IgM of the IgG class was detected in the sera of patients with A-AGG but not in sera of I-AGG. The isolated anti-IgM agglutinated human red cells coated with IgM. The anti-IgM partially blocked the binding of fluorescinated or radiolabeled anti-IgM to IgM peripheral blood lymphocytes of normal controls. The eluted anti-IgM in presence of complement was partially cytotoxic to normal cells. It is concluded that I-AGG-B cell defect is due to failure of B cell development in the bone marrow compartment whereas the peripheral exclusion of IgM cells by an anti-IgM with the subsequent failure of differentiation of both IgG and IgA cells could be an important mechanism in A-AGG-B cell defect. PMID:4580388

  2. TSC1 Promotes B Cell Maturation but Is Dispensable for Germinal Center Formation

    PubMed Central

    Wang, Hongxia; Carico, Zachary; Hopper, Kristen; Shin, Jinwook; Deng, Xuming; Qiu, Yirong; Unniraman, Shyam; Kelsoe, Garnett; Zhong, Xiao-Ping

    2015-01-01

    Accumulating evidence indicates that the tuberous sclerosis complex 1 (TSC1), a tumor suppressor that acts by inhibiting mTOR signaling, plays an important role in the immune system. We report here that TSC1 differentially regulates mTOR complex 1 (mTORC1) and mTORC2/Akt signaling in B cells. TSC1 deficiency results in the accumulation of transitional-1 (T1) B cells and progressive losses of B cells as they mature beyond the T1 stage. Moreover, TSC1KO mice exhibit a mild defect in the serum antibody responses or rate of Ig class-switch recombination after immunization with a T-cell-dependent antigen. In contrast to a previous report, we demonstrate that both constitutive Peyer’s patch germinal centers (GCs) and immunization-induced splenic GCs are unimpaired in TSC1-deficient (TSC1KO) mice and that the ratio of GC B cells to total B cells is comparable in WT and TSC1KO mice. Together, our data demonstrate that TSC1 plays important roles for B cell development, but it is dispensable for GC formation and serum antibody responses. PMID:26000908

  3. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function.

    PubMed

    Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R

    2016-01-19

    The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells.

  4. Mitogen-stimulated phospholipid synthesis in normal and immune-deficient human B cells

    SciTech Connect

    Chien, M.M.; Yokoyama, W.M.; Ashman, R.F.

    1986-04-15

    Eight patients with common variable panhypogammaglobulinemia were shown in the in vitro Ig biosynthesis assay to have defective B cell responses to pokeweed mitogen (PWM). Phospholipid synthesis was assessed in the B cell plus monocyte fraction (MB) and irradiated T cells (T*) of patients and paired normal controls. Cell populations were studied separately and in the four possible combinations (1:1), with and without PWM, to reveal the effect of cell interactions. At 16 to 20 hr the mean stimulation index (SI) +/- standard error for MB cells alone was 1.01 +/- 0.02 for eight patients and 0.99 +/- 0.02 for the paired normals; the T* cell SI was 1.25 +/- 0.04 for patients and 1.28 +/- 0.05 for normals. Combinations of normal MB cells with normal T* cells showed significantly higher SI when compared with the combinations of normal MB cells with patient T* cells (p less than 0.005). However, the combination of patient MB cells with patient T* cells and the combination of patient MB cells with normal T* cells were not significantly different in SI (0.05 less than p less than 0.1). Isolation of patient and normal B cells, T* cells, and monocytes after the choline pulse showed that patient B cells gave a higher SI with normal T* help than with patient T* help. Of greatest interest is the finding that patient B cells that were defective in PWM-stimulated Ig production nevertheless showed a phospholipid synthesis response to PWM in the normal range, suggesting that the maturation defect in these B cells occurs later than the phospholipid synthesis acceleration step, or on a different pathway.

  5. Interaction of Staphylococci with Human B cells

    PubMed Central

    Nygaard, Tyler K.; Kobayashi, Scott D.; Freedman, Brett; Porter, Adeline R.; Voyich, Jovanka M.; Otto, Michael; Schneewind, Olaf; DeLeo, Frank R.

    2016-01-01

    Staphylococcus aureus is a leading cause of human infections worldwide. The pathogen produces numerous molecules that can interfere with recognition and binding by host innate immune cells, an initial step required for the ingestion and subsequent destruction of microbes by phagocytes. To better understand the interaction of this pathogen with human immune cells, we compared the association of S. aureus and S. epidermidis with leukocytes in human blood. We found that a significantly greater proportion of B cells associated with S. epidermidis relative to S. aureus. Complement components and complement receptors were important for the binding of B cells with S. epidermidis. Experiments using staphylococci inactivated by ultraviolet radiation and S. aureus isogenic deletion mutants indicated that S. aureus secretes molecules regulated by the SaeR/S two-component system that interfere with the ability of human B cells to bind this bacterium. We hypothesize that the relative inability of B cells to bind S. aureus contributes to the microbe’s success as a human pathogen. PMID:27711145

  6. B cell abnormalities in systemic lupus erythematosus

    PubMed Central

    2003-01-01

    Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease characterized by the differentiation of short- and long-lived immunoglobulin secreting plasma cells that secrete pathogenic autoantibodies. Ectopic germinal centers and plasma cells secreting autoantibodies have been observed in lupus nephritis kidneys. Candidate genetic susceptibility loci for SLE include genes that affect differentiation and survival of plasma cells, such as those that influence activation, proliferation, cytokine and chemokine secretion/responsiveness, and apoptosis of the T and B cells that are involved in humoral immunity generated in germinal centers, as well as genes that are involved in presentation and clearance of apoptotic material and autoantigens by antigen presenting cells and other phagocytes. Emerging data have demonstrated that B lymphocytes are active participants in humoral immune responses that lead to T-dependent and T-independent differentiation of immunoglobulin-secreting plasma cells by homotypic CD154–CD40 interactions as well as continued stimulation by B cell activating factor through B cell maturation antigen, B cell activating factor receptor and transmembrane activater. PMID:15180894

  7. B cell abnormalities in systemic lupus erythematosus.

    PubMed

    Grammer, Amrie C; Lipsky, Peter E

    2003-01-01

    Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease characterized by the differentiation of short- and long-lived immunoglobulin secreting plasma cells that secrete pathogenic autoantibodies. Ectopic germinal centers and plasma cells secreting autoantibodies have been observed in lupus nephritis kidneys. Candidate genetic susceptibility loci for SLE include genes that affect differentiation and survival of plasma cells, such as those that influence activation, proliferation, cytokine and chemokine secretion/responsiveness, and apoptosis of the T and B cells that are involved in humoral immunity generated in germinal centers, as well as genes that are involved in presentation and clearance of apoptotic material and autoantigens by antigen presenting cells and other phagocytes. Emerging data have demonstrated that B lymphocytes are active participants in humoral immune responses that lead to T-dependent and T-independent differentiation of immunoglobulin-secreting plasma cells by homotypic CD154-CD40 interactions as well as continued stimulation by B cell activating factor through B cell maturation antigen, B cell activating factor receptor and transmembrane activater.

  8. Dominant neurologic symptomatology in intravascular large B-cell lymphoma.

    PubMed

    Kubisova, K; Martanovic, P; Sisovsky, V; Tomleinova, Z; Steno, A; Janega, P; Rychly, B; Babal, P

    2016-01-01

    Intravascular large B-cell lymphoma (IVLBCL) is a rare variant of extranodal large B-cell lymphoma and it is characterized by selective intravascular proliferation of malignant cells. Typical features of the disease include aggressive behavior, rapid and frequently fatal course. Clinical picture is non-specific and heterogeneous, depending on the affected organ. It is not uncommon that this unique type of lymphoma is diagnosed post mortem. Herein, we report two cases of IVLBCL with neurologic symptomatology. In our clinical study patient 1 was an 80-year-old male with mixed paraparesis of lower extremities and difficulties with sphincter control. Patient 2 (56-year-old male) had vision malfunction, mental status changes and defect in phatic and motor functions. In both cases definite diagnosis was established by histological examination of necroptic material. We propose to include IVLBCL in differential diagnostic considerations in patients presenting with gradually impairing neurological status and spinal cord damage of unknown etiology (Fig. 2, Ref. 9). PMID:27546361

  9. Reduced Immunocompetent B Cells and Increased Secondary Infection in Elderly Patients With Severe Sepsis.

    PubMed

    Suzuki, Kodai; Inoue, Shigeaki; Kametani, Yoshie; Komori, Yukako; Chiba, Sayuri; Sato, Takehito; Inokuchi, Sadaki; Ogura, Shinji

    2016-09-01

    Lymphocyte exhaustion was recently recognized as a mechanism of immunosuppression in sepsis. While B cells are known to play pivotal roles in bacterial infection and sepsis, changes in B-cell-mediated humoral immunity have not been evaluated in critically ill septic patients. We aimed to investigate changes in humoral immunity caused by defective B-cell function during severe sepsis. Thirty-three severe sepsis patients and 44 healthy subjects were prospectively enrolled. Blood was collected from patients within 72 h of and 8 to 11 h after sepsis onset to measure B-cell subtypes, serum immunoglobulin M concentration, and CpG-B oligodeoxynucleotide-induced immunoglobulin M (IgM) production ex vivo. Participants were divided into two age groups: adults (18-64 years) and elderly (≥65 years). The fraction of CD21 exhausted B cells in acute sepsis patients (3.18%) was higher than that observed in healthy donors (0.77%, respectively, P <0.01). Significantly, serum IgM in elderly septic patients (≥65 years) was negatively correlated with acute physiology and chronic health evaluation II score (r = -0.57, P <0.05). Consistently, in B cells stimulated ex vivo, both aging and sepsis induced significant reductions in supernatant IgM (P <0.01). This finding was clinically relevant, as elderly patients with decreased IgM production might be more susceptible to infection by Gram-negative bacteria and fungi. Reduced immunocompetent B cells may be related to increased secondary infection after sepsis, especially in the elderly. Finally, impaired humoral immunity with increased CD21 exhausted B cells and insufficient immunoglobulin M production may be a critical immunological change in sepsis. PMID:27172158

  10. Bruton's tyrosine kinase--an integral protein of B cell development that also has an essential role in the innate immune system.

    PubMed

    López-Herrera, Gabriela; Vargas-Hernández, Alexander; González-Serrano, Maria Edith; Berrón-Ruiz, Laura; Rodríguez-Alba, Juan Carlos; Espinosa-Rosales, Francisco; Santos-Argumedo, Leopoldo

    2014-02-01

    Btk is the protein affected in XLA, a disease identified as a B cell differentiation defect. Btk is crucial for B cell differentiation and activation, but its role in other cells is not fully understood. This review focuses on the function of Btk in monocytes, neutrophils, and platelets and the receptors and signaling cascades in such cells with which Btk is associated.

  11. Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies.

    PubMed

    Sangaletti, Sabina; Tripodo, Claudio; Portararo, Paola; Dugo, Matteo; Vitali, Caterina; Botti, Laura; Guarnotta, Carla; Cappetti, Barbara; Gulino, Alessandro; Torselli, Ilaria; Casalini, Patrizia; Chiodoni, Claudia; Colombo, Mario P

    2014-01-01

    Neoplastic B-cell clones commonly arise within secondary lymphoid organs (SLO). However, during disease progression, lymphomatous cells may also colonize the bone marrow (BM), where they localize within specialized stromal niches, namely the osteoblastic and the vascular niche, according to their germinal center- or extra-follicular-derivation, respectively. We hypothesized the existence of common stromal motifs in BM and SLO B-cell lymphoid niches involved in licensing normal B-cell development as well as in fostering transformed B lymphoid cells. Thus, we tested the expression of prototypical mesenchymal stromal cell (MSC) markers and regulatory matricellular proteins in human BM and SLO under physiologically unperturbed conditions and during B-cell lymphoma occurrence. We identified common stromal features in the BM osteoblastic niche and SLO germinal center (GC) microenvironments, traits that were also enriched within BM infiltrates of GC-associated B-cell lymphomas, suggesting that stromal programs involved in central and peripheral B-cell lymphopoiesis are also involved in malignant B-cell nurturing. Among factors co-expressed by stromal elements within these different specialized niches, we identified the pleiotropic matricellular protein secreted protein acidic and rich in cysteine (SPARC). The actual role of stromal SPARC in normal B-cell lymphopoiesis, investigated in Sparc(-/-) mice and BM chimeras retaining the Sparc(-/-) genotype in host stroma, demonstrated defective BM and splenic B-cell lymphopoiesis. Moreover, in the Trp53 knockout (KO) lymphoma model, p53(-/-)/Sparc(-/-) double-KO mice displayed impaired spontaneous splenic B-cell lymphomagenesis and reduced neoplastic clone BM infiltration in comparison with their p53(-/-)/Sparc(+/+) counterparts. Our results are among the first to demonstrate the existence of common stromal programs regulating both the BM osteoblastic niche and the SLO GC lymphopoietic functions potentially fostering the genesis

  12. Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies.

    PubMed

    Sangaletti, Sabina; Tripodo, Claudio; Portararo, Paola; Dugo, Matteo; Vitali, Caterina; Botti, Laura; Guarnotta, Carla; Cappetti, Barbara; Gulino, Alessandro; Torselli, Ilaria; Casalini, Patrizia; Chiodoni, Claudia; Colombo, Mario P

    2014-01-01

    Neoplastic B-cell clones commonly arise within secondary lymphoid organs (SLO). However, during disease progression, lymphomatous cells may also colonize the bone marrow (BM), where they localize within specialized stromal niches, namely the osteoblastic and the vascular niche, according to their germinal center- or extra-follicular-derivation, respectively. We hypothesized the existence of common stromal motifs in BM and SLO B-cell lymphoid niches involved in licensing normal B-cell development as well as in fostering transformed B lymphoid cells. Thus, we tested the expression of prototypical mesenchymal stromal cell (MSC) markers and regulatory matricellular proteins in human BM and SLO under physiologically unperturbed conditions and during B-cell lymphoma occurrence. We identified common stromal features in the BM osteoblastic niche and SLO germinal center (GC) microenvironments, traits that were also enriched within BM infiltrates of GC-associated B-cell lymphomas, suggesting that stromal programs involved in central and peripheral B-cell lymphopoiesis are also involved in malignant B-cell nurturing. Among factors co-expressed by stromal elements within these different specialized niches, we identified the pleiotropic matricellular protein secreted protein acidic and rich in cysteine (SPARC). The actual role of stromal SPARC in normal B-cell lymphopoiesis, investigated in Sparc(-/-) mice and BM chimeras retaining the Sparc(-/-) genotype in host stroma, demonstrated defective BM and splenic B-cell lymphopoiesis. Moreover, in the Trp53 knockout (KO) lymphoma model, p53(-/-)/Sparc(-/-) double-KO mice displayed impaired spontaneous splenic B-cell lymphomagenesis and reduced neoplastic clone BM infiltration in comparison with their p53(-/-)/Sparc(+/+) counterparts. Our results are among the first to demonstrate the existence of common stromal programs regulating both the BM osteoblastic niche and the SLO GC lymphopoietic functions potentially fostering the genesis

  13. Receptor editing and marginal zone B cell development are regulated by the helix-loop-helix protein, E2A.

    PubMed

    Quong, Melanie W; Martensson, Annica; Langerak, Anton W; Rivera, Richard R; Nemazee, David; Murre, Cornelis

    2004-04-19

    Previous studies have indicated that the E2A gene products are required to initiate B lineage development. Here, we demonstrate that E2A(+/-) B cells that express an autoreactive B cell receptor fail to mature due in part to an inability to activate secondary immunoglobulin (Ig) light chain gene rearrangement. Both RAG1/2 gene expression and RS deletion are severely defective in E2A(+/-) mice. Additionally, we demonstrate that E2A(+/-) mice show an increase in the proportion of marginal zone B cells with a concomitant decrease in the proportion of follicular B cells. In contrast, Id3-deficient splenocytes show a decline in the proportion of marginal zone B cells. Based on these observations, we propose that E-protein activity regulates secondary Ig gene rearrangement at the immature B cell stage and contributes to cell fate determination of marginal zone B cells. Additionally, we propose a model in which E-proteins enforce the developmental checkpoint at the immature B cell stage.

  14. Suppression of PI(3,4,5)P3 production is a key determinant of B cell anergy

    PubMed Central

    Browne, Cecille D.; Del Nagro, Christopher J.; Cato, Matthew H.; Dengler, Hart S.; Rickert, Robert C.

    2009-01-01

    Summary Anergy is a critical physiologic mechanism to censor self-reactive B cells. However, a biochemical understanding of how anergy is achieved and maintained is lacking. Herein, we investigated the role of the phosphoinositide 3-kinase (PI3K) lipid product PI(3,4,5)P3 in B cell anergy. We found reduced generation of PI(3,4,5)P3 in anergic B cells, which was attributable to reduced phosphorylation of the PI3K membrane adaptor CD19, as well as increased expression of the inositol phosphatase PTEN. Sustained production of PI(3,4,5)P3 in B cells, achieved through conditional deletion of Pten, resulted in failed tolerance induction and abundant autoantibody production. In contrast to wildtype immature B cells, BCR engagement of PTEN-deficient immature B cells resulted in activation and proliferation, indicating a central defect in early B cell responsiveness. These findings establish repression of the PI3K signaling pathway as a necessary condition to avert the generation, activation and persistence of self-reactive B cells. PMID:19896393

  15. Advances in Human B Cell Phenotypic Profiling

    PubMed Central

    Kaminski, Denise A.; Wei, Chungwen; Qian, Yu; Rosenberg, Alexander F.; Sanz, Ignacio

    2012-01-01

    To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (“Big Biology”), necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort. PMID:23087687

  16. B Cell Lymphoma mimicking Rheumatoid Arthritis.

    PubMed

    Cosatti, M A; Pisoni, C N; Altuve, J L; Lorente, C

    2016-01-01

    Non Hodking´s lymphoma (NHL) may involve bones but synovial involvement is uncommon. We describe a patient who presented with polyarthritis, sicca symptoms and rash suggestive of rheumatoid arthritis. An atypical skin rash prompted skin and synovial biopsies. A diagnosis of synovial and skin malignant large B-cell lymphoma anaplastic subtype was performed. Chemotherapy with dexamethasone, vincristine and rituximab was started. Following treatment the patient had complete resolution of cutaneous and articular lymphoma manifestations. PMID:27419896

  17. New insights in the regulation of human B cell differentiation

    PubMed Central

    Schmidlin, Heike; Diehl, Sean A.; Blom, Bianca

    2009-01-01

    B lymphocytes provide the cellular basis of the humoral immune response. All stages of this process, from B cell activation to formation of germinal centers and differentiation into memory B cells or plasma cells, are influenced by extrinsic signals and controlled by transcriptional regulation. Compared to naïve B cells, memory B cells display a distinct expression profile, which allows for their rapid secondary responses. Indisputably, many B cell malignancies result from aberrations in the circuitry controlling B cell function, particularly during the GC reaction. Here we review new insights into memory B cell subtypes, recent literature on transcription factors regulating human B cell differentiation, and further evidence for B cell lymphomagenesis emanating from errors during the GC cell reactions. PMID:19447676

  18. Germinal center B cells and mixed leukocyte reactions

    SciTech Connect

    Monfalcone, A.P.; Kosco, M.H.; Szakal, A.K.; Tew, J.G. )

    1989-09-01

    The present study was undertaken to determine if germinal center (GC) B cells are sufficiently activated to stimulate mixed leukocyte reactions (MLR). Percoll density fractionation and a panning technique with peanut agglutinin (PNA) were used to isolate GC B cells from the lymph nodes of immune mice. The GC B cells were treated with mitomycin C or irradiation and used to stimulate allogeneic or syngeneic splenic T cells in the MLR. Controls included high-density (HD) B cells prepared from spleens of the same mice and HD B cells activated with lipopolysaccharide (LPS) and dextran sulfate. GC B cells bound high amount sof PNA (i.e., PNAhi). Similarly, the LPS-dextran sulfate-activated B cells were PNAhi. Treatment with neuraminidase rendered the PNAlo HD B cells PNAhi. GC B cells and the LPS-dextran sulfate-activated HD B cells stimulated a potent MLR, while the untreated HD B cells did not. However, following neuraminidase treatment, the resulting PNAhi HD B cell population was able to induce an MLR. The PNA marker appeared to be an indicator of stimulatory activity, but incubating the cells with PNA to bind the cell surface ligand did not interfere with the MLR. GC B cells were also capable of stimulating a syngeneic MLR in most experiments although this was not consistently obtained. It appears that germinal centers represent a unique in vivo microenvironment that provides the necessary signals for B cells to become highly effective antigen-presenting cells.

  19. Epigenetics and B-cell Lymphoma

    PubMed Central

    Shaknovich, Rita; Melnick, Ari

    2011-01-01

    STRUCTURED ABSTRACT Purpose of review It has only recently become apparent that mutations in epigenetic mechanisms and perturbation of epigenomic patterning are frequent events in B-cell lymphomas. The purpose of this review is to highlight these new findings and provide a conceptual framework for understanding how epigenetic modifications might contribute to lymphomagenesis. Recent findings Somatic mutations affecting histone methyltransferases such as EZH2 and MLL2, histone demethylases including UTX and JMJD2C and histone acetyltransferases including CBP and p300 are recurrent and common in lymphomas. These mutations result in disruption of chromatin structure and functions of other proteins, ultimately causing aberrant transcriptional programming affecting multiple gene networks. Widespread perturbation of cytosine methylation patterning now appears to be a hallmark of B-cell lymphomas and occurs in specific patterns that can distinguish disease subtypes. Therapeutic targeting strategies can overcome abnormal epigenetic mechanisms and potently kill lymphoma cells. Summary Newly discovered epigenetic lesions may provide critical insights into the genesis of B-cell lymphomas but further studies are required to understand how they affect biological mechanism. Epigenetic lesions offer tremendous opportunities for the development of improved biomarkers and treatments. PMID:21577103

  20. Class-switched B cells display response to therapeutic B-cell depletion in rheumatoid arthritis

    PubMed Central

    Möller, Burkhard; Aeberli, Daniel; Eggli, Stefan; Fuhrer, Martin; Vajtai, Istvan; Vögelin, Esther; Ziswiler, Hans-Rudolf; Dahinden, Clemens A; Villiger, Peter M

    2009-01-01

    Introduction Reconstitution of peripheral blood (PB) B cells after therapeutic depletion with the chimeric anti-CD20 antibody rituximab (RTX) mimics lymphatic ontogeny. In this situation, the repletion kinetics and migratory properties of distinct developmental B-cell stages and their correlation to disease activity might facilitate our understanding of innate and adaptive B-cell functions in rheumatoid arthritis (RA). Methods Thirty-five 'RTX-naïve' RA patients with active arthritis were treated after failure of tumour necrosis factor blockade in an open-label study with two infusions of 1,000 mg RTX. Prednisone dose was tapered according to clinical improvement from a median of 10 mg at baseline to 5 mg at 9 and 12 months. Conventional disease-modifying antirheumatic drugs were kept stable. Subsets of CD19+ B cells were assessed by flow cytometry according to their IgD and CD27 surface expression. Their absolute number and relative frequency in PB were followed every 3 months and were determined in parallel in synovial tissue (n = 3) or synovial fluid (n = 3) in the case of florid arthritis. Results Six of 35 patients fulfilled the European League Against Rheumatism criteria for moderate clinical response, and 19 others for good clinical response. All PB B-cell fractions decreased significantly in number (P < 0.001) after the first infusion. Disease activity developed independently of the total B-cell number. B-cell repopulation was dominated in quantity by CD27-IgD+ 'naïve' B cells. The low number of CD27+IgD- class-switched memory B cells (MemB) in the blood, together with sustained reduction of rheumatoid factor serum concentrations, correlated with good clinical response. Class-switched MemB were found accumulated in flaring joints. Conclusions The present data support the hypothesis that control of adaptive immune processes involving germinal centre-derived, antigen, and T-cell-dependently matured B cells is essential for successful RTX treatment. PMID

  1. A B-Cell Superantigen Induces the Apoptosis of Murine and Human Malignant B Cells

    PubMed Central

    Lorenzo, Daniela; Duarte, Alejandra; Mundiñano, Juliana; Berguer, Paula; Nepomnaschy, Irene; Piazzon, Isabel

    2016-01-01

    B-cell superantigens (Sags) bind to conserved sites of the VH or VL regions of immunoglobulin molecules outside their complementarity-determining regions causing the apoptosis of normal cognate B cells. No attempts to investigate whether B-cell Sags are able to induce the apoptosis of cognate malignant B cells were reported. In the present study we show that protein L (PpL), secreted by Finegoldia magna, a B-cell Sag which interacts with κ+ bearing cells, induces the apoptosis of murine and human κ+ lymphoma B cells both in vitro and in vivo. Apoptosis was not altered by caspase-8 inhibitor. No alterations in the levels of Bid, Fas and Fas-L were found suggesting that PpL does not activate the extrinsic pathway of apoptosis. The involvement of the intrinsic pathway was clearly indicated by: i) alterations in mitochondrial membrane potential (ΔΨm) both in murine and human lymphoma cells exposed to PpL; ii) decreased levels of apoptosis in the presence of caspase-9 inhibitor; iii) significant increases of Bim and Bax protein levels and downregulation of Bcl-2; iv) the translocation from the cytoplasm to the mitochondria of Bax and Bim pro-apoptotic proteins and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor and v) the translocation of Bcl-2 protein from the mitochondria to the cytosol and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor. The possibility of a therapeutic use of Sags in lymphoma/leukemia B cell malignancies is discussed. PMID:27603942

  2. A B-Cell Superantigen Induces the Apoptosis of Murine and Human Malignant B Cells.

    PubMed

    Lorenzo, Daniela; Duarte, Alejandra; Mundiñano, Juliana; Berguer, Paula; Nepomnaschy, Irene; Piazzon, Isabel

    2016-01-01

    B-cell superantigens (Sags) bind to conserved sites of the VH or VL regions of immunoglobulin molecules outside their complementarity-determining regions causing the apoptosis of normal cognate B cells. No attempts to investigate whether B-cell Sags are able to induce the apoptosis of cognate malignant B cells were reported. In the present study we show that protein L (PpL), secreted by Finegoldia magna, a B-cell Sag which interacts with κ+ bearing cells, induces the apoptosis of murine and human κ+ lymphoma B cells both in vitro and in vivo. Apoptosis was not altered by caspase-8 inhibitor. No alterations in the levels of Bid, Fas and Fas-L were found suggesting that PpL does not activate the extrinsic pathway of apoptosis. The involvement of the intrinsic pathway was clearly indicated by: i) alterations in mitochondrial membrane potential (ΔΨm) both in murine and human lymphoma cells exposed to PpL; ii) decreased levels of apoptosis in the presence of caspase-9 inhibitor; iii) significant increases of Bim and Bax protein levels and downregulation of Bcl-2; iv) the translocation from the cytoplasm to the mitochondria of Bax and Bim pro-apoptotic proteins and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor and v) the translocation of Bcl-2 protein from the mitochondria to the cytosol and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor. The possibility of a therapeutic use of Sags in lymphoma/leukemia B cell malignancies is discussed. PMID:27603942

  3. Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis.

    PubMed

    Zhang, JunMei; Jia, Ge; Liu, Qun; Hu, Jue; Yan, Mei; Yang, BaiFeng; Yang, Huan; Zhou, WenBin; Li, Jing

    2015-01-01

    MicroRNAs have been shown to be important regulators of immune homeostasis as patients with aberrant microRNA expression appeared to be more susceptible to autoimmune diseases. We recently found that miR-146a was up-regulated in activated B cells in response to rat acetylcholine receptor (AChR) α-subunit 97-116 peptide, and this up-regulation was significantly attenuated by AntagomiR-146a. Our data also demonstrated that silencing miR-146a with its inhibitor AntagomiR-146a effectively ameliorated clinical myasthenic symptoms in mice with ongoing experimental autoimmune myasthenia gravis. Furthermore, multiple defects were observed after miR-146a was knocked down in B cells, including decreased anti-R97-116 antibody production and class switching, reduced numbers of plasma cells, memory B cells and B-1 cells, and weakened activation of B cells. Previously, miR-146a has been identified as a nuclear factor-κB-dependent gene and predicted to base pair with the tumour necrosis factor receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1) genes to regulate the immune response. However, our study proved that miR-146a inhibition had no effect on the expression of TRAF6 and IRAK1 in B cells. This result suggests that the function of miR-146a in B cells does not involve these two target molecules. We conclude that silencing miR-146a exerts its therapeutic effects by influencing the B-cell functions that contribute to the autoimmune pathogenesis of myasthenia gravis.

  4. IRF8 regulates B-cell lineage specification, commitment, and differentiation

    PubMed Central

    Lee, Chang Hoon; Qi, Chenfeng; Tailor, Prafullakumar; Feng, Jianxun; Abbasi, Sadia; Atsumi, Toru

    2008-01-01

    PU.1, IKAROS, E2A, EBF, and PAX5 comprise a transcriptional network that orchestrates B-cell lineage specification, commitment, and differentiation. Here we identify interferon regulatory factor 8 (IRF8) as another component of this complex, and show that it also modulates lineage choice by hematopoietic stem cells (HSCs). IRF8 binds directly to an IRF8/Ets consensus sequence located in promoter regions of Sfpi1 and Ebf1, which encode PU.1 and EBF, respectively, and is associated with transcriptional repression of Sfpi1 and transcriptional activation of Ebf1. Bone marrows of IRF8 knockout mice (IRF8−/−) had significantly reduced numbers of pre-pro-B cells and increased numbers of myeloid cells. Although HSCs of IRF8−/− mice failed to differentiate to B220+ B-lineage cells in vitro, the defect could be rescued by transfecting HSCs with wild-type but not with a signaling-deficient IRF8 mutant. In contrast, overexpression of IRF8 in HSC-differentiated progenitor cells resulted in growth inhibition and apoptosis. We also found that IRF8 was expressed at higher levels in pre-pro-B cells than more mature B cells in wild-type mice. Together, these results indicate that IRF8 modulates lineage choice by HSCs and is part of the transcriptional network governing B-cell lineage specification, commitment, and differentiation. PMID:18799728

  5. Treatment of ongoing autoimmune encephalomyelitis with activated B-cell progenitors maturing into regulatory B cells

    PubMed Central

    Korniotis, Sarantis; Gras, Christophe; Letscher, Hélène; Montandon, Ruddy; Mégret, Jérôme; Siegert, Stefanie; Ezine, Sophie; Fallon, Padraic G.; Luther, Sanjiv A.; Fillatreau, Simon; Zavala, Flora

    2016-01-01

    The influence of signals perceived by immature B cells during their development in bone marrow on their subsequent functions as mature cells are poorly defined. Here, we show that bone marrow cells transiently stimulated in vivo or in vitro through the Toll-like receptor 9 generate proB cells (CpG-proBs) that interrupt experimental autoimmune encephalomyelitis (EAE) when transferred at the onset of clinical symptoms. Protection requires differentiation of CpG-proBs into mature B cells that home to reactive lymph nodes, where they trap T cells by releasing the CCR7 ligand, CCL19, and to inflamed central nervous system, where they locally limit immunopathogenesis through interleukin-10 production, thereby cooperatively inhibiting ongoing EAE. These data demonstrate that a transient inflammation at the environment, where proB cells develop, is sufficient to confer regulatory functions onto their mature B-cell progeny. In addition, these properties of CpG-proBs open interesting perspectives for cell therapy of autoimmune diseases. PMID:27396388

  6. Efficient induction of cross-presentating human B cell by transduction with human adenovirus type 7 vector.

    PubMed

    Peng, Ying; Lai, Meimei; Lou, Yunyan; Liu, Yanqing; Wang, Huiyan; Zheng, Xiaoqun

    2016-01-01

    Although human autologous B cells represent a promising alternative to dendritic cells (DCs) for easy large-scale preparation, the naive human B cells are always poor at antigen presentation. The safe and effective usage record of human adenovirus type 7 (HAdV7) live vaccines makes it attractive as a promising vaccine vector candidate. To investigate whether HAdV7 vector could be used to induce the human B cells cross-presentation, in the present study, we constructed the E3-defective recombinant HAdV7 vector encoding green fluorescent protein (GFP) and carcinoembryonic antigen (CEA). We demonstrated that naive human B cells can efficiently be transduced, and that the MAPKs/NF-κB pathway can be activated by recombinant HAdV7. We proved that cytokine TNF-α, IL-6 and IL-10, surface molecule MHC class I and the CD86, antigen-processing machinery (APM) compounds ERp57, TAP-1, and TAP-2. were upregulated in HAdV7 transduced human B cells. We also found that CEA-specific IFNγ expression, degranulation, and in vitro and ex vivo cytotoxicities are induced in autologous CD8(+) T cells presensitized by HAd7CEA modified human B cells. Meanwhile, our evidences clearly show that Toll-like receptors 9 (TLR9) antagonist IRS 869 significantly eliminated most of the HAdV7 initiated B cell activation and CD8(+) T cells response, supporting the role and contribution of TLR9 signaling in HAdV7 induced human B cell cross-presentation. Besides a better understanding of the interactions between recombinant HAdV7 and human naive B cells, to our knowledge, the present study provides the first evidence to support the use of HAdV7-modified B cells as a vehicle for vaccines and immunotherapy.

  7. Pathobiology of primary mediastinal B-cell lymphoma.

    PubMed

    Pileri, Stefano A; Zinzani, Pier L; Gaidano, Gianluca; Falini, Brunangelo; Gaulard, Philippe; Zucca, Emanuele; Sabattini, Elena; Ascani, Stefano; Rossi, Maura; Cavalli, Franco

    2003-01-01

    consisted of large cells with varying degrees of nuclear polymorphism and clear to basophilic cytoplasm. Molecular analysis was performed on 40 cases and showed novel findings. More than half of the cases displayed bcl-6 gene mutations, which usually occurred together with functioning somatic IgV(H) gene mutations, and BCL-6 and/or MUM1/IRF4 expression. The present study supports the concept that PBML is derived from activated GC or post-germinal center cells. However, it differs from other aggressive B-cell lymphomas in that it shows defective Ig production despite the expression of Oct-2, BOB.1, and PU.1 transcription factors, and a lack of IgV(H) gene crippling mutations. PMID:15202521

  8. CD19 and BAFF-R can signal to promote B-cell survival in the absence of Syk

    PubMed Central

    Hobeika, Elias; Levit-Zerdoun, Ella; Anastasopoulou, Vasiliki; Pohlmeyer, Roland; Altmeier, Simon; Alsadeq, Ameera; Dobenecker, Marc-Werner; Pelanda, Roberta; Reth, Michael

    2015-01-01

    The development and function of B lymphocytes is regulated by numerous signaling pathways, some emanating from the B-cell antigen receptor (BCR). The spleen tyrosine kinase (Syk) plays a central role in the activation of the BCR, but less is known about its contribution to the survival and maintenance of mature B cells. We generated mice with an inducible and B-cell-specific deletion of the Syk gene and found that a considerable fraction of mature Syk-negative B cells can survive in the periphery for an extended time. Syk-negative B cells are defective in BCR, RP105 and CD38 signaling but still respond to an IL-4, anti-CD40, CpG or LPS stimulus. Our in vivo experiments show that Syk-deficient B cells require BAFF receptor and CD19/PI3K signaling for their long-term survival. These studies also shed a new light on the signals regulating the maintenance of the normal mature murine B-cell pool. PMID:25630702

  9. Activation-Induced Cytidine Deaminase Expression in Human B Cell Precursors Is Essential for Central B Cell Tolerance.

    PubMed

    Cantaert, Tineke; Schickel, Jean-Nicolas; Bannock, Jason M; Ng, Yen-Shing; Massad, Christopher; Oe, Tyler; Wu, Renee; Lavoie, Aubert; Walter, Jolan E; Notarangelo, Luigi D; Al-Herz, Waleed; Kilic, Sara Sebnem; Ochs, Hans D; Nonoyama, Shigeaki; Durandy, Anne; Meffre, Eric

    2015-11-17

    Activation-induced cytidine deaminase (AID), the enzyme-mediating class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B cell intrinsic AID expression mediates central B cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells.

  10. A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-gamma 2

    PubMed Central

    1996-01-01

    Defects in the gene encoding Bruton's tyrosine kinase (Btk) result in a disease called X-linked agammaglobulinemia, in which there is a profound decrease of mature B cells due to a block in B cell development. Recent studies have shown that Btk is tyrosine phosphorylated and activated upon B cell antigen receptor (BCR) stimulation. To elucidate the functions of this kinase, we examined BCR signaling of DT40 B cells deficient in Btk. Tyrosine phosphorylation of phospholipase C (PLC)-gamma 2 upon receptor stimulation was significantly reduced in the mutant cells, leading to the loss of both BCR-coupled phosphatidylinositol hydrolysis and calcium mobilization. Pleckstrin homology and Src-homology 2 domains of Btk were required for PLC-gamma 2 activation. Since Syk is also required for the BCR-induced PLC-gamma 2 activation, our findings indicate that PLC-gamma 2 activation is regulated by Btk and Syk through their concerted actions. PMID:8691147

  11. General Approach for Tetramer Based Identification of Autoantigen Reactive B Cells: Characterization of La and snRNP Reactive B Cells in Autoimmune BXD2 Mice

    PubMed Central

    Hamilton, Jennie A.; Li, Jun; Wu, Qi; Yang, PingAr; Luo, Bao; Li, Hao; Bradley, John E.; Taylor, Justin J.; Randall, Troy D.; Mountz, John D.; Hsu, Hui-Chen

    2015-01-01

    Autoreactive B cells are associated with the development of several autoimmune diseases, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). The low frequency of these cells represents a major barrier to their analysis. Antigen-tetramers prepared from linear epitopes represent a promising strategy for the identification of small subsets of antigen-reactive immune cells. This is challenging given the requirement for identification and validation of linear epitopes and the complexity of autoantibody responses, including the broad spectrum of autoantibody specificities and the contribution of isotype to pathogenicity. We therefore tested a two-tiered peptide microarray approach, coupled with epitope mapping of known autoantigens, to identify and characterize autoepitopes using the BXD2 autoimmune mouse model. Microarray results were verified through comparison with established age-associated profiles of autoantigen specificities and autoantibody class switching in BXD2 and control (B6) mice and high-throughput ELISA and ELISPOT analyses of synthetic peptides. Tetramers were prepared from two linear peptides derived from two ribonucleic acid binding proteins (RBP): lupus La and 70 kDa U1 small nuclear ribonucleoprotein (snRNP). Flow cyotmetric analysis of tetramer-reactive B-cell subsets revealed a significantly higher frequency and greater numbers of RBP-reactive marginal zone precursor (MZ-P), transitional T3 and PDL-2+CD80+ memory B cells, with significantly elevated CD69 and CD86 observed in RBP+ MZ-P B cells in the spleens of BXD2 compared to B6 mice, suggesting a regulatory defect. This study establishes a feasible strategy for the characterization of autoantigen-specific B-cell subsets in different models of autoimmunity and, potentially, humans. PMID:25888644

  12. B cell biology: implications for treatment of systemic lupus erythematosus.

    PubMed

    Anolik, J H

    2013-04-01

    B cells are critical players in the orchestration of properly regulated immune responses, normally providing protective immunity without autoimmunity. Balance in the B cell compartment is achieved through the finely regulated participation of multiple B cell populations with different antibody-dependent and independent functions. Both types of functions allow B cells to modulate other components of the innate and adaptive immune system. Autoantibody-independent B cell functions include antigen presentation, T cell activation and polarization, and dendritic cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines and chemokines and by their critical contribution to lymphoid tissue development and organization including the development of ectopic tertiary lymphoid tissue. Additionally, the functional versatility of B cells enables them to play either protective or pathogenic roles in autoimmunity. In turn, B cell dysfunction has been critically implicated in the pathophysiology of systemic lupus erythematosus (SLE), a complex disease characterized by the production of autoantibodies and heterogeneous clinical involvement. Thus, the breakdown of B cell tolerance is a defining and early event in the disease process and may occur by multiple pathways, including alterations in factors that affect B cell activation thresholds, B cell longevity, and apoptotic cell processing. Once tolerance is broken, autoantibodies contribute to autoimmunity by multiple mechanisms including immune-complex mediated Type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines including IFNα, TNF and IL-1. The complexity of B cell functions has been highlighted by the variable success of B cell-targeted therapies in multiple autoimmune diseases, including those conventionally viewed as T cell-mediated conditions. Given the widespread

  13. Cell of origin associated classification of B-cell malignancies by gene signatures of the normal B-cell hierarchy.

    PubMed

    Johnsen, Hans Erik; Bergkvist, Kim Steve; Schmitz, Alexander; Kjeldsen, Malene Krag; Hansen, Steen Møller; Gaihede, Michael; Nørgaard, Martin Agge; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Bødker, Julie Støve; Bøgsted, Martin; Dybkær, Karen

    2014-06-01

    Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow. This strategy will provide an accurate image of the stage of differentiation, which prospectively can be used to classify any B-cell malignancy and eventually purify tumor cells. This report briefly describes the current models of the normal B-cell subset differentiation in multiple tissues and the pathogenesis of malignancies originating from the normal germinal B-cell hierarchy. PMID:23998255

  14. The life and death of a B cell.

    PubMed

    Defrance, Thierry; Casamayor-Pallejà, Montserrat; Krammer, Peter H

    2002-01-01

    Regulation of apoptosis in the B cell lineage has implications for homeostasis, quality control of the antibody response, and tolerance. In this chapter we examine the different checkpoints that control life and death decisions of B cells during the antigen-independent and antigen-dependent phases of their development. We discuss the cell death mechanism involved in elimination of unwanted B cells at different stages of their development as well as the signals that trigger or repress the apoptotic process. At the steady state, before or after development of an immune response, B cell apoptosis ensures that the antigen receptor (BCR) on newly produced B cells is functional and does not recognize self-antigens with high avidity. It also ensures that the size of the peripheral B cell compartment remains constant in spite of the continuous input of B cells from the bone marrow. All these processes are controlled by the mitochondrial death pathway and are thus perturbed by overexpression of the antiapoptotic members of the bcl-2 gene family. By contrast, the death receptor pathway plays a prominent role during the antigen-dependent phase of B cell development. Three sets of membrane molecules stand as crucial regulators of B cell survival. First, the BCR which plays a central but ambiguous role. On the one hand, it triggers death of B cells that recognize self-antigens or have been exposed to repeated antigenic stimulations. On the other hand, it promotes survival of the peripheral mature B cell pool and protects activated B cells from CD95-induced killing. Second, the death receptor Fas/CD95 which is instrumental in censoring B cells activated in a bystander fashion at the initiation of the response to T-dependent antigens. It also drives elimination of low-affinity and self-reactive B cell clones that arise through the process of somatic mutations during the germinal center reaction. As such, it contributes to the affinity maturation of the antibody response. Finally

  15. Dengue Virus Directly Stimulates Polyclonal B Cell Activation

    PubMed Central

    Papa, Michelle Premazzi; de Morais, Ana Theresa Silveira; Peçanha, Ligia Maria Torres; de Arruda, Luciana Barros

    2015-01-01

    Dengue infection is associated to vigorous inflammatory response, to a high frequency of activated B cells, and to increased levels of circulating cross-reactive antibodies. We investigated whether direct infection of B cells would promote activation by culturing primary human B lymphocytes from healthy donors with DENV in vitro. B cells were susceptible, but poorly permissive to infection. Even though, primary B cells cultured with DENV induced substantial IgM secretion, which is a hallmark of polyclonal B cell activation. Notably, DENV induced the activation of B cells obtained from either DENV immune or DENV naïve donors, suggesting that it was not dependent on DENV-specific secondary/memory response. B cell stimulation was dependent on activation of MAPK and CD81. B cells cultured with DENV also secreted IL-6 and presented increased expression of CD86 and HLA-DR, which might contribute to B lymphocyte co-stimulatory function. Indeed, PBMCs, but not isolated B cells, secreted high amounts of IgG upon DENV culture, suggesting that interaction with other cell types in vivo might promote Ig isotype switching and IgG secretion from different B cell clones. These findings suggest that activation signaling pathways triggered by DENV interaction with non-specific receptors on B cells might contribute to the exacerbated response observed in dengue patients. PMID:26656738

  16. The Contribution of B Cells to Renal Interstitial Inflammation

    PubMed Central

    Heller, Florian; Lindenmeyer, Maja T.; Cohen, Clemens D.; Brandt, Ulrike; Draganovici, Dan; Fischereder, Michael; Kretzler, Matthias; Anders, Hans-Joachim; Sitter, Thomas; Mosberger, Isabella; Kerjaschki, Dontscho; Regele, Heinz; Schlöndorff, Detlef; Segerer, Stephan

    2007-01-01

    Local B-cell infiltrates play a role in tissue fibrosis, neolymphangiogenesis, and renal allograft survival. We sought to characterize the B-cell infiltrates, factors involved in B-cell recruitment, and lymphangiogenesis in renal interstitial injury (ie, acute and chronic interstitial nephritis and chronic IgA nephropathy). CD20-positive B cells formed a prominent part of the interstitial infiltrating cells. Together with CD3-positive T cells, the CD20-positive B cells formed larger nodular structures. CD10-positive pre-B cells were rare, and the majority were mature CD27-positive B cells. Proliferating B cells were detected within nodular infiltrates. The level of mRNA expression of the chemokine CXCL13 was increased and correlated with CD20 mRNA in the tubulointerstitial space. CXCL13 protein was predominantly found at sites of nodular infiltrates, in association with CXCR5-positive B cells. Furthermore, sites of chronic interstitial inflammation were associated with a high number of lymphatic vessels. B-cell infiltrates form a prominent part of the interstitial infiltrates both in primary interstitial lesions and in IgA nephropathy. CXCR5-positive B cells might be recruited via the chemokine CXCL13 and seem to contribute to the formation of intrarenal lymphoid follicle-like structures. These might represent an intrarenal immune system. PMID:17255314

  17. CNS accumulation of regulatory B cells is VLA-4-dependent

    PubMed Central

    Lehmann-Horn, Klaus; Sagan, Sharon A.; Winger, Ryan C.; Spencer, Collin M.; Bernard, Claude C.A.; Sobel, Raymond A.

    2016-01-01

    Objective: To investigate the role of very late antigen-4 (VLA-4) on regulatory B cells (Breg) in CNS autoimmune disease. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in mice selectively deficient for VLA-4 on B cells (CD19cre/α4f/f) by immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (p)35–55 or recombinant human (rh) MOG protein. B-cell and T-cell populations were examined by flow cytometry and immunohistochemistry. Breg were evaluated by intracellular IL-10 staining of B cells and, secondly, by coexpression of CD1d and CD5. Results: As previously reported, EAE was less severe in B-cell VLA-4-deficient vs control CD19cre mice when induced by rhMOG, a model that is B-cell-dependent and leads to efficient B-cell activation and antibody production. Paradoxically, B-cell VLA-4-deficient mice developed more severe clinical disease than control mice when EAE was induced with MOG p35-55, a B-cell-independent encephalitogen that does not efficiently activate B cells. Peripheral T-cell and humoral immune responses were not altered in B-cell VLA-4-deficient mice. In MOG p35-55-induced EAE, B-cell VLA-4 deficiency reduced CNS accumulation of B but not T cells. Breg were detected in the CNS of control mice with MOG p35-55-induced EAE. However, more severe EAE in B-cell VLA-4-deficient mice was associated with virtual absence of CNS Breg. Conclusions: Our results demonstrate that CNS accumulation of Breg is VLA-4-dependent and suggest that Breg may contribute to regulation of CNS autoimmunity in situ. These observations underscore the need to choose the appropriate encephalitogen when studying how B cells contribute to pathogenesis or regulation of CNS autoimmunity. PMID:27027096

  18. [Primary mediastinal B-cell lymphoma].

    PubMed

    Coso, D; Rey, J; Bouabdallah, R

    2010-02-01

    Primary mediastinal B-cell lymphoma (PMBL) is a clinicopathological entity among the world health organization classification of lymphoid neoplasms. PMBL often concerns young adults, and the disease remains a localized disease in the majority of cases. The outcome of patients with PMBL is variable and unlike diffuse large cell lymphomas, the international prognostic index seems to be less applicable to such disease. The combination of rituximab and chemotherapy is the gold standard treatment of patients with good prognosis features and allows high cure rates. However, high-dose chemotherapy supported by peripheral blood stem cell support is often warranted in poor-prognosis patients. The use of positrons emission tomography examination is more and more used in such situations to select the best therapeutic strategy. PMID:20207294

  19. The human intestinal B-cell response.

    PubMed

    Spencer, J; Sollid, L M

    2016-09-01

    The intestinal immune system is chronically challenged by a huge plethora of antigens derived from the lumen. B-cell responses in organized gut-associated lymphoid tissues and regional lymph nodes that are driven chronically by gut antigens generate the largest population of antibody-producing cells in the body: the gut lamina propria plasma cells. Although animal studies have provided insights into mechanisms that underpin this dynamic process, some very fundamental differences in this system appear to exist between species. Importantly, this prevents extrapolation from mice to humans to inform translational research questions. Therefore, in this review we will describe the structures and mechanisms involved in the propagation, dissemination, and regulation of this immense plasma cell population in man. Uniquely, we will seek our evidence exclusively from studies of human cells and tissues. PMID:27461177

  20. Rheumatoid factors, B cells and immunoglobulin genes.

    PubMed

    Jefferis, R

    1995-04-01

    The paradigm of self, non-self discrimination in the immune system is under review as autoreactive B or T cells are increasingly delineated within normal individuals. The products of autoreactive B cells are, mostly, polyspecific IgM antibodies of low affinity. These 'natural' antibodies include rheumatoid factors (RF) encoded by unmutated germline immunoglobulin genes. In rheumatoid arthritis (RA) the RF may be of the IgM, IgG or IgA isotype, show evidence of somatic mutation and have increased affinity; consistent with maturation of an antigen driven immune response. This response could be initiated or driven by an auto-immunogenic form of IgG or an exogenous cross-reactive antigen. Changes in galactosylation of IgG have been reported to be a valuable diagnostic and prognostic indicator in RA. Speculation that these changes may precipitate some of the disease processes is critically reviewed.

  1. TIM-1 signaling is required for maintenance and induction of regulatory B cells.

    PubMed

    Yeung, M Y; Ding, Q; Brooks, C R; Xiao, S; Workman, C J; Vignali, D A A; Ueno, T; Padera, R F; Kuchroo, V K; Najafian, N; Rothstein, D M

    2015-04-01

    Apart from their role in humoral immunity, B cells can exhibit IL-10-dependent regulatory activity (Bregs). These regulatory subpopulations have been shown to inhibit inflammation and allograft rejection. However, our understanding of Bregs has been hampered by their rarity, lack of a specific marker, and poor insight into their induction and maintenance. We previously demonstrated that T cell immunoglobulin mucin domain-1 (TIM-1) identifies over 70% of IL-10-producing B cells, irrespective of other markers. We now show that TIM-1 is the primary receptor responsible for Breg induction by apoptotic cells (ACs). However, B cells that express a mutant form of TIM-1 lacking the mucin domain (TIM-1(Δmucin) ) exhibit decreased phosphatidylserine binding and are unable to produce IL-10 in response to ACs or by specific ligation with anti-TIM-1. TIM-1(Δmucin) mice also exhibit accelerated allograft rejection, which appears to be due in part to their defect in both baseline and induced IL-10(+) Bregs, since a single transfer of WT TIM-1(+) B cells can restore long-term graft survival. These data suggest that TIM-1 signaling plays a direct role in Breg maintenance and induction both under physiological conditions (in response to ACs) and in response to therapy through TIM-1 ligation. Moreover, they directly demonstrate that the mucin domain regulates TIM-1 signaling.

  2. Dysregulation of CD30+ T cells by leukemia impairs isotype switching in normal B cells

    PubMed Central

    Cerutti, Andrea; Kim, Edmund C.; Shah, Shefali; Schattner, Elaine J.; Zan, Hong; Schaffer, András; Casali, Paolo

    2015-01-01

    Chronic lymphocytic leukemia (CLL) is associated with impaired immunoglobulin (Ig) class-switching from IgM to IgG and IgA, a defect that leads to recurrent infections. When activated in the presence of leukemic CLL B cells, T cells rapidly up-regulate CD30 through an OX40 ligand and interleukin 4 (IL-4)–dependent mechanism. These leukemia-induced CD30+ T cells inhibit CD40 ligand (CD40L)-mediated Sµ→Sγ and Sµ→Sα class-switch DNA recombination (CSR) by engaging CD30 ligand (CD30L), a molecule that interferes with the assembly of the CD40–tumor necrosis factor receptor–associated factor (TRAF) complex in nonmalignant IgD+ B cells. In addition, engagement of T cell CD30 by CD30L on neoplastic CLL B cells down-regulates the CD3-induced expression of CD40L. These findings indicate that, in CLL, abnormal CD30-CD30L interaction impairs IgG and IgA production by interfering with the CD40-mediated differentiation of nonmalignant B cells. PMID:11175813

  3. DNA-PKcs Is Involved in Ig Class Switch Recombination in Human B Cells.

    PubMed

    Björkman, Andrea; Du, Likun; Felgentreff, Kerstin; Rosner, Cornelia; Pankaj Kamdar, Radhika; Kokaraki, Georgia; Matsumoto, Yoshihisa; Davies, E Graham; van der Burg, Mirjam; Notarangelo, Luigi D; Hammarström, Lennart; Pan-Hammarström, Qiang

    2015-12-15

    Nonhomologous end-joining (NHEJ) is one of the major DNA double-strand break repair pathways in mammalian cells and is required for both V(D)J recombination and class switch recombination (CSR), two Ig gene-diversification processes occurring during B cell development. DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) is a component of the classical NHEJ machinery and has a critical function during V(D)J recombination. However, its role in CSR has been controversial. In this study, we examined the pattern of recombination junctions from in vivo-switched B cells from two DNA-PKcs-deficient patients. One of them harbored mutations that did not affect DNA-PKcs kinase activity but caused impaired Artemis activation; the second patient had mutations resulting in diminished DNA-PKcs protein expression and kinase activity. These results were compared with those from DNA-PKcs-deficient mouse B cells. A shift toward the microhomology-based alternative end-joining at the recombination junctions was observed in both human and mouse B cells, suggesting that the classical NHEJ pathway is impaired during CSR when DNA-PKcs is defective. Furthermore, cells from the second patient showed additional or more severe alterations in CSR and/or NHEJ, which may suggest that DNA-PKcs and/or its kinase activity have additional, Artemis-independent functions during these processes. PMID:26546606

  4. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas.

    PubMed

    Pasqualucci, L; Neumeister, P; Goossens, T; Nanjangud, G; Chaganti, R S; Küppers, R; Dalla-Favera, R

    2001-07-19

    Genomic instability promotes tumorigenesis and can occur through various mechanisms, including defective segregation of chromosomes or inactivation of DNA mismatch repair. Although B-cell lymphomas are associated with chromosomal translocations that deregulate oncogene expression, a mechanism for genome-wide instability during lymphomagenesis has not been described. During B-cell development, the immunoglobulin variable (V) region genes are subject to somatic hypermutation in germinal-centre B cells. Here we report that an aberrant hypermutation activity targets multiple loci, including the proto-oncogenes PIM1, MYC, RhoH/TTF (ARHH) and PAX5, in more than 50% of diffuse large-cell lymphomas (DLCLs), which are tumours derived from germinal centres. Mutations are distributed in the 5' untranslated or coding sequences, are independent of chromosomal translocations, and share features typical of V-region-associated somatic hypermutation. In contrast to mutations in V regions, however, these mutations are not detectable in normal germinal-centre B cells or in other germinal-centre-derived lymphomas, suggesting a DLCL-associated malfunction of somatic hypermutation. Intriguingly, the four hypermutable genes are susceptible to chromosomal translocations in the same region, consistent with a role for hypermutation in generating translocations by DNA double-strand breaks. By mutating multiple genes, and possibly by favouring chromosomal translocations, aberrant hypermutation may represent the major contributor to lymphomagenesis.

  5. Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells.

    PubMed

    Balajee, A S; May, A; Dianov, G L; Friedberg, E C; Bohr, V A

    1997-04-29

    Cockayne syndrome (CS) is characterized by increased photosensitivity, growth retardation, and neurological and skeletal abnormalities. The recovery of RNA synthesis is abnormally delayed in CS cells after exposure to UV radiation. Gene-specific repair studies have shown a defect in the transcription-coupled repair (TCR) of active genes in CS cells from genetic complementation groups A and B (CS-A and CS-B). We have analyzed transcription in vivo in intact and permeabilized CS-B cells. Uridine pulse labeling in intact CS-B fibroblasts and lymphoblasts shows a reduction of approximately 50% compared with various normal cells and with cells from a patient with xeroderma pigmentosum (XP) group A. In permeabilized CS-B cells transcription in chromatin isolated under physiological conditions is reduced to about 50% of that in normal chromatin and there is a marked reduction in fluorescence intensity in transcription sites in interphase nuclei. Transcription in CS-B cells is sensitive to alpha-amanitin, suggesting that it is RNA polymerase II-dependent. The reduced transcription in CS-B cells is complemented in chromatin by the addition of normal cell extract, and in intact cells by transfection with the CSB gene. CS-B may be a primary transcription deficiency. PMID:9113985

  6. Regulation of VH replacement by B cell receptor-mediated signaling in human immature B cells.

    PubMed

    Liu, Jing; Lange, Miles D; Hong, Sang Yong; Xie, Wanqin; Xu, Kerui; Huang, Lin; Yu, Yangsheng; Ehrhardt, Götz R A; Zemlin, Michael; Burrows, Peter D; Su, Kaihong; Carter, Robert H; Zhang, Zhixin

    2013-06-01

    VH replacement provides a unique RAG-mediated recombination mechanism to edit nonfunctional IgH genes or IgH genes encoding self-reactive BCRs and contributes to the diversification of Ab repertoire in the mouse and human. Currently, it is not clear how VH replacement is regulated during early B lineage cell development. In this article, we show that cross-linking BCRs induces VH replacement in human EU12 μHC(+) cells and in the newly emigrated immature B cells purified from peripheral blood of healthy donors or tonsillar samples. BCR signaling-induced VH replacement is dependent on the activation of Syk and Src kinases but is inhibited by CD19 costimulation, presumably through activation of the PI3K pathway. These results show that VH replacement is regulated by BCR-mediated signaling in human immature B cells, which can be modulated by physiological and pharmacological treatments.

  7. Brucella abortus-infected B cells induce osteoclastogenesis.

    PubMed

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Giambartolomei, Guillermo Hernán; Delpino, María Victoria

    2016-09-01

    Brucella abortus is an intracellular bacterium that establishes lifelong infections in livestock and humans although the mechanisms of its chronicity are poorly understood. Activated B cells have long lifespan and B. abortus infection activates B cells. Our results indicate that the direct infection of B cells with B. abortus induced matrix metalloproteinase-9 (MMP-9), receptor activator for NF κB ligand (RANKL), tumor necrosis factor (TNF)-α and interleukin (IL)-6 secretion. In addition, supernatants from B. abortus-infected B cells induced bone marrow-derived monocytes to undergo osteoclastogenesis. Using osteoprotegerin, RANKL's decoy receptor, we determined that RANKL is involved in osteoclastogenesis induced by supernatants from B. abortus-infected B cells. The results presented here shed light on how the interactions of B. abortus with B cells may have a role in the pathogenesis of brucellar osteoarticular disease.

  8. Dual immunoglobulin light chain B cells: Trojan horses of autoimmunity?

    PubMed

    Pelanda, Roberta

    2014-04-01

    Receptor editing, a major mechanism of B cell tolerance, can also lead to allelic inclusion at the immunoglobulin light chain loci and the development of B cells that coexpress two different immunoglobulin light chains and, therefore, two antibody specificities. Most allelically included B cells express two κ chains, although rare dual-λ cells are also observed. Moreover, these cells typically coexpress an autoreactive and a nonautoreactive antibody. Thus, allelically included B cells could operate like 'Trojan horses': expression and function of the nonautoreactive antigen receptors might promote their maturation, activation, and terminal differentiation into effector cells that also express and secrete autoantibodies. Indeed, dual-κ B cells are greatly expanded into effector B cell subsets in some autoimmune mice, thus indicating they might play an important role in disease.

  9. Identification of bovine B cell reactive and B cell specific monoclonal antibodies.

    PubMed

    Mukwedeya, D T; Takamatsu, H; Parkhouse, R M

    1993-11-01

    All monoclonal antibodies (mAbs) submitted to the workshop panel were screened for reactivity with bovine surface immunoglobulin (sIg)+ cells (gated small dense lymphocytes from peripheral blood) by fluorescence activated cell sorter (FACS) analysis. Eighteen temporary clusters--TCs 1-12, 15, 16, 18, 19, 25 and 26--contained mAbs reactive with sIg+ cells. mAb BAS21A (unclustered) and CC92 (TC25) were also reactive with sIg+ cells. Further FACS analysis with B cells from peripheral blood lymphocytes and mesenteric lymph nodes, and B and T lymphoma cell lines, indicated that the majority of mAbs within TCs 2, 4, 15, 18 and 26 reacted specifically with bovine B cells. Bovine B cell specific mAbs within these clusters were TH14B, IL-A55, CACT101A, MUC76A from TC4, VPM30, GC65A, CACT65A from TC15, IL-A58, CC56, CC70, IL-A65 from TC18, and CC57 and 26A9 from TC26. Three mAbs--IL-A65, CC70, and BAQ15A--within TC18 defined WC3; mAbs TD9 and CC56 may also be related to WC3.

  10. Ability of spleen, peritoneal cavity, and lymph node B cells to reconstitute serum immunoglobulin in SCID mice.

    PubMed Central

    Riggs, J; Stowers, R

    1996-01-01

    The impact of intrinsic B lymphocyte heterogeneity and of microenvironmental influences on serum immunoglobulin production by B cells was examined by intravenous (i.v.) and intraperitoneal (i.p.) transfer of BALB/c and BALB.xid (X-chromosome-linked immunedefective; XID) lymph node (LN), splenic (SP) and peritoneal cavity (PerC) cells into severe-combined immune-defective (SCID) mice. The results indicate that each B-cell source restores all immunoglobulin classes within 5 weeks of transfer, the rates for each isotype, however, differ between the B-cell sources. Serum IgM levels were restored most rapidly by PerC cell transfer, followed by SP and LN cell transfer. In addition, normal immunoglobulin levels were reached in the absence of complete lymphoid reconstitution. Serum immunoglobulin phenotypes characteristic of the donor strain, e.g. reduced IgM and IgG3 production by XID B cells, were maintained after transfer into the SCID recipient. Microenvironmental influences were indicated by reduced immunoglobulin production after i.p. transfer and after i.v. transfer into irradiated SCID recipients. The data show that both B-cell type and microenvironment play significant roles in generating the heterogeneous pool of B cells required for humoral immunity. PMID:8707345

  11. Primary B-cell lymphoblastic lymphoma of the testis.

    PubMed

    Tombolini, Flavia; Lacetera, Vito; Gini, Guido; Capelli, Debora; Leoni, Pietro; Montironi, Rodolfo; Galosi, Andrea Benedetto; Muzzonigro, Giovanni

    2014-12-01

    We present a rare case of primary lymphoblastic B-cell lymphoma of the testis focusing on ultrasonographic and pathological features and clinical implications. Pathological examination revealed primary testicular lymphoblastic B-cell lymphoma which was treated with adjuvant chemotherapy, including rachicentesis with administration of chemotherapy and with radiotherapy of contralateral testis. Primary testicular lymphoblastic B cell lymphoma is an aggressive disease and it is necessary a multimodal therapy (surgery, chemotherapy and radiotherapy) to prevent metastasis. PMID:25641484

  12. Utilization of a photoactivatable antigen system to examine B-cell probing termination and the B-cell receptor sorting mechanisms during B-cell activation

    PubMed Central

    Wang, Jing; Tang, Shan; Wan, Zhengpeng; Gao, Yiren; Cao, Yiyun; Yi, Junyang; Si, Yanyan; Zhang, Haowen; Liu, Lei; Liu, Wanli

    2016-01-01

    Antigen binding to the B-cell receptor (BCR) induces several responses, resulting in B-cell activation, proliferation, and differentiation. However, it has been difficult to study these responses due to their dynamic, fast, and transient nature. Here, we attempted to solve this problem by developing a controllable trigger point for BCR and antigen recognition through the construction of a photoactivatable antigen, caged 4-hydroxy-3-nitrophenyl acetyl (caged-NP). This photoactivatable antigen system in combination with live cell and single molecule imaging techniques enabled us to illuminate the previously unidentified B-cell probing termination behaviors and the precise BCR sorting mechanisms during B-cell activation. B cells in contact with caged-NP exhibited probing behaviors as defined by the unceasing extension of membrane pseudopods in random directions. Further analyses showed that such probing behaviors are cell intrinsic with strict dependence on F-actin remodeling but not on tonic BCR signaling. B-cell probing behaviors were terminated within 4 s after photoactivation, suggesting that this response was sensitive and specific to BCR engagement. The termination of B-cell probing was concomitant with the accumulation response of the BCRs into the BCR microclusters. We also determined the Brownian diffusion coefficient of BCRs from the same B cells before and after BCR engagement. The analysis of temporally segregated single molecule images of both BCR and major histocompatibility complex class I (MHC-I) demonstrated that antigen binding induced trapping of BCRs into the BCR microclusters is a fundamental mechanism for B cells to acquire antigens. PMID:26764382

  13. Depletion of B cells in murine lupus: efficacy and resistance.

    PubMed

    Ahuja, Anupama; Shupe, Jonathan; Dunn, Robert; Kashgarian, Michael; Kehry, Marilyn R; Shlomchik, Mark J

    2007-09-01

    In mice, genetic deletion of B cells strongly suppresses systemic autoimmunity, providing a rationale for depleting B cells to treat autoimmunity. In fact, B cell depletion with rituximab is approved for rheumatoid arthritis patients, and clinical trials are underway for systemic lupus erythematosus. Yet, basic questions concerning mechanism, pathologic effect, and extent of B cell depletion cannot be easily studied in humans. To better understand how B cell depletion affects autoimmunity, we have generated a transgenic mouse expressing human CD20 on B cells in an autoimmune-prone MRL/MpJ-Fas(lpr) (MRL/lpr) background. Using high doses of a murine anti-human CD20 mAb, we were able to achieve significant depletion of B cells, which in turn markedly ameliorated clinical and histologic disease as well as antinuclear Ab and serum autoantibody levels. However, we also found that B cells were quite refractory to depletion in autoimmune-prone strains compared with non-autoimmune-prone strains. This was true with multiple anti-CD20 Abs, including a new anti-mouse CD20 Ab, and in several different autoimmune-prone strains. Thus, whereas successful B cell depletion is a promising therapy for lupus, at least some patients might be resistant to the therapy as a byproduct of the autoimmune condition itself.

  14. The molecular biology of diffuse large B-cell lymphoma.

    PubMed

    Frick, Mareike; Dörken, Bernd; Lenz, Georg

    2011-12-01

    Diffuse large B-cell lymphoma (DLBCL) represents the most common type of malignant lymphoma. In the last few years, significant progress has been achieved in the understanding of the molecular pathogenesis of this entity. Gene expression profiling has identified three molecular DLBCL subtypes, termed germinal-center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, and primary mediastinal B-cell lymphoma (PMBL). In this review, we summarize our current understanding of the biology of these DLBCL subtypes with a special emphasis on novel diagnostic and therapeutic approaches. PMID:23556103

  15. B-cell targeted therapeutics in clinical development

    PubMed Central

    2013-01-01

    B lymphocytes are the source of humoral immunity and are thus a critical component of the adaptive immune system. However, B cells can also be pathogenic and the origin of disease. Deregulated B-cell function has been implicated in several autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. B cells contribute to pathological immune responses through the secretion of cytokines, costimulation of T cells, antigen presentation, and the production of autoantibodies. DNA-and RNA-containing immune complexes can also induce the production of type I interferons, which further promotes the inflammatory response. B-cell depletion with the CD20 antibody rituximab has provided clinical proof of concept that targeting B cells and the humoral response can result in significant benefit to patients. Consequently, the interest in B-cell targeted therapies has greatly increased in recent years and a number of new biologics exploiting various mechanisms are now in clinical development. This review provides an overview on current developments in the area of B-cell targeted therapies by describing molecules and subpopulations that currently offer themselves as therapeutic targets, the different strategies to target B cells currently under investigation as well as an update on the status of novel therapeutics in clinical development. Emerging data from clinical trials are providing critical insight regarding the role of B cells and autoantibodies in various autoimmune conditions and will guide the development of more efficacious therapeutics and better patient selection. PMID:23566679

  16. Involvement of B cells in non-infectious uveitis

    PubMed Central

    Smith, Justine R; Stempel, Andrew J; Bharadwaj, Arpita; Appukuttan, Binoy

    2016-01-01

    Non-infectious uveitis—or intraocular inflammatory disease—causes substantial visual morbidity and reduced quality of life amongst affected individuals. To date, research of pathogenic mechanisms has largely been focused on processes involving T lymphocyte and/or myeloid leukocyte populations. Involvement of B lymphocytes has received relatively little attention. In contrast, B-cell pathobiology is a major field within general immunological research, and large clinical trials have showed that treatments targeting B cells are highly effective for multiple systemic inflammatory diseases. B cells, including the terminally differentiated plasma cell that produces antibody, are found in the human eye in different forms of non-infectious uveitis; in some cases, these cells outnumber other leukocyte subsets. Recent case reports and small case series suggest that B-cell blockade may be therapeutic for patients with non-infectious uveitis. As well as secretion of antibody, B cells may promote intraocular inflammation by presentation of antigen to T cells, production of multiple inflammatory cytokines and support of T-cell survival. B cells may also perform various immunomodulatory activities within the eye. This translational review summarizes the evidence for B-cell involvement in non-infectious uveitis, and considers the potential contributions of B cells to the development and control of the disease. Manipulations of B cells and/or their products are promising new approaches to the treatment of non-infectious uveitis. PMID:26962453

  17. Invited article: inhibition of B cell functions: implications for neurology.

    PubMed

    Dalakas, Marinos C

    2008-06-01

    B cells are involved in the pathophysiology of many neurologic diseases, either in a causative or contributory role, via production of autoantibodies, cytokine secretion, or by acting as antigen-presenting cells leading to T cell activation. B cells are clonally expanded in various CNS disorders, such as multiple sclerosis (MS), paraneoplastic CNS disorders, or stiff-person syndrome, and are activated to produce pathogenic autoantibodies in demyelinating neuropathies and myasthenia. B cell activating factor (BAFF) and a proliferating inducing ligand (APRIL), key cytokines for B cell survival, are strongly unregulated in MS brain and in muscles of inflammatory myopathies. Modulation of B cell functions using a series of monoclonal antibodies against CD20+ B cells or the molecules that increase B cell survival, such as BAFF/APRIL and their receptors BAFF-R, TACI, and BCMA, provide a rational approach to the treatment of the aforementioned neurologic disorders. In controlled studies, rituximab, a B cell-depleting monoclonal antibody, has been encouraging in MS and paraproteinemic anti-MAG demyelinating neuropathy, exerting long-lasting remissions. In uncontrolled series, benefit has been reported in several disorders. B cell depletion is a well-tolerated therapeutic option currently explored in the treatment of several autoimmune neurologic disorders.

  18. The B-Cell-Specific src-Family Kinase Blk Is Dispensable for B-Cell Development and Activation

    PubMed Central

    Texido, Gemma; Su, I-hsin; Mecklenbräuker, Ingrid; Saijo, Kaoru; Malek, Sami N.; Desiderio, Stephen; Rajewsky, Klaus; Tarakhovsky, Alexander

    2000-01-01

    The B-cell lymphocyte kinase (Blk) is a src-family protein tyrosine kinase specifically expressed in B-lineage cells of mice. The early onset of Blk expression during B-cell development in the bone marrow and the high expression levels of Blk in mature B cells suggest a possible important role of Blk in B-cell physiology. To study the in vivo function of Blk, mice homozygous for the targeted disruption of the blk gene were generated. In homozygous mutant mice, neither blk mRNA nor Blk protein is expressed. Despite the absence of Blk, the development, in vitro activation, and humoral immune responses of B cells to T-cell-dependent and -independent antigens are unaltered. These data are consistent with functional redundancy of Blk in B-cell development and immune responses. PMID:10648608

  19. Differential and site specific impact of B cells in the protective immune response to Mycobacterium tuberculosis in the mouse.

    PubMed

    Torrado, Egídio; Fountain, Jeffrey J; Robinson, Richard T; Martino, Cynthia A; Pearl, John E; Rangel-Moreno, Javier; Tighe, Michael; Dunn, Robert; Cooper, Andrea M

    2013-01-01

    Cell-mediated immune responses are known to be critical for control of mycobacterial infections whereas the role of B cells and humoral immunity is unclear. B cells can modulate immune responses by secretion of immunoglobulin, production of cytokines and antigen-presentation. To define the impact of B cells in the absence of secreted immunoglobulin, we analyzed the progression of Mycobacterium tuberculosis (Mtb) infection in mice that have B cells but which lack secretory immunoglobulin (AID(-/-)µS(-/-)mice). AID(-/-)µS(-/-) mice accumulated a population of activated B cells in the lungs when infected and were more susceptible to aerosol Mtb when compared to wild type (C57BL/6) mice or indeed mice that totally lack B cells. The enhanced susceptibility of AID(-/-)µS(-/-) mice was not associated with defective T cell activation or expression of a type 1 immune response. While delivery of normal serum to AID(-/-)µS(-/-) mice did not reverse susceptibility, susceptibility in the spleen was dependent upon the presence of B cells and susceptibility in the lungs of AID(-/-)µS(-/-)mice was associated with elevated expression of the cytokines IL-6, GM-CSF, IL-10 and molecules made by alternatively activated macrophages. Blocking of IL-10 signaling resulted in reversal of susceptibility in the spleens and lungs of AID(-/-)µS(-/-) mice. These data support the hypothesis that B cells can modulate immunity to Mtb in an organ specific manner via the modulation of cytokine production and macrophage activation. PMID:23613902

  20. Hepatocyte Nuclear Factor 1A Is a Cell-Intrinsic Transcription Factor Required for B Cell Differentiation and Development in Mice.

    PubMed

    von Wnuck Lipinski, Karin; Sattler, Katherine; Peters, Susann; Weske, Sarah; Keul, Petra; Klump, Hannes; Heusch, Gerd; Göthert, Joachim R; Levkau, Bodo

    2016-02-15

    The hepatocyte NF (HNF) family of transcription factors regulates the complex gene networks involved in lipid, carbohydrate, and protein metabolism. In humans, HNF1A mutations cause maturity onset of diabetes in the young type 3, whereas murine HNF6 participates in fetal liver B lymphopoiesis. In this study, we have identified a crucial role for the prototypical member of the family HNF1A in adult bone marrow B lymphopoiesis. HNF1A(-/-) mice exhibited a clear reduction in total blood and splenic B cells and a further pronounced one in transitional B cells. In HNF1A(-/-) bone marrow, all B cell progenitors-from pre-pro-/early pro-B cells to immature B cells-were dramatically reduced and their proliferation rate suppressed. IL-7 administration in vivo failed to boost B cell development in HNF1A(-/-) mice, whereas IL-7 stimulation of HNF1A(-/-) B cell progenitors in vitro revealed a marked impairment in STAT5 phosphorylation. The B cell differentiation potential of HNF1A(-/-) common lymphoid progenitors was severely impaired in vitro, and the expression of the B lymphopoiesis-promoting transcription factors E2A, EBF1, Pax5, and Bach2 was reduced in B cell progenitors in vivo. HNF1A(-/-) bone marrow chimera featured a dramatic defect in B lymphopoiesis recapitulating that of global HNF1A deficiency. The HNF1A(-/-) lymphopoiesis defect was confined to B cells as T lymphopoiesis was unaffected, and bone marrow common lymphoid progenitors and hematopoietic stem cells were even increased. Our data demonstrate that HNF1A is an important cell-intrinsic transcription factor in adult B lymphopoiesis and suggest the IL-7R/STAT5 module to be causally involved in mediating its function.

  1. Molecular and cytogenetic characterization of expanded B-cell clones from multiclonal versus monoclonal B-cell chronic lymphoproliferative disorders

    PubMed Central

    Henriques, Ana; Rodríguez-Caballero, Arancha; Criado, Ignacio; Langerak, Anton W.; Nieto, Wendy G.; Lécrevisse, Quentin; González, Marcos; Cortesão, Emília; Paiva, Artur; Almeida, Julia; Orfao, Alberto

    2014-01-01

    Chronic antigen-stimulation has been recurrently involved in the earlier stages of monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The expansion of two or more B-cell clones has frequently been reported in individuals with these conditions; potentially, such coexisting clones have a greater probability of interaction with common immunological determinants. Here, we analyzed the B-cell receptor repertoire and molecular profile, as well as the phenotypic, cytogenetic and hematologic features, of 228 chronic lymphocytic leukemia-like and non-chronic lymphocytic leukemia-like clones comparing multiclonal (n=85 clones from 41 cases) versus monoclonal (n=143 clones) monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The B-cell receptor of B-cell clones from multiclonal cases showed a slightly higher degree of HCDR3 homology than B-cell clones from mono clonal cases, in association with unique hematologic (e.g. lower B-lymphocyte counts) and cytogenetic (e.g. lower frequency of cytogenetically altered clones) features usually related to earlier stages of the disease. Moreover, a subgroup of coexisting B-cell clones from individual multiclonal cases which were found to be phylogenetically related showed unique molecular and cytogenetic features: they more frequently shared IGHV3 gene usage, shorter HCDR3 sequences with a greater proportion of IGHV mutations and del(13q14.3), than other unrelated B-cell clones. These results would support the antigen-driven nature of such multiclonal B-cell expansions, with potential involvement of multiple antigens/epitopes. PMID:24488564

  2. KSHV-Mediated Regulation of Par3 and SNAIL Contributes to B-Cell Proliferation

    PubMed Central

    Jha, Hem C.; Sun, Zhiguo; Upadhyay, Santosh K.; El-Naccache, Darine W.; Singh, Rajnish K.; Sahu, Sushil K.; Robertson, Erle S.

    2016-01-01

    Studies have suggested that Epithelial–Mesenchymal Transition (EMT) and transformation is an important step in progression to cancer. Par3 (partitioning-defective protein) is a crucial factor in regulating epithelial cell polarity. However, the mechanism by which the latency associated nuclear antigen (LANA) encoded by Kaposi's Sarcoma associated herpesvirus (KSHV) regulates Par3 and EMTs markers (Epithelial-Mesenchymal Transition) during viral-mediated B-cell oncogenesis has not been fully explored. Moreover, several studies have demonstrated a crucial role for EMT markers during B-cell malignancies. In this study, we demonstrate that Par3 is significantly up-regulated in KSHV-infected primary B-cells. Further, Par3 interacted with LANA in KSHV positive and LANA expressing cells which led to translocation of Par3 from the cell periphery to a predominantly nuclear signal. Par3 knockdown led to reduced cell proliferation and increased apoptotic induction. Levels of SNAIL was elevated, and E-cadherin was reduced in the presence of LANA or Par3. Interestingly, KSHV infection in primary B-cells led to enhancement of SNAIL and down-regulation of E-cadherin in a temporal manner. Importantly, knockdown of SNAIL, a major EMT regulator, in KSHV cells resulted in reduced expression of LANA, Par3, and enhanced E-cadherin. Also, SNAIL bound to the promoter region of p21 and can regulate its activity. Further a SNAIL inhibitor diminished NF-kB signaling through upregulation of Caspase3 in KSHV positive cells in vitro. This was also supported by upregulation of SNAIL and Par3 in BC-3 transplanted NOD-SCID mice which has potential as a therapeutic target for KSHV-associated B-cell lymphomas. PMID:27463802

  3. Reduced Levels of Hspa9 Attenuates Stat5 Activation in Mouse B-cells

    PubMed Central

    Krysiak, Kilannin; Tibbitts, Justin F.; Shao, Jin; Liu, Tuoen; Ndonwi, Matthew; Walter, Matthew J.

    2014-01-01

    HSPA9 is located on chromosome 5q31.2 in humans, a region that is commonly deleted in patients with myeloid malignancies [del(5q)], including myelodysplastic syndromes (MDS). HSPA9 expression is reduced by 50% in patients with del(5q)-associated MDS, consistent with haploinsufficient levels. Zebrafish mutants and knockdown studies in human and mouse cells have implicated a role for HSPA9 in hematopoiesis. To comprehensively evaluate the effects of Hspa9 haploinsufficiency on hematopoiesis, we generated an Hspa9 knockout mouse model. While homozygous knockout of Hspa9 is embryonic lethal, mice with heterozygous deletion of Hspa9 (Hspa9+/−) are viable and have a 50% reduction in Hspa9 expression. Hspa9+/− mice have normal basal hematopoiesis and do not develop MDS. However, Hspa9+/− mice have a cell- intrinsic reduction in bone marrow CFU-PreB colony formation without alterations in the number of B-cell progenitors in vivo, consistent with a functional defect in Hspa9+/− B-cell progenitors. We further reduced Hspa9 expression (<50%) using RNAi and observe reduced B-cell progenitors in vivo, indicating that appropriate levels (≥50%) of Hspa9 are required for normal B- lymphopoiesis in vivo. Knockdown of Hspa9 in an IL-7 dependent mouse B-cell line reduced Stat5 phosphorylation following IL-7 receptor stimulation, supporting a role for Hspa9 in Stat5 signaling in B-cells. Collectively, these data implicate a role for Hspa9 in B-lymphopoiesis and Stat5 activation downstream of IL-7 signaling. PMID:25550197

  4. Tissue-Specific B-Cell Dysfunction and Generalized Memory B-Cell Loss during Acute SIV Infection

    PubMed Central

    Peruchon, Sandrine; Chaoul, Nada; Burelout, Chantal; Delache, Benoit; Brochard, Patricia; Laurent, Pascale; Cognasse, Fabrice; Prévot, Sophie; Garraud, Olivier; Le Grand, Roger; Richard, Yolande

    2009-01-01

    Background Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART). Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV) mac251-infected Cynomolgus macaques. Methods and Findings Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.). We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD−CD27+) B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus–B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. Conclusions These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid organs

  5. BAFF enhances chemotaxis of primary human B cells: a particular synergy between BAFF and CXCL13 on memory B cells.

    PubMed

    Badr, Gamal; Borhis, Gwenoline; Lefevre, Eric A; Chaoul, Nada; Deshayes, Frederique; Dessirier, Valérie; Lapree, Genevieve; Tsapis, Andreas; Richard, Yolande

    2008-03-01

    B-cell-activating factor of the TNF family, (BAFF), and a proliferation-inducing ligand (APRIL) regulate B-lymphocyte survival and activation. We report that BAFF, but not APRIL, increased the chemotactic response of primary human B cells to CCL21, CXCL12, and CXCL13. The BAFF-induced increase in B-cell chemotaxis was totally abolished by blockade of BAFF-R and was strongly dependent on the activation of PI3K/AKT, NF-kappaB, and p38MAPK pathways. BAFF had similar effects on the chemotaxis of naive and memory B cells in response to CCL21 but increased more strongly that of memory B cells to CXCL13 than that of naive B cells. Our findings indicate a previously unreported role for the BAFF/BAFF-R pair in mature B-cell chemotaxis. The synergy between CXCL13 and BAFF produced by stromal cells and follicular dendritic cells may have important implications for B-cell homeostasis, the development of normal B-cell areas, and for the formation of germinal center-like follicles that may be observed in various autoimmune diseases.

  6. B Cells: The Old New Players in Reproductive Immunology

    PubMed Central

    Fettke, Franziska; Schumacher, Anne; Costa, Serban-Dan; Zenclussen, Ana Claudia

    2014-01-01

    Reproductive immunology research has long focused on T cell responses to paternal antigens and tolerance mechanisms supporting fetal well-being. The participation of B cells herein was not widely studied. Because of the fascinating immunological uniqueness of pregnancy, it is however to be expected that such pleiotropic cells play a considerable role. In fact, on the one hand B cells contribute toward pregnancy tolerance by secreting the immunomodulatory cytokine IL-10 but on the other hand can seriously harm pregnancy because of their capacity of producing autoantibodies. As for protective B cells, new evidences in mouse models arise suggesting that IL-10 producing B cells, the so-called B10 cells, help in maintaining tolerance toward semi-allogenic fetal antigens. They may be also important to fight danger signals at the fetal-maternal interface as, e.g., in the case of infections with the aim to restore the disrupted fetal tolerance. In human pregnancies, IL-10 producing B cells increase with pregnancy onset but not in the case of spontaneous abortions. In vitro, they are able to suppress TNF-α production by T cells from pregnant individuals. Their generation and functionality will be discussed throughout this review article. B cells can be deleterious to pregnancy as well. Aberrant B cell compartment is associated with obstetric pathologies. In particular, the capacity of B2 cells to produce specific autoantibodies or of B-1a B cells to secrete natural autoantibodies that can turn autoreactive will be discussed herein. PMID:25002862

  7. Are autoantibodies the targets of B-cell-directed therapy?

    PubMed

    Pisetsky, David S; Grammer, Amrie C; Ning, Tony C; Lipsky, Peter E

    2011-09-01

    B-cell-directed therapy-the use of agents that eliminate B cells or block cytokines important for B-cell function-is emerging as a promising approach to the treatment of rheumatic disease. Target diseases, including systemic lupus erythematosus (SLE), display diverse patterns of autoantibody production and aberrant activation of B cells. Despite the success of this general approach, the mechanisms by which B-cell-directed therapy ameliorates disease, and the role of autoantibodies as biomarkers of clinical response remain unclear. Importantly, although B-cell-directed therapy can reduce the production of some autoantibodies, the effects can be variable and heterogeneous, probably reflecting the critical (but ill-defined) roles of different B-cell and plasma cell populations in autoantibody production. Future studies during clinical trials of these agents are needed to define which B-cell and autoantibody populations are affected (or ought to be), and to discover informative biomarkers of clinical response that can be used to advance this therapeutic approach.

  8. A fine romance: T follicular helper cells and B cells.

    PubMed

    King, Cecile

    2011-06-24

    T follicular helper (Tfh) cells help B cells to generate affinity-matured antibodies. Three papers in this issue of Immunity (Choi et al., 2011; Kerfoot et al., 2011; Kitano et al., 2011) provide information about the reciprocal relationship between B cells and Tfh cells.

  9. DNA breaks early in replication in B cell cancers

    Cancer.gov

    Research by scientists at the NCI has identified a new class of DNA sites in cells that break early in the replication process. They found that these break sites correlate with damage often seen in B cell cancers, such as diffuse large B cell lymphoma.

  10. A fine romance: T follicular helper cells and B cells.

    PubMed

    King, Cecile

    2011-06-24

    T follicular helper (Tfh) cells help B cells to generate affinity-matured antibodies. Three papers in this issue of Immunity (Choi et al., 2011; Kerfoot et al., 2011; Kitano et al., 2011) provide information about the reciprocal relationship between B cells and Tfh cells. PMID:21703537

  11. B cells as therapeutic targets in autoimmune neurological disorders.

    PubMed

    Dalakas, Marinos C

    2008-10-01

    B cells have a fundamental role in the pathogenesis of various autoimmune neurological disorders, not only as precursors of antibody-producing cells, but also as important regulators of the T-cell activation process through their participation in antigen presentation, cytokine production, and formation of ectopic germinal centers in the intermeningeal spaces. Two B-cell trophic factors-BAFF (B-cell-activating factor) and APRIL (a proliferation-inducing ligand)-and their receptors are strongly upregulated in many immunological disorders of the CNS and PNS, and these molecules contribute to clonal expansion of B cells in situ. The availability of monoclonal antibodies or fusion proteins against B-cell surface molecules and trophic factors provides a rational approach to the treatment of autoimmune neurological diseases. This article reviews the role of B cells in autoimmune neurological disorders and summarizes the experience to date with rituximab, a B-cell-depleting monoclonal antibody against CD20, for the treatment of relapsing-remitting multiple sclerosis, autoimmune neuropathies, neuromyelitis optica, paraneoplastic neurological disorders, myasthenia gravis, and inflammatory myopathies. It is expected that ongoing controlled trials will establish the efficacy and long-term safety profile of anti-B-cell agents in several autoimmune neurological disorders, as well as exploring the possibility of a safe and synergistic effect with other immunosuppressants or immunomodulators.

  12. Therapeutic strategies targeting B-cells in multiple sclerosis.

    PubMed

    Milo, Ron

    2016-07-01

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system (CNS) that traditionally has been considered to be mediated primarily by T-cells. Increasing evidence, however, suggests the fundamental role of B-cells in the pathogenesis of the disease. Recent strategies targeting B-cells in MS have demonstrated impressive and sometimes surprising results: B-cell depletion by monoclonal antibodies targeting the B-cell surface antigen CD20 (e.g. rituximab, ocrelizumab, ofatumumab) was shown to exert profound anti-inflammatory effect in MS with favorable risk-benefit ratio, with ocrelizumab demonstrating efficacy in both relapsing-remitting (RR) and primary-progressive (PP) MS in phase III clinical trials. Depletion of CD52 expressing T- and B-cells and monocytes by alemtuzumab resulted in impressive and durable suppression of disease activity in RRMS patients. On the other hand, strategies targeting B-cell cytokines such as atacicept resulted in increased disease activity. As our understanding of the biology of B-cells in MS is increasing, new compounds that target B-cells continue to be developed which promise to further expand the armamentarium of MS therapies and allow for more individualized therapy for patients with this complex disease.

  13. B cells do not present antigen covalently linked to microspheres.

    PubMed Central

    Galelli, A; Charlot, B; Dériaud, E; Leclerc, C

    1993-01-01

    B cells have been shown to present antigen to T cells very efficiently through their capacity to capture antigens by their membrane immunoglobulin. This direct cognate interaction of T and B cells results in the proliferation and differentiation of B cells. This concept has been established using soluble proteins. However, most of the antigens to which the immune system is exposed are included in complex particulate structures such as bacteria or parasites. The capacity of B cells to present these large and complex antigens is still unclear. To address this question we have studied the presentation by trinitrophenyl (TNP)-specific B cells of the same antigen TNP-KLH (keyhole limpet haemocyanin), either in a soluble form or covalently linked to poly(acrolein) microspheres, from 0.25 to 1.5 microns in diameter. In the presence of irradiated splenocytes or purified macrophages as a source of antigen-presenting cells (APC), KLH-specific T cells proliferated in response to soluble TNP-KLH or to TNP-KLH coupled to beads. In contrast, TNP-specific memory B cells were totally ineffective in presenting the TNP-KLH beads to KLH-specific T cells whereas they presented very efficiently soluble TNP-KLH. Similar results were obtained with the A20 B lymphoma or with lipopolysaccharide (LPS)-activated TNP-specific B cells. These results therefore indicate that B cells are unable to present large size particulate antigens such as bacteria or parasites. PMID:8509143

  14. DHA-enriched fish oil targets B cell lipid microdomains and enhances ex vivo and in vivo B cell function

    PubMed Central

    Gurzell, Eric A.; Teague, Heather; Harris, Mitchel; Clinthorne, Jonathan; Shaikh, Saame Raza; Fenton, Jenifer I.

    2013-01-01

    DHA is a n-3 LCPUFA in fish oil that generally suppresses T lymphocyte function. However, the effect of fish oil on B cell function remains relatively understudied. Given the important role of B cells in gut immunity and increasing human fish oil supplementation, we sought to determine whether DFO leads to enhanced B cell activation in the SMAD−/− colitis-prone mouse model, similar to that observed with C57BL/6 mice. This study tested the hypothesis that DHA from fish oil is incorporated into the B cell membrane to alter lipid microdomain clustering and enhance B cell function. Purified, splenic B cells from DFO-fed mice displayed increased DHA levels and diminished GM1 microdomain clustering. DFO enhanced LPS-induced B cell secretion of IL-6 and TNF-α and increased CD40 expression ex vivo compared with CON. Despite increased MHCII expression in the unstimulated ex vivo B cells from DFO-fed mice, we observed no difference in ex vivo OVA-FITC uptake in B cells from DFO or CON mice. In vivo, DFO increased lymphoid tissue B cell populations and surface markers of activation compared with CON. Finally, we investigated whether these ex vivo and in vivo observations were consistent with systemic changes. Indeed, DFO-fed mice had significantly higher plasma IL-5, IL-13, and IL-9 (Th2-biasing cytokines) and cecal IgA compared with CON. These results support the hypothesis and an emerging concept that fish oil enhances B cell function in vivo. PMID:23180828

  15. Precursor B Cells Increase in the Lung during Airway Allergic Inflammation: A Role for B Cell-Activating Factor

    PubMed Central

    Malmhäll, Carina; Rådinger, Madeleine; Ramos-Ramirez, Patricia; Lu, You; Deák, Tünde; Semitekolou, Maria; Gaga, Mina; Sjöstrand, Margareta; Lötvall, Jan; Bossios, Apostolos

    2016-01-01

    Background B cells, key cells in allergic inflammation, differentiate in the bone marrow and their precursors include pro-B, pre-B and immature B cells. Eosinophil progenitor cells increase in the lung after allergen exposure. However, the existence and possible role of B cell precursors in the lung during allergic inflammation remains elusive. Methods A BALB/c mouse model of allergic airway inflammation was utilized to perform phenotypic and quantification analyses of pro-B and pre-B cells in the lung by flow cytometry. B cell maturation factors IL-7 and B cell-activating factor (BAFF) and their receptors (CD127 and BAFFR, BCMA, TACI, respectively) were also evaluated in the lung and serum. The effect of anti-BAFF treatment was investigated both in vivo (i.p. administration of BAFF-R-Ig fusion protein) and in vitro (colony forming cell assay). Finally, BAFF levels were examined in the bronchoalveolar lavage (BAL) of asthmatic patients and healthy controls. Results Precursor pro and pre-B cells increase in the lung after allergen exposure, proliferate in the lung tissue in vivo, express markers of chemotaxis (CCR10 and CXCR4) and co-stimulation (CD40, CD86) and are resistant to apoptosis (Bax). Precursor B cells express receptors for BAFF at baseline, while after allergen challenge both their ligand BAFF and the BCMA receptor expression increases in B cell precursors. Blocking BAFFR in the lung in vivo decreases eosinophils and proliferating precursor B cells. Blocking BAFFR in bone marrow cultures in vitro reduces pre-B colony formation units. BAFF is increased in the BAL of severe asthmatics. Conclusion Our data support the concept of a BAFF-mediated role for B cell precursors in allergic airway inflammation. PMID:27513955

  16. NK cell depletion diminish tumour-specific B cell responses.

    PubMed

    Jensen, Markus; Tawadros, Samir; Sedlacek, Hans-Harald; Schultze, Joachim L; Berthold, Frank

    2004-05-15

    Natural killer (NK) cells can exercise immediate cytotoxicity against malignant cells and thus far modulate the development of tumour directed T cell immunity. To investigate the impact of NK cells on the development of tumour directed B cell immunity mice were immunised with IMR5-75 human neuroblastoma cells with or without prior in vivo NK cell depletion. Flow cytometry analyses gave evidence for an impaired IgG response against the cells immunised with. Dissection of Th1 (IgG2a) and Th2 (IgG1) oriented B cell responses revealed Th1 responses as primarily affected, while Th2 oriented B cell responses as measured by flow cytometry and GD2 ganglioside-specific ELISA were enforced. The data reveal an unexpected impact of NK cells on the development of tumour directed B cell responses. Consequently, NK cell function has also to be taken into account when developing B cell-based cancer immunotherapy.

  17. The regulation and activation of lupus-associated B cells.

    PubMed

    Fields, Michele L; Hondowicz, Brian D; Wharton, Gina N; Adair, Brigette S; Metzgar, Michele H; Alexander, Shawn T; Caton, Andrew J; Erikson, Jan

    2005-04-01

    Anti-double-stranded DNA (anti-dsDNA) B cells are regulated in non-autoimmune mice. While some are deleted or undergo receptor editing, a population of anti-dsDNA (VH3H9/V lambda 1) B cells that emigrate into the periphery has also been identified. These cells have an altered phenotype relative to normal B cells in that they have a reduced lifespan, appear developmentally arrested, and localize primarily to the T/B-cell interface in the spleen. This phenotype may be the consequence of immature B cells encountering antigen in the absence of T-cell help. When provided with T-cell help, the anti-dsDNA B cells differentiate into antibody-forming cells. In the context of the autoimmune-prone lpr/lpr or gld/gld mutations, the VH3H9/V lambda 1 anti-dsDNA B cells populate the B-cell follicle and by 12 weeks of age produce serum autoantibodies. The early event of anti-dsDNA B-cell follicular entry, in the absence of autoantibody production, is dependent upon CD4(+) T cells. We hypothesize that control of autoantibody production in young autoimmune-prone mice may be regulated by the counterbalancing effect of T-regulatory (T(reg)) cells. Consistent with this model, we have demonstrated that T(reg) cells are able to prevent autoantibody production induced by T-cell help. Additional studies are aimed at investigating the mechanisms of this suppression as well as probing the impact of distinct forms of T-cell-dependent and -independent activation on anti-dsDNA B cells.

  18. B-cell receptor signaling inhibitors for treatment of autoimmune inflammatory diseases and B-cell malignancies.

    PubMed

    Puri, Kamal D; Di Paolo, Julie A; Gold, Michael R

    2013-08-01

    B-cell receptor (BCR) signaling is essential for normal B-cell development, selection, survival, proliferation, and differentiation into antibody-secreting cells. Similarly, this pathway plays a key role in the pathogenesis of multiple B-cell malignancies. Genetic and pharmacological approaches have established an important role for the Spleen tyrosine kinase (Syk), Bruton's tyrosine kinase (Btk), and phosphatidylinositol 3-kinase isoform p110delta (PI3Kδ) in coupling the BCR and other BCRs to B-cell survival, migration, and activation. In the past few years, several small-molecule inhibitory drugs that target PI3Kδ, Btk, and Syk have been developed and shown to have efficacy in clinical trials for the treatment of several types of B-cell malignancies. Emerging preclinical data have also shown a critical role of BCR signaling in the activation and function of self-reactive B cells that contribute to autoimmune diseases. Because BCR signaling plays a major role in both B-cell-mediated autoimmune inflammation and B-cell malignancies, inhibition of this pathway may represent a promising new strategy for treating these diseases. This review summarizes recent achievements in the mechanism of action, pharmacological properties, and clinical activity and toxicity of these BCR signaling inhibitors, with a focus on their emerging role in treating lymphoid malignancies and autoimmune disorders.

  19. Prolactin Rescues Immature B-Cells from Apoptosis Induced by B-Cell Receptor Cross-Linking

    PubMed Central

    Flores-Fernández, Rocio; Blanco-Favela, Francisco; Fuentes-Pananá, Ezequiel M.; Chávez-Sánchez, Luis; Gorocica-Rosete, Patricia; Pizaña-Venegas, Alberto; Chávez-Rueda, Adriana Karina

    2016-01-01

    Prolactin has an immunomodulatory effect and has been associated with B-cell-triggered autoimmune diseases, such as systemic lupus erythematosus (SLE). In mice that develop SLE, the PRL receptor is expressed in early bone marrow B-cells, and increased levels of PRL hasten disease manifestations, which are correlated with a reduction in the absolute number of immature B-cells. The aim of this work was to determine the effect of PRL in an in vitro system of B-cell tolerance using WEHI-231 cells and immature B-cells from lupus prone MRL/lpr mice. WEHI-231 cells express the long isoform of the PRL receptor, and PRL rescued the cells from cell death by decreasing the apoptosis induced by the cross-linking of the B-cell antigen receptor (BCR) as measured by Annexin V and active caspase-3. This decrease in apoptosis may have been due to the PRL and receptor interaction, which increased the relative expression of antiapoptotic Bcl-xL and decreased the relative expression of proapoptotic Bad. In immature B-cells from MRL/lpr mice, PRL increased the viability and decreased the apoptosis induced by the cross-linking of BCR, which may favor the maturation of self-reactive B-cells and contribute to the onset of disease. PMID:27314053

  20. B Cells in Chronic Graft versus Host Disease

    PubMed Central

    Sarantopoulos, Stefanie; Blazar, Bruce R.; Cutler, Corey; Ritz, Jerome

    2015-01-01

    Chronic graft versus host disease (cGVHD) continues to be a common complication of allogeneic hematopoietic stem cell transplantation (HSCT). Unlike acute GVHD, which is mediated almost entirely by donor T cells, the immune pathology of cGVHD is more complex and donor B cells have also been found to play an important role. Recent studies from several laboratories have enhanced our understanding of how donor B cells contribute to this clinical syndrome and this has led to new therapeutic opportunities. Here, Dr. Sarantopoulos reviews some of the important mechanisms responsible for persistent B cell activation and loss of B cell tolerance in patients with cGVHD. Dr. Blazar describes recent studies in preclinical models that have identified novel B cell directed agents that may be effective for prevention or treatment of cGVHD. Some B cell directed therapies have already been tested in patients with cGVHD and Dr. Cutler reviews the results of these studies documenting the potential efficacy of this approach. Supported by studies mechanistic studies in patients and preclinical models, new B cell directed therapies for cGVHD will now be evaluated in clinical trials. PMID:25452031

  1. YY1 Is Required for Germinal Center B Cell Development

    PubMed Central

    Vuyyuru, Raja; Jha, Vibha; Hodewadekar, Suchita; Manser, Tim; Atchison, Michael L.

    2016-01-01

    YY1 has been implicated as a master regulator of germinal center B cell development as YY1 binding sites are frequently present in promoters of germinal center-expressed genes. YY1 is known to be important for other stages of B cell development including the pro-B and pre-B cells stages. To determine if YY1 plays a critical role in germinal center development, we evaluated YY1 expression during B cell development, and used a YY1 conditional knock-out approach for deletion of YY1 in germinal center B cells (CRE driven by the immunoglobulin heavy chain γ1 switch region promoter; γ1-CRE). We found that YY1 is most highly expressed in germinal center B cells and is increased 3 fold in splenic B cells activated by treatment with anti-IgM and anti-CD40. In addition, deletion of the yy1 gene by action of γ1-CRE recombinase resulted in significant loss of GC cells in both un-immunized and immunized contexts with corresponding loss of serum IgG1. Our results show a crucial role for YY1 in the germinal center reaction. PMID:27167731

  2. The Relationship between B-cell Epitope and Mimotope Sequences.

    PubMed

    Zhang, Chunhua; Li, Yunyun; Tang, Weina; Zhou, Zhiguo; Sun, Pingping; Ma, Zhiqiang

    2016-01-01

    B-cell epitope is a group of residues which is on the surface of an antigen. It invokes humoral responses. Locating B-cell epitope is important for effective vaccine design, and the development of diagnostic reagents. Mimotope-based B-cell epitope prediction method is a kind of conformational B-cell epitope prediction, and the core idea of the method is mapping the mimotope sequences which are obtained from a random phage display library. However, current mimotope-based B-cell epitope prediction methods cannot maintain a high degree of satisfaction in the circumstances of employing only mimotope sequences. In this study, we did a multi-perspective analysis on parameters for conformational B-cell epitopes and characteristics between epitope and mimotope on a benchmark datasets which contains 67 mimotope sets, corresponding to 40 unique complex structures. In these 67 cases, there are 25 antigen-antibody complexes and 42 protein-protein interactions. We analyzed the two parts separately. The results showed the mimotope sequences do have some epitope features, but there are also some epitope properties that mimotope sequences do not contain. In addition, the numbers of epitope segments with different lengths were obviously different between the antigen-antibody complexes and the protein-protein interactions. This study reflects how similar do mimotope sequence and genuine epitopes have; and evaluates existing mimotope-based B-cell epitope prediction methods from a novel viewpoint.

  3. Salmonella induces PD-L1 expression in B cells.

    PubMed

    Lopez-Medina, Marcela; Perez-Lopez, Araceli; Alpuche-Aranda, Celia; Ortiz-Navarrete, Vianney

    2015-10-01

    Salmonella persists for a long time in B cells; however, the mechanism(s) through which infected B cells avoid effector CD8 T cell responses has not been characterized. In this study, we show that Salmonella infects and survives within all B1 and B2 cell subpopulations. B cells are infected with a Salmonella typhimurium strain expressing an ovalbumin (OVA) peptide (SIINFEKL) to evaluate whether B cells process and present Salmonella antigens in the context of MHC-I molecules. Our data showed that OVA peptides are presented by MHC class I K(b)-restricted molecules and the presented antigen is generated through proteasomal degradation and vacuolar processing. In addition, Salmonella-infected B cells express co-stimulatory molecules such as CD40, CD80, and CD86 as well as inhibitory molecules such as PD-L1. Thus, the cross-presentation of Salmonella antigens and the expression of activation molecules suggest that infected B cells are able to prime and activate specific CD8(+) T cells. However, the Salmonella infection-stimulated expression of PD-L1 suggests that the PD-1/PD-L1 pathway may be involved in turning off the cytotoxic effector response during Salmonella persistent infection, thereby allowing B cells to become a reservoir for the bacteria.

  4. The Relationship between B-cell Epitope and Mimotope Sequences.

    PubMed

    Zhang, Chunhua; Li, Yunyun; Tang, Weina; Zhou, Zhiguo; Sun, Pingping; Ma, Zhiqiang

    2016-01-01

    B-cell epitope is a group of residues which is on the surface of an antigen. It invokes humoral responses. Locating B-cell epitope is important for effective vaccine design, and the development of diagnostic reagents. Mimotope-based B-cell epitope prediction method is a kind of conformational B-cell epitope prediction, and the core idea of the method is mapping the mimotope sequences which are obtained from a random phage display library. However, current mimotope-based B-cell epitope prediction methods cannot maintain a high degree of satisfaction in the circumstances of employing only mimotope sequences. In this study, we did a multi-perspective analysis on parameters for conformational B-cell epitopes and characteristics between epitope and mimotope on a benchmark datasets which contains 67 mimotope sets, corresponding to 40 unique complex structures. In these 67 cases, there are 25 antigen-antibody complexes and 42 protein-protein interactions. We analyzed the two parts separately. The results showed the mimotope sequences do have some epitope features, but there are also some epitope properties that mimotope sequences do not contain. In addition, the numbers of epitope segments with different lengths were obviously different between the antigen-antibody complexes and the protein-protein interactions. This study reflects how similar do mimotope sequence and genuine epitopes have; and evaluates existing mimotope-based B-cell epitope prediction methods from a novel viewpoint. PMID:26715528

  5. Human Memory B Cells in Healthy Gingiva, Gingivitis, and Periodontitis.

    PubMed

    Mahanonda, Rangsini; Champaiboon, Chantrakorn; Subbalekha, Keskanya; Sa-Ard-Iam, Noppadol; Rattanathammatada, Warattaya; Thawanaphong, Saranya; Rerkyen, Pimprapa; Yoshimura, Fuminobu; Nagano, Keiji; Lang, Niklaus P; Pichyangkul, Sathit

    2016-08-01

    The presence of inflammatory infiltrates with B cells, specifically plasma cells, is the hallmark of periodontitis lesions. The composition of these infiltrates in various stages of homeostasis and disease development is not well documented. Human tissue biopsies from sites with gingival health (n = 29), gingivitis (n = 8), and periodontitis (n = 21) as well as gingival tissue after treated periodontitis (n = 6) were obtained and analyzed for their composition of B cell subsets. Ag specificity, Ig secretion, and expression of receptor activator of NF-κB ligand and granzyme B were performed. Although most of the B cell subsets in healthy gingiva and gingivitis tissues were CD19(+)CD27(+)CD38(-) memory B cells, the major B cell component in periodontitis was CD19(+)CD27(+)CD38(+)CD138(+)HLA-DR(low) plasma cells, not plasmablasts. Plasma cell aggregates were observed at the base of the periodontal pocket and scattered throughout the gingiva, especially apically toward the advancing front of the lesion. High expression of CXCL12, a proliferation-inducing ligand, B cell-activating factor, IL-10, IL-6, and IL-21 molecules involved in local B cell responses was detected in both gingivitis and periodontitis tissues. Periodontitis tissue plasma cells mainly secreted IgG specific to periodontal pathogens and also expressed receptor activator of NF-κB ligand, a bone resorption cytokine. Memory B cells resided in the connective tissue subjacent to the junctional epithelium in healthy gingiva. This suggested a role of memory B cells in maintaining periodontal homeostasis. PMID:27335500

  6. Long-term immune deficiency after allogeneic stem cell transplantation: B-cell deficiency is associated with late infections

    PubMed Central

    Corre, Elise; Carmagnat, Maryvonnick; Busson, Marc; de Latour, Regis Peffault; Robin, Marie; Ribaud, Patricia; Toubert, Antoine; Rabian, Claire; Socié, Gerard

    2010-01-01

    Immune reconstitution was analyzed in 140 consecutive patients who were 2-year disease-free and who underwent myeloablative allogeneic transplantation. A CD4 and CD8 defect was observed involving naive, terminally differentiated, memory and competent cells and above limits values for activated subsets. Natural killer cells normalize at six months while we observed expansion of CD19+/CD5+ B cells after three months and a persisting defect of memory B cells. Chronic graft-versus-host disease did not influence significantly those parameters for CD8 subsets while the naïve and competent CD4 subsets were strongly affected. But the most profound impact of chronic graft-versus-host disease was on B-cell subsets, especially on the memory B population. The cumulative incidence of late severe infections was low (14% at four years). Using Cox’s models, only low B-cell counts at 12 (P=0.02) and 24 (P=0.001) months were associated with the hazard of developing late infection, in particular if patients did not develop chronic graft-versus-host disease. PMID:20133894

  7. Antibody response to a T-dependent antigen requires B cell expression of complement receptors

    PubMed Central

    1996-01-01

    Several lines of evidence indicate that antibody responses to T- dependent antigens require complement receptors expressed on either B lymphocytes or follicular dendritic cells. We have used RAG-2 deficient blastocyst complementation to create mice specifically lacking B cell complement receptors. Despite normal expression of complement receptor 1 (CR1[CD35]) and CR2 (CD21) on follicular dendritic cells, these mice have a profound defect in their capacity to mount a T-dependent antibody response. This is the first direct demonstration in vivo that B cell expression of complement receptors is required for a humoral immune response. This is the first direct demonstration in vivo that B cell expression of complement receptors is required for a humoral immune response. This suggests that CD21 and/or CD35 on B lymphocytes may be required for cellular activation, adsorptive endocytosis of antigen, recruitment to germinal centers, and/or protection from apoptosis during the humoral response to T-dependent antigens. PMID:8666942

  8. B-cell memory and the persistence of antibody responses.

    PubMed Central

    MacLennan, I C; García de Vinuesa, C; Casamayor-Palleja, M

    2000-01-01

    Antigens such as viral envelope proteins and bacterial exotoxins induce responses which result in the production of neutralizing antibody. These responses persist for years and provide highly efficient defence against reinfection. During these antibody responses a proportion of participating B cells mutate the genes that encode their immunoglobulin variable regions. This can increase the affinity of the antibody, but can also induce autoreactive B cells. Selection mechanisms operate which allow the cells with high affinity for the provoking antigen to persist, while other B cells recruited into the response die. PMID:10794052

  9. BAFF: a fundamental survival factor for B cells.

    PubMed

    Mackay, Fabienne; Browning, Jeffrey L

    2002-07-01

    B-cell-activating factor of the tumour-necrosis-factor family (BAFF) enhances B-cell survival--a function that is indispensable for B-cell maturation--and has a role in enhancing immune responses. Moreover, the overexpression of BAFF results in severe autoimmune disorders in mice, and elevated serum levels of BAFF occur in some patients who have autoimmune diseases. The elucidation of the role of BAFF has set the stage for a new approach to the treatment of autoimmune disease.

  10. PI3 Kinase signals BCR dependent mature B cell survival

    PubMed Central

    Srinivasan, Lakshmi; Sasaki, Yoshiteru; Calado, Dinis Pedro; Zhang, Baochun; Paik, Ji Hye; DePinho, Ronald A.; Kutok, Jeffrey L.; Kearney, John F.; Otipoby, Kevin L.; Rajewsky, Klaus

    2009-01-01

    Summary Previous work has shown that mature B cells depend upon survival signals delivered to the cells by their antigen receptor (BCR). To identify the molecular nature of this survival signal, we have developed a genetic approach in which ablation of the BCR is combined with the activation of specific, BCR dependent signaling cascades in mature B cells in vivo. Using this system, we provide evidence that the survival of BCR deficient mature B cells can be rescued by a single signaling pathway downstream of the BCR, namely PI3K signaling, with the FOXO1 transcription factor playing a central role. PMID:19879843

  11. Birth Defects

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Birth Defects: Condition Information Skip sharing on social media links Share this: Page Content What are birth defects? Birth defects are structural or functional abnormalities present ...

  12. HIV-dependent depletion of influenza-specific memory B cells impacts B cell responsiveness to seasonal influenza immunisation

    PubMed Central

    Wheatley, Adam K.; Kristensen, Anne B.; Lay, William N.; Kent, Stephen J.

    2016-01-01

    Infection with HIV drives significant alterations in B cell phenotype and function that can markedly influence antibody responses to immunisation. Anti-retroviral therapy (ART) can partially reverse many aspects of B cell dysregulation, however complete normalisation of vaccine responsiveness is not always observed. Here we examine the effects of underlying HIV infection upon humoral immunity to seasonal influenza vaccines. Serological and memory B cell responses were assessed in 26 HIV+ subjects receiving ART and 30 healthy controls immunised with the 2015 Southern Hemisphere trivalent inactivated influenza vaccine (IIV3). Frequencies and phenotypes of influenza hemagglutinin (HA)-specific B cells were assessed by flow cytometry using recombinant HA probes. Serum antibody was measured using hemagglutination inhibition assays. Serological responses to IIV3 were comparable between HIV+ and HIV− subjects. Likewise, the activation and expansion of memory B cell populations specific for vaccine-component influenza strains was observed in both cohorts, however peak frequencies were diminished in HIV+ subjects compared to uninfected controls. Lower circulating frequencies of memory B cells recognising vaccine-component and historical influenza strains were observed in HIV+ subjects at baseline, that were generally restored to levels comparable with HIV− controls post-vaccination. HIV infection is therefore associated with depletion of selected HA-specific memory B cell pools. PMID:27220898

  13. ATM deficiency promotes development of murine B-cell lymphomas that resemble diffuse large B-cell lymphoma in humans

    PubMed Central

    Hathcock, Karen S.; Padilla-Nash, Hesed M.; Camps, Jordi; Shin, Dong-Mi; Triner, Daniel; Shaffer, Arthur L.; Maul, Robert W.; Steinberg, Seth M.; Gearhart, Patricia J.; Staudt, Louis M.; Morse, Herbert C.; Ried, Thomas

    2015-01-01

    The serine-threonine kinase ataxia-telangiectasia mutated (ATM) plays a central role in maintaining genomic integrity. In mice, ATM deficiency is exclusively associated with T-cell lymphoma development, whereas B-cell tumors predominate in human ataxia-telangiectasia patients. We demonstrate in this study that when T cells are removed as targets for lymphomagenesis and as mediators of immune surveillance, ATM-deficient mice exclusively develop early-onset immunoglobulin M+ B-cell lymphomas that do not transplant to immunocompetent mice and that histologically and genetically resemble the activated B cell–like (ABC) subset of human diffuse large B-cell lymphoma (DLBCL). These B-cell lymphomas show considerable chromosomal instability and a recurrent genomic amplification of a 4.48-Mb region on chromosome 18 that contains Malt1 and is orthologous to a region similarly amplified in human ABC DLBCL. Of importance, amplification of Malt1 in these lymphomas correlates with their dependence on nuclear factor (NF)-κB, MALT1, and B-cell receptor (BCR) signaling for survival, paralleling human ABC DLBCL. Further, like some human ABC DLBCLs, these mouse B-cell lymphomas also exhibit constitutive BCR-dependent NF-κB activation. This study reveals that ATM protects against development of B-cell lymphomas that model human ABC DLBCL and identifies a potential role for T cells in preventing the emergence of these tumors. PMID:26400962

  14. B Cell Development in the Bone Marrow Is Regulated by Homeostatic Feedback Exerted by Mature B Cells

    PubMed Central

    Shahaf, Gitit; Zisman-Rozen, Simona; Benhamou, David; Melamed, Doron; Mehr, Ramit

    2016-01-01

    Cellular homeostasis in the B cell compartment is strictly imposed to balance cell production and cell loss. However, it is not clear whether B cell development in the bone marrow is an autonomous process or subjected to regulation by the peripheral B cell compartment. To specifically address this question, we used mice transgenic for human CD20, where effective depletion of B lineage cells is obtained upon administration of mouse anti-human CD20 antibodies, in the absence of any effect on other cell lineages and/or tissues. We followed the kinetics of B cell return to equilibrium by BrdU labeling and flow cytometry and analyzed the resulting data by mathematical modeling. Labeling was much faster in depleted mice. Compared to control mice, B cell-depleted mice exhibited a higher proliferation rate in the pro-/pre-B compartment, and higher cell death and lower differentiation in the immature B cell compartment. We validated the first result by analysis of the expression of Ki67, the nuclear protein expressed in proliferating cells, and the second using Annexin V staining. Collectively, our results suggest that B lymphopoiesis is subjected to homeostatic feedback mechanisms imposed by mature B cells in the peripheral compartment. PMID:27047488

  15. Transgelin-2 in B-Cells Controls T-Cell Activation by Stabilizing T Cell - B Cell Conjugates

    PubMed Central

    Chae, Myoung-Won; Kim, Hye-Ran; Kim, Chang-Hyun; Jun, Chang-Duk; Park, Zee-Yong

    2016-01-01

    The immunological synapse (IS), a dynamic and organized junction between T-cells and antigen presenting cells (APCs), is critical for initiating adaptive immunity. The actin cytoskeleton plays a major role in T-cell reorganization during IS formation, and we previously reported that transgelin-2, an actin-binding protein expressed in T-cells, stabilizes cortical F-actin, promoting T-cell activation in response to antigen stimulation. Transgelin-2 is also highly expressed in B-cells, although no specific function has been reported. In this study, we found that deficiency in transgelin-2 (TAGLN2-/-) in B-cells had little effect on B-cell development and activation, as measured by the expression of CD69, MHC class II molecules, and CD80/86. Nevertheless, in B-cells, transgelin-2 accumulated in the IS during the interaction with T-cells. These results led us to hypothesize that transgelin-2 may also be involved in IS stability in B-cells, thereby influencing T-cell function. Notably, we found that transgelin-2 deficiency in B-cells reduced T-cell activation, as determined by the release of IL-2 and interferon-γ and the expression of CD69. Furthermore, the reduced T-cell activation was correlated with reduced B-cell–T-cell conjugate formation. Collectively, these results suggest that actin stability in B-cells during IS formation is critical for the initiation of adaptive T-cell immunity. PMID:27232882

  16. B-cell survival factors in autoimmune rheumatic disorders.

    PubMed

    Morais, Sandra A; Vilas-Boas, Andreia; Isenberg, David A

    2015-08-01

    Autoimmune rheumatic disorders have complex etiopathogenetic mechanisms in which B cells play a central role. The importance of factors stimulating B cells, notably the B-cell activating factor (BAFF) and A proliferation inducing ligand (APRIL) axis is now recognized. BAFF and APRIL are cytokines essential for B-cell proliferation and survival from the immature stages to the development of plasma cells. Their levels are increased in some subsets of patients with autoimmune disorders. Several recent biologic drugs have been developed to block this axis, namely belimumab [already licensed for systemic lupus erythematosus (SLE) treatment], tabalumab, atacicept and blisibimod. Many clinical trials to evaluate the safety and efficacy of these drugs in several autoimmune disorders are ongoing, or have been completed recently. This review updates the information on the use of biologic agents blocking BAFF/APRIL for patients with SLE, rheumatoid arthritis, Sjögren's syndrome and myositis. PMID:26288664

  17. An eruption of European B-cell biology.

    PubMed

    Cancro, Michael P

    2010-09-01

    Volcanic ash clouds disrupted the 2010 ESF/EMBO meeting on B cells and protection. Nevertheless, the delegates who did make it to Catalonia put together their own programme of talks covering a range of themes from mutualism to epigenetics.

  18. BAFF suppresses IL-15 expression in B cells.

    PubMed

    Ma, Ning; Xing, Chen; Xiao, He; He, Youdi; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Marrero, Bernadette; Wang, Yujuan; Zhang, Shengquan; Shen, Beifen; Li, Yan; Wang, Renxi

    2014-05-01

    Clinical trials have shown that BAFF inhibitors do not reduce memory B cell levels but can reduce the number of mature B cells. It remains uncertain whether BAFF affects memory-maintaining cytokines such as IL-15. We found that BAFF suppressed IL-15 expression in B cells from lupus-like or experimental allergic encephalomyelitis mice. When BAFF was blocked with atacicept-IgG, IL-15 expression was upregulated in lupus-like or experimental allergic encephalomyelitis mice. Finally, we showed that BAFF suppressed IL-15 expression in transitional 2 B cells by reducing Foxo1 expression and inducing Foxo1 phosphorylation. This study suggests that BAFF suppresses IL-15 expression in autoimmune diseases, and this opens up the possible opportunity for the clinical application of BAFF- and IL-15-specific therapeutic agents.

  19. How Follicular Dendritic Cells Shape the B-Cell Antigenome

    PubMed Central

    Kranich, Jan; Krautler, Nike Julia

    2016-01-01

    Follicular dendritic cells (FDCs) are stromal cells residing in primary follicles and in germinal centers of secondary and tertiary lymphoid organs (SLOs and TLOs). There, they play a crucial role in B-cell activation and affinity maturation of antibodies. FDCs have the unique capacity to bind and retain native antigen in B-cell follicles for long periods of time. Therefore, FDCs shape the B-cell antigenome (the sum of all B-cell antigens) in SLOs and TLOs. In this review, we discuss recent findings that explain how this stromal cell type can arise in almost any tissue during TLO formation and, furthermore, focus on the mechanisms of antigen capture and retention involved in the generation of long-lasting antigen depots displayed on FDCs. PMID:27446069

  20. Diffuse Large B-Cell Lymphoma Version 1.2016.

    PubMed

    Zelenetz, Andrew D; Gordon, Leo I; Wierda, William G; Abramson, Jeremy S; Advani, Ranjana H; Andreadis, C Babis; Bartlett, Nancy; Byrd, John C; Fayad, Luis E; Fisher, Richard I; Glenn, Martha J; Habermann, Thomas M; Lee Harris, Nancy; Hernandez-Ilizaliturri, Francisco; Hoppe, Richard T; Horwitz, Steven M; Kaminski, Mark S; Kelsey, Christopher R; Kim, Youn H; Krivacic, Susan; LaCasce, Ann S; Lunning, Matthew; Nademanee, Auayporn; Porcu, Pierluigi; Press, Oliver; Rabinovitch, Rachel; Reddy, Nishitha; Reid, Erin; Roberts, Kenneth; Saad, Ayman A; Sokol, Lubomir; Swinnen, Lode J; Vose, Julie M; Yahalom, Joachim; Zafar, Nadeem; Dwyer, Mary; Sundar, Hema

    2016-02-01

    Diffuse large B-cell lymphomas (DLBCL) are now considered a heterogeneous group of distinct molecular subtypes (germinal center B-cell DLBCL, activated B-cell DLBCL, and primary mediastinal large B-cell lymphoma (PMBL) with varied natural history and response to therapy. In addition, a subset of patients with DLBCL have concurrent MYC and/or BCL2 gene rearrangements (double-hit lymphomas; DHL) and others have a dual expression of both MYC and BCL2 proteins (double-expressing DLBCL; DEL). The standard of care for the treatment of patients with PMBL, DHL, or DEL has not been established. Adequate immunophenotyping and molecular testing (in selected circumstances) are necessary for the accurate diagnosis of different subtypes of DLBCL. The NCCN Guidelines included in this issue, part of the NCCN Guidelines for non-Hodgkin's lymphomas, address the diagnosis and management of DLBCL and its subtypes. PMID:26850490

  1. Chronic B-Cell Leukemias and Agent Orange

    MedlinePlus

    ... survivors' benefits . Research on B-cell leukemias and herbicides The Health and Medicine Division (HMD) (formally known ... sufficient evidence of an association between exposure to herbicides and chronic lymphocytic leukemia. In 2003, VA recognized ...

  2. COMPUTATION MODELING OF TCDD DISRUPTION OF B CELL TERMINAL DIFFERENTIATION

    EPA Science Inventory

    In this study, we established a computational model describing the molecular circuit underlying B cell terminal differentiation and how TCDD may affect this process by impinging upon various molecular targets.

  3. B-cell survival factors in autoimmune rheumatic disorders

    PubMed Central

    Morais, Sandra A.; Vilas-Boas, Andreia

    2015-01-01

    Autoimmune rheumatic disorders have complex etiopathogenetic mechanisms in which B cells play a central role. The importance of factors stimulating B cells, notably the B-cell activating factor (BAFF) and A proliferation inducing ligand (APRIL) axis is now recognized. BAFF and APRIL are cytokines essential for B-cell proliferation and survival from the immature stages to the development of plasma cells. Their levels are increased in some subsets of patients with autoimmune disorders. Several recent biologic drugs have been developed to block this axis, namely belimumab [already licensed for systemic lupus erythematosus (SLE) treatment], tabalumab, atacicept and blisibimod. Many clinical trials to evaluate the safety and efficacy of these drugs in several autoimmune disorders are ongoing, or have been completed recently. This review updates the information on the use of biologic agents blocking BAFF/APRIL for patients with SLE, rheumatoid arthritis, Sjögren’s syndrome and myositis. PMID:26288664

  4. B CELL DEPLETION THERAPY EXACERBATES MURINE PRIMARY BILIARY CIRRHOSIS

    PubMed Central

    Dhirapong, Amy; Lleo, Ana; Yang, Guo-Xiang; Tsuneyama, Koichi; Dunn, Robert; Kehry, Marilyn; Packard, Thomas A.; Cambier, John C.; Liu, Fu-Tong; Lindor, Keith; Coppel, Ross L.; Ansari, Aftab A.; Gershwin, M. Eric

    2010-01-01

    Primary biliary cirrhosis (PBC) is considered a model autoimmune disease due to the clinical homogeneity of patients and the classic hallmark of anti-mitochondrial antibodies (AMAS). Indeed, the presence of AMAS is the most highly directed and specific autoantibody in autoimmune diseases. However, the contribution of B cells to the pathogenesis of PBC is unclear. Thus, although AMAs appear to interact with the biliary cell apotope and contribute to biliary pathology, there is no correlation of disease severity and titer of AMA. The recent development of well characterized mAbs specific for the B cell populations, anti-CD20 and anti-CD79, and the development of a well defined xenobiotic induced model of autoimmune cholangitis, prompted us to utilize these reagents and the model to address the contribution of B cells in the pathogenesis of murine PBC. Prior to the induction of autoimmune cholangitis, mice were treated with either anti-CD20, anti-CD79, or isotype matched control mAb and followed for B cell development, the appearance of AMAs, liver pathology and cytokine production. Results of the studies reported herein show that the in vivo depletion of B cells using either anti-CD20 or anti-CD79 led to the development of a more severe form of cholangitis than control mice which is in contrast with results from a number of other autoimmune models which have documented an important therapeutic role of B cell specific depletion. The anti-CD20/CD79 treated mice have increased liver T cell infiltrates and higher levels of pro-inflammatory cytokines. In conclusion, our results reflect a novel disease protective role of B cells in PBC and suggest that B cell depletion therapy in humans with PBC should be approached with caution. PMID:21274873

  5. Rituximab induces Interleukin-6 production by human B cells

    PubMed Central

    Jones, Jonathan D.; Hamilton, B. JoNell; Skopelja, Sladjana; Rigby, William F. C.

    2014-01-01

    Objective Rituximab (RTX), an anti-CD20 monoclonal antibody, is highly effective in the treatment of several autoimmune diseases. The mechanism by which RTX treatment improves Rheumatoid Arthritis and ANCA-Associated Vasculitis is not easily related to B cell depletion. We have shown that RTX mediates a rapid stripping of CD20 and CD19 from the human B cell through a process known as trogocytosis. We hypothesized that changes in B cell phenotype resulting from trogocytosis would diminish the ability of B cells to promote autoimmune disease. Methods Human PBMC were cultured with RTX under conditions that permitted trogocytosis. Changes in B cell phenotype and cytokine production were measured under basal and activated (IL-4/anti-CD40) conditions. The effects of RTX were characterized for their requirements for FcγR and Fc-dependent interactions. Results Trogocytosis induced a marked loss of surface CD19, IgD, CD40 and BR3, but did not alter induction of CD86 expression on purified B cells by IL-4/anti-CD40 treatment. Unexpectedly, RTX-dependent trogocytosis of normal human B cells in vitro led to a rapid upregulation of IL-6 production, with no effect on TNFα, IL-1β, INFγ, or IL-10 production. This effect was Fc-dependent and required the presence of an FcγR bearing cell. This effect involved the release of pre-formed intracellular IL-6 protein as well as marked increases in IL-6 mRNA levels. Conclusion RTX mediated trogocytosis of B cells in vitro results in acute production and release of IL-6. The nature of this effect and its relationship to acute infusion reactions seen with RTX administration remain to be determined. PMID:25080282

  6. Autoimmunity, polyclonal B-cell activation and infection.

    PubMed

    Granholm, N A; Cavallo, T

    1992-02-01

    It is widely believed that autoimmunity is an integral part of the immune system, and that genetic, immunologic, hormonal, environmental and other factors contribute to the pathogenesis of autoimmune disease. Thus, autoimmune disease may represent an abnormal expression of immune functions instead of loss of tolerance to self, and it can be organ specific or systemic in its manifestations. We review the various factors that contribute to the development of autoimmune disease; we also review the mechanisms of polyclonal B-cell activation, with emphasis on the role of infectious agents. We consider systemic lupus erythematosus in humans and in experimental animals as prototypic autoimmune disease, and we summarize data to indicate that polyclonal B-cell activation is central to the pathogenesis of systemic autoimmune disease. The effect of polyclonal B-cell activation, brought about by injections of a B-cell activator-lipopolysaccharide from Gram-negative bacteria-is sufficient to cause autoimmune disease in an immunologically normal host. In fact, autoimmune disease can be arrested if excessive polyclonal B-cell activation is suppressed; alternatively, autoimmune disease can be exacerbated if polyclonal B-cell activation is enhanced. We explore the mechanism of tissue injury when autoimmune disease is induced or exacerbated, and we consider the pathogenic roles of autoantibodies, immune complexes, complement, the blood cell carrier system, and the mononuclear phagocyte system. Although polyclonal B-cell activation may be the mechanism whereby various factors can cause or exacerbate systemic autoimmune disease, polyclonal B-cell activation may cause autoimmune disease on its own.

  7. Long Noncoding RNA Expression during Human B-Cell Development.

    PubMed

    Petri, Andreas; Dybkær, Karen; Bøgsted, Martin; Thrue, Charlotte Albæk; Hagedorn, Peter H; Schmitz, Alexander; Bødker, Julie Støve; Johnsen, Hans Erik; Kauppinen, Sakari

    2015-01-01

    Long noncoding RNAs (lncRNAs) have emerged as important regulators of diverse cellular processes, but their roles in the developing immune system are poorly understood. In this study, we analysed lncRNA expression during human B-cell development by array-based expression profiling of eleven distinct flow-sorted B-cell subsets, comprising pre-B1, pre-B2, immature, naive, memory, and plasma cells from bone marrow biopsies (n = 7), and naive, centroblast, centrocyte, memory, and plasmablast cells from tonsil tissue samples (n = 6), respectively. A remapping strategy was used to assign the array probes to 37630 gene-level probe sets, reflecting recent updates in genomic and transcriptomic databases, which enabled expression profiling of 19579 long noncoding RNAs, comprising 3947 antisense RNAs, 5277 lincRNAs, 7625 pseudogenes, and 2730 additional lncRNAs. As a first step towards inferring the functions of the identified lncRNAs in developing B-cells, we analysed their co-expression with well-characterized protein-coding genes, a method known as "guilt by association". By using weighted gene co-expression network analysis, we identified 272 lincRNAs, 471 antisense RNAs, 376 pseudogene RNAs, and 64 lncRNAs within seven sub-networks associated with distinct stages of B-cell development, such as early B-cell development, B-cell proliferation, affinity maturation of antibody, and terminal differentiation. These data provide an important resource for future studies on the functions of lncRNAs in development of the adaptive immune response, and the pathogenesis of B-cell malignancies that originate from distinct B-cell subpopulations. PMID:26394393

  8. B cells mediate chronic allograft rejection independently of antibody production.

    PubMed

    Zeng, Qiang; Ng, Yue-Harn; Singh, Tripti; Jiang, Ke; Sheriff, Khaleefathullah A; Ippolito, Renee; Zahalka, Salwa; Li, Qi; Randhawa, Parmjeet; Hoffman, Rosemary A; Ramaswami, Balathiripurasundari; Lund, Frances E; Chalasani, Geetha

    2014-03-01

    Chronic rejection is the primary cause of long-term failure of transplanted organs and is often viewed as an antibody-dependent process. Chronic rejection, however, is also observed in mice and humans with no detectable circulating alloantibodies, suggesting that antibody-independent pathways may also contribute to pathogenesis of transplant rejection. Here, we have provided direct evidence that chronic rejection of vascularized heart allografts occurs in the complete absence of antibodies, but requires the presence of B cells. Mice that were deficient for antibodies but not B cells experienced the same chronic allograft vasculopathy (CAV), which is a pathognomonic feature of chronic rejection, as WT mice; however, mice that were deficient for both B cells and antibodies were protected from CAV. B cells contributed to CAV by supporting splenic lymphoid architecture, T cell cytokine production, and infiltration of T cells into graft vessels. In chimeric mice, in which B cells were present but could not present antigen, both T cell responses and CAV were markedly reduced. These findings establish that chronic rejection can occur in the complete absence of antibodies and that B cells contribute to this process by supporting T cell responses through antigen presentation and maintenance of lymphoid architecture.

  9. Cutaneous primary B-cell lymphomas: from diagnosis to treatment*

    PubMed Central

    Lima, Margarida

    2015-01-01

    Primary cutaneous B-cell lymphomas are a heterogeneous group of mature B-cells neoplasms with tropism for the skin, whose biology and clinical course differ significantly from the equivalent nodal lymphomas. The most indolent forms comprise the primary cutaneous marginal zone and follicle center B-cell lymphomas that despite the excellent prognosis have cutaneous recurrences very commonly. The most aggressive forms include the primary cutaneous large B-cell lymphomas, consisting in two major groups: the leg type, with poor prognosis, and others, the latter representing a heterogeneous group of lymphomas from which specific entities are supposed to be individualized over time, such as intravascular large B-cell lymphomas. Treatment may include surgical excision, radiotherapy, antibiotics, corticosteroids, interferon, monoclonal antibodies and chemotherapy, depending on the type of lymphoma and on the type and location of the skin lesions. In subtypes with good prognosis is contraindicated overtreatment and in those associated with a worse prognosis the recommended therapy relies on CHOP-like regimens associated with rituximab, assisted or not with local radiotherapy. We review the primary cutaneous B-cell lymphomas, remembering the diagnostic criteria, differential diagnosis, classification, and prognostic factors and presenting the available therapies. PMID:26560215

  10. Origin of B-Cell Neoplasms in Autoimmune Disease

    PubMed Central

    Hemminki, Kari; Liu, Xiangdong; Ji, Jianguang; Försti, Asta

    2016-01-01

    Autoimmune diseases (ADs) are associated with a number of B-cell neoplasms but the associations are selective in regard to the type of neoplasm and the conferred risks are variable. So far no mechanistic bases for these differential associations have been demonstrated. We speculate that developmental origin of B-cells might propose a mechanistic rationale for their carcinogenic response to autoimmune stimuli and tested the hypothesis on our previous studies on the risks of B-cell neoplasms after any of 33 ADs. We found that predominantly germinal center (GC)-derived B-cells showed multiple associations with ADs: diffuse large B cell lymphoma associated with 15 ADs, follicular lymphoma with 7 ADs and Hodgkin lymphoma with 11 ADs. Notably, these neoplasms shared significant associations with 5 ADs (immune thrombocytopenic purpura, polymyositis/dermatomyositis, rheumatoid arthritis, Sjogren syndrome and systemic lupus erythematosis). By contrast, primarily non-GC neoplasms, acute lymphocytic leukemia, chronic lymphocytic leukemia and myeloma associated with 2 ADs only and mantle cell lymphoma with 1 AD. None of the neoplasms shared associated ADs. These data may suggest that autoimmune stimulation critically interferes with the rapid cell division, somatic hypermutation, class switch recombination and immunological selection of maturing B-cell in the GC and delivers damage contributing to transformation. PMID:27355450

  11. B cells with regulatory properties in transplantation tolerance

    PubMed Central

    Durand, Justine; Chiffoleau, Elise

    2015-01-01

    Induction of tolerance remains a major goal in transplantation. Indeed, despite potent immunosuppression, chronic rejection is still a real problem in transplantation. The humoral response is an important mediator of chronic rejection, and numerous strategies have been developed to target either B cells or plasma cells. However, the use of anti-CD20 therapy has highlighted the beneficial role of subpopulation of B cells, termed regulatory B cells. These cells have been characterized mainly in mice models of auto-immune diseases but emerging literature suggests their role in graft tolerance in transplantation. Regulatory B cells seem to be induced following inflammation to restrain excessive response. Different phenotypes of regulatory B cells have been described and are functional at various differentiation steps from immature to plasma cells. These cells act by multiple mechanisms such as secretion of immuno-suppressive cytokines interleukin-10 (IL-10) or IL-35, cytotoxicity, expression of inhibitory receptors or by secretion of non-inflammatory antibodies. Better characterization of the development, phenotype and mode of action of these cells seems urgent to develop novel approaches to manipulate the different B cell subsets and the response to the graft in a clinical setting. PMID:26722647

  12. Identification of the human mature B cell miRNome

    PubMed Central

    Basso, Katia; Sumazin, Pavel; Morozov, Pavel; Schneider, Christof; Maute, Roy L.; Kitagawa, Yukiko; Mandelbaum, Jonathan; Haddad, Joseph; Chen, Chang-Zheng; Califano, Andrea; Dalla-Favera, Riccardo

    2009-01-01

    The full set of microRNAs (miRNAs) in the human genome is not known. Because presently known miRNAs have been identified by virtue of their abundant expression in a few cell types, many tissue-specific miRNAs remain unrevealed. To understand the role of miRNAs in B-cell function and lymphomagenesis, we generated short-RNA libraries from normal human B cells at different stages of development (naïve, germinal-center, memory) and from a Burkitt lymphoma cell-line. A combination of cloning and computational analysis identified 178 miRNAs (miRNome) expressed in normal and/or transformed B-cell libraries. Most notably, the B-cell miRNome included 75 miRNAs which to our knowledge have not been previously reported and of which 66 have been validated by RNA blot and/or RT-PCR analyses. Numerous miRNAs were expressed in a stage- or transformation-specific fashion in B cells, suggesting specific functional or pathologic roles. These results provide a resource for studying the role of miRNAs in B-cell development, immune function, and lymphomagenesis. PMID:19446474

  13. Transcriptional analysis of the B cell germinal center reaction

    PubMed Central

    Klein, Ulf; Tu, Yuhai; Stolovitzky, Gustavo A.; Keller, Jeffrey L.; Haddad, Joseph; Miljkovic, Vladan; Cattoretti, Giorgio; Califano, Andrea; Dalla-Favera, Riccardo

    2003-01-01

    The germinal center (GC) reaction is crucial for T cell-dependent immune responses and is targeted by B cell lymphomagenesis. Here we analyzed the transcriptional changes that occur in B cells during GC transit (naïve B cells → centroblasts → centrocytes → memory B cells) by gene expression profiling. Naïve B cells, characterized by the expression of cell cycle-inhibitory and antiapoptotic genes, become centroblasts by inducing an atypical proliferation program lacking c-Myc expression, switching to a proapoptotic program, and down-regulating cytokine, chemokine, and adhesion receptors. The transition from GC to memory cells is characterized by a return to a phenotype similar to that of naïve cells except for an apoptotic program primed for both death and survival and for changes in the expression of cell surface receptors including IL-2 receptor β. These results provide insights into the dynamics of the GC reaction and represent the basis for the analysis of B cell malignancies. PMID:12604779

  14. Origin of B-Cell Neoplasms in Autoimmune Disease.

    PubMed

    Hemminki, Kari; Liu, Xiangdong; Ji, Jianguang; Försti, Asta

    2016-01-01

    Autoimmune diseases (ADs) are associated with a number of B-cell neoplasms but the associations are selective in regard to the type of neoplasm and the conferred risks are variable. So far no mechanistic bases for these differential associations have been demonstrated. We speculate that developmental origin of B-cells might propose a mechanistic rationale for their carcinogenic response to autoimmune stimuli and tested the hypothesis on our previous studies on the risks of B-cell neoplasms after any of 33 ADs. We found that predominantly germinal center (GC)-derived B-cells showed multiple associations with ADs: diffuse large B cell lymphoma associated with 15 ADs, follicular lymphoma with 7 ADs and Hodgkin lymphoma with 11 ADs. Notably, these neoplasms shared significant associations with 5 ADs (immune thrombocytopenic purpura, polymyositis/dermatomyositis, rheumatoid arthritis, Sjogren syndrome and systemic lupus erythematosis). By contrast, primarily non-GC neoplasms, acute lymphocytic leukemia, chronic lymphocytic leukemia and myeloma associated with 2 ADs only and mantle cell lymphoma with 1 AD. None of the neoplasms shared associated ADs. These data may suggest that autoimmune stimulation critically interferes with the rapid cell division, somatic hypermutation, class switch recombination and immunological selection of maturing B-cell in the GC and delivers damage contributing to transformation. PMID:27355450

  15. Altered B cell receptor signaling in human systemic lupus erythematosus

    PubMed Central

    Jenks, Scott A.; Sanz, Iñaki

    2009-01-01

    Regulation of B cell receptor signaling is essential for the development of specific immunity while retaining tolerance to self. Systemic lupus erythematosus (SLE) is characterized by a loss of B cell tolerance and the production of anti-self antibodies. Accompanying this break down in tolerance are alterations in B cell receptor signal transduction including elevated induced calcium responses and increased protein phosphorylation. Specific pathways that negatively regulate B cell signaling have been shown to be impaired in some SLE patients. These patients have reduced levels of the kinase Lyn in lipid raft microdomains and this reduction is inversely correlated with increased CD45 in lipid rafts. Function and expression of the inhibitory immunoglobulin receptor FcγRIIB is also reduced in Lupus IgM- CD27+ memory cells. Because the relative contribution of different memory and transitional B cell subsets can be abnormal in SLE patients, we believe studies targeted to well defined B cell subsets will be necessary to further our understanding of signaling abnormalities in SLE. Intracellular flow cytometric analysis of signaling is a useful approach to accomplish this goal. PMID:18723129

  16. Receptor editing and genetic variability in human autoreactive B cells.

    PubMed

    Lang, Julie; Ota, Takayuki; Kelly, Margot; Strauch, Pamela; Freed, Brian M; Torres, Raul M; Nemazee, David; Pelanda, Roberta

    2016-01-11

    The mechanisms by which B cells undergo tolerance, such as receptor editing, clonal deletion, and anergy, have been established in mice. However, corroborating these mechanisms in humans remains challenging. To study how autoreactive human B cells undergo tolerance, we developed a novel humanized mouse model. Mice expressing an anti-human Igκ membrane protein to serve as a ubiquitous neo self-antigen (Ag) were transplanted with a human immune system. By following the fate of self-reactive human κ(+) B cells relative to nonautoreactive λ(+) cells, we show that tolerance of human B cells occurs at the first site of self-Ag encounter, the bone marrow, via a combination of receptor editing and clonal deletion. Moreover, the amount of available self-Ag and the genetics of the cord blood donor dictate the levels of central tolerance and autoreactive B cells in the periphery. Thus, this model can be useful for studying specific mechanisms of human B cell tolerance and to reveal differences in the extent of this process among human populations.

  17. STAT3 Signaling in B Cells Is Critical for Germinal Center Maintenance and Contributes to the Pathogenesis of Murine Models of Lupus.

    PubMed

    Ding, Chuanlin; Chen, Xingguo; Dascani, Paul; Hu, Xiaoling; Bolli, Roberto; Zhang, Huang-Ge; Mcleish, Kenneth R; Yan, Jun

    2016-06-01

    Ab maturation as well as memory B and plasma cell differentiation occur primarily in the germinal centers (GCs). Systemic lupus erythematosus (SLE) may develop as a result of enhanced GC activity. Previous studies have shown that the dysregulated STAT3 pathway is linked to lupus pathogenesis. However, the exact role of STAT3 in regulating SLE disease progression has not been fully understood. In this study, we demonstrated that STAT3 signaling in B cells is essential for GC formation and maintenance as well as Ab response. Increased cell apoptosis and downregulated Bcl-xL and Mcl-1 antiapoptotic gene expression were found in STAT3-deficient GC B cells. The follicular helper T cell response positively correlated with GC B cells and was significantly decreased in immunized B cell STAT3-deficient mice. STAT3 deficiency also led to the defect of plasma cell differentiation. Furthermore, STAT3 deficiency in autoreactive B cells resulted in decreased autoantibody production. Results obtained from B cell STAT3-deficient B6.MRL/lpr mice suggest that STAT3 signaling significantly contributes to SLE pathogenesis by regulation of GC reactivity, autoantibody production, and kidney pathology. Our findings provide new insights into the role of STAT3 signaling in the maintenance of GC formation and GC B cell differentiation and identify STAT3 as a novel target for treatment of SLE. PMID:27183592

  18. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function.

    PubMed

    Portugal, Silvia; Tipton, Christopher M; Sohn, Haewon; Kone, Younoussou; Wang, Jing; Li, Shanping; Skinner, Jeff; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Doumbo, Ogobara K; Doumbo, Safiatou; Kayentao, Kassoum; Ongoiba, Aissata; Traore, Boubacar; Sanz, Inaki; Pierce, Susan K; Crompton, Peter D

    2015-05-08

    Protective antibodies in Plasmodium falciparum malaria are only acquired after years of repeated infections. Chronic malaria exposure is associated with a large increase in atypical memory B cells (MBCs) that resemble B cells expanded in a variety of persistent viral infections. Understanding the function of atypical MBCs and their relationship to classical MBCs will be critical to developing effective vaccines for malaria and other chronic infections. We show that VH gene repertoires and somatic hypermutation rates of atypical and classical MBCs are indistinguishable indicating a common developmental history. Atypical MBCs express an array of inhibitory receptors and B cell receptor (BCR) signaling is stunted in atypical MBCs resulting in impaired B cell responses including proliferation, cytokine production and antibody secretion. Thus, in response to chronic malaria exposure, atypical MBCs appear to differentiate from classical MBCs becoming refractory to BCR-mediated activation and potentially interfering with the acquisition of malaria immunity.

  19. Antibodies That Block or Activate Mouse B Cell Activating Factor of the Tumor Necrosis Factor (TNF) Family (BAFF), Respectively, Induce B Cell Depletion or B Cell Hyperplasia.

    PubMed

    Kowalczyk-Quintas, Christine; Schuepbach-Mallepell, Sonia; Vigolo, Michele; Willen, Laure; Tardivel, Aubry; Smulski, Cristian R; Zheng, Timothy S; Gommerman, Jennifer; Hess, Henry; Gottenberg, Jacques-Eric; Mackay, Fabienne; Donzé, Olivier; Schneider, Pascal

    2016-09-16

    B cell activating factor of the TNF family (BAFF), also known as B lymphocyte stimulator, is a ligand required for the generation and maintenance of B lymphocytes. In this study, the ability of different monoclonal antibodies to recognize, inhibit, or activate mouse BAFF was investigated. One of them, a mouse IgG1 named Sandy-2, prevented the binding of BAFF to all of its receptors, BAFF receptor, transmembrane activator and calcium modulating ligand interactor, and B cell maturation antigen, at a stoichiometric ratio; blocked the activity of mouse BAFF on a variety of cell-based reporter assays; and antagonized the prosurvival action of BAFF on primary mouse B cells in vitro A single administration of Sandy-2 in mice induced B cell depletion within 2 weeks, down to levels close to those observed in BAFF-deficient mice. This depletion could then be maintained with a chronic treatment. Sandy-2 and a previously described rat IgG1 antibody, 5A8, also formed a pair suitable for the sensitive detection of endogenous circulating BAFF by ELISA or using a homogenous assay. Interestingly, 5A8 and Sandy-5 displayed activities opposite to that of Sandy-2 by stimulating recombinant BAFF in vitro and endogenous BAFF in vivo These tools will prove useful for the detection and functional manipulation of endogenous mouse BAFF and provide an alternative to the widely used BAFF receptor-Fc decoy receptor for the specific depletion of BAFF in mice. PMID:27451394

  20. Intrinsic differences in the initiation of B cell receptor signaling favor responses of human IgG(+) memory B cells over IgM(+) naive B cells.

    PubMed

    Davey, Angel M; Pierce, Susan K

    2012-04-01

    The acquisition of long-lived memory B cells (MBCs) is critical for the defense against many infectious diseases. Despite their importance, little is known about how Ags trigger human MBCs, even though our understanding of the molecular basis of Ag activation of B cells in model systems has advanced considerably. In this study, we use quantitative, high-resolution, live-cell imaging at the single-cell and single-molecule levels to describe the earliest Ag-driven events in human isotype-switched, IgG-expressing MBCs and compare them with those in IgM-expressing naive B cells. We show that human MBCs are more robust than naive B cells at each step in the initiation of BCR signaling, including interrogation of Ag-containing membranes, formation of submicroscopic BCR oligomers, and recruitment and activation of signaling-associated kinases. Despite their robust response to Ag, MBCs remain highly sensitive to FcγRIIB-mediated inhibition. We also demonstrate that in the absence of Ag, a portion of MBC receptors spontaneously oligomerized, and phosphorylated kinases accumulated at the membrane and speculate that heightened constitutive signaling may play a role in maintaining MBC longevity. Using high-resolution imaging, we have provided a description of the earliest events in the Ag activation of MBCs and evidence for acquired cell-intrinsic differences in the initiation of BCR signaling in human naive and MBCs.

  1. Safety and Tolerability Study of PCI-32765 in B Cell Lymphoma and Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2016-04-26

    B-cell Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Diffuse Well-differentiated Lymphocytic Lymphoma; B Cell Lymphoma; Follicular Lymphoma,; Mantle Cell Lymphoma; Non-Hodgkin's Lymphoma; Waldenstrom Macroglobulinemia; Burkitt Lymphoma; B-Cell Diffuse Lymphoma

  2. TIM-1 signaling in B cells regulates antibody production

    SciTech Connect

    Ma, Juan; Usui, Yoshihiko; Takeda, Kazuyoshi; Harada, Norihiro; Yagita, Hideo; Okumura, Ko; Akiba, Hisaya

    2011-03-11

    Highlights: {yields} TIM-1 is highly expressed on anti-IgM + anti-CD40-stimulated B cells. {yields} Anti-TIM-1 mAb enhanced proliferation and Ig production on activated B cell in vitro. {yields} TIM-1 signaling regulates Ab production by response to TI-2 and TD antigens in vivo. -- Abstract: Members of the T cell Ig and mucin (TIM) family have recently been implicated in the control of T cell-mediated immune responses. In this study, we found TIM-1 expression on anti-IgM- or anti-CD40-stimulated splenic B cells, which was further up-regulated by the combination of anti-IgM and anti-CD40 Abs. On the other hand, TIM-1 ligand was constitutively expressed on B cells and inducible on anti-CD3{sup +} anti-CD28-stimulated CD4{sup +} T cells. In vitro stimulation of activated B cells by anti-TIM-1 mAb enhanced proliferation and expression of a plasma cell marker syndecan-1 (CD138). We further examined the effect of TIM-1 signaling on antibody production in vitro and in vivo. Higher levels of IgG2b and IgG3 secretion were detected in the culture supernatants of the anti-TIM-1-stimulated B cells as compared with the control IgG-stimulated B cells. When immunized with T-independent antigen TNP-Ficoll, TNP-specific IgG1, IgG2b, and IgG3 Abs were slightly increased in the anti-TIM-1-treated mice. When immunized with T-dependent antigen OVA, serum levels of OVA-specific IgG2b, IgG3, and IgE Abs were significantly increased in the anti-TIM-1-treated mice as compared with the control IgG-treated mice. These results suggest that TIM-1 signaling in B cells augments antibody production by enhancing B cell proliferation and differentiation.

  3. B Cell-Intrinsic Expression of the HuR RNA-Binding Protein Is Required for the T Cell-Dependent Immune Response In Vivo.

    PubMed

    DeMicco, Amy; Naradikian, Martin S; Sindhava, Vishal J; Yoon, Je-Hyun; Gorospe, Myriam; Wertheim, Gerald B; Cancro, Michael P; Bassing, Craig H

    2015-10-01

    The HuR RNA-binding protein posttranscriptionally controls expression of genes involved in cellular survival, proliferation, and differentiation. To determine roles of HuR in B cell development and function, we analyzed mice with B lineage-specific deletion of the HuR gene. These HuRΔ/Δ mice have reduced numbers of immature bone marrow and mature splenic B cells, with only the former rescued by p53 inactivation, indicating that HuR supports B lineage cells through developmental stage-specific mechanisms. Upon in vitro activation, HuRΔ/Δ B cells have a mild proliferation defect and impaired ability to produce mRNAs that encode IgH chains of secreted Abs, but no deficiencies in survival, isotype switching, or expression of germinal center (GC) markers. In contrast, HuRΔ/Δ mice have minimal serum titers of all Ab isotypes, decreased numbers of GC and plasma B cells, and few peritoneal B-1 B cells. Moreover, HuRΔ/Δ mice have severely decreased GCs, T follicular helper cells, and high-affinity Abs after immunization with a T cell-dependent Ag. This failure of HuRΔ/Δ mice to mount a T cell-dependent Ab response contrasts with the ability of HuRΔ/Δ B cells to become GC-like in vitro, indicating that HuR is essential for aspects of B cell activation unique to the in vivo environment. Consistent with this notion, we find in vitro stimulated HuRΔ/Δ B cells exhibit modestly reduced surface expression of costimulatory molecules whose expression is similarly decreased in humans with common variable immunodeficiency. HuRΔ/Δ mice provide a model to identify B cell-intrinsic factors that promote T cell-dependent immune responses in vivo.

  4. B Cell-Intrinsic Expression of the HuR RNA-Binding Protein Is Required for the T Cell-Dependent Immune Response In Vivo.

    PubMed

    DeMicco, Amy; Naradikian, Martin S; Sindhava, Vishal J; Yoon, Je-Hyun; Gorospe, Myriam; Wertheim, Gerald B; Cancro, Michael P; Bassing, Craig H

    2015-10-01

    The HuR RNA-binding protein posttranscriptionally controls expression of genes involved in cellular survival, proliferation, and differentiation. To determine roles of HuR in B cell development and function, we analyzed mice with B lineage-specific deletion of the HuR gene. These HuRΔ/Δ mice have reduced numbers of immature bone marrow and mature splenic B cells, with only the former rescued by p53 inactivation, indicating that HuR supports B lineage cells through developmental stage-specific mechanisms. Upon in vitro activation, HuRΔ/Δ B cells have a mild proliferation defect and impaired ability to produce mRNAs that encode IgH chains of secreted Abs, but no deficiencies in survival, isotype switching, or expression of germinal center (GC) markers. In contrast, HuRΔ/Δ mice have minimal serum titers of all Ab isotypes, decreased numbers of GC and plasma B cells, and few peritoneal B-1 B cells. Moreover, HuRΔ/Δ mice have severely decreased GCs, T follicular helper cells, and high-affinity Abs after immunization with a T cell-dependent Ag. This failure of HuRΔ/Δ mice to mount a T cell-dependent Ab response contrasts with the ability of HuRΔ/Δ B cells to become GC-like in vitro, indicating that HuR is essential for aspects of B cell activation unique to the in vivo environment. Consistent with this notion, we find in vitro stimulated HuRΔ/Δ B cells exhibit modestly reduced surface expression of costimulatory molecules whose expression is similarly decreased in humans with common variable immunodeficiency. HuRΔ/Δ mice provide a model to identify B cell-intrinsic factors that promote T cell-dependent immune responses in vivo. PMID:26320247

  5. B-cell-targeted therapy for systemic lupus erythematosus.

    PubMed

    Sabahi, Ramin; Anolik, Jennifer H

    2006-01-01

    Systemic lupus erythematosus (SLE) is a complex disease characterised by numerous autoantibodies and clinical involvement in multiple organ systems. The immunological events triggering the onset of clinical manifestations have not yet been fully defined, but a central role for B cells in the pathogenesis of this disease has more recently gained prominence as a result of research in both mice and humans. Both antibody-dependent and -independent mechanisms of B cells are important in SLE. Autoantibodies contribute to autoimmunity by multiple mechanisms, including immune complex-mediated type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines such as interferon-alpha, tumour necrosis factor and interleukin-1. Suggested autoantibody-independent B-cell functions include antigen presentation, T-cell activation and polarisation, and dendritic-cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines, chemokines and lymphangiogenic growth factors, and by their critical contribution to lymphoid tissue development and organisation, including the development of ectopic tertiary lymphoid tissue. Given the large body of evidence implicating abnormalities in the B-cell compartment in SLE, a recent therapeutic focus has been to develop interventions that target the B-cell compartment by multiple mechanisms.Rituximab, a mouse-human chimeric monoclonal antibody against CD20 that specifically depletes B cells, has been studied the most extensively. Although promising open-label data await confirmation in ongoing multicentre placebo-controlled trials, a number of preliminary conclusions can be drawn. The adequacy of peripheral B-cell depletion depends on achieving high and sustained serum rituximab concentrations, pharmacokinetics that can be varied with treatment dose and factors that may affect drug clearance, such as human anti

  6. The Role of Latently Infected B Cells in CNS Autoimmunity

    PubMed Central

    Márquez, Ana Citlali; Horwitz, Marc Steven

    2015-01-01

    The onset of multiple sclerosis (MS) is caused by both genetic and environmental factors. Among the environmental factors, it is believed that previous infection with Epstein–Barr virus (EBV) may contribute in the development of MS. EBV has been associated with other autoimmune diseases, such as systemic lupus erythematous, and cancers like Burkitt’s lymphoma. EBV establishes a life-long latency in B cells with occasional reactivation of the virus throughout the individual’s life. The role played by B cells in MS pathology has been largely studied, yet is not clearly understood. In MS patients, Rituximab, a novel treatment that targets CD20+ B cells, has proven to have successful results in diminishing the number of relapses in remitting relapsing MS; however, the mechanism of how this drug acts has not been clearly established. In this review, we analyze the evidence of how B cells latently infected with EBV might be altering the immune system response and helping in the development of MS. We will also discuss how animal models, such as experimental autoimmune encephalomyelitis (EAE) and murine gammaherpesvirus-68 (γHV-68), can be used as powerful tools in the study of the relationship between EBV, MS, and B cells. PMID:26579121

  7. TRAF3 deficiency promotes metabolic reprogramming in B cells

    PubMed Central

    Mambetsariev, Nurbek; Lin, Wai W.; Wallis, Alicia M.; Stunz, Laura L.; Bishop, Gail A.

    2016-01-01

    The adaptor protein TNF receptor-associated factor 3 (TRAF3) is a critical regulator of B lymphocyte survival. B cell-specific TRAF3 deficiency results in enhanced viability and is associated with development of lymphoma and multiple myeloma. We show that TRAF3 deficiency led to induction of two proteins important for glucose metabolism, Glut1 and Hexokinase 2 (HXK2). This was associated with increased glucose uptake. In the absence of TRAF3, anaerobic glycolysis and oxidative phosphorylation were increased in B cells without changes in mitochondrial mass or reactive oxygen species. Chemical inhibition of glucose metabolism or glucose deprivation substantially attenuated the enhanced survival of TRAF3-deficient B cells, with a decrease in the pro-survival protein Mcl-1. Changes in Glut1 and Mcl-1 levels, glucose uptake and B cell number in the absence of TRAF3 were all dependent upon NF-κB inducing kinase (NIK). These results indicate that TRAF3 deficiency suffices to metabolically reprogram B cells, a finding that improves our understanding of the role of TRAF3 as a tumor suppressor, and suggests potential therapeutic strategies. PMID:27752131

  8. Long noncoding RNAs in B-cell development and activation

    PubMed Central

    Brazão, Tiago F.; Johnson, Jethro S.; Müller, Jennifer; Heger, Andreas; Ponting, Chris P.

    2016-01-01

    Long noncoding RNAs (lncRNAs) are potentially important regulators of cell differentiation and development, but little is known about their roles in B lymphocytes. Using RNA-seq and de novo transcript assembly, we identified 4516 lncRNAs expressed in 11 stages of B-cell development and activation. Most of these lncRNAs have not been previously detected, even in the closely related T-cell lineage. Comparison with lncRNAs previously described in human B cells identified 185 mouse lncRNAs that have human orthologs. Using chromatin immunoprecipitation-seq, we classified 20% of the lncRNAs as either enhancer-associated (eRNA) or promoter-associated RNAs. We identified 126 eRNAs whose expression closely correlated with the nearest coding gene, thereby indicating the likely location of numerous enhancers active in the B-cell lineage. Furthermore, using this catalog of newly discovered lncRNAs, we show that PAX5, a transcription factor required to specify the B-cell lineage, bound to and regulated the expression of 109 lncRNAs in pro-B and mature B cells and 184 lncRNAs in acute lymphoblastic leukemia. PMID:27381906

  9. An analysis of B cell selection mechanisms in germinal centers.

    PubMed

    Meyer-Hermann, Michael E; Maini, Philip K; Iber, Dagmar

    2006-09-01

    Affinity maturation of antibodies during immune responses is achieved by multiple rounds of somatic hypermutation and subsequent preferential selection of those B cells that express B cell receptors with improved binding characteristics for the antigen. The mechanism underlying B cell selection has not yet been defined. By employing an agent-based model, we show that for physiologically reasonable parameter values affinity maturation can be driven by competition for neither binding sites nor antigen--even in the presence of competing secreted antibodies. Within the tested mechanisms, only clonal competition for T cell help or a refractory time for the interaction of centrocytes with follicular dendritic cells is found to enable affinity maturation while generating the experimentally observed germinal centre characteristics and tolerating large variations in the initial antigen density. PMID:16707510

  10. Novel Therapies for Aggressive B-Cell Lymphoma

    PubMed Central

    Foon, Kenneth A.; Takeshita, Kenichi; Zinzani, Pier L.

    2012-01-01

    Aggressive B-cell lymphoma (BCL) comprises a heterogeneous group of malignancies, including diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma, and mantle cell lymphoma (MCL). DLBCL, with its 3 subtypes, is the most common type of lymphoma. Advances in chemoimmunotherapy have substantially improved disease control. However, depending on the subtype, patients with DLBCL still exhibit substantially different survival rates. In MCL, a mature B-cell lymphoma, the addition of rituximab to conventional chemotherapy regimens has increased response rates, but not survival. Burkitt lymphoma, the most aggressive BCL, is characterized by a high proliferative index and requires more intensive chemotherapy regimens than DLBCL. Hence, there is a need for more effective therapies for all three diseases. Increased understanding of the molecular features of aggressive BCL has led to the development of a range of novel therapies, many of which target the tumor in a tailored manner and are summarized in this paper. PMID:22536253

  11. The role of B cells and autoantibodies in neuropsychiatric lupus.

    PubMed

    Wen, Jing; Stock, Ariel D; Chalmers, Samantha A; Putterman, Chaim

    2016-09-01

    The central nervous system manifestations of SLE (neuropsychiatric lupus, NPSLE) occur frequently, though are often difficult to diagnose and treat. Symptoms of NPSLE can be quite diverse, including chronic cognitive and emotional manifestations, as well as acute presentations, such as stroke and seizures. Although the pathogenesis of NPSLE has yet to be well characterized, B-cell mediated damage is believed to be an important contributor. B-cells and autoantibodies may traverse the blood brain barrier promoting an inflammatory environment consisting of glia activation, neurodegeneration, and consequent averse behavioral outcomes. This review will evaluate the various suggested roles of B-cells and autoantibodies in NPSLE, as well as therapeutic modalities targeting these pathogenic mediators.

  12. Importance of B cell co-stimulation in CD4+ T cell differentiation: X-linked agammaglobulinaemia, a human model

    PubMed Central

    Martini, H; Enright, V; Perro, M; Workman, S; Birmelin, J; Giorda, E; Quinti, I; Lougaris, V; Baronio, M; Warnatz, K; Grimbacher, B

    2011-01-01

    We were interested in the question of whether the congenital lack of B cells actually had any influence on the development of the T cell compartment in patients with agammaglobulinaemia. Sixteen patients with X-linked agammaglobulinaemia (XLA) due to mutations in Btk, nine patients affected by common variable immune deficiency (CVID) with <2% of peripheral B cells and 20 healthy volunteers were enrolled. The T cell phenotype was determined with FACSCalibur and CellQuest Pro software. Mann–Whitney two-tailed analysis was used for statistical analysis. The CD4 T cell memory compartment was reduced in patients with XLA of all ages. This T cell subset encompasses both CD4+CD45RO+ and CD4+CD45RO+CXCR5+ cells and both subsets were decreased significantly when compared to healthy controls: P = 0·001 and P < 0·0001, respectively. This observation was confirmed in patients with CVID who had <2% B cells, suggesting that not the lack of Bruton's tyrosine kinase but the lack of B cells is most probably the cause of the impaired CD4 T cell maturation. We postulate that this defect is a correlate of the observed paucity of germinal centres in XLA. Our results support the importance of the interplay between B and T cells in the germinal centre for the activation of CD4 T cells in humans. PMID:21488866

  13. Importance of B cell co-stimulation in CD4(+) T cell differentiation: X-linked agammaglobulinaemia, a human model.

    PubMed

    Martini, H; Enright, V; Perro, M; Workman, S; Birmelin, J; Giorda, E; Quinti, I; Lougaris, V; Baronio, M; Warnatz, K; Grimbacher, B

    2011-06-01

    We were interested in the question of whether the congenital lack of B cells actually had any influence on the development of the T cell compartment in patients with agammaglobulinaemia. Sixteen patients with X-linked agammaglobulinaemia (XLA) due to mutations in Btk, nine patients affected by common variable immune deficiency (CVID) with <2% of peripheral B cells and 20 healthy volunteers were enrolled. The T cell phenotype was determined with FACSCalibur and CellQuest Pro software. Mann-Whitney two-tailed analysis was used for statistical analysis. The CD4 T cell memory compartment was reduced in patients with XLA of all ages. This T cell subset encompasses both CD4(+)CD45RO(+) and CD4(+)CD45RO(+)CXCR5(+) cells and both subsets were decreased significantly when compared to healthy controls: P = 0·001 and P < 0·0001, respectively. This observation was confirmed in patients with CVID who had <2% B cells, suggesting that not the lack of Bruton's tyrosine kinase but the lack of B cells is most probably the cause of the impaired CD4 T cell maturation. We postulate that this defect is a correlate of the observed paucity of germinal centres in XLA. Our results support the importance of the interplay between B and T cells in the germinal centre for the activation of CD4 T cells in humans.

  14. Conditional Deletion of NF-κB-Inducing Kinase (NIK) in Adult Mice Disrupts Mature B Cell Survival and Activation.

    PubMed

    Brightbill, Hans D; Jackman, Janet K; Suto, Eric; Kennedy, Heather; Jones, Charles; Chalasani, Sreedevi; Lin, Zhonghua; Tam, Lucinda; Roose-Girma, Meron; Balazs, Mercedesz; Austin, Cary D; Lee, Wyne P; Wu, Lawren C

    2015-08-01

    NF-κB-inducing kinase (NIK) is a primary regulator of the noncanonical NF-κB signaling pathway, which plays a vital role downstream of BAFF, CD40L, lymphotoxin, and other inflammatory mediators. Germline deletion or inactivation of NIK in mice results in the defective development of B cells and secondary lymphoid organs, but the role of NIK in adult animals has not been studied. To address this, we generated mice containing a conditional allele of NIK. Deletion of NIK in adult mice results in decreases in B cell populations in lymph nodes and spleen, similar to what is observed upon blockade of BAFF. Consistent with this, B cells from mice in which NIK is acutely deleted fail to respond to BAFF stimulation in vitro and in vivo. In addition, mice with induced NIK deletion exhibit a significant decrease in germinal center B cells and serum IgA, which is indicative of roles for NIK in additional pathways beyond BAFF signaling. Our conditional NIK-knockout mice may be broadly useful for assessing the postdevelopmental and cell-specific roles of NIK and the noncanonical NF-κB pathway in mice.

  15. Importance of B cell co-stimulation in CD4(+) T cell differentiation: X-linked agammaglobulinaemia, a human model.

    PubMed

    Martini, H; Enright, V; Perro, M; Workman, S; Birmelin, J; Giorda, E; Quinti, I; Lougaris, V; Baronio, M; Warnatz, K; Grimbacher, B

    2011-06-01

    We were interested in the question of whether the congenital lack of B cells actually had any influence on the development of the T cell compartment in patients with agammaglobulinaemia. Sixteen patients with X-linked agammaglobulinaemia (XLA) due to mutations in Btk, nine patients affected by common variable immune deficiency (CVID) with <2% of peripheral B cells and 20 healthy volunteers were enrolled. The T cell phenotype was determined with FACSCalibur and CellQuest Pro software. Mann-Whitney two-tailed analysis was used for statistical analysis. The CD4 T cell memory compartment was reduced in patients with XLA of all ages. This T cell subset encompasses both CD4(+)CD45RO(+) and CD4(+)CD45RO(+)CXCR5(+) cells and both subsets were decreased significantly when compared to healthy controls: P = 0·001 and P < 0·0001, respectively. This observation was confirmed in patients with CVID who had <2% B cells, suggesting that not the lack of Bruton's tyrosine kinase but the lack of B cells is most probably the cause of the impaired CD4 T cell maturation. We postulate that this defect is a correlate of the observed paucity of germinal centres in XLA. Our results support the importance of the interplay between B and T cells in the germinal centre for the activation of CD4 T cells in humans. PMID:21488866

  16. High-efficiency Generation of Multiple Short Noncoding RNA in B-cells and B-cell-derived Extracellular Vesicles

    PubMed Central

    Almanza, Gonzalo; Zanetti, Maurizio

    2015-01-01

    Short noncoding (snc)RNAs are important new players in the landscape of biologics with therapeutic potential. Recently, we reported on a new method for the synthesis and delivery of snc RNA in B-cells transfected with plasmid DNA. Here using the same approach, we demonstrate that B-cells can be programmed for the enforced biogenesis and synchronous release of multiple sncRNAs. Our data show that this goal is feasible and that multiple sncRNA are released in the extracellular compartment in amounts comparable to those from B-cells programmed to express and secrete one scnRNA only. Furthermore, we found that the cargo of extracellular vescicles (EVs) isolated from programmed B-cells is remarkably enriched for multiple sncRNA. On average, we found that the content of multiple sncRNAs in EVs is 3.6 copynumber/EV. Collectively, we demonstrate that B-cells can be easily programmed toward the synthesis and release of multiple sncRNAs, including sncRNA-laden EVs, efficiently and specifically. PMID:26670278

  17. T-24.B-cell differentiation factor induces immunoglobulin secretion in human B cells without prior cell replication.

    PubMed

    Gallagher, G; Christie, J F; Stimson, W H; Guy, K; Dewar, A E

    1987-04-01

    Stimulation of B lymphocytes from B-cell chronic lymphocytic leukaemia (B-CLL) with 12-0-tetradecanoylphorbol-13-acetate (TPA) has shown that these cells are capable of differentiation (Totterman, Nilsson & Sundstrom, 1980). Increases in the expression of different class II MHC antigens (Guy et al., 1983, 1986) and responsiveness to growth factors (Kabelitz et al., 1985; Suzuki, Butler & Cooper, 1985) have been studied. Supernatant from the human bladder carcinoma line T-24 contains a B-cell differentiation factor (BCDF) able to induce immunoglobulin secretion from CESS cells. We investigated the induction of proliferation and immunoglobulin secretion in human B cells by studying the effects of this factor on B-CLL cells, in both the presence and absence of TPA. We report here that this material (termed T-24.BCDF) causes immunoglobulin secretion to be initiated in these cells, and that this is not accompanied by detectable DNA synthesis. These observations were extended to normal human B cells and demonstrate that human B cells can secrete immunoglobulin in the absence of clonal expansion. PMID:3495482

  18. Regulation of AID, the B-cell genome mutator.

    PubMed

    Keim, Celia; Kazadi, David; Rothschild, Gerson; Basu, Uttiya

    2013-01-01

    The mechanisms by which B cells somatically engineer their genomes to generate the vast diversity of antibodies required to challenge the nearly infinite number of antigens that immune systems encounter are of tremendous clinical and academic interest. The DNA cytidine deaminase activation-induced deaminase (AID) catalyzes two of these mechanisms: class switch recombination (CSR) and somatic hypermutation (SHM). Recent discoveries indicate a significant promiscuous targeting of this B-cell mutator enzyme genome-wide. Here we discuss the various regulatory elements that control AID activity and prevent AID from inducing genomic instability and thereby initiating oncogenesis.

  19. Birth Defects

    MedlinePlus

    ... defects happen during the first 3 months of pregnancy. One out of every 33 babies in the ... abuse can cause fetal alcohol syndrome. Infections during pregnancy can also result in birth defects. For most ...

  20. Formation of B-1 B Cells from Neonatal B-1 Transitional Cells Exhibits NF-κB Redundancy

    PubMed Central

    Montecino-Rodriguez, Encarnacion; Dorshkind, Kenneth

    2011-01-01

    The stages of development leading up to the formation of mature B-1 cells have not been identified. As a result, there is no basis for understanding why various genetic defects, and those in the classical or alternative NF-κB pathways in particular, differentially affect the B-1 and B-2 B cell lineages. Here, we demonstrate that B-1 B cells are generated from transitional cell intermediates that emerge in a distinct neonatal wave of development that is sustained for approximately two weeks after birth and then declines as B-2 transitional cells predominate. We further show that, in contrast to the dependence of B-2 transitional cells on the alternative pathway, the survival of neonatal B-1 transitional cells and their maturation into B-1 B cells occurs as long as either alternative or classical NF-κB signaling is intact. Based on these results, we have generated a model of B-1 development that allows the defects in B-1 and B-2 cell production observed in various NF-κB deficient strains of mice to be placed into a coherent cellular context. PMID:22031760

  1. Bruton's Tyrosine Kinase Regulates the Activation of Gene Rearrangements at the λ Light Chain Locus in Precursor B Cells in the Mouse

    PubMed Central

    Dingjan, Gemma M.; Middendorp, Sabine; Dahlenborg, Katarina; Maas, Alex; Grosveld, Frank; Hendriks, Rudolf W.

    2001-01-01

    Bruton's tyrosine kinase (Btk) is a nonreceptor tyrosine kinase involved in precursor B (pre-B) cell receptor signaling. Here we demonstrate that Btk-deficient mice have an ∼50% reduction in the frequency of immunoglobulin (Ig) λ light chain expression, already at the immature B cell stage in the bone marrow. Conversely, transgenic mice expressing the activated mutant BtkE41K showed increased λ usage. As the κ/λ ratio is dependent on (a) the level and kinetics of κ and λ locus activation, (b) the life span of pre-B cells, and (c) the extent of receptor editing, we analyzed the role of Btk in these processes. Enforced expression of the Bcl-2 apoptosis inhibitor did not alter the Btk dependence of λ usage. Crossing 3-83μδ autoantibody transgenic mice into Btk-deficient mice showed that Btk is not essential for receptor editing. Also, Btk-deficient surface Ig+ B cells that were generated in vitro in interleukin 7-driven bone marrow cultures manifested reduced λ usage. An intrinsic defect in λ locus recombination was further supported by the finding in Btk-deficient mice of reduced λ usage in the fraction of pre-B cells that express light chains in their cytoplasm. These results implicate Btk in the regulation of the activation of the λ locus for V(D)J recombination in pre-B cells. PMID:11369788

  2. Two maturation-associated mouse erythrocyte receptors of human B cells. I. Identification of four human B-cell subsets.

    PubMed Central

    Forbes, I J; Zalewski, P D; Valente, L; Gee, D

    1982-01-01

    Using rosetting tests with untreated mouse erythrocytes (M) and pronase-treated M (pro M), four human B cell subsets can be identified. Three of these, possessing the phenotypes BM+ pro M+, BM- pro M+ or BM- pro M-, constitute 17%, 61% and 22% of normal blood B cells respectively. The fourth subset, BM+ pro M-, does not occur in normal tissues but was found in the pre-B-cell line of Raji cells, indicating that this phenotype may be a marker for early B cells. Some differences in the proportion of each subset were found in cord blood, lymph nodes and tonsils. Surface-immunoglobulin-positive (SIg+) and -negative (SIg-) non-T cells were present in each subset. M and pro-M rosetting tests were applied to cells from blood of 27 cases of chronic lymphocytic leukaemia (CLL) and to cells from involved nodes, spleen or marrow in five cases of non-Hodgkin's lymphoma (NHL). In 15 cases of CLL, there was considerable increase in the BM+ pro M+ subset (BM+ pro M+ type CLL); in seven cases, there was a predominance of BM- pro M+ cells and in another four cases, BM- pro M- cells predominated. All five cases of NHL were greatly enriched in BM- pro M- cells. There was no obvious correlation between rosetting and other surface markers but BM- pro M- clones in CLL or NHL always stained brightly with FITC-anti-Ig. This was not found in BM+ pro M+ or BM- pro M+ clones. Rosette formation of neuraminidase-treated B cells with M identifies the same subset as B-pro-M rosetting in normals and CLL. Evidence is presented that two types of receptors are involved in M and pro-M rosetting, designated R1 and R2, binding to corresponding M ligands L1 and L2. M rosetting is due to R1-L1 binding while R2-L2 binding mediates B-pro-M rosetting. Shifts between subsets within the same clone in some cases of CLL suggest that the subsets are distinct maturational stage of B-cell development rather than families of B cells of different lineage. The following B-cell maturation sequence is proposed: R1+ R2

  3. Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies.

    PubMed

    Durandy, Anne; Taubenheim, Nadine; Peron, Sophie; Fischer, Alain

    2007-01-01

    B-cell intrinsic immunoglobulin class switch recombination (Ig-CSR) deficiencies, previously termed hyper-IgM syndromes, are genetically determined conditions characterized by normal or elevated serum IgM levels and an absence or very low levels of IgG, IgA, and IgE. As a function of the molecular mechanism, the defective CSR is variably associated to a defect in the generation of somatic hypermutations (SHMs) in the Ig variable region. The study of Ig-CSR deficiencies contributed to a better delineation of the mechanisms underlying CSR and SHM, the major events of antigen-triggered antibody maturation. Four Ig-CSR deficiency phenotypes have been so far reported: the description of the activation-induced cytidine deaminase (AID) deficiency (Ig-CSR deficiency 1), caused by recessive mutations of AICDA gene, characterized by a defect in CSR and SHM, clearly established the role of AID in the induction of the Ig gene rearrangements underlying CSR and SHM. A CSR-specific function of AID has, however, been detected by the observation of a selective CSR defect caused by mutations affecting the C-terminus of AID. Ig-CSR deficiency 2 is the consequence of uracil-N-glycosylase (UNG) deficiency. Because UNG, a molecule of the base excision repair machinery, removes uracils from DNA and AID deaminates cytosines into uracils, that observation indicates that the AID-UNG pathway directly targets DNA of switch regions from the Ig heavy-chain locus to induce the CSR process. Ig-CSR deficiencies 3 and 4 are characterized by a selective CSR defect resulting from blocks at distinct steps of CSR. A further understanding of the CSR machinery is expected from their molecular definition. PMID:17560278

  4. The Histological Classification of Diffuse Large B-cell Lymphomas

    PubMed Central

    Xie, Yi; Pittaluga, Stefania; Jaffe, Elaine S.

    2015-01-01

    Diffuse large B cell lymphomas (DLBCLs) are aggressive B-cell neoplasms with considerable clinical, biologic and pathologic diversity, in part reflecting the functional diversity of the B-cell system and multiple pathways of transformation. In recent years, the advent of new high-throughput genomic technologies has provided new insights into the biology of DLBCL, leading to the identification of distinct molecular identities and novel pathogenetic pathways. This increasing complexity had led to an expanding number of entities in the WHO classification. Using a multi-modality approach, the updated 2008 classification delineated some new subgroups, including DLBCLs associated with particular age groups or specific anatomic sites, as well as two borderline categories: tumors at the interface between classical Hodgkin lymphoma (cHL) and DLBCL as well as between Burkitt Lymphoma (BL) and DLBCL. This article reviews the histopathologic features of the various aggressive B-cell lymphoma subtypes included in the 2008 classification, with emphasis on some of the new entities as well as areas of diagnostic challenge. PMID:25805585

  5. Diffuse Large B Cell Lymphoma Mimicking Granulomatosis with Polyangiitis

    PubMed Central

    Horowitz, Netanel; Ben-Itzhak, Ofer; Braun-Moscovici, Yolanda

    2016-01-01

    In a patient with systemic multiorgan disease with overlapping features, the differential diagnosis included infectious diseases, malignancies, and systemic autoimmune or inflammatory diseases. We present an unusual case of a young male with B cell lymphoma who presented with symptoms mimicking systemic vasculitis and review the existing literature. PMID:27293945

  6. 324 Facility B-Cell quality process plan

    SciTech Connect

    Carlson, J.L.

    1998-06-10

    B-Cell is currently being cleaned out (i.e., removal of equipment, fixtures and residual radioactive materials) and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/99. The following sections describe the major activities that remain for completion of the TPA milestone. This includes: (1) Size Reduce Tank 119 and Miscellaneous Equipment. This activity is the restart of hotwork in B-Cell to size reduce the remainder of Tank 119 and other miscellaneous pieces of equipment into sizes that can be loaded into a grout container. This activity also includes the process of preparing the containers for shipment from the cell. The specific activities and procedures used are detailed in a table. (2) Load and Ship Low-Level Waste. This activity covers the process of taking a grouted LLW container from B-Cell and loading it into the cask in the REC airlock and Cask Handling Area (CHA) for shipment to the LLBG. The detailed activities and procedures for this part of cell cleanout are included in second table.

  7. Likelihood-Based Inference of B Cell Clonal Families

    PubMed Central

    Ralph, Duncan K.

    2016-01-01

    The human immune system depends on a highly diverse collection of antibody-making B cells. B cell receptor sequence diversity is generated by a random recombination process called “rearrangement” forming progenitor B cells, then a Darwinian process of lineage diversification and selection called “affinity maturation.” The resulting receptors can be sequenced in high throughput for research and diagnostics. Such a collection of sequences contains a mixture of various lineages, each of which may be quite numerous, or may consist of only a single member. As a step to understanding the process and result of this diversification, one may wish to reconstruct lineage membership, i.e. to cluster sampled sequences according to which came from the same rearrangement events. We call this clustering problem “clonal family inference.” In this paper we describe and validate a likelihood-based framework for clonal family inference based on a multi-hidden Markov Model (multi-HMM) framework for B cell receptor sequences. We describe an agglomerative algorithm to find a maximum likelihood clustering, two approximate algorithms with various trade-offs of speed versus accuracy, and a third, fast algorithm for finding specific lineages. We show that under simulation these algorithms greatly improve upon existing clonal family inference methods, and that they also give significantly different clusters than previous methods when applied to two real data sets. PMID:27749910

  8. Regulatory roles of B cells in infectious diseases.

    PubMed

    Fillatreau, Simon

    2016-01-01

    B lymphocytes provide essential mechanisms of protection against infectious diseases. The secretion of specific antibodies by long-lived plasma cells is thought to account for the improved resistance afforded by most successful vaccines against pathogens. Accordingly, a goal in vaccine development is to induce potent B cell responses in order to drive the efficient formation of long-lived antibody-secreting cells. However, the roles of activated B cells are complex in infectious diseases. It was recently observed that activated B cells could also negatively regulate host defence mechanisms, both during primary infection and, after vaccination, upon secondary challenge, via mechanisms involving their production of the anti-inflammatory cytokines interleukin (IL)-10 and IL-35. Remarkably, the B cells expressing IL-10 and IL-35 in vivo were distinct subsets of IgMhiCD19+CD138hi antibody-secreting cells. A better understanding of the diverse roles of these distinct antibody-secreting cell subsets in immunity and immunological memory, as well as of the signals controlling their generation, might help the rational development of better prophylactic and therapeutic vaccines. PMID:27586794

  9. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties.

    PubMed

    Brandtzaeg, Per; Johansen, Finn-Eirik

    2005-08-01

    Mucosal antibody defense depends on a complex cooperation between local B cells and secretory epithelia. Mucosa-associated lymphoid tissue gives rise to B cells with striking J-chain expression that are seeded to secretory effector sites. Such preferential homing constitutes the biological basis for local production of polymeric immunoglobulin A (pIgA) and pentameric IgM with high affinity to the epithelial pIg receptor that readily can export these antibodies to the mucosal surface. This ultimate functional goal of mucosal B-cell differentiation appears to explain why the J chain is also expressed by IgG- and IgD-producing plasma cells (PCs) occurring at secretory tissue sites; these immunocytes may be considered as 'spin-offs' from early effector clones that through class switch are on their way to pIgA production. Abundant evidence supports the notion that intestinal PCs are largely derived from B cells initially activated in gut-associated lymphoid tissue (GALT). Nevertheless, insufficient knowledge exists concerning the relative importance of M cells, major histocompatibility complex class II-expressing epithelial cells, and professional antigen-presenting cells for the uptake, processing, and presentation of luminal antigens in GALT to accomplish the extensive and sustained priming and expansion of mucosal B cells. Likewise, it is unclear how the germinal center reaction in GALT so strikingly can promote class switch to IgA and expression of J chain. Although B-cell migration from GALT to the intestinal lamina propria is guided by rather well-defined adhesion molecules and chemokines/chemokine receptors, the cues directing preferential homing to different segments of the gut require better definition. This is even more so for the molecules involved in homing of mucosal B cells to secretory effector sites beyond the gut, and in this respect, the role of Waldever's ring (including the palatine tonsils and adenoids) as a regional inductive tissue needs further

  10. B-Cell Activating Factor (BAFF) is elevated in Chronic Granulomatous Disease

    PubMed Central

    Matharu, Kabir; Zarember, Kol A.; Marciano, Beatriz E.; Kuhns, Douglas B.; Spalding, Christine; Garofalo, Mary; Dimaggio, Thomas; Estwick, Tyra; Huang, Chiung-Yu; Fink, Danielle; Priel, Debra L.; Fleisher, Thomas A.; Holland, Steven M.; Malech, Harry L.; Gallin, John I.

    2013-01-01

    Chronic Granulomatous Disease (CGD) is an inherited defect in superoxide production leading to life-threatening infections, granulomas, and, possibly, abnormal immunoglobulin concentrations. We investigated whether factors controlling antibody production, such as B-cell activating factor (BAFF), were altered in CGD. CGD subjects had significantly increased mean (2.3-fold, p<0.0001) plasma concentrations of BAFF compared to healthy donors. Patients on IFN-γ treatment had significantly higher BAFF concentrations compared with CGD patients not taking IFN-γ (1.6-fold, p<0.005). Leukocytes from CGD subjects produced normal amounts of BAFF in response to IFN-γ or G-CSF in vitro. Expression of BAFF-R and TACI were significantly reduced on CGD B cells. Elevated BAFF in CGD correlated with CRP (R=0.44), ESR (R=0.49), and IgM (R=0.47) and increased rapidly in healthy subjects following intravenous endotoxin administration. These findings suggest that elevated BAFF in CGD subjects and healthy donors is a consequence of acute and chronic inflammation. PMID:23773925

  11. N-WASP is required for B-cell-mediated autoimmunity in Wiskott-Aldrich syndrome.

    PubMed

    Volpi, Stefano; Santori, Elettra; Abernethy, Katrina; Mizui, Masayuki; Dahlberg, Carin I M; Recher, Mike; Capuder, Kelly; Csizmadia, Eva; Ryan, Douglas; Mathew, Divij; Tsokos, George C; Snapper, Scott; Westerberg, Lisa S; Thrasher, Adrian J; Candotti, Fabio; Notarangelo, Luigi D

    2016-01-14

    Mutations of the Wiskott-Aldrich syndrome gene (WAS) are responsible for Wiskott-Aldrich syndrome (WAS), a disease characterized by thrombocytopenia, eczema, immunodeficiency, and autoimmunity. Mice with conditional deficiency of Was in B lymphocytes (B/WcKO) have revealed a critical role for WAS protein (WASP) expression in B lymphocytes in the maintenance of immune homeostasis. Neural WASP (N-WASP) is a broadly expressed homolog of WASP, and regulates B-cell signaling by modulating B-cell receptor (BCR) clustering and internalization. We have generated a double conditional mouse lacking both WASP and N-WASP selectively in B lymphocytes (B/DcKO). Compared with B/WcKO mice, B/DcKO mice showed defective B-lymphocyte proliferation and impaired antibody responses to T-cell-dependent antigens, associated with decreased autoantibody production and lack of autoimmune kidney disease. These results demonstrate that N-WASP expression in B lymphocytes is required for the development of autoimmunity of WAS and may represent a novel therapeutic target in WAS. PMID:26468226

  12. Role of the Syk autophosphorylation site and SH2 domains in B cell antigen receptor signaling

    PubMed Central

    1995-01-01

    To explore the mechanism(s) by which the Syk protein tyrosine kinase participates in B cell antigen receptor (BCR) signaling, we have studied the function of various Syk mutants in B cells made Syk deficient by homologous recombination knockout. Both Syk SH2 domains were required for BCR-mediated Syk and phospholipase C (PLC)-gamma 2 phosphorylation, inositol 1,4,5-triphosphate release, and Ca2+ mobilization. A possible explanation for this requirement was provided by findings that recruitment of Syk to tyrosine-phosphorylated immunoglobulin (Ig) alpha and Ig beta requires both Syk SH2 domains. A Syk mutant in which the putative autophosphorylation site (Y518/Y519) of Syk was changed to phenylalanine was also defective in signal transduction; however, this mutation did not affect recruitment to the phosphorylated immunoreceptor family tyrosine-based activation motifs (ITAMs). These findings not only confirm that both SH2 domains are necessary for Syk binding to tyrosine-phosphorylated Ig alpha and Ig beta but indicate that this binding is necessary for Syk (Y518/519) phosphorylation after BCR ligation. This sequence of events is apparently required for coupling the BCR to most cellular protein tyrosine phosphorylation, to the phosphorylation and activation of PLC- gamma 2, and to Ca2+ mobilization. PMID:7500027

  13. N-WASP is required for B-cell-mediated autoimmunity in Wiskott-Aldrich syndrome.

    PubMed

    Volpi, Stefano; Santori, Elettra; Abernethy, Katrina; Mizui, Masayuki; Dahlberg, Carin I M; Recher, Mike; Capuder, Kelly; Csizmadia, Eva; Ryan, Douglas; Mathew, Divij; Tsokos, George C; Snapper, Scott; Westerberg, Lisa S; Thrasher, Adrian J; Candotti, Fabio; Notarangelo, Luigi D

    2016-01-14

    Mutations of the Wiskott-Aldrich syndrome gene (WAS) are responsible for Wiskott-Aldrich syndrome (WAS), a disease characterized by thrombocytopenia, eczema, immunodeficiency, and autoimmunity. Mice with conditional deficiency of Was in B lymphocytes (B/WcKO) have revealed a critical role for WAS protein (WASP) expression in B lymphocytes in the maintenance of immune homeostasis. Neural WASP (N-WASP) is a broadly expressed homolog of WASP, and regulates B-cell signaling by modulating B-cell receptor (BCR) clustering and internalization. We have generated a double conditional mouse lacking both WASP and N-WASP selectively in B lymphocytes (B/DcKO). Compared with B/WcKO mice, B/DcKO mice showed defective B-lymphocyte proliferation and impaired antibody responses to T-cell-dependent antigens, associated with decreased autoantibody production and lack of autoimmune kidney disease. These results demonstrate that N-WASP expression in B lymphocytes is required for the development of autoimmunity of WAS and may represent a novel therapeutic target in WAS.

  14. Genetic polymorphism study of regulatory B cell molecules and cellular immunity function in an adult patient with Common Variable Immunodeficiency

    PubMed Central

    Sarantopoulos, A; Tselios, K; Skendros, P; Bougiouklis, D; Theodorou, I; Boura, P

    2008-01-01

    A 43 year old female patient presented for recurrent bacterial lower respiratory infections. A research for immunodeficiency status revealed total hypogammaglobulinemia, reduced IgG1, IgG2, IgG3 subclass levels, and low number of B lymphocytes (CD19+). Common Variable Immunodeficiency (CVID) 11.2 category was diagnosed according to recent criteria of primary immunodeficiencies (PID). Further immunological study consisting of genetic polymorphism of genes relating to differentiation, activation and function of B cells (ICOS, BAFF receptor BCMA and TACI) was performed, which did not reveal any related mutations. T cell parameters and Th1/Th2 cytokine network did not show any disturbances. It is postulated that probable endstage B cell differentiation defects should be investigated. The patient receives IVIGs replacement thereafter and the rate and severity of infections have significantly improved. PMID:18923749

  15. Adhesive interactions regulate transcriptional diversity in malignant B cells.

    PubMed

    Nadav-Dagan, Liat; Shay, Tal; Dezorella, Nili; Naparstek, Elizabeth; Domany, Eytan; Katz, Ben-Zion; Geiger, Benjamin

    2010-04-01

    The genetic profiling of B-cell malignancies is rapidly expanding, providing important information on the tumorigenic potential, response to treatment, and clinical outcome of these diseases. However, the relative contributions of inherent gene expression versus microenvironmental effects are poorly understood. The regulation of gene expression programs by means of adhesive interactions was studied here in ARH-77 human malignant B-cell variants, derived from the same cell line by selective adhesion to a fibronectin matrix. The populations included cells that adhere to fibronectin and are highly tumorigenic (designated "type A" cells) and cells that fail to adhere to fibronectin and fail to develop tumors in vivo ("type F" cells). To identify genes directly affected by cell adhesion to fibronectin, type A cells deprived of an adhesive substrate (designated "AF cells") were also examined. Bioinformatic analyses revealed a remarkable correlation between cell adhesion and both B-cell differentiation state and the expression of multiple myeloma (MM)-associated genes. The highly adherent type A cells expressed higher levels of NFkappaB-regulated genes, many of them associated with MM. Moreover, we found that the transcription of several MM-related proto-oncogenes is stimulated by adhesion to fibronectin. In contrast, type F cells, which display poor adhesive and tumorigenic properties, expressed genes associated with higher levels of B-cell differentiation. Our findings indicate that B-cell differentiation, as manifested by gene expression profiles, is attenuated by cell adhesion to fibronectin, leading to upregulation of specific genes known to be associated with the pathogenesis of MM.

  16. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation

    PubMed Central

    Weindel, Chi G; Richey, Lauren J; Bolland, Silvia; Mehta, Abhiruchi J; Kearney, John F; Huber, Brigitte T

    2015-01-01

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, defined by loss of B cell self-tolerance that results in production of antinuclear antibodies (ANA) and chronic inflammation. While the initiating events in lupus development are not well defined, overexpression of the RNA-recognizing toll-like receptor (TLR)7 has been linked to SLE in humans and mice. We postulated that autophagy plays an essential role in TLR7 activation of B cells for the induction of SLE by delivering RNA ligands to the endosomes, where this innate immune receptor resides. To test this hypothesis, we compared SLE development in Tlr7 transgenic (Tg) mice with or without B cell-specific ablation of autophagy (Cd19-Cre Atg5f/f). We observed that in the absence of B cell autophagy the 2 hallmarks of SLE, ANA and inflammation, were eliminated, thus curing these mice of lupus. This was also evident in the significantly extended survival of the autophagy-deficient mice compared to Tlr7.1 Tg mice. Furthermore, glomerulonephritis was ameliorated, and the serum levels of inflammatory cytokines in the knockout (KO) mice were indistinguishable from those of control mice. These data provide direct evidence that B cells require TLR7-dependent priming through an autophagy-dependent mechanism before autoimmunity is induced, thereafter involving many cell types. Surprisingly, hyper-IgM production persisted in Tlr7.1 Tg mice in the absence of autophagy, likely involving a different activation pathway than the production of autoantibodies. Furthermore, these mice still presented with anemia, but responded with a striking increase in extramedullary hematopoiesis (EMH), possibly due to the absence of pro-inflammatory cytokines. PMID:26120731

  17. Inducible resistance to Fas-mediated apoptosis in B cells.

    PubMed

    Rothstein, T L

    2000-12-01

    Apoptosis produced in B cells through Fas (APO-1, CD95) triggering is regulated by signals derived from other surface receptors: CD40 engagement produces upregulation of Fas expression and marked susceptibility to Fas-induced cell death, whereas antigen receptor engagement, or IL-4R engagement, inhibits Fas killing and in so doing induces a state of Fas-resistance, even in otherwise sensitive, CD40-stimulated targets. Surface immunoglobulin and IL-4R utilize at least partially distinct pathways to produce Fas-resistance that differentially depend on PKC and STAT6, respectively. Further, surface immunoglobulin signaling for inducible Fas-resistance bypasses Btk, requires NF-kappaB, and entails new macromolecular synthesis. Terminal effectors of B cell Fas-resistance include the known anti-apoptotic gene products, Bcl-xL and FLIP, and a novel anti-apoptotic gene that encodes FAIM (Fas Apoptosis Inhibitory Molecule). faim was identified by differential display and exists in two alternatively spliced forms; faim-S is broadly expressed, but faim-L expression is tissue-specific. The FAIM sequence is highly evolu- tionarily conserved, suggesting an important role for this molecule throughout phylogeny. Inducible resistance to Fas killing is hypothesized to protect foreign antigen-specific B cells during potentially hazardous interactions with FasL-bearing T cells, whereas autoreactive B cells fail to become Fas-resistant and are deleted via Fas-dependent cytotoxicity. Inadvertent or aberrant acquisition of Fas-resistance may permit autoreactive B cells to escape Fas deletion, and malignant lymphocytes to impede anti-tumor immunity.

  18. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation.

    PubMed

    Weindel, Chi G; Richey, Lauren J; Bolland, Silvia; Mehta, Abhiruchi J; Kearney, John F; Huber, Brigitte T

    2015-01-01

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, defined by loss of B cell self-tolerance that results in production of antinuclear antibodies (ANA) and chronic inflammation. While the initiating events in lupus development are not well defined, overexpression of the RNA-recognizing toll-like receptor (TLR)7 has been linked to SLE in humans and mice. We postulated that autophagy plays an essential role in TLR7 activation of B cells for the induction of SLE by delivering RNA ligands to the endosomes, where this innate immune receptor resides. To test this hypothesis, we compared SLE development in Tlr7 transgenic (Tg) mice with or without B cell-specific ablation of autophagy (Cd19-Cre Atg5(f/f)). We observed that in the absence of B cell autophagy the 2 hallmarks of SLE, ANA and inflammation, were eliminated, thus curing these mice of lupus. This was also evident in the significantly extended survival of the autophagy-deficient mice compared to Tlr7.1 Tg mice. Furthermore, glomerulonephritis was ameliorated, and the serum levels of inflammatory cytokines in the knockout (KO) mice were indistinguishable from those of control mice. These data provide direct evidence that B cells require TLR7-dependent priming through an autophagy-dependent mechanism before autoimmunity is induced, thereafter involving many cell types. Surprisingly, hyper-IgM production persisted in Tlr7.1 Tg mice in the absence of autophagy, likely involving a different activation pathway than the production of autoantibodies. Furthermore, these mice still presented with anemia, but responded with a striking increase in extramedullary hematopoiesis (EMH), possibly due to the absence of pro-inflammatory cytokines.

  19. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function

    PubMed Central

    Portugal, Silvia; Tipton, Christopher M; Sohn, Haewon; Kone, Younoussou; Wang, Jing; Li, Shanping; Skinner, Jeff; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Doumbo, Ogobara K; Doumbo, Safiatou; Kayentao, Kassoum; Ongoiba, Aissata; Traore, Boubacar; Sanz, Inaki; Pierce, Susan K; Crompton, Peter D

    2015-01-01

    Protective antibodies in Plasmodium falciparum malaria are only acquired after years of repeated infections. Chronic malaria exposure is associated with a large increase in atypical memory B cells (MBCs) that resemble B cells expanded in a variety of persistent viral infections. Understanding the function of atypical MBCs and their relationship to classical MBCs will be critical to developing effective vaccines for malaria and other chronic infections. We show that VH gene repertoires and somatic hypermutation rates of atypical and classical MBCs are indistinguishable indicating a common developmental history. Atypical MBCs express an array of inhibitory receptors and B cell receptor (BCR) signaling is stunted in atypical MBCs resulting in impaired B cell responses including proliferation, cytokine production and antibody secretion. Thus, in response to chronic malaria exposure, atypical MBCs appear to differentiate from classical MBCs becoming refractory to BCR-mediated activation and potentially interfering with the acquisition of malaria immunity. DOI: http://dx.doi.org/10.7554/eLife.07218.001 PMID:25955968

  20. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma.

    PubMed

    Lenz, Georg; Nagel, Inga; Siebert, Reiner; Roschke, Anna V; Sanger, Warren; Wright, George W; Dave, Sandeep S; Tan, Bruce; Zhao, Hong; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Gascoyne, Randy D; Campo, Elias; Jaffe, Elaine S; Smeland, Erlend B; Fisher, Richard I; Kuehl, W Michael; Chan, Wing C; Staudt, Louis M

    2007-03-19

    To elucidate the mechanisms underlying chromosomal translocations in diffuse large B cell lymphoma (DLBCL), we investigated the nature and extent of immunoglobulin class switch recombination (CSR) in these tumors. We used Southern blotting to detect legitimate and illegitimate CSR events in tumor samples of the activated B cell-like (ABC), germinal center B cell-like (GCB), and primary mediastinal B cell lymphoma (PMBL) subgroups of DLBCL. The frequency of legitimate CSR was lower in ABC DLBCL than in GCB DLBCL and PMBL. In contrast, ABC DLBCL had a higher frequency of internal deletions within the switch mu (Smu) region compared with GCB DLBCL and PMBL. ABC DLBCLs also had frequent deletions within Sgamma and other illegitimate switch recombinations. Sequence analysis revealed ongoing Smu deletions within ABC DLBCL tumor clones, which were accompanied by ongoing duplications and activation-induced cytidine deaminase-dependent somatic mutations. Unexpectedly, short fragments derived from multiple chromosomes were interspersed within Smu in one case. These findings suggest that ABC DLBCLs have abnormalities in the regulation of CSR that could predispose to chromosomal translocations. Accordingly, aberrant switch recombination was responsible for translocations in ABC DLBCLs involving BCL6, MYC, and a novel translocation partner, SPIB. PMID:17353367

  1. Ibrutinib Before and After Stem Cell Transplant in Treating Patients With Relapsed or Refractory Diffuse Large B-cell Lymphoma

    ClinicalTrials.gov

    2016-10-27

    Activated B-Cell-Like Diffuse Large B-Cell Lymphoma; B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Refractory Diffuse Large B-Cell Lymphoma

  2. Expansion of Activated Peripheral Blood Memory B Cells in Rheumatoid Arthritis, Impact of B Cell Depletion Therapy, and Biomarkers of Response

    PubMed Central

    Adlowitz, Diana G.; Barnard, Jennifer; Biear, Jamie N.; Cistrone, Christopher; Owen, Teresa; Wang, Wensheng; Palanichamy, Arumugam; Ezealah, Ezinma; Campbell, Debbie; Wei, Chungwen; Looney, R. John; Sanz, Inaki; Anolik, Jennifer H.

    2015-01-01

    Although B cell depletion therapy (BCDT) is effective in a subset of rheumatoid arthritis (RA) patients, both mechanisms and biomarkers of response are poorly defined. Here we characterized abnormalities in B cell populations in RA and the impact of BCDT in order to elucidate B cell roles in the disease and response biomarkers. In active RA patients both CD27+IgD- switched memory (SM) and CD27-IgD- double negative memory (DN) peripheral blood B cells contained significantly higher fractions of CD95+ and CD21- activated cells compared to healthy controls. After BCD the predominant B cell populations were memory, and residual memory B cells displayed a high fraction of CD21- and CD95+ compared to pre-depletion indicating some resistance of these activated populations to anti-CD20. The residual memory populations also expressed more Ki-67 compared to pre-treatment, suggesting homeostatic proliferation in the B cell depleted state. Biomarkers of clinical response included lower CD95+ activated memory B cells at depletion time points and a higher ratio of transitional B cells to memory at reconstitution. B cell function in terms of cytokine secretion was dependent on B cell subset and changed with BCD. Thus, SM B cells produced pro-inflammatory (TNF) over regulatory (IL10) cytokines as compared to naïve/transitional. Notably, B cell TNF production decreased after BCDT and reconstitution compared to untreated RA. Our results support the hypothesis that the clinical and immunological outcome of BCDT depends on the relative balance of protective and pathogenic B cell subsets established after B cell depletion and repopulation. PMID:26047509

  3. Deletion of genes encoding PU.1 and Spi-B in B cells impairs differentiation and induces pre-B cell acute lymphoblastic leukemia.

    PubMed

    Sokalski, Kristen M; Li, Stephen K H; Welch, Ian; Cadieux-Pitre, Heather-Anne T; Gruca, Marek R; DeKoter, Rodney P

    2011-09-01

    The E26 transformation-specific (Ets) transcription factor PU.1 is required to generate lymphoid progenitor cells from hematopoietic stem cells, but it is not required to generate B cells from committed B-cell lineage progenitors. We hypothesized that PU.1 function in B-cell differentiation is complemented by the related Ets transcription factor Spi-B. To test this hypothesis, mice were generated lacking both PU.1 and Spi-B in the B-cell lineage. Unlike mice lacking PU.1 or Spi-B, mice deficient in both PU.1 and Spi-B in the B-cell lineage had reduced frequencies of B cells as well as impaired B-cell differentiation. Strikingly, all PU.1 and Spi-B-deficient mice developed pre-B cell acute lymphoblastic leukemia before 30 weeks of age. Pre-B cells accumulated in the thymus resulting in massive thymic enlargement and dyspnea. These findings demonstrate that PU.1 and Spi-B are essential transcriptional regulators of B-cell differentiation as well as novel tumor suppressors in the B-cell lineage.

  4. Significance of p27 Immunostaining in B-Cell Neoplasm.

    PubMed

    El-Kerdany, Tahany A; Shams Eldin El Telbany, Manal A; Esmaeel, Manal M; Mahmoud, Hanan M

    2016-08-01

    P27 is an important cell cycle regulatory protein. Many reports have validated the utility of p27 as a prognostic marker in different human cancers and to prove its prognostic role in B-cell neoplasm; 80 newly diagnosed B-cell neoplasm patients with mean age of 46.6 years recruited from Hematology/Oncology Unit of Ain Shams University Hospitals during the period from January 2008 till June 2010 were studied for their p27 immunostaining results which showed that all cases of chronic lymphocytic leukemia (CLL) were positive for p27, whereas all mantly cell lymphoma cases were negative for it. There was significantly higher p27 positivity in CLL cases compared with non-Hodgkin lymphoma and that indolent cases showed significantly higher rate of positivity when compared with aggressive and highly aggressive cases. So, we can use this marker to differentiate CLL and mantly cell lymphoma in cases of confusion.

  5. 324 Facility B-cell quality process plan

    SciTech Connect

    Carlson, J.L.

    1998-07-29

    B-Cell is currently being cleaned out (i.e., removal of equipment, fixtures and residual radioactive materials) and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/99. The following sections describe the major activities that remain for completion of the TPA milestone. These include: Size Reduce Tank 119 and Miscellaneous Equipment; Load and Ship Low-Level Waste; Remove and Size Reduce the 1B Rack; Collect Dispersible Material from Cell Floor; Remove and Size Reduce the 2A Rack; Size Reduce the 1A Rack; Load and Ship Mixed Waste to PUREX Tunnels; and Move Spent Fuel to A-Cell;

  6. Are T cells at the origin of B cell lymphomas?

    PubMed

    Meyer-Hermann, Michael E

    2007-02-21

    Lymphoma pathogenesis is at least in some cases related to transformed B cells (BCs) arising from germinal centre reactions (GCRs). In this article possible deregulations of GCRs are investigated using in silico simulations. It is found that the final differentiation of BCs as regulated by helper T cells (TCs) is the best candidate mechanism for such a deregulation. This shifts the paradigm of BC lymphoma pathogenesis from BC transformations to an emphasized role of TC-BC interactions. PMID:17070849

  7. Early alterations of B cells in patients with septic shock

    PubMed Central

    2013-01-01

    Introduction It has recently been proposed that B lymphocytes are involved in sepsis pathogenesis. The goal of this study is to investigate potential abnormalities in a subset distribution and activation of circulating B lymphocytes in patients with septic shock. Methods This observational prospective study was conducted in a medical-surgical ICU. All patients with septic shock were eligible for inclusion. B-cell phenotypes (CD19+CD69+, CD19+CD23+, CD19+CD5+, CD19+CD80, CD19+CD86+, CD19+CD40 and CD19+CD95+) were assessed by quantitative flow cytometry upon admission to the ICU and 3, 7, 14 and 28 d later. Results Fifty-two patients were included. Thirty-six healthy volunteers matched for age and sex were used as controls. The patients had lymphopenia that was maintained during 28 d of follow-up. In patients with septic shock who died, the percentage of CD19+CD23+ was lower during the 7 d of follow-up than it was in survival patients. Moreover, the percentage of CD80+ and CD95+ expression on B cells was higher in patients who died than in survivors. Receiver operating characteristic curve analysis showed that a CD19+CD23+ value of 64.6% at ICU admission enabled discrimination between survivors and nonsurvivors with a sensitivity of 90.9% and a specificity of 80.0% (P = 0.0001). Conclusions Patients with septic shock who survive and those who don't have different patterns of abnormalities in circulating B lymphocytes. At ICU admission, a low percentage of CD23+ and a high of CD80+ and CD95+ on B cells were associated with increased mortality of patients with septic shock. Moreover, a drop in circulating B cells persisted during 28 d of ICU follow-up. PMID:23721745

  8. Molecular characterization of primary mediastinal B cell lymphoma.

    PubMed

    Tsang, P; Cesarman, E; Chadburn, A; Liu, Y F; Knowles, D M

    1996-06-01

    Primary mediastinal B cell lymphoma (PMBL) is a diffuse large B cell lymphoma (DLCL) postulated to arise from noncirculating thymic B lymphocytes. Because of its distinctive clinical and morphological features and putative unique cellular origin, PMBL is generally considered a distinct clinicopathological entity. Little is known, however, about the molecular characteristics of PMBL. Therefore, we analyzed 16 PMBLs for molecular alterations involving the bcl-1, bcl-2, bcl-6, c-myc, H-ras, K-ras, N-ras, and p53 genes and for Epstein-Barr virus infection, which are commonly involved in lymphoid neoplasia. Employing a combination of Southern blotting and/or polymerase chain reaction and single-strand conformation polymorphism assays, we detected genetic alterations in 7 of the 16 (44%) PMBLs. Whereas the bcl-6 gene is rearranged in up to 45% of DLCLs, rearrangement of the bcl-6 gene was detected in only 1 of these 16 (6%) PMBLS. Point mutations of the 5' noncoding region of the c-myc gene were demonstrated in 3 other cases (19%), although c-myc gene rearrangements were not seen by Southern blotting. Missense point mutations of the p53 gene were identified in 3 additional PMBLs (19%). Alterations of the bcl-1, bcl-2, or ras genes and evidence of Epstein-Barr virus infection were not observed. In conclusion, a variety of molecular lesions occur in PMBLs and may be involved in their pathogenesis. This molecular genetic pattern bears little resemblance to that known for other B cell malignancies, including DLCL. In particular, the infrequent occurrence of bcl-6 gene rearrangement in PMBLs distinguishes them from other DLCLs of B cell origin, suggesting that PMBLs do not represent a distinct subtype of DLCL. PMID:8669486

  9. Molecular characterization of primary mediastinal B cell lymphoma.

    PubMed Central

    Tsang, P.; Cesarman, E.; Chadburn, A.; Liu, Y. F.; Knowles, D. M.

    1996-01-01

    Primary mediastinal B cell lymphoma (PMBL) is a diffuse large B cell lymphoma (DLCL) postulated to arise from noncirculating thymic B lymphocytes. Because of its distinctive clinical and morphological features and putative unique cellular origin, PMBL is generally considered a distinct clinicopathological entity. Little is known, however, about the molecular characteristics of PMBL. Therefore, we analyzed 16 PMBLs for molecular alterations involving the bcl-1, bcl-2, bcl-6, c-myc, H-ras, K-ras, N-ras, and p53 genes and for Epstein-Barr virus infection, which are commonly involved in lymphoid neoplasia. Employing a combination of Southern blotting and/or polymerase chain reaction and single-strand conformation polymorphism assays, we detected genetic alterations in 7 of the 16 (44%) PMBLs. Whereas the bcl-6 gene is rearranged in up to 45% of DLCLs, rearrangement of the bcl-6 gene was detected in only 1 of these 16 (6%) PMBLS. Point mutations of the 5' noncoding region of the c-myc gene were demonstrated in 3 other cases (19%), although c-myc gene rearrangements were not seen by Southern blotting. Missense point mutations of the p53 gene were identified in 3 additional PMBLs (19%). Alterations of the bcl-1, bcl-2, or ras genes and evidence of Epstein-Barr virus infection were not observed. In conclusion, a variety of molecular lesions occur in PMBLs and may be involved in their pathogenesis. This molecular genetic pattern bears little resemblance to that known for other B cell malignancies, including DLCL. In particular, the infrequent occurrence of bcl-6 gene rearrangement in PMBLs distinguishes them from other DLCLs of B cell origin, suggesting that PMBLs do not represent a distinct subtype of DLCL. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8669486

  10. [Significance of regulatory B cells in nosogenesis of immune thrombocytopenia].

    PubMed

    Li, Xin; Wang, Fang; Ding, Kai Yang; Dai, Lan

    2014-04-01

    This study was aimed to investigate the role of regulatory B cells (Breg) in pathogenesis of immune thrombocytopenia (ITP) and its clinical significance. A total of 35 ITP patients and 20 normal controls were enrolled in this study. The expression of CD19(+)CD24(hi)CD38(hi) B cells was detected by flow cytometry and the expression of IL-10 mRNA and TGF-β1 mRNA was assayed by RT-PCR. The results indicated that the expression level of CD19(+)CD24(hi)CD38(hi) B cells in peripheral blood of newly diagnosed ITP patients was obviously lower than that in normal controls (P < 0.05); the expression level of CD19(+)CD24(hi)CD38(hi) B cells in ITP patients with increased platelet count after treatment was higher than that before treatment (P < 0.05); the expression level of IL-10 mRNA in newly diagnosed ITP patients was significantly lower than that the in normal controls (P < 0.05), the expression level of TGF-β1 mRNA in newly diagnosed ITP patients increases as compared with normal controls (P < 0.05), after treatment with DXM the expression of IL-10 mRNA was enhanced, the expression of TGF-β1 mRNA was reduced as compared with expression level before treatment (P < 0.05). It is concluded that the Breg cells may play an important role in the pathogenesis of ITP via humoral immunity and its regulation of T lymphocytes.

  11. Activated mast cells promote differentiation of B cells into effector cells

    PubMed Central

    Palm, Anna-Karin E.; Garcia-Faroldi, Gianni; Lundberg, Marcus; Pejler, Gunnar; Kleinau, Sandra

    2016-01-01

    Based on the known accumulation of mast cells (MCs) in B cell-dependent inflammatory diseases, including rheumatoid arthritis, we hypothesized that MCs directly modulate B cells. We show here that degranulated, and to a lesser extent naïve or IgE-sensitized, MCs activate both naïve and B cell receptor-activated B cells. This was shown by increased proliferation, blast formation, and expression of CD19, MHC class II and CD86 in the B cells. Further, MCs stimulated the secretion of IgM and IgG in IgM+ B cells, indicating that MCs can induce class-switch recombination in B cells. We also show that coculture of MCs with B cells promotes surface expression of L-selectin, a homing receptor, on the B cells. The effects of MCs on B cells were partly dependent on cell-cell contact and both follicular and marginal zone B cells could be activated by MCs. Our findings suggest that degranulated MCs support optimal activation of B cells, a finding that is in line with in vivo studies showing that MCs frequently degranulate in the context of B-cell driven pathologies such as arthritis. Together, our findings show that MCs have the capacity to differentiate B cells to effector cells. PMID:26847186

  12. Large anaplastic spinal B-cell lymphoma in a cat.

    PubMed

    Flatland, Bente; Fry, Michael M; Newman, Shelley J; Moore, Peter F; Smith, Joanne R; Thomas, William B; Casimir, Roslyn H

    2008-12-01

    A 5-year-old female spayed domestic shorthair cat was presented for evaluation of tetraparesis. The neurologic lesion was localized to the cervical spinal segment (C1-C6). A left axillary mass was identified, and the results of fine needle aspiration cytology indicated malignant round cell neoplasia of possible histiocytic origin. The cells were large, had marked anisocytosis and anisokaryosis, occasional bi- and multinucleation, and cytoplasmic vacuolation. Euthanasia was performed due to the poor prognosis associated with severe, progressive neurologic signs and a malignant neoplasm. Postmortem examination revealed spinal cord compression and an extradural mass at the C1-C2 spinal segment, with neoplastic cells in the adjacent vertebral bodies, surrounding skeletal muscle, left axillary lymph node, and bone marrow from the right femur. The initial histologic diagnosis was anaplastic sarcoma, but immunohistochemical results indicated the cells were CD20+ and CD45R+ and CD3-, compatible with a diagnosis of B-cell lymphoma. CD79a staining was nonspecific and uninterpretable. Weak to moderate CD18 positivity and E-cadherin positivity were also observed. Clonality of the B-cell population could not be demonstrated using PCR testing for antigen receptor gene rearrangement. To the authors' knowledge, this is the first reported case of a feline spinal anaplastic B-cell lymphoma exhibiting bi- and multinucleated cells. The prognostic significance of this cell morphology and immunophenotype is unknown.

  13. APOBEC3 enzymes restrict marginal zone B cells

    PubMed Central

    Beck-Engeser, Gabriele B.; Winkelmann, Rebecca; Wheeler, Matthew L.; Shansab, Maryam; Yu, Philipp; Wünsche, Sarah; Walchhütter, Anja; Metzner, Mirjam; Vettermann, Christian; Eilat, Dan; DeFranco, Anthony; Jäck, Hans-Martin; Wabl, Matthias

    2016-01-01

    In general, a long-lasting immune response to viruses is achieved when they are infectious and replication-competent. In the mouse, the neutralizing antibody response to Friend murine leukemia virus is contributed by an allelic form of the enzyme Apobec3 (abbreviated A3). This is counterintuitive, because A3 directly controls viremia before the onset of adaptive anti-viral immune responses. It suggests that A3 also affects the antibody response directly. Here we studied the relative size of cell populations of the adaptive immune system as a function of A3 activity. We created a transgenic mouse that expresses all seven human A3 enzymes (hA3) and compared it to wild-type and mouse A3 (mA3)-deficient mice. A3 enzymes decreased the number of marginal zone (MZ) B cells, but not the number of follicular B or T cells. When mA3 was knocked out, the retroelement hitchhiker-1 and sialyl transferases encoded by genes close to it were overexpressed three and two orders of magnitude, respectively. We suggest that A3 shifts the balance, from the fast antibody response mediated by MZ B cells with little affinity maturation, to a more sustained germinal center B-cell response, which drives affinity maturation and, thereby, a better neutralizing response. PMID:25501566

  14. Adaptive Response of T and B Cells in Atherosclerosis.

    PubMed

    Ketelhuth, Daniel F J; Hansson, Göran K

    2016-02-19

    Atherosclerosis is a chronic inflammatory disease that is initiated by the retention and accumulation of cholesterol-containing lipoproteins, particularly low-density lipoprotein, in the artery wall. In the arterial intima, lipoprotein components that are generated through oxidative, lipolytic, and proteolytic activities lead to the formation of several danger-associated molecular patterns, which can activate innate immune cells as well as vascular cells. Moreover, self- and non-self-antigens, such as apolipoprotein B-100 and heat shock proteins, can contribute to vascular inflammation by triggering the response of T and B cells locally. This process can influence the initiation, progression, and stability of plaques. Substantial clinical and experimental data support that the modulation of adaptive immune system may be used for treating and preventing atherosclerosis. This may lead to the development of more selective and less harmful interventions, while keeping host defense mechanisms against infections and tumors intact. Approaches such as vaccination might become a realistic option for cardiovascular disease, especially if they can elicit regulatory T and B cells and the secretion of atheroprotective antibodies. Nevertheless, difficulties in translating certain experimental data into new clinical therapies remain a challenge. In this review, we discuss important studies on the function of T- and B-cell immunity in atherosclerosis and their manipulation to develop novel therapeutic strategies against cardiovascular disease.

  15. How B cells Shape the Immune Response against Mycobacterium tuberculosis

    PubMed Central

    Maglione, Paul J.; Chan, John

    2009-01-01

    Extensive work illustrating the importance of cellular immune mechanisms for protection against Mycobacterium tuberculosis has largely relegated B cell biology to an afterthought within the tuberculosis (TB) field. However, recent studies have illustrated that B lymphocytes, through a variety of interactions with the cellular immune response, play previously underappreciated roles in shaping host defense against nonviral intracellular pathogens, including M. tuberculosis. Work in our laboratory has recently shown that, by considering these lymphocytes more broadly within their variety of interactions with cellular immunity, B cells have a significant impact on the outcome of airborne challenge with M. tuberculosis as well as the resultant inflammatory response. In this review, we advocate for a revised view of TB immunology in which roles of cellular and humoral immunity are not mutually exclusive. In the context of our current understanding of host defense against nonviral intracellular infections, we review recent data supporting a more significant role of B cells during M. tuberculosis infection than previously thought. PMID:19283721

  16. Large anaplastic spinal B-cell lymphoma in a cat.

    PubMed

    Flatland, Bente; Fry, Michael M; Newman, Shelley J; Moore, Peter F; Smith, Joanne R; Thomas, William B; Casimir, Roslyn H

    2008-12-01

    A 5-year-old female spayed domestic shorthair cat was presented for evaluation of tetraparesis. The neurologic lesion was localized to the cervical spinal segment (C1-C6). A left axillary mass was identified, and the results of fine needle aspiration cytology indicated malignant round cell neoplasia of possible histiocytic origin. The cells were large, had marked anisocytosis and anisokaryosis, occasional bi- and multinucleation, and cytoplasmic vacuolation. Euthanasia was performed due to the poor prognosis associated with severe, progressive neurologic signs and a malignant neoplasm. Postmortem examination revealed spinal cord compression and an extradural mass at the C1-C2 spinal segment, with neoplastic cells in the adjacent vertebral bodies, surrounding skeletal muscle, left axillary lymph node, and bone marrow from the right femur. The initial histologic diagnosis was anaplastic sarcoma, but immunohistochemical results indicated the cells were CD20+ and CD45R+ and CD3-, compatible with a diagnosis of B-cell lymphoma. CD79a staining was nonspecific and uninterpretable. Weak to moderate CD18 positivity and E-cadherin positivity were also observed. Clonality of the B-cell population could not be demonstrated using PCR testing for antigen receptor gene rearrangement. To the authors' knowledge, this is the first reported case of a feline spinal anaplastic B-cell lymphoma exhibiting bi- and multinucleated cells. The prognostic significance of this cell morphology and immunophenotype is unknown. PMID:19055573

  17. Diffuse large B cell lymphoma with chronic granulomatous inflammation.

    PubMed

    Nyunt, W W T; Wong, Y P; Wan Jamaludin, W F; Abdul Wahid, S F S

    2016-04-01

    Non-necrotic epithelioid granulomas have been reported in association with neoplasms including Hodgkin and non-Hodgkin lymphoma. We report a case of diffuse large B cell lymphoma with chronic granulomatous inflammation to highlight awareness of obscure tumour cells within the granuloma, to avoid delay in diagnosis and management of lymphoma. A 39-year-old Malay lady with no past medical history, presented with a 2-month history of progressive worsening of difficulty in breathing, cough, low-grade fever, loss of weight and loss of appetite. Chest X-ray showed an anterior mediastinal mass and computed tomography (CT)-guided biopsy was reported as chronic granulomatous inflammation suggestive of tuberculosis. After 2 months of anti-TB treatment, her symptoms were not relieved. The patient underwent another CT-guided biopsy of the anterior mediastinal mass in another hospital and the histopathology revealed diffuse large B cell lymphoma. The patient was referred for treatment. On histopathological review, the first sample showed noncaseating granulomas engulfing tumour cells and large abnormal lymphoid cells which were CD20 positive and with high Ki-67 proliferative index. The patient was diagnosed with diffuse large B cell lymphoma stage IV B IPSS score 3. She underwent chemotherapy (R-EPOCH) and responded well to treatment. PMID:27126666

  18. Isolation and characterization of a novel B cell activation gene

    SciTech Connect

    Hong, J.X.; Wilson, G.L.; Fox, C.H.; Kehrl, J.H. )

    1993-05-01

    Using subtractive cDNA cloning, the authors have isolated a series of cDNA clones that are differentially expressed between B and T lymphocytes. Whereas some of the isolated cDNA are from known B cell-specific genes, many of them represent previously uncharacterized genes. One of these unknown genes was denoted as BL34. Northern blot analysis performed with the BL34 cDNA revealed a 1.6-kb mRNA transcript that was present at low levels in RNA extracted from resting B lymphocytes, but whose expression was markedly increased in RNA prepared from mitogen-activated B cells. Similarly, RNA prepared from several B cell lines treated with phorbol myristate acetate (PMA) contained high levels of BL34 mRNA. In contrast, RNA from purified T cells treated with phytohemagglutinin and PMA had undetectable amounts of BL34 mRNA. In addition, high levels of BL34 mRNA were detected in RNA purified from PBMC of a patient with B cell acute lymphocytic leukemia. Southern blot analysis of human DNA from various tissues and cells lines demonstrated that BL34 is a single-copy gene without evidence of rearrangement. Two full length BL34 cDNA were sequenced, and an open reading frame of 588 bp was identified that was predicted to encode for a 196 amino acid protein. Searches of several protein data bases failed to find any homologous proteins. To directly analyze the expression of BL34 mRNA in lymphoid tissues in situ, hybridization studies with human tonsil tissue sections were performed. BL34 mRNA was detected in a portion of the cells in the germinal center region and adjacent to the mantle region. Further characterization of the BL34 gene and its protein should lead to insights to its role in B cell function and the consequences of its over-expression in acute lymphocytic leukemia. 26 refs., 6 figs., 1 tab.

  19. Emerging immunotherapy and strategies directly targeting B cells for the treatment of diffuse large B-cell lymphoma.

    PubMed

    Witkowska, Magdalena; Smolewski, Piotr

    2015-01-01

    During the last decade, significant prolonged survival in diffusive large B-cell lymphoma (DLBCL) has been observed. The efficacy of initial treatment improved mostly due to addition of a chimeric anti-CD20 monoclonal antibody (rituximab) to standard chemotherapeutic regimens. Moreover, accurate understanding of DLBCL pathogenesis and remarkable progress in gene expression profiling have led to the development of a variety of tumor-specific regimens. Novel agents target directly the pathways involved in signal transduction, lead to apoptosis and cancer cells differentiation. In this article, we mainly focus on new treatment options, such as monoclonal antibodies, tyrosine kinase inhibitors and immunomodulatory drugs, currently investigated in aggressive B-cell lymphoma with particular attention to DLBCL type.

  20. Pathogen manipulation of B cells: the best defence is a good offence.

    PubMed

    Nothelfer, Katharina; Sansonetti, Philippe J; Phalipon, Armelle

    2015-03-01

    B cells have long been regarded as simple antibody production units, but are now becoming known as key players in both adaptive and innate immune responses. However, several bacteria, viruses and parasites have evolved the ability to manipulate B cell functions to modulate immune responses. Pathogens can affect B cells indirectly, by attacking innate immune cells and altering the cytokine environment, and can also target B cells directly, impairing B cell-mediated immune responses. In this Review, we provide a summary of recent advances in elucidating direct B cell-pathogen interactions and highlight how targeting this specific cell population benefits different pathogens.

  1. Clonal B cells in Waldenström's macroglobulinemia exhibit functional features of chronic active B-cell receptor signaling

    PubMed Central

    Argyropoulos, K V; Vogel, R; Ziegler, C; Altan-Bonnet, G; Velardi, E; Calafiore, M; Dogan, A; Arcila, M; Patel, M; Knapp, K; Mallek, C; Hunter, Z R; Treon, S P; van den Brink, M R M; Palomba, M L

    2016-01-01

    Waldenström's macroglobulinemia (WM) is a B-cell non-Hodgkin's lymphoma (B-NHL) characterized by immunoglobulin M (IgM) monoclonal gammopathy and the medullary expansion of clonal lymphoplasmacytic cells. Neoplastic transformation has been partially attributed to hyperactive MYD88 signaling, secondary to the MYD88 L265P mutation, occurring in the majority of WM patients. Nevertheless, the presence of chronic active B-cell receptor (BCR) signaling, a feature of multiple IgM+ B-NHL, remains a subject of speculation in WM. Here, we interrogated the BCR signaling capacity of primary WM cells by utilizing multiparametric phosphoflow cytometry and found heightened basal phosphorylation of BCR-related signaling proteins, and augmented phosphoresponses on surface IgM (sIgM) crosslinking, compared with normal B cells. In support of those findings we observed high sIgM expression and loss of phosphatase activity in WM cells, which could both lead to signaling potentiation in clonal cells. Finally, led by the high-signaling heterogeneity among WM samples, we generated patient-specific phosphosignatures, which subclassified patients into a ‘high' and a ‘healthy-like' signaling group, with the second corresponding to patients with a more indolent clinical phenotype. These findings support the presence of chronic active BCR signaling in WM while providing a link between differential BCR signaling utilization and distinct clinical WM subgroups. PMID:26867669

  2. [EXPRESSION OF THE LIGHT CHAINS OF IMMUNOGLOBULINS IN NORMAL B-CELLS AND SOME B-CELL LYMPHOMAS].

    PubMed

    Khudoleeva, O A; Vorobjev, I A

    2015-01-01

    The quantitative method of determining the level of expression of immunoglobulin light chains on uncompensated data was suggested and used to examine disorders in light chain expression in various B-cell tumors. The average level of expression of the lambda isotype was 4 times higher than the level of expression of kappa isotype. The level of surface and cytoplasmic expression of LC IG varied within wide limits for different people, but there was a high degree of correlation between the levels of expression of kappa and lambda isotypes LC IG as well as between expression of the surface and cytoplasmic forms of each in isotype the same individual. In the majority of B-cell non-Hodgkin's lymphomas correlation between the expression of LC IG on the surface and in the cytoplasm of the cells was diminished. Expression of LC IG in CLL was significantly reduced on the surface of the cells and to a lesser extent--in the cytoplasm. In the case of marginal zone cell lymphoma, LC IG expression level was reduced on the surface of circulating cells and to a lesser extent--in the cytoplasm. In the case of mantle cell lymphoma and DLBCL, expression level of LC IG on the cell surface and in the cytoplasm was the same as in normal B-cells. However, in some cases DLBCL, no LC IG was expressed both on the surface and in the cytoplasm. PMID:26863766

  3. LRRK1 is critical in the regulation of B-cell responses and CARMA1-dependent NF-κB activation

    PubMed Central

    Morimoto, Keiko; Baba, Yoshihiro; Shinohara, Hisaaki; Kang, Sujin; Nojima, Satoshi; Kimura, Tetsuya; Ito, Daisuke; Yoshida, Yuji; Maeda, Yohei; Sarashina-Kida, Hana; Nishide, Masayuki; Hosokawa, Takashi; Kato, Yasuhiro; Hayama, Yoshitomo; Kinehara, Yuhei; Okuno, Tatsusada; Takamatsu, Hyota; Hirano, Toru; Shima, Yoshihito; Narazaki, Masashi; Kurosaki, Tomohiro; Toyofuku, Toshihiko; Kumanogoh, Atsushi

    2016-01-01

    B-cell receptor (BCR) signaling plays a critical role in B-cell activation and humoral immunity. In this study, we discovered a critical function of leucine-rich repeat kinase 1 (LRRK1) in BCR-mediated immune responses. Lrrk1−/− mice exhibited altered B1a-cell development and basal immunoglobulin production. In addition, these mice failed to produce IgG3 antibody in response to T cell–independent type 2 antigen due to defects in IgG3 class-switch recombination. Concomitantly, B cells lacking LRRK1 exhibited a profound defect in proliferation and survival upon BCR stimulation, which correlated with impaired BCR-mediated NF-κB activation and reduced expression of NF-κB target genes including Bcl-xL, cyclin D2, and NFATc1/αA. Furthermore, LRRK1 physically interacted and potently synergized with CARMA1 to enhance NF-κB activation. Our results reveal a critical role of LRRK1 in NF-κB signaling in B cells and the humoral immune response. PMID:27166870

  4. Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation.

    PubMed

    Lane, Andrew A; Chapuy, Bjoern; Lin, Charles Y; Tivey, Trevor; Li, Hubo; Townsend, Elizabeth C; van Bodegom, Diederik; Day, Tovah A; Wu, Shuo-Chieh; Liu, Huiyun; Yoda, Akinori; Alexe, Gabriela; Schinzel, Anna C; Sullivan, Timothy J; Malinge, Sébastien; Taylor, Jordan E; Stegmaier, Kimberly; Jaffe, Jacob D; Bustin, Michael; te Kronnie, Geertruy; Izraeli, Shai; Harris, Marian H; Stevenson, Kristen E; Neuberg, Donna; Silverman, Lewis B; Sallan, Stephen E; Bradner, James E; Hahn, William C; Crispino, John D; Pellman, David; Weinstock, David M

    2014-06-01

    Down syndrome confers a 20-fold increased risk of B cell acute lymphoblastic leukemia (B-ALL), and polysomy 21 is the most frequent somatic aneuploidy among all B-ALLs. Yet the mechanistic links between chromosome 21 triplication and B-ALL remain undefined. Here we show that germline triplication of only 31 genes orthologous to human chromosome 21q22 confers mouse progenitor B cell self renewal in vitro, maturation defects in vivo and B-ALL with either the BCR-ABL fusion protein or CRLF2 with activated JAK2. Chromosome 21q22 triplication suppresses histone H3 Lys27 trimethylation (H3K27me3) in progenitor B cells and B-ALLs, and 'bivalent' genes with both H3K27me3 and H3K4me3 at their promoters in wild-type progenitor B cells are preferentially overexpressed in triplicated cells. Human B-ALLs with polysomy 21 are distinguished by their overexpression of genes marked with H3K27me3 in multiple cell types. Overexpression of HMGN1, a nucleosome remodeling protein encoded on chromosome 21q22 (refs. 3,4,5), suppresses H3K27me3 and promotes both B cell proliferation in vitro and B-ALL in vivo. PMID:24747640

  5. B-less: a strain of profoundly B cell-deficient mice expressing a human lambda transgene

    PubMed Central

    1992-01-01

    We have created several transgenic mouse strains that bear the human lambda light chain gene driven by its own promoter and a mouse immunoglobulin heavy chain enhancer. The transgene is expressed in many tissues, with particularly high levels of expression in the bone marrow, thymus, spleen, and lymph nodes. One of these transgenic lines, B-less, displays a dramatic phenotype characterized by an acute susceptibility to bacterial and viral infections. Analysis of this strain shows it to be profoundly deficient in both immature (pre-B) and mature B cells, as well as in circulating immunoglobulin. The pre-B and B cell defects are cell autonomous, as judged by cell culture and bone marrow graft chimeras. Despite this B cell deficiency, the T cell lineage appears grossly normal as assessed by flow cytometric analysis and by its response to mitogen stimulation. Since an independently derived transgenic strain bearing the same human lambda construct displays a partial B-less phenotype, it is likely that the B lineage deficiency is due to a dominant effect of transgene expression rather than to the insertional perturbation of an endogenous mouse gene. It is interesting that the deficiency phenotype is fully expressed in the FVB/N genetic background, but is suppressed in F1 hybrids formed between the FVB/N and C57BL/6 inbred strains. Evidently, there are one or more dominant genetic suppressors of B-less in the C57BL/6 genome. PMID:1314882

  6. CNOT3 contributes to early B cell development by controlling Igh rearrangement and p53 mRNA stability

    PubMed Central

    Inoue, Takeshi; Morita, Masahiro; Hijikata, Atsushi; Fukuda-Yuzawa, Yoko; Adachi, Shungo; Isono, Kyoichi; Ikawa, Tomokatsu; Kawamoto, Hiroshi; Koseki, Haruhiko; Natsume, Tohru; Fukao, Taro; Ohara, Osamu; Yamamoto, Tadashi

    2015-01-01

    The CCR4–NOT deadenylase complex plays crucial roles in mRNA decay and translational repression induced by poly(A) tail shortening. Although the in vitro activities of each component of this complex have been well characterized, its in vivo role in immune cells remains unclear. Here we show that mice lacking the CNOT3 subunit of this complex, specifically in B cells, have a developmental block at the pro- to pre–B cell transition. CNOT3 regulated generation of germline transcripts in the VH region of the immunoglobulin heavy chain (Igh) locus, compaction of the locus, and subsequent Igh gene rearrangement and destabilized tumor suppressor p53 mRNA. The developmental defect in the absence of CNOT3 could be partially rescued by ablation of p53 or introduction of a pre-rearranged Igh transgene. Thus, our data suggest that the CCR4–NOT complex regulates B cell differentiation by controlling Igh rearrangement and destabilizing p53 mRNA. PMID:26238124

  7. RAG1 and RAG2 expression by B cell subsets from human tonsil and peripheral blood.

    PubMed

    Girschick, H J; Grammer, A C; Nanki, T; Mayo, M; Lipsky, P E

    2001-01-01

    It has been suggested that B cells acquire the capacity for secondary V(D)J recombination during germinal center (GC) reactions. The nature of these B cells remains controversial. Subsets of tonsil and blood B cells and also individual B cells were examined for the expression of recombination-activating gene (RAG) mRNA. Semiquantitative analysis indicated that RAG1 mRNA was present in all tonsil B cell subsets, with the largest amount found in naive B cells. RAG2 mRNA was only found in tonsil naive B cells, centrocytes, and to a lesser extent in centroblasts. Neither RAG1 nor RAG2 mRNA was routinely found in normal peripheral blood B cells. In individual tonsil B cells, RAG1 and RAG2 mRNAs were found in 18% of naive B cells, 22% of GC founder cells, 0% of centroblasts, 13% of centrocytes, and 9% of memory B cells. Individual naive tonsil B cells containing both RAG1 and RAG2 mRNA were activated (CD69(+)). In normal peripheral blood approximately 5% of B cells expressed both RAG1 and RAG2. These cells were uniformly postswitch memory B cells as documented by the coexpression of IgG mRNA. These results indicate that coordinate RAG expression is not found in normal peripheral naive B cells but is up-regulated in naive B cells which are activated in the tonsil. With the exception of centroblasts, RAG1 and RAG2 expression can be found in all components of the GC, including postswitch memory B cells, some of which may circulate in the blood of normal subjects.

  8. Chemokine-mediated B cell trafficking during early rabbit GALT development

    PubMed Central

    Zhai, Shi-Kang; Volgina, Veronica V.; Sethupathi, Periannan; Knight, Katherine L.; Lanning, Dennis K.

    2014-01-01

    Microbial and host cell interactions stimulate rabbit B cells to diversify the primary antibody repertoire in gut-associated lymphoid tissues (GALT). B cells at the base of appendix follicles begin proliferating and diversifying their V-(D)-J genes around 1 week of age, ∼5 days after B cells first begin entering appendix follicles, To gain insight into the microbial and host cell interactions that stimulate B cells to diversify the primary antibody repertoire, we analyzed B cell trafficking within follicles during the first week of life. We visualized B cells, as well as chemokines that mediate B cell homing in lymphoid tissues, by in situ hybridization, and examined B cell chemokine receptor expression by flow cytometry. We found that B cells were activated, and began downregulating their BCRs, well before a detectable B cell proliferative region appeared at the follicle base. The proliferative region was similar to germinal center dark zones, in that it exhibited elevated CXCL12 mRNA expression, and B cells that upregulated CXCR4 mRNA in response to signals acquired from select intestinal commensals localized in this region. Our results suggest that, after entering appendix follicles, B cells home sequentially to the FAE, the FDC network, the B cell:T cell boundary and, ultimately, the base of the follicle, where they enter a proliferative program and diversify the primary antibody repertoire. PMID:25385821

  9. Murine gammaherpesvirus M2 protein induction of IRF4 via the NFAT pathway leads to IL-10 expression in B cells.

    PubMed

    Rangaswamy, Udaya S; Speck, Samuel H

    2014-01-01

    Reactivation of the gammaherpesviruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) from latently infected B cells has been linked to plasma cell differentiation. We have previously shown that the MHV68 M2 protein is important for virus reactivation from B cells and, when expressed alone in primary murine B cells, can drive B cell differentiation towards a pre-plasma cell phenotype. In addition, expression of M2 in primary murine B cells leads to secretion of high levels of IL-10 along with enhanced proliferation and survival. Furthermore, the absence of M2 in vivo leads to a defect in the appearance of MHV68 infected plasma cells in the spleen at the peak of MHV68 latency. Here, employing an inducible B cell expression system, we have determined that M2 activates the NFAT pathway in a Src kinase-dependent manner--leading to induction of the plasma cell-associated transcription factor, Interferon Regulatory Factor-4 (IRF4). Furthermore, we show that expression of IRF4 alone in a B cell line up-regulates IL-10 expression in culture supernatants, revealing a novel role for IRF4 in B cell induced IL-10. Consistent with the latter observation, we show that IRF4 can regulate the IL-10 promoter in B cells. In primary murine B cells, addition of cyclosporine (CsA) resulted in a significant decrease in M2-induced IL-10 levels as well as IRF4 expression, emphasizing the importance of the NFAT pathway in M2- -mediated induction of IL-10. Together, these studies argue in favor of a model wherein M2 activation of the NFAT pathway initiates events leading to increased levels of IRF4--a key player in plasma cell differentiation--which in turn triggers IL-10 expression. In the context of previous findings, the data presented here provides insights into how M2 facilitates plasma cell differentiation and subsequent virus reactivation.

  10. Murine Gammaherpesvirus M2 Protein Induction of IRF4 via the NFAT Pathway Leads to IL-10 Expression in B Cells

    PubMed Central

    Rangaswamy, Udaya S.; Speck, Samuel H.

    2014-01-01

    Reactivation of the gammaherpesviruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) from latently infected B cells has been linked to plasma cell differentiation. We have previously shown that the MHV68 M2 protein is important for virus reactivation from B cells and, when expressed alone in primary murine B cells, can drive B cell differentiation towards a pre-plasma cell phenotype. In addition, expression of M2 in primary murine B cells leads to secretion of high levels of IL-10 along with enhanced proliferation and survival. Furthermore, the absence of M2 in vivo leads to a defect in the appearance of MHV68 infected plasma cells in the spleen at the peak of MHV68 latency. Here, employing an inducible B cell expression system, we have determined that M2 activates the NFAT pathway in a Src kinase-dependent manner – leading to induction of the plasma cell-associated transcription factor, Interferon Regulatory Factor-4 (IRF4). Furthermore, we show that expression of IRF4 alone in a B cell line up-regulates IL-10 expression in culture supernatants, revealing a novel role for IRF4 in B cell induced IL-10. Consistent with the latter observation, we show that IRF4 can regulate the IL-10 promoter in B cells. In primary murine B cells, addition of cyclosporine (CsA) resulted in a significant decrease in M2-induced IL-10 levels as well as IRF4 expression, emphasizing the importance of the NFAT pathway in M2- mediated induction of IL-10. Together, these studies argue in favor of a model wherein M2 activation of the NFAT pathway initiates events leading to increased levels of IRF4 – a key player in plasma cell differentiation – which in turn triggers IL-10 expression. In the context of previous findings, the data presented here provides insights into how M2 facilitates plasma cell differentiation and subsequent virus reactivation. PMID:24391506

  11. Immunomodulatory nonablative conditioning regimen for B-cell lymphoid malignancies

    PubMed Central

    Chinratanalab, Wichai; Reddy, Nishitha; Greer, John P.; Morgan, David; Engelhardt, Brian; Kassim, Adetola; Brandt, Stephen J.; Jagasia, Madan; Goodman, Stacey; Savani, Bipin N.

    2013-01-01

    Twenty-six patients with recurrent CD20+ B-cell lymphoid malignancies received fludarabine, cyclophosphamide, and rituximab–based nonablative conditioning followed by either matched related (n = 18) or unrelated (n = 8) donor allogeneic stem cell transplantation (allo-SCT) between March 2008 and May 2011. Median age of patients at transplantation was 59 years (range, 41–64 years). At diagnosis, 20 (77%) had stage IV disease; 23 (88%) received ≥3 regimens, 14 (54%) received ≥4 regimens, and 4 (15%) had earlier autologous-SCT. All patients had either chemosensitive or stable disease and nine (35%) were in complete remission before transplantation. At the time of analysis, 17 patients were alive with an estimated 2-year overall survival and progression-free survival rate of 63% and nonrelapse mortality of 25%. Grade II to IV acute graft-vs-host-disease occurred in 8 (31%) and chronic graft-vs-host-disease in 6 (23%) patients (extensive, n = 3). Causes of death include progressive disease in four, acute graft-vs-host-disease in two (both after receiving donor lymphocyte infusion for mixed chimerism with residual disease), infection in one, and other (e.g., substance abuse, leukoencephalopathy) in two. Six patients required rehospitalization within 100 days of SCT (mean = 10 days; range, 3–18 days). Our data support fludarabine, cyclophosphamide, and rituximab–based nonablative conditioning allo-SCT in CD20+ B-cell lymphoid malignancies and it is time to compare this regimen with an alternative reduced-intensity conditioning regimen in B-cell malignancies. PMID:22269114

  12. Cyclin Dl expression in B-cell non Hodgkin lymphoma.

    PubMed

    Aref, Salah; Mossad, Y; El-Khodary, T; Awad, M; El-Shahat, E

    2006-10-01

    Disorders of the cell cycle regulatory machinery play a key role in the pathogenesis of cancer. Over-expression of cyclin D1 protein has been reported in several solid tumors and certain lymphoid malignancies, but little is known about the effect of its expression on clinical behavior and outcome in B-cell Non-Hodgkin lymphoma (NHL). In this study, we investigated the expression of cyclin Dl in group of patients with NHL and correlated the results with the clinical and laboratory data. The degree of expression of cyclin Dl protein was evaluated by flow cytometry in a group of NHL patients (n = 46) and in normal control group (n = 10). Cyclin Dl over expression was detected in 10 out of 46 (21.7%) patients; they were 5/5-mantle cell lymphoma (MCL) (100%) and 5/28 large B-cell lymphoma (17.8%). All other NHL subtypes showed normal cyclin D1 expression. The clinical signs (hepatomegaly, splenomegaly and B-symptoms, clinical staging) and laboratory data (hemoglobin, white cell count (WBCs), platelet count, and bone marrow infiltration) were not significantly different between NHL subgroup with cyclin Dl over expression and that with normal cyclin Dl expression. Serum lactic dehydrogenase (LDH) levels and lymphadenopathy were significantly higher in NHL group with cyclin D1 over expression as compared to those without. Also, cyclin D1 over expression is associated with poor outcome of NHL patients. Cyclin Dl over expression was evident among all cases of MCL and few cases of large B-cell lymphoma. Cyclin Dl over expression might be used as adjuvant tool for diagnosis of MCL; has role in NHL biology and is bad prognostic index in NHL. PMID:17607588

  13. Clonal relationships in recurrent B-cell lymphomas.

    PubMed

    Lee, Seung Eun; Kang, So Young; Yoo, Hae Yong; Kim, Seok Jin; Kim, Won Seog; Ko, Young Hyeh

    2016-03-15

    Immunoglobulin (Ig) gene rearrangements remain largely unmodified during the clonal expansion of neoplastic cells. We investigated the clonal relationships between lymphoma components at diagnosis and at relapse by analyzing Ig gene rearrangements. A BIOMED-2 multiplex polymerase chain reaction (PCR) assay was performed in 27 patients using formalin-fixed paraffin embedded tissues, with subsequent cloning and sequencing of the amplified Ig genes in 17 patients. All 27 cases of primary and corresponding relapsed tumors showed monoclonal rearrangements of the Ig genes by BIOMED-2 PCR. Whereas IgVH or IgVK fragment lengths were identical in 8/27 pairs (30%), fragment lengths differed in 19/27 pairs (70%). In 17 cases analyzed by sequencing, an identical VDJ gene rearrangement was confirmed in 4/4 pairs (100%) with the same fragment lengths and in 10/13 pairs (77%) with different fragment lengths. Four of 17 primary lymphomas had multiple VDJ rearrangements, and three of them showed an unrelated relapse. Unrelated relapse was observed in 1/8 mantle cell lymphomas, 1/5 diffuse large B-cell lymphomas, and a large B cell lymphoma developed in a patient with a small lymphocytic lymphoma. Unrelated relapses developed after a longer disease-free interval and tended to show poorer outcome compared with related relapse. In summary, relapse of a lymphoma from an unrelated clone is uncommon, but can occur in B-cell lymphomas. Clonal relationships should be determined by sequencing of the Ig genes, and not just by comparing the PCR product size. PMID:26848863

  14. Mucosal immunoglobulins and B cells of Teleost fish

    PubMed Central

    Salinas, Irene; Zhang, Yong-An; Sunyer, J. Oriol

    2012-01-01

    As physical barriers that separate teleost fish from the external environment, mucosae are also active immunological sites that protect them against exposure to microbes and stressors. In mammals, the sites where antigens are sampled from mucosal surfaces and where stimulation of naive T and B lymphocytes occurs are known as inductive sites and are constituted by mucosa-associated lymphoid tissue (MALT). According to anatomical location, the MALT in teleost fish is subdivided into gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), and gill-associated lymphoid tissue (GIALT). All MALT contain a variety of leukocytes, including, but not limited to, T cells, B cells, plasma cells, macrophages and granulocytes. Secretory immunoglobulins are produced mainly by plasmablasts and plasma cells, and play key roles in the maintenance of mucosal homeostasis. Until recently, teleost fish B cells were thought to express only two classes of immunoglobulins, IgM and IgD, in which IgM was thought to be the only one responding to pathogens both in systemic and mucosal compartments. However, a third teleost immunoglobulin class, IgT/IgZ, was discovered in 2005, and it has recently been shown to behave as the prevalent immunoglobulin in gut mucosal immune responses. The purpose of this review is to summarise the current knowledge of mucosal immunoglobulins and B cells of fish MALT. Moreover, we attempt to integrate the existing knowledge on both basic and applied research findings on fish mucosal immune responses, with the goal to provide new directions that may facilitate the development of novel vaccination strategies that stimulate not only systemic, but also mucosal immunity. PMID:22133710

  15. Translational Mini-Review Series on B Cell-Directed Therapies: Recent advances in B cell-directed biological therapies for autoimmune disorders

    PubMed Central

    Levesque, M C

    2009-01-01

    B cell-directed therapies are promising treatments for autoimmune disorders. Besides targeting CD20, newer B cell-directed therapies are in development that target other B cell surface molecules and differentiation factors. An increasing number of B cell-directed therapies are in development for the treatment of autoimmune disorders. Like rituximab, which is approved as a treatment for rheumatoid arthritis (RA), many of these newer agents deplete B cells or target pathways essential for B cell development and function; however, many questions remain about their optimal use in the clinic and about the role of B cells in disease pathogenesis. Other therapies besides rituximab that target CD20 are the furthest along in development. Besides targeting CD20, the newer B cell-directed therapies target CD22, CD19, CD40–CD40L, B cell activating factor belonging to the TNF family (BAFF) and A proliferation-inducing ligand (APRIL). Rituximab is being tested in an ever-increasing number of autoimmune disorders and clinical studies of rituximab combined with other biological therapies are being pursued for the treatment of rheumatoid arthritis (RA). B cell-directed therapies are being tested in clinical trials for a variety of autoimmune disorders including RA, systemic lupus erythematosus (SLE), Sjögren's syndrome, vasculitis, multiple sclerosis (MS), Graves' disease, idiopathic thrombocytopenia (ITP), the inflammatory myopathies (dermatomyositis and polymyositis) and the blistering skin diseases pemphigus and bullous pemphigoid. Despite the plethora of clinical studies related to B cell-directed therapies and wealth of new information from these trials, much still remains to be discovered about the pathophysiological role of B cells in autoimmune disorders. PMID:19604259

  16. Impairment of Mature B Cell Maintenance upon Combined Deletion of the Alternative NF-κB Transcription Factors RELB and NF-κB2 in B Cells.

    PubMed

    De Silva, Nilushi S; Silva, Kathryn; Anderson, Michael M; Bhagat, Govind; Klein, Ulf

    2016-03-15

    BAFF is critical for the survival and maturation of mature B cells. BAFF, via BAFFR, activates multiple signaling pathways in B cells, including the alternative NF-κB pathway. The transcription factors RELB and NF-κB2 (p100/p52) are the downstream mediators of the alternative pathway; however, the B cell-intrinsic functions of these NF-κB subunits have not been studied in vivo using conditional alleles, either individually or in combination. We in this study report that B cell-specific deletion of relb led to only a slight decrease in the fraction of mature splenic B cells, whereas deletion of nfkb2 caused a marked reduction. This phenotype was further exacerbated upon combined deletion of relb and nfkb2 and most dramatically affected the maintenance of marginal zone B cells. BAFF stimulation, in contrast to CD40 activation, was unable to rescue relb/nfkb2-deleted B cells in vitro. RNA-sequencing analysis of BAFF-stimulated nfkb2-deleted versus normal B cells suggests that the alternative NF-κB pathway, in addition to its critical role in BAFF-mediated cell survival, may control the expression of genes involved in the positioning of B cells within the lymphoid microenvironment and in the establishment of T cell-B cell interactions. Thus, by ablating the downstream transcription factors of the alternative NF-κB pathway specifically in B cells, we identify in this study a critical role for the combined activity of the RELB and NF-κB2 subunits in B cell homeostasis that cannot be compensated for by the canonical NF-κB pathway under physiological conditions.

  17. Oxidative damage-induced PCNA complex formation is efficient in xeroderma pigmentosum group A but reduced in Cockayne syndrome group B cells.

    PubMed

    Balajee, A S; Dianova, I; Bohr, V A

    1999-11-15

    Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases delta and epsilon, is essential for both DNA replication and repair. PCNA is required in the resynthesis step of nucleotide excision repair (NER). After UV irradiation, PCNA translocates into an insoluble protein complex, most likely associated with the nuclear matrix. It has not previously been investigated in vivo whether PCNA complex formation also takes place after oxidative stress. In this study, we have examined the involvement of PCNA in the repair of oxidative DNA damage. PCNA complex formation was studied in normal human cells after treatment with hydrogen peroxide, which generates a variety of oxidative DNA lesions. PCNA was detected by two assays, immunofluorescence and western blot analyses. We observed that PCNA redistributes from a soluble to a DNA-bound form during the repair of oxidative DNA damage. PCNA complex formation was analyzed in two human natural mutant cell lines defective in DNA repair: xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). XP-A cells are defective in overall genome NER while CS-B cells are defective only in the preferential repair of active genes. Immunofluorescent detection of PCNA complex formation was similar in normal and XP-A cells, but was reduced in CS-B cells. Consistent with this observation, western blot analysis in CS-B cells showed a reduction in the ratio of PCNA relocated as compared to normal and XP-A cells. The efficient PCNA complex formation observed in XP-A cells following oxidative damage suggests that formation of PCNA-dependent repair foci may not require the XPA gene product. The reduced PCNA complex formation observed in CS-B cells suggests that these cells are defective in the processing of oxidative DNA damage. PMID:10536158

  18. Genetic lesions in diffuse large B-cell lymphomas

    PubMed Central

    Testoni, M.; Zucca, E.; Young, K. H.; Bertoni, F.

    2015-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults, accounting for 35%–40% of all cases. The combination of the anti-CD20 monoclonal antibody rituximab with anthracycline-based combination chemotherapy (R-CHOP, rituximab with cyclophosphamide, doxorubicin, vincristine and prednisone) lead to complete remission in most and can cure more than half of patients with DLBCL. The diversity in clinical presentation, as well as the pathologic and biologic heterogeneity, suggests that DLBCL comprises several disease entities that might ultimately benefit from different therapeutic approaches. In this review, we summarize the current literature focusing on the genetic lesions identified in DLBCL. PMID:25605746

  19. Primary Malignant B-cell Lymphoma of the Epididymis

    PubMed Central

    Suh, Jungyo; Jeong, Hyeon; Kim, Young A.

    2015-01-01

    Primary epididymal lymphomas are very rare condition, only 6 case report was published. In 4 of them, initial presentation was non-tender, continuous growth of testis. It can be misdiagnosed with epididymitis, 5 of them was treated by antibiotics before surgery. One patients treated by surgery another 5 makes neoadjuvant therapy, 2 of radiotherapy 3 of chemotherapy. Only one man died after treatment. This case is about 54-year male patients, diagnosed by diffuse large B-cell lymphoma, who treated by surgery and neoadjuvant chemotherapy combined with radiotherapy. PMID:26793572

  20. The intestinal B-cell response in celiac disease

    PubMed Central

    Mesin, Luka; Sollid, Ludvig M.; Niro, Roberto Di

    2012-01-01

    The function of intestinal immunity is to provide protection toward pathogens while preserving the composition of the microflora and tolerance to orally fed nutrients. This is achieved via a number of tightly regulated mechanisms including production of IgA antibodies by intestinal plasma cells. Celiac disease is a common gut disorder caused by a dysfunctional immune regulation as signified, among other features, by a massive intestinal IgA autoantibody response. Here we review the current knowledge of this B-cell response and how it is induced, and we discuss key questions to be addressed in future research. PMID:23060888

  1. Hepatitis C virus - associated B cell non-Hodgkin's lymphoma

    PubMed Central

    Mihăilă, Romeo-Gabriel

    2016-01-01

    The hepatitis C virus (HCV) infected patients are prone to develop bone marrow or various tissue infiltrates with monoclonal B cells, monoclonal B lymphocytosis or different types of B cell non-Hodgkin’s lymphoma (BCNHL), of which the most common are splenic marginal zone BCNHL, diffuse large BCNHL and follicular lymphoma. The association between chronic HCV infection and non Hodgkin’s lymphoma has been observed especially in areas with high prevalence of this viral infection. Outside the limitations of some studies that have been conducted, there are also geographic, environmental, and genetic factors that contribute to the epidemiological differences. Various microenvironmental signals, such as cytokines, viral antigenic external stimulation of lymphocyte receptors by HCV antigens, and intercellular interactions contribute to B cell proliferation. HCV lymphotropism and chronic antigenic stimulation are involved in B-lymphocyte expansion, as mixted cryoglobulinemia or monoclonal gammopathy of undetermined significance, which can progress to BCNHL. HCV replication in B lymphocytes has oncogenic effect mediated by intracellular HCV proteins. It is also involved in an important induction of reactive oxygen species that can lead to permanent B lymphocyte damage, as DNA mutations, after binding to surface B-cell receptors. Post-transplant lymphoproliferative disorder could appear and it has a multiclonal potentiality that may develop into different types of lymphomas. The hematopoietic stem cell transplant made for lymphoma in HCV-infected patients can increase the risk of earlier progression to liver fibrosis and cirrhosis. HCV infected patients with indolent BCNHL who receive antiviral therapy can be potentially cured. Viral clearance was related to lymphoma response, fact that highlights the probable involvement of HCV in lymphomagenesis. Direct acting antiviral drugs could be a solution for the patients who did not tolerate or respond to interferon, as they

  2. Hepatitis C virus - associated B cell non-Hodgkin's lymphoma.

    PubMed

    Mihăilă, Romeo-Gabriel

    2016-07-21

    The hepatitis C virus (HCV) infected patients are prone to develop bone marrow or various tissue infiltrates with monoclonal B cells, monoclonal B lymphocytosis or different types of B cell non-Hodgkin's lymphoma (BCNHL), of which the most common are splenic marginal zone BCNHL, diffuse large BCNHL and follicular lymphoma. The association between chronic HCV infection and non Hodgkin's lymphoma has been observed especially in areas with high prevalence of this viral infection. Outside the limitations of some studies that have been conducted, there are also geographic, environmental, and genetic factors that contribute to the epidemiological differences. Various microenvironmental signals, such as cytokines, viral antigenic external stimulation of lymphocyte receptors by HCV antigens, and intercellular interactions contribute to B cell proliferation. HCV lymphotropism and chronic antigenic stimulation are involved in B-lymphocyte expansion, as mixted cryoglobulinemia or monoclonal gammopathy of undetermined significance, which can progress to BCNHL. HCV replication in B lymphocytes has oncogenic effect mediated by intracellular HCV proteins. It is also involved in an important induction of reactive oxygen species that can lead to permanent B lymphocyte damage, as DNA mutations, after binding to surface B-cell receptors. Post-transplant lymphoproliferative disorder could appear and it has a multiclonal potentiality that may develop into different types of lymphomas. The hematopoietic stem cell transplant made for lymphoma in HCV-infected patients can increase the risk of earlier progression to liver fibrosis and cirrhosis. HCV infected patients with indolent BCNHL who receive antiviral therapy can be potentially cured. Viral clearance was related to lymphoma response, fact that highlights the probable involvement of HCV in lymphomagenesis. Direct acting antiviral drugs could be a solution for the patients who did not tolerate or respond to interferon, as they seem to

  3. Bilateral conjunctival extranodal marginal zone B-cell lymphoma.

    PubMed

    Kram, David E; Brathwaite, Carole D; Khatib, Ziad A

    2010-12-15

    Extranodal marginal zone B-cell lymphomas (EMZLs), while relatively common in adults, are rare entities in the pediatric population. A subclass of the typically aggressive non-Hodgkin lymphomas, the few reported pediatric cases indicate that, as in adults, these tumors tend to be indolent. We present a case of EMZL arising in the conjunctivae in a 9-year-old male with bilateral disease. The patient was treated with surgical excision alone and has remained disease-free 6 years after the operation. PMID:20981695

  4. Hepatitis C virus upregulates B-cell receptor signaling: a novel mechanism for HCV-associated B-cell lymphoproliferative disorders

    PubMed Central

    Dai, B; Chen, A Y; Corkum, C P; Peroutka, R J; Landon, A; Houng, S; Muniandy, P A; Zhang, Y; Lehrmann, E; Mazan-Mamczarz, K; Steinhardt, J; Shlyak, M; Chen, Q C; Becker, K G; Livak, F; Michalak, T I; Talwani, R; Gartenhaus, R B

    2016-01-01

    B-cell receptor (BCR) signaling is essential for the development of B cells and has a critical role in B-cell neoplasia. Increasing evidence indicates an association between chronic hepatitis C virus (HCV) infection and B-cell lymphoma, however, the mechanisms by which HCV causes B-cell lymphoproliferative disorder are still unclear. Herein, we demonstrate the expression of HCV viral proteins in B cells of HCV-infected patients and show that HCV upregulates BCR signaling in human primary B cells. HCV nonstructural protein NS3/4A interacts with CHK2 and downregulates its activity, modulating HuR posttranscriptional regulation of a network of target mRNAs associated with B-cell lymphoproliferative disorders. Interestingly, the BCR signaling pathway was found to have the largest number of transcripts with increased association with HuR and was upregulated by NS3/4A. Our study reveals a previously unidentified role of NS3/4A in regulation of host BCR signaling during HCV infection, contributing to a better understanding of the molecular mechanisms underlying HCV-associated B-cell lymphoproliferative disorders. PMID:26434584

  5. Class Switching in B Cells Lacking 3′ Immunoglobulin Heavy Chain Enhancers

    PubMed Central

    Manis, John P.; van der Stoep, Nienke; Tian, Ming; Ferrini, Roger; Davidson, Laurie; Bottaro, Andrea; Alt, Frederick W.

    1998-01-01

    The 40-kb region downstream of the most 3′ immunoglobulin (Ig) heavy chain constant region gene (Cα) contains a series of transcriptional enhancers speculated to play a role in Ig heavy chain class switch recombination (CSR). To elucidate the function of this putative CSR regulatory region, we generated mice with germline mutations in which one or the other of the two most 5′ enhancers in this cluster (respectively referred to as HS3a and HS1,2) were replaced either with a pgk-neor cassette (referred to as HS3aN and HS1,2N mutations) or with a loxP sequence (referred to as HS3aΔ and HS1,2Δ, respectively). B cells homozygous for the HS3aN or HS1,2N mutations had severe defects in CSR to several isotypes. The phenotypic similarity of the two insertion mutations, both of which were cis-acting, suggested that inhibition might result from pgk-neor cassette gene insertion rather than enhancer deletion. Accordingly, CSR returned to normal in B cells homozygous for the HS3aΔ or HS1,2Δ mutations. In addition, induced expression of the specifically targeted pgk-neor genes was regulated similarly to that of germline CH genes. Our findings implicate a 3′ CSR regulatory locus that appears remarkably similar in organization and function to the β-globin gene 5′ LCR and which we propose may regulate differential CSR via a promoter competition mechanism. PMID:9782119

  6. Mechanism of altered B-cell response induced by changes in dietary protein type in mice

    SciTech Connect

    Bounous, G.; Shenouda, N.; Kongshavn, P.A.; Osmond, D.G.

    1985-11-01

    The effect of 20 g/100 g dietary lactalbumin (L) or casein (C) diets or a nonpurified (NP) diet on the immune responsiveness of C57Bl/6J, C3H/HeJ and BALB/cJ mice has been investigated by measuring the response to the T cell-independent antigen, TNP-Ficoll. To investigate the possible influence of dietary protein type on the supply of B lymphocytes, bone marrow lymphocyte production has been examined by a radioautographic assay of small lymphocyte renewal and an immunofluorescent stathmokinetic assay of pre-B cells and their proliferation. The humoral response of all mice fed the L diet was found to be higher than that of mice fed the C diet or nonpurified diet. A similar pattern of dietary protein effect in (CBA/N X DBA/2J) F1 mice carrying the xid defect was observed following challenge with sheep red blood cells (SRBC). An even greater enhancing effect of dietary L was noted in normal (DBA/2J X CBA/N) F1 mice after immunization with SRBC, but in contrast, the normal large-scale production of B lymphocytes in mouse bone marrow was independent of the type of dietary protein. Dietary protein type did not affect blood level of minerals and trace metals. The free plasma amino acid profile essentially conformed to the amino acid composition of the ingested protein, suggesting that the changes in plasma amino acid profile might be a crucial factor in diet-dependent enhancement or depression of the B-cell response.

  7. Class switching in B cells lacking 3' immunoglobulin heavy chain enhancers.

    PubMed

    Manis, J P; van der Stoep, N; Tian, M; Ferrini, R; Davidson, L; Bottaro, A; Alt, F W

    1998-10-19

    The 40-kb region downstream of the most 3' immunoglobulin (Ig) heavy chain constant region gene (Calpha) contains a series of transcriptional enhancers speculated to play a role in Ig heavy chain class switch recombination (CSR). To elucidate the function of this putative CSR regulatory region, we generated mice with germline mutations in which one or the other of the two most 5' enhancers in this cluster (respectively referred to as HS3a and HS1,2) were replaced either with a pgk-neor cassette (referred to as HS3aN and HS1,2N mutations) or with a loxP sequence (referred to as HS3aDelta and HS1,2Delta, respectively). B cells homozygous for the HS3aN or HS1,2N mutations had severe defects in CSR to several isotypes. The phenotypic similarity of the two insertion mutations, both of which were cis-acting, suggested that inhibition might result from pgk-neor cassette gene insertion rather than enhancer deletion. Accordingly, CSR returned to normal in B cells homozygous for the HS3aDelta or HS1,2Delta mutations. In addition, induced expression of the specifically targeted pgk-neor genes was regulated similarly to that of germline CH genes. Our findings implicate a 3' CSR regulatory locus that appears remarkably similar in organization and function to the beta-globin gene 5' LCR and which we propose may regulate differential CSR via a promoter competition mechanism.

  8. JCAR014 and Durvalumab in Treating Patients With Relapsed or Refractory B-cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2016-09-06

    Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mediastinal (Thymic) Large B-Cell Cell Lymphoma

  9. R-ICE and Lenalidomide in Treating Patients With First-Relapse/Primary Refractory Diffuse Large B-Cell Lymphoma

    ClinicalTrials.gov

    2016-10-13

    Diffuse Large B-Cell Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Transformed Recurrent Non-Hodgkin Lymphoma

  10. Downregulation of FOXP1 is required during germinal center B-cell function

    PubMed Central

    Sagardoy, Ainara; Martinez-Ferrandis, Jose I.; Roa, Sergio; Bunting, Karen L.; Aznar, María Angela; Elemento, Olivier; Shaknovich, Rita; Fontán, Lorena; Fresquet, Vicente; Perez-Roger, Ignacio; Robles, Eloy F.; De Smedt, Linde; Sagaert, Xavier

    2013-01-01

    B-cell maturation and germinal center (GC) formation are dependent on the interplay between BCL6 and other transcriptional regulators. FOXP1 is a transcription factor that regulates early B-cell development, but whether it plays a role in mature B cells is unknown. Analysis of human tonsillar B-cell subpopulations revealed that FOXP1 shows the opposite expression pattern to BCL6, suggesting that FOXP1 regulates the transition from resting follicular B cell to activated GC B cell. Chromatin immunoprecipitation-on-chip and gene expression assays on B cells indicated that FOXP1 acts as a transcriptional activator and repressor of genes involved in the GC reaction, half of which are also BCL6 targets. To study FOXP1 function in vivo, we developed transgenic mice expressing human FOXP1 in lymphoid cells. These mice exhibited irregular formation of splenic GCs, showing a modest increase in naïve and marginal-zone B cells and a significant decrease in GC B cells. Furthermore, aberrant expression of FOXP1 impaired transcription of noncoding γ1 germline transcripts and inhibited efficient class switching to the immunoglobulin G1 isotype. These studies show that FOXP1 is physiologically downregulated in GC B cells and that aberrant expression of FOXP1 impairs mechanisms triggered by B-cell activation, potentially contributing to B-cell lymphomagenesis. PMID:23580662

  11. Lentiviral-mediated gene therapy restores B cell tolerance in Wiskott-Aldrich syndrome patients.

    PubMed

    Pala, Francesca; Morbach, Henner; Castiello, Maria Carmina; Schickel, Jean-Nicolas; Scaramuzza, Samantha; Chamberlain, Nicolas; Cassani, Barbara; Glauzy, Salome; Romberg, Neil; Candotti, Fabio; Aiuti, Alessandro; Bosticardo, Marita; Villa, Anna; Meffre, Eric

    2015-10-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency characterized by microthrombocytopenia, eczema, and high susceptibility to developing tumors and autoimmunity. Recent evidence suggests that B cells may be key players in the pathogenesis of autoimmunity in WAS. Here, we assessed whether WAS protein deficiency (WASp deficiency) affects the establishment of B cell tolerance by testing the reactivity of recombinant antibodies isolated from single B cells from 4 WAS patients before and after gene therapy (GT). We found that pre-GT WASp-deficient B cells were hyperreactive to B cell receptor stimulation (BCR stimulation). This hyperreactivity correlated with decreased frequency of autoreactive new emigrant/transitional B cells exiting the BM, indicating that the BCR signaling threshold plays a major role in the regulation of central B cell tolerance. In contrast, mature naive B cells from WAS patients were enriched in self-reactive clones, revealing that peripheral B cell tolerance checkpoint dysfunction is associated with impaired suppressive function of WAS regulatory T cells. The introduction of functional WASp by GT corrected the alterations of both central and peripheral B cell tolerance checkpoints. We conclude that WASp plays an important role in the establishment and maintenance of B cell tolerance in humans and that restoration of WASp by GT is able to restore B cell tolerance in WAS patients. PMID:26368308

  12. B cell homeostasis and plasma cell homing controlled by Krüppel-like factor 2.

    PubMed

    Winkelmann, Rebecca; Sandrock, Lena; Porstner, Martina; Roth, Edith; Mathews, Martina; Hobeika, Elias; Reth, Michael; Kahn, Mark L; Schuh, Wolfgang; Jäck, Hans-Martin

    2011-01-11

    Krüppel-like factor 2 (KLF2) controls T lymphocyte egress from lymphoid organs by regulating sphingosin-1 phosphate receptor 1 (S1Pr1). Here we show that this is not the case for B cells. Instead, KLF2 controls homeostasis of B cells in peripheral lymphatic organs and homing of plasma cells to the bone marrow, presumably by controlling the expression of β(7)-integrin. In mice with a B cell-specific deletion of KLF2, S1Pr1 expression on B cells was only slightly affected. Accordingly, all splenic B cell subsets including B1 cells were present, but their numbers were increased with a clear bias for marginal zone (MZ) B cells. In contrast, fewer peyers patches harboring fewer B cells were found, and fewer B1 cells in the peritoneal cavity as well as recirculating B cells in the bone marrow were detected. Upon thymus-dependent immunization, IgG titers were diminished, and antigen-specific plasma cells were absent in the bone marrow, although numbers of antigen-specific splenic plasmablasts were normal. KLF2 plays also a role in determining the identity of follicular B cells, as KLF2-deficient follicular B cells showed calcium responses similar to those of MZ B cells and failed to down-regulate MZ B cell signature genes, such as CD21 and CXCR7. PMID:21187409

  13. B cells have distinct roles in host protection against different nematode parasites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    B cells may mediate protective responses against nematode parasites by supporting Th2 cell development and/or by producing antibodies. To examine this, B cell-deficient mice were inoculated with Nippostrongylus brasiliensis (Nb) or Heligmosomoides polygyrus (Hp). B cell-deficient and wild type (WT...

  14. Autoantigen-specific B-cell depletion overcomes failed immune tolerance in type 1 diabetes.

    PubMed

    Henry, Rachel A; Kendall, Peggy L; Thomas, James W

    2012-08-01

    Eliminating autoantigen-specific B cells is an attractive alternative to global B-cell depletion for autoimmune disease treatment. To identify the potential for targeting a key autoimmune B-cell specificity in type 1 diabetes, insulin-binding B cells were tracked within a polyclonal repertoire using heavy chain B-cell receptor (BCR) transgenic (VH125Tg) mice. Insulin-specific B cells are rare in the periphery of nonautoimmune VH125Tg/C57BL/6 mice and WT/NOD autoimmune mice, whereas they clearly populate 1% of mature B-cell subsets in VH125Tg/NOD mice. Autoantigen upregulates CD86 in anti-insulin B cells, suggesting they are competent to interact with T cells. Endogenous insulin occupies anti-insulin BCR beginning with antigen commitment in bone marrow parenchyma, as identified by a second anti-insulin monoclonal antibody. Administration of this monoclonal antibody selectively eliminates insulin-reactive B cells in vivo and prevents disease in WT/NOD mice. Unexpectedly, developing B cells are less amenable to depletion, despite increased BCR sensitivity. These findings exemplify how a critical type 1 diabetes B-cell specificity escapes immune tolerance checkpoints. Disease liability is corrected by eliminating this B-cell specificity, providing proof of concept for a novel therapeutic approach for autoimmune disease. PMID:22698916

  15. Cerebrospinal fluid B cells from Multiple Sclerosis patients are subject to normal germinal center selection

    PubMed Central

    Harp, Christopher; Lee, Jane; Lambracht-Washington, Doris; Cameron, Elizabeth; Olsen, Gregory; Frohman, Elliot; Racke, Michael; Monson, Nancy

    2007-01-01

    Previous findings from our laboratory demonstrated that some clonally expanded cerebrospinal fluid (CSF) B cells from MS patients exhibit diminished mutation targeting patterns in comparison to typical B cells selected in the context of germinal centers (GCs). In order to determine whether the overall CSF B cell repertoires adhered to mutation patterns typical of GC-selected B cells, we analyzed the immunoglobulin repertoires from CSF B cells of 8 MS patients for mutation characteristics typical of GC-derived B cells. Mutation targeting was preserved. Thus, clonal expansion of some CSF B cells may occur independently of GC, but the CSF B cell pool is governed by typical GC selection. Interestingly, the heavy chain CDR3’s of CSF B cells from MS patients had a net acidic charge, similar to GC-derived B cells, but a tendency towards longer CDR3’s, consistent with autoreactive B cells. How these findings may support current hypotheses regarding the origin of CSF B cells is discussed. PMID:17169437

  16. Cerebrospinal fluid B cells from multiple sclerosis patients are subject to normal germinal center selection.

    PubMed

    Harp, Christopher; Lee, Jane; Lambracht-Washington, Doris; Cameron, Elizabeth; Olsen, Gregory; Frohman, Elliot; Racke, Michael; Monson, Nancy

    2007-02-01

    Previous findings from our laboratory demonstrated that some clonally expanded cerebrospinal fluid (CSF) B cells from MS patients exhibit diminished mutation targeting patterns in comparison to typical B cells selected in the context of germinal centers (GCs). In order to determine whether the overall CSF B cell repertoires adhered to mutation patterns typical of GC-selected B cells, we analyzed the immunoglobulin repertoires from CSF B cells of 8 MS patients for mutation characteristics typical of GC-derived B cells. Mutation targeting was preserved. Thus, clonal expansion of some CSF B cells may occur independently of GC, but the CSF B cell pool is governed by typical GC selection. Interestingly, the heavy chain CDR3's of CSF B cells from MS patients had a net acidic charge, similar to GC-derived B cells, but a tendency towards longer CDR3's, consistent with autoreactive B cells. How these findings may support current hypotheses regarding the origin of CSF B cells is discussed. PMID:17169437

  17. A Regulatory Feedback between Plasmacytoid Dendritic Cells and Regulatory B Cells Is Aberrant in Systemic Lupus Erythematosus

    PubMed Central

    Menon, Madhvi; Blair, Paul A.; Isenberg, David A.; Mauri, Claudia

    2016-01-01

    Summary Signals controlling the generation of regulatory B (Breg) cells remain ill-defined. Here we report an “auto”-regulatory feedback mechanism between plasmacytoid dendritic cells (pDCs) and Breg cells. In healthy individuals, pDCs drive the differentiation of CD19+CD24hiCD38hi (immature) B cells into IL-10-producing CD24+CD38hi Breg cells and plasmablasts, via the release of IFN-α and CD40 engagement. CD24+CD38hi Breg cells conversely restrained IFN-α production by pDCs via IL-10 release. In systemic lupus erythematosus (SLE), this cross-talk was compromised; pDCs promoted plasmablast differentiation but failed to induce Breg cells. This defect was recapitulated in healthy B cells upon exposure to a high concentration of IFN-α. Defective pDC-mediated expansion of CD24+CD38hi Breg cell numbers in SLE was associated with altered STAT1 and STAT3 activation. Both altered pDC-CD24+CD38hi Breg cell interactions and STAT1-STAT3 activation were normalized in SLE patients responding to rituximab. We propose that alteration in pDC-CD24+CD38hi Breg cell interaction contributes to the pathogenesis of SLE. PMID:26968426

  18. Diffuse Large B-Cell Lymphoma Classification System That Associates Normal B-Cell Subset Phenotypes With Prognosis

    PubMed Central

    Dybkær, Karen; Bøgsted, Martin; Falgreen, Steffen; Bødker, Julie S.; Kjeldsen, Malene K.; Schmitz, Alexander; Bilgrau, Anders E.; Xu-Monette, Zijun Y.; Li, Ling; Bergkvist, Kim S.; Laursen, Maria B.; Rodrigo-Domingo, Maria; Marques, Sara C.; Rasmussen, Sophie B.; Nyegaard, Mette; Gaihede, Michael; Møller, Michael B.; Samworth, Richard J.; Shah, Rajen D.; Johansen, Preben; El-Galaly, Tarec C.; Young, Ken H.; Johnsen, Hans E.

    2015-01-01

    Purpose Current diagnostic tests for diffuse large B-cell lymphoma use the updated WHO criteria based on biologic, morphologic, and clinical heterogeneity. We propose a refined classification system based on subset-specific B-cell–associated gene signatures (BAGS) in the normal B-cell hierarchy, hypothesizing that it can provide new biologic insight and diagnostic and prognostic value. Patients and Methods We combined fluorescence-activated cell sorting, gene expression profiling, and statistical modeling to generate BAGS for naive, centrocyte, centroblast, memory, and plasmablast B cells from normal human tonsils. The impact of BAGS-assigned subtyping was analyzed using five clinical cohorts (treated with cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP], n = 270; treated with rituximab plus CHOP [R-CHOP], n = 869) gathered across geographic regions, time eras, and sampling methods. The analysis estimated subtype frequencies and drug-specific resistance and included a prognostic meta-analysis of patients treated with first-line R-CHOP therapy. Results Similar BAGS subtype frequencies were assigned across 1,139 samples from five different cohorts. Among R-CHOP–treated patients, BAGS assignment was significantly associated with overall survival and progression-free survival within the germinal center B-cell–like subclass; the centrocyte subtype had a superior prognosis compared with the centroblast subtype. In agreement with the observed therapeutic outcome, centrocyte subtypes were estimated as being less resistant than the centroblast subtype to doxorubicin and vincristine. The centroblast subtype had a complex genotype, whereas the centrocyte subtype had high TP53 mutation and insertion/deletion frequencies and expressed LMO2, CD58, and stromal-1–signature and major histocompatibility complex class II–signature genes, which are known to have a positive impact on prognosis. Conclusion Further development of a diagnostic platform using

  19. Modulation of B-cell receptor and microenvironment signaling by a guanine exchange factor in B-cell malignancies

    PubMed Central

    Liao, Wei; Sharma, Sanjai

    2016-01-01

    Objective: Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cells over-express a guanine exchange factor (GEF), Rasgrf-1. This GEF increases active Ras as it catalyzes the removal of GDP from Ras so that GTP can bind and activate Ras. This study aims to study the mechanism of action of Rasgrf-1 in B-cell malignancies. Methods: N-terminus truncated Rasgrf-1 variants have a higher GEF activity as compared to the full-length transcript therefore a MCL cell line with stable over-expression of truncated Rasgrf-1 was established. The B-cell receptor (BCR) and chemokine signaling pathways were compared in the Rasgrf-1 over-expressing and a control transfected cell line. Results: Cells over-expressing truncated form of Rasgrf-1 have a higher proliferative rate as compared to control transfected cells. BCR was activated by lower concentrations of anti-IgM antibody in Rasgrf-1 over-expressing cells as compared to control cells indicating that these cells are more sensitive to BCR signaling. BCR signaling also phosphorylates Rasgrf-1 that further increases its GEF function and amplifies BCR signaling. This activation of Rasgrf-1 in over-expressing cells resulted in a higher expression of phospho-ERK, AKT, BTK and PKC-alpha as compared to control cells. Besides BCR, Rasgrf-1 over-expressing cells were also more sensitive to microenvironment stimuli as determined by resistance to apoptosis, chemotaxis and ERK pathway activation. Conclusions: This GEF protein sensitizes B-cells to BCR and chemokine mediated signaling and also upregulates a number of other signaling pathways which promotes growth and survival of these cells. PMID:27458535

  20. Microbial Cryptotopes are Prominent Targets of B-cell Immunity

    PubMed Central

    Rieder, Franz J. J.; Biebl, Julia; Kastner, Marie-Theres; Schneider, Martina; Jungbauer, Christof; Redlberger-Fritz, Monika; Britt, William J.; Kundi, Michael; Steininger, Christoph

    2016-01-01

    B-cell recognition of microbial antigens may be limited by masking of epitopes within three-dimensional structures (cryptotopes). Here we report that unmasking of cryptotopes by unfolding whole cytomegalovirus (CMV) antigen preparations with the chaotropic reagent Urea and probing with immune sera from healthy individuals (n = 109) increased ELISA signals by 36% in comparison to folded CMV antigens (P < 0.001). ELISA signals increased also significantly upon unfolding of S. aureus or E. coli antigens, whereas unfolded influenza H1N1 or respiratory syncitial virus antigens yielded reduced or unchanged reactivity in comparison to folded ones, respectively. Blocking of CMV cryptotope-specific Abs by incubation of an immunoglobuline preparation and three sera with unfolded CMV antigens enhanced clearly the neutralizing capacity of this immunoglobuline preparation against CMV infection. Thus, B-cell immunity frequently targets cryptotopes on CMV but these Abs are non-neutralizing, may reduce the neutralizing effectiveness of pathogen-specific Abs, and increase during immune maturation following primary CMV infection. The observation of functional consequences of Abs specific for cryptotopes may open whole new avenues to a better understanding of the humoral immune response to CMV and development of more effective vaccines and immunoglobuline preparations. PMID:27539094

  1. Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6

    PubMed Central

    Wang, Yanhua; Wang, Guangxiang; Cai, Jian Ping

    2016-01-01

    The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents. PMID:27658594

  2. Diffuse Large B Cell Lymphoma with Extensive Cutaneous Relapse

    PubMed Central

    Malkan, Umit Yavuz; Gunes, Gursel; Yayar, Okan; Demiroglu, Haluk

    2015-01-01

    Herein, we aimed to report a diffuse large B cell lymphoma (DLBCL) case that had extensive cutaneous relapse with no skin involvement previously. A 59-year-old man presented to hospital in April 2014 with fatigue, anorexia, fever, and anemia. Cervical lymph node biopsy revealed CD20+, BCL2+, MUM1+, BCL6+ high grade B lymphoproliferative neoplasm. After FISH investigation, he was diagnosed as DLBCL. He was given 7 cycles of R-CHOP and achieved remission. However, in November 2014, he had emerging skin lesions that cover nearly all of his body. A control PET-CT revealed diffuse cutaneous involvement. CD20+, BCL2+, MUM1+, BCL6+ high grade B cell lymphoma infiltration was detected with skin biopsy. He was diagnosed as relapse lymphoma, so 2 cycles of R-DHAP were given. There was no treatment response; therefore, R-ICE regimen was started. The patient had achieved second complete remission and his skin lesions were completely regressed. The involvement of skin with CD20+ cells after 7 cycles of rituximab therapy favors that there is a rituximab resistant disease which tends to involve the skin. To conclude, DLBCL may relapse extensively with cutaneous involvement and the best treatment option in these patients is salvage chemotherapy followed by autologous peripheral blood stem cell transplantation. PMID:26457084

  3. The Genetic Basis of Diffuse Large B Cell Lymphoma

    PubMed Central

    Pasqualucci, Laura

    2014-01-01

    Purpose of review Diffuse large B cell lymphoma (DLBCL) is an aggressive disease featuring heterogeneous genetic, phenotypic and clinical characteristics. Understanding the basis for this heterogeneity represents a critical step toward further progress in the management of this disease, which remains a clinical challenge in approximately one third of patients. This review summarizes current knowledge about the molecular pathogenesis of DLBCL, and describes how recent advances in the genomic characterization of this cancer have provided new insights into its biology, revealing several potential targets for improved diagnosis and therapy. Recent findings In the past few years, the development of high-resolution technologies has provided significant help in identifying genetic lesions and/or disrupted signaling pathways that are required for DLBCL initiation and progression. These studies uncovered the involvement of cellular programs that had not been previously appreciated, including histone/chromatin remodeling and immune recognition. Alterations in these pathways could favor epigenetic reprogramming and escape from cellular immunity. Summary The identification of genetic alterations that contribute to the malignant transformation of a B cell into a DLBCL is helping to better understand the biology of this disease and to identify critical nodes driving tumor progression or resistance to therapy. The rapid pace at which these discoveries are taking place is poised to have significant impact for patients stratification based on molecular predictors and for the development of rational targeted therapies. PMID:23673341

  4. Microbial Cryptotopes are Prominent Targets of B-cell Immunity.

    PubMed

    Rieder, Franz J J; Biebl, Julia; Kastner, Marie-Theres; Schneider, Martina; Jungbauer, Christof; Redlberger-Fritz, Monika; Britt, William J; Kundi, Michael; Steininger, Christoph

    2016-08-19

    B-cell recognition of microbial antigens may be limited by masking of epitopes within three-dimensional structures (cryptotopes). Here we report that unmasking of cryptotopes by unfolding whole cytomegalovirus (CMV) antigen preparations with the chaotropic reagent Urea and probing with immune sera from healthy individuals (n = 109) increased ELISA signals by 36% in comparison to folded CMV antigens (P < 0.001). ELISA signals increased also significantly upon unfolding of S. aureus or E. coli antigens, whereas unfolded influenza H1N1 or respiratory syncitial virus antigens yielded reduced or unchanged reactivity in comparison to folded ones, respectively. Blocking of CMV cryptotope-specific Abs by incubation of an immunoglobuline preparation and three sera with unfolded CMV antigens enhanced clearly the neutralizing capacity of this immunoglobuline preparation against CMV infection. Thus, B-cell immunity frequently targets cryptotopes on CMV but these Abs are non-neutralizing, may reduce the neutralizing effectiveness of pathogen-specific Abs, and increase during immune maturation following primary CMV infection. The observation of functional consequences of Abs specific for cryptotopes may open whole new avenues to a better understanding of the humoral immune response to CMV and development of more effective vaccines and immunoglobuline preparations.

  5. Microbial Cryptotopes are Prominent Targets of B-cell Immunity.

    PubMed

    Rieder, Franz J J; Biebl, Julia; Kastner, Marie-Theres; Schneider, Martina; Jungbauer, Christof; Redlberger-Fritz, Monika; Britt, William J; Kundi, Michael; Steininger, Christoph

    2016-01-01

    B-cell recognition of microbial antigens may be limited by masking of epitopes within three-dimensional structures (cryptotopes). Here we report that unmasking of cryptotopes by unfolding whole cytomegalovirus (CMV) antigen preparations with the chaotropic reagent Urea and probing with immune sera from healthy individuals (n = 109) increased ELISA signals by 36% in comparison to folded CMV antigens (P < 0.001). ELISA signals increased also significantly upon unfolding of S. aureus or E. coli antigens, whereas unfolded influenza H1N1 or respiratory syncitial virus antigens yielded reduced or unchanged reactivity in comparison to folded ones, respectively. Blocking of CMV cryptotope-specific Abs by incubation of an immunoglobuline preparation and three sera with unfolded CMV antigens enhanced clearly the neutralizing capacity of this immunoglobuline preparation against CMV infection. Thus, B-cell immunity frequently targets cryptotopes on CMV but these Abs are non-neutralizing, may reduce the neutralizing effectiveness of pathogen-specific Abs, and increase during immune maturation following primary CMV infection. The observation of functional consequences of Abs specific for cryptotopes may open whole new avenues to a better understanding of the humoral immune response to CMV and development of more effective vaccines and immunoglobuline preparations. PMID:27539094

  6. Gaucher disease and comorbidities: B-cell malignancy and parkinsonism.

    PubMed

    Cox, Timothy M; Rosenbloom, Barry E; Barker, Roger A

    2015-07-01

    Data emerging from the International Collaborative Gaucher Group (ICGG) Gaucher Registry together with other contemporary clinical surveys have revealed a close association between Gaucher disease and non-Hodgkin's B-cell lymphoma and myeloma and Gaucher disease and Parkinson's disease. Several possible explanations for increased B-cell proliferation and neoplasia in Gaucher disease have been proposed, including the possible influence of sphingosine (derived from the extra lysosomal metabolism of glucosylceramide), gene modifiers, splenectomy and immune system deregulation induced by cytokines, chemokines, and hydrolases released from Gaucher cells. Parkinson's disease is frequently seen in the otherwise-healthy relatives of Gaucher disease patients leading to the finding that GBA mutations represent a genetic risk factor for Parkinson's disease. The mechanism of the association between GBA mutations and Parkinson's disease has yet to be elucidated but the pathogenesis appears distinct from that of Gaucher disease. Several pathogenic pathways have been proposed including lysosomal and/or mitochondrial dysfunction. The effect of Gaucher disease specific therapies on the incidence of cancer or Parkinson's disease are not clear and will likely be evaluated in future ICGG Gaucher Registry studies. PMID:26096744

  7. MicroRNA signatures in B-cell lymphomas

    PubMed Central

    Di Lisio, L; Sánchez-Beato, M; Gómez-López, G; Rodríguez, M E; Montes-Moreno, S; Mollejo, M; Menárguez, J; Martínez, M A; Alves, F J; Pisano, D G; Piris, M A; Martínez, N

    2012-01-01

    Accurate lymphoma diagnosis, prognosis and therapy still require additional markers. We explore the potential relevance of microRNA (miRNA) expression in a large series that included all major B-cell non-Hodgkin lymphoma (NHL) types. The data generated were also used to identify miRNAs differentially expressed in Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) samples. A series of 147 NHL samples and 15 controls were hybridized on a human miRNA one-color platform containing probes for 470 human miRNAs. Each lymphoma type was compared against the entire set of NHLs. BL was also directly compared with DLBCL, and 43 preselected miRNAs were analyzed in a new series of routinely processed samples of 28 BLs and 43 DLBCLs using quantitative reverse transcription-polymerase chain reaction. A signature of 128 miRNAs enabled the characterization of lymphoma neoplasms, reflecting the lymphoma type, cell of origin and/or discrete oncogene alterations. Comparative analysis of BL and DLBCL yielded 19 differentially expressed miRNAs, which were confirmed in a second confirmation series of 71 paraffin-embedded samples. The set of differentially expressed miRNAs found here expands the range of potential diagnostic markers for lymphoma diagnosis, especially when differential diagnosis of BL and DLBCL is required. PMID:22829247

  8. Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6.

    PubMed

    Wang, Yanhua; Wang, Guangxiang; Cai, Jian Ping

    2016-08-01

    The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents. PMID:27658594

  9. Quantifying evolutionary constraints on B-cell affinity maturation

    PubMed Central

    McCoy, Connor O.; Bedford, Trevor; Minin, Vladimir N.; Bradley, Philip; Robins, Harlan; Matsen, Frederick A.

    2015-01-01

    The antibody repertoire of each individual is continuously updated by the evolutionary process of B-cell receptor (BCR) mutation and selection. It has recently become possible to gain detailed information concerning this process through high-throughput sequencing. Here, we develop modern statistical molecular evolution methods for the analysis of B-cell sequence data, and then apply them to a very deep short-read dataset of BCRs. We find that the substitution process is conserved across individuals but varies significantly across gene segments. We investigate selection on BCRs using a novel method that side-steps the difficulties encountered by previous work in differentiating between selection and motif-driven mutation; this is done through stochastic mapping and empirical Bayes estimators that compare the evolution of in-frame and out-of-frame rearrangements. We use this new method to derive a per-residue map of selection, which provides a more nuanced view of the constraints on framework and variable regions. PMID:26194758

  10. Characterization of Regulatory B Cells in Graves' Disease and Hashimoto's Thyroiditis.

    PubMed

    Kristensen, Birte; Hegedüs, Laszlo; Lundy, Steven K; Brimnes, Marie K; Smith, Terry J; Nielsen, Claus H

    2015-01-01

    A hallmark of regulatory B cells is IL-10 production, hence their designation as IL-10+ B cells. Little is known about the ability of self-antigens to induce IL-10+ B cells in Graves' disease (GD), Hashimoto's thyroiditis (HT), or other autoimmune disease. Here we pulsed purified B cells from 12 HT patients, 12 GD patients, and 12 healthy donors with the thyroid self-antigen, thyroglobulin (TG) and added the B cells back to the remaining peripheral blood mononuclear cells (PBMCs). This procedure induced IL-10+ B-cell differentiation in GD. A similar tendency was observed in healthy donors, but not in cells from patients with HT. In GD, B cells primed with TG induced IL-10-producing CD4+ T cells. To assess the maximal frequency of inducible IL-10+ B cells in the three donor groups PBMCs were stimulated with PMA/ionomycin. The resulting IL-10+ B-cell frequency was similar in the three groups and correlated with free T3 levels in GD patients. IL-10+ B cells from both patient groups displayed CD25 or TIM-1 more frequently than did those from healthy donors. B-cell expression of two surface marker combinations previously associated with regulatory B-cell functions, CD24hiCD38hi and CD27+CD43+, did not differ between patients and healthy donors. In conclusion, our findings indicate that autoimmune thyroiditis is not associated with reduced frequency of IL-10+ B cells. These results do not rule out regulatory B-cell dysfunction, however. The observed phenotypic differences between IL-10+ B cells from patients and healthy donors are discussed.

  11. A role for TLR signaling during B cell activation in antiretroviral-treated HIV individuals.

    PubMed

    Siewe, Basile; Keshavarzian, Ali; French, Audrey; Demarais, Patricia; Landay, Alan

    2013-10-01

    The mechanisms underlying B cell activation that persists during antiretroviral therapy (ART) are unknown. Toll-like receptor (TLR) signaling is a critical mediator of innate cell activation and though B cells express TLRs, few studies have investigated a role for TLR signaling in B cell activation during HIV infection. We addressed this question by assessing the activated phenotype and TLR expression/responsiveness of B cells from ART-treated HIV-infected subjects (HIVART(+)). We evaluated activation markers implicated in B cell-mediated T cell trans infection during HIV pathogenesis. We found no significant difference in TLR expression between B cells of HIVART(+) and HIV(-) subjects. However, B cells of HIVART(+) subjects exhibited heightened endogenous expression levels of IL-6 (p=0.0051), T cell cognate ligands CD40 (p=0.0475), CD54 (p=0.0229), and phosphorylated p38 (p<0.0001), a marker of TLR signaling. In vitro, B cells of HIVART(+) individuals were less responsive to TLR stimulation compared to B cells of HIV(-) subjects. The activated phenotype of in vitro TLR-stimulated B cells of HIV(-) subjects was similar to ex vivo B cells from HIVART(+) individuals. TLR2 stimulation was a potent mediator of B cell activation, whereas B cells were least responsive to TLR4 stimulation. Compared to HIV(-) subjects, the serum level of lipoteichoic acid (TLR2 ligand) in HIVART(+) subjects was significantly higher (p=0.0207), correlating positively with viral load (p=0.0127, r=0.6453). Our data suggest that during HIV infection TLR-activated B cells may exert a pathogenic role and B cells from HIVART(+) subjects respond to in vitro TLR stimulation, yet exhibit a TLR tolerant phenotype suggesting prior in vivo TLR stimulation. PMID:23763346

  12. A Role for TLR Signaling During B Cell Activation in Antiretroviral-Treated HIV Individuals

    PubMed Central

    Keshavarzian, Ali; French, Audrey; Demarais, Patricia; Landay, Alan

    2013-01-01

    Abstract The mechanisms underlying B cell activation that persists during antiretroviral therapy (ART) are unknown. Toll-like receptor (TLR) signaling is a critical mediator of innate cell activation and though B cells express TLRs, few studies have investigated a role for TLR signaling in B cell activation during HIV infection. We addressed this question by assessing the activated phenotype and TLR expression/responsiveness of B cells from ART-treated HIV-infected subjects (HIVART+). We evaluated activation markers implicated in B cell-mediated T cell trans infection during HIV pathogenesis. We found no significant difference in TLR expression between B cells of HIVART+ and HIV− subjects. However, B cells of HIVART+ subjects exhibited heightened endogenous expression levels of IL-6 (p=0.0051), T cell cognate ligands CD40 (p=0.0475), CD54 (p=0.0229), and phosphorylated p38 (p<0.0001), a marker of TLR signaling. In vitro, B cells of HIVART+ individuals were less responsive to TLR stimulation compared to B cells of HIV− subjects. The activated phenotype of in vitro TLR-stimulated B cells of HIV− subjects was similar to ex vivo B cells from HIVART+ individuals. TLR2 stimulation was a potent mediator of B cell activation, whereas B cells were least responsive to TLR4 stimulation. Compared to HIV− subjects, the serum level of lipoteichoic acid (TLR2 ligand) in HIVART+ subjects was significantly higher (p=0.0207), correlating positively with viral load (p=0.0127, r=0.6453). Our data suggest that during HIV infection TLR-activated B cells may exert a pathogenic role and B cells from HIVART+ subjects respond to in vitro TLR stimulation, yet exhibit a TLR tolerant phenotype suggesting prior in vivo TLR stimulation. PMID:23763346

  13. Activation-induced necroptosis contributes to B-cell lymphopenia in active systemic lupus erythematosus

    PubMed Central

    Fan, H; Liu, F; Dong, G; Ren, D; Xu, Y; Dou, J; Wang, T; Sun, L; Hou, Y

    2014-01-01

    B-cell abnormality including excessive activation and lymphopenia is a central feature of systemic lupus erythematosus (SLE). Although activation threshold, auto-reaction and death of B cells can be affected by intrinsical and/or external signaling, the underlying mechanisms are unclear. Herein, we demonstrate that co-activation of Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) pathways is a core event for the survival/dead states of B cells in SLE. We found that the mortalities of CD19+CD27- and CD19+IgM+ B-cell subsets were increased in the peripheral blood mononuclear cells (PBMCs) of SLE patients. The gene microarray analysis of CD19+ B cells from active SLE patients showed that the differentially expressed genes were closely correlated to TLR7, BCR, apoptosis, necroptosis and immune pathways. We also found that co-activation of TLR7 and BCR could trigger normal B cells to take on SLE-like B-cell characters including the elevated viability, activation and proliferation in the first 3 days and necroptosis in the later days. Moreover, the necroptotic B cells exhibited mitochondrial dysfunction and hypoxia, along with the elevated expression of necroptosis-related genes, consistent with that in both SLE B-cell microarray and real-time PCR verification. Expectedly, pretreatment with the receptor-interacting protein kinase 1 (RIPK1) inhibitor Necrostatin-1, and not the apoptosis inhibitor zVAD, suppressed B-cell death. Importantly, B cells from additional SLE patients also significantly displayed high expression levels of necroptosis-related genes compared with those from healthy donors. These data indicate that co-activation of TLR7 and BCR pathways can promote B cells to hyperactivation and ultimately necroptosis. Our finding provides a new explanation on B-cell lymphopenia in active SLE patients. These data suggest that extrinsic factors may increase the intrinsical abnormality of B cells in SLE patients. PMID:25210799

  14. Gammaherpesvirus targets peritoneal B-1 B cells for long-term latency.

    PubMed

    Rekow, Michaela M; Darrah, Eric J; Mboko, Wadzanai P; Lange, Philip T; Tarakanova, Vera L

    2016-05-01

    Gammaherpesviruses establish life-long infection in most adults and are associated with the development of B cell lymphomas. While the interaction between gammaherpesviruses and splenic B cells has been explored, very little is known about gammaherpesvirus infection of B-1 B cells, innate-like B cells that primarily reside in body cavities. This study demonstrates that B-1 B cells harbor the highest frequency of latently infected cells in the peritoneum throughout chronic infection, highlighting a previously unappreciated feature of gammaherpesvirus biology.

  15. Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma

    PubMed Central

    Hailfinger, Stephan; Lenz, Georg; Ngo, Vu; Posvitz-Fejfar, Anita; Rebeaud, Fabien; Guzzardi, Montserrat; Penas, Eva-Maria Murga; Dierlamm, Judith; Chan, Wing C.; Staudt, Louis M.; Thome, Margot

    2009-01-01

    A key element for the development of suitable anti-cancer drugs is the identification of cancer-specific enzymatic activities that can be therapeutically targeted. Mucosa-associated lymphoid tissue transformation protein 1 (MALT1) is a proto-oncogene that contributes to tumorigenesis in diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) subtype, the least curable subtype of DLBCL. Recent data suggest that MALT1 has proteolytic activity, but it is unknown whether this activity is relevant for tumor growth. Here we report that MALT1 is constitutively active in DLBCL lines of the ABC but not the GCB subtype. Inhibition of the MALT1 proteolytic activity led to reduced expression of growth factors and apoptosis inhibitors, and specifically affected the growth and survival of ABC DLBCL lines. These results demonstrate a key role for the proteolytic activity of MALT1 in DLBCL of the ABC subtype, and provide a rationale for the development of pharmacological inhibitors of MALT1 in DLBCL therapy. PMID:19897720

  16. Increased BCR responsiveness in B cells from patients with chronic GVHD

    PubMed Central

    Allen, Jessica L.; Tata, Prasanthi V.; Fore, Matthew S.; Wooten, Jenna; Rudra, Sharmistha; Deal, Allison M.; Sharf, Andrew; Hoffert, Todd; Roehrs, Philip A.; Shea, Thomas C.; Serody, Jonathan S.; Richards, Kristy L.; Jagasia, Madan; Lee, Stephanie J.; Rizzieri, David; Horwitz, Mitchell E.; Chao, Nelson J.

    2014-01-01

    Although B cells have emerged as important contributors to chronic graft-versus-host-disease (cGVHD) pathogenesis, the mechanisms responsible for their sustained activation remain unknown. We previously showed that patients with cGVHD have significantly increased B cell–activating factor (BAFF) levels and that their B cells are activated and resistant to apoptosis. Exogenous BAFF confers a state of immediate responsiveness to antigen stimulation in normal murine B cells. To address this in cGVHD, we studied B-cell receptor (BCR) responsiveness in 48 patients who were >1 year out from allogeneic hematopoietic stem cell transplantation (HSCT). We found that B cells from cGVHD patients had significantly increased proliferative responses to BCR stimulation along with elevated basal levels of the proximal BCR signaling components B cell linker protein (BLNK) and Syk. After initiation of BCR signaling, cGVHD B cells exhibited increased BLNK and Syk phosphorylation compared with B cells from patients without cGVHD. Blocking Syk kinase activity prevented relative post-HSCT BCR hyper-responsiveness of cGVHD B cells. These data suggest that a lowered BCR signaling threshold in cGVHD associates with increased B-cell proliferation and activation in response to antigen. We reveal a mechanism underpinning aberrant B-cell activation in cGVHD and suggest that therapeutic inhibition of the involved kinases may benefit these patients. PMID:24532806

  17. Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone

    PubMed Central

    Muppidi, Jagan R.; Arnon, Tal I.; Bronevetsky, Yelena; Veerapen, Natacha; Tanaka, Masato; Besra, Gurdyal S.

    2011-01-01

    Specialized B cells residing in the splenic marginal zone (MZ) continuously survey the blood for antigens and are important for immunity to systemic infections. However, the cues that uniquely attract cells to the MZ have not been defined. Previous work demonstrated that mice deficient in cannabinoid receptor 2 (CB2) have decreased numbers of MZ B cells but it has been unclear whether CB2 regulates MZ B cell development or positioning. We show that MZ B cells are highly responsive to the CB2 ligand 2-arachidonylglycerol (2-AG) and that CB2 antagonism rapidly displaces small numbers of MZ B cells to the blood. Antagonism for longer durations depletes MZ B cells from the spleen. In mice deficient in sphingosine-1-phosphate receptor function, CB2 antagonism causes MZ B cell displacement into follicles. Moreover, CB2 overexpression is sufficient to position B cells to the splenic MZ. These findings establish a role for CB2 in guiding B cells to the MZ and in preventing their loss to the blood. As a consequence of their MZ B cell deficiency, CB2-deficient mice have reduced numbers of CD1d-high B cells. We show that CB2 deficiency results in diminished humoral responses to a CD1d-restricted systemic antigen. PMID:21875957

  18. Nodal marginal zone B cells in mice: a novel subset with dormant self-reactivity

    PubMed Central

    Palm, Anna-Karin E.; Friedrich, Heike C.; Kleinau, Sandra

    2016-01-01

    Marginal zone (MZ) B cells, representing a distinct subset of innate-like B cells, mount rapid T-independent responses to blood-borne antigens. They express low-affinity polyreactive antigen receptors that recognize both foreign and self-structures. The spleen is considered the exclusive site for murine MZ B cells. However, we have here identified B cells with a MZ B-cell phenotype in the subcapsular sinuses of mouse lymph nodes. The nodal MZ (nMZ) B cells display high levels of IgM, costimulators and TLRs, and are represented by naïve and memory cells. The frequency of nMZ B cells is about 1–6% of nodal B cells depending on mouse strain, with higher numbers in older mice and a trend of increased numbers in females. There is a significant expansion of nMZ B cells following immunization with an autoantigen, but not after likewise immunization with a control protein or with the adjuvant alone. The nMZ B cells secrete autoantibodies upon activation and can efficiently present autoantigen to cognate T cells in vitro, inducing T-cell proliferation. The existence of self-reactive MZ B cells in lymph nodes may be a source of autoantigen-presenting cells that in an unfortunate environment may activate T cells leading to autoimmunity. PMID:27277419

  19. A role for intrathymic B cells in the generation of natural regulatory T cells.

    PubMed

    Walters, Stacey N; Webster, Kylie E; Daley, Stephen; Grey, Shane T

    2014-07-01

    B cells inhabit the normal human thymus, suggesting a role in T cell selection. In this study, we report that B cells can modulate thymic production of CD4+ Foxp3+ T cells (regulatory T cells [Tregs]). Mice with transgenic expression of BAFF (BAFF-Tg) harbor increased numbers of Helios+ Foxp3+ thymic Tregs and, similar to some human autoimmune conditions, also exhibit increased numbers of B cells colonizing the thymus. Distinct intrathymic B cell subpopulations were identified, namely B220+, IgM+, CD23(hi), CD21(int) cells; B220+, IgM+, CD23(lo), CD21(lo) cells; and a population of B220+, IgM+, CD23(lo), CD21(hi) cells. Anatomically, CD19+ B cells accumulated in the thymic medulla region juxtaposed to Foxp3+ T cells. These intrathymic B cells engender Tregs. Indeed, thymic Treg development was diminished in both B cell-deficient BAFF-Tg chimeras, but also B cell-deficient wild-type chimeras. B cell Ag capture and presentation are critical in vivo events for Treg development. In the absence of B cell surface MHC class II expression, thymic expansion of BAFF-Tg Tregs was lost. Further to this, expansion of Tregs did not occur in BAFF-Tg/Ig hen egg lysozyme BCR chimeras, demonstrating a requirement for Ag specificity. Thus, we present a mechanism whereby intrathymic B cells, through the provision of cognate help, contribute to the shaping of the Treg repertoire.

  20. Marginal Zone B Cells in Neonatal Rats Express Intermediate Levels of CD90 (Thy-1)

    PubMed Central

    Dammers, Peter M.; Lodewijk, Monique E.; Zandvoort, André; Kroese, Frans G. M.

    2002-01-01

    Here we show that marginal zone (MZ)-B cells in rats can already be detected in neonatal spleen from two days after birth. At this time point, morphologically distinct MZs are not present yet and the vast majority of B cells in spleen are located in a concentric area surrounding the T cell zones (PALS). Before MZs are obviously detectable in spleen (14 days after birth), MZ-B cells seem to be enriched at the outer zones of the concentric B cell areas. Similar to adult rats, neonatal MZ-B cells are intermediate-sized cells that express high levels of surface (s)IgM and HIS57 antigen, and low levels of sIgD and CD45R (HIS24). We show here, however, that in contrast to adult MZ-B cells, MZ-B cells (and also recirculating follicular (RF)-B cells) in neonatal rats express higher levels of CD90 (Thy-1). In adult rats, expression of CD90 on the B cell lineage is confined to immature B cells. We speculate that the expression of CD90 on neonatal MZ-B cells may have implications for their responsiveness to polysaccharide (T cell-independent type 2) antigens. PMID:15144015

  1. Translational Mini-Review Series on B cell subsets in disease. Reconstitution after haematopoietic stem cell transplantation – revelation of B cell developmental pathways and lineage phenotypes

    PubMed Central

    Bemark, M; Holmqvist, J; Abrahamsson, J; Mellgren, K

    2012-01-01

    OTHER ARTICLES PUBLISHED IN THIS MINI-REVIEW SERIES ON B CELL SUBSETS IN DISEASE B cells in multiple sclerosis: drivers of disease pathogenesis and Trojan horse for Epstein—Barr virus entry to the central nervous system? Clinical and Experimental Immunology 2012, 167: 1–6. Transitional B cells in systemic lupus erythematosus and Sjögren's syndrome: clinical implications and effects of B cell-targeted therapies. Clinical and Experimental Immunology 2012, 167: 7–14. Haematopoietic stem cell transplantation (HSCT) is an immunological treatment that has been used for more than 40 years to cure a variety of diseases. The procedure is associated with serious side effects, due to the severe impairment of the immune system induced by the treatment. After a conditioning regimen with high-dose chemotherapy, sometimes in combination with total body irradiation, haematopoietic stem cells are transferred from a donor, allowing a donor-derived blood system to form. Here, we discuss the current knowledge of humoral problems and B cell development after HSCT, and relate these to the current understanding of human peripheral B cell development. We describe how these studies have aided the identification of subsets of transitional B cells and also a robust memory B cell phenotype. PMID:22132880

  2. Expression of sprouty2 inhibits B-cell proliferation and is epigenetically silenced in mouse and human B-cell lymphomas

    PubMed Central

    Frank, Matthew J.; Dawson, David W.; Bensinger, Steven J.; Hong, Jason S.; Knosp, Wendy M.; Xu, Lizhong; Balatoni, Cynthia E.; Allen, Eric L.; Shen, Rhine R.; Bar-Sagi, Dafna; Martin, Gail R.

    2009-01-01

    B-cell lymphoma is the most common immune system malignancy. TCL1 transgenic mice (TCL1-tg), in which TCL1 is ectopically expressed in mature lymphocytes, develop multiple B- and T-cell leukemia and lymphoma subtypes, supporting an oncogenic role for TCL1 that probably involves AKT and MAPK-ERK signaling pathway augmentation. Additional, largely unknown genetic and epigenetic alterations cooperate with TCL1 during lymphoma progression. We examined DNA methylation patterns in TCL1-tg B-cell tumors to discover tumor-associated epigenetic changes, and identified hypermethylation of sprouty2 (Spry2). Sprouty proteins are context-dependent negative or positive regulators of MAPK-ERK pathway signaling, but their role(s) in B-cell physiology or pathology are unknown. Here we show that repression of Spry2 expression in TCL1-tg mouse and human B-cell lymphomas and cell lines is associated with dense DNA hypermethylation and was reversed by inhibition of DNA methylation. Spry2 expression was induced in normal splenic B cells by CD40/B-cell receptor costimulation and regulated a negative feedback loop that repressed MAPK-ERK signaling and decreased B-cell viability. Conversely, loss of Spry2 function hyperactivated MAPK-ERK signaling and caused increased B-cell proliferation. Combined, these results implicate epigenetic silencing of Spry2 expression in B lymphoma progression and suggest it as a companion lesion to ectopic TCL1 expression in enhancing MAPK-ERK pathway signaling. PMID:19147787

  3. B cells from aged mice exhibit reduced apoptosis upon B-cell antigen receptor stimulation and differential ability to up-regulate survival signals.

    PubMed

    Montes, C L; Maletto, B A; Acosta Rodriguez, E V; Gruppi, A; Pistoresi-Palencia, M C

    2006-01-01

    During ageing, autoimmune disorders and the higher susceptibility to infectious have been associated with alterations in the humoral immune response. We report that splenic B lymphocytes from aged mice exhibit lower level of apoptosis induced by B-cell antigen receptor (BCR) ligation in vitro. Respect to B cells from young mice the anti-mu stimulated aged B cells show similar Bcl-2 and Bcl-xL expression but differential kinetic of A1 degradation and a higher level of cFLIP and FAIM. Even though B cells from aged mice show minor Fas expression they exhibit the same susceptibility to anti-Fas induced apoptosis. Aged B cells also present upon BCR stimulation, a higher proliferative response and similar level of activation markers expression than B cells from young mice. These data agree with the observation that aged mice exhibit an increment of T2 and mature B cell subset which rapidly enters cell cycle upon BCR engagement. The diminished apoptosis after activation in aged mice could compromise homeostatic mechanism allowing the persistence of self and non-self antigen specific B cells.

  4. Early B-cell-specific inactivation of ATM synergizes with ectopic CyclinD1 expression to promote pre-germinal center B-cell lymphomas in mice.

    PubMed

    Yamamoto, K; Lee, B J; Li, C; Dubois, R L; Hobeika, E; Bhagat, G; Zha, S

    2015-06-01

    Ataxia telangiectasia-mutated (ATM) kinase is a master regulator of the DNA damage response. ATM is frequently inactivated in human B-cell non-Hodgkin lymphomas, including ~50% of mantle cell lymphomas (MCLs) characterized by ectopic expression of CyclinD1. Here we report that early and robust deletion of ATM in precursor/progenitor B cells causes cell autonomous, clonal mature B-cell lymphomas of both pre- and post-germinal center (GC) origins. Unexpectedly, naive B-cell-specific deletion of ATM is not sufficient to induce lymphomas in mice, highlighting the important tumor suppressor function of ATM in immature B cells. Although EμCyclinD1 is not sufficient to induce lymphomas, EμCyclinD1 accelerates the kinetics and increases the incidence of clonal lymphomas in ATM-deficient B-cells and skews the lymphomas toward pre-GC-derived small lymphocytic neoplasms, sharing morphological features of human MCL. This is in part due to CyclinD1-driven expansion of ATM-deficient naive B cells with genomic instability, which promotes the deletions of additional tumor suppressor genes (i.e. Trp53, Mll2, Rb1 and Cdkn2a). Together these findings define a synergistic function of ATM and CyclinD1 in pre-GC B-cell proliferation and lymphomagenesis and provide a prototypic animal model to study the pathogenesis of human MCL. PMID:25676421

  5. Intravascular Large B-Cell Lymphoma: A Difficult Diagnostic Challenge.

    PubMed

    Khan, Maria S; McCubbin, Mark; Nand, Sucha

    2014-01-01

    Case Presentation. A 69-year-old Hispanic male, with a past history of diabetes and coronary disease, was admitted for fever, diarrhea, and confusion of 4 weeks duration. Physical examination showed a disoriented patient with multiple ecchymoses, possible ascites, and bilateral scrotal swelling. Hemoglobin was 6.7, prothrombin time (PT) 21.4 seconds with international normalized ratio 2.1, partial thromboplastin time (PTT) 55.6 seconds, fibrin split 10 µg/L, and lactate dehydrogenase (LDH) 1231 IU/L. Except for a positive DNA test for Epstein-Barr virus (EBV) infection, extensive diagnostic workup for infections, malignancy, or a neurological cause was negative. Mixing studies revealed a nonspecific inhibitor of PT and PTT but Factor VIII levels were normal. The patient was empirically treated with antibiotics but developed hypotension and died on day 27 of admission. At autopsy, patient was found to have intravascular diffuse large B-cell lymphoma involving skin, testes, lung, and muscles. The malignant cells were positive for CD20, CD791, Mum-1, and Pax-5 and negative for CD3, CD5, CD10, CD30, and Bcl-6. The malignant cells were 100% positive for Ki-67. Discussion. Intravascular large cell B-cell lymphoma (IVLBCL) is rare form of diffuse large B-cell lymphoma and tends to proliferate within small blood vessels, particularly capillaries and postcapillary venules. The cause of its affinity for vascular bed remains unknown. In many reports, IVLBCL was associated with HIV, HHV8, and EBV infections. The fact that our case showed evidence of EBV infection lends support to the association of this diagnosis to viral illness. The available literature on this subject is scant, and in many cases, the diagnosis was made only at autopsy. The typical presentation of this disorder is with B symptoms, progressive neurologic deficits, and skin findings. Bone marrow, spleen, and liver are involved in a minority of patients. Nearly all patients have elevated LDH, and about 65% are

  6. Anti-CD79 Antibody Induces B cell Anergy That Protects Against Autoimmunity

    PubMed Central

    Hardy, Ian R.; Anceriz, Nadia; Rousseau, François; Seefeldt, Matt B.; Hatterer, Eric; Irla, Magali; Buatois, Vanessa; Chatel, Laurence E.; Getahun, Andrew; Fletcher, Ashley; Cons, Laura; Pontini, Guillemette; Hertzberg, Nicole A.; Magistrelli, Giovanni; Malinge, Pauline; Smith, Mia J.; Reith, Walter; Kosco-Vilbois, Marie H.; Ferlin, Walter G.; Cambier, John C.

    2014-01-01

    B cells play a major role in the pathogenesis of many autoimmune disorders including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and type I diabetes mellitus, as indicated by the efficacy of B cell-targeted therapies in these diseases. Therapeutic effects of the most commonly used B cell-targeted therapy, anti-CD20 monoclonal antibody, are contingent upon long-term depletion of peripheral B cells. Here, we describe an alternative approach involving the targeting of CD79, the transducer subunit of the B cell antigen receptor. Unlike anti-CD20 mAbs, the protective effects of CD79-targeted mAb are do not require cell depletion, but rather act by inducing an anergic-like state. Thus, we describe a novel B cell-targeted approach predicated on the induction of B cell anergy. PMID:24442438

  7. Plasmodium Infection Promotes Genomic Instability and AID Dependent B Cell Lymphoma

    PubMed Central

    Robbiani, Davide F.; Deroubaix, Stephanie; Feldhahn, Niklas; Oliveira, Thiago Y.; Callen, Elsa; Wang, Qiao; Jankovic, Mila; Silva, Israel T.; Rommel, Philipp C.; Bosque, David; Eisenreich, Tom; Nussenzweig, André; Nussenzweig, Michel C.

    2015-01-01

    Summary Chronic infection with Plasmodium falciparum was epidemiologically associated with endemic Burkitt’s lymphoma, a mature B cell cancer characterized by chromosome translocation between the c-myc oncogene and Igh, over 50 years ago. Whether infection promotes B cell lymphoma, and if so by what mechanism remains unknown. To investigate the relationship between parasitic disease and lymphomagenesis we used Plasmodium chabaudi (Pc) to produce chronic malaria infection in mice. Pc induces prolonged expansion of germinal centers (GCs), unique compartments where B cells undergo rapid clonal expansion and express activation-induced cytidine deaminase (AID), a DNA mutator. GC B cells elicited during Pc infection suffer widespread DNA damage leading to chromosome translocations. Although infection does not change the overall rate, it modifies lymphomagenesis to favor mature B cell lymphomas that are AID dependent and show chromosome translocations. Thus, malaria infection favors mature B cell cancers by eliciting protracted AID expression in GC B cells. PMID:26276629

  8. Cutting Edge: Redox Signaling Hypersensitivity Distinguishes Human Germinal Center B Cells.

    PubMed

    Polikowsky, Hannah G; Wogsland, Cara E; Diggins, Kirsten E; Huse, Kanutte; Irish, Jonathan M

    2015-08-15

    Differences in the quality of BCR signaling control key steps of B cell maturation and differentiation. Endogenously produced H2O2 is thought to fine tune the level of BCR signaling by reversibly inhibiting phosphatases. However, relatively little is known about how B cells at different stages sense and respond to such redox cues. In this study, we used phospho-specific flow cytometry and high-dimensional mass cytometry (CyTOF) to compare BCR signaling responses in mature human tonsillar B cells undergoing germinal center (GC) reactions. GC B cells, in contrast to mature naive B cells, memory B cells, and plasmablasts, were hypersensitive to a range of H2O2 concentrations and responded by phosphorylating SYK and other membrane-proximal BCR effectors in the absence of BCR engagement. These findings reveal that stage-specific redox responses distinguish human GC B cells.

  9. Anti-B-Cell Therapies in Autoimmune Neurological Diseases: Rationale and Efficacy Trials.

    PubMed

    Alexopoulos, Harry; Biba, Angie; Dalakas, Marinos C

    2016-01-01

    B cells have an ever-increasing role in the etiopathology of a number of autoimmune neurological disorders, acting as antibody-producing cells and, most importantly, as sensors, coordinators, and regulators of the immune response. B cells, among other functions, regulate the T-cell activation process through their participation in antigen presentation and production of cytokines. The availability of monoclonal antibodies or fusion proteins against B-cell surface molecules or B-cell trophic factors bestows a rational approach for treating autoimmune neurological disorders, even when T cells are the main effector cells. This review summarizes basic aspects of B-cell biology, discusses the role(s) of B cells in neurological autoimmunity, and presents anti-B-cell drugs that are either currently on the market or are expected to be available in the near future for treating neurological autoimmune disorders.

  10. Dissociation of two signals required for activation of resting B cells.

    PubMed Central

    Julius, M H; von Boehmer, H; Sidman, C L

    1982-01-01

    Cellular interactions involved in the T cell-dependent activation of B cells were analyzed by using lines and clones of helper T cells specific for determinants expressed on the B cell surface. Activation of male antigen-, M locus-, and H-2-specific T cells was shown to support polyclonal Ig production by a population of B cells that did not require T-cell-B-cell interaction for induction/amplification. However, these T cells alone did not activate gradient-purified small (resting) B cells. The activation of small B cells was shown to require not only a signal derived through an antigen-specific T-helper cell-B cell interaction but in addition a second signal that could be provided by anti-Ig antibodies. PMID:6979046

  11. Viral Double-Stranded RNA Triggers Ig Class Switching by Activating Upper Respiratory Mucosa B Cells through an Innate TLR3 Pathway Involving BAFF1

    PubMed Central

    Xu, Weifeng; Santini, Paul A.; Matthews, Allysia J.; Chiu, April; Plebani, Alessandro; He, Bing; Chen, Kang; Cerutti, Andrea

    2011-01-01

    Class switch DNA recombination (CSR) from IgM to IgG and IgA is crucial for antiviral immunity. Follicular B cells undergo CSR upon engagement of CD40 by CD40 ligand on CD4+ T cells. This T cell-dependent pathway requires 5–7 days, which is too much of a delay to block quickly replicating pathogens. To compensate for this limitation, extrafollicular B cells rapidly undergo CSR through a T cell-independent pathway that involves innate Ag receptors of the TLR family. We found that a subset of upper respiratory mucosa B cells expressed TLR3 and responded to viral dsRNA, a cognate TLR3 ligand. In the presence of dsRNA, mucosal B cells activated NF-κB, a transcription factor critical for CSR. Activation of NF-κB required TRIF (Toll/IL-1R domain-containing protein inducing IFN-β), a canonical TLR3 adapter protein, and caused germline transcription of downstream CH genes as well as expression of AID (activation-induced cytidine deaminase), a DNA-editing enzyme essential for CSR. Subsequent IgG and IgA production was enhanced by BAFF (B cell-activating factor of the TNF family), an innate mediator released by TLR3-expressing mucosal dendritic cells. Indeed, these innate immune cells triggered IgG and IgA responses upon exposure to dsRNA. By showing active TLR3 signaling and ongoing CSR in upper respiratory mucosa B cells from patients with CD40 signaling defects, our findings indicate that viral dsRNA may initiate frontline IgG and IgA responses through an innate TLR3-dependent pathway involving BAFF. PMID:18566393

  12. Disturbed follicular architecture in B cell ADAM10 knockouts is mediated by compensatory increases in ADAM17 and TNFα shedding1

    PubMed Central

    Folgosa, Lauren; Zellner, Hannah B.; Shikh, Mohey Eldin El; Conrad, Daniel H.

    2013-01-01

    B cell ADAM10 is required for the development and maintenance of proper secondary lymphoid tissue architecture; however, the underlying mechanism remains unclear. In this study, we show disturbances in naïve lymph node architecture from B cell specific ADAM10 deficient mice (ADAM10B−/−) including loss of B/T compartmentalization, attenuation of FDC reticula, excessive collagen deposition, and increased HEV formation. Because TNFα signaling is critical for secondary lymphoid tissue architecture, we examined compensatory changes in ADAM17 and TNFα in ADAM10B−/− B cells. Surprisingly, defective follicular development in these mice was associated with increased rather than decreased TNFα expression. Here, we describe an increase in TNFα message, mRNA stability, soluble protein release, and membrane expression in ADAM10B−/− B cells compared to WT, which coincides with increased ADAM17 message and protein. To assess the mechanistic contribution of excessive TNFα to abnormal lymphoid architecture in ADAM10B−/− mice, we performed a bone marrow reconstitution study. Rectification of WT architecture was noted only in irradiated WT mice reconstituted with ADAM10B−/− + TNFKO bone marrow due to normalization of TNFα levels not seen in ADAM10B−/− alone. We conclude that ADAM17 overcompensation causes excessive TNFα shedding and further upregulation of TNFα expression, creating an aberrant signaling environment within B cell cortical regions of ADAM10B−/− lymph nodes, highlighting a key interplay between B cell ADAM10 and ADAM17 with respect to TNFα homeostasis. PMID:24227779

  13. Benchmarking B cell epitope prediction: underperformance of existing methods.

    PubMed

    Blythe, Martin J; Flower, Darren R

    2005-01-01

    Sequence profiling is used routinely to predict the location of B-cell epitopes. In the postgenomic era, the need for reliable epitope prediction is clear. We assessed 484 amino acid propensity scales in combination with ranges of plotting parameters to examine exhaustively the correlation of peaks and epitope location within 50 proteins mapped for polyclonal responses. After examining more than 10(6) combinations, we found that even the best set of scales and parameters performed only marginally better than random. Our results confirm the null hypothesis: Single-scale amino acid propensity profiles cannot be used to predict epitope location reliably. The implication for studies using such methods is obvious. PMID:15576553

  14. B-Cell Lymphoma of the Mandible: A Case Report

    PubMed Central

    Adouani, Ali; Bouguila, Jed; Jeblaoui, Yassine; Ben Aicha, Mehdi; Abdelali, Mouhamed Ali; Hellali, Mouna; Zitouni, Karima; Amani, Landolsi; Issam, Zairi

    2008-01-01

    Summary Introduction The mandible is an infrequent localisation of primary osseous non-Hodgkin’s lymphomas. Few cases of mandibular non-Hodgkin’s lymphomas (NHL) have been reported. Case report A rare condition of primary malignant non-Hodgkin’s lymphoma of the mandible in 53-year-old man, was reported at the Department of Maxillofacial and Plastic Surgery in Charles Nicolle Hospital (Tunis, Tunisia). Histologic and Immunohistochemical (IHC) examination Confirmed a B-Cell lymphoma. Discussion The purpose of this report is to describe this rare case of NHL of the mandible, explore the diagnosis and workup, and discuss treatment strategies. In this localisation, neither the clinical features nor the radiologic appearances are often pathognomonic. Conclusion Particular care must be taken to consider lymphoma in the differential diagnosis because this uncommon lesion can pose significant diagnostic problems and is frequently misdiagnosed. PMID:21892315

  15. B cell receptor editing in tolerance and autoimmunity.

    PubMed

    Luning Prak, Eline T; Monestier, Marc; Eisenberg, Robert A

    2011-01-01

    Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by "editing" the specificities of their receptors with additional antibody gene rearrangements. As such, editing complicates the Clonal Selection Hypothesis because edited cells are not simply endowed for life with a single, invariant antigen receptor. Furthermore, if the initial immunoglobulin gene is not inactivated during the editing process, allelic exclusion is violated and the B cell can exhibit two specificities. Here, we describe the discovery of editing, the pathways of receptor editing at the heavy (H) and light (L) chain loci, and current evidence regarding how and where editing happens and what effects it has on the antibody repertoire.

  16. Epiglottic diffuse B-cell malignant lymphoma: A case report

    PubMed Central

    CHANG, HUNG-MIN; LI, CHIUNG-CHON; TSAI, STELLA CHIN-SHAW; TSAO, TANG-YI

    2016-01-01

    A 55-year-old male patient was admitted to our department with complaints of dysphagia and throat soreness for 2 months. A tumor of the left epiglottis, with an irregular surface, was identified by video laryngoscopy. The diagnosis of malignant lymphoma was confirmed by biopsy during laryngomicrosurgery. The atypical diffuse lymphocytic lymphoma was positive for CD20 and Bcl-2, and negative for CD3, CD10 and Bcl-1. The diagnosis was diffuse large B-cell malignant lymphoma. The patient was treated with eight cycles of rituximab with cyclophosphamide + doxorubicin + vincristine + prednisolone (R-CHOP regimen). This is a rare case of extranodal non-Hodgkin lymphoma occurring in the epiglottis. PMID:26870358

  17. Persistent expression of the full genome of hepatitis C virus in B cells induces spontaneous development of B-cell lymphomas in vivo.

    PubMed

    Kasama, Yuri; Sekiguchi, Satoshi; Saito, Makoto; Tanaka, Kousuke; Satoh, Masaaki; Kuwahara, Kazuhiko; Sakaguchi, Nobuo; Takeya, Motohiro; Hiasa, Yoichi; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2010-12-01

    Extrahepatic manifestations of hepatitis C virus (HCV) infection occur in 40%-70% of HCV-infected patients. B-cell non-Hodgkin lymphoma is a typical extrahepatic manifestation frequently associated with HCV infection. The mechanism by which HCV infection of B cells leads to lymphoma remains unclear. Here we established HCV transgenic mice that express the full HCV genome in B cells (RzCD19Cre mice) and observed a 25.0% incidence of diffuse large B-cell non-Hodgkin lymphomas (22.2% in males and 29.6% in females) within 600 days after birth. Expression levels of aspartate aminotransferase and alanine aminotransferase, as well as 32 different cytokines, chemokines and growth factors, were examined. The incidence of B-cell lymphoma was significantly correlated with only the level of soluble interleukin-2 receptor α subunit (sIL-2Rα) in RzCD19Cre mouse serum. All RzCD19Cre mice with substantially elevated serum sIL-2Rα levels (> 1000 pg/mL) developed B-cell lymphomas. Moreover, compared with tissues from control animals, the B-cell lymphoma tissues of RzCD19Cre mice expressed significantly higher levels of IL-2Rα. We show that the expression of HCV in B cells promotes non-Hodgkin-type diffuse B-cell lymphoma, and therefore, the RzCD19Cre mouse is a powerful model to study the mechanisms related to the development of HCV-associated B-cell lymphoma.

  18. T-cell leukemia 1 expression in nodal Epstein-Barr virus-negative diffuse large B-cell lymphoma and primary mediastinal B-cell lymphoma.

    PubMed

    Gualco, Gabriela; Weiss, Lawrence M; Barber, Glen N; Bacchi, Carlos E

    2010-09-01

    The physiologic expression of the product of the proto-oncogene TCL1 (T-cell leukemia 1) is primarily restricted to early embryonic cells. In nonneoplastic B cells, the expression of TCL1 is determined by the differentiation step with silencing at the germinal center stage. TCL1 protein is overexpressed in a wide variety of human diseases. It has been shown that TCL1 is a powerful B-cell oncogene, which has been implicated in the pathogenesis of various types of mature B-cell lymphomas. There is no comparative information in the literature addressing the expression of TCL1 in pediatric and adult nodal diffuse large B-cell lymphoma or primary mediastinal large B-cell lymphoma. We studied 55 cases of adult and pediatric diffuse large B-cell lymphoma and primary mediastinal large B-cell lymphoma to analyze the phenotypic profile of these lymphomas, including TCL1 expression, and its relationship with clinical outcome in different age groups. The cases were analyzed by immunohistochemistry for the expression of TCL1, CD10, BCL-2, BCL-6, and MUM1. We also evaluated c-MYC translocation by fluorescence in situ hybridization. TCL1 was observed in 11 cases, 5 pediatric and 6 adult cases, all but one diffuse large B-cell lymphoma. Pediatric cases showed a significant association between TCL1 expression, high proliferative index, and presence of c-MYC translocation. TCL1 positivity was predominantly found in germinal center phenotype diffuse large B-cell lymphoma. Overall survival was worse in adult TCL1-positive cases than pediatric ones. Primary mediastinal large B-cell lymphomas infrequently expressed TCL1 in both age groups.

  19. Cerebral toxoplasmosis in a diffuse large B cell lymphoma patient

    PubMed Central

    Savsek, Lina; Opaskar, Tanja Ros

    2016-01-01

    Background Toxoplasmosis is an opportunistic protozoal infection that has, until now, probably been an underestimated cause of encephalitis in patients with hematological malignancies, independent of stem cell or bone marrow transplant. T and B cell depleting regimens are probably an important risk factor for reactivation of a latent toxoplasma infection in these patients. Case report We describe a 62-year-old HIV-negative right-handed Caucasian female with systemic diffuse large B cell lymphoma who presented with sudden onset of high fever, headache, altered mental status, ataxia and findings of pancytopenia, a few days after receiving her final, 8th cycle of rituximab, cyclophosphamide, vincristine, doxorubicin, prednisolone (R-CHOP) chemotherapy regimen. A progression of lymphoma to the central nervous system was suspected. MRI of the head revealed multiple on T2 and fluid attenuated inversion recovery (FLAIR) hyperintense parenchymal lesions with mild surrounding edema, located in both cerebral and cerebellar hemispheres that demonstrated moderate gadolinium enhancement. The polymerase chain reaction on cerebrospinal fluid (CSF PCR) was positive for Toxoplasma gondii. The patient was diagnosed with toxoplasmic encephalitis and successfully treated with sulfadiazine, pyrimethamine and folic acid. Due to the need for maintenance therapy with rituximab for lymphoma remission, the patient now continues with secondary prophylaxis of toxoplasmosis. Conclusions With this case report, we wish to emphasize the need to consider cerebral toxoplasmosis in patients with hematological malignancies on immunosuppressive therapy when presenting with new neurologic deficits. In such patients, there are numerous differential diagnoses for cerebral toxoplasmosis, and the CNS lymphoma is the most difficult among all to distinguish it from. If left untreated, cerebral toxoplasmosis has a high mortality rate; therefore early recognition and treatment are of essential importance. PMID

  20. Congenital Defects.

    ERIC Educational Resources Information Center

    Goldman, Allen S.; And Others

    There are two general categories (not necessarily mutually exclusive) of congenital defects: (1) abnormalities that have an hereditary basis, such as single and multiple genes, or chromosomal abberration; and (2) abnormalities that are caused by nonhereditary factors, such as malnutrition, maternal disease, radiation, infections, drugs, or…

  1. Idiotypic networks incorporating T-B cell co-operation. The conditions for percolation.

    PubMed

    de Boer, R J; Hogeweg, P

    1989-07-10

    Previous work was concerned with symmetric immune networks of idiotypic interactions amongst B cell clones. The behaviour of these networks was contrary to expectations. This was caused by an extensive percolation of idiotypic signals. Idiotypic activation was thus expected to affect almost all (greater than 10(7] B cell clones. We here analyse whether the incorporation of helper T cells (Th) into these B cell models could cause a reduction in the percolation. Empirical work on idiotypic interactions between Th and B cells however, would suggest that two different idiotypic Th models should be developed: (1) a Th which recognises native B cell idiotypes, i.e. a non-MHC-restricted "ThId" model, and (2) a "classical" MHC-restricted helper T cell model. In the ThId model, the Th-B cell interaction is symmetric. A 2-D model of a Th and a B cell clone that interact idiotypically with each other accounts for various equilibria (i.e. one virgin and two immune states). Introduction of antigen does indeed lead to a state switch from the virgin to the immune state; such a system is thus able to "remember" its exposure to antigen. Idiotypic signals do however, percolate in ThId models via these "B-Th-B-Th" pathways: proliferating Th and B cell clones that interact idiotypically, will always activate each other reciprocally. In the MHC-restricted Th model, Th-B interactions are asymmetric. Because the B cell idiotypes are processed and subsequently presented by MHC molecules, the Th receptor and the native B cell receptor are not expected to be complementary. Thus the Th and the B cells are unable to activate each other reciprocally, and a 2-D Th-B cell model cannot account for idiotypic memory. In contrast to the ThId model, idiotypic activation cannot percolate via "B-Th-B-Th" interactions. Due to the assymmetry idiotypic activation stops at the first Th level. A Th clone cannot activate a subsequent B cell clone: if the B cells recognise the Th cells, they see idiotype but

  2. SAP modulates B cell functions in a genetic background-dependent manner.

    PubMed

    Detre, Cynthia; Yigit, Burcu; Keszei, Marton; Castro, Wilson; Magelky, Erica M; Terhorst, Cox

    2013-06-01

    Mutations affecting the SLAM-associated protein (SAP) are responsible for the X-linked lympho-proliferative syndrome (XLP), a severe primary immunodeficiency syndrome with disease manifestations that include fatal mononucleosis, B cell lymphoma and dysgammaglobulinemia. It is well accepted that insufficient help by SAP-/- CD4+ T cells, in particular during the germinal center reaction, is a component of dysgammaglobulinemia in XLP patients and SAP-/- animals. It is however not well understood whether in XLP patients and SAP-/- mice B cell functions are affected, even though B cells themselves do not express SAP. Here we report that B cell intrinsic responses to haptenated protein antigens are impaired in SAP-/- mice and in Rag-/- mice into which B cells derived from SAP-/- mice together with wt CD4+ T cells had been transferred. This impaired B cells functions are in part depending on the genetic background of the SAP-/- mouse, which affects B cell homeostasis. Surprisingly, stimulation with an agonistic anti-CD40 causes strong in vivo and in vitro B cell responses in SAP-/- mice. Taken together, the data demonstrate that genetic factors play an important role in the SAP-related B cell functions. The finding that anti-CD40 can in part restore impaired B cell responses in SAP-/- mice, suggests potentially novel therapeutic interventions in subsets of XLP patients.

  3. Marginal zone B cells emerge as a critical component of pregnancy well-being.

    PubMed

    Muzzio, Damián O; Ziegler, Katharina B; Ehrhardt, Jens; Zygmunt, Marek; Jensen, Federico

    2016-01-01

    The success of eutherian mammal evolution was certainly supported by the ability of the already existing immune system to adapt to the presence of the semi-allogeneic fetus without losing the capability to defend the mother against infections. This required the acquisition of highly regulated and coordinated immunological mechanisms. Failures in the development of these strategies not only lead to the interruption of pregnancy but also compromise maternal health. Alongside changes on the cytokine profile - expansion of tolerogenic dendritic and regulatory T cells - a profound adaptation of the B cell compartment during pregnancy was recently described. Among others, the suppression of B cell lymphopoiesis and B cell lymphopenia were proposed to be protective mechanisms tending to reduce the occurrence of autoreactive B cells that might recognize fetal structures and put pregnancy on risk. On the other hand, expansion of the pre-activated marginal zone (MZ) B cell phenotype was described as a compensatory strategy launched to overcome B cell lymphopenia thus ensuring a proper defense. In this work, using an animal model of pregnancy disturbances, we demonstrated that the suppression of B cell lymphopoiesis as well as splenic B cell lymphopenia occur independently of pregnancy outcome. However, only animals undergoing normal pregnancies, but not those suffering from pregnancy disturbances, could induce an expansion and activation of the MZ B cells. Hence, our results clearly show that MZ B cells, probably due to the production of natural protective antibodies, participate in the fine balance of immune activation required for pregnancy well-being. PMID:26493101

  4. The Functional Response of B Cells to Antigenic Stimulation: A Preliminary Report of Latent Tuberculosis

    PubMed Central

    du Plessis, Willem J.; Kleynhans, Léanie; du Plessis, Nelita; Stanley, Kim; Malherbe, Stephanus T.; Maasdorp, Elizna; Ronacher, Katharina; Chegou, Novel N.; Walzl, Gerhard; Loxton, Andre G.

    2016-01-01

    Mycobacterium tuberculosis (M.tb) remains a successful pathogen, causing tuberculosis disease numbers to constantly increase. Although great progress has been made in delineating the disease, the host-pathogen interaction is incompletely described. B cells have shown to function as both effectors and regulators of immunity via non-humoral methods in both innate and adaptive immune settings. Here we assessed specific B cell functional interaction following stimulation with a broad range of antigens within the LTBI milieu. Our results indicate that B cells readily produce pro- and anti-inflammatory cytokines (including IL-1β, IL-10, IL-17, IL-21 and TNF-α) in response to stimulation. TLR4 and TLR9 based stimulations achieved the greatest secreted cytokine-production response and BCG stimulation displayed a clear preference for inducing IL-1β production. We also show that the cytokines produced by B cells are implicated strongly in cell-mediated communication and that plasma (memory) B cells (CD19+CD27+CD138+) is the subset with the greatest contribution to cytokine production. Collectively our data provides insight into B cell responses, where they are implicated in and quantifies responses from specific B cell phenotypes. These findings warrant further functional B cell research with a focus on specific B cell phenotypes under conditions of active TB disease to further our knowledge about the contribution of various cell subsets which could have implications for future vaccine development or refined B cell orientated treatment in the health setting. PMID:27050308

  5. A two-scale model for correlation between B cell VDJ usage in zebrafish

    NASA Astrophysics Data System (ADS)

    Pan, Keyao; Deem, Michael

    2011-03-01

    The zebrafish (Danio rerio) is one of the model animals for study of immunology. The dynamics of the adaptive immune system in zebrafish is similar to that in higher animals. In this work, we built a two-scale model to simulate the dynamics of B cells in primary and secondary immune reactions in zebrafish and to explain the reported correlation between VDJ usage of B cell repertoires in distinct zebrafish. The first scale of the model consists of a generalized NK model to simulate the B cell maturation process in the 10-day primary immune response. The second scale uses a delay ordinary differential equation system to model the immune responses in the 6-month lifespan of zebrafish. The generalized NK model shows that mature B cells specific to one antigen mostly possess a single VDJ recombination. The probability that mature B cells in two zebrafish have the same VDJ recombination increases with the B cell population size or the B cell selection intensity and decreases with the B cell hypermutation rate. The ODE model shows a distribution of correlation in the VDJ usage of the B cell repertoires in two six-month-old zebrafish that is highly similar to that from experiment. This work presents a simple theory to explain the experimentally observed correlation in VDJ usage of distinct zebrafish B cell repertoires after an immune response.

  6. B cell antigen presentation is sufficient to drive neuroinflammation in an animal model of multiple sclerosis.

    PubMed

    Parker Harp, Chelsea R; Archambault, Angela S; Sim, Julia; Ferris, Stephen T; Mikesell, Robert J; Koni, Pandelakis A; Shimoda, Michiko; Linington, Christopher; Russell, John H; Wu, Gregory F

    2015-06-01

    B cells are increasingly regarded as integral to the pathogenesis of multiple sclerosis, in part as a result of the success of B cell-depletion therapy. Multiple B cell-dependent mechanisms contributing to inflammatory demyelination of the CNS have been explored using experimental autoimmune encephalomyelitis (EAE), a CD4 T cell-dependent animal model for multiple sclerosis. Although B cell Ag presentation was suggested to regulate CNS inflammation during EAE, direct evidence that B cells can independently support Ag-specific autoimmune responses by CD4 T cells in EAE is lacking. Using a newly developed murine model of in vivo conditional expression of MHC class II, we reported previously that encephalitogenic CD4 T cells are incapable of inducing EAE when B cells are the sole APC. In this study, we find that B cells cooperate with dendritic cells to enhance EAE severity resulting from myelin oligodendrocyte glycoprotein (MOG) immunization. Further, increasing the precursor frequency of MOG-specific B cells, but not the addition of soluble MOG-specific Ab, is sufficient to drive EAE in mice expressing MHCII by B cells alone. These data support a model in which expansion of Ag-specific B cells during CNS autoimmunity amplifies cognate interactions between B and CD4 T cells and have the capacity to independently drive neuroinflammation at later stages of disease.

  7. Natalizumab treatment leads to an increase in circulating CXCR3-expressing B cells

    PubMed Central

    Penttilä, Tarja-Leena; Airas, Laura

    2016-01-01

    Objective: To study the effects of natalizumab treatment on subgroups of circulating peripheral blood B cell populations. Methods: We studied the proportions and absolute numbers of CD19+CD20+, CD10+, and CD5+ B cell populations, and determined very late activation antigen-4 and chemokine receptor CXCR3, CCR5, and CCR6 expression on B cells in the peripheral blood of 14 natalizumab-treated patients with relapsing-remitting multiple sclerosis. Five blood samples per patient were obtained longitudinally before and during the first year of treatment. Blood samples were analyzed by 6-color flow cytometry. Results: Proportions of B cells and CD10+ pre–B cells were significantly increased, and very late activation antigen-4 expression on the B cell surface was significantly decreased already after 1 week of natalizumab treatment. Natalizumab-induced sustained increase in the proportion and absolute number of CXCR3-expressing B cells was statistically significant after 1 month of treatment. There were no changes in the proportions of CCR5- or CCR6-expressing B cells. Conclusions: The rapid and persistent increase in circulating CXCR3-expressing B cells in response to natalizumab treatment possibly reflects the relevance of this chemokine receptor in controlling migration of B cells into the CNS in humans in vivo. PMID:27800533

  8. A NOVel ELISPOT assay to quantify HLA-specific B cells in HLA-immunized individuals.

    PubMed

    Heidt, S; Roelen, D L; de Vaal, Y J H; Kester, M G D; Eijsink, C; Thomas, S; van Besouw, N M; Volk, H D; Weimar, W; Claas, F H J; Mulder, A

    2012-06-01

    Quantification of the humoral alloimmune response is generally achieved by measuring serum HLA antibodies, which provides no information about the cells involved in the humoral immune response. Therefore, we have developed an HLA-specific B-cell ELISPOT assay allowing for quantification of B cells producing HLA antibodies. We used recombinant HLA monomers as target in the ELISPOT assay. Validation was performed with human B-cell hybridomas producing HLA antibodies. Subsequently, we quantified B cells producing HLA antibodies in HLA-immunized individuals, non-HLA-immunized individuals and transplant patients with serum HLA antibodies. B-cell hybridomas exclusively formed spots against HLA molecules of corresponding specificity with the sensitivity similar to that found in total IgG ELISPOT assays. HLA-immunized healthy individuals showed up to 182 HLA-specific B cells per million total B cells while nonimmunized individuals had none. Patients who were immunized by an HLA-A2-mismatched graft had up to 143 HLA-A2-specific B cells per million total B cells. In conclusion, we have developed and validated a highly specific and sensitive HLA-specific B-cell ELISPOT assay, which needs further validation in a larger series of transplant patients. This technique constitutes a new tool for quantifying humoral immune responses. PMID:22390272

  9. Ex vivo characterization and isolation of rare memory B cells with antigen tetramers.

    PubMed

    Franz, Bettina; May, Kenneth F; Dranoff, Glenn; Wucherpfennig, Kai

    2011-07-14

    Studying human antigen-specific memory B cells has been challenging because of low frequencies in peripheral blood, slow proliferation, and lack of antibody secretion. Therefore, most studies have relied on conversion of memory B cells into antibody-secreting cells by in vitro culture. To facilitate direct ex vivo isolation, we generated fluorescent antigen tetramers for characterization of memory B cells by using tetanus toxoid as a model antigen. Brightly labeled memory B cells were identified even 4 years after last immunization, despite low frequencies ranging from 0.01% to 0.11% of class-switched memory B cells. A direct comparison of monomeric to tetrameric antigen labeling demonstrated that a substantial fraction of the B-cell repertoire can be missed when monomeric antigens are used. The specificity of the method was confirmed by antibody reconstruction from single-cell sorted tetramer(+) B cells with single-cell RT-PCR of the B-cell receptor. All antibodies bound to tetanus antigen with high affinity, ranging from 0.23 to 2.2 nM. Furthermore, sequence analysis identified related memory B cell and plasmablast clones isolated more than a year apart. Therefore, antigen tetramers enable specific and sensitive ex vivo characterization of rare memory B cells as well as the production of fully human antibodies.

  10. IL-6 contributes to an immune tolerance checkpoint in post germinal center B cells.

    PubMed

    Yan, Yi; Wang, Ying-Hua; Diamond, Betty

    2012-02-01

    The generation of a B cell repertoire involves producing and subsequently purging autoreactive B cells. Receptor editing, clonal deletion and anergy are key mechanisms of central B cell tolerance. Somatic mutation of antigen-activated B cells within the germinal center produces a second wave of autoreactivity; but the regulatory mechanisms that operate at this phase of B cell activation are poorly understood. We recently identified a post germinal center tolerance checkpoint, where receptor editing is re-induced to extinguish autoreactivity that is generated by somatic hypermutation. Re-induction of the recombinase genes RAG1 and RAG2 in antigen-activated B cells requires antigen to engage the B cell receptor and IL-7 to signal through the IL-7 receptor. We demonstrate that this process requires IL-6 to upregulate IL-7 receptor expression on post germinal center B cells. Diminishing IL-6 by blocking antibody or haplo-insufficiency leads to reduced expression of the IL-7 receptor and RAG and increased titers of anti-DNA antibodies following immunization with a peptide mimetope of DNA. The dependence on IL-6 to initiate receptor editing is B cell intrinsic. Interestingly, estradiol decreases IL-6 expression thereby increasing the anti-DNA response. Our data reveal a novel regulatory cascade to control post germinal center B cell autoreactivity.

  11. Impaired B lymphopoiesis in old age: a role for inflammatory B cells?

    PubMed

    Riley, Richard L

    2013-12-01

    Continued generation of new B cells within the bone marrow is required throughout life. However, in old age, B lymphopoiesis is inhibited at multiple developmental stages from hematopoietic stem cells through the late stages of new B cell generation. While changes in B cell precursor subsets, as well as alterations in the supporting bone marrow microenvironment, in old age have been known for the last 20 years, only more recently have insights into the cellular and molecular mechanisms responsible become clarified. Our recent discovery that B cells in aged mice are pro-inflammatory and can diminish B cell generation within the bone marrow suggests a potential mechanism of inappropriate "B cell feedback" which contributes to a bone marrow microenvironment unfavorable to B lymphopoiesis. We hypothesize that the consequences of a pro-inflammatory microenvironment in old age are (1) reduced B cell generation and (2) alteration in the "read-out" of the antibody repertoire. Both of these likely ensue from reduced expression of the surrogate light chain (λ5 + VpreB) and consequently reduced expression of the pre-B cell receptor (preBCR), critical to pre-B cell expansion and Vh selection. In old age, B cell development may progressively be diverted into a preBCR-compromised pathway. These abnormalities in B lymphopoiesis likely contribute to the poor humoral immunity seen in old age.

  12. B cell follicle-like structures in multiple sclerosis-with focus on the role of B cell activating factor.

    PubMed

    Haugen, Morten; Frederiksen, Jette L; Degn, Matilda

    2014-08-15

    B lymphocytes play an important role in the pathogenesis of multiple sclerosis (MS). Follicle-like structures (FLS) have recently been found in the subarachnoid space in the leptomeninges in some patients with secondary progressive MS (SPMS). They contain proliferating B lymphocytes, plasma cells, helper T lymphocytes and a network of follicular dendritic cells. FLS have been shown to correlate with increased cortical demyelination, neuronal loss, meningeal infiltration and central nervous system inflammation, as well as lower age at disease onset and progression to severe disability and death. In this review, we will discuss the role of FLS in MS pathogenesis and disease course and the possible influence by B cell activating factor (BAFF) and C-X-C motif chemokine 13 (CXCL13).

  13. Pin1 is required for sustained B cell proliferation upon oncogenic activation of Myc

    PubMed Central

    D'Artista, Luana; Bisso, Andrea; Piontini, Andrea; Doni, Mirko; Verrecchia, Alessandro; Kress, Theresia R.; Morelli, Marco J.; Del Sal, Giannino; Amati, Bruno; Campaner, Stefano

    2016-01-01

    The c-myc proto-oncogene is activated by translocation in Burkitt's lymphoma and substitutions in codon 58 stabilize the Myc protein or augment its oncogenic potential. In wild-type Myc, phosphorylation of Ser 62 and Thr 58 provides a landing pad for the peptidyl prolyl-isomerase Pin1, which in turn promotes Ser 62 dephosphorylation and Myc degradation. However, the role of Pin1 in Myc-induced lymphomagenesis remains unknown. We show here that genetic ablation of Pin1 reduces lymphomagenesis in Eμ-myc transgenic mice. In both Pin1-deficient B-cells and MEFs, the proliferative response to oncogenic Myc was selectively impaired, with no alterations in Myc-induced apoptosis or mitogen-induced cell cycle entry. This proliferative defect wasn't attributable to alterations in either Ser 62 phosphorylation or Myc-regulated transcription, but instead relied on the activity of the ARF-p53 pathway. Pin1 silencing in lymphomas retarded disease progression in mice, making Pin1 an attractive therapeutic target in Myc-driven tumors. PMID:26943576

  14. The IgH 3′ regulatory region controls somatic hypermutation in germinal center B cells

    PubMed Central

    Rouaud, Pauline; Vincent-Fabert, Christelle; Saintamand, Alexis; Fiancette, Rémi; Marquet, Marie; Robert, Isabelle; Reina-San-Martin, Bernardo; Pinaud, Eric

    2013-01-01

    Interactions with cognate antigens recruit activated B cells into germinal centers where they undergo somatic hypermutation (SHM) in V(D)J exons for the generation of high-affinity antibodies. The contribution of IgH transcriptional enhancers in SHM is unclear. The Eμ enhancer upstream of Cμ has a marginal role, whereas the influence of the IgH 3′ regulatory region (3′RR) enhancers (hs3a, hs1,2, hs3b, and hs4) is controversial. To clarify the latter issue, we analyzed mice lacking the whole 30-kb extent of the IgH 3′RR. We show that SHM in VH rearranged regions is almost totally abrogated in 3′RR-deficient mice, whereas the simultaneous Ig heavy chain transcription rate is only partially reduced. In contrast, SHM in κ light chain genes remains unaltered, acquitting for any global SHM defect in our model. Beyond class switch recombination, the IgH 3′RR is a central element that controls heavy chain accessibility to activation-induced deaminase modifications including SHM. PMID:23825188

  15. Major histocompatibility complex class II expression distinguishes two distinct B cell developmental pathways during ontogeny

    PubMed Central

    1994-01-01

    All mature B cells coexpress major histocompatibility complex (MHC) class II molecules, I-A and I-E, which are restriction elements required for antigen presentation to CD4+ T cells. However, the expression of class II during the early stages of B cell development has been unclear. We demonstrate here that there is a difference in the expression of class II during murine B cell development in the fetal liver and adult bone marrow (BM). These differences define two distinct B cell developmental pathways. The Fetal-type (FT) pathway is characterized by pre-B and immature IgM+ B cells generated in the fetal liver which initially lack all class II expression. In contrast, the Adult-type (AT) pathway is typified by B cells developing in the adult BM which express class II molecules from the pre-B cell stage. In vitro stromal cell cultures of sorted fetal liver and adult BM pro-B cells indicated that the difference in I-A expression during B cell development is intrinsic to the progenitors. In addition, we show that FT B cell development is not restricted to the fetal liver but occurs in the peritoneal cavities, spleens, liver, and BM of young mice up to at least 1 mo of age. The AT B cell development begins to emerge after birth but is, however, restricted to the BM environment. These findings indicate that there are two distinct B cell developmental pathways during ontogeny, each of which could contribute differentially to the immune repertoire and thus the functions of B cell subsets and lineages. PMID:7913950

  16. Naïve and memory B cells exhibit distinct biochemical responses following BCR engagement.

    PubMed

    Moens, Leen; Kane, Alisa; Tangye, Stuart G

    2016-09-01

    Immunological memory is characterized by the rapid reactivation of memory B cells that produce large quantities of high-affinity antigen-specific antibodies. This contrasts the response of naïve B cells, and the primary immune response, which is much slower and of lower affinity. Memory responses are critical for protection against infectious diseases and form the basis of most currently available vaccines. Although we have known about the phenomenon of long-lived memory for centuries, the biochemical differences underlying these diverse responses of naïve and memory B cells is incompletely resolved. Here we investigated the nature of B-cell receptor (BCR) signaling in human splenic naïve, IgM(+) memory and isotype-switched memory B cells following multivalent BCR crosslinking. We observed comparable rapid and transient phosphorylation kinetics for proximal (phosphotyrosine and spleen tyrosine kinase) and propagation (B-cell linker, phospholipase Cγ2) signaling components in these different B-cell subsets. However, the magnitude of activation of downstream components of the BCR signaling pathway were greater in memory compared with naïve cells. Although no differences were observed in the magnitude of Ca(2+) mobilization between subsets, IgM(+) memory B cells exhibited a more rapid Ca(2+) mobilization and a greater depletion of the Ca(2+) endoplasmic reticulum stores, while IgG(+) memory B cells had a prolonged Ca(2+) uptake. Collectively, our findings show that intrinsic signaling features of B-cell subsets contribute to the robust response of human memory B cells over naïve B cells. This has implications for our understanding of memory B-cell responses and provides a framework to modulate these responses in the setting of vaccination and immunopathologies, such as immunodeficiency and autoimmunity. PMID:27101923

  17. Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation.

    PubMed

    Xiao, Sheng; Brooks, Craig R; Sobel, Raymond A; Kuchroo, Vijay K

    2015-02-15

    T cell Ig and mucin domain (Tim)-1 identifies IL-10-producing regulatory B cells (Bregs). Mice on the C57BL/6 background harboring a loss-of-function Tim-1 mutant showed progressive loss of IL-10 production in B cells and with age developed severe multiorgan tissue inflammation. We demonstrate that Tim-1 expression and signaling in Bregs are required for optimal production of IL-10. B cells with Tim-1 defects have impaired IL-10 production but increased proinflammatory cytokine production, including IL-1 and IL-6. Tim-1-deficient B cells promote Th1 and Th17 responses but inhibit the generation of regulatory T cells (Foxp3(+) and IL-10-producing type 1 regulatory T cells) and enhance the severity of experimental autoimmune encephalomyelitis. Mechanistically, Tim-1 on Bregs is required for apoptotic cell (AC) binding to Bregs and for AC-induced IL-10 production in Bregs. Treatment with ACs reduces the severity of experimental autoimmune encephalomyelitis in hosts with wild-type but not Tim-1-deficient Bregs. Collectively, these findings suggest that in addition to serving as a marker for identifying IL-10-producing Bregs, Tim-1 is also critical for maintaining self-tolerance by regulating IL-10 production in Bregs.

  18. Impaired selective cytokine production by CD4(+) T cells in Common Variable Immunodeficiency associated with the absence of memory B cells.

    PubMed

    Berrón-Ruiz, Laura; López-Herrera, Gabriela; Vargas-Hernández, Alexander; Santos-Argumedo, Leopoldo; López-Macías, Constantino; Isibasi, Armando; Segura-Méndez, Nora Hilda; Bonifaz, Laura

    2016-05-01

    Common Variable Immunodeficiency (CVID) is a primary immunodeficiency characterized by B cell dysfunction and decreased serum immunoglobulin. CVID patients are classified by the absence or presence of memory B cells. In addition, T cell defects have been demonstrated in only a proportion of CVID patients. The aim of this study was to evaluate the function of CD4(+) T cells from CVID patients and its association with memory B cells. Patients were classified according to their Freiburg groups: group Ia and Ib, with decreased switched memory B cells (<0.4 of PBL), and group II, with normal B cell subsets. Their T cell function was evaluated after stimulation. We observed normal and even increased CD4(+) T cell proliferation in group Ia (p=0.0277). The proliferation positively correlated with the clinical severity score (r=0.4796). We observed lower levels of IL-17A and IL-10 in group Ia (p=0.0177, 0.0109) and Ib (p=0.0009, 0.0084) patients. Group Ib patients also had low levels of IL-13 and IL-9 (p=0.0169, 0.010). Group II patients had similar cytokine production to that of the controls. BAFFR expression was reduced in groups Ia (p=0.0001) and Ib (p=0.0002) and showed an inverse correlation with the severity score (p=0.0262; r=0.5371). ICOS expression was reduced in group Ia (p=0.0364), and PD-1 was increased in group Ib (p=0.0432) patients. This study shows a selective impairment in cytokine production in group Ia patients, which was more extensive than in group Ib patients. The impairment was associated with BAFFR expression in B cells, with ICOS and PD-1 in T cells and, remarkably, with the absence of memory B cells and with the disease severity. Our results suggest that the evaluation of cytokine expression by T cells in combination with the study of B cell memory could be important for understand the pathogenesis of CVID patients.

  19. Inhibition of p53, p21 and Bax by pifithrin-alpha does not affect UV induced apoptotic response in CS-B cells.

    PubMed

    Proietti De Santis, Luca; Balajee, Adayabalam S; Lorenti Garcia, Claudia; Pepe, Gaetano; Worboys, Ana Montes; Palitti, Fabrizio

    2003-08-12

    Cockayne syndrome (CS) is a human autosomal recessive disorder characterized by many neurological and developmental abnormalities. CS cells are defective in transcription coupled repair (TCR) pathway that removes DNA damage from the transcribed strand of active genes. In spite of a TCR deficiency at the cellular level, CS patients do not develop cancer. The lack of cancer incidence in CS patients may be due to the selective elimination of cells by an apoptotic pathway. In order to verify the role of p53-associated pathway in ultraviolet (UV) induced apoptosis in human CS-B cells, the expression of p53 and p53 responsive genes was analysed in UV irradiated human cells after treatment with pifithrin-alpha (PFTalpha). PTFalpha effectively inhibited the induction of p53, p21 and Bax after UV treatment without affecting the apoptotic response in CS-B cells. Our results indicate that the p53-associated pathway involving p21 and Bax does not largely contribute to UV induced apoptosis in TCR defective human CS-B cells. PMID:12893085

  20. Changes in B Cell Populations and Merozoite Surface Protein-1-Specific Memory B Cell Responses after Prolonged Absence of Detectable P. falciparum Infection

    PubMed Central

    Ayieko, Cyrus; Maue, Alexander C.; Jura, Walter G. Z. O.; Noland, Gregory S.; Ayodo, George; Rochford, Rosemary; John, Chandy C.

    2013-01-01

    Clinical immunity to malaria declines in the absence of repeated parasite exposure. However, little is known about how B cell populations and antigen-specific memory B cells change in the absence of P. falciparum infection. A successful indoor residual insecticide spraying campaign in a highland area of western Kenya, led to an absence of blood-stage P. falciparum infection between March 2007 and April 2008. We assessed memory B cell responses in 45 adults at the beginning (April 2008) and end (April 2009) of a subsequent 12-month period during which none of the adults had evidence of asymptomatic parasitemia or clinical disease. Antibodies and memory B cells to the 42-kDa portion of the merozoite surface protein-1 (MSP-142) were measured using ELISA and ELISPOT assays, respectively. B cell populations were characterized by flow cytometry. From 2008 to 2009, the prevalence of MSP-142-specific memory B cells (45% vs. 55%, respectively, P = 0.32) or antibodies (91% vs. 82%, respectively, P = 0.32) did not differ significantly, although specific individuals did change from positive to negative and vice versa, particularly for memory B cells, suggesting possible low-level undetected parasitemia may have occurred in some individuals. The magnitude of MSP-142-specific memory B cells and levels of antibodies to MSP-142 also did not differ from 2008 to 2009 (P>0.10 for both). However, from 2008 to 2009 the proportions of both class-switched atypical (CD19+IgD-CD27-CD21-IgM-) and class-switched activated (CD19+IgD-CD27+CD21-IgM-) memory B cells decreased (both P<0.001). In contrast, class-switched resting classical memory B cells (CD19+IgD-CD27+CD21+IgM-) increased (P<0.001). In this area of seasonal malaria transmission, a one- year absence of detectable P. falciparum infection was not associated with changes in the prevalence or level of MSP-142 specific memory B cells, but was associated with major changes in overall memory B cell subsets. PMID:23826242

  1. Analysis of CD40-CD40 ligand interactions in the regulation of human B cell function.

    PubMed

    Lipsky, P E; Attrep, J F; Grammer, A C; McIlraith, M J; Nishioka, Y

    1997-04-01

    CD40-CD40 ligand interactions play an essential role in T cell/B cell collaboration. The data presented in this review have served to widen the scope of CD40-CD40 ligand interactions to include initial activation, proliferation, differentiation, and isotype switching of B cells, as well as subsequent downregulation of B cell function. Moreover, CD40 ligand expression by activated B cells is likely to play an essential role in facilitating ongoing responses of stimulated B cells maturing in germinal centers. Finally, CD40 expression by activated T cells may also play an important role in regulating the function of helper T cells within germinal centers. In summary, emerging data have expanded the role of CD40-CD40 ligand interaction during T cell/B cell collaboration and have emphasized its potential to regulate many of the functions of both partners in this essential interaction involved in antibody production.

  2. Signaling Proteins and Transcription Factors in Normal and Malignant Early B Cell Development

    PubMed Central

    Pérez-Vera, Patricia; Reyes-León, Adriana; Fuentes-Pananá, Ezequiel M.

    2011-01-01

    B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates. PMID:22046564

  3. Signaling proteins and transcription factors in normal and malignant early B cell development.

    PubMed

    Pérez-Vera, Patricia; Reyes-León, Adriana; Fuentes-Pananá, Ezequiel M

    2011-01-01

    B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates.

  4. Rehabilitation or the death penalty: autoimmune B cells in the dock.

    PubMed

    Dahal, Lekh N; Cragg, Mark S

    2015-03-01

    CD20-based monoclonal antibodies have become established as treatments for lymphoma, rheumatoid arthritis, systemic lupus erythematosus, vasculitis and dermatomyositis, with the principle therapeutic mechanism relating to B-cell depletion through effector cell engagement. An article by Brühl et al. in this issue of the European Journal of Immunology [Eur. J. Immunol. 2015. 45: 705-715] reveals a fundamentally distinct mechanism of silencing autoimmune B-cell responses. Rather than B-cell depletion, the authors use anti-CD79b antibodies to induce B-cell tolerance and suppress humoral immune responses against collagen to prevent the development of arthritis in mice. Here we highlight the differences in the mechanisms used by anti-CD20 and anti-CD79b Ab therapy and discuss why depletion of B cells may not be required to treat autoimmune arthritis and other B-cell-associated pathologies.

  5. Rehabilitation or the death penalty: autoimmune B cells in the dock.

    PubMed

    Dahal, Lekh N; Cragg, Mark S

    2015-03-01

    CD20-based monoclonal antibodies have become established as treatments for lymphoma, rheumatoid arthritis, systemic lupus erythematosus, vasculitis and dermatomyositis, with the principle therapeutic mechanism relating to B-cell depletion through effector cell engagement. An article by Brühl et al. in this issue of the European Journal of Immunology [Eur. J. Immunol. 2015. 45: 705-715] reveals a fundamentally distinct mechanism of silencing autoimmune B-cell responses. Rather than B-cell depletion, the authors use anti-CD79b antibodies to induce B-cell tolerance and suppress humoral immune responses against collagen to prevent the development of arthritis in mice. Here we highlight the differences in the mechanisms used by anti-CD20 and anti-CD79b Ab therapy and discuss why depletion of B cells may not be required to treat autoimmune arthritis and other B-cell-associated pathologies. PMID:25639261

  6. Microbial Translocation and B Cell Dysfunction in Human Immunodeficiency Virus Disease

    PubMed Central

    Jiang, Wei

    2013-01-01

    The gut mucosal barrier disrupted in HIV disease, resulting in increased systemic exposure to microbial products such as Lipo Polys Accharide (LPS). The association of enhanced microbial translocation and B cell dysfunction in HIV disease is not fully understood. High dose and short term exposure of microbial Toll-Like Receptor (TLR) agonists were used as vaccine adjuvants, however, low dose and long term exposure of TLR agonists could be harmful. The characteristics of B cell dysfunction in HIV disease included B cell, especially memory B cell depletion, enhanced levels of autoimmune antibodies and impaired vaccine or antigen responsiveness. This review discusses and explores the possibility of the effect of microbial translocation on memory B cell depletion and impaired vaccine responses in HIV infection. By determining the mechanisms of B cell depletion and perturbations in HIV disease, it may be possible to design interventions that can improve immune responses to vaccines, reduce selected opportunistic infections and perhaps slow disease progression. PMID:23869197

  7. Disorders of B cells and helper T cells in the pathogenesis of the immunoglobulin deficiency of patients with ataxia telangiectasia.

    PubMed Central

    Waldmann, T A; Broder, S; Goldman, C K; Frost, K; Korsmeyer, S J; Medici, M A

    1983-01-01

    The pathogenesis of the immunoglobulin deficiency of 20 patients with ataxia telangiectasia was studied using an in vitro immunoglobulin biosynthesis system. 10 patients had no detectable IgA in their serum as assessed by radial diffusion in agar and 3 had a reduced serum IgA concentration. The peripheral blood mononuclear cells of 17 of the patients and 17 normal controls were cultured with pokeweed mitogen for 12 d and the immunoglobulin in the supernatants measured. The immunoglobulin synthesis was below the lower limit of the normal 95% confidence interval for IgM in 5 patients, for IgG in 8, and for IgA in 14. The mononuclear cells from 9 of the 10 patients with a serum IgA concentration less than 0.1 mg/ml failed to synthesize IgA in vitro. None of the patients manifested excessive suppressor cell activity. All patients had reduced but measurable helper T cell activity for immunoglobulin synthesis by co-cultured normal pokeweed mitogen-stimulated B cells (geometric mean 22% of normal). Furthermore, the addition of normal irradiated T cells to patient peripheral blood mononuclear cells led to an augmentation of IgM synthesis in 15 of 17 and to increased IgG synthesis in 9 of the 17 patients studied, including 9 of the 12 patients who had synthesized IgG before the addition of the irradiated T cells. In addition, IgA synthesis was increased in all eight patients examined that had serum IgA concentrations greater than 0.1 mg/ml. These studies suggest that a helper T cell defect contributes to the diminished immunoglobulin synthesis. However, a helper T cell defect does not appear to be the sole cause since there was no IgA synthesis by the peripheral blood mononuclear cells of 9 of the 10 patients with a profoundly reduced serum IgA even when co-cultured with normal T cells. Furthermore, the cells of the nine patients with profoundly reduced IgA levels examined also failed to produce IgA when stimulated with the relatively helper T cell-independent polyclonal

  8. CD27-CD70 interactions regulate B-cell activation by T cells.

    PubMed Central

    Kobata, T; Jacquot, S; Kozlowski, S; Agematsu, K; Schlossman, S F; Morimoto, C

    1995-01-01

    CD27, a member of the tumor necrosis factor (TNF) receptor family, binds to its ligand CD70, a member of the TNF family, and subsequently induces T-cell costimulation and B-cell activation. CD27 is expressed on resting T and B cells, whereas CD70 is expressed on activated T and B cells. Utilizing transfected murine pre-B-cell lines expressing human CD27 or CD70, we have examined the effect of such transfectant cells on human B-cell IgG production and B-cell proliferation. We show that the addition of CD27-transfected cells to a T-cell-dependent, pokeweed mitogen-driven B-cell IgG synthesis system resulted in marked inhibition of IgG production, whereas the addition of CD70-transfected cells enhanced IgG production. The inhibition and enhancement of pokeweed mitogen-driven IgG production by CD27 and CD70 transfectants were abrogated by pretreatment with anti-CD27 and anti-CD70 monoclonal antibodies, respectively. In contrast, little or no inhibition of IgG production and B-cell proliferation was noted with CD27-transfected cells or either anti-CD27 or CD70 monoclonal antibody in a T-cell-independent Staphylococcus aureus/interleukin 2-driven B-cell activation system. In this same system CD70-transfected cells enhanced B-cell IgG production and B-cell proliferation, and this enhancement could be gradually abrogated by addition of increasing numbers of CD27-transfected cells. These results clearly demonstrate that interactions among subsets of T cells expressing CD27 and CD70 play a key role in regulating B-cell activation and immunoglobulin synthesis. PMID:7479974

  9. Disodium cromoglycate enhances ongoing immunoglobulin production in vitro in human B cells.

    PubMed Central

    Kimata, H; Yoshida, A; Ishioka, C; Mikawa, H

    1991-01-01

    The effect of disodium cromoglycate (DSCG) upon human immunoglobulin (Ig) isotypes and IgG subclasses production by purified B cells was studied. DSCG enhanced IgM, IgG1, IgG2, IgG3, IgG4 and IgA production in a dose-dependent fashion, while DSCG failed to induce IgE production at any concentrations tested by purified B cells. When B cells were separated into small resting and large activated B cells, DSCG failed to induce Ig production from small resting B cells in the presence or absence of Staphylococcus aureus Cowan strain I (SAC). In contrast, in large activated B cells DSCG significantly enhanced all types of Ig production (two-to threefold), especially IgG4 production (seven-to 11-fold), except IgE, which large B cells did not produce. The enhancement of IgG subclass production was not subclass switching, since DSCG failed to enhance IgG1 production in B cells depleted of surface IgG1+ cells (sIgG1+ cells). Similarly, DSCG did not enhance IgG2, IgG3 or IgG4 production from sIgG2-, sIgG3- or sIgG4- B cells, respectively, Interleukin-4 (IL-4) or interleukin-6 (IL-6) also enhanced Ig production except IgG4 from large activated B cells. The enhancing effect of DSCG was not mediated by IL-4 or IL-6 since anti-IL-4 or anti-IL-6 antibody failed to block the DSCG-induced enhancement. DSCG also enhanced IgG2 and IgM production from human B-cell lines GM-1500 and CBL, respectively. These results suggest that DSCG directly and preferentially stimulates activated B cells which are producing Ig and, in addition, enhances their Ig production. PMID:1904400

  10. Translating transitions – how to decipher peripheral human B cell development

    PubMed Central

    Bemark, Mats

    2015-01-01

    Abstract During the last two decades our understanding of human B cell differentiation has developed considerably. Our understanding of the human B cell compartment has advanced from a point where essentially all assays were based on the presence or not of class-switched antibodies to a level where a substantial diversity is appreciated among the cells involved. Several consecutive transitional stages that newly formed IgM expressing B cells go through after they leave the bone marrow, but before they are fully mature, have been described, and a significant complexity is also acknowledged within the IgM expressing and class-switched memory B cell compartments. It is possible to isolate plasma blasts in blood to follow the formation of plasma cells during immune responses, and the importance and uniqueness of the mucosal IgA system is now much more appreciated. Current data suggest the presence of at least one lineage of human innate-like B cells akin to B1 and/or marginal zone B cells in mice. In addition, regulatory B cells with the ability to produce IL-10 have been identified. Clinically, B cell depletion therapy is used for a broad range of conditions. The ability to define different human B cell subtypes using flow cytometry has therefore started to come into clinical use, but as our understanding of human B cell development further progresses, B cell subtype analysis will be of increasing importance in diagnosis, to measure the effect of immune therapy and to understand the underlying causes for diseases. In this review the diversity of human B cells will be discussed, with special focus on current data regarding their phenotypes and functions. PMID:26243514

  11. Bidirectional regulation of human B cell responses by CD40-CD40 ligand interactions.

    PubMed

    Miyashita, T; McIlraith, M J; Grammer, A C; Miura, Y; Attrep, J F; Shimaoka, Y; Lipsky, P E

    1997-05-15

    Positive and negative effects of CD40 ligation on human B cell function were suggested by the observation that mAb to CD40 ligand partially blocked the suppressive influences of anti-CD3-stimulated control CD4+ T cells, as well as the B cell stimulatory effects of anti-CD3 activated mitomycin C-treated CD4+ T cells. To examine the negative effects of CD40 ligation in greater detail, B cells were cultured with anti-CD3 activated mitomycin C-treated CD4+ T cells that expressed optimal levels of CD40 ligand; additional recombinant human CD40 ligand significantly suppressed Ig production, but not proliferation. In contrast, when B cells were stimulated with SAC (formalinized Cowan I strain Staphylococcus aureus) and IL-2 in the absence of T cells, small amounts of recombinant CD40 ligand-stimulated Ig production, whereas larger quantities directly suppressed Ig secretion. The suppressive action of CD40 ligation on Ig production was most apparent after initial B cell activation. Moreover, IgD-memory B cells were significantly more sensitive to inhibition by CD40 ligation than IgD+ naive B cells. Engagement of CD40 not only suppressed Ig secretion by IgD- memory B cells, but also expression of CD38. Finally, activated B cells acquired the capacity to down-regulate CD40 ligand expression by stimulated CD4+ T cells more effectively than resting B cells. These results indicate that during T cell-B cell collaboration, engagement of CD40 can influence Ig production both positively and negatively, depending on the density of CD40 ligand as well as the stage of B cell activation and differentiation.

  12. CD21(-/low) B cells in human blood are memory cells.

    PubMed

    Thorarinsdottir, K; Camponeschi, A; Cavallini, N; Grimsholm, O; Jacobsson, L; Gjertsson, I; Mårtensson, I-L

    2016-08-01

    The complement receptor 2 (CR2, CD21) is part of a complex (CD21/CD19/CD81) acting as a co-receptor to the B cell receptor (BCR). Simultaneous triggering of the BCR and CD21 lowers the threshold for B cell activation. Although CD21 is important, B cells that express low amounts or lack surface CD21 (CD21(-/low) ) are increased in conditions with chronic inflammation, e.g. autoimmune diseases. However, little is known about the CD21(-/low) B cell subset in peripheral blood from healthy donors. Here, we show that CD21(-/low) cells represent approximately 5% of B cells in peripheral blood from adults but are barely detectable in cord blood, after excluding transitional B cells. The CD21(-/low) subset can be divided into CD38(-) 24(+) and CD38(-) 24(low) cells, where most of the CD38(-) 24(+) are CD27(+) immunoglobulin (Ig)M(+) IgD(+) and the CD38(-) 24(low) are switched CD27(-) . Expression levels of additional markers, e.g. CD95 and CD62L, are similar to those on classical memory B cells. In contrast to naive cells, the majority of CD21(-/low) cells lack expression of the ABCB1 transporter. Stimulation with a combination of BCR, Toll-like receptor (TLR)-7/8 and interleukin (IL)-2 induces proliferation and differentiation of the CD21(-/low) B cells comparable to CD21(+) CD27(+) memory B cells. The response excluding BCR agonist is not on par with that of classical memory B cells, although clearly above that of naive B cells. This is ascribed to a weaker response by the CD38(-) 24(low) subset, implying that some memory B cells require not only TLR but also BCR triggering. We conclude that the CD21(-/low) cells in healthy donors are memory B cells. PMID:27010233

  13. Characterization of memory B cells from thymus and its impact for DLBCL classification.

    PubMed

    Bergkvist, Kim Steve; Nørgaard, Martin Agge; Bøgsted, Martin; Schmitz, Alexander; Nyegaard, Mette; Gaihede, Michael; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Urup, Thomas; El-Galaly, Tarec C; Madsen, Jakob; Bødker, Julie Støve; Dybkær, Karen; Johnsen, Hans Erik

    2016-10-01

    The rare memory B cells in thymus (Thy) are considered the cells of origin for primary mediastinal large B-cell lymphoma. The objectives of the present study were to characterize the normal memory B-cell compartment in Thy and to support its association with primary mediastinal B-cell lymphoma. Seven paired human tissue samples from Thy and sternum bone marrow (BM) were harvested during cardiac surgery. B-cell subsets were phenotyped by Euroflow standard and fluorescence-activated cell sorting for microarray analysis on the Human Exon 1.0 ST Arrays platform. Differentially expressed genes between Thy and BM memory B cells were identified and correlated with the molecular subclasses of diffuse large B-cell lymphoma. Within Thy, 4% (median; range 2%-14%) of the CD45(+) hematopoietic cells were CD19(+) B cells, with a major fraction being CD27(+)/CD38(-) memory B cells (median 80%, range 76%-93%). The BM contained 14% (median; range 3%-27%), of which only a minor fraction (median 5%, range 2%-10%) were memory B cells. Global gene expression analysis of the memory B-cell subsets from the two compartments identified 133 genes upregulated in Thy, including AICDA, REL, STAT1, TNF family, SLAMF1, CD80, and CD86. In addition, exons 4 and 5 in the 3' end of AICDA were more highly expressed in Thy than in BM. The Thy memory B-cell gene profile was overexpressed in primary mediastinal B-cell lymphoma compared with other diffuse large B-cell lymphoma subclasses. The present study describes a Thy memory B-cell subset and its gene profile correlated with primary mediastinal B-cell lymphomas, suggesting origin from Thy memory B cells.

  14. B-cell subsets, signaling and their roles in secretion of autoantibodies.

    PubMed

    Iwata, S; Tanaka, Y

    2016-07-01

    B cells play a pivotal role in the pathogenesis of autoimmune diseases. In patients with systemic lupus erythematosus (SLE), the percentages of plasmablasts and IgD(-)CD27(-) double-negative memory B cells in peripheral blood are significantly increased, while IgD(+)CD27(+) IgM memory B cells are significantly decreased compared to healthy donors. The phenotypic change is significantly associated with disease activity and concentration of autoantibodies. Treatment of B-cell depletion using rituximab results in the reconstitution of peripheral B cells in SLE patients with subsequent improvement in disease activity. Numerous studies have described abnormalities in B-cell receptor (BCR)-mediated signaling in B cells of SLE patients. Since differences in BCR signaling are considered to dictate the survival or death of naïve and memory B cells, aberrant BCR signal can lead to abnormality of B-cell subsets in SLE patients. Although Syk and Btk function as key molecules in BCR signaling, their pathological role in SLE remains unclear. We found that Syk and Btk do not only transduce activation signal through BCR, but also mediate crosstalk between BCR and Toll-like receptor (TLR) as well as BCR and JAK-STAT pathways in human B cells in vitro. In addition, pronounced Syk and Btk phosphorylation was observed in B cells of patients with active SLE compared to those of healthy individuals. The results suggest the involvement of Syk and Btk activation in abnormalities of BCR-mediated signaling and B-cell phenotypes during the pathological process of SLE and that Syk, Btk and JAK are potential therapeutic targets in SLE. PMID:27252261

  15. Function and regulation of self-reactive marginal zone B cells in autoimmune arthritis

    PubMed Central

    Palm, Anna-Karin E; Friedrich, Heike C; Mezger, Anja; Salomonsson, Maya; Myers, Linda K; Kleinau, Sandra

    2015-01-01

    Polyreactive innate-type B cells account for many B cells expressing self-reactivity in the periphery. Improper regulation of these B cells may be an important factor that underlies autoimmune disease. Here we have explored the influence of self-reactive innate B cells in the development of collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis. We show that splenic marginal zone (MZ), but not B-1 B cells exhibit spontaneous IgM reactivity to autologous collagen II in naïve mice. Upon immunization with heterologous collagen II in complete Freund's adjuvant the collagen-reactive MZ B cells expanded rapidly, while the B-1 B cells showed a modest anti-collagen response. The MZ B cells were easily activated by toll-like receptor (TLR) 4 and 9-ligands in vitro, inducing proliferation and cytokine secretion, implying that dual engagement of the B-cell receptor and TLRs may promote the immune response to self-antigen. Furthermore, collagen-primed MZ B cells showed significant antigen-presenting capacity as reflected by cognate T-cell proliferation in vitro and induction of IgG anti-collagen antibodies in vivo. MZ B cells that were deficient in complement receptors 1 and 2 demonstrated increased proliferation and cytokine production, while Fcγ receptor IIb deficiency of the cells lead to increased cytokine production and antigen presentation. In conclusion, our data highlight self-reactive MZ B cells as initiators of the autoimmune response in CIA, where complement and Fc receptors are relevant in controlling the self-reactivity in the cells. PMID:25958842

  16. Systemic Sclerosis Patients Present Alterations in the Expression of Molecules Involved in B-Cell Regulation

    PubMed Central

    Soto, Lilian; Ferrier, Ashley; Aravena, Octavio; Fonseca, Elianet; Berendsen, Jorge; Biere, Andrea; Bueno, Daniel; Ramos, Verónica; Aguillón, Juan Carlos; Catalán, Diego

    2015-01-01

    The activation threshold of B cells is tightly regulated by an array of inhibitory and activator receptors in such a way that disturbances in their expression can lead to the appearance of autoimmunity. The aim of this study was to evaluate the expression of activating and inhibitory molecules involved in the modulation of B cell functions in transitional, naive, and memory B-cell subpopulations from systemic sclerosis patients. To achieve this, blood samples were drawn from 31 systemic sclerosis patients and 53 healthy individuals. Surface expression of CD86, MHC II, CD19, CD21, CD40, CD22, Siglec 10, CD35, and FcγRIIB was determined by flow cytometry. IL-10 production was evaluated by intracellular flow cytometry from isolated B cells. Soluble IL-6 and IL-10 levels were measured by ELISA from supernatants of stimulated B cells. Systemic sclerosis patients exhibit an increased frequency of transitional and naive B cells related to memory B cells compared with healthy controls. Transitional and naive B cells from patients express higher levels of CD86 and FcγRIIB than healthy donors. Also, B cells from patients show high expression of CD19 and CD40, whereas memory cells from systemic sclerosis patients show reduced expression of CD35. CD19 and CD35 expression levels associate with different autoantibody profiles. IL-10+ B cells and secreted levels of IL-10 were markedly reduced in patients. In conclusion, systemic sclerosis patients show alterations in the expression of molecules involved in B-cell regulation. These abnormalities may be determinant in the B-cell hyperactivation observed in systemic sclerosis. PMID:26483788

  17. The Genetic Landscape of Diffuse Large B Cell Lymphoma

    PubMed Central

    Pasqualucci, Laura; Dalla-Favera, Riccardo

    2015-01-01

    Diffuse large B cell lymphoma (DLBCL), the most common lymphoid malignancy in the western world, is an aggressive disease that remains incurable in approximately 30% of patients. Over the past decade, the rapid expansion of sequencing technologies allowing the genome-wide assessment of genomic and transcriptional changes has revolutionized our understanding of the genetic basis of DLBCL by providing a comprehensive and unbiased view of the genes/pathways that are disrupted by genetic alterations in this disease, and may contribute to tumor initiation and expansion. These studies uncovered the existence of several previously unappreciated alterations in key cellular pathways that may also influence treatment outcome. Indeed, a number of newly identified genetic lesions are currently being explored as markers for improved diagnosis and risk stratification, or are entering clinical trials as promising therapeutic targets. This review focuses on recent advances in the genomic characterization of DLBCL and discusses how information gained from these efforts has provided new insights into its biology, uncovering potential targets of prognostic and therapeutic relevance. PMID:25805586

  18. Epigenomic evolution in diffuse large B-cell lymphomas

    PubMed Central

    Pan, Heng; Jiang, Yanwen; Boi, Michela; Tabbò, Fabrizio; Redmond, David; Nie, Kui; Ladetto, Marco; Chiappella, Annalisa; Cerchietti, Leandro; Shaknovich, Rita; Melnick, Ari M.; Inghirami, Giorgio G.; Tam, Wayne; Elemento, Olivier

    2015-01-01

    The contribution of epigenomic alterations to tumour progression and relapse is not well characterized. Here we characterize an association between disease progression and DNA methylation in diffuse large B-cell lymphoma (DLBCL). By profiling genome-wide DNA methylation at single-base pair resolution in thirteen DLBCL diagnosis–relapse sample pairs, we show that DLBCL patients exhibit heterogeneous evolution of tumour methylomes during relapse. We identify differentially methylated regulatory elements and determine a relapse-associated methylation signature converging on key pathways such as transforming growth factor-β (TGF-β) receptor activity. We also observe decreased intra-tumour methylation heterogeneity from diagnosis to relapsed tumour samples. Relapse-free patients display lower intra-tumour methylation heterogeneity at diagnosis compared with relapsed patients in an independent validation cohort. Furthermore, intra-tumour methylation heterogeneity is predictive of time to relapse. Therefore, we propose that epigenomic heterogeneity may support or drive the relapse phenotype and can be used to predict DLBCL relapse. PMID:25891015

  19. Hybrid methods for B-cell epitope prediction.

    PubMed

    Caoili, Salvador Eugenio C

    2014-01-01

    Many computational approaches to B-cell epitope prediction have been published, including combinations of previously proposed methods, which complicates the tasks of further developing such computational approaches and of selecting those most appropriate for practical applications (e.g., the design of novel immunodiagnostics and vaccines). These tasks are considered together herein to clarify their close but often overlooked interrelationship, thereby providing a guide to their performance in mutual support of one another, with emphasis on key physicochemical and biological considerations that are relevant from an applications perspective. This aims to assist investigators in performing either or both tasks, with the overall goals of successfully applying computational tools towards practical ends and of generating informative new data towards iterative improvement of the tools, particularly as regards the design of peptide-based immunogens for eliciting the production of antipeptide antibodies that modulate biological activity of protein targets via functionally relevant cross-reactivity in relation to the phenomena of protein folding and protein disorder.

  20. Regulatory B cells correlate with HIV disease progression.

    PubMed

    Jiao, Yanmei; Wang, Xi; Zhang, Tong; Sun, Lijun; Wang, Rui; Li, Wei; Ji, Yunxia; Wu, Hao; Liu, Cuie

    2014-08-01

    A rare subset of IL-10-producing B cells, named Breg, was recently identified in mice and humans. Currently, there are no unified cell surface markers to identify Breg, and the relationship between the frequency of Breg and HIV disease progression in chronic HIV infection is unclear. In the present study, we determined whether the cell surface markers of Breg reported for other diseases are suitable for identifying Breg in HIV-infected patients. In addition, we examined the relationship between Breg and HIV disease progression. We found that Breg frequency correlated positively with viral load and negatively with CD4 count in chronic HIV infection. Following antiretroviral treatment, the CD4 count increased and the frequency of Breg decreased stepwise. There was no difference in IL-10 expression of CD1d(hi) or CD1d(lo) cells isolated from HIV-infected patients. Therefore, CD1d may not be a marker of Breg in HIV-infected patients.

  1. Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers.

    PubMed

    Hopp, Lydia; Nersisyan, Lilit; Löffler-Wirth, Henry; Arakelyan, Arsen; Binder, Hans

    2015-01-01

    We systematically studied the expression of more than fifty histone and DNA (de)methylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt's lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation. PMID:26506391

  2. Targeted Therapies in Adult B-Cell Malignancies

    PubMed Central

    Rossi, Jean-François

    2015-01-01

    B-lymphocytes are programmed for the production of immunoglobulin (Ig) after antigen presentation, in the context of T-lymphocyte control within lymphoid organs. During this differentiation/activation process, B-lymphocytes exhibit different restricted or common surface markers, activation of cellular pathways that regulate cell cycle, metabolism, proteasome activity, and protein synthesis. All molecules involved in these different cellular mechanisms are potent therapeutic targets. Nowadays, due to the progress of the biology, more and more targeted drugs are identified, a situation that is correlated with an extended field of the targeted therapy. The full knowledge of the cellular machinery and cell-cell communication allows making the best choice to treat patients, in the context of personalized medicine. Also, focus should not be restricted to the immediate effects observed as clinical endpoints, that is, response rate, survival markers with conventional statistical methods, but it should consider the prediction of different clinical consequences due to other collateral drug targets, based on new methodologies. This means that new reflection and new bioclinical follow-up have to be monitored, particularly with the new drugs used with success in B-cell malignancies. This review discussed the principal aspects of such evident bioclinical progress. PMID:26425544

  3. Cerebral infratentorial large B-cell lymphoma presenting as Parkinsonism.

    PubMed

    Lin, Chih-Ming; Hong, Kelvin

    2010-03-01

    Though rare, primary intracranial tumors can present with Parkinsonian symptoms, and diagnosis can be delayed unless there is a high index of suspicion. We herein present an 81-year-old man who was seen in our neurology clinic due to acute onset of unsteady gait and altered consciousness. Parkinsonism was initially diagnosed because of the typical manifestations. Levodopa was prescribed; however, there was a limited effect on his symptoms. Upon detail history and neurological examination, left sided hemiparesis was disclosed. Cerebral imaging studies revealed a solid mass over the right infratentorial para-midbrain area leading to reactive obstructive hydrocephalus. Work-up including chest and abdominal CT scanning, upper and lower GI endoscopy, and tumor marker studies failed to uncover any abnormalities. A neurosurgeon was consulted and a shunt procedure and biopsy of the infratentorial mass were performed. Histopathological examination of the biopsy tissue revealed tumor diffusely intermixed with large cells consistent with large B-cell lymphoma. The patient and his family declined further treatment. Though rare, cerebral tumors can present with Parkinsonian features and represent a diagnostic challenge. Clinicians should be aware of the possibility of cerebral neoplasms causing Parkinsonism, and include them in the differential diagnosis, especially for patients presenting with atypical Parkinsonian features, or those not responsive to initial therapy.

  4. Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers

    PubMed Central

    Hopp, Lydia; Nersisyan, Lilit; Löffler-Wirth, Henry; Arakelyan, Arsen; Binder, Hans

    2015-01-01

    We systematically studied the expression of more than fifty histone and DNA (de)methylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation. PMID:26506391

  5. MicroRNAs in diffuse large B-cell lymphoma

    PubMed Central

    NI, HUIYUN; TONG, RONG; ZOU, LINQING; SONG, GUOQI; CHO, WILLIAM C.

    2016-01-01

    The aberrant expression of microRNAs (miRs) has a significant impact on the biological characteristics of lymphocytes, and is important in the pathogenesis of diffuse large B-cell lymphoma (DLBCL). It has been demonstrated, using miR profiling and detecting distinct miR signatures, that certain miRs may accurately distinguish different subtypes and prognostic classifications of DLBCL, as well as distinguish DLBCL from other more indolent lymphomas, including follicular lymphoma. miRs are excellent biomarkers for cancer diagnosis and prognosis. In DLBCL, specific miR expression profiles in the tissues of patients are associated with prognosis and clinical outcome. Over the past decade, there has been substantial investigation concerning the pathogenetic, diagnostic and prognostic roles of miRs in DLBCL. The aim of the present review is to describe the aberrant expression of miRs in DLBCL, and the functions, potential clinical use and possible therapeutic targets of miRs in this disease. PMID:26893730

  6. Signaling and Dynamic Actin Responses of B Cells on Topographical Substrates

    NASA Astrophysics Data System (ADS)

    Ketchum, Christina; Sun, Xiaoyu; Fourkas, John; Song, Wenxia; Upadhyaya, Arpita

    B cells become activated upon physical contact with antigen on the surface of antigen presenting cells, such as dendritic cells. Binding of the B cell receptor with antigen initiates actin-mediated spreading of B cells, signaling cascades and eventually infection fighting antibodies. Lymphocytes, including B cells and T cells, have been shown to be responsive to the physical parameters of the contact surface, such as antigen mobility and substrate stiffness. However the roll of surface topography on lymphocyte function is unknown. Here we investigate the degree to which substrate topography controls actin-mediated spreading and B cell activation using nano-fabricated surfaces and live cell imaging. The model topographical system consists of 600 nanometer tall ridges with spacing varying between 800 nanometers and 5 micrometers. Using TIRF imaging we observe actin dynamics, B cell receptor motion and calcium signaling of B cells as they spread on the ridged substrates. We show that the spacing between ridges had a strong effect on the dynamics of actin and calcium influx on B cells. Our results indicate that B cells are highly sensitive to surface topography during cell spreading and signaling activation.

  7. MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis

    PubMed Central

    Alivernini, Stefano; Kurowska-Stolarska, Mariola; Tolusso, Barbara; Benvenuto, Roberta; Elmesmari, Aziza; Canestri, Silvia; Petricca, Luca; Mangoni, Antonella; Fedele, Anna Laura; Di Mario, Clara; Gigante, Maria Rita; Gremese, Elisa; McInnes, Iain B.; Ferraccioli, Gianfranco

    2016-01-01

    MicroRNA-155 (miR-155) is an important regulator of B cells in mice. B cells have a critical role in the pathogenesis of rheumatoid arthritis (RA). Here we show that miR-155 is highly expressed in peripheral blood B cells from RA patients compared with healthy individuals, particularly in the IgD-CD27- memory B-cell population in ACPA+ RA. MiR-155 is highly expressed in RA B cells from patients with synovial tissue containing ectopic germinal centres compared with diffuse synovial tissue. MiR-155 expression is associated reciprocally with lower expression of PU.1 at B-cell level in the synovial compartment. Stimulation of healthy donor B cells with CD40L, anti-IgM, IL-21, CpG, IFN-α, IL-6 or BAFF induces miR-155 and decreases PU.1 expression. Finally, inhibition of endogenous miR-155 in B cells of RA patients restores PU.1 and reduces production of antibodies. Our data suggest that miR-155 is an important regulator of B-cell activation in RA. PMID:27671860

  8. Norovirus Antagonism of B cell Antigen Presentation Results in Impaired Control of Acute Infection

    PubMed Central

    Zhu, Shu; Jones, Melissa K.; Hickman, Danielle; Han, Shuhong; Reeves, Westley; Karst, Stephanie M.

    2016-01-01

    Human noroviruses are a leading cause of gastroenteritis so vaccine development is desperately needed. Elucidating viral mechanisms of immune antagonism can provide key insight into designing effective immunization platforms. We recently revealed that B cells are targets of norovirus infection. Because noroviruses can regulate antigen presentation by infected macrophages and B cells can function as antigen presenting cells, we tested whether noroviruses regulate B cell-mediated antigen presentation and the biological consequence of such regulation. Indeed, murine noroviruses could prevent B cell expression of antigen presentation molecules and this directly correlated with impaired control of acute infection. In addition to B cells, acute control required MHC class I molecules, CD8+ T cells, and granzymes, supporting a model whereby B cells act as antigen presenting cells to activate cytotoxic CD8+ T cells. This immune pathway was active prior to the induction of antiviral antibody responses. As in macrophages, the minor structural protein VP2 regulated B cell antigen presentation in a virus-specific manner. Commensal bacteria were not required for activation of this pathway and ultimately only B cells were required for clearance of viral infection. These findings provide new insight into the role of B cells in stimulating antiviral CD8+ T cell responses. PMID:27007673

  9. Pathogenic functions of B cells in autoimmune diseases: IFN-γ production joins the criminal gang.

    PubMed

    Fillatreau, Simon

    2015-04-01

    B-cell depletion therapy has emerged as a powerful strategy to intercept the progression of T-cell-mediated autoimmune diseases such as rheumatoid arthritis, type 1 diabetes, or relapsing remitting multiple sclerosis. However, its mode of action remains incompletely defined, reflecting our incomplete understanding of the pathogenic functions of B cells in such pathologies. B cells can contribute to immune responses through the production of antibodies, presentation of antigen to T cells, and production of cytokines. In this issue of the European Journal of Immunology [Eur. J. Immunol. 2015. 45: 988-998], Olalekan et al. demonstrate that IFN-γ production by B cells is essential for the development of arthritis in mice. Lack of IFN-γ expression in B cells results in reduced autoimmune T-cell responses and autoantibody levels, impacting the arthritogenic reaction akin to that in B-cell depletion therapy. Together with other reports, the article by Olalekan et al. emphasizes the importance of cytokine-producing B cells in the pathogenesis of autoimmune diseases. In this commentary, I discuss how these findings shed new light on the roles of B cells as drivers of autoimmune pathogenesis, and how they more generally contribute to our understanding of the role of B cells in immunity.

  10. CEACAM1 mediates B cell aggregation in central nervous system autoimmunity.

    PubMed

    Rovituso, Damiano M; Scheffler, Laura; Wunsch, Marie; Kleinschnitz, Christoph; Dörck, Sebastian; Ulzheimer, Jochen; Bayas, Antonios; Steinman, Lawrence; Ergün, Süleyman; Kuerten, Stefanie

    2016-01-01

    B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1(+) B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines, application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain -3 (TIM-3) on B cells, a novel molecule that has recently been described to induce anergy in T cells. Interestingly, elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall, these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease. PMID:27435215

  11. New insights into B cell biology in SLE and Sjogren’s Syndrome

    PubMed Central

    Bird, Anna K.; Meednu, Nida; Anolik, Jennifer H.

    2015-01-01

    Purpose of review Our understanding of the physiological and pathogenic functions of B cells in systemic lupus erythematosus (SLE) and Sjogren’s syndrome (pSS) continues to expand. In this review, we discuss novel insights published in the last 18 months into the roles of B cells in systemic autoimmunity. Recent findings Data has continued to expand the diverse mechanisms by which innate immune signals including toll like receptors (TLR) may regulate the B cell compartment. Localized B cells and long-lived plasma cells have been identified as playing an important role in target tissue including the development of ectopic lymphoid structures in kidney and salivary gland. In addition to pathogenic roles for B cells, there is mounting evidence for regulatory B cell subsets that play a protective role and new insights into the signals that regulate their development. Summary The past few years have provided insights into the multiple paths by which innate immune signals can lead to B cell activation in SLE and pSS and the increasingly diverse ways in which B cells contribute to disease expression. Further understanding the imbalance between protective and pathogenic functions for B cells in disease including in understudied target tissue should yield new treatment approaches. PMID:26164595

  12. Nek2 Is a Novel Regulator of B Cell Development and Immunological Response

    PubMed Central

    Zhou, Wen; Huang, Junwei; Yang, Ye; Wendlandt, Erik; Xu, Hongwei; Zhan, Fenghuang

    2014-01-01

    The serine/threonine kinase Nek2 is commonly found upregulated in a wide variety of neoplasms including diffuse large B cell lymphoma and multiple myeloma. High expression of Nek2 is implicated in the induction of chromosomal instability, promotion of cell proliferation, and drug resistance in tumor cells as well as a marker for poor clinical outcomes. Despite its well recorded involvement in chromosomal instability and neoplastic growth, little is known about the involvement of Nek2 in B cell development. Here we report the development of a transgenic mouse line with conditional expression of Nek2 in the B cell lineage and the effects it has on the development of B cells. Interestingly, we found that the overexpression of Nek2 does not induce spontaneous tumor formation within the transgenic mice up to 24 months after induction. Instead, overexpression of Nek2 in the B cell lineage affects the development of B cells by increasing the proportion of immature B cells in the bone marrow and decreasing B-1 B cells in peritoneal cavity. Furthermore, Nek2 transgenic mice develop spontaneous germinal centers and exhibit an enhanced T cell dependent immune response. Altogether, our data demonstrates a novel role for Nek2 in regulating B cell development and the immune response. PMID:25485281

  13. Liver Fibrosis Occurs Through Dysregulation of MyD88-dependent Innate B cell Activity

    PubMed Central

    Thapa, Manoj; Chinnadurai, Raghavan; Velazquez, Victoria M.; Tedesco, Dana; Elrod, Elizabeth; Han, Jin-Hwan; Sharma, Prachi; Ibegbu, Chris; Gewirtz, Andrew; Anania, Frank; Pulendran, Bali; Suthar, Mehul S.; Grakoui, Arash

    2015-01-01

    Chronic liver disease mediated by activation of hepatic stellate cells (HSCs) leads to liver fibrosis. Here, we postulated that the immune regulatory properties of HSCs might promote the profibrogenic activity of B cells. Fibrosis is completely attenuated in carbon tetrachloride (CCl4)-treated B cell deficient μMT mice showing that B cells are required. The retinoic acid produced by HSCs augmented B cell survival, plasma cell marker CD138 expression, and IgG production. These activities were reversed following the addition of the retinoic acid inhibitor, LE540. Transcriptional profiling of fibrotic liver B cells revealed an increased expression of genes related to NF-κB activation, proinflammatory cytokine production and CD40 signaling suggesting that these B cells are activated and may be acting as inflammatory cells. Biological validation experiments also revealed increased activation (CD44 and CD86 expressions), constitutive IgG production and secretion of the proinflammatory cytokines TNF-α, MCP-1 and MIP1-α. Likewise targeted deletion of B-cell-intrinsic MyD88 signaling, an innate adaptor with involvement in RA signaling, resulted in reduced infiltration of migratory CD11c+ dendritic cells and Ly6C++ monocytes, and hence reduced liver pathology. Conclusion Our findings demonstrate that liver fibrosis occurs through a mechanism of HSC-mediated augmentation of innate B cell activity and highlight B cells as an important ‘first responders’ of the intrahepatic immune environment. PMID:25711908

  14. Adhesion of Human B Cells to Germinal Centers in Vitro Involves VLA-4 and INCAM-110

    NASA Astrophysics Data System (ADS)

    Freedman, Arnold S.; Munro, J. Michael; Rice, G. Edgar; Bevilacqua, Michael P.; Morimoto, Chikao; McIntyre, Bradley W.; Rhynhart, Kurt; Pober, Jordan S.; Nadler, Lee M.

    1990-08-01

    Human B lymphocytes localize and differentiate within the microenvironment of lymphoid germinal centers. A frozen section binding assay was developed for the identification of those molecules involved in the adhesive interactions between B cells and lymphoid follicles. Activated human B cells and B cell lines were found to selectively adhere to germinal centers. The VLA-4 molecule on the lymphocyte and the adhesion molecule INCAM-110, expressed on follicular dendritic cells, supported this interaction. This cellular interaction model can be used for the study of how B cells differentiate.

  15. CEACAM1 mediates B cell aggregation in central nervous system autoimmunity

    PubMed Central

    Rovituso, Damiano M.; Scheffler, Laura; Wunsch, Marie; Dörck, Sebastian; Ulzheimer, Jochen; Bayas, Antonios; Steinman, Lawrence; Ergün, Süleyman; Kuerten, Stefanie

    2016-01-01

    B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1+ B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines, application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain −3 (TIM-3) on B cells, a novel molecule that has recently been described to induce anergy in T cells. Interestingly, elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall, these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease. PMID:27435215

  16. B cells produce less IL-10, IL-6 and TNF-α in myasthenia gravis.

    PubMed

    Yilmaz, Vuslat; Oflazer, Piraye; Aysal, Fikret; Parman, Yeşim G; Direskeneli, Haner; Deymeer, Feza; Saruhan-Direskeneli, Güher

    2015-06-01

    B cells from myasthenia gravis (MG) patients with autoantibodies (Aab) against acetylcholine receptor (AChR), muscle-specific kinase (MuSK) or with no detectable Aab were investigated as cytokine producing cells in this study. B cells were evaluated for memory phenotypes and expressions of IL-10, IL-6 and IL-12A. Induced productions of IL-10, IL-6, IL-12p40, TNF-α and LT from isolated B cells in vitro were measured by immunoassays. MG patients receiving immunosuppressive treatment had higher proportions of memory B cells compared with healthy controls and untreated patients. With CD40 stimulation MG patients produced significantly lower levels of IL-10, IL-6. With CD40 and B cell receptor stimulation of B cells, TNF-α production also decreased in addition to these cytokines. The lower levels of these cytokine productions were not related to treatment. Our results confirm a disturbance of B cell subpopulations in MG subgroups on immunosuppressive treatment. B cell derived IL-10, IL-6 and TNF-α are down-regulated in MG, irrespective of different antibody productions. Ineffective cytokine production by B cells may be a susceptibility factor in dysregulation of autoimmune Aab production.

  17. High levels of SOX5 decrease proliferative capacity of human B cells, but permit plasmablast differentiation.

    PubMed

    Rakhmanov, Mirzokhid; Sic, Heiko; Kienzler, Anne-Kathrin; Fischer, Beate; Rizzi, Marta; Seidl, Maximilian; Melkaoui, Kerstina; Unger, Susanne; Moehle, Luisa; Schmit, Nadine E; Deshmukh, Sachin D; Ayata, Cemil Korcan; Schuh, Wolfgang; Zhang, Zhibing; Cosset, François-Loic; Verhoeyen, Els; Peter, Hans-Hartmut; Voll, Reinhard E; Salzer, Ulrich; Eibel, Hermann; Warnatz, Klaus

    2014-01-01

    Currently very little is known about the differential expression and function of the transcription factor SOX5 during B cell maturation. We identified two new splice variants of SOX5 in human B cells, encoding the known L-SOX5B isoform and a new shorter isoform L-SOX5F. The SOX5 transcripts are highly expressed during late stages of B-cell differentiation, including atypical memory B cells, activated CD21low B cells and germinal center B cells of tonsils. In tonsillar sections SOX5 expression was predominantly polarized to centrocytes within the light zone. After in vitro stimulation, SOX5 expression was down-regulated during proliferation while high expression levels were permissible for plasmablast differentiation. Overexpression of L-SOX5F in human primary B lymphocytes resulted in reduced proliferation, less survival of CD138neg B cells, but comparable numbers of CD138+CD38hi plasmablasts compared to control cells. Thus, our findings describe for the first time a functional role of SOX5 during late B cell development reducing the proliferative capacity and thus potentially affecting the differentiation of B cells during the germinal center response. PMID:24945754

  18. Phorbol myristate acetate inhibits anti-IgM-mediated signaling in resting B cells.

    PubMed Central

    Mizuguchi, J; Beaven, M A; Li, J H; Paul, W E

    1986-01-01

    Cross-linking the membrane immunoglobulins of resting B cells leads to activation as judged by increased inositol phospholipid metabolism, intracellular free calcium concentration ([Ca2+]i), and cell volume. Such activated B cells enter S phase in the presence of B-cell stimulatory factor 1. Phorbol myristate acetate (PMA) is a potent inhibitor of anti-IgM- and anti-IgD-stimulated B-cell responses. In B cells concentrations of PMA ranging from 0.1 to 100 ng/ml completely inhibit anti-IgM-stimulated DNA synthesis and block anti-IgM-stimulated increases in inositol phospholipid metabolism and in [Ca2+]i. Preincubation periods as short as 4 min block these effects although longer preincubations are somewhat more effective in inhibiting increases in [Ca2+]i. Preincubation with PMA for 1.5 hr does not diminish expression of membrane IgM. This strongly suggests that PMA inhibits responses of resting B cells to anti-IgM by interrupting signal transmission rather than by diminishing cross-linking of membrane immunoglobulin on B cells. In contrast to resting B cells, B cells activated in vitro for 29 hr show enhanced responses to anti-IgM in the presence of PMA. PMID:3086884

  19. Cytokine-Defined B Cell Responses as Therapeutic Targets in Multiple Sclerosis

    PubMed Central

    Li, Rui; Rezk, Ayman; Healy, Luke M.; Muirhead, Gillian; Prat, Alexandre; Gommerman, Jennifer L.; Bar-Or, Amit

    2016-01-01

    Important antibody-independent pathogenic roles of B cells are emerging in autoimmune diseases, including multiple sclerosis (MS). The contrasting results of different treatments targeting B cells in patients (in spite of predictions of therapeutic benefits from animal models) call for a better understanding of the multiple roles that distinct human B cell responses likely play in MS. In recent years, both murine and human B cells have been identified with distinct functional properties related to their expression of particular cytokines. These have included regulatory (Breg) B cells (secreting interleukin (IL)-10 or IL-35) and pro-inflammatory B cells (secreting tumor necrosis factor α, LTα, IL-6, and granulocyte macrophage colony-stimulating factor). Better understanding of human cytokine-defined B cell responses is necessary in both health and diseases, such as MS. Investigation of their surface phenotype, distinct functions, and the mechanisms of regulation (both cell intrinsic and cell extrinsic) may help develop effective treatments that are more selective and safe. In this review, we focus on mechanisms by which cytokine-defined B cells contribute to the peripheral immune cascades that are thought to underlie MS relapses, and the impact of B cell-directed therapies on these mechanisms. PMID:26779181

  20. BAFF activation of the ERK5 MAP kinase pathway regulates B cell survival.

    PubMed

    Jacque, Emilie; Schweighoffer, Edina; Tybulewicz, Victor L J; Ley, Steven C

    2015-06-01

    B cell activating factor (BAFF) stimulation of the BAFF receptor (BAFF-R) is essential for the homeostatic survival of mature B cells. Earlier in vitro experiments with inhibitors that block MEK 1 and 2 suggested that activation of ERK 1 and 2 MAP kinases is required for BAFF-R to promote B cell survival. However, these inhibitors are now known to also inhibit MEK5, which activates the related MAP kinase ERK5. In the present study, we demonstrated that BAFF-induced B cell survival was actually independent of ERK1/2 activation but required ERK5 activation. Consistent with this, we showed that conditional deletion of ERK5 in B cells led to a pronounced global reduction in mature B2 B cell numbers, which correlated with impaired survival of ERK5-deficient B cells after BAFF stimulation. ERK5 was required for optimal BAFF up-regulation of Mcl1 and Bcl2a1, which are prosurvival members of the Bcl-2 family. However, ERK5 deficiency did not alter BAFF activation of the PI3-kinase-Akt or NF-κB signaling pathways, which are also important for BAFF to promote mature B cell survival. Our study reveals a critical role for the MEK5-ERK5 MAP kinase signaling pathway in BAFF-induced mature B cell survival and homeostatic maintenance of B2 cell numbers.

  1. Suppression of Human B Cell Activation by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Involves Altered Regulation of B Cell Lymphoma-6

    PubMed Central

    Phadnis-Moghe, Ashwini S.; Crawford, Robert B.; Kaminski, Norbert E.

    2015-01-01

    The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces marked suppression of the primary humoral immune response in virtually every animal species evaluated thus far. In addition, epidemiological studies performed in areas of dioxin contamination have identified an association between TCDD exposure and an increased incidence of non-Hodgkin’s lymphoma (NHL). Recent studies using an in vitro CD40 ligand model of human B cell differentiation have shown that TCDD impairs both B cell activation and differentiation. The present study extends these findings by identifying B cell lymphoma-6 [BCL-6] as a putative cellular target for deregulation by TCDD, which may contribute to suppression of B cell function as well as NHL. BCL-6 is a multifunctional transcriptional repressor frequently mutated in NHLs and known to regulate critical events of B cell activation and differentiation. In the presence of TCDD, BCL-6 protein levels were elevated and concurrently the same population of cells with high BCL-6 levels showed decreased CD80 and CD69 expression indicative of impaired cellular activation. The elevated BCL-6 levels resulted in a concomitant increase in BCL-6 DNA binding activity at its cognate binding site within an enhancer region for CD80. Furthermore, a small molecule inhibitor of BCL-6 activity reversed TCDD-mediated suppression of CD80 expression in human B cells. In the presence of a low-affinity ligand of the aryl hydrocarbon receptor (AHR), suppression of B cell activation and altered BCL-6 regulation were not observed. These results provide new mechanistic insights into the role of BCL-6 in the suppression of human B cell activation by TCDD. PMID:25543051

  2. Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and results in B-cell lymphocytosis in mice

    PubMed Central

    Bruscoli, Stefano; Biagioli, Michele; Sorcini, Daniele; Frammartino, Tiziana; Cimino, Monica; Sportoletti, Paolo; Mazzon, Emanuela; Bereshchenko, Oxana

    2015-01-01

    Glucocorticoids (GC) are widely used as antiinflammatory/immunosuppressive drugs and antitumor agents in several types of lymphoma and leukemia. Therapeutic doses of GC induce growth-suppressive and cytotoxic effects on various leukocytes including B cells. Molecular mechanisms of GC action include induction of GC target genes. Glucocorticoid-induced leucine zipper (GILZ) is a rapidly, potently, and invariably GC-induced gene. It mediates a number of GC effects, such as control of cell proliferation, differentiation, and apoptosis. Here we show that deletion of GILZ in mice leads to an accumulation of B lymphocytes in the bone marrow, blood, and lymphoid tissues. Gilz knockout (KO) mice develop a progressive nonlethal B lymphocytosis, with expansion of B220+ cells in the bone marrow and in the periphery, dependent on increased B-cell survival. Decreased B-cell apoptosis in mice lacking GILZ correlates with increased NF-κB transcriptional activity and Bcl-2 expression. B cell–specific gilz KO mice confirmed that the effect of GILZ deletion is B-cell self-intrinsic. These results establish GILZ as an important regulator of B-cell survival and suggest that the deregulation of GILZ expression could be implicated in the pathogenesis of B-cell disorders. PMID:26276664

  3. Reconstitution of B-cell-depleted mice with B cells restores Th2-type immune responses during Plasmodium chabaudi chabaudi infection.

    PubMed Central

    Taylor-Robinson, A W; Phillips, R S

    1996-01-01

    In mice depleted of B cells from birth by treatment with anti-immunoglobulin M(mu) antibodies, progression from a Th1- to a Th2-regulated immune response during primary infection with Plasmodium chabaudi chabaudi fails to occur. While Th1-type immunity limits parasitemia, in the absence of B cells, chronic low-grade infections persist. Here, we show that reconstituting immune, and to a lesser extent naive, B cells to mice rendered deficient in B-cell function through anti-immunoglobulin M(mu) pretreatment restores the CD4+ T-cell response to the Th2 type later in P. c. chabaudi infection and with it the capacity to eliminate infection. This finding provides clear evidence that B cells are required for switching the balance of immune regulation between CD4+ T cells from Th1 to Th2 during P.c. chabaudi infection and supports the concept that B cells, through antibody production, are needed for effective antimalarial immunity. PMID:8557367

  4. Activation of resting human B cells by helper T-cell clone supernatant: characterization of a human B-cell-activating factor.

    PubMed Central

    Diu, A; Gougeon, M L; Moreau, J L; Reinherz, E L; Thèze, J

    1987-01-01

    The effects of helper T-cell clone supernatants on resting human B cells were investigated. Four different helper T-cell clones (two T4+ and two T8+) were stimulated by anti-T3 monoclonal antibodies on Sepharose beads or anti-T11(2) plus anti-T11(3) monoclonal antibodies. The supernatants from these activated clones induced the proliferation of highly purified resting B lymphocytes from the peripheral blood. The B cells exhibited a cell size and a surface-antigen pattern (4F2 antigen and transferrin receptor) of phase G0 B cells, and they were functionally resting. In response to T-cell supernatants a large fraction of the B cells enlarged and expressed 4F2 antigens and transferrin receptors. In gel filtration, the corresponding activity migrated with an apparent Mr of 12,000-15,000. Our findings strongly support the existence of a human B-cell-activating factor acting on resting B cells and causing them to enter phase G1 of the cell cycle. PMID:2962196

  5. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells.

    PubMed

    Schwartz, Anton M; Putlyaeva, Lidia V; Covich, Milica; Klepikova, Anna V; Akulich, Kseniya A; Vorontsov, Ilya E; Korneev, Kirill V; Dmitriev, Sergey E; Polanovsky, Oleg L; Sidorenko, Svetlana P; Kulakovskiy, Ivan V; Kuprash, Dmitry V

    2016-10-01

    Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells.

  6. The spectrum of B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma: a description of 10 cases.

    PubMed

    Gualco, Gabriela; Natkunam, Yasodha; Bacchi, Carlos E

    2012-05-01

    B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma, is a diagnostic provisional category in the World Health Organization (WHO) 2008 classification of lymphomas. This category was designed as a measure to accommodate borderline cases that cannot be reliably classified into a single distinct disease entity after all available morphological, immunophenotypical and molecular studies have been performed. Typically, these cases share features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma, or include characteristics of both lymphomas. The rarity of such cases poses a tremendous challenge to both pathologists and oncologists because its differential diagnosis has direct implications for management strategies. In this study, we present 10 cases of B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma and have organized the criteria described by the WHO into four patterns along with detailed clinical, morphological and immunophenotypic characterization and outcome data. Our findings show a male preponderance, median age of 37 years and a mediastinal presentation in 80% of cases. All cases expressed at least two markers associated with B-cell lineage and good response to combination chemotherapy currently employed for non-Hodgkin lymphomas.

  7. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus.

    PubMed

    Chan, O T; Hannum, L G; Haberman, A M; Madaio, M P; Shlomchik, M J

    1999-05-17

    The precise role of B cells in systemic autoimmunity is incompletely understood. Although B cells are necessary for expression of disease (Chan, O., and M.J. Shlomchik. 1998. J. Immunol. 160:51-59, and Shlomchik, M.J., M.P. Madaio, D. Ni, M. Trounstine, and D. Huszar. 1994. J. Exp. Med. 180:1295-1306), it is unclear whether autoantibody production, antigen presentation, and/or other B cell functions are required for the complete pathologic phenotype. To address this issue, two experimental approaches were used. In the first, the individual contributions of circulating antibodies and B cells were analyzed using MRL/MpJ-Faslpr (MRL/lpr) mice that expressed a mutant transgene encoding surface immunoglobulin (Ig), but which did not permit the secretion of circulating Ig. These mice developed nephritis, characterized by cellular infiltration within the kidney, indicating that B cells themselves, without soluble autoantibody production, exert a pathogenic role. The results indicate that, independent of serum autoantibody, functional B cells expressing surface Ig are essential for disease expression, either by serving as antigen-presenting cells for antigen-specific, autoreactive T cells, or by contributing directly to local inflammation.

  8. Synergistic activation of cells by Epstein-Barr virus and B-cell growth factor.

    PubMed Central

    Hutt-Fletcher, L M

    1987-01-01

    Infection with Epstein-Barr virus (EBV) is initiated by virus binding to the C3dg-C3d receptor CR2. Several workers have implicated this receptor in the control of B-cell activation by examining the effects of antibodies to CR2 and isolated C3d on B-cell proliferation and differentiation. We report here on the activating effects of irradiated EBV, which retains its capacity to bind to CR2 but loses its ability to function as a T-independent B-cell activator. EBV synergized with B-cell growth factor in the induction of uptake of tritiated thymidine by T cell-depleted leukocytes from seronegative donors but did not induce secretion of immunoglobulin. Synergism could be inhibited with an anti-viral antibody that inhibited binding of EBV to CR2. No similar synergism was found between EBV and recombinant interleukin 2, interleukin 1 alpha, or gamma interferon or with the lipid A fraction of bacterial lipopolysaccharide. EBV may thus initiate B-cell activation as it binds to CR2. Infectious virus may, under normal circumstances, induce the cell to make those growth factors necessary to support B-cell proliferation; the difficulty of transforming cells with transfected EBV DNA may in part reflect the absence of an activation event provided by intact virus as it attaches to CR2. The synergism of EBV and B-cell growth factor more clearly distinguishes the effects of B-cell growth factor from those of interleukin 1 and interleukin 2 in other models of B-cell activation. Thus, this may be a useful model for further delineation of unique effects of B-cell growth factor on B-cell function. PMID:3027404

  9. Clinicopathological features of aggressive B-cell lymphomas including B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell and Burkitt lymphomas: a study of 44 patients from Argentina.

    PubMed

    Bürgesser, María Virginia; Gualco, Gabriela; Diller, Ana; Natkunam, Yasodha; Bacchi, Carlos E

    2013-06-01

    Aggressive B-cell lymphomas incorporate a wide spectrum of lymphomas that pose challenges in diagnosis as well as treatment. We evaluated the clinicopathological features of 44 patients with aggressive B-cell lymphomas which were classified into 3 groups based on the World Health Organization 2008 classification as follows: including 30 cases of diffuse large B-cell lymphoma (DLBCL), 8 cases of Burkitt lymphoma (BL) and 6 cases of B-cell lymphoma, unclassifiable, with features intermediate between Burkitt lymphoma and diffuse large B-cell lymphoma (BCLU). Male predominance was observed in BL and BCLU groups and the mean age varied from 29 years in BL, 61 years in DLBCL and 70 years in BCLU. Patients with BCLU presented at more advanced stages and had a higher international prognostic index. By immunohistochemistry, they shared characteristics of both BL (including more frequent expression of SOX11) and DLBCL. FISH analyses showed three cases with more than one rearrangement: one MYC/BCL2 and two BCL2/BCL6, in addition to which one case with BCL2/IGH translocation and another with MYC rearrangement were also detected. The mean follow-up survival time of BCLU was 6.6 months, which was significantly shorter in comparison to DLBCL (31 months) and BL (30 months), respectively. The importance of recognizing this BCLU group relies on its different clinical course, poor prognosis and shorter survival than DLBCL and BL. An accurate diagnosis is critical for risk stratification and to improve therapeutic approaches and outcomes.

  10. Alternative mechanisms of receptor editing in autoreactive B cells.

    PubMed

    Kalinina, Olga; Doyle-Cooper, Colleen M; Miksanek, Jennifer; Meng, Wenzhao; Prak, Eline Luning; Weigert, Martin G

    2011-04-26

    Pathogenic anti-DNA antibodies expressed in systemic lupus erythematosis bind DNA mainly through electrostatic interactions between the positively charged Arg residues of the antibody complementarity determining region (CDR) and the negatively charged phosphate groups of DNA. The importance of Arg in CDR3 for DNA binding has been shown in mice with transgenes coding for anti-DNA V(H) regions; there is also a close correlation between arginines in CDR3 of antibodies and DNA binding. Codons for Arg can readily be formed by V(D)J rearrangement; thereby, antibodies that bind DNA are part of the preimmune repertoire. Anti-DNAs in healthy mice are regulated by receptor editing, a mechanism that replaces κ light (L) chains compatible with DNA binding with κ L chains that harbor aspartic residues. This negatively charged amino acid is thought to neutralize Arg sites in the V(H). Editing by replacement is allowed at the κ locus, because the rearranged VJ is nested between unrearranged Vs and Js. However, neither λ nor heavy (H) chain loci are organized so as to allow such second rearrangements. In this study, we analyze regulation of anti-DNA H chains in mice that lack the κ locus, κ-/κ- mice. These mice show that the endogenous preimmune repertoire does indeed include a high frequency of antibodies with Arg in their CDR3s (putative anti-DNAs) and they are associated mainly with the editor L chain λx. The editing mechanisms in the case of λ-expressing B cells include L chain allelic inclusion and V(H) replacement.

  11. Association between B-cell receptor responsiveness and disease progression in B-cell chronic lymphocytic leukemia: results from single cell network profiling studies.

    PubMed

    Cesano, Alessandra; Perbellini, Omar; Evensen, Erik; Chu, Charles C; Cioffi, Federica; Ptacek, Jason; Damle, Rajendra N; Chignola, Roberto; Cordeiro, James; Yan, Xiao-jie; Hawtin, Rachael E; Nichele, Ilaria; Ware, Jodi R; Cavallini, Chiara; Lovato, Ornella; Zanotti, Roberta; Rai, Kanti R; Chiorazzi, Nicholas; Pizzolo, Giovanni; Scupoli, Maria T

    2013-04-01

    While many prognostic markers in B-cell chronic lymphocytic leukemia provide insight into the biology of the disease, few have been demonstrated to be useful in the daily management of patients. B-cell receptor signaling is a driving event in the progression of B-cell chronic lymphocytic leukemia and markers of B-cell receptor responsiveness have been shown to be of prognostic value. Single cell network profiling, a multiparametric flow cytometry-based assay, allows functional signaling analysis at the level of the single cell. B-cell receptor signaling proteins (i.e. p-SYK, p-NF-κB p65, p-ERK, p-p38, p-JNK) were functionally characterized by single cell network profiling in samples from patients with B-cell chronic lymphocytic leukemia in an exploratory study (n=27) after stimulation with anti-IgM. Significant associations of single cell network profiling data with clinical outcome (i.e. time to first treatment), as assessed by Cox regression models, were then confirmed in patients' samples in two other sequential independent studies, i.e. test study 1 (n=30), and test study 2 (n=37). In the exploratory study, higher responsiveness of the B-cell receptor signaling proteins to anti-IgM was associated with poor clinical outcomes. Patients' clustering based on signaling response was at least as powerful in discriminating different disease courses as traditional prognostic markers. In an unselected subgroup of patients with Binet stage A disease (n=21), increased anti-IgM-modulated p-ERK signaling was shown to be a significant, independent predictor of shorter time to first treatment. This result was independently confirmed in two test cohorts from distinct populations of patients. In conclusion, these findings support the utility of the single cell network profiling assay in elucidating signaling perturbations with the potential for the development of a clinically useful prognostic test in patients with early stage B-cell chronic lymphocytic leukemia. These data

  12. Effect of early fetal splenectomy on prenatal B-cell development in sheep

    PubMed Central

    Press, C McL; McCullagh, P; Landsverk, T

    2001-01-01

    The contribution of early splenic B-cell populations to the colonization of the ileal Peyer's patch was investigated following the surgical removal of the spleen in a series of 56-day-old fetal sheep. The fetuses were killed at 140 days of gestation and the ileal Peyer's patch, the distal jejunal lymph node which drains the Peyer's patch, and a peripheral lymph node, the superficial cervical lymph node, were examined. Enzyme and immunohistochemical evaluation concluded that the distribution of B cells, T cells and stromal cells in the ileal Peyer's patch was similar in splenectomized and normal fetal sheep. Thus, the presence of the fetal spleen was not essential for the colonization of the ileal Peyer's patch and other early sites of B-cell accumulation would appear capable of generating the necessary precursor populations. Investigation of B-cell populations in lymph nodes used a combination of terminal deoxynucleotidyl-transferase-mediated deoxyuridine-triphosphate nick-end-labelling (TUNEL) histochemistry and immunofluorescence to determine the average number of apoptotic B cells in the primary follicles of the outer cortex of splenectomized and normal lambs. A significantly increased number of apoptotic B cells was present in the distal jejunal lymph node but not in the superficial cervical lymph node of splenectomized lambs. This finding suggests that splenectomy affected prenatal B-cell development in fetal sheep and raises questions as to the regulation of B-cell lymphopoiesis in a species using a post-rearrangement organ of diversification. PMID:11260317

  13. Identification of a negative regulatory role for spi-C in the murine B cell lineage.

    PubMed

    Li, Stephen K H; Solomon, Lauren A; Fulkerson, Patricia C; DeKoter, Rodney P

    2015-04-15

    Spi-C is an E26 transformation-specific family transcription factor that is highly related to PU.1 and Spi-B. Spi-C is expressed in developing B cells, but its function in B cell development and function is not well characterized. To determine whether Spi-C functions as a negative regulator of Spi-B (encoded by Spib), mice were generated that were germline knockout for Spib and heterozygous for Spic (Spib(-/-)Spic(+/-)). Interestingly, loss of one Spic allele substantially rescued B cell frequencies and absolute numbers in Spib(-/-) mouse spleens. Spib(-/-)Spic(+/-) B cells had restored proliferation compared with Spib(-/-) B cells in response to anti-IgM or LPS stimulation. Investigation of a potential mechanism for the Spib(-/-)Spic(+/-) phenotype revealed that steady-state levels of Nfkb1, encoding p50, were elevated in Spib(-/-)Spic(+/-) B cells compared with Spib(-/-) B cells. Spi-B was shown to directly activate the Nfkb1 gene, whereas Spi-C was shown to repress this gene. These results indicate a novel role for Spi-C as a negative regulator of B cell development and function.

  14. IgG-Immune Complexes Promote B Cell Memory by Inducing BAFF.

    PubMed

    Kang, SunAh; Keener, Amanda B; Jones, Shannon Z; Benschop, Robert J; Caro-Maldonado, Alfredo; Rathmell, Jeffrey C; Clarke, Stephen H; Matsushima, Glenn K; Whitmire, Jason K; Vilen, Barbara J

    2016-01-01

    Memory B cell responses are vital for protection against infections but must also be regulated to prevent autoimmunity. Cognate T cell help, somatic hypermutation, and affinity maturation within germinal centers (GCs) are required for high-affinity memory B cell formation; however, the signals that commit GC B cells to the memory pool remain unclear. In this study, we identify a role for IgG-immune complexes (ICs), FcγRs, and BAFF during the formation of memory B cells in mice. We found that early secretion of IgG in response to immunization with a T-dependent Ag leads to IC-FcγR interactions that induce dendritic cells to secrete BAFF, which acts at or upstream of Bcl-6 in activated B cells. Loss of CD16, hematopoietic cell-derived BAFF, or blocking IC:FcγR regions in vivo diminished the expression of Bcl-6, the frequency of GC and memory B cells, and secondary Ab responses. BAFF also contributed to the maintenance and/or expansion of the follicular helper T cell population, although it was dispensable for their formation. Thus, early Ab responses contribute to the optimal formation of B cell memory through IgG-ICs and BAFF. Our work defines a new role for FcγRs in GC and memory B cell responses.

  15. Rituximab and Interleukin-12 in Treating Patients With B-Cell Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2013-08-23

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma

  16. Looping around Bcl6 in Germinal Center to Sharpen B Cell Immunity.

    PubMed

    Hu, Gangqing; Zhao, Keji

    2016-09-20

    We are beginning to understand the function of 3D genome architecture in the immune system. In this issue, Bunting et al. (2016) reported massive multi-layer genome reorganization from naive B cells to germinal center B cells, centered on a locus control region of Bcl6. PMID:27653595

  17. Superenhancer reprogramming drives a B-cell-epithelial transition and high-risk leukemia.

    PubMed

    Hu, Yeguang; Zhang, Zhihong; Kashiwagi, Mariko; Yoshida, Toshimi; Joshi, Ila; Jena, Nilamani; Somasundaram, Rajesh; Emmanuel, Akinola Olumide; Sigvardsson, Mikael; Fitamant, Julien; El-Bardeesy, Nabeel; Gounari, Fotini; Van Etten, Richard A; Georgopoulos, Katia

    2016-09-01

    IKAROS is required for the differentiation of highly proliferative pre-B-cell precursors, and loss of IKAROS function indicates poor prognosis in precursor B-cell acute lymphoblastic leukemia (B-ALL). Here we show that IKAROS regulates this developmental stage by positive and negative regulation of superenhancers with distinct lineage affiliations. IKAROS defines superenhancers at pre-B-cell differentiation genes together with B-cell master regulators such as PAX5, EBF1, and IRF4 but is required for a highly permissive chromatin environment, a function that cannot be compensated for by the other transcription factors. IKAROS is also highly enriched at inactive enhancers of genes normally expressed in stem-epithelial cells. Upon IKAROS loss, expression of pre-B-cell differentiation genes is attenuated, while a group of extralineage transcription factors that are directly repressed by IKAROS and depend on EBF1 relocalization at their enhancers for expression is induced. LHX2, LMO2, and TEAD-YAP1, normally kept separate from native B-cell transcription regulators by IKAROS, now cooperate directly with them in a de novo superenhancer network with its own feed-forward transcriptional reinforcement. Induction of de novo superenhancers antagonizes Polycomb repression and superimposes aberrant stem-epithelial cell properties in a B-cell precursor. This dual mechanism of IKAROS regulation promotes differentiation while safeguarding against a hybrid stem-epithelial-B-cell phenotype that underlies high-risk B-ALL. PMID:27664237

  18. TSPAN33 is a novel marker of activated and malignant B cells

    PubMed Central

    Luu, Van Phi; Hevezi, Peter; Vences-Catalan, Felipe; Maravillas-Montero, Jose Luis; White, Clayton Alexander; Casali, Paolo; Llorente, Luis; Jakez-Ocampo, Juan; Lima, Guadalupe; Vilches-Cisneros, Natalia; Flores-Gutiérrez, Juan Pablo; Santos-Argumedo, Leopoldo; Zlotnik, Albert

    2014-01-01

    We have identified Tspan33 as a gene encoding a transmembrane protein exhibiting a restricted expression pattern including expression in activated B cells. TSPAN33 is a member of the tetraspanin family. TSPAN33 is not expressed in resting B cells, but is strongly induced in primary human B cells following activation. Human 2E2 cells, a Burkitt’s lymphoma-derived B cell model of activation and differentiation, also upregulate TSPAN33 upon activation. TSPAN33 is expressed in several lymphomas including Hodgkin’s and Diffuse large B Cell Lymphoma. TSPAN33 is also expressed in some autoimmune diseases where B cells participate in the pathology, including rheumatoid arthritis patients, systemic lupus erythematosus (SLE), and in spleen B cells from MRL/Faslpr/lpr mice (a mouse model of SLE). We conclude that TSPAN33 may be used as a diagnostic biomarker or as a target for therapeutic antibodies for treatment of certain B cell lymphomas or autoimmune diseases. PMID:24211713

  19. Study of BKM120 & Rituximab in Patients With Relapsed or Refractory Indolent B-Cell Lymphoma

    ClinicalTrials.gov

    2016-10-18

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia

  20. Villous B Cells of the Small Intestine Are Specialized for Invariant NK T Cell Dependence1

    PubMed Central

    Velázquez, Peter; Wei, Bo; McPherson, Michael; Mendoza, Lesley Marie A.; Nguyen, Sandra L.; Turovskaya, Olga; Kronenberg, Mitchell; Huang, Tiffany T.; Schrage, Matthew; Lobato, Lynn N.; Fujiwara, Daisuke; Brewer, Sarah; Arditi, Moshe; Cheng, Genhong; Sartor, R. Balfour; Newberry, Rodney D.; Braun, Jonathan

    2009-01-01

    B cells are important in mucosal microbial homeostasis through their well-known role in secretory IgA production and their emerging role in mucosal immunoregulation. Several specialized intraintestinal B cell compartments have been characterized, but the nature of conventional B cells in the lamina propria is poorly understood. In this study, we identify a B cell population predominantly composed of surface IgM+IgD+cells residing in villi of the small intestine and superficial lamina propria of the large intestine, but distinct from the intraepithelial compartment or organized intestinal lymphoid structures. Small intestinal (villous) B cells are diminished in genotypes that alter the strength of BCR signaling (Bruton tyrosine kinasexid, Gαi2−/−), and in mice lacking cognate BCR specificity. They are not dependent on enteric microbial sensing, because they are abundant in mice that are germfree or genetically deficient in TLR signaling. However, villous B cells are reduced in the absence of invariant NK T cells (Jα18−/− or CD1d−/− mice). These findings define a distinct population of conventional B cells in small intestinal villi, and suggest an immunologic link between CD1-restricted invariant NK T cells and this B cell population. PMID:18354186

  1. B cells from African American lupus patients exhibit an activated phenotype

    PubMed Central

    Menard, Laurence C.; Habte, Sium; Gonsiorek, Waldemar; Lee, Deborah; Banas, Dana; Holloway, Deborah A.; Cunningham, Mark; Stetsko, Dawn; Casano, Francesca; Kansal, Selena; Davis, Patricia M.; Carman, Julie; Zhang, Clarence K.; Abidi, Ferva; Furie, Richard; Nadler, Steven G.; Suchard, Suzanne J.

    2016-01-01

    Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease driven by both innate and adaptive immune cells. African Americans tend to present with more severe disease at an earlier age compared with patients of European ancestry. In order to better understand the immunological differences between African American and European American patients, we analyzed the frequencies of B cell subsets and the expression of B cell activation markers from a total of 68 SLE patients and 69 normal healthy volunteers. We found that B cells expressing the activation markers CD86, CD80, PD1, and CD40L, as well as CD19+CD27–IgD– double-negative B cells, were enriched in African American patients vs. patients of European ancestry. In addition to increased expression of CD40L, surface levels of CD40 on B cells were lower, suggesting the engagement of the CD40 pathway. In vitro experiments confirmed that CD40L expressed by B cells could lead to CD40 activation and internalization on adjacent B cells. To conclude, these results indicate that, compared with European American patients, African American SLE patients present with a particularly active B cell component, possibly via the activation of the CD40/CD40L pathway. These data may help guide the development of novel therapies.

  2. IDO2 Modulates T Cell-Dependent Autoimmune Responses through a B Cell-Intrinsic Mechanism.

    PubMed

    Merlo, Lauren M F; DuHadaway, James B; Grabler, Samantha; Prendergast, George C; Muller, Alexander J; Mandik-Nayak, Laura

    2016-06-01

    Mechanistic insight into how adaptive immune responses are modified along the self-nonself continuum may offer more effective opportunities to treat autoimmune disease, cancer, and other sterile inflammatory disorders. Recent genetic studies in the KRN mouse model of rheumatoid arthritis demonstrate that the immunomodulatory molecule IDO2 modifies responses to self-antigens; however, the mechanisms involved are obscure. In this study, we show that IDO2 exerts a critical function in B cells to support the generation of autoimmunity. In experiments with IDO2-deficient mice, adoptive transplant experiments demonstrated that IDO2 expression in B cells was both necessary and sufficient to support robust arthritis development. IDO2 function in B cells was contingent on a cognate, Ag-specific interaction to exert its immunomodulatory effects on arthritis development. We confirmed a similar requirement in an established model of contact hypersensitivity, in which IDO2-expressing B cells are required for a robust inflammatory response. Mechanistic investigations showed that IDO2-deficient B cells lacked the ability to upregulate the costimulatory marker CD40, suggesting IDO2 acts at the T-B cell interface to modulate the potency of T cell help needed to promote autoantibody production. Overall, our findings revealed that IDO2 expression by B cells modulates autoimmune responses by supporting the cross talk between autoreactive T and B cells.

  3. B cells from African American lupus patients exhibit an activated phenotype

    PubMed Central

    Menard, Laurence C.; Habte, Sium; Gonsiorek, Waldemar; Lee, Deborah; Banas, Dana; Holloway, Deborah A.; Cunningham, Mark; Stetsko, Dawn; Casano, Francesca; Kansal, Selena; Davis, Patricia M.; Carman, Julie; Zhang, Clarence K.; Abidi, Ferva; Furie, Richard; Nadler, Steven G.; Suchard, Suzanne J.

    2016-01-01

    Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease driven by both innate and adaptive immune cells. African Americans tend to present with more severe disease at an earlier age compared with patients of European ancestry. In order to better understand the immunological differences between African American and European American patients, we analyzed the frequencies of B cell subsets and the expression of B cell activation markers from a total of 68 SLE patients and 69 normal healthy volunteers. We found that B cells expressing the activation markers CD86, CD80, PD1, and CD40L, as well as CD19+CD27–IgD– double-negative B cells, were enriched in African American patients vs. patients of European ancestry. In addition to increased expression of CD40L, surface levels of CD40 on B cells were lower, suggesting the engagement of the CD40 pathway. In vitro experiments confirmed that CD40L expressed by B cells could lead to CD40 activation and internalization on adjacent B cells. To conclude, these results indicate that, compared with European American patients, African American SLE patients present with a particularly active B cell component, possibly via the activation of the CD40/CD40L pathway. These data may help guide the development of novel therapies. PMID:27699274

  4. A multi-scale model for correlation in B cell VDJ usage of zebrafish

    NASA Astrophysics Data System (ADS)

    Pan, Keyao; Deem, Michael W.

    2011-10-01

    The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment.

  5. Expression pattern of FCRL (FREB, FcRX) in normal and neoplastic human B cells.

    PubMed

    Masir, Noraidah; Jones, Margaret; Pozzobon, Michela; Marafioti, Teresa; Volkova, Olga Y; Mechetina, Ludmila V; Hansmann, Martin-Leo; Natkunam, Yasodha; Taranin, Alexander V; Mason, David Y

    2004-11-01

    FCRL (also known as FREB and FcRX) is a recently described member of the family of Fc receptors for immunoglobulin G (IgG). In the present study we analysed its expression in normal and neoplastic lymphoid tissue using immunohistochemical techniques. FCRL was preferentially expressed in a proportion of germinal centre cells and, more weakly, in mantle zone B cells. In addition, strong labelling was observed in marginal zone B cells in the spleen, representing one of the few markers for this cell type. The majority of cases of small B-cell lymphoma, diffuse large B-cell lymphoma and lymphocyte predominance Hodgkin's disease were positive for FCRL. However, the number of positive cells varied widely, and in consequence we could not define a cut-off that distinguished subsets of diffuse large B-cell lymphoma. Our results also showed that FCRL tended to be negative in T-cell-rich B-cell lymphoma and in classical Hodgkin's disease. FCRL may therefore represent a novel marker for normal B cells (e.g. splenic marginal zone cells) and may also be useful as a potential marker of B-cell neoplasms. PMID:15491296

  6. Evaluating the B-cell density with various activation functions using White Noise Path Integral Approach

    NASA Astrophysics Data System (ADS)

    Aban, C. J. G.; Bacolod, R. O.; Confesor, M. N. P.

    2015-06-01

    A The White Noise Path Integral Approach is used in evaluating the B-cell density or the number of B-cell per unit volume for a basic type of immune system response based on the modeling done by Perelson and Wiegel. From the scaling principles of Perelson [1], the B- cell density is obtained where antigens and antibodies mutates and activation function f(|S-SA|) is defined describing the interaction between a specific antigen and a B-cell. If the activation function f(|S-SA|) is held constant, the major form of the B-cell density evaluated using white noise analysis is similar to the form of the B-cell density obtained by Perelson and Wiegel using a differential approach.A piecewise linear functionis also used to describe the activation f(|S-SA|). If f(|S-SA|) is zero, the density decreases exponentially. If f(|S-SA|) = S-SA-SB, the B- cell density increases exponentially until it reaches a certain maximum value. For f(|S-SA|) = 2SA-SB-S, the behavior of B-cell density is oscillating and remains to be in small values.

  7. DNase I hypersensitive sites flank the mouse class II major histocompatibility complex during B cell development.

    PubMed Central

    Carson, S

    1991-01-01

    The mouse class II major histocompatibility complex (MHC) encodes a polymorphic, multigene family important in the immune response, and is expressed mainly on mature B cells, on certain types of dendritic cells and is also inducible by gamma-interferon on antigen presenting cells. To study the regulatory elements which control this expression pattern, we have examined the chromatin structure flanking the class II MHC region, in particular during B cell differentiation. Using a panel of well-characterised mouse cell lines specific for different stages of B cell development (pre-B, B, plasma cell) as well as non-B cell lines, we have mapped the DNase I hypersensitive (DHS) sites adjacent to the mouse MHC class II region. The results presented show, for the first time that there are specific hypersensitive sites flanking the class II MHC locus during pre B cell, B cell and plasma cell stages of B cell differentiation, irrespective of the status of class II MHC expression. These hypersensitive sites are not found in T cell, fibroblast or uninduced myelomonocytic cell lines. This suggests that these DHS sites define a developmentally stable, chromatin structure, which can be used as a marker of B cell lineage commitment and may indicate that a combination of these hypersensitive sites reflect regulatory proteins involved in the immediate expression of a particular class II MHC gene or possibly control of the entire locus. Images PMID:1923768

  8. A Transcriptional Regulatory Switch Underlying B-Cell Terminal Differentiation and Its Disruption by Dioxin (S)

    EPA Science Inventory

    The terminal differentiation of B cells in lymphoid organs into antibody-secreting plasma cells upon antigen stimulation is a crucial step in the humoral immune response. The architecture of the B-cell transcriptional regulatory network consists of coupled mutually-repressive fee...

  9. Differential regulation of TLR4 expression in human B cells and monocytes

    PubMed Central

    Ganley-Leal, Lisa M.; Liang, YanMei; Jagannathan-Bogdan, Madhumita; Farraye, Francis A.; Nikolajczyk, Barbara S.

    2010-01-01

    Toll-like receptor 4 (TLR4) is an innate immune receptor that is constitutively and inducibly activated in monocytes. Although TLR4 is expressed at very low levels on human B cells from healthy individuals, recent reports showed that TLR4 expression and function is elevated in B cells from inflammatory disease patients. New data showed that TLR4 expression on B cell is increased upon stimulation through surface Igμ and CD40 in combination with IL-4. In contrast, monocyte stimulation through CD40 and IL-4 receptors decreased TLR4 surface expression. Analysis of molecular signatures of TLR4 activation in stimulated B cells suggested that TLR4 is regulated by different mechanisms in B cells compared to monocytes. PU.1 and interferon regulatory factor association with the TLR4 promoter are sufficient for TLR4 transcription, but are not sufficient for surface TLR4 expression on B cells. In contrast, the PU.1/IRF combination is sufficient for surface TLR4 expression on monocytes. These data identify mechanisms that can activate B cell TLR4 expression in inflammatory disease patients, and demonstrate that B cells have additional layers of TLR4 regulation absent in monocytes. PMID:20956019

  10. Immunity in Experimental Murine Filariasis: Roles of T and B Cells Revisited

    PubMed Central

    Babu, Subash; Shultz, Leonard D.; Klei, Thomas R.; Rajan, T. V.

    1999-01-01

    We have reevaluated the contributions of T and B cells in Brugia malayi infection by utilizing knockout mice on a uniform background (C57BL/6J). We find that B-cell-deficient mice are more permissive to infection than T-cell-deficient mice. PMID:10338538

  11. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia

    PubMed Central

    Flint, Shaun M.; Gibson, Adele; Lucas, Geoff; Nandigam, Raghava; Taylor, Louise; Provan, Drew; Newland, Adrian C.; Savage, Caroline O.; Henderson, Robert B.

    2016-01-01

    Primary immune thrombocytopenia is an autoimmune disorder in which platelet destruction is a consequence of both B- and T-cell dysregulation. Flow cytometry was used to further characterize the B- and T-cell compartments in a cross-sectional cohort of 26 immune thrombocytopenia patients including antiplatelet antibody positive (n=14) and negative (n=12) patients exposed to a range of therapies, and a cohort of matched healthy volunteers. Markers for B-cell activating factor and its receptors, relevant B-cell activation markers (CD95 and CD21) and markers for CD4+ T-cell subsets, including circulating T-follicular helper-like cells, were included. Our results indicate that an expanded population of CD95+ naïve B cells correlated with disease activity in immune thrombocytopenia patients regardless of treatment status. A population of CD21-naïve B cells was specifically expanded in autoantibody-positive immune thrombocytopenia patients. Furthermore, the B-cell maturation antigen, a receptor for B-cell activating factor, was consistently and strongly up-regulated on plasmablasts from immune thrombocytopenia patients. These observations have parallels in other autoantibody-mediated diseases and suggest that loss of peripheral tolerance in naïve B cells may be an important component of immune thrombocytopenia pathogenesis. Moreover, the B-cell maturation antigen represents a potential target for plasma cell directed therapies in immune thrombocytopenia. PMID:26969086

  12. Targeting the B cell receptor signaling pathway in B lymphoid malignancies

    PubMed Central

    Buchner, Maike; Müschen, Markus

    2014-01-01

    PURPOSE OF REVIEW Normal B cells that failed to productively rearrange immunoglobulin V region genes, encoding a functional B cell receptor (BCR) are destined to die. Likewise, the majority of B cell malignancies remain dependent on functional BCR signaling, while in some subtypes BCR expression is missing and, apparently, counterselected. Here we summarize recent the experimental evidence for the importance of BCR signaling and clinical concepts to target the BCR pathway in B cell leukemia and lymphoma. RECENT FINDINGS While the dependency on pre-BCR signaling in pre-B acute lymphoblastic leukemia (ALL) seems to be limited to few ALL subtypes (e.g. TCF3-PBX1), most mature B cell lymphomas rely on BCR signaling provided by different stimuli e.g. tonic B cell signaling, chronic (auto)-antigen exposure, and self-binding properties of the BCR. The finding that in chronic lymphocytic leukemia (CLL), BCRs bind to an epitope on the BCR itself unravels a novel concept for CLL pathogenesis. SUMMARY Targeting of the B cell receptor tyrosine kinases SYK, BTK, and PI3K achieve promising clinical responses in various mature B cell malignancies and might also be useful in defined subsets of ALL. However, further understanding of the BCR signal integration in the different disease groups are required to accurately predict, which groups of patients will benefit from BCR pathway-inhibition. PMID:24811161

  13. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia.

    PubMed

    Flint, Shaun M; Gibson, Adele; Lucas, Geoff; Nandigam, Raghava; Taylor, Louise; Provan, Drew; Newland, Adrian C; Savage, Caroline O; Henderson, Robert B

    2016-06-01

    Primary immune thrombocytopenia is an autoimmune disorder in which platelet destruction is a consequence of both B- and T-cell dysregulation. Flow cytometry was used to further characterize the B- and T-cell compartments in a cross-sectional cohort of 26 immune thrombocytopenia patients including antiplatelet antibody positive (n=14) and negative (n=12) patients exposed to a range of therapies, and a cohort of matched healthy volunteers. Markers for B-cell activating factor and its receptors, relevant B-cell activation markers (CD95 and CD21) and markers for CD4(+) T-cell subsets, including circulating T-follicular helper-like cells, were included. Our results indicate that an expanded population of CD95(+) naïve B cells correlated with disease activity in immune thrombocytopenia patients regardless of treatment status. A population of CD21-naïve B cells was specifically expanded in autoantibody-positive immune thrombocytopenia patients. Furthermore, the B-cell maturation antigen, a receptor for B-cell activating factor, was consistently and strongly up-regulated on plasmablasts from immune thrombocytopenia patients. These observations have parallels in other autoantibody-mediated diseases and suggest that loss of peripheral tolerance in naïve B cells may be an important component of immune thrombocytopenia pathogenesis. Moreover, the B-cell maturation antigen represents a potential target for plasma cell directed therapies in immune thrombocytopenia.

  14. Human regulatory B cells combine phenotypic and genetic hallmarks with a distinct differentiation fate.

    PubMed

    Lin, Wenyu; Cerny, Daniela; Chua, Edmond; Duan, Kaibo; Yi, June Tai Jing; Shadan, Nurhidaya Binte; Lum, Josephine; Maho-Vaillant, Maud; Zolezzi, Francesca; Wong, Siew Cheng; Larbi, Anis; Fink, Katja; Musette, Philippe; Poidinger, Michael; Calbo, Sébastien

    2014-09-01

    Regulatory B cells (B-reg) produce IL-10 and suppress inflammation in both mice and humans, but limited data on the phenotype and function of these cells have precluded detailed assessment of their contribution to host immunity. In this article, we report that human B-reg cannot be defined based on a phenotype composed of conventional B cell markers, and that IL-10 production can be elicited in both the CD27(+) memory population and naive B cell subset after only a brief stimulation in vitro. We therefore sought to obtain a better definition of IL-10-producing human B-regs using a multiparameter analysis of B cell phenotype, function, and gene expression profile. Exposure to CpG and anti-Ig are the most potent stimuli for IL-10 secretion in human B cells, but microarray analysis revealed that human B cells cotreated with these reagents resulted in only ∼0.7% of genes being differentially expressed between IL-10(+) and IL-10(-) cells. Instead, connectivity map analysis revealed that IL-10-secreting B cells are those undergoing specific differentiation toward a germinal center fate, and we identified a CD11c(+) B cell subset that was not capable of producing IL-10 even under optimal conditions. Our findings will assist in the identification of a broader range of human pro-B-reg populations that may represent novel targets for immunotherapy. PMID:25080484

  15. Tetraspanin CD37 protects against the development of B cell lymphoma.

    PubMed

    de Winde, Charlotte M; Veenbergen, Sharon; Young, Ken H; Xu-Monette, Zijun Y; Wang, Xiao-Xiao; Xia, Yi; Jabbar, Kausar J; van den Brand, Michiel; van der Schaaf, Alie; Elfrink, Suraya; van Houdt, Inge S; Gijbels, Marion J; van de Loo, Fons A J; Bennink, Miranda B; Hebeda, Konnie M; Groenen, Patricia J T A; van Krieken, J Han; Figdor, Carl G; van Spriel, Annemiek B

    2016-02-01

    Worldwide, B cell non-Hodgkin lymphoma is the most common hematological malignancy and represents a substantial clinical problem. The molecular events that lead to B cell lymphoma are only partially defined. Here, we have provided evidence that deficiency of tetraspanin superfamily member CD37, which is important for B cell function, induces the development of B cell lymphoma. Mice lacking CD37 developed germinal center-derived B cell lymphoma in lymph nodes and spleens with a higher incidence than Bcl2 transgenic mice. We discovered that CD37 interacts with suppressor of cytokine signaling 3 (SOCS3); therefore, absence of CD37 drives tumor development through constitutive activation of the IL-6 signaling pathway. Moreover, animals deficient for both Cd37 and Il6 were fully protected against lymphoma development, confirming the involvement of the IL-6 pathway in driving tumorigenesis. Loss of CD37 on neoplastic cells in patients with diffuse large B cell lymphoma (DLBCL) directly correlated with activation of the IL-6 signaling pathway and with worse progression-free and overall survival. Together, this study identifies CD37 as a tumor suppressor that directly protects against B cell lymphomagenesis and provides a strong rationale for blocking the IL-6 pathway in patients with CD37- B cell malignancies as a possible therapeutic intervention. PMID:26784544

  16. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

    NASA Astrophysics Data System (ADS)

    Lee Szeto, Gregory; van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J.

    2015-05-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.

  17. B cells assist allograft rejection in the deficiency of protein kinase c-theta.

    PubMed

    Yan, Wenwei; Xu, Rui; Ma, Lian Li; Han, Wei; Geevarghese, Sunil K; Williams, Phillip E; Sciammas, Roger; Chong, Anita S; Yin, Deng Ping

    2013-09-01

    We have previously shown that mice deficient in protein kinase C theta (PKCθ) have the ability to reject cardiac allografts, but are susceptible to tolerance induction. Here we tested role of B cells in assisting alloimmune responses in the absence of PKCθ. Mouse cardiac allograft transplantations were performed from Balb/c (H-2d) to PKCθ knockout (PKCθ(-/-)), PKCθ and B cell double-knockout (PBDK, H-2b) mice and wild-type (WT) C57BL/6 (H-2b) mice. PBDK mice spontaneously accepted the allografts with the inhibition of NF-κB activation in the donor cardiac allograft. Anti-B cell antibody (rituximab) significantly delayed allograft rejection in PKCθ(-/-), but not in WT mice. Co-transfer of PKCθ(-/-) T plus PKCθ(-/-) B cells or primed sera triggered allograft rejection in Rag1(-/-) mice, and only major histocompatibility complex class II-enriched B cells, but not class I-enriched B cells, were able to promote rejection. This, together with the inability of PKCθ(-/-) and CD28(-/-) double-deficient (PCDK) mice to acutely reject allografts, suggested that an effective cognate interaction between PKCθ(-/-) T and B cells for acute rejection is CD28 molecule dependent. We conclude that T-B cell interactions synergize with PKCθ(-/-) T cells to mediate acute allograft rejection.

  18. Impaired receptor editing in the primary B cell repertoire of BASH-deficient mice.

    PubMed

    Hayashi, Katsuhiko; Nojima, Takuya; Goitsuka, Ryo; Kitamura, Daisuke

    2004-11-15

    The editing of B cell Ag receptor (BCR) through successive rearrangements of Ig genes has been considered to be a major mechanism for the central B cell tolerance, which precludes appearance of self-reactive B cells, through studies using anti-self-Ig transgenic/knock-in mouse systems. However, contribution of the receptor editing in the development of the normal B cell repertoire remains unclear. In addition, the signaling pathway directing this event is unknown. In this study, we demonstrate that receptor editing in anti-DNA Ig knock-in mice is impaired in the absence of an adaptor protein BASH (BLNK/SLP-65) that is involved in BCR signaling. Remarkably, the supposed hallmarks of receptor editing such as Iglambda chain expression, recombination sequence rearrangements at Igkappa loci, and presence of in-frame VkappaJkappa joins in the Igkappa loci inactivated by the recombination sequence rearrangements, were all diminished in BASH-deficient mice with unmanipulated Ig loci. BCR ligation-induced Iglambda gene recombination in vitro was also impaired in BASH-deficient B cells. Furthermore, the BASH-deficient mice showed an excessive Ab response to a DNA carrier immunization, suggesting the presence of unedited DNA-reactive B cells in the periphery. These results not only define a signaling pathway required for receptor editing but indicate that the BCR-signaled receptor editing indeed operates in the development of normal B cell repertoire and contributes to establishing the B cell tolerance.

  19. Tetraspanin CD37 protects against the development of B cell lymphoma

    PubMed Central

    de Winde, Charlotte M.; Veenbergen, Sharon; Young, Ken H.; Xu-Monette, Zijun Y.; Wang, Xiao-xiao; Xia, Yi; Jabbar, Kausar J.; van den Brand, Michiel; van der Schaaf, Alie; Elfrink, Suraya; van Houdt, Inge S.; Gijbels, Marion J.; van de Loo, Fons A.J.; Bennink, Miranda B.; Hebeda, Konnie M.; Groenen, Patricia J.T.A.; van Krieken, J. Han; Figdor, Carl G.; van Spriel, Annemiek B.

    2016-01-01

    Worldwide, B cell non-Hodgkin lymphoma is the most common hematological malignancy and represents a substantial clinical problem. The molecular events that lead to B cell lymphoma are only partially defined. Here, we have provided evidence that deficiency of tetraspanin superfamily member CD37, which is important for B cell function, induces the development of B cell lymphoma. Mice lacking CD37 developed germinal center–derived B cell lymphoma in lymph nodes and spleens with a higher incidence than Bcl2 transgenic mice. We discovered that CD37 interacts with suppressor of cytokine signaling 3 (SOCS3); therefore, absence of CD37 drives tumor development through constitutive activation of the IL-6 signaling pathway. Moreover, animals deficient for both Cd37 and Il6 were fully protected against lymphoma development, confirming the involvement of the IL-6 pathway in driving tumorigenesis. Loss of CD37 on neoplastic cells in patients with diffuse large B cell lymphoma (DLBCL) directly correlated with activation of the IL-6 signaling pathway and with worse progression-free and overall survival. Together, this study identifies CD37 as a tumor suppressor that directly protects against B cell lymphomagenesis and provides a strong rationale for blocking the IL-6 pathway in patients with CD37– B cell malignancies as a possible therapeutic intervention. PMID:26784544

  20. Porin differentiates TLR mediated proinflammatory response of follicular zone B cell from TLR-unresponsive IL-10 expressing marginal zone B cell.

    PubMed

    Sinha, Debolina; Ghosh, Amlan Kanti; Mukherjee, Subhadeep; Biswas, Ratna; Biswas, Tapas

    2015-12-01

    TLR-ligands are frequently chosen as candidates for vaccine or adjuvant development because they can primarily bridge innate signaling with adaptive immune responses. Since the adjuvant action of porin, the major outer membrane protein commonly present on Gram-negative bacteria, has been tested on several antigen-presenting cells, we investigated its role in driving systemic immunity which is considered a benchmark for a successful adjuvant. Here, we show porin differentially regulated splenic marginal zone (MZ) and follicular zone (FO) B cell responses in contrast to other classical TLR2-ligands FSL-1 and Pam3CSK4. The protein up-regulated TLR2 and TLR6 and stimulated the activation and costimulatory molecules on FO B cells skewing the cells toward TLR-dependent type-1 cytokine response. However, porin could not up-regulate the TLRs and activate MZ B cells. These cells responded to porin by expressing toll-interacting protein (TOLLIP), the TLR2 and -4 signaling inhibitor along with stimulation of the intracellular pathogen recognition receptor NLR caspase recruitment domain containing protein 5 (NLRC5). The CD1d(hi) MZ B cells released IL-10 unequivocally demonstrating regulatory B cell feature. Immunization with porin also resulted in transient IL-10 expression by the CD19(+)CD21(hi) B cells prior to plasma cell formation. Moreover, the plasma cells developed from the B-2 cell subsets show marked variation in generation of immunoglobulin subclasses. The work delineates multi-faceted role of B cell subsets induced by porin for robust immunity without compromising with the checks and controls.

  1. Setd1a regulates progenitor B-cell-to-precursor B-cell development through histone H3 lysine 4 trimethylation and Ig heavy-chain rearrangement

    PubMed Central

    Tusi, Betsabeh Khoramian; Deng, Changwang; Salz, Tal; Zeumer, Leilani; Li, Yangqiu; So, Chi Wai Eric; Morel, Laurence M.; Qiu, Yi; Huang, Suming

    2015-01-01

    SETD1A is a member of trithorax-related histone methyltransferases that methylate lysine 4 at histone H3 (H3K4). We showed previously that Setd1a is required for mesoderm specification and hematopoietic lineage differentiation in vitro. However, it remains unknown whether or not Setd1a controls specific hematopoietic lineage commitment and differentiation during animal development. Here, we reported that homozygous Setd1a knockout (KO) mice are embryonic lethal. Loss of the Setd1a gene in the hematopoietic compartment resulted in a blockage of the progenitor B-cell-to-precursor B-cell development in bone marrow (BM) and B-cell maturation in spleen. The Setd1a-cKO (conditional knockout) mice exhibited an enlarged spleen with disrupted spleen architecture and leukocytopenia. Mechanistically, Setd1a deficiency in BM reduced the levels of H3K4me3 at critical B-cell gene loci, including Pax5 and Rag1/2, which are critical for the IgH (Ig heavy-chain) locus contractions and rearrangement. Subsequently, the differential long-range looped interactions of the enhancer Eμ with proximal 5′ DH region and 3′ regulatory regions as well as with Pax5-activated intergenic repeat elements and 5′ distal VH genes were compromised by the Setd1a-cKO. Together, our findings revealed a critical role of Setd1a and its mediated epigenetic modifications in regulating the IgH rearrangement and B-cell development.—Tusi, B. K., Deng, C., Salz, T., Zeumer, L., Li, Y., So, C. W. E., Morel, L. M., Qiu, Y., Huang, S. Setd1a regulates progenitor B-cell-to-precursor B-cell development through histone H3 lysine 4 trimethylation and Ig heavy-chain rearrangement. PMID:25550471

  2. Virus-Like Display of a Neo-Self Antigen Reverses B Cell Anergy in a B Cell Receptor Transgenic Mouse Model1

    PubMed Central

    Chackerian, Bryce; Durfee, Marisa R.; Schiller, John T.

    2012-01-01

    The ability to distinguish between self and foreign Ags is a central feature of immune recognition. For B cells, however, immune tolerance is not absolute, and factors that include Ag valency, the availability of T help, and polyclonal B cell stimuli can influence the induction of autoantibody responses. Here, we evaluated whether multivalent virus-like particle (VLP)-based immunogens could induce autoantibody responses in well-characterized transgenic (Tg) mice that express a soluble form of hen egg lysozyme (HEL) and in which B cell tolerance to HEL is maintained by anergy. Immunization with multivalent VLP-arrayed HEL, but not a trivalent form of HEL, induced high-titer Ab responses against HEL in both soluble HEL Tg mice and double Tg mice that also express a monoclonal HEL-specific BCR. Induction of autoantibodies against HEL was not dependent on coadministration of strong adjuvants, such as CFA. In contrast to previous data showing the T-independent induction of Abs to foreign epitopes on VLPs, the ability of HEL-conjugated VLPs to induce anti-HEL Abs in tolerant mice was dependent on the presence of CD4+ Th cells, and could be enhanced by the presence of pre-existing cognate T cells. In in vitro studies, VLP-conjugated HEL was more potent than trivalent HEL in up-regulating surface activation markers on purified anergic B cells. Moreover, immunization with VLP-HEL reversed B cell anergy in vivo in an adoptive transfer model. Thus, Ag multivalency and T help cooperate to reverse B cell anergy, a major mechanism of B cell tolerance. PMID:18424700

  3. Rituximab in the treatment of primary cutaneous B-cell lymphoma: a review.

    PubMed

    Fernández-Guarino, M; Ortiz-Romero, P L; Fernández-Misa, R; Montalbán, C

    2014-06-01

    Rituximab is a chimeric mouse-human antibody that targets the CD20 antigen, which is found in both normal and neoplastic B cells. In recent years, it has been increasingly used to treat cutaneous B-cell lymphoma and is now considered an alternative to classic treatment (radiotherapy and surgery) of 2 types of indolent lymphoma, namely, primary cutaneous follicle center lymphoma and primary cutaneous marginal zone B-cell lymphoma. Rituximab is also administered as an alternative to polychemotherapy in the treatment of primary cutaneous large B-cell lymphoma, leg type. Its use as an alternative drug led to it being administered intralesionally, with beneficial effects. In the present article, we review the literature published on the use of rituximab to treat primary cutaneous B-cell lymphoma.

  4. Regulated selection of germinal-center cells into the memory B cell compartment.

    PubMed

    Shinnakasu, Ryo; Inoue, Takeshi; Kometani, Kohei; Moriyama, Saya; Adachi, Yu; Nakayama, Manabu; Takahashi, Yoshimasa; Fukuyama, Hidehiro; Okada, Takaharu; Kurosaki, Tomohiro

    2016-07-01

    Despite the importance of memory B cells in protection from reinfection, how such memory cells are selected and generated during germinal-center (GC) reactions remains unclear. We found here that light-zone (LZ) GC B cells with B cell antigen receptors (BCRs) of lower affinity were prone to enter the memory B cell pool. Mechanistically, cells in this memory-prone fraction had higher expression of the transcriptional repressor Bach2 than that of their counterparts with BCRs of higher affinity. Haploinsufficiency of Bach2 resulted in reduced generation of memory B cells, independently of suppression of the gene encoding the transcription factor Blimp-1. Bach2 expression in GC cells was inversely correlated with the strength of help provided by T cells. Thus, we propose an instructive model in which weak help from T cells maintains relatively high expression of Bach2, which predisposes GC cells to enter the memory pool.

  5. Salmonella Modulates B Cell Biology to Evade CD8+ T Cell-Mediated Immune Responses

    PubMed Central

    Lopez-Medina, Marcela; Perez-Lopez, Araceli; Alpuche-Aranda, Celia; Ortiz-Navarrete, Vianney

    2014-01-01

    Although B cells and antibodies are the central effectors of humoral immunity, B cells can also produce and secrete cytokines and present antigen to helper T cells. The uptake of antigen is mainly mediated by endocytosis; thus, antigens are often presented by MHC-II molecules. However, it is unclear if B cells can present these same antigens via MHC-I molecules. Recently, Salmonella bacteria were found to infect B cells, allowing possible antigen cross-processing that could generate bacterial peptides for antigen presentation via MHC-I molecules. Here, we will discuss available knowledge regarding Salmonella antigen presentation by infected B cell MHC-I molecules and subsequent inhibitory effects on CD8+ T cells for bacterial evasion of cell-mediated immunity. PMID:25484884

  6. Pediatric common variable immunodeficiency: immunologic and phenotypic associations with switched memory B cells.

    PubMed

    Yong, Pierre L; Orange, Jordan S; Sullivan, Kathleen E

    2010-08-01

    Recent studies suggest that patients with common variable immunodeficiency (CVID) and low numbers of switched memory B cells have lower IgG levels and higher rates of autoimmune disease, splenomegaly, and granulomatous disease; however, no prior literature has focused exclusively on pediatric cases. We examined the relationship between switched memory B cells and clinical and immunologic manifestations of CVID in a pediatric population. Forty-five patients were evaluated. Patients were categorized as Group I (<5 switched memory B cells/ml, n = 24) or Group II (> or =5 switched memory B cells/mL, n = 21). CD3(+) T-cell counts and CD19(+) B-cell levels were lower among Group I patients. Only those in Group I had meningitis, sepsis, bronchiectasis, granulomatous lung disease, autoimmune cytopenias, or hematologic malignancies. Segregation of pediatric patients into high risk (Group I) and average risk (Group II) may assist in targeting surveillance appropriately.

  7. Identification of a New Stromal Cell Type Involved in the Regulation of Inflamed B Cell Follicles

    PubMed Central

    Mionnet, Cyrille; Mondor, Isabelle; Jorquera, Audrey; Loosveld, Marie; Maurizio, Julien; Arcangeli, Marie-Laure; Ruddle, Nancy H.; Nowak, Jonathan; Aurrand-Lions, Michel; Luche, Hervé; Bajénoff, Marc

    2013-01-01

    Lymph node (LN) stromal cells provide survival signals and adhesive substrata to lymphocytes. During an immune response, B cell follicles enlarge, questioning how LN stromal cells manage these cellular demands. Herein, we used a murine fate mapping system to describe a new stromal cell type that resides in the T cell zone of resting LNs. We demonstrated that upon inflammation, B cell follicles progressively trespassed into the adjacent T cell zone and surrounded and converted these stromal cells into CXCL13 secreting cells that in return delineated the new boundaries of the growing follicle. Acute B cell ablation in inflamed LNs abolished CXCL13 secretion in these cells, while LT-β deficiency in B cells drastically affected this conversion. Altogether, we reveal the existence of a dormant stromal cell subset that can be functionally awakened by B cells to delineate the transient boundaries of their expanding territories upon inflammation. PMID:24130458

  8. Preferential localization of IgG memory B cells adjacent to contracted germinal centers

    PubMed Central

    Aiba, Yuichi; Kometani, Kohei; Hamadate, Megumi; Moriyama, Saya; Sakaue-Sawano, Asako; Tomura, Michio; Luche, Hervé; Fehling, Hans Jörg; Casellas, Rafael; Kanagawa, Osami; Miyawaki, Atsushi; Kurosaki, Tomohiro

    2010-01-01

    It has long been presumed that after leaving the germinal centers (GCs), memory B cells colonize the marginal zone or join the recirculating pool. Here we demonstrate the preferential localization of nitrophenol-chicken γ-globulin-induced CD38+IgG1+ memory B cells adjacent to contracted GCs in the spleen. The memory B cells in this region proliferated after secondary immunization, a response that was abolished by depletion of CD4+ T cells. We also found that these IgG1+ memory B cells could present antigen on their surface, and that this activity was required for their activation. These results implicate this peri-GC region as an important site for survival and reactivation of memory B cells. PMID:20547847

  9. B cells in the pathophysiology of autoimmune neurological disorders: a credible therapeutic target.

    PubMed

    Dalakas, Marinos C

    2006-10-01

    There is evidence that B cells are involved in the pathophysiology of many neurological diseases, either in a causative or contributory role, via production of autoantibodies, cytokine secretion, or by acting as antigen-presenting cells leading to T cell activation. Clonal expansion of B cells either in situ or intrathecally and circulating autoantibodies are critical elements in multiple sclerosis (MS), Devic's disease, paraneoplastic central nervous system disorders, stiff-person syndrome, myasthenia gravis, autoimmune demyelinating neuropathies and dermatomyositis. The pathogenic role of B cells and autoantibodies in central and peripheral nervous system disorders, as reviewed here, provides a rationale for investigating whether depletion of B cells with new agents can improve clinical symptomatology and, potentially, restore immune function. Preliminary results from several clinical studies and case reports suggest that B cell depletion may become a viable alternative approach to the treatment of autoimmune neurological disorders.

  10. Spi-C has opposing effects to PU.1 on gene expression in progenitor B cells.

    PubMed

    Schweitzer, Brock L; Huang, Kelly J; Kamath, Meghana B; Emelyanov, Alexander V; Birshtein, Barbara K; DeKoter, Rodney P

    2006-08-15

    The Ets transcription factor Spi-C, expressed in B cells and macrophages, is closely related to PU.1 and has the ability to recognize the same DNA consensus sequence. However, the function of Spi-C has yet to be determined. The purpose of this study is to further examine Spi-C activity in B cell development. First, using retroviral vectors to infect PU.1(-/-) fetal liver progenitors, Spi-C was found to be inefficient at inducing cytokine-dependent proliferation and differentiation of progenitor B (pro-B) cells or macrophages relative to PU.1 or Spi-B. Next, Spi-C was ectopically expressed in fetal liver-derived, IL-7-dependent pro-B cell lines. Wild-type (WT) pro-B cells ectopically expressing Spi-C (WT-Spi-C) have several phenotypic characteristics of pre-B cells such as increased CD25 and decreased c-Kit surface expression. In addition, WT-Spi-C pro-B cells express increased levels of IgH sterile transcripts and reduced levels of expression and transcription of the FcgammaRIIb gene. Gel-shift analysis suggests that Spi-C, ectopically expressed in pro-B cells, can bind PU.1 consensus sites in the IgH intronic enhancer and FcgammaRIIb promoter. Transient transfection analysis demonstrated that PU.1 functions to repress the IgH intronic enhancer and activate the FcgammaRIIb promoter, while Spi-C opposes these activities. WT-Spi-C pro-B cells have reduced levels of dimethylation on lysine 9 of histone H3 within the IgH 3' regulatory region, indicating that Spi-C can contribute to removal of repressive features in the IgH locus. Overall, these studies suggest that Spi-C may promote B cell differentiation by modulating the activity of PU.1-dependent genes.

  11. Expression, regulation, and function of B cell-expressed CD154 in germinal centers.

    PubMed

    Grammer, A C; McFarland, R D; Heaney, J; Darnell, B F; Lipsky, P E

    1999-10-15

    Activated B cells and T cells express CD154/CD40 ligand in vitro. The in vivo expression and function of B cell CD154 remain unclear and therefore were examined. Tonsillar B and T cells expressed CD154 at a similar density both in situ and immediately ex vivo, whereas a significantly higher percentage of the former expressed CD154. CD154-expressing B cells were most frequent in the CD38positiveIgD+ pre-germinal center (GC)/GC founder, CD38positive GC and CD38-IgD- memory populations, and were also found in the CD38-IgD+ naive and CD38brightIgD+ plasmablast subsets, but not in the CD38brightIgD- plasma cell subset. B cell expression of CD154 was induced by engaging surface Ig or CD40 by signals that predominantly involved activation of AP-1/NF-AT and NF-kappaB, respectively. The functional importance of CD154-mediated homotypic B cell interactions in vivo was indicated by the finding that mAb to CD154 inhibited differentiation of CD38positiveIgD- GC B cells to CD38-IgD- memory cells. In addition, mAb to CD154 inhibited proliferation induced by engaging sIg or CD40, indicating the role of up-regulation of this molecule in facilitating B cell responsiveness. Of note, CD154 itself not only functioned as a ligand but also as a direct signaling molecule as anti-CD154-conjugated Sepharose beads costimulated B cell responses induced by engaging surface Ig. These results indicate that CD154 is expressed by human B cells in vivo and plays an important role in mediating B cell responses.

  12. Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B-cell subsets

    PubMed Central

    Lundy, Steven K.; Wu, Qi; Wang, Qin; Dowling, Catherine A.; Taitano, Sophina H.; Mao, Guangmei

    2016-01-01

    Objective: To test the hypothesis that dimethyl fumarate (Tecfidera, BG-12) affects B-cell subsets in patients with relapsing-remitting multiple sclerosis (RRMS). Methods: Peripheral blood B cells were compared for surface marker expression in patients with RRMS prior to initiation of treatment, after 4–6 months, and at more than 1 year of treatment with BG-12. Production of interleukin (IL)–10 by RRMS patient B cells was also analyzed. Results: Total numbers of peripheral blood B lymphocytes declined after 4–6 months of BG-12 treatment, due to losses in both the CD27+ memory B cells and CD27neg B-cell subsets. Some interpatient variability was observed. In contrast, circulating CD24highCD38high (T2-MZP) B cells increased in percentage in the majority of patients with RRMS after 4–6 months and were present in higher numbers in all of the patients after 12 months of treatment. The CD43+CD27+ B-1 B cells also increased at the later time point in most patients but were unchanged at 4–6 months compared to pretreatment levels. Purified B cells from 7 of the 9 patients with RRMS tested after 4–6 months of treatment were able to produce IL-10 following CD40 ligand stimulation, and the amount corresponded with the combined levels of T2-MZP and B-1 B cells in the sample. None of the patients with RRMS in this study have had a relapse while taking BG-12. Conclusions: These data suggest that BG-12 differentially affects B-cell subsets in patients with RRMS, resulting in increased numbers of circulating B lymphocytes with regulatory capacity. PMID:27006972

  13. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases.

    PubMed

    Shen, Ping; Roch, Toralf; Lampropoulou, Vicky; O'Connor, Richard A; Stervbo, Ulrik; Hilgenberg, Ellen; Ries, Stefanie; Dang, Van Duc; Jaimes, Yarúa; Daridon, Capucine; Li, Rui; Jouneau, Luc; Boudinot, Pierre; Wilantri, Siska; Sakwa, Imme; Miyazaki, Yusei; Leech, Melanie D; McPherson, Rhoanne C; Wirtz, Stefan; Neurath, Markus; Hoehlig, Kai; Meinl, Edgar; Grützkau, Andreas; Grün, Joachim R; Horn, Katharina; Kühl, Anja A; Dörner, Thomas; Bar-Or, Amit; Kaufmann, Stefan H E; Anderton, Stephen M; Fillatreau, Simon

    2014-03-20

    B lymphocytes have critical roles as positive and negative regulators of immunity. Their inhibitory function has been associated primarily with interleukin 10 (IL-10) because B-cell-derived IL-10 can protect against autoimmune disease and increase susceptibility to pathogens. Here we identify IL-35-producing B cells as key players in the negative regulation of immunity. Mice in which only B cells did not express IL-35 lost their ability to recover from the T-cell-mediated demyelinating autoimmune disease experimental autoimmune encephalomyelitis (EAE). In contrast, these mice displayed a markedly improved resistance to infection with the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as shown by their superior containment of the bacterial growth and their prolonged survival after primary infection, and upon secondary challenge, compared to control mice. The increased immunity found in mice lacking IL-35 production by B cells was associated with a higher activation of macrophages and inflammatory T cells, as well as an increased function of B cells as antigen-presenting cells (APCs). During Salmonella infection, IL-35- and IL-10-producing B cells corresponded to two largely distinct sets of surface-IgM(+)CD138(hi)TACI(+)CXCR4(+)CD1d(int)Tim1(int) plasma cells expressing the transcription factor Blimp1 (also known as Prdm1). During EAE, CD138(+) plasma cells were also the main source of B-cell-derived IL-35 and IL-10. Collectively, our data show the importance of IL-35-producing B cells in regulation of immunity and highlight IL-35 production by B cells as a potential therapeutic target for autoimmune and infectious diseases. This study reveals the central role of activated B cells, particularly plasma cells, and their production of cytokines in the regulation of immune responses in health and disease.

  14. Inadequate Reference Datasets Biased toward Short Non-epitopes Confound B-cell Epitope Prediction.

    PubMed

    Rahman, Kh Shamsur; Chowdhury, Erfan Ullah; Sachse, Konrad; Kaltenboeck, Bernhard

    2016-07-01

    X-ray crystallography has shown that an antibody paratope typically binds 15-22 amino acids (aa) of an epitope, of which 2-5 randomly distributed amino acids contribute most of the binding energy. In contrast, researchers typically choose for B-cell epitope mapping short peptide antigens in antibody binding assays. Furthermore, short 6-11-aa epitopes, and in particular non-epitopes, are over-represented in published B-cell epitope datasets that are commonly used for development of B-cell epitope prediction approaches from protein antigen sequences. We hypothesized that such suboptimal length peptides result in weak antibody binding and cause false-negative results. We tested the influence of peptide antigen length on antibody binding by analyzing data on more than 900 peptides used for B-cell epitope mapping of immunodominant proteins of Chlamydia spp. We demonstrate that short 7-12-aa peptides of B-cell epitopes bind antibodies poorly; thus, epitope mapping with short peptide antigens falsely classifies many B-cell epitopes as non-epitopes. We also show in published datasets of confirmed epitopes and non-epitopes a direct correlation between length of peptide antigens and antibody binding. Elimination of short, ≤11-aa epitope/non-epitope sequences improved datasets for evaluation of in silico B-cell epitope prediction. Achieving up to 86% accuracy, protein disorder tendency is the best indicator of B-cell epitope regions for chlamydial and published datasets. For B-cell epitope prediction, the most effective approach is plotting disorder of protein sequences with the IUPred-L scale, followed by antibody reactivity testing of 16-30-aa peptides from peak regions. This strategy overcomes the well known inaccuracy of in silico B-cell epitope prediction from primary protein sequences.

  15. NFATc2 (NFAT1) assists BCR-mediated anergy in anti-insulin B cells.

    PubMed

    Bonami, Rachel H; Wolfle, William T; Thomas, James W; Kendall, Peggy L

    2014-12-01

    NFAT transcription factors play critical roles in both the activation and repression of T and B lymphocyte responses. To understand the role of NFATc2 (NFAT1) in the maintenance of tolerance for anti-insulin B cells, functionally inactive NFATc2 (NFATc2(-/-)) was introduced into C57BL/6 mice that harbor anergic anti-insulin 125Tg B cells. The production and peripheral maturation of anti-insulin B cells into follicular and marginal zone subsets was not altered by the absence of functional NFATc2. Surface B cell receptor expression levels, important for tonic signaling and altered by anergy, were not altered in any spleen B cell subset. The levels of anti-insulin antibodies were not different in 125Tg/B6/NFATc2(-/-) mice and the anti-insulin response remained silenced following T cell dependent immunization. However, studies addressing in vitro proliferation reveal the anergic state of 125Tg B cells is relieved in 125Tg/B6/NFATc2(-/-) B cells in response to BCR stimulation. In contrast, anergy is not released in 125Tg/B6/NFATc2(-/-) B cells following stimulation with anti-CD40. The relief of anergy to BCR stimulation in 125Tg/B6/NFATc2(-/-) B cells is associated with increased transcription of both NFATc1 and NFATc3 while expression of these NFATs does not change in anti-IgM stimulated 125Tg/B6/NFATc2(+/+) B cells. The data suggest that NFATc2 plays a subtle and selective role in maintaining anergy for BCR stimulation by repressing the transcription of other NFAT family members. PMID:24507801

  16. B Cells Are Multifunctional Players in Multiple Sclerosis Pathogenesis: Insights from Therapeutic Interventions

    PubMed Central

    Claes, Nele; Fraussen, Judith; Stinissen, Piet; Hupperts, Raymond; Somers, Veerle

    2015-01-01

    Multiple sclerosis (MS) is a severe disease of the central nervous system (CNS) characterized by autoimmune inflammation and neurodegeneration. Historically, damage to the CNS was thought to be mediated predominantly by activated pro-inflammatory T cells. B cell involvement in the pathogenesis of MS was solely attributed to autoantibody production. The first clues for the involvement of antibody-independent B cell functions in MS pathology came from positive results in clinical trials of the B cell-depleting treatment rituximab in patients with relapsing-remitting (RR) MS. The survival of antibody-secreting plasma cells and decrease in T cell numbers indicated the importance of other B cell functions in MS such as antigen presentation, costimulation, and cytokine production. Rituximab provided us with an example of how clinical trials can lead to new research opportunities concerning B cell biology. Moreover, analysis of the antibody-independent B cell functions in MS has gained interest since these trials. Limited information is present on the effects of current immunomodulatory therapies on B cell functions, although effects of both first-line (interferon, glatiramer acetate, dimethyl fumarate, and teriflunomide), second-line (fingolimod, natalizumab), and even third-line (monoclonal antibody therapies) treatments on B cell subtype distribution, expression of functional surface markers, and secretion of different cytokines by B cells have been studied to some extent. In this review, we summarize the effects of different MS-related treatments on B cell functions that have been described up to now in order to find new research opportunities and contribute to the understanding of the pathogenesis of MS. PMID:26734009

  17. TGF-β-Induced Regulatory T Cells Directly Suppress B Cell Responses through a Noncytotoxic Mechanism.

    PubMed

    Xu, Anping; Liu, Ya; Chen, Weiqian; Wang, Julie; Xue, Youqiu; Huang, Feng; Rong, Liming; Lin, Jin; Liu, Dahai; Yan, Mei; Li, Quan-Zhen; Li, Bin; Song, Jianxun; Olsen, Nancy; Zheng, Song Guo

    2016-05-01

    Foxp3(+) regulatory T cells (Treg) playing a crucial role in the maintenance of immune tolerance and prevention of autoimmune diseases consist of thymus-derived naturally occurring CD4(+)Foxp3(+) Treg cells (nTreg) and those that can be induced ex vivo with TGF-β (iTreg). Although both Treg subsets share similar phenotypes and functional characteristics, they also have potential biologic differences on their biology. The role of iTreg in regulating B cells remains unclear so far. The suppression assays of Treg subsets on activation, proliferation, and Abs production of B cells were measured using a Treg and B cell coculture system in vitro. Transwell and Ab blockade experiments were performed to assess the roles of cell contact and soluble cytokines. Treg were adoptively transferred to lupus mice to assess in vivo effects on B cells. Like nTreg, iTreg subset also directly suppressed activation and proliferation of B cells. nTreg subset suppressed B cell responses through cytotoxic manner related to expression of granzyme A, granzyme B, and perforin, whereas the role of iTreg subset on B cells did not involve in cytotoxic action but depending on TGF-β signaling. Furthermore, iTreg subset can significantly suppress Ab produced by lupus B cells in vitro. Comparison experiments using autoantibodies microarrays demonstrated that adoptive transfer of iTreg had a superior effect than nTreg subset on suppressing lupus B cell responses in vivo. Our data implicate a role and advantage of iTreg subset in treating B cell-mediated autoimmune diseases, boosting the translational potential of these findings. PMID:27001954

  18. B Cells Are Multifunctional Players in Multiple Sclerosis Pathogenesis: Insights from Therapeutic Interventions.

    PubMed

    Claes, Nele; Fraussen, Judith; Stinissen, Piet; Hupperts, Raymond; Somers, Veerle

    2015-01-01

    Multiple sclerosis (MS) is a severe disease of the central nervous system (CNS) characterized by autoimmune inflammation and neurodegeneration. Historically, damage to the CNS was thought to be mediated predominantly by activated pro-inflammatory T cells. B cell involvement in the pathogenesis of MS was solely attributed to autoantibody production. The first clues for the involvement of antibody-independent B cell functions in MS pathology came from positive results in clinical trials of the B cell-depleting treatment rituximab in patients with relapsing-remitting (RR) MS. The survival of antibody-secreting plasma cells and decrease in T cell numbers indicated the importance of other B cell functions in MS such as antigen presentation, costimulation, and cytokine production. Rituximab provided us with an example of how clinical trials can lead to new research opportunities concerning B cell biology. Moreover, analysis of the antibody-independent B cell functions in MS has gained interest since these trials. Limited information is present on the effects of current immunomodulatory therapies on B cell functions, although effects of both first-line (interferon, glatiramer acetate, dimethyl fumarate, and teriflunomide), second-line (fingolimod, natalizumab), and even third-line (monoclonal antibody therapies) treatments on B cell subtype distribution, expression of functional surface markers, and secretion of different cytokines by B cells have been studied to some extent. In this review, we summarize the effects of different MS-related treatments on B cell functions that have been described up to now in order to find new research opportunities and contribute to the understanding of the pathogenesis of MS. PMID:26734009

  19. Aberrant TIRAP and MyD88 expression in B-cell chronic lymphocytic leukemia.

    PubMed

    Antosz, Halina; Sajewicz, Joanna; Marzec-Kotarska, Barbara; Dmoszyńska, Anna; Baszak, Jacek; Jargiełło-Baszak, Małgorzata

    2013-06-01

    TIRAP and Myd88 are adaptor proteins for Toll-like receptors-2 and -4 (TLR2/4) which are engaged in transducing the signal to downstream molecules. Several studies have shown the increased role of infection factors in pathogenesis of B cell chronic lymphocytic leukemia (B-CLL). This prompted us to test whether there is a correlation between MyD88-TIRAP dynamics before and after inflammatory stimuli. We determined the mRNA and protein expression of TIRAP and MyD88 in CD5(+)CD19(+) B-CLL cells and in a subpopulation of normal B CD19(+) lymphocytes. Additionally we determined the influence of lipopolysaccharide Escherichia coli - TLR4-ligand (LPS) and Staphylococcus aureus strain Cowan I - TLR2-ligand (SAC) on TIR-domain-containing adaptor protein, also called MyD88 adaptor-like (TIRAP) and myeloid differentiation primary response protein 88 (MyD88) expression. We have found that the mRNA and protein expression of TIRAP and MyD88 in B-CLL lymphocytes is lower compared with that in normal B lymphocytes. LPS and SAC stimulation in normal lymphocytes significantly altered neither TIRAP nor MyD88 mRNA expression, whereas TIRAP protein level substantially decreased after TLR agonist treatment. We did not observe any changes in MyD88 protein level after B lymphocyte stimulation. There was a significant increase in TIRAP mRNA expression after LPS and SAC stimulation of B-CLL cells. MyD88 mRNA expression levels in B-CLL lymphocytes slightly decreased upon treatment with either stimulator. Stimulation with TLR agonists did not cause changes in TIRAP and MyD88 expression at the protein level in B-CLL lymphocytes. The results of our study suggest that there may exist a, yet unknown, defect of TIRAP and MyD88 proteins in B-CLL lymphocytes. PMID:23419703

  20. Angiomirs expression profiling in diffuse large B-Cell lymphoma

    PubMed Central

    Borges, Natália M.; do Vale Elias, Marcela; Fook-Alves, Veruska L.; Andrade, Tathiana A.; de Conti, Marina Lourenço; Macedo, Mariana Petaccia; Begnami, Maria Dirlei; Campos, Antônio Hugo J. F. M.; Etto, Leina Yukari; Bortoluzzo, Adriana Bruscato; Alves, Antonio C.; Young, Ken H.; Colleoni, Gisele W. B.

    2016-01-01

    Despite advances in treatment, 30% of diffuse large B-cell lymphoma (DLBCL) cases are refractory or relapse after chemoimmunotherapy. Currently, the relationship between angiogenesis and angiomiRs in DLBCL is unknown. We classified 84 DLBCL cases according to stromal signatures and evaluated the expression of pro- and antiangiomiRs in paraffin embedded tissues of DLBCL and correlated them with microvascular density (MVD). 40% of cases were classified as stromal-1, 50% as stromal-2 and 10% were not classified. We observed increased expression of proangiomiRs Let-7f, miR-17, miR-18a, miR-19b, miR-126, miR-130a, miR-210, miR-296 and miR-378 in 14%, 57%, 30%, 45%, 12%, 12%, 56%, 58% and 48% of the cases, respectively. Among antiangiomiRs we found decreased expression of miR-16, miR-20b, miR-92a, miR-221 and miR-328 in, respectively, 27%, 71%, 2%, 44% and 11%. We found association between increased expression of proangiomiRs miR-126 and miR-130a and antiangiomiR miR-328 and the subtype non-GCB. We found higher levels of the antiangiomiRs miR-16, miR-221 and miR-328 in patients with low MVD and stromal-1 signature. IPI and CD34 confirmed independent impact on survival of the study group. None of the above angiomiRs showed significance as biomarker in an independent serum samples cohort of patients and controls. In conclusion, we confirmed association between antiangiomiRs miR-16, miR-221 and miR-328 and stromal-1 signature. Four angiomiRs emerged as potential therapeutic targets: proangiomiRs miR-17, miR-210 and miR-296 and antiangiomiR miR-20b. Although the four microRNAs seem to be important in DLBCL pathogenesis, they were not predictive of DLBCL onset or relapse in the serum independent cohort. PMID:26683099

  1. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy.

    PubMed

    Wang, Jing-Zhang; Zhang, Yu-Hua; Guo, Xin-Hua; Zhang, Hong-Yan; Zhang, Yuan

    2016-07-01

    Emerging evidence reveals the controversial role of B cells in antitumor immunity, but the underlying mechanisms have to be explored. Three latest articles published in the issue 521 of Nature in 2015 reconfirmed the puzzling topic and put forward some explanations of how B cells regulate antitumor T-cell responses both positively and negatively. This paper attempts to demonstrate that different B-cell subpopulations have distinct immunological properties and that they are involved in either antitumor responses or immunosuppression. Recent studies supporting the positive and negative roles of B cells in tumor development were summarized comprehensively. Several specific B-cell subpopulations, such as IgG(+), IgA(+), IL-10(+), and regulatory B cells, were described in detail. The mechanisms underlying the controversial B-cell effects were mainly attributed to different B-cell subpopulations, different B-cell-derived cytokines, direct B cell-T cell interaction, different cancer categories, and different malignant stages, and the immunological interaction between B cells and T cells is mediated by dendritic cells. Promising B-cell-based antitumor strategies were proposed and novel B-cell regulators were summarized to present interesting therapeutic targets. Future investigations are needed to make sure that B-cell-based pharmacological strategies benefit cancer immunotherapy substantially.

  2. Regulation of B cell linker protein transcription by PU.1 and Spi-B in murine B cell acute lymphoblastic leukemia.

    PubMed

    Xu, Li S; Sokalski, Kristen M; Hotke, Kathryn; Christie, Darah A; Zarnett, Oren; Piskorz, Jan; Thillainadesan, Gobi; Torchia, Joseph; DeKoter, Rodney P

    2012-10-01

    B cell acute lymphoblastic leukemia (B-ALL) is frequently associated with mutations or chromosomal translocations of genes encoding transcription factors. Conditional deletion of genes encoding the E26-transformation-specific transcription factors, PU.1 and Spi-B, in B cells (ΔPB mice) leads to B-ALL in mice at 100% incidence rate and with a median survival of 21 wk. We hypothesized that PU.1 and Spi-B may redundantly activate transcription of genes encoding tumor suppressors in the B cell lineage. Characterization of aging ΔPB mice showed that leukemia cells expressing IL-7R were found in enlarged thymuses. IL-7R-expressing B-ALL cells grew in culture in response to IL-7 and could be maintained as cell lines. Cultured ΔPB cells expressed reduced levels of B cell linker protein (BLNK), a known tumor suppressor gene, compared with controls. The Blnk promoter contained a predicted PU.1 and/or Spi-B binding site that was required for promoter activity and occupied by PU.1 and/or Spi-B as determined by chromatin immunoprecipitation. Restoration of BLNK expression in cultured ΔPB cells opposed IL-7-dependent proliferation and induced early apoptosis. We conclude that the tumor suppressor BLNK is a target of transcriptional activation by PU.1 and Spi-B in the B cell lineage.

  3. NFκB expression is a feature of both activated B-cell-like and germinal center B-cell-like subtypes of diffuse large B-cell lymphoma.

    PubMed

    Odqvist, Lina; Montes-Moreno, Santiago; Sánchez-Pacheco, Roxana E; Young, Ken H; Martín-Sánchez, Esperanza; Cereceda, Laura; Sánchez-Verde, Lydia; Pajares, Raquel; Mollejo, Manuela; Fresno, Manuel F; Mazorra, Francisco; Ruíz-Marcellán, Carmen; Sánchez-Beato, Margarita; Piris, Miguel A

    2014-10-01

    The activation of nuclear factor kappa B (NFκB) transcription factor family is considered to have a key role in diffuse large B-cell lymphoma (DLBCL) pathogenesis and is associated with a specific molecular subtype, the activated B-cell-like (ABC) subtype. We evaluated the expression of NFκB by immunohistochemistry in a large series of DLBCL cases. The five different NFκB family members (NFκB1, NFκB2, RELA, RELB, and REL) showed a heterogeneous expression pattern with the vast majority of cases being positive for at least one factor. Two independent series of tumor samples were classified into germinal center B-cell-like (GCB) or ABC subtypes using different approaches, immunohistochemistry, or gene expression profiling, and the expression of NFκB family members was assessed. Notably, no significant differences regarding the expression of the different NFκB members were detected between the two subtypes, suggesting that NFκB signaling is a prominent feature not only in the ABC subtype, but also in the GCB tumors. Of the five transcription factors, only REL expression had a significant clinical impact on R-CHOP-treated diffuse large B-cell lymphoma, identifying a subgroup of patients with superior clinical outcome.

  4. Simultaneous assessment of rotavirus-specific memory B cells and serological memory after B cell depletion therapy with rituximab.

    PubMed

    Herrera, Daniel; Rojas, Olga L; Duarte-Rey, Carolina; Mantilla, Rubén D; Angel, Juana; Franco, Manuel A

    2014-01-01

    The mechanisms that contribute to the maintenance of serological memory are still unclear. Rotavirus (RV) memory B cells (mBc) are enriched in IgM(+) and CD27- subpopulations, which are associated with autoimmune diseases pathogenesis. In patients with autoimmune diseases treated with Rituximab (RTX), some autoantibodies (auto-Abs) decrease after treatment, but other auto-Abs and pathogen-specific IgG Abs remain unchanged. Thus, maintenance of autoimmune and pathogen-specific serological memory may depend on the type of antigen and/or Ab isotype evaluated. Antigen-specific mBc and antigen-specific Abs of different isotypes have not been simultaneously assessed in patients after RTX treatment. To study the relationship between mBc subpopulations and serological memory we characterized total, RV- and tetanus toxoid (TT)-specific mBc by flow cytometry in patients with autoimmune diseases before and after treatment with RTX. We also measured total, RV- and TT-Abs, and some auto-Abs by kinetic nephelometry, ELISA, and EliA tests, respectively. Minor differences were observed between the relative frequencies of RV-mBc in healthy controls and patients with autoimmune disease. After RTX treatment, naïve Bc and total, RV- and TT-specific mBc [IgM(+), switched (IgA(+)/IgG(+)), IgM(+) only, IgD(+) only, and CD27- (IgA(+)/IgG(+)/IgM(+))] were significantly diminished. An important decrease in total plasma IgM and minor decreases in total IgG and IgA levels were also observed. IgM rheumatoid factor, IgG anti-CCP, and IgG anti-dsDNA were significantly diminished. In contrast, RV-IgA, RV-IgG and RV-IgG1, and TT-IgG titers remained stable. In conclusion, in patients with autoimmunity, serological memory against RV and TT seem to be maintained by long-lived plasma cells, unaffected by RTX, and an important proportion of total IgM and serological memory against some auto-antigens seem to be maintained by short-lived plasma cells, dependent on mBc precursors depleted by RTX.

  5. Simultaneous Assessment of Rotavirus-Specific Memory B Cells and Serological Memory after B Cell Depletion Therapy with Rituximab

    PubMed Central

    Herrera, Daniel; Rojas, Olga L.; Duarte-Rey, Carolina; Mantilla, Rubén D.; Ángel, Juana; Franco, Manuel A.

    2014-01-01

    The mechanisms that contribute to the maintenance of serological memory are still unclear. Rotavirus (RV) memory B cells (mBc) are enriched in IgM+ and CD27- subpopulations, which are associated with autoimmune diseases pathogenesis. In patients with autoimmune diseases treated with Rituximab (RTX), some autoantibodies (auto-Abs) decrease after treatment, but other auto-Abs and pathogen-specific IgG Abs remain unchanged. Thus, maintenance of autoimmune and pathogen-specific serological memory may depend on the type of antigen and/or Ab isotype evaluated. Antigen-specific mBc and antigen-specific Abs of different isotypes have not been simultaneously assessed in patients after RTX treatment. To study the relationship between mBc subpopulations and serological memory we characterized total, RV- and tetanus toxoid (TT)-specific mBc by flow cytometry in patients with autoimmune diseases before and after treatment with RTX. We also measured total, RV- and TT-Abs, and some auto-Abs by kinetic nephelometry, ELISA, and EliA tests, respectively. Minor differences were observed between the relative frequencies of RV-mBc in healthy controls and patients with autoimmune disease. After RTX treatment, naïve Bc and total, RV- and TT-specific mBc [IgM+, switched (IgA+/IgG+), IgM+ only, IgD+ only, and CD27- (IgA+/IgG+/IgM+)] were significantly diminished. An important decrease in total plasma IgM and minor decreases in total IgG and IgA levels were also observed. IgM rheumatoid factor, IgG anti-CCP, and IgG anti-dsDNA were significantly diminished. In contrast, RV-IgA, RV-IgG and RV-IgG1, and TT-IgG titers remained stable. In conclusion, in patients with autoimmunity, serological memory against RV and TT seem to be maintained by long-lived plasma cells, unaffected by RTX, and an important proportion of total IgM and serological memory against some auto-antigens seem to be maintained by short-lived plasma cells, dependent on mBc precursors depleted by RTX. PMID:24819618

  6. Expansion of IgG+ B-cells during mitogen stimulation for memory B-cell ELISpot analysis is influenced by size and composition of the B-cell pool.

    PubMed

    Scholzen, Anja; Nahrendorf, Wiebke; Langhorne, Jean; Sauerwein, Robert W

    2014-01-01

    The memory B-cell (MBC) ELISpot assay is the main technique used to measure antigen-specific MBCs as a readout of humoral immune memory. This assay relies on the ability of MBCs to differentiate into antibody-secreting cells (ASC) upon polyclonal stimulation. The total number of IgG+ ASCs generated by mitogen-stimulation is often used as a reference point; alternatively antigen-specific MBCs are expressed as a frequency of post-culture peripheral blood mononuclear cells (PBMC) as a surrogate for absolute frequencies. Therefore, it is important to know whether IgG+ B-cells are uniformly expanded during the preceding mitogen-culture as a true reflection of MBC frequencies ex vivo. We systematically compared B-cell phenotype and proportions before and after mitogen stimulation in cultures of 269 peripheral blood mononuclear cell samples from 62 volunteers by flow cytometry and analyzed the number of resulting ASCs. Our data show that the number of total IgG+ ASCs detected by ELISpot after mitogen stimulation correlates with the proportion of IgG+ MBCs ex vivo, highlighting its general robustness for comparisons of study cohorts at group level. The expansion of total and IgG+ B-cells during mitogen-stimulation, however, was not identical in all cultures, but influenced by size and composition of the ex vivo B-cell compartment. The uncorrected readout of antigen-specific MBCs per million post-culture PBMCs therefore only preserves the quality, but not the magnitude of differences in the ex vivo MBC response between groups or time points, particularly when comparing samples where the B-cell compartment substantially differs between cohorts or over time. Therefore, expressing antigen-specific cells per total IgG+ ASCs is currently the best measure to correct for mitogen-culture effects. Additionally, baseline information on the size and composition of the ex vivo B-cell compartment should be supplied to additionally inform about differences or changes in the size and

  7. Essential control of early B-cell development by Mef2 transcription factors.

    PubMed

    Herglotz, Julia; Unrau, Ludmilla; Hauschildt, Friderike; Fischer, Meike; Kriebitzsch, Neele; Alawi, Malik; Indenbirken, Daniela; Spohn, Michael; Mülle