NASA Technical Reports Server (NTRS)
Rose, P. W.; Rosendahl, P. C. (Principal Investigator)
1979-01-01
Multivariant hydrologic parameters over the Shark River Slough were investigated. Ground truth was established utilizing U-2 infrared photography and comprehensive field data to define a control network which represented all hydrobiological systems in the slough. These data were then applied to LANDSAT imagery utilizing an interactive multispectral processor which generated hydrographic maps through classification of the slough and defined the multispectral surface radiance characteristics of the wetlands areas in the park. The spectral response of each hydrobiological zone was determined and plotted to formulate multispectral relationships between the emittent energy from the slough in order to determine the best possible multispectral wavelength combinations to enhance classification results. The extent of each hydrobiological zone in slough was determined and flow vectors for water movement throughout the slough established.
NASA Technical Reports Server (NTRS)
Johnson, R. W.; Bahn, G. S.
1977-01-01
Statistical analysis techniques were applied to develop quantitative relationships between in situ river measurements and the remotely sensed data that were obtained over the James River in Virginia on 28 May 1974. The remotely sensed data were collected with a multispectral scanner and with photographs taken from an aircraft platform. Concentration differences among water quality parameters such as suspended sediment, chlorophyll a, and nutrients indicated significant spectral variations. Calibrated equations from the multiple regression analysis were used to develop maps that indicated the quantitative distributions of water quality parameters and the dispersion characteristics of a pollutant plume entering the turbid river system. Results from further analyses that use only three preselected multispectral scanner bands of data indicated that regression coefficients and standard errors of estimate were not appreciably degraded compared with results from the 10-band analysis.
River velocities from sequential multispectral remote sensing images
NASA Astrophysics Data System (ADS)
Chen, Wei; Mied, Richard P.
2013-06-01
We address the problem of extracting surface velocities from a pair of multispectral remote sensing images over rivers using a new nonlinear multiple-tracer form of the global optimal solution (GOS). The derived velocity field is a valid solution across the image domain to the nonlinear system of equations obtained by minimizing a cost function inferred from the conservation constraint equations for multiple tracers. This is done by deriving an iteration equation for the velocity, based on the multiple-tracer displaced frame difference equations, and a local approximation to the velocity field. The number of velocity equations is greater than the number of velocity components, and thus overly constrain the solution. The iterative technique uses Gauss-Newton and Levenberg-Marquardt methods and our own algorithm of the progressive relaxation of the over-constraint. We demonstrate the nonlinear multiple-tracer GOS technique with sequential multispectral Landsat and ASTER images over a portion of the Potomac River in MD/VA, and derive a dense field of accurate velocity vectors. We compare the GOS river velocities with those from over 12 years of data at four NOAA reference stations, and find good agreement. We discuss how to find the appropriate spatial and temporal resolutions to allow optimization of the technique for specific rivers.
Apollo 9 Mission image - S0-65 Multispectral Photography - Alabama
2009-02-19
AS09-26A-3790A (11 March 1969) --- Color infrared photograph of the Birmingham to Gadsden area of Alabama as seen from the Apollo 9 spacecraft during its 121st revolution of Earth. This picture was taken as a part of the SO65 Multispectral Terrain Photography Experiment. Birmingham is at left center edge of picture; Gadsden is near top center edge of photograph. Note folded mountains of southern Appalachian chain extending northeast-southwest. The major river in picture which runs generally southward is the Coosa River. The Tallapoosa River, which flows into Lake Martin, is in the southeast corner of picture. Interstate 20 runs from Birmingham eastward toward Atlanta. The City of Anniston is south of Gadsden on Interstate 20.
Apollo 9 Mission image - S0-65 Multispectral Photography - Mississippi
2009-02-19
AS09-26A-3741A (9 March 1969) --- Color infrared photograph of the Mississippi River between Vicksburg and Greenville as photographed from the Apollo 9 spacecraft during its 92nd revolution of Earth. This picture was a part of the SO65 Multispectral Terrain Photography Experiment. The City of Vicksburg is located in the southeast corner of the picture. Note Interstate 20 under construction running east and west. Greenville is just out of picture at top center. All east of river is Mississippi; Louisiana is at lower left; and Arkansas is at upper left.
Black, Robert W.; Haggland, Alan; Crosby, Greg
2003-01-01
Instream hydraulic and riparian habitat conditions and stream temperatures were characterized for selected stream segments in the Upper White River Basin, Washington. An aerial multispectral imaging system used digital cameras to photograph the stream segments across multiple wavelengths to characterize fish habitat and temperature conditions. All imageries were georeferenced. Fish habitat features were photographed at a resolution of 0.5 meter and temperature imageries were photographed at a 1.0-meter resolution. The digital multispectral imageries were classified using commercially available software. Aerial photographs were taken on September 21, 1999. Field habitat data were collected from August 23 to October 12, 1999, to evaluate the measurement accuracy and effectiveness of the multispectral imaging in determining the extent of the instream habitat variables. Fish habitat types assessed by this method were the abundance of instream hydraulic features such as pool and riffle habitats, turbulent and non-turbulent habitats, riparian composition, the abundance of large woody debris in the stream and riparian zone, and stream temperatures. Factors such as the abundance of instream woody debris, the location and frequency of pools, and stream temperatures generally are known to have a significant impact on salmon. Instream woody debris creates the habitat complexity necessary to maintain a diverse and healthy salmon population. The abundance of pools is indicative of a stream's ability to support fish and other aquatic organisms. Changes in water temperature can affect aquatic organisms by altering metabolic rates and oxygen requirements, altering their sensitivity to toxic materials and affecting their ability to avoid predators. The specific objectives of this project were to evaluate the use of an aerial multispectral imaging system to accurately identify instream hydraulic features and surface-water temperatures in the Upper White River Basin, to use the multispectral system to help establish baseline instream/riparian habitat conditions in the study area, and to qualitatively assess the imaging system for possible use in other Puget Sound rivers. For the most part, all multispectral imagery-based estimates of total instream riffle and pool area were less than field measurements. The imagery-based estimates for riffle habitat area ranged from 35.5 to 83.3 percent less than field measurements. Pool habitat estimates ranged from 139.3 percent greater than field measurements to 94.0 percent less than field measurements. Multispectral imagery-based estimates of turbulent habitat conditions ranged from 9.3 percent greater than field measurements to 81.6 percent less than field measurements. Multispectral imagery-based estimates of non-turbulent habitat conditions ranged from 27.7 to 74.1 percent less than field measurements. The absolute average percentage of difference between field and imagery-based habitat type areas was less for the turbulent and non-turbulent habitat type categories than for pools and riffles. The estimate of woody debris by multispectral imaging was substantially different than field measurements; percentage of differences ranged from +373.1 to -100 percent. Although the total area of riffles, pools, and turbulent and non-turbulent habitat types measured in the field were all substantially higher than those estimated from the multispectral imagery, the percentage of composition of each habitat type was not substantially different between the imagery-based estimates and field measurements.
NASA Technical Reports Server (NTRS)
Raquet, C. A.; Salzman, J. A.; Coney, T. A.; Svehla, R. A.; Shook, D. F.; Gedney, R. T.
1980-01-01
The remote sensing results of aircraft and ship surveys for determining the impact of river effluents on Great Lakes waters are presented. Aircraft multi-spectral scanner data were acquired throughout the spring and early summer of 1976 at five locations: the West Basin of Lake Erie, Genesee River - Lake Ontario, Menomonee River - Lake Michigan, Grand River - Lake Michigan, and Nemadji River - Lake Superior. Multispectral scanner data and ship surface sample data are correlated resulting in 40 contour plots showing large-scale distributions of parameters such as total suspended solids, turbidity, Secchi depth, nutrients, salts, and dissolved oxygen. The imagery and data analysis are used to determine the transport and dispersion of materials from the river discharges, especially during spring runoff events, and to evaluate the relative effects of river input, resuspension, and shore erosion. Twenty-five LANDSAT satellite images of the study sites are also included in the analysis. Examples of the use of remote sensing data in quantitatively estimating total particulate loading in determining water types, in assessing transport across international boundaries, and in supporting numerical current modeling are included. The importance of coordination of aircraft and ship lake surveys is discussed, including the use of telefacsimile for the transmission of imagery.
NASA Technical Reports Server (NTRS)
Johnson, R. W.; Batten, C. E.; Bowker, D. E.; Bressette, W. E.; Grew, G. W.
1975-01-01
Several remote sensors were simultaneously used to collect data over the tidal James River from Hopewell to Norfolk, Virginia. Sensors evaluated included the Multichannel-Ocean Color Sensor, multispectral scanners, and multispectral photography. Ground truth measurements and remotely sensed data are given. Preliminary analysis indicates that suspended sediment and concentrated industrial effluent are observable from all sensors.
NASA Technical Reports Server (NTRS)
Rose, P. W.; Rosendahl, P. C.
1981-01-01
The considered investigation is concerned with the application of Landsat Multispectral Scanner (MSS) data to the classification of vegetative communities and the establishment of flow vectors for the Shark River Slough in Everglades National Park, Florida. A systematic array of 'ground truth' was established utilizing comprehensive hydrologic field data and conventional high altitude infrared aerial photography. A control network was defined that represented all hydrobiological zones (those wetland vegetative communities that directly influence the rate of overland sheet flow) in the Shark River Slough. These data were then directly applied to the Landsat imagery utilizing an interactive multispectral processor which generated hydrographic maps of the slough and defined the surface radiance characteristics of each hydrobiological system. It was found that the application of Landsat imagery for hydrologic applications in a wetlands area, such as the Shark River Slough in Everglades National Park, is definitely a viable tool for resource management.
Water Mapping Using Multispectral Airborne LIDAR Data
NASA Astrophysics Data System (ADS)
Yan, W. Y.; Shaker, A.; LaRocque, P. E.
2018-04-01
This study investigates the use of the world's first multispectral airborne LiDAR sensor, Optech Titan, manufactured by Teledyne Optech to serve the purpose of automatic land-water classification with a particular focus on near shore region and river environment. Although there exist recent studies utilizing airborne LiDAR data for shoreline detection and water surface mapping, the majority of them only perform experimental testing on clipped data subset or rely on data fusion with aerial/satellite image. In addition, most of the existing approaches require manual intervention or existing tidal/datum data for sample collection of training data. To tackle the drawbacks of previous approaches, we propose and develop an automatic data processing workflow for land-water classification using multispectral airborne LiDAR data. Depending on the nature of the study scene, two methods are proposed for automatic training data selection. The first method utilizes the elevation/intensity histogram fitted with Gaussian mixture model (GMM) to preliminarily split the land and water bodies. The second method mainly relies on the use of a newly developed scan line elevation intensity ratio (SLIER) to estimate the water surface data points. Regardless of the training methods being used, feature spaces can be constructed using the multispectral LiDAR intensity, elevation and other features derived from these parameters. The comprehensive workflow was tested with two datasets collected for different near shore region and river environment, where the overall accuracy yielded better than 96 %.
Apollo 9 Mission image - S0-65 Multispectral Photography - Texas
2009-02-19
AS09-26A-3727A (8 March 1969) --- Color infrared photograph of the Texas Gulf Coast, Galveston Bay to Matagorda Bay, as seen from the Apollo 9 spacecraft during it 78th revolution of Earth. Houston is located at right center edge of photograph. Also visible are Galveston, Texas City, Manned Spacecraft Center, and Freeport. The mouth of the Colorado River is located near left center edge of picture. This picture was taken as a part of the SO65 Multispectral Terrain Photography Experiment.
NASA Astrophysics Data System (ADS)
Murray, R.; Neale, C.; Nagler, P. L.; Glenn, E. P.
2008-12-01
Heat-balance sap flow sensors provide direct estimates of water movement through plant stems and can be used to accurately measure leaf-level transpiration (EL) and stomatal conductance (GS) over time scales ranging from 20-minutes to a month or longer in natural stands of plants. However, their use is limited to relatively small branches on shrubs or trees, as the gauged stem section needs to be uniformly heated by the heating coil to produce valid measurements. This presents a scaling problem in applying the results to whole plants, stands of plants, and larger landscape areas. We used high-resolution aerial multispectral digital imaging with green, red and NIR bands as a bridge between ground measurements of EL and GS, and MODIS satellite imagery of a flood plain on the Lower Colorado River dominated by saltcedar (Tamarix ramosissima). Saltcedar is considered to be a high-water-use plant, and saltcedar removal programs have been proposed to salvage water. Hence, knowledge of actual saltcedar ET rates is needed on western U.S. rivers. Scaling EL and GS to large landscape units requires knowledge of leaf area index (LAI) over large areas. We used a LAI model developed for riparian habitats on Bosque del Apache, New Mexico, to estimate LAI at our study site on the Colorado River. We compared the model estimates to ground measurements of LAI, determined with a Li-Cor LAI-2000 Plant Canopy Analyzer calibrated by leaf harvesting to determine Specific Leaf Area (SLA) (m2 leaf area per g dry weight leaves) of the different species on the floodplain. LAI could be adequately predicted from NDVI from aerial multispectral imagery and could be cross-calibrated with MODIS NDVI and EVI. Hence, we were able to project point measurements of sap flow and LAI over multiple years and over large areas of floodplain using aerial multispectral imagery as a bridge between ground and satellite data. The methods are applicable to riparian corridors throughout the western U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virnstein, R.; Tepera, M.; Beazley, L.
1997-06-01
A pilot study is very briefly summarized in the article. The study tested the potential of multi-spectral digital imagery for discrimination of seagrass densities and species, algae, and bottom types. Imagery was obtained with the Compact Airborne Spectral Imager (casi) and two flight lines flown with hyper-spectral mode. The photogrammetric method used allowed interpretation of the highest quality product, eliminating limitations caused by outdated or poor quality base maps and the errors associated with transfer of polygons. Initial image analysis indicates that the multi-spectral imagery has several advantages, including sophisticated spectral signature recognition and classification, ease of geo-referencing, and rapidmore » mosaicking.« less
NASA Astrophysics Data System (ADS)
Zhou, Y.; Zhao, H.; Hao, H.; Wang, C.
2018-05-01
Accurate remote sensing water extraction is one of the primary tasks of watershed ecological environment study. Since the Yanhe water system has typical characteristics of a small water volume and narrow river channel, which leads to the difficulty for conventional water extraction methods such as Normalized Difference Water Index (NDWI). A new Multi-Spectral Threshold segmentation of the NDWI (MST-NDWI) water extraction method is proposed to achieve the accurate water extraction in Yanhe watershed. In the MST-NDWI method, the spectral characteristics of water bodies and typical backgrounds on the Landsat/TM images have been evaluated in Yanhe watershed. The multi-spectral thresholds (TM1, TM4, TM5) based on maximum-likelihood have been utilized before NDWI water extraction to realize segmentation for a division of built-up lands and small linear rivers. With the proposed method, a water map is extracted from the Landsat/TM images in 2010 in China. An accuracy assessment is conducted to compare the proposed method with the conventional water indexes such as NDWI, Modified NDWI (MNDWI), Enhanced Water Index (EWI), and Automated Water Extraction Index (AWEI). The result shows that the MST-NDWI method generates better water extraction accuracy in Yanhe watershed and can effectively diminish the confusing background objects compared to the conventional water indexes. The MST-NDWI method integrates NDWI and Multi-Spectral Threshold segmentation algorithms, with richer valuable information and remarkable results in accurate water extraction in Yanhe watershed.
Multi-spectral Line Scanner image of Northern California
1973-06-22
S73-34295B (June 1973) --- A vertical view of a portion of northern California reproduced from data taken from the Skylab Multispectral Scanner, experiment S192, in the Skylab space station in Earth orbit. This view is the most westerly one-third of Frame No. 001, Roll No. 518, S192, Skylab 2. Frame No. 001 extends from the Pacific coast at the Eureka area southeasterly 175 nautical miles to the Feather River drainage basin. Included in this view are Lake Shasta, Sacramento River Valley, Redding and Red Bluff. This non-photographic image is a color composite of channels 2 (visible), 7, and 12 (infrared) from the Earth Resources Experiments Package (EREP) S192 scanner. The scanner techniques assist with spectral signature identification and mapping of ground truth targets in agriculture, forestry, geology, hydrology and oceanography. Photo credit: NASA
A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data
Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem
2016-01-01
The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively. PMID:27376088
Apollo 9 Mission image - S0-65 Multispectral Photography - California and Mexico
1969-03-12
AS09-26A-3799A (12 March 1969) --- Color infrared photograph of the Salton Sea and Imperial Valley area of Southern California as seen from the Apollo 9 spacecraft. This picture was taken as a part of the SO-65 Multispectral Terrain Photography Experiment. On the eastern edge of the picture are the Colorado River and a small portion of Arizona. Yuma, Arizona, is at the bottom right corner. The cities of El Centro, California, and Mexicali, Mexico, are at the bottom center.
NASA Technical Reports Server (NTRS)
DelCastillo, Carlos E.; Coble, Paula G.; Conmy, Robyn N.; Mueller-Karger, Frank E.; Vanderbloomen, Lisa; Vargo, Gabriel A.
2000-01-01
We performed multispectral in-situ fluorescence measurement of colored dissolved organic matter and chlorophyll in surface water of the West Florida Shelf using West Labs Spectral absorption and Fluorescence Instrument (SAFIre). Continuous measurements underway allowed us to simultaneously map the dispersion of riverine organic material and chlorophyll on the shelf. By using two fluorescence emission ratios we were able to differentiate between riverine and marine CDOM. Our data also showed unusually high concentrations of CDOM offshore. These were attributed to an intrusion of the Mississippi River Plume. We performed limited comparisons between in-situ chlorophyll concentrations measured with SAFIre and chlorophyll values obtained from SeaWiFS satellite data using OC4 and MODIS algorithm. Our results show that, although both algorithms overestimated chlorophyll, MODIS performed better than OC4, particularly in areas with high CDOM concentrations. Analysis of the relationship between chlorophyll and CDOM concentrations within the study area showed regional variability causes by differences in river source.
Removing sun glint from optical remote sensing images of shallow rivers
Overstreet, Brandon T.; Legleiter, Carl
2017-01-01
Sun glint is the specular reflection of light from the water surface, which often causes unusually bright pixel values that can dominate fluvial remote sensing imagery and obscure the water-leaving radiance signal of interest for mapping bathymetry, bottom type, or water column optical characteristics. Although sun glint is ubiquitous in fluvial remote sensing imagery, river-specific methods for removing sun glint are not yet available. We show that existing sun glint-removal methods developed for multispectral images of marine shallow water environments over-correct shallow portions of fluvial remote sensing imagery resulting in regions of unreliable data along channel margins. We build on existing marine glint-removal methods to develop a river-specific technique that removes sun glint from shallow areas of the channel without overcorrection by accounting for non-negligible water-leaving near-infrared radiance. This new sun glint-removal method can improve the accuracy of spectrally-based depth retrieval in cases where sun glint dominates the at-sensor radiance. For an example image of the gravel-bed Snake River, Wyoming, USA, observed-vs.-predicted R2 values for depth retrieval improved from 0.66 to 0.76 following sun glint removal. The methodology presented here is straightforward to implement and could be incorporated into image processing workflows for multispectral images that include a near-infrared band.
View of Florence, Italy area from Skylab
NASA Technical Reports Server (NTRS)
1973-01-01
A near vertical view of the Florence, Italy area as photographed from Earth orbit by one of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. The view extends from the Ligurian Sea, an extension of the Mediterranian Sea, across the Apennine Mountians to the Po River Vally. Florence (Firenze) is near the center of the land mass. The mouth of the Arno River is at the center of the coastline. The city of Leghorn (Livorno) is on the coast just south of the Arno River. This picture was taken with type 2443 infrared color film.
Post-launch validation of Multispectral Thermal Imager (MTI) data and algorithms
NASA Astrophysics Data System (ADS)
Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, B. L.; Parker, Matthew J.; Pendergast, Malcolm M.; Villa-Aleman, Eliel
1999-10-01
Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL) and the Savannah River Technology Center (SRTC) have developed a diverse group of algorithms for processing and analyzing the data that will be collected by the Multispectral Thermal Imager (MTI) after launch late in 1999. Each of these algorithms must be verified by comparison to independent surface and atmospheric measurements. SRTC has selected 13 sites in the continental U.S. for ground truth data collections. These sites include a high altitude cold water target (Crater Lake), cooling lakes and towers in the warm, humid southeastern U.S., Department of Energy (DOE) climate research sites, the NASA Stennis satellite Validation and Verification (V&V) target array, waste sites at the Savannah River Site, mining sites in the Four Corners area and dry lake beds in Nevada. SRTC has established mutually beneficial relationships with the organizations that manage these sites to make use of their operating and research data and to install additional instrumentation needed for MTI algorithm V&V.
Remote sensing study of Maumee River effects of Lake Erie
NASA Technical Reports Server (NTRS)
Svehla, R.; Raquet, C.; Shook, D.; Salzman, J.; Coney, T.; Wachter, D.; Gedney, R.
1975-01-01
The effects of river inputs on boundary waters were studied in partial support of the task to assess the significance of river inputs into receiving waters, dispersion of pollutants, and water quality. The effects of the spring runoff of the Maumee River on Lake Erie were assessed by a combination of ship survey and remote sensing techniques. The imagery obtained from a multispectral scanner of the west basin of Lake Erie is discussed: this clearly showed the distribution of particulates throughout the covered area. This synoptic view, in addition to its qualitative value, is very useful in selecting sampling stations for shipboard in situ measurements, and for extrapolating these quantitative results throughout the area of interest.
NASA Astrophysics Data System (ADS)
Overstreet, B. T.; Legleiter, C. J.
2012-12-01
The Snake River in Grand Teton National Park is a dam-regulated but highly dynamic gravel-bed river that alternates between a single thread and a multithread planform. Identifying key drivers of channel change on this river could improve our understanding of 1) how flow regulation at Jackson Lake Dam has altered the character of the river over time; 2) how changes in the distribution of various types of vegetation impacts river dynamics; and 3) how the Snake River will respond to future human and climate driven disturbances. Despite the importance of monitoring planform changes over time, automated channel extraction and understanding the physical drivers contributing to channel change continue to be challenging yet critical steps in the remote sensing of riverine environments. In this study we use the random forest statistical technique to first classify land cover within the Snake River corridor and then extract channel features from a sequence of high-resolution multispectral images of the Snake River spanning the period from 2006 to 2012, which encompasses both exceptionally dry years and near-record runoff in 2011. We show that the random forest technique can be used to classify images with as few as four spectral bands with far greater accuracy than traditional single-tree classification approaches. Secondly, we couple random forest derived land cover maps with LiDAR derived topography, bathymetry, and canopy height to explore physical drivers contributing to observed channel changes on the Snake River. In conclusion we show that the random forest technique is a powerful tool for classifying multispectral images of rivers. Moreover, we hypothesize that with sufficient data for calculating spatially distributed metrics of channel form and more frequent channel monitoring, this tool can also be used to identify areas with high probabilities of channel change. Land cover maps of a portion of the Snake River produced from digital aerial photography from 2010 and a 2011 WorldView2 satellite image. This pair of maps thus captures changes that occurred during the 2011 runoff
Inventory of wetlands and agricultural land cover in the upper Sevier River Basin, Utah
NASA Technical Reports Server (NTRS)
Jaynes, R. A.; Clark, L. D., Jr.; Landgraf, K. F. (Principal Investigator)
1981-01-01
The use of color infrared aerial photography in the mapping of agricultural land use and wetlands in the Sevier River Basin of south central utah is described. The efficiency and cost effectiveness of utilizing LANDSAT multispectral scanner digital data to augment photographic interpretations are discussed. Transparent overlays for 27 quadrangles showing delineations of wetlands and agricultural land cover were produced. A table summarizing the acreage represented by each class on each quadrangle overlay is provided.
NASA Technical Reports Server (NTRS)
Maruyasu, T. (Principal Investigator); Ochiai, H.
1976-01-01
The author has identified the following significant results. The multidisciplinary application of multispectral scanner data acquired over central Japan revealed several coastal features including pollution, river effluent, shorelines, red tide, etc. Supporting data were obtained by airborne remote sensing.
Portable Multispectral Colorimeter for Metallic Ion Detection and Classification
Jaimes, Ruth F. V. V.; Borysow, Walter; Gomes, Osmar F.; Salcedo, Walter J.
2017-01-01
This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView®). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution. PMID:28788082
Portable Multispectral Colorimeter for Metallic Ion Detection and Classification.
Braga, Mauro S; Jaimes, Ruth F V V; Borysow, Walter; Gomes, Osmar F; Salcedo, Walter J
2017-07-28
This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView ® ). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution.
The role of multispectral scanners as data sources for EPA hydrologic models
NASA Technical Reports Server (NTRS)
Slack, R.; Hill, D.
1982-01-01
An estimated cost savings of 30% to 50% was realized from using LANDSAT-derived data as input into a program which simulates hydrologic and water quality processes in natural and man-made water systems. Data from the satellite were used in conjunction with EPA's 11-channel multispectral scanner to obtain maps for characterizing the distribution of turbidity plumes in Flathead Lake and to predict the effect of increasing urbanization in Montana's Flathead River Basin on the lake's trophic state. Multispectral data are also being studied as a possible source of the parameters needed to model the buffering capability of lakes in an effort to evaluate the effect of acid rain in the Adirondacks. Water quality in Lake Champlain, Vermont is being classified using data from the LANDSAT and the EPA MSS. Both contact-sensed and MSS data are being used with multivariate statistical analysis to classify the trophic status of 145 lakes in Illinois and to identify water sampling sites in Appalachicola Bay where contaminants threaten Florida's shellfish.
NASA Technical Reports Server (NTRS)
Stucky, Richard K.; Krishtalka, Leonard; Redline, Andrew D.; Lang, Harold R.
1987-01-01
Both Landsat TM and aircraft Thermal IR Multispectral Scanner (TIMS) data have been used to map the lithofacies of the Wind River Basin's Eocene physical and biological environments. Preliminary analyses of these data have furnished maps of a fault contact boundary and a complex network of fluvial ribbon channel sandstones. The synoptic view thereby emerging for Eocene fluvial facies clarifies the relationships of ribbon channel sandstones to fossil-bearing overbank/floodplain facies and certain peleosols. The utility of TM and TIMS data is thereby demonstrated.
Utilization of LANDSAT data for water quality surveys in the Choptank River
NASA Technical Reports Server (NTRS)
Johnson, J. M.; Cressy, P.; Dallam, W. C.
1975-01-01
Computer processing of LANDSAT-1 multispectral digital data demonstrated the applicability of remotely sensed data to water quality survey in the Choptank River. Water classes derived by automated analysis correlate to river nuisance levels of chlorophyll a and sediment loading as defined by the Maryland Department of Water Resources and the U.S. Corps of Engineers. Results indicate that an increase in chlorophyll a concentration corresponds, relative to MSS 5, to decreases in 4 and increases in 6 relative to the trends with increasing sediment load. It appears that for the purpose of water quality analysis, under favorable atmospheric conditions, only MSS 4, 5 and 6 are necessary.
Lake Powell, Colorado River, Utah and Grand Canyon, Arizona
1973-06-22
SL2-04-018 (June 1973) --- A vertical view of the Arizona-Utah border area showing the Colorado River and Grand Canyon photographed from the Skylab 1/2 space station in Earth orbit. This picture was taken by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the space station. Type S0-356 film was used. The row of white clouds extend north-south over the dark colored Kaibab Plateau. The junction of the Colorado and Little Colorado rivers is in the southwest corner of the picture. The body of water is Lake Powell on the Colorado River upstream from the Grand Canyon. The lone peak at the eastern edge of the photograph south of Colorado River is the 10,416-foot Navajo Mountain. The S190-A experiment is part of the Skylab Earth Resources Experiments Package(EREP). Photo credit: NASA
A study of the utilization of EREP data from the Wabash River basin
NASA Technical Reports Server (NTRS)
Silva, L. F. (Principal Investigator)
1976-01-01
The author has identified the following significant results. The study of the multispectral data sets indicate that better land use delineation using machine processing techniques can be obtained with data from multispectral scanners than digitized S190A photographic sensor data. Results of the multiemulsion photographic data set were a little better than the multiband photographic data set. Comparison results of the interim and filtered S191 data indicate that the data were improved some for machine processing techniques. Results of the S191 X-5 detector array studied over a wintertime scene indicate that a good quality far infrared channel can be useful. The S191 spectroradiometer study results indicate that the data from the S191 was usable, and it was possible to estimate the path radiance.
NASA Astrophysics Data System (ADS)
Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.
2010-04-01
Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.
Time Series Analysis of Vegetation Change using Hyperspectral and Multispectral Data
2012-09-01
rivers clogged with sediment” (Hartman, 2008). In addition, backpackers, campers, and skiers are in danger of being hit by falling trees. Mountain...information from hyperspectral data without a priori knowledge or requiring ground observations” (Kruse & Perry, 2009). Figure 16. Spectral...known endmembers and the scene spectra (Boardman & Kruse, 2011). Known endmembers come from analysts’ knowledge of an area in a scene, or from
NASA Technical Reports Server (NTRS)
Merola, J. A.; Jaynes, R. A.; Harniss, R. O.
1983-01-01
Aspen, conifer and mixed aspen/conifer forests were mapped for a 15-quadrangle study area in the Utah-Idaho Bear River Range using LANDSAT multispectral scanner (MSS) data. The digital MSS data were utilized to devise quantitative indices which correlate with apparently stable and seral aspen forests. The extent to which a two-date LANDSAT MSS analysis may permit the delineation of different categories of aspen/conifer forest mix was explored. Multitemporal analyses of MSS data led to the identification of early, early to mid, mid to late, and late seral stages of aspen/conifer forest mixing.
An ERTS multispectral scanner experiment for mapping iron compounds
NASA Technical Reports Server (NTRS)
Vincent, R. K. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. An experimental plan for enhancing spectral features related to the chemical composition of geological targets in ERTS multispectral scanner data is described. The experiment is designed to produce visible-reflective infrared ratio images from ERTS-1 data. Iron compounds are promising remote sensing targets because they display prominent spectral features in the visible-reflective infrared wavelength region and are geologically significant. The region selected for this ERTS experiment is the southern end of the Wind River Range in Wyoming. If this method proves successful it should prove useful for regional geologic mapping, mineralogical exploration, and soil mapping. It may also be helpful to ERTS users in scientific disciplines other than geology, especially to those concerned with targets composed of mixtures of live vegetation and soil or rock.
NASA Astrophysics Data System (ADS)
Davis, P. A.; Cagney, L. E.; Kohl, K. A.; Gushue, T. M.; Fritzinger, C.; Bennett, G. E.; Hamill, J. F.; Melis, T. S.
2010-12-01
Periodically, the Grand Canyon Monitoring and Research Center of the U.S. Geological Survey collects and interprets high-resolution (20-cm), airborne multispectral imagery and digital surface models (DSMs) to monitor the effects of Glen Canyon Dam operations on natural and cultural resources of the Colorado River in Grand Canyon. We previously employed the first generation of the ADS40 in 2000 and the Zeiss-Imaging Digital Mapping Camera (DMC) in 2005. Data from both sensors displayed band-image misregistration owing to multiple sensor optics and image smearing along abrupt scarps due to errors in image rectification software, both of which increased post-processing time, cost, and errors from image classification. Also, the near-infrared gain on the early, 8-bit ADS40 was not properly set and its signal was saturated for the more chlorophyll-rich vegetation, which limited our vegetation mapping. Both sensors had stereo panchromatic capability for generating a DSM. The ADS40 performed to specifications; the DMC failed. In 2009, we employed the new ADS40 SH52 to acquire 11-bit multispectral data with a single lens (20-cm positional accuracy), as well as stereo panchromatic data that provided a 1-m cell DSM (40-cm root-mean-square vertical error at one sigma). Analyses of the multispectral data showed near-perfect registration of its four band images at our 20-cm resolution, a linear response to ground reflectance, and a large dynamic range and good sensitivity (except for the blue band). Data were acquired over a 10-day period for the 450-km-long river corridor in which acquisition time and atmospheric conditions varied considerably during inclement weather. We received 266 orthorectified flightlines for the corridor, choosing to calibrate and mosaic the data ourselves to ensure a flawless mosaic with consistent, realistic spectral information. A linear least-squares cross-calibration of overlapping flightlines for the corridor showed that the dominate factors in inter-flightline variability were solar zenith angle and atmospheric scattering, which respectively affect the slope and intercept of the calibration. The inter-flightline calibration slopes were consistently close to the square of the ratio of the cosines of the zenith angles of each pair of overlapping flightlines. Our results corroborate previous observations that the cosine of solar zenith angle is a good approximation for atmospheric transmission and the use of its square in radiometric calibrations may compensate for that effect and the effect of non-nadir sun angle on surface reflectance. It was more expedient to acquire imagery for each sub-linear river segment by collecting 5-6 parallel flightlines; river sinuosity caused us to use 2-3 flightlines for each segment. Surfaces near flightline edges were often smeared and replaced with adjacent, more nadir-viewed flightline data. Eliminating surface smearing was the most time consuming aspect of creating a flawless image mosaic for the river corridor, but its removal will increase the efficiency and accuracy of image analyses of monitoring parameters of interest to river managers.
NASA Astrophysics Data System (ADS)
Batsaikhan, B.; Lkhamjav, O.; Batsaikhan, N.
2017-12-01
Impacts on glaciers and water resource management have been altering through climate changes in Mongolia territory characterized by dry and semi-arid climate with low precipitation. Melting glaciers are early indicators of climate change unlike the response of the forests which is slower and takes place over a long period of time. Mountain glaciers are important environmental components of local, regional, and global hydrological cycles. The study calculates an overview of changes for glacier, glacier-fed rivers and lakes in Altai Tavan Bogd mountain, the Western Mongolia, based on the indexes of multispectral data and the methods typically applied in glacier studies. Were utilized an integrated approach of Normalized Difference Snow Index (NDSI) and Normalized Difference Water Index (NDWI) to combine Landsat, MODIS imagery and digital elevation model, to identify glacier cover are and quantify water storage change in lakes, and compared that with and climate parameters including precipitation, land surface temperature, evaporation, moisture. Our results show that melts of glacier at the study area has contributed to significantly increase of water storage of lakes in valley of The Altai Tavan Bogd mountain. There is hydrologic connection that lake basin is directly fed by glacier meltwater.
Selecting reconnaissance strategies for floodplain surveys
NASA Technical Reports Server (NTRS)
Sollers, S. C.; Rango, A.; Henninger, D. L.
1977-01-01
Multispectral aircraft and satellite data over the West Branch of the Susquehanna River were analyzed to evaluate potential contributions of remote sensing to flood-plain surveys. Multispectral digital classifications of land cover features indicative of floodplain areas were used by interpreters to locate various floodprone area boundaries. The digital approach permitted LANDSAT results to be displayed at 1:24,000 scale and aircraft results at even larger scales. Results indicate that remote sensing techniques can delineate floodprone areas more easily in agricultural and limited development areas as opposed to areas covered by a heavy forest canopy. At this time it appears that the remote sensing data would be best used as a form of preliminary planning information or as an internal check on previous or ongoing floodplain studies. In addition, the remote sensing techniques can assist in effectively monitoring floodplain activities after a community enters into the National Flood Insurance Program.
NASA Technical Reports Server (NTRS)
Polcyn, F. C.; Thomson, F. J.; Porcello, L. J.; Sattinger, I. J.; Malila, W. A.; Wezernak, C. T.; Horvath, R.; Vincent, R. K. (Principal Investigator); Bryan, M. L.
1972-01-01
There are no author-identified significant results in this report. Remotely sensed multispectral scanner and return beam vidicon imagery from ERTS-1 is being used for: (1) water depth measurements in the Virgin Islands and Upper Lake Michigan areas; (2) mapping of the Yellowstone National Park; (3) assessment of atmospheric effects in Colorado; (4) lake ice surveillance in Canada and Great Lakes areas; (5) recreational land use in Southeast Michigan; (6) International Field Year on the Great Lakes investigations of Lake Ontario; (7) image enhancement of multispectral scanner data using existing techniques; (8) water quality monitoring of the New York Bight, Tampa Bay, Lake Michigan, Santa Barbara Channel, and Lake Erie; (9) oil pollution detection in the Chesapeake Bay, Gulf of Mexico southwest of New Orleans, and Santa Barbara Channel; and (10) mapping iron compounds in the Wind River Mountains.
NASA Technical Reports Server (NTRS)
Merifield, P. M. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Thin sections of rock exposed along the San Diego River linear were prepared and determined to be fault breccia. Single band and ratio images of the western Mojave Desert were prepared from the multispectral scanner digital tapes. Subtle differences in color of soil and rock are enhanced on the ratio images. Two north-northeast trending linears (Horsethief Canyon and Pine Valley Creek) and an east-west linear (Pine Creek) were concluded to have resulted from erosion along well-developed foliation in crystalline basement rocks.
View of Lake Mead and Las Vegas, Nevada area from Sklyab
NASA Technical Reports Server (NTRS)
1973-01-01
A vertical view of the Lake Mead and Las Vegas, Nevada area as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. Lake Mead is water of the Colorado River impounded by Hoover Dam. Most of the land in the picture is Nevada, however, a part of the northwest corner of Arizona can be seen.
Influence of the Yukon River on the Bering Sea
NASA Technical Reports Server (NTRS)
Dean, K.; Mcroy, C. P.
1986-01-01
The relationships between the discharge of the Yukon River to the currents and biological productivity in the northern Bering Sea were studied. Specific objectives were: to develop thermal, sediment, and chlorophyll surface maps using Thematic Mapper (TM) data of the discharge of the Yukon River and the Alaskan Coastal Current during the ice free season; to develop a historical model of the distribution of the Yukon River discharge and the Alaskan Coastal Current using LANDSAT Multispectral band scanner (MSS) and NOAA satellite imagery; and to use high resolution TM data to define the surface dynamics of the front between the Alaskan Coastal Current and the Bering Shelf/Anadyr Current. LANDSAT MSS, TM, and Advanced Very High Resolution Radiometer (AVHRR) data were recorded during the 1985 ice free period. The data coincided with shipboard measurements acquired by Inner Shelf Transfer and Recycling (ISTAR) project scientists. An integrated model of the distribution of turbid water discharged from the Yukon River was compiled. A similar model is also being compiled for the Alaskan Coastal and Bering Shelf/Anadyr water masses based on their thermal expressions seen on AVHRR imagery.
NASA Technical Reports Server (NTRS)
Albrizzio, C.
1974-01-01
A methodology was developed to evaluate multispectral analysis of orbital imagery on the interpretation of geology, coastal geomorphology and sedimentary processes. The images analyzed were obtained during the pass of ERTS satellite over the center region of Venezuela on October 19, 1972. ERTS-1 multispectral images in black and white paper copies and transparencies of the 4 bands and false color composites at scales of 1:1,000,000 and 1:500,000 were interpreted. Lithology and outcrop patterns of the following geological formations have been interpreted: igneous and metamorphic basement of Cocodite and Santa Ana, Jurassic-Cretaceous metamorphics of Pueblo Nuevo, Cantaure Miocene-Pliocene sediments, and Quaternary alluvium, dunes, beach ridges, bars and reefs. A prominent and extensive Paraguana tonal anomaly shaped as an 8 has been discovered at the NW of the Peninsula. Its erosional origin has exposed light toned lower beds at the center, with additional evidence of topographic depression and development of underground drainage of karst origin. Coastal geomorphology, its processes and energy has been interpreted with the help of wind direction analysis (ENE-WSW) at sea level through the orientation of transported materials (water vapor, water and sediments) by clouds, waves, sea current, plumes of suspended sediments associated to river outlets, dunes, sediment sources and shore-line orientation.
NASA Astrophysics Data System (ADS)
Bostater, Charles R.; Oney, Taylor S.; Rotkiske, Tyler; Aziz, Samin; Morrisette, Charles; Callahan, Kelby; Mcallister, Devin
2017-10-01
Hyperspectral signatures and imagery collected during the spring and summer of 2017 and 2016 are presented. Ground sampling distances (GSD) and pixel sizes were sampled from just over a meter to less than 4.0 mm. A pushbroom hyperspectral imager was used to calculate bidirectional reflectance factor (BRF) signatures. Hyperspectral signatures of different water types and bottom habitats such as submerged seagrasses, drift algae and algal bloom waters were scanned using a high spectral and digital resolution solid state spectrograph. WorldView-3 satellite imagery with minimal water wave sun glint effects was used to demonstrate the ability to detect bottom features using a derivative reflectance spectroscopy approach with the 1.3 m GSD multispectral satellite channels centered at the solar induced fluorescence band. The hyperspectral remote sensing data collected from the Banana River and Indian River Lagoon watersheds represents previously unknown signatures to be used in satellite and airborne remote sensing of water in turbid waters along the US Atlantic Ocean coastal region and the Florida littoral zone.
Influence of the Yukon River on the Bering Sea
NASA Technical Reports Server (NTRS)
Dean, K.; Mcroy, C. P.
1986-01-01
The purpose is to use satellite data to study relationships between discharge of the Yukon River to currents and biologic productivity in the northern Bering Sea. Amended specific objectives are: to develop thermal, sediment and chlorophyll surface maps using thematic mapping (TM) data of the discharge of the Yukon River and the Alaska Coastal Current during the ice free season; to develop a historical model of the distribution of the Yukon River discharge and the Alaska Coastal Current using LANDSAT multispectral scanner (MMS) and NOAA satellite imagery; and to use high resolution TM data to define the surface dynamics of the front between the Alaska Coastal Current and the Bering Shelf/Anadyr Current. LANDSAT MSS and TM, and Advanced Very High Resolution Radiometer (AVHRR) data were recorded during the 1985 ice-free period. The satellite data coincided with shipboard measurements acquired by Inner Self Transfer and Recycling scientists. Circumstances were such, that on July 5 and July 22, all three sensors recorded data that has been registered to a common map projection and map base, then contrast stretched, color composited, and density sliced.
Detection of turbidity dynamics in Tampa Bay, Florida using multispectral imagery from ERTS-1
NASA Technical Reports Server (NTRS)
Coker, A. E.; Higer, A. L.; Goodwin, C. R.
1973-01-01
In 1970, Congress authorized the deepening of the Tampa Bay channel (Rivers and Harbors Act of 1970) from 34 to 44 feet. In order to determine the effects of this deepening on circulation, water quality, and biota, during and after the construction, the U.S. Geological Survey, in cooperation with the Tampa Port Authority, has collected data and developed a digital simulation model of the bay. In addition to data collected using conventional tools, use is being made of data collected from ERTS-1. Return beam vidicon (RBV) multispectral data were collected, while a shell dredging barge was operating in the bay, and used for turbidity recognition and unique spectral signatures representative of type and amount of material in suspension. A three-dimensional concept of the dynamics of the plume was achieved by superimposing the parts of the plume recognized in each RBV band. This provides a background for automatic computer processing of ERTS data and three-dimensional modeling of turbidity plumes.
NASA Astrophysics Data System (ADS)
Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.
2016-01-01
We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity (V) over the 17-km Kiamika reach. The joint distribution of D and V variables over wetted zones then is used to reveal structural patterns in hydraulic habitat availability at patch, reach, and segment scales. Here we analyze 156 bivariate (D, V) density function plots estimated over moving reach windows along the satellite scene extent to extract 14 physical habitat metrics (such as river width, mean and modal depths and velocity, variances and covariance in D and V over 1-m pixels, HMID, entropy). A principal component analysis on the set of metrics is then used to cluster river reaches in regard to similarity in their hydraulic habitat composition and heterogeneity. Applications of this approach can include (i) specific fish habitat detection at riverscape scales (e.g., large areas of riffle spawning beds, deeper pools) for regional management, (ii) studying how river habitat heterogeneity is correlated to fish distribution and (iii) guidance for site location for restoration of key habitats or for post regulation monitoring of representative reaches of various types.
2008-08-19
S73-34295A (June 1973) --- A vertical view of a portion of northern California reproduced from data taken from the Skylab Multispectral Scanner, experiment S192, in the Skylab space station in Earth orbit. This view is the most westerly one-third of Frame No. 001, Roll No. 518, S192, Skylab 2. Frame No. 001 extends from the Pacific coast at the Eureka area southeasterly 175 nautical miles to the Feather River drainage basin. Included in this view are Sacramento River Valley, Oroville Reservoir, Oroville and Chico. This non-photographic image is a color composite of channels 2 (visible), 7 and 12 (infrared) from the Earth Resources Experiments Package (EREP) S192 scanner. The scanner techniques assist with spectral signature identification and mapping of ground truth targets in agriculture, forestry, geology, hydrology and oceanography. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Tormos, T.; Kosuth, P.; Souchon, Y.; Villeneuve, B.; Durrieu, S.; Chandesris, A.
2010-12-01
Preservation and restoration of river ecosystems require an improved understanding of the mechanisms through which they are influenced by landscape at multiple spatial scales and particularly at river corridor scale considering the role of riparian vegetation for regulating and protecting river ecological status and the relevance of this specific area for implementing efficient and realistic strategies. Assessing correctly this influence over large river networks involves accurate broad scale (i.e. at least regional) information on Land Cover within Riparian Areas (LCRA). As the structure of land cover along rivers is generally not accessible using moderate-scale satellite imagery, finer spatial resolution imagery and specific mapping techniques are needed. For this purpose we developed a generic multi-scale Object Based Image Analysis (OBIA) scheme able to produce LCRA maps in different geographic context by exploiting information available from very high spatial resolution imagery (satellite or airborne) and/or metric to decametric spatial thematic data on a given study zone thanks to fuzzy expert knowledge classification rules. A first experimentation was carried out on the Herault river watershed (southern of France), a 2650 square kilometers basin that presents a contrasted landscape (different ecoregions) and a total stream length of 1150 Km, using high and very high multispectral remotely-sensed images (10m Spot5 multispectral images and 0.5m aerial photography) and existing spatial thematic data. Application of the OBIA scheme produced a detailed (22 classes) LCRA map with an overall accuracy of 89% and a Kappa index of 83% according to a land cover pressures typology (six categories). A second experimentation (using the same data sources) was carried out on a larger test zone, a part of the Normandy river network (25 000 square kilometers basin; 6000 km long river network; 155 ecological stations). This second work aimed at elaborating a robust statistical eco-regional model to study links between land cover spatial indicators calculated at local and watershed scales, and river ecological status assessed with macroinvertebrate indicators. Application of the OBIA scheme produced a detailed (62 classes) LCRA map which allowed the model to highlight influence of specific land use patterns: (i) the significant beneficial effect of 20-m riparian tree vegetation strip near a station and 20-m riparian grassland strip along the upstream network of a station and (ii) the negative impact on river ecological status of urban areas and roads on the upstream flood plain of a station. Results of these two experimentations highlight that (i) the application of an OBIA scheme using multi-source spatial data provides an efficient approach for mapping and monitoring LCRA that can be implemented operationally at regional or national scale and (ii) and the interest of using LCRA-maps derived from very high spatial resolution imagery (satellite or airborne) and/or metric spatial thematic data to study landscape influence on river ecological status and support managers in the definition of optimized riparian preservation and restoration strategies.
Apollo 9 Mission image - S0-65 Multispectral Photography - Mexico
2009-02-19
AS09-26A-3781A (11 March 1969) --- Colored infrared photograph of the mouth of the Colorado River in northern Baja California and Sonora, Mexico, as seen from Apollo 9 spacecraft during its 121st revolution of Earth. Photographed from an altitude of 130 nautical miles, at 16:14 GMT, on March 11, 1969. Color infrared film is designed to render healthy green foliage as tones of red, such as the red checker-board patterns in the irrigated farm lands along the Colorado River. Red hues of vegetation can be seen in the valleys and on the slopes of the San Pedro Martia and Juarez Mountains, at left. White ribbon-like salt lakes near the river mouth and the wide expanse of sand dunes in the Great Desert, at right, are evidence of the arid climate. Light colors of silt bands in the waters of the Gulf of California reflect currents and water depths. The town of San Felipe is on the Gulf coast at lower left.
View of southeastern Washington State
1973-08-30
SL3-22-0214 (July-September 1973) --- A vertical view of southeastern Washington State as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. The Snake River flows into the Columbia River in the most southerly corner of the picture. The Wallula Lake is below the junction of the two rivers. The Yakima Valley is at the southwestern edge of the photograph. The Columbia Basin is in the center of the picture. The Cascade Range extends across the northwest corner of the photograph. This picture was taken with type SO-356 regular color film. The S190-A experiment is part of the Earth Resources Experiments Package. Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA
View of Florence, Italy area from Skylab
1973-08-01
SL3-33-156 (July-September 1973) --- A near vertical view of the Florence, Italy area as photographed from Earth orbit by one of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. The view extends from the Ligurian Sea, an extension of the Mediterranean Sea, across the Apennine Mountains to the Po River Valley. Florence (Firenze) is near the center of the land mass. The mouth of the Arno River is at the center of the coastline. The city of Leghorn (Livorno) is on the coast just south of the Arno River. This picture was taken with type 2443 infrared color film. The S190-A experiment is part of the Skylab Earth Resources Experiments Package. Federal agencies participating with NASA on the EREP project are the Department of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Stucky, Richard K.; Krishtalka, Leonard
1991-01-01
Since 1986, remote sensing images derived from satellite and aircraft-borne sensor data have been used to study the stratigraphy and sedimentology of the vertebrate-bearing Wind River and Wagon Bed formations in the Wind River Basin (Wyoming). Landsat 5 TM and aircraft Thermal Infrared Multispectral Scanner data were combined with conventional geologic analyses. The remote sensing data have contributed significantly to: (1) geologic mapping at the formation, member, and bed levels; (2) stratigraphic correlation; (3) reconstruction of ancient depositional environments; and (4) identification of structural complexity. This information is critical to vertebrate paleontology in providing the stratigraphic, sedimentologic, and structural framework required for evolutionary and paleoecologic studies. Of primary importance is the ability to map at minimal cost the geology of large areas (20,000 sq km or greater) at a high level of precision. Remote sensing data can be especially useful in geologically and paleontologically unexplored or poorly understood regions.
Application of TIMS data in stratigraphic analysis
NASA Technical Reports Server (NTRS)
Lang, H. R.
1986-01-01
An in-progress study demonstrates the utility of Thermal Infrared Multispectral Scanner (TIMS) data for unraveling the stratigraphic sequence of a western interior, North American foreland basin. The TIMS data can be used to determine the stratigraphic distribution of minerals that are diagnostic of specific depositional distribution. The thematic mapper (TM) and TIMS data were acquired in the Wind River/Bighorn area of central Wyoming in November 1982, and July 1983, respectively. Combined image processing, photogeologic, and spectral analysis methods were used to: map strata; construct stratigraphic columns; correlate data; and identify mineralogical facies.
Final MTI Data Report: Pilgrim Nuclear Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, M.J.
2003-03-17
During the period from May 2000 to September 2001, ocean surface water temperature data was collected at the Pilgrim Nuclear Power Station near Plymouth, MA. This effort was led by the Savannah River Technology Center (SRTC) with the assistance of a local sub-contractor, Marine BioControl Corporation of Sandwich, MA. Permission for setting up the monitoring system was granted by Energy Corporation, which owns the plant site. This work was done in support of SRTC's ground truth mission for the U.S. Department of Energy's Multispectral Thermal Imager (MTI) satellite.
The application of satellite data in monitoring strip mines
NASA Technical Reports Server (NTRS)
Sharber, L. A.; Shahrokhi, F.
1977-01-01
Strip mines in the New River Drainage Basin of Tennessee were studied through use of Landsat-1 imagery and aircraft photography. A multilevel analysis, involving conventional photo interpretation techniques, densitometric methods, multispectral analysis and statistical testing was applied to the data. The Landsat imagery proved adequate for monitoring large-scale change resulting from active mining and land-reclamation projects. However, the spatial resolution of the satellite imagery rendered it inadequate for assessment of many smaller strip mines, in the region which may be as small as a few hectares.
NASA Technical Reports Server (NTRS)
Thorley, G. A.; Draeger, W. C.; Lauer, D. T.; Lent, J.; Roberts, E.
1971-01-01
The four problem are as being investigated are: (1) determination of the feasibility of providing the resource manager with operationally useful information through the use of remote sensing techniques; (2) definition of the spectral characteristics of earth resources and the optimum procedures for calibrating tone and color characteristics of multispectral imagery (3) determination of the extent to which humans can extract useful earth resource information through remote sensing imagery; (4) determination of the extent to which automatic classification and data processing can extract useful information from remote sensing data.
Impacts of Colville River dynamics on river navigability near Nuiqsut, Alaska: 1955-present
NASA Astrophysics Data System (ADS)
Whitley, M. A.; Panda, S. K.; Prakash, A.; Brinkman, T. J.
2016-12-01
Climate-driven changes in river systems are challenging access to ecosystem services such as access to traditional hunting grounds and other subsistence food sources on the North Slope of Alaska. This work studies the dynamics of the Colville River and assesses the impacts on traditional harvest practices and subsistence travel of the Native community of Nuiqsut. Recent reports from Nuiqsut residents indicate accelerated changes in the environment, limiting river travel and their ability to harvest subsistence food. This study explores how channel migration, gravel bars, and bank erosion have evolved since the 1950s, and their impact on water depth and navigability. In an area of ice-rich permafrost, warmer summer temperatures exacerbate lateral bank erosion, resulting in river siltation. The study focuses on selected key areas south of Nuiqsut that have shown significant change in river geomorphology. Since 1955, some areas proximate to ice wedge exposures show channel migration in excess of 1 km. Panchromatic aerial photography acquired by US Geological Surveys in the mid 1950s, color infrared aerial photography from 1979 and 1982 acquired by the Alaska High Altitude Photography (AHAP) mission, and high resolution satellite images from Digital Globe, Inc. were used in this study. We mapped water, vegetation, and gravel/non-vegetated classes to identify risk areas for river navigability. River bathymetry was also mapped using a multispectral ratio-based water depth retrieval algorithm to identify problem sites for boat travel. Remote sensing products and analyses were validated with field data for mapping risk areas along the river. This study has the potential to be implemented on a larger scale for predictive mapping to aid river navigation. Findings from this study will provide insight whether recent changes are anomalies, or if they are part of a directional trend that will require local adaptation.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Sausen, T. M.
1981-01-01
The use of LANDSAT multispectral ban scanner imagery to verify the relationship between the behavior of the Tres Marias reservoir and the dynamics of the Sao Francisco River supply basin is described. The dispersion of suspended sediments and their concentration in the surface layers of the water are considered. A five year survey of the region during both dry and rainy seasons was performed. The drainage network was analyzed based on the patterns of dessication, water rises and soil use in the supply basin. Surface layers of the reservoir were tabulated as a function of the levels of gray in the imagery. In situ observations of water depth and reflectance were performed. Ground truth and LANDSAT data were correlated to determine the factors affecting the dynamics of the supply basin.
1973-09-20
S73-34295 (June 1973) --- A vertical view of a portion of northern California reproduced from data taken from the Skylab Multispectral Scanner, experiment S192, in the Skylab space station in Earth orbit. This view is the most westerly one-third of Frame No. 001, Roll No. 518, S192, Skylab 2. Frame No. 001 extends from the Pacific coast at the Eureka area southeasterly 175 nautical miles to the Feather River drainage basin. Included in this view are Eureka, Trinidad, Klamath & Trinity Rivers and the Coastal Range mountains. This non-photographic image is a color composite of channels 2 (visible), 7, and 12 (infrared) from the Earth Resources Experiments Package (EREP) S192 scanner. The scanner techniques assist with spectral signature identification and mapping of ground truth targets in agriculture, forestry, geology, hydrology and oceanography. Photo credit: NASA
Monitoring Geothermal Features in Yellowstone National Park with ATLAS Multispectral Imagery
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Berglund, Judith
2000-01-01
The National Park Service (NPS) must produce an Environmental Impact Statement for each proposed development in the vicinity of known geothermal resource areas (KGRAs) in Yellowstone National Park. In addition, the NPS monitors indicator KGRAs for environmental quality and is still in the process of mapping many geothermal areas. The NPS currently maps geothermal features with field survey techniques. High resolution aerial multispectral remote sensing in the visible, NIR, SWIR, and thermal spectral regions could enable YNP geothermal features to be mapped more quickly and in greater detail In response, Yellowstone Ecosystems Studies, in partnership with NASA's Commercial Remote Sensing Program, is conducting a study on the use of Airborne Terrestrial Applications Sensor (ATLAS) multispectral data for monitoring geothermal features in the Upper Geyser Basin. ATLAS data were acquired at 2.5 meter resolution on August 17, 2000. These data were processed into land cover classifications and relative temperature maps. For sufficiently large features, the ATLAS data can map geothermal areas in terms of geyser pools and hot springs, plus multiple categories of geothermal runoff that are apparently indicative of temperature gradients and microbial matting communities. In addition, the ATLAS maps clearly identify geyserite areas. The thermal bands contributed to classification success and to the computation of relative temperature. With masking techniques, one can assess the influence of geothermal features on the Firehole River. Preliminary results appear to confirm ATLAS data utility for mapping and monitoring geothermal features. Future work will include classification refinement and additional validation.
Deutsch, Morris; Ruggles, Fred
1974-01-01
Flooding along the Mississippi River and some of its tributaries was detected by the multispectral scanner (MSS) on the Earth Resources Technology Satellite (ERTS-1) on at least three orbits during the spring of 1973. The ERTS data provided the first opportunity for mapping the regional extent of flooding at the time of the imagery. Special optical data processing techniques were used to produce a variety of multispectral color composites enhancing flood-plain details. One of these, a 2-color composite of near infrared bands 6 and 7, was enlarged and registered to 1:250,000-scale topographic maps and used as the basis for preparation of flood image maps. Two specially filtered 3-color composites of MSS bands 5, 6, and 7 and 4, 5, and 7 were prepared to aid in the interpretation of the data. The extent of the flooding was vividly depicted on a single image by 2-color temporal composites produced on the additive-color viewer using band 7 flood data superimposed on pre-flood band 7 images. On May 24, when the floodwaters at St. Louis receded to bankfull stage, imagery was again obtained by ERTS. Analysis of temporal data composites of the pre-flood and post-flood band 7 images indicate that changes in surface reflectance characteristics caused by the flooding can be delineated, thus making it possible to map the overall area flooded without the necessity of a real-time system to track and image the peak flood waves. Regional planning and disaster relief agencies such as the Corps of Engineers, Office of Emergency Preparedness, Soil Conservation Service, interstate river basin commissions and state agencies, as well as private lending and insurance institutions, have indicated strong potential applications for ERTS image-maps of flood-prone areas.
NASA Astrophysics Data System (ADS)
Monegaglia, Federico; Zolezzi, Guido; Tubino, Marco; Henshaw, Alex
2017-04-01
Sediments in the large meandering rivers of the Amazon basin are known to be supplied by sources providing highly different magnitudes of sediment input and storage, ranging from the sediment-rich Andean region to the sediment-poor Central Trough. Recent observations have highlighted how such differences in sediment supply have an important, net effect on the rates of planform activity of meandering rivers in the basin, in terms of meander migration and frequency of cutoffs. In this work we quantify and discuss the effect of sediment supply on the organization of macroscale sediment bedforms on several large meandering rivers in the Amazon basin, and we link our findings with those regarding the rates of planform activity. Our analysis is conducted through the newly developed software PyRIS, which enables us to perform extensive multitemporal analysis of river morphodynamics from multispectral remotely sensed Landsat imagery in a fully automated fashion. We show that large rivers with low sediment supply tend to develop alternate bars that consistently migrate through long reaches, characterized at the same time by limited planform development. On the contrary, high sediment supply is associated with the development of point bars that are well-attached to the evolving meander bends and that follow temporal oscillations around the bend apexes, which in turn show rapid evlution towards complex meander shapes. Finally, rivers with intermediate rates of sediment supply develop rather steady point bars associated with slowly migrating, regular meanders. We finally discuss the results of the image analysis in the light of the properties of river planform metrics (like channel curvature and width) for the examined classes of river reaches with different sediment supply rates.
Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture
NASA Technical Reports Server (NTRS)
Biggs, A. W.
1983-01-01
Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.
River plumes investigation using Sentinel-2A MSI and Landsat-8 OLI data
NASA Astrophysics Data System (ADS)
Lavrova, Olga Yu.; Soloviev, Dmitry M.; Strochkov, Mikhail A.; Bocharova, Tatiana Y.; Kashnitsky, Alexandr V.
2016-10-01
We present the results of using Sentinel-2A Multispectral Imager Instrument (MSI/S2) and Landsat-8 Operational Land Imager (OLI/L8) data to monitor river plumes in the eastern Black Sea and from the Rhône River in the Mediterranean Sea. The focus is on exploring the possibility to investigate hydrodynamic processes associated with river outflows, in particular internal waves (IWs). Submesoscale IWs having wavelengths less than 50 m and generated by unstable sharp front of a river plume were revealed and their parameters were assessed. A map of surface manifestation of IW trains in the Gulf of Lions was created based on MSI/S2 images. There are different mechanisms of IW generation in river outflow zones, they are determined by a number of parameters including river discharge, bottom topography and presence of tidal currents or inertial period IWs in the shelf zone. A new phenomenon manifested as a chain of quasi circles was discovered. Inertial water motions were suggested as its prime cause, however, this hypothesis is yet to be investigated. An analysis of OLI/L8 and MSI/S2 data enabled us to consider in detail river debouchment streams. For the first time a wave pattern of such stream in the eastern Black Sea was observed in conditions of foehn winds. Usually, foehn winds are distinctly manifested in radar images. A joint analysis of quasi simultaneous ocean color MSI/S2 and Sentinel-1A SAR images demonstrated how water stream wave-like signatures differ from those of foehn winds.
NASA Astrophysics Data System (ADS)
Moxey, Kelsey A.
The world's greatest concentration of mushroom farms is settled within the Brandywine-Christina River Basin in Chester County in southeastern Pennsylvania. This industry produces a nutrient-rich byproduct known as spent mushroom compost, which has been traditionally applied to local farm fields as an organic fertilizer and soil amendment. While mushroom compost has beneficial properties, the possible over-application to farm fields could potentially degrade stream water quality. The goal of this study was to estimate the spatial extent and intensity of field-applied mushroom compost. We applied a remote sensing approach using Landsat multispectral imagery. We utilized the soil line technique, using the red and near-infrared bands, to estimate differences in soil wetness as a result of increased soil organic matter content from mushroom compost. We validated soil wetness estimates by examining the spectral response of references sites. We performed a second independent validation analysis using expert knowledge from agricultural extension agents. Our results showed that the soil line based wetness index worked well. The spectral validation illustrated that compost changes the spectral response of soil because of changes in wetness. The independent expert validation analysis produced a strong significant correlation between our remotely-sensed wetness estimates and the empirical ratings of compost application intensities. Overall, the methodology produced realistic spatial distributions of field-applied compost application intensities across the study area. These spatial distributions will be used for follow-up studies to assess the effect of spent mushroom compost on stream water quality.
NASA Astrophysics Data System (ADS)
Umar, M.; Rhoads, Bruce L.; Greenberg, Jonathan A.
2018-01-01
Although past work has noted that contrasts in turbidity often are detectable on remotely sensed images of rivers downstream from confluences, no systematic methodology has been developed for assessing mixing over distance of confluent flows with differing surficial suspended sediment concentrations (SSSC). In contrast to field measurements of mixing below confluences, satellite remote-sensing can provide detailed information on spatial distributions of SSSC over long distances. This paper presents a methodology that uses remote-sensing data to estimate spatial patterns of SSSC downstream of confluences along large rivers and to determine changes in the amount of mixing over distance from confluences. The method develops a calibrated Random Forest (RF) model by relating training SSSC data from river gaging stations to derived spectral indices for the pixels corresponding to gaging-station locations. The calibrated model is then used to predict SSSC values for every river pixel in a remotely sensed image, which provides the basis for mapping of spatial variability in SSSCs along the river. The pixel data are used to estimate average surficial values of SSSC at cross sections spaced uniformly along the river. Based on the cross-section data, a mixing metric is computed for each cross section. The spatial pattern of change in this metric over distance can be used to define rates and length scales of surficial mixing of suspended sediment downstream of a confluence. This type of information is useful for exploring the potential influence of various controlling factors on mixing downstream of confluences, for evaluating how mixing in a river system varies over time and space, and for determining how these variations influence water quality and ecological conditions along the river.
Critical coastal issues of Sagar Island, east coast of India.
Gopinath, Girish
2010-01-01
Sagar Island, situated in the east coast of India and one of the biggest deltas in Sundarban group, faces coastal erosion and degradation of coastal vegetation and various natural hazards. Erosion is mainly due to clay mining, wave activities, and the impact of river and tidal currents of Muri Ganga and Hugly Rivers. Further, the coastal zone of Sagar Island faces increasingly severe problems of rapidly growing human population, deteriorating environmental quality, and loss of critical habitats. Sagar Island has been victimized several times by tropical cyclones and influenced daily by tidal fluctuations. The island needs immediate attention on the coastal zone in order to protect the shoreline and ecosystem. The capability of satellite remote sensing to provide synoptic, repetitive, and multispectral data has proved to be very useful in the inventory and monitoring of critical coastal issues. Sagar Island and its environs are subjected to both natural and anthropogenic activities that continuously modify the region.
Eastern Iowa, Northwestern Illinois
1973-06-22
SL2-10-250 (May-June 1973) --- A vertical view of eastern Iowa and northwestern Illinois, as photographed from Skylab space station in Earth orbit. Davenport, Burlington and Muscatine, Iowa; and Rock Island and Moline, Illinois can be delineated on opposite sides of the Mississippi River. The Iowa River and tributaries of it can also be delineated. This photograph was taken with one of six lenses of the Itek-furnished Multispectral Photographic Facility Experiment S190-A mounted in the Multiple Docking Adapter (MDA) of the space station. A six-inch lens, using 70mm medium speed Ektachrome (SO-356) film, was used. Agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce and Interior; the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior's Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Mikheeva, A. I.; Tutubalina, O. V.; Zimin, M. V.; Golubeva, E. I.
2017-12-01
The tundra-taiga ecotone plays significant role in northern ecosystems. Due to global climatic changes, the vegetation of the ecotone is the key object of many remote-sensing studies. The interpretation of vegetation and nonvegetation objects of the tundra-taiga ecotone on satellite imageries of a moderate resolution is complicated by the difficulty of extracting these objects from the spectral and spatial mixtures within a pixel. This article describes a method for the subpixel classification of Terra ASTER satellite image for vegetation mapping of the tundra-taiga ecotone in the Tuliok River, Khibiny Mountains, Russia. It was demonstrated that this method allows to determine the position of the boundaries of ecotone objects and their abundance on the basis of quantitative criteria, which provides a more accurate characteristic of ecotone vegetation when compared to the per-pixel approach of automatic imagery interpretation.
Measuring watershed runoff capability with ERTS data. [Washita River Basin, Oklahoma
NASA Technical Reports Server (NTRS)
Blanchard, B. J.
1974-01-01
Parameters of most equations used to predict runoff from an ungaged area are based on characteristics of the watershed and subject to the biases of a hydrologist. Digital multispectral scanner, MSS, data from ERTS was reduced with the aid of computer programs and a Dicomed display. Multivariate analyses of the MSS data indicate that discrimination between watersheds with different runoff capabilities is possible using ERTS data. Differences between two visible bands of MSS data can be used to more accurately evaluate the parameters than present subjective methods, thus reducing construction cost due to overdesign of flood detention structures.
Accuracy comparison in mapping water bodies using Landsat images and Google Earth Images
NASA Astrophysics Data System (ADS)
Zhou, Z.; Zhou, X.
2016-12-01
A lot of research has been done for the extraction of water bodies with multiple satellite images. The Water Indexes with the use of multi-spectral images are the mostly used methods for the water bodies' extraction. In order to extract area of water bodies from satellite images, accuracy may depend on the spatial resolution of images and relative size of the water bodies. To quantify the impact of spatial resolution and size (major and minor lengths) of the water bodies on the accuracy of water area extraction, we use Georgetown Lake, Montana and coalbed methane (CBM) water retention ponds in the Montana Powder River Basin as test sites to evaluate the impact of spatial resolution and the size of water bodies on water area extraction. Data sources used include Landsat images and Google Earth images covering both large water bodies and small ponds. Firstly we used water indices to extract water coverage from Landsat images for both large lake and small ponds. Secondly we used a newly developed visible-index method to extract water coverage from Google Earth images covering both large lake and small ponds. Thirdly, we used the image fusion method in which the Google Earth Images are fused with multi-spectral Landsat images to obtain multi-spectral images of the same high spatial resolution as the Google earth images. The actual area of the lake and ponds are measured using GPS surveys. Results will be compared and the optimal method will be selected for water body extraction.
Influence of the Yukon River on the Bering Sea
NASA Technical Reports Server (NTRS)
Dean, Kenneson G.; Mcroy, C. Peter
1988-01-01
Physical and biological oceanography of the northern Bering Sea including the influence of the Yukon River were studied. Satellite data acquired by the Advanced Very High Resolution Radiometer (AVHRR), the LANDSAT Multispectral Scanner (MSS) and the Thematic Mapper (TM) sensor were used to detect sea surface temperatures and suspended sediments. Shipboard measurements of temperature, salinity and nutrients were acquired through the Inner Shelf Transfer and Recycling (ISHTAR) project and were compared to digitally enhanced and historical satellite images. The satellite data reveal north-flowing, warm water along the Alaskan coast that is highly turbid with complex patterns of surface circulation near the Yukon River delta. To the west near the Soviet Union, cold water, derived from an upwelling, mixes with shelf water and also flows north. The cold and warm water coincide with the Anadyr, Bering Shelf and Alaskan coastal water masses. Generally, warm Alaskan coastal water forms near the coast and extends offshore as the summer progresses. Turbid water discharged by the Yukon River progresses in the same fashion but extends northward across the entrance to Norton Sound, attaining its maximum surface extent in October. The Anadyr water flows northward and around St. Lawrence Island, but its extent is highly variable and depends upon mesoscale pressure fields in the Arctic Ocean and the Bering Sea.
NASA Astrophysics Data System (ADS)
Yao, Y.; Yang, S.; Chen, Y.; Chang, L.; Chiang, C.; Huang, C.; Chen, J.
2012-12-01
Many groundwater simulation models have been developed for Chou-Shui River alluvial fan which is one of the most important groundwater areas in Taiwan. However, the exchange quantity between Chou-Shui River, the major river in this area, and the groundwater system itself is seldom studied. In this study, the exchange is evaluated using a river package (RIV) in the groundwater simulation model, MODFLOW 2000. Several critical parameters and variables used in RIV such as wet area and river level for each cell below the Chou-Shui River are respectively determined by satellite image identification and HEC-RAS simulation. The monthly average of river levels obtained from four stations include Chang-Yun Bridge, Xi-Bin Bridge, Chi-Chiang Bridge and Si-Jou Bridge during 2008 and the river cross-section measured on December 2007 are used in the construction of HEC-RAS model. Four FORMOSAT multispectral satellite images respectively obtained on January 2008, April 2008, July 2008, and November 2008 are used to identify the wet area of Chou-Shui River during different seasons. Integrating the simulation level provided by HEC-RAS and the identification result are used as the assignment of RIV. First, based on the simulation results of HEC-RAS, the water level differences between flooding period and draught period are 1.4 (m) and 2.0 (m) for Xi-Bin Bridge station (downstream) and Chang-Yun Bridge station (upstream) respectively. Second, based on the identified results, the wet areas for four seasons are 24, 24, 40 and 12 (km2) respectively. The variation range of areas in 2008 is huge that the area for winter is just 30% of the area for summer. Third, based on the simulation of MODFLOW 2000 and RIV, the exchange between the river and the groundwater system is 414 million cubic meters which contains 526 for recharge to river and 112 for discharging from river during 2008. The total recharge includes river exchange and recharge from non-river area is 2023 million cubic meters. The pumping quantity is 1930 million cubic meters.
NASA Technical Reports Server (NTRS)
Anderson, R. R.
1970-01-01
Progress on research designed to test the usability of multispectral, high altitude, remotely sensed data to analyze ecological and hydrological conditions in estuarine environments is presented. Emphasis was placed on data acquired by NASA aircraft over the Patuxent River Chesapeake Bay Test Site, No. 168. Missions were conducted over the Chesapeake Bay at a high altitude flight of 18,460 m and a low altitude flight of 3070. The principle objectives of the missions were: (1) to determine feasibility of identifying source and extent of water pollution problems in Baltimore Harbor, Chesapeake Bay and major tributaries utilizing high altitude, ERTS analogous remote sensing data; (2) to determine the feasibility of mapping species composition and general ecological condition of Chesapeake Bay wetlands, utilizing high altitude, ERTS analogous data; (3) to correlate ground spectral reflectance characteristics of wetland plant species with tonal characteristics on multispectral photography; (4) to determine usefulness of high altitude thermal imagery in delinating isotherms and current patterns in the Chesapeake Bay; and (5) to investigate automated data interpretive techniques which may be usable on high altitude, ERTS analogous data.
NASA Technical Reports Server (NTRS)
Biehl, L. L.; Silva, L. F.
1975-01-01
Skylab multispectral scanner data, digitized Skylab color infrared (IR) photography, digitized Skylab black and white multiband photography, and Earth Resources Technology Satellite (ERTS) multispectral scanner data collected within a 24-hr time period over an area in south-central Indiana near Bloomington on June 9 and 10, 1973, were compared in a machine-aided land use analysis of the area. The overall classification performance results, obtained with nine land use classes, were 87% correct classification using the 'best' 4 channels of the Skylab multispectral scanner, 80% for the channels on the Skylab multispectral scanner which are spectrally comparable to the ERTS multispectral scanner, 88% for the ERTS multispectral scanner, 83% for the digitized color IR photography, and 76% for the digitized black and white multiband photography. The results indicate that the Skylab multispectral scanner may yield even higher classification accuracies when a noise-filtered multispectral scanner data set becomes available in the near future.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Sausen, T. M.
1981-01-01
The land use and types of vegetation in the region of the upper Sao Francisco River, Brazil, are identified. This region comprises the supply basin of the Tres Marias reservoir. Imagery from channels 5 and 7 of the LANDSAT multispectral band scanner during wet and rainy seasons and ground truth data were employed to characterize and map the vegetation, land use, and sedimentary discharges from the reservoir. Agricultural and reforested lands, meadows, and forests are identified. Changes in land use due to human activity are demonstrated.
Durning, Laura E.; Sankey, Joel B.; Davis, Philip A.; Sankey, Temuulen T.
2016-12-14
In May 2013, the U.S. Geological Survey’s Grand Canyon Monitoring and Research Center acquired airborne multispectral high-resolution data for the Colorado River in the Grand Canyon, Arizona. The image data, which consist of four color bands (blue, green, red, and near-infrared) with a ground resolution of 20 centimeters, are available to the public as 16-bit geotiff files at http://dx.doi.org/10.5066/F7TX3CHS. The images are projected in the State Plane map projection, using the central Arizona zone (202) and the North American Datum of 1983. The assessed accuracy for these data is based on 91 ground-control points and is reported at the 95-percent confidence level as 0.64 meter (m) and a root mean square error of 0.36 m. The primary intended uses of this dataset are for maps to support field data collection and simple river navigation; high-spatial-resolution change detection of sandbars, other geomorphic landforms, riparian vegetation, and backwater and nearshore habitats; and other ecosystem-wide mapping.
View of Argentina-Paraguay border area of South America
1973-08-30
SL3-33-167 (July-September 1973) --- A vertical view of the Argentina-Paraguay border area of South America as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. This picture was taken with type 2443 infrared color film. The Parana River flows from east to west across the picture. This part of the Rio Parana is located between the towns of Posadas, Argentina, and Resistencia, Argentina. The major body of water in the large swamp area is Laguna Ibera. Note the several fires burning in this area. The largest land mass (Argentina) is south of the river. Paraguay is north of the river. Isla Apipe Grande is near the center of the photograph. The S190-A experiment is part of the Skylab Earth Resources Experiments Package. Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA
Estimating atmospheric parameters and reducing noise for multispectral imaging
Conger, James Lynn
2014-02-25
A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.
Nanohole-array-based device for 2D snapshot multispectral imaging
Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J. L.
2013-01-01
We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662 nm to 832 nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems. PMID:24005065
Detection of aspen-conifer forest mixes from LANDSAT digital data. [Utah-Idaho Bear River Range
NASA Technical Reports Server (NTRS)
Jaynes, R. A.; Merola, J. A.
1982-01-01
Aspen, conifer and mixed aspen/conifer forests were mapped for a 15-quadrangle study area in the Utah-Idaho Bear River Range using LANDSAT multispectral scanner data. Digital classification and statistical analysis of LANDSAT data allowed the identification of six groups of signatures which reflect different types of aspen/conifer forest mixing. Photo interpretations of the print symbols suggest that such classes are indicative of mid to late seral aspen forests. Digital print map overlays and acreage calculations were prepared for the study area quadrangles. Further field verification is needed to acquire additional information about the nature of the forests. Single date LANDSAT analysis should be a cost effective means to index aspen forests which are at least in the mid seral phase of conifer invasion. Since aspen canopies tend to obscure understory conifers for early seral forests, a second date analysis, using data taken when aspens are leafless, could provide information about early seral aspen forests.
Multispectral radiation envelope characteristics of aerial infrared targets
NASA Astrophysics Data System (ADS)
Kou, Tian; Zhou, Zhongliang; Liu, Hongqiang; Yang, Yuanzhi; Lu, Chunguang
2018-07-01
Multispectral detection signals are relatively stable and complementary to single spectral detection signals with deficiencies of severe scintillation and poor anti-interference. To take advantage of multispectral radiation characteristics in the application of infrared target detection, the concept of a multispectral radiation envelope is proposed. To build the multispectral radiation envelope model, the temperature distribution of an aerial infrared target is calculated first. By considering the coupling heat transfer process, the heat balance equation is built by using the node network, and the convective heat transfer laws as a function of target speed are uncovered. Then, the tail flame temperature distribution model is built and the temperature distributions at different horizontal distances are calculated. Second, to obtain the optimal detection angles, envelope models of reflected background multispectral radiation and target multispectral radiation are built. Finally, the envelope characteristics of the aerial target multispectral radiation are analyzed in different wavebands in detail. The results we obtained reflect Wien's displacement law and prove the effectiveness and reasonableness of the envelope model, and also indicate that the major difference between multispectral wavebands is greatly influenced by the target speed. Moreover, optimal detection angles are obtained by numerical simulation, and these are very important for accurate and fast target detection, attack decision-making and developing multispectral detection platforms.
An integrated compact airborne multispectral imaging system using embedded computer
NASA Astrophysics Data System (ADS)
Zhang, Yuedong; Wang, Li; Zhang, Xuguo
2015-08-01
An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.
Impact of anthropogenic activities on water quality of Lidder River in Kashmir Himalayas.
Rashid, Irfan; Romshoo, Shakil Ahmad
2013-06-01
The pristine waters of Kashmir Himalaya are showing signs of deterioration due to multiple reasons. This study researches the causes of deteriorating water quality in the Lidder River, one of the main tributaries of Jhelum River in Kashmir Himalaya. The land use and land cover of the Lidder catchment were generated using multi-spectral, bi-seasonal IRS LISS III (October 2005 and May 2006) satellite data to identify the extent of agriculture and horticulture lands that are the main non-point sources of pollution at the catchment scale. A total of 12 water quality parameters were analyzed over a period of 1 year. Water sampling was done at eight different sampling sites, each with a varied topography and distinct land use/land cover, along the length of Lidder River. It was observed that water quality deteriorated during the months of June-August that coincides with the peak tourist flow and maximal agricultural/horticultural activity. Total phosphorus, orthophosphate phosphorus, nitrate nitrogen, and ammoniacal nitrogen showed higher concentration in the months of July and August, while the concentration of dissolved oxygen decreased in the same period, resulting in deterioration in water quality. Moreover, tourism influx in the Lidder Valley shows a drastic increase through the years, and particularly, the number of tourists visiting the valley has increased in the summer months from June to September, which is also responsible for deteriorating the water quality of Lidder River. In addition to this, the extensive use of fertilizers and pesticides in the agriculture and horticulture lands during the growing season (June-August) is also responsible for the deteriorating water quality of Lidder River.
NASA Astrophysics Data System (ADS)
Kasprak, A.; Buscombe, D.; Caster, J.; Grams, P. E.; Sankey, J. B.
2016-12-01
Sediment connectivity is a vital component of the eco-geomorphic function of river systems, and the pathways of sediment transfer in river valleys often shift in response to channel disturbance and development. Along the Colorado River downstream of Glen Canyon Dam (completed in 1963), flow alteration for hydropower generation has increased baseflows while reducing the magnitude of regularly-occurring floods, and vegetation has subsequently colonized many channel-margin surfaces. In this dryland, canyon-bound river system, aeolian transport has historically been a vital component of sediment connectivity, yet the relative roles of altered hydrology and vegetation on the extent of sand available for windblown transport are unknown. Here we use a fusion of high-resolution spatial datasets including channel bathymetry and bed classification derived from single- and multibeam echosounding and total station surveys, exposed sand mapping and vegetation classification from multispectral imagery, in concert with a 94 year discharge record and one-dimensional hydraulic modeling to quantify changes in sand availability along a 48 km reach of the Colorado River. We find that hydrologic alteration alone has reduced areal sand availability by approximately 15% when comparing the pre- and post-dam flow records, while vegetation encroachment has had an even greater effect. More than half of the total sand area in the study reach is located at low flow stages below 226 m3/s, meaning that small reductions in baseflow discharge have the potential to expose large quantities of sand, and we subsequently explore the relative effect of alternative flow regimes on sand exposure during the postdam period. The ability to quantify and explore the efficacy of river management strategies on large-scale sediment connectivity has the potential to inform eco-geomorphic management of the Colorado River in Grand Canyon and other regulated rivers worldwide.
Irrigated acreage and other land uses on the Snake River Plain, Idaho and eastern Oregon
Lindholm, Gerald F.; Goodell, S.A.
1986-01-01
Prompted by the need for a current, accurate, and repeatable delineation of irrigated acreage on the Snake River Plain, the U.S. Geological Survey entered into a cooperative agreement with the Idaho Department of Water Resources Image Analysis Facility and the U.S. Bureau of Reclamation to delineate 1980 land use form Landsat data. Irrigated acreage data were needed as input to groundwater flow models developed by the U.S. Geological Survey in a study of the regional aquifer system underlying the Snake River Plain. Single-date digital multispectral scanner data analyzed to delineate land-use classes. Source of irrigation water (surface water, ground water, and combined) was determined from county maps of 1975 water-related land use, data from previous investigations, and field checking. Surface-water diversions for irrigation on the Snake River Plain began in the 1840's. With the stimulus of Federal aid authorized by the Desert Land Act, Carey Act, and Reclamation Act, irrigated area increased rapidly in the early 1900's. By 1929, 2.2 million acres were irrigated. Ground water became and important source of irrigation water after World War II. In 1980, about 3.1 million acres of the Snake River Plain were irrigate: 2.0 million acres with surface water, 1.0 million with ground water, and 0.1 million with combined surface and ground water. About 5.2 million acres (half of the plain) are undeveloped rangeland, 1.0 million acres (one-tenth) are classified as barren. The remaining land is a mixture of dryland agriculture, water bodies, wetland, forests, and urban areas.
Thermal targets for satellite calibration
NASA Astrophysics Data System (ADS)
Villa-Aleman, Eliel; Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, Byron L.; Pendergast, Malcolm M.
2001-03-01
The Savannah River Technology Center (SRTC) is currently calibrating the Multispectral Thermal Imager (MTI) satellite sponsored by the Department of Energy. The MTI imager is a research and development project with 15 wavebands in the visible, near-infrared, short-wave infrared, mid-wave infrared and long-wave infrared spectral regions. A plethora of targets with known temperatures such as power plant heated lakes, volcano lava vents, desert playas and aluminized Mylar tarps are being used in the validation of the five thermal bands of the MTI satellite. SRTC efforts in the production of cold targets with aluminized Mylar tarps will be described. Visible and thermal imagery and wavelength dependent radiance measurements of the calibration targets will be presented.
2016-10-10
AFRL-RX-WP-JA-2017-0189 EXPERIMENTAL DEMONSTRATION OF ADAPTIVE INFRARED MULTISPECTRAL IMAGING USING PLASMONIC FILTER ARRAY...March 2016 – 23 May 2016 4. TITLE AND SUBTITLE EXPERIMENTAL DEMONSTRATION OF ADAPTIVE INFRARED MULTISPECTRAL IMAGING USING PLASMONIC FILTER ARRAY...experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios
Remote sensing of surface water quality in relation to catchment condition in Zimbabwe
NASA Astrophysics Data System (ADS)
Masocha, Mhosisi; Murwira, Amon; Magadza, Christopher H. D.; Hirji, Rafik; Dube, Timothy
2017-08-01
The degradation of river catchments is one of the most important contemporary environmental problems affecting water quality in tropical countries. In this study, we used remotely sensed Normalised Difference Vegetation Index (NDVI) to assess how catchment condition varies within and across river catchments in Zimbabwe. We then used non-linear regression to test whether catchment condition assessed using the NDVI is significantly (α = 0.05) related with levels of Total Suspended Solids (TSS) measured at different sampling points in thirty-two sub-catchments in Zimbabwe. The results showed a consistent negative curvilinear relationship between Landsat 8 derived NDVI and TSS measured across the catchments under study. In the drier catchments of the country, 98% of the variation in TSS is explained by NDVI, while in wetter catchments, 64% of the variation in TSS is explained by NDVI. Our results suggest that NDVI derived from free and readily available multispectral Landsat series data (Landsat 8) is a potential valuable tool for the rapid assessment of physical water quality in data poor catchments. Overall, the finding of this study underscores the usefulness of readily available satellite data for near-real time monitoring of the physical water quality at river catchment scale, especially in resource-constrained areas, such as the sub-Saharan Africa.
View of Minneapolis-St.Paul, Minnesota area
1973-08-30
SL3-28-009 (July-September 1973) --- A near vertical view of the Minneapolis-St. Paul, Minnesota area, as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the Skylab space station. A 150mm lens, with SO-356 high definition Ektachrome film, was used to take this picture. The Mississippi River flows southeasterly through this large metropolitan area. Minneapolis is on the west bank of the Mississippi. The Minnesota River makes a large bend at the southern edge of the picture then flows northeasterly to empty into the Mississippi at Minneapolis-St. Paul. The St. Croix River, which serves as a portion of the boundary between Minnesota and Wisconsin, flows into the Mississippi downstream from the twin cities. A long, nearly straight, stretch of Interstate 35 leads southward from Minneapolis-St. Paul. Interstate 94 parallels the Mississippi toward the northwest. The highway and road network in the area is clearly visible. Note the numerous small lakes in the photograph. This view includes the smaller cities of Hastings, Faribault, Owatonna, Mankato, St. Peter, New Ulm and St. Cloud. The S190-A experiment is part of the Skylab Earth Resources Experiments Package. Photo credit: NASA
Evaluation of airborne image data for mapping riparian vegetation within the Grand Canyon
Davis, Philip A.; Staid, Matthew I.; Plescia, Jeffrey B.; Johnson, Jeffrey R.
2002-01-01
This study examined various types of remote-sensing data that have been acquired during a 12-month period over a portion of the Colorado River corridor to determine the type of data and conditions for data acquisition that provide the optimum classification results for mapping riparian vegetation. Issues related to vegetation mapping included time of year, number and positions of wavelength bands, and spatial resolution for data acquisition to produce accurate vegetation maps versus cost of data. Image data considered in the study consisted of scanned color-infrared (CIR) film, digital CIR, and digital multispectral data, whose resolutions from 11 cm (photographic film) to 100 cm (multispectral), that were acquired during the Spring, Summer, and Fall seasons in 2000 for five long-term monitoring sites containing riparian vegetation. Results show that digitally acquired data produce higher and more consistent classification accuracies for mapping vegetation units than do film products. The highest accuracies were obtained from nine-band multispectral data; however, a four-band subset of these data, that did not include short-wave infrared bands, produced comparable mapping results. The four-band subset consisted of the wavelength bands 0.52-0.59 µm, 0.59-0.62 µm, 0.67-0.72 µm, and 0.73-0.85 µm. Use of only three of these bands that simulate digital CIR sensors produced accuracies for several vegetation units that were 10% lower than those obtained using the full multispectral data set. Classification tests using band ratios produced lower accuracies than those using band reflectance for scanned film data; a result attributed to the relatively poor radiometric fidelity maintained by the film scanning process, whereas calibrated multispectral data produced similar classification accuracies using band reflectance and band ratios. This suggests that the intrinsic band reflectance of the vegetation is more important than inter-band reflectance differences in attaining high mapping accuracies. These results also indicate that radiometrically calibrated sensors that record a wide range of radiance produce superior results and that such sensors should be used for monitoring purposes. When texture (spatial variance) at near-infrared wavelength is combined with spectral data in classification, accuracy increased most markedly (20-30%) for the highest resolution (11-cm) CIR film data, but decreased in its effect on accuracy in lower-resolution multi-spectral image data; a result observed in previous studies (Franklin and McDermid 1993, Franklin et al. 2000, 2001). While many classification unit accuracies obtained from the 11-cm film CIR band with texture data were in fact higher than those produced using the 100-cm, nine-band multispectral data with texture, the 11-cm film CIR data produced much lower accuracies than the 100-cm multispectral data for the more sparsely populated vegetation units due to saturation of picture elements during the film scanning process in vegetation units with a high proportion of alluvium. Overall classification accuracies obtained from spectral band and texture data range from 36% to 78% for all databases considered, from 57% to 71% for the 11-cm film CIR data, and from 54% to 78% for the 100-cm multispectral data. Classification results obtained from 20-cm film CIR band and texture data, which were produced by applying a Gaussian filter to the 11-cm film CIR data, showed increases in accuracy due to texture that were similar to those observed using the original 11-cm film CIR data. This suggests that data can be collected at the lower resolution and still retain the added power of vegetation texture. Classification accuracies for the riparian vegetation units examined in this study do not appear to be influenced by season of data acquisition, although data acquired under direct sunlight produced higher overall accuracies than data acquired under overcast conditions. The latter observation, in addition to the importance of band reflectance for classification, implies that data should be acquired near summer solstice when sun elevation and reflectance is highest and when shadows cast by steep canyon walls are minimized.
Multispectral photography for earth resources
NASA Technical Reports Server (NTRS)
Wenderoth, S.; Yost, E.; Kalia, R.; Anderson, R.
1972-01-01
A guide for producing accurate multispectral results for earth resource applications is presented along with theoretical and analytical concepts of color and multispectral photography. Topics discussed include: capabilities and limitations of color and color infrared films; image color measurements; methods of relating ground phenomena to film density and color measurement; sensitometry; considerations in the selection of multispectral cameras and components; and mission planning.
Classification by Using Multispectral Point Cloud Data
NASA Astrophysics Data System (ADS)
Liao, C. T.; Huang, H. H.
2012-07-01
Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.
Gimbaled multispectral imaging system and method
Brown, Kevin H.; Crollett, Seferino; Henson, Tammy D.; Napier, Matthew; Stromberg, Peter G.
2016-01-26
A gimbaled multispectral imaging system and method is described herein. In an general embodiment, the gimbaled multispectral imaging system has a cross support that defines a first gimbal axis and a second gimbal axis, wherein the cross support is rotatable about the first gimbal axis. The gimbaled multispectral imaging system comprises a telescope that fixed to an upper end of the cross support, such that rotation of the cross support about the first gimbal axis causes the tilt of the telescope to alter. The gimbaled multispectral imaging system includes optics that facilitate on-gimbal detection of visible light and off-gimbal detection of infrared light.
Bedford, Ashton; Sankey, Temuulen T.; Sankey, Joel B.; Durning, Laura E.C.; Ralston, Barbara
2018-01-01
Tamarisk (Tamarix spp.) is an invasive plant species that is rapidly expanding along arid and semi-arid rivers in the western United States. A biocontrol agent, tamarisk beetle (Diorhabda carinulata), was released in 2001 in California, Colorado, Utah, and Texas. In 2009, the tamarisk beetle was found further south than anticipated in the Colorado River ecosystem within the Grand Canyon National Park and Glen Canyon National Recreation Area. Our objectives were to classify tamarisk stands along 412 km of the Colorado River from the Glen Canyon Dam through the Grand Canyon National Park using 2009 aerial, high spatial resolution multispectral imagery, and then quantify tamarisk beetle impacts by comparing the pre-beetle images from 2009 with 2013 post-beetle images. We classified tamarisk presence in 2009 using the Mahalanobis Distance method with a total of 2500 training samples, and assessed the classification accuracy with an independent set of 7858 samples across 49 image quads. A total of 214 ha of tamarisk were detected in 2009 along the Colorado River, where each image quad, on average, included an 8.4 km segment of the river. Tamarisk detection accuracies varied across the 49 image quads, but the combined overall accuracy across the entire study region was 74%. Using the Normalized Difference Vegetation Index (NDVI) from 2009 and 2013 with a region-specific ratio of >1.5 decline between the two image dates (2009NDVI/2013NDVI), we detected tamarisk defoliation due to beetle herbivory. The total beetle-impacted tamarisk area was 32 ha across the study region, where tamarisk defoliation ranged 1–86% at the local levels. Our tamarisk classification can aid long-term efforts to monitor the spread and impact of the beetle along the river and the eventual mortality of tamarisk due to beetle impacts. Identifying areas of tamarisk defoliation is a useful ecological indicator for managers to plan restoration and tamarisk removal efforts.
A multispectral imaging approach for diagnostics of skin pathologies
NASA Astrophysics Data System (ADS)
Lihacova, Ilze; Derjabo, Aleksandrs; Spigulis, Janis
2013-06-01
Noninvasive multispectral imaging method was applied for different skin pathology such as nevus, basal cell carcinoma, and melanoma diagnostics. Developed melanoma diagnostic parameter, using three spectral bands (540 nm, 650 nm and 950 nm), was calculated for nevus, melanoma and basal cell carcinoma. Simple multispectral diagnostic device was established and applied for skin assessment. Development and application of multispectral diagnostics method described further in this article.
D Land Cover Classification Based on Multispectral LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong
2016-06-01
Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.
NASA Technical Reports Server (NTRS)
Carlson, P. R. (Principal Investigator); Conomos, T. J.; Janda, R. J.; Peterson, D. H.
1973-01-01
The author has identified the following significant results. ERTS-1 multispectral scanner imagery of the nearshore surface waters of the Northeast Pacific Ocean is proving to be a useful tool for determining source and dispersal of suspended particulate matter. The principal sources of the turbid water, seen best on the green and red bands, are river and stream effluents and actively eroding coastlines; secondary sources are waste effluents and production of planktonic organisms, but these may sometimes be masked by the very turbid plumes of suspended sediment being discharged into the nearshore zone during times of high river discharge. The configuration and distribution of the plumes of turbid water also can be used to infer near-surface current directions. Comparison of imagery of the nearshore water off the northern California coast from October 1972 and January 1973 shows a reversal of the near-surface currents, from predominantly south-setting in the fall (California Current) to north-setting in the winter (Davidson Current).
Development of a multispectral imagery device devoted to weed detection
NASA Astrophysics Data System (ADS)
Vioix, Jean-Baptiste; Douzals, Jean-Paul; Truchetet, Frederic; Navar, Pierre
2003-04-01
Multispectral imagery is a large domain with number of practical applications: thermography, quality control in industry, food science and agronomy, etc. The main interest is to obtain spectral information of the objects for which reflectance signal can be associated with physical, chemical and/or biological properties. Agronomic applications of multispectral imagery generally involve the acquisition of several images in the wavelengths of visible and near infrared. This paper will first present different kind of multispectral devices used for agronomic issues and will secondly introduce an original multispectral design based on a single CCD. Third, early results obtained for weed detection are presented.
Lossless, Multi-Spectral Data Compressor for Improved Compression for Pushbroom-Type Instruments
NASA Technical Reports Server (NTRS)
Klimesh, Matthew
2008-01-01
A low-complexity lossless algorithm for compression of multispectral data has been developed that takes into account pushbroom-type multispectral imagers properties in order to make the file compression more effective.
Tian, Y.Q.; Yu, Q.; Zimmerman, M.J.; Flint, S.; Waldron, M.C.
2010-01-01
This study evaluates the efficacy of remote sensing technology to monitor species composition, areal extent and density of aquatic plants (macrophytes and filamentous algae) in impoundments where their presence may violate water-quality standards. Multispectral satellite (IKONOS) images and more than 500 in situ hyperspectral samples were acquired to map aquatic plant distributions. By analyzing field measurements, we created a library of hyperspectral signatures for a variety of aquatic plant species, associations and densities. We also used three vegetation indices. Normalized Difference Vegetation Index (NDVI), near-infrared (NIR)-Green Angle Index (NGAI) and normalized water absorption depth (DH), at wavelengths 554, 680, 820 and 977 nm to differentiate among aquatic plant species composition, areal density and thickness in cases where hyperspectral analysis yielded potentially ambiguous interpretations. We compared the NDVI derived from IKONOS imagery with the in situ, hyperspectral-derived NDVI. The IKONOS-based images were also compared to data obtained through routine visual observations. Our results confirmed that aquatic species composition alters spectral signatures and affects the accuracy of remote sensing of aquatic plant density. The results also demonstrated that the NGAI has apparent advantages in estimating density over the NDVI and the DH. In the feature space of the three indices, 3D scatter plot analysis revealed that hyperspectral data can differentiate several aquatic plant associations. High-resolution multispectral imagery provided useful information to distinguish among biophysical aquatic plant characteristics. Classification analysis indicated that using satellite imagery to assess Lemna coverage yielded an overall agreement of 79% with visual observations and >90% agreement for the densest aquatic plant coverages. Interpretation of biophysical parameters derived from high-resolution satellite or airborne imagery should prove to be a valuable approach for assessing the effectiveness of management practices for controlling aquatic plant growth in inland waters, as well as for routine monitoring of aquatic plants in lakes and suitable lentic environments. ?? 2010 Blackwell Publishing Ltd.
Design and fabrication of multispectral optics using expanded glass map
NASA Astrophysics Data System (ADS)
Bayya, Shyam; Gibson, Daniel; Nguyen, Vinh; Sanghera, Jasbinder; Kotov, Mikhail; Drake, Gryphon; Deegan, John; Lindberg, George
2015-06-01
As the desire to have compact multispectral imagers in various DoD platforms is growing, the dearth of multispectral optics is widely felt. With the limited number of material choices for optics, these multispectral imagers are often very bulky and impractical on several weight sensitive platforms. To address this issue, NRL has developed a large set of unique infrared glasses that transmit from 0.9 to > 14 μm in wavelength and expand the glass map for multispectral optics with refractive indices from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. The new NRL glasses can be easily molded and also fused together to make bonded doublets. A Zemax compatible glass file has been created and is available upon request. In this paper we present some designs, optics fabrication and imaging, all using NRL materials.
Quality evaluation of pansharpened hyperspectral images generated using multispectral images
NASA Astrophysics Data System (ADS)
Matsuoka, Masayuki; Yoshioka, Hiroki
2012-11-01
Hyperspectral remote sensing can provide a smooth spectral curve of a target by using a set of higher spectral resolution detectors. The spatial resolution of the hyperspectral images, however, is generally much lower than that of multispectral images due to the lower energy of incident radiation. Pansharpening is an image-fusion technique that generates higher spatial resolution multispectral images by combining lower resolution multispectral images with higher resolution panchromatic images. In this study, higher resolution hyperspectral images were generated by pansharpening of simulated lower hyperspectral and higher multispectral data. Spectral and spatial qualities of pansharpened images, then, were accessed in relation to the spectral bands of multispectral images. Airborne hyperspectral data of AVIRIS was used in this study, and it was pansharpened using six methods. Quantitative evaluations of pansharpened image are achieved using two frequently used indices, ERGAS, and the Q index.
NASA Astrophysics Data System (ADS)
Quintanar, Jessica; Khan, Shuhab D.; Fathy, Mohamed S.; Zalat, Abdel-Fattah A.
2013-11-01
The Pelusiac Branch was a distributary river in the Nile Delta that splits off from the main trunk of the Nile River as it flowed toward the Mediterranean. At approximately 25 A.D., it was chocked by sand and silt deposits from prograding beach accretion processes. The lower course of the river and its bifurcation point from the trunk of the Nile have been hypothesized based on ancient texts and maps, as well as previous research, but results have been inconsistent. Previous studies partly mapped the lower course of the Pelusiac River in the Plain of Tineh, east of the Suez Canal, but rapid urbanization related to the inauguration of the Peace Canal mega-irrigation project has covered any trace of the linear feature reported by these previous studies. The present study used multispectral remote sensing data of GeoEYE-1 and Landsat-TM to locate and accurately map the course of the defunct Pelusiac River within the Plain of Tineh. Remote sensing analysis identified a linear feature that is 135 m wide at its maximum and approximately 13 km long. It extends from the Pelusium ruins to the Suez Canal, just north of the Peace Canal. This remotely located linear feature corresponds to the path of the Pelusiac River during Roman times. Planform geomorphology was applied to determine the hydrological regime and paleodischarge of the river prior to becoming defunct. Planform analysis derived a bankfull paleodischarge value of ~ 5700 m3 s- 1 and an average discharge of 650 m3 s- 1, using the reach average for the interpreted Pelusiac River. The derived values show a river distributary similar in discharge to the modern dammed Damietta river. Field work completed in April of 2012 derived four sedimentary lithofacies of the upper formation on the plain that included pro-delta, delta-front and delta-plain depositional environments. Diatom and fossil mollusk samples were also identified that support coastal beach and lagoonal environments of deposition. Measured section columns and a shoreline parallel transect were also constructed to portray the paleogeography of the Mediterranean coastline in the Plain of Tineh at ~ 25 A.D. and indicate that the sampled study area is the downdrift margin of an asymmetric delta with barrier lagoon systems.
Sousa, Daniel; Small, Christopher
2018-02-14
Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area - despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.
Small, Christopher
2018-01-01
Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system. PMID:29443900
MEDUSA: an airborne multispectral oil spill detection and characterization system
NASA Astrophysics Data System (ADS)
Wagner, Peter; Hengstermann, Theo; Zielinski, Oliver
2000-12-01
MEDUSA is a sensor network, consisting of and effectively combining a variety of different remote sensing instruments. Installed in 1998 it is operationally used in a maritime surveillance aircraft maintained by the German Ministry of Transport, Building and Housing. On one hand routine oil pollution monitoring with remote sensing equipment like Side Looking Airborne Radar (SLAR), Infrared/Ultraviolet Line Scanner (IR/UV line scanner), Microwave Radiometer (MWR), Imaging Airborne Laserfluorosensor (IALFS) and Forward Looking Infrared (FLIR) requires a complex network and communication structure to be operated by a single operator. On the other hand the operation of such a variety of sensors on board of one aircraft provides an excellent opportunity to establish new concepts of integrated sensor fusion and data evaluation. In this work a general survey of the German surveillance aircraft instrumentation is given and major features of the sensor package as well as advantages of the design and architecture are presented. Results from routine operation over North and Baltic Sea are shown to illustrate the successful application of MEDUSA in maritime patrol of oil slicks and polluters. Recently the combination of the different sensor results towards one multispectral information has met with increasing interest. Thus new application fields and parameter sets could be derived, like oceanography or river flood management. The basic concepts and first results in the fusion of sensoric information will conclude the paper.
NASA Technical Reports Server (NTRS)
Blonksi, Slawomir; Gasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki
2001-01-01
Multispectral data requirements for Earth science applications are not always studied rigorously studied before a new remote sensing system is designed. A study of the spatial resolution, spectral bandpasses, and radiometric sensitivity requirements of real-world applications would focus the design onto providing maximum benefits to the end-user community. To support systematic studies of multispectral data requirements, the Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software allows users to create and assess simulated datasets while varying a wide range of system parameters. The simulations are based on data acquired by existing multispectral and hyperspectral instruments. The produced datasets can be further evaluated for specific end-user applications. Spectral synthesis of multispectral images from hyperspectral data is a key part of the ART software. In this process, hyperspectral image cubes are transformed into multispectral imagery without changes in spatial sampling and resolution. The transformation algorithm takes into account spectral responses of both the synthesized, broad, multispectral bands and the utilized, narrow, hyperspectral bands. To validate the spectral synthesis algorithm, simulated multispectral images are compared with images collected near-coincidentally by the Landsat 7 ETM+ and the EO-1 ALI instruments. Hyperspectral images acquired with the airborne AVIRIS instrument and with the Hyperion instrument onboard the EO-1 satellite were used as input data to the presented simulations.
The Multispectral Imaging Science Working Group. Volume 2: Working group reports
NASA Technical Reports Server (NTRS)
Cox, S. C. (Editor)
1982-01-01
Summaries of the various multispectral imaging science working groups are presented. Current knowledge of the spectral and spatial characteristics of the Earth's surface is outlined and the present and future capabilities of multispectral imaging systems are discussed.
NASA Astrophysics Data System (ADS)
Dong, Yang; He, Honghui; He, Chao; Ma, Hui
2017-02-01
Mueller matrix polarimetry is a powerful tool for detecting microscopic structures, therefore can be used to monitor physiological changes of tissue samples. Meanwhile, spectral features of scattered light can also provide abundant microstructural information of tissues. In this paper, we take the 2D multispectral backscattering Mueller matrix images of bovine skeletal muscle tissues, and analyze their temporal variation behavior using multispectral Mueller matrix parameters. The 2D images of the Mueller matrix elements are reduced to the multispectral frequency distribution histograms (mFDHs) to reveal the dominant structural features of the muscle samples more clearly. For quantitative analysis, the multispectral Mueller matrix transformation (MMT) parameters are calculated to characterize the microstructural variations during the rigor mortis and proteolysis processes of the skeletal muscle tissue samples. The experimental results indicate that the multispectral MMT parameters can be used to judge different physiological stages for bovine skeletal muscle tissues in 24 hours, and combining with the multispectral technique, the Mueller matrix polarimetry and FDH analysis can monitor the microstructural variation features of skeletal muscle samples. The techniques may be used for quick assessment and quantitative monitoring of meat qualities in food industry.
[A spatial adaptive algorithm for endmember extraction on multispectral remote sensing image].
Zhu, Chang-Ming; Luo, Jian-Cheng; Shen, Zhan-Feng; Li, Jun-Li; Hu, Xiao-Dong
2011-10-01
Due to the problem that the convex cone analysis (CCA) method can only extract limited endmember in multispectral imagery, this paper proposed a new endmember extraction method by spatial adaptive spectral feature analysis in multispectral remote sensing image based on spatial clustering and imagery slice. Firstly, in order to remove spatial and spectral redundancies, the principal component analysis (PCA) algorithm was used for lowering the dimensions of the multispectral data. Secondly, iterative self-organizing data analysis technology algorithm (ISODATA) was used for image cluster through the similarity of the pixel spectral. And then, through clustering post process and litter clusters combination, we divided the whole image data into several blocks (tiles). Lastly, according to the complexity of image blocks' landscape and the feature of the scatter diagrams analysis, the authors can determine the number of endmembers. Then using hourglass algorithm extracts endmembers. Through the endmember extraction experiment on TM multispectral imagery, the experiment result showed that the method can extract endmember spectra form multispectral imagery effectively. What's more, the method resolved the problem of the amount of endmember limitation and improved accuracy of the endmember extraction. The method has provided a new way for multispectral image endmember extraction.
New Concepts in Electromagnetic Materials and Antennas
2015-01-01
Bae-Ian Wu Antennas & Electromagnetics Technology Branch Multispectral Sensing & Detection Division JANUARY 2015 Final Report...Signature// //Signature// BRADLEY A. KRAMER, Program Manager TONY C. KIM, Branch Chief Antenna & Electromagnetic Technology ...Branch Antenna & Electromagnetic Technology Branch Multispectral Sensing & Detection Division Multispectral Sensing & Detection Division
Dudov, S V
2016-01-01
On the basis of maximum entropy method embedded in MaxEnt software, the cartographic models are designed for spatial distribution of 63 species of vascular plants inhabiting low mountain belt of the Tukuringra Range. Initial data for modeling were actual points of a species occurrence, data on remote sensing (multispectral space snapshots by Landsat), and a digital topographic model. It is found out that the structure of factors contributing to the model is related to species ecological amplitude. The distribution of stenotopic species is determined, mainly, by the topography, which thermal and humidity conditions of habitats are associated with. To the models for eurytopic species, variables formed on the basis of remote sensing contribute significantly, those variables encompassing the parameters of the soil-vegetable cover. In course of the obtained models analyzing, three principal groups of species are revealed that have similar distribution pattern. Species of the first group are restricted in their distribution by the slopes of the. River Zeya and River Giluy gorges. Species of the second group are associated with the southern macroslope of the range and with southern slopes of large rivers' valleys. The third group incorporates those species that are distributed over the whole territory under study.
Analysis of the origin of Aufeis feed-water on the arctic slope of Alaska
NASA Technical Reports Server (NTRS)
Hall, D. K.; Roswell, C. (Principal Investigator)
1980-01-01
The origin of water feeding large aufeis fields (overflow river ice) on the Arctic Slope of Alaska is analyzed. Field measurements of two large aufeis fields on the eastern Arctic Slope were taken during July of 1978 and 1979. Measurements of aufeis extent and distribution were made using LANDSAT Multispectral Scanner Subsystem (MSS) satellite data from 1973 through 1979. In addition, ice cores were analyzed in the laboratory. Results of the field and laboratory studies indicate that the water derived from aufeis melt water has a chemical composition different from the adjacent upstream river water. Large aufeis fields are found in association with springs and faults thus indicating a subterranean origin of the feed water. In addition, the maximum extent of large aufeis fields was not found to follow meteorological patterns which would only be expected if the origin of the feed water were local. It is concluded that extent of large aufeis in a given river channel on the Arctic Slope is controlled by discharge from reservoirs of groundwater. It seems probable that precipitation passes into limestone aquifers in the Brooks Range, through an interconnecting system of subterranean fractures in calcareous rocks and ultimately discharges into alluvial sediments on the coastal plain to form aufeis. It is speculated that only small aufeis patches are affected by local meteorological parameters in the months just prior to aufeis formation.
Influence of recent climatic events on the surface water storage of the Tonle Sap Lake.
Frappart, F; Biancamaria, S; Normandin, C; Blarel, F; Bourrel, L; Aumont, M; Azemar, P; Vu, P-L; Le Toan, T; Lubac, B; Darrozes, J
2018-09-15
Lakes and reservoirs have been identified as sentinels of climate change. Tonle Sap is the largest lake in both the Mekong Basin and Southeast Asia and because of the importance of its ecosystem, it is has been described as the "heart of the lower Mekong". Its seasonal cycle depends on the annual flood pulse governed by the flow of the Mekong River. This study provides an impact analysis of recent climatic events from El Niño 1997/1998 to El Niño 2015/2016 on surface storage variations in the Tonle Sap watershed determined by combining remotely sensed observations, multispectral images and radar altimetry from 1993 to 2017. The Lake's surface water volume variations are highly correlated with rainy season rainfall in the whole Mekong River Basin (R = 0.84) at interannual time-scale. Extreme droughts and floods can be observed when precipitation deficit and excess is recorded in both the Tonle Sap watershed and the Mekong River Basin during moderate to very strong El Niño/La Niña events (R = -0.70) enhanced by the Pacific Decadal Oscillation (R = -0.68). Indian and Western North Pacific Monsoons were identified as having almost equal influence. Below normal vegetation activity was observed during the first semester of 2016 due to the extreme drought in 2015. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Demendonca, F.; Amaral, G.; Gamadealmeida, E. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Soil resource studies in Brazil have concluded that: areas with agricultural activities appear surrounding urban centers; some areas are suffering a strong erosion action; there exist two drainage systems near Paraguai River and Parana River; and this region possesses great variety of soil types. It is possible to count the number of lakes and sluices as well as their superficial area using a channel 7 photographic enlargement. The great concentration of water bodies along the Jacui River determines the large rice crops. Data concerning regions around Teresina City, Presidente Prudente, Piracicaba City, Dourados, and Tres Marias Dam revealed several characteristics concerning the soil and water resources. Two basic maps were made of the natural vegetation distribution over central eastern Brazil from data ERTS-1 data. One map shows the drainage system, the road system, and cities; while the second shows the natural vegetation. It was possible to identify old reforestation, new reforestation, natural forest in flat lands, and natural forest in rolling lands from the ERTS images. Different pasture plant species could be identified by multispectral remote sensing. Data obtained along different wavelength bands provide essential data for the range manager to evaluate his range and to establish a suitable policy. Hydrographic mapping was done using the ERTS images.
Nondestructive prediction of pork freshness parameters using multispectral scattering images
NASA Astrophysics Data System (ADS)
Tang, Xiuying; Li, Cuiling; Peng, Yankun; Chao, Kuanglin; Wang, Mingwu
2012-05-01
Optical technology is an important and immerging technology for non-destructive and rapid detection of pork freshness. This paper studied on the possibility of using multispectral imaging technique and scattering characteristics to predict the freshness parameters of pork meat. The pork freshness parameters selected for prediction included total volatile basic nitrogen (TVB-N), color parameters (L *, a *, b *), and pH value. Multispectral scattering images were obtained from pork sample surface by a multispectral imaging system developed by ourselves; they were acquired at the selected narrow wavebands whose center wavelengths were 517,550, 560, 580, 600, 760, 810 and 910nm. In order to extract scattering characteristics from multispectral images at multiple wavelengths, a Lorentzian distribution (LD) function with four parameters (a: scattering asymptotic value; b: scattering peak; c: scattering width; d: scattering slope) was used to fit the scattering curves at the selected wavelengths. The results show that the multispectral imaging technique combined with scattering characteristics is promising for predicting the freshness parameters of pork meat.
Characterizing tropical forests with multispectral imagery
Eileen Helmer; Nicholas R. Goodwin; Valery Gond; Carlos M. Souza, Jr.; Gregory P. Asner
2015-01-01
Multispectral satellite imagery, that is, remotely sensed imagery with discrete bands ranging from visible to shortwave infrared (SWIR) wavelengths, is the timeliest and most accessible remotely sensed data for monitoring tropical forests. Given this relevance, we summarize here how multispectral imagery can help characterize tropical forest attributes of widespread...
Implementation and evaluation of ILLIAC 4 algorithms for multispectral image processing
NASA Technical Reports Server (NTRS)
Swain, P. H.
1974-01-01
Data concerning a multidisciplinary and multi-organizational effort to implement multispectral data analysis algorithms on a revolutionary computer, the Illiac 4, are reported. The effectiveness and efficiency of implementing the digital multispectral data analysis techniques for producing useful land use classifications from satellite collected data were demonstrated.
A multispectral sorting device for isolating single wheat kernels with high protein content
USDA-ARS?s Scientific Manuscript database
Automated sorting of single wheat kernels according to protein content was demonstrated using two novel multispectral sorting devices with different spectral ranges; 470-1070 nm (silicone based detector) and 910nm-1550 nm (InGaAs based detector). The multispectral data were acquired by rapidly (~12...
A multispectral sorting device for wheat kernels
USDA-ARS?s Scientific Manuscript database
A low-cost multispectral sorting device was constructed using three visible and three near-infrared light-emitting diodes (LED) with peak emission wavelengths of 470 nm (blue), 527 nm (green), 624 nm (red), 850 nm, 940 nm, and 1070 nm. The multispectral data were collected by rapidly (~12 kHz) blin...
Eliminate background interference from latent fingerprints using ultraviolet multispectral imaging
NASA Astrophysics Data System (ADS)
Huang, Wei; Xu, Xiaojing; Wang, Guiqiang
2014-02-01
Fingerprints are the most important evidence in crime scene. The technology of developing latent fingerprints is one of the hottest research areas in forensic science. Recently, multispectral imaging which has shown great capability in fingerprints development, questioned document detection and trace evidence examination is used in detecting material evidence. This paper studied how to eliminate background interference from non-porous and porous surface latent fingerprints by rotating filter wheel ultraviolet multispectral imaging. The results approved that background interference could be removed clearly from latent fingerprints by using multispectral imaging in ultraviolet bandwidth.
NASA Astrophysics Data System (ADS)
Thompson, Nicholas Allan
2013-06-01
With recent developments in multispectral detector technology, the interest in common aperture, common focal plane multispectral imaging systems is increasing. Such systems are particularly desirable for military applications, where increased levels of target discrimination and identification are required in cost-effective, rugged, lightweight systems. During the optical design of dual waveband or multispectral systems, the options for material selection are limited. This selection becomes even more restrictive for military applications, where material resilience, thermal properties, and color correction must be considered. We discuss the design challenges that lightweight multispectral common aperture systems present, along with some potential design solutions. Consideration is given to material selection for optimum color correction, as well as material resilience and thermal correction. This discussion is supported using design examples currently in development at Qioptiq.
Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis.
Kim, Sewoong; Cho, Dongrae; Kim, Jihun; Kim, Manjae; Youn, Sangyeon; Jang, Jae Eun; Je, Minkyu; Lee, Dong Hun; Lee, Boreom; Farkas, Daniel L; Hwang, Jae Youn
2016-12-01
We investigate the potential of mobile smartphone-based multispectral imaging for the quantitative diagnosis and management of skin lesions. Recently, various mobile devices such as a smartphone have emerged as healthcare tools. They have been applied for the early diagnosis of nonmalignant and malignant skin diseases. Particularly, when they are combined with an advanced optical imaging technique such as multispectral imaging and analysis, it would be beneficial for the early diagnosis of such skin diseases and for further quantitative prognosis monitoring after treatment at home. Thus, we demonstrate here the development of a smartphone-based multispectral imaging system with high portability and its potential for mobile skin diagnosis. The results suggest that smartphone-based multispectral imaging and analysis has great potential as a healthcare tool for quantitative mobile skin diagnosis.
Multispectral imaging with vertical silicon nanowires
Park, Hyunsung; Crozier, Kenneth B.
2013-01-01
Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye. PMID:23955156
Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing
2015-01-01
This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264
Multispectral Palmprint Recognition Using a Quaternion Matrix
Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng
2012-01-01
Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%. PMID:22666049
Multispectral palmprint recognition using a quaternion matrix.
Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng
2012-01-01
Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%.
Novel instrumentation of multispectral imaging technology for detecting tissue abnormity
NASA Astrophysics Data System (ADS)
Yi, Dingrong; Kong, Linghua
2012-10-01
Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.
Application of LANDSAT data to wetland study and land use classification in west Tennessee
NASA Technical Reports Server (NTRS)
Jones, N. L.; Shahrokhi, F.
1977-01-01
The Obion-Forked Deer River Basin in northwest Tennessee is confronted with several acute land use problems which result in excessive erosion, sedimentation, pollution, and hydrologic runoff. LANDSAT data was applied to determine land use of selected watershed areas within the basin, with special emphasis on determining wetland boundaries. Densitometric analysis was performed to allow numerical classification of objects observed in the imagery on the basis of measurements of optical densities. Multispectral analysis of the LANDSAT imagery provided the capability of altering the color of the image presentation in order to enhance desired relationships. Manual mapping and classification techniques were performed in order to indicate a level of accuracy of the LANDSAT data as compared with high and low altitude photography for land use classification.
View of Lake Mead and Las Vegas, Nevada area from Sklyab
1973-08-01
SL3-28-059 (July-September 1973) --- A vertical view of the Lake Mead and Las Vegas, Nevada area as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. Lake Mead is water of the Colorado River impounded by Hoover Dam. Most of the land in the picture is Nevada. However, a part of the northwest corner of Arizona can be seen. Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA
Identification, definition and mapping of terrestrial ecosystems in interior Alaska
NASA Technical Reports Server (NTRS)
Anderson, J. H. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A transect of the Tanana River Flats to Murphy Dome, Alaska was accomplished. The transect includes an experimental forest and information on the range of vegetation-land form types. Multispectral black and white prints of the Eagle Summit Research Area, Alaska, were studied in conjunction with aerial photography and field notes to determine the characteristics of the vegetation. Black and white MSS prints were compared with aerial photographs of the village of Wiseman, Alaska. No positive identifications could be made without reference to aerial photographs or ground truth data. Color coded density slice scenes of the Eagle Summit Research Area were produced from black and white NASA aerial photographs. Infestations of the spruce beetle in the Cook Inlet, Alaska, were studied using aerial photographs.
Dynamic modeling of vegetation change in arid lands
NASA Technical Reports Server (NTRS)
Robinson, V. B.; Coiner, J. C.; Barringer, T. H.
1982-01-01
A general framework for a digital desertification monitoring system (DDMS) for assessing the worldwide desertification growth rate is presented. The system relies on the development of Landsat derived indicators to identify local processes signalling the growth of arid regions. A study area consisting of the eastern edge of the Niger River delta in Mali was used to characterize three indicators in terms of the covariance of the multispectral scanner (MSS) bands 2 and 4, the correlation of the two bands, and the percent variance expressed by the first eigenvalue. The scenes are imaged multitemporallly in a 400 x 400 pixel array to detect vegetation cover changes. Criteria were defined which characterized the decrease or increase of vegetation. It was determined that the correlation coefficients are the best indicators, and are easily computed.
Reproducible high-resolution multispectral image acquisition in dermatology
NASA Astrophysics Data System (ADS)
Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir
2015-07-01
Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.
Common aperture multispectral optics for military applications
NASA Astrophysics Data System (ADS)
Thompson, N. A.
2012-06-01
With the recent developments in multi-spectral detector technology the interest in common aperture, common focal plane multi-spectral imaging systems is increasing. Such systems are particularly desirable for military applications where increased levels of target discrimination and identification are required in cost-effective, rugged, lightweight systems. During the optical design of dual waveband or multi-spectral systems, the options for material selection are limited. This selection becomes even more restrictive for military applications as material resilience and thermal properties must be considered in addition to colour correction. In this paper we discuss the design challenges that lightweight multi-spectral common aperture systems present along with some potential design solutions. Consideration will be given to material selection for optimum colour correction as well as material resilience and thermal correction. This discussion is supported using design examples that are currently in development at Qioptiq.
Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis
Kim, Sewoong; Cho, Dongrae; Kim, Jihun; Kim, Manjae; Youn, Sangyeon; Jang, Jae Eun; Je, Minkyu; Lee, Dong Hun; Lee, Boreom; Farkas, Daniel L.; Hwang, Jae Youn
2016-01-01
We investigate the potential of mobile smartphone-based multispectral imaging for the quantitative diagnosis and management of skin lesions. Recently, various mobile devices such as a smartphone have emerged as healthcare tools. They have been applied for the early diagnosis of nonmalignant and malignant skin diseases. Particularly, when they are combined with an advanced optical imaging technique such as multispectral imaging and analysis, it would be beneficial for the early diagnosis of such skin diseases and for further quantitative prognosis monitoring after treatment at home. Thus, we demonstrate here the development of a smartphone-based multispectral imaging system with high portability and its potential for mobile skin diagnosis. The results suggest that smartphone-based multispectral imaging and analysis has great potential as a healthcare tool for quantitative mobile skin diagnosis. PMID:28018743
NASA Astrophysics Data System (ADS)
Matikainen, Leena; Karila, Kirsi; Hyyppä, Juha; Litkey, Paula; Puttonen, Eetu; Ahokas, Eero
2017-06-01
During the last 20 years, airborne laser scanning (ALS), often combined with passive multispectral information from aerial images, has shown its high feasibility for automated mapping processes. The main benefits have been achieved in the mapping of elevated objects such as buildings and trees. Recently, the first multispectral airborne laser scanners have been launched, and active multispectral information is for the first time available for 3D ALS point clouds from a single sensor. This article discusses the potential of this new technology in map updating, especially in automated object-based land cover classification and change detection in a suburban area. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from an object-based random forests analysis suggest that the multispectral ALS data are very useful for land cover classification, considering both elevated classes and ground-level classes. The overall accuracy of the land cover classification results with six classes was 96% compared with validation points. The classes under study included building, tree, asphalt, gravel, rocky area and low vegetation. Compared to classification of single-channel data, the main improvements were achieved for ground-level classes. According to feature importance analyses, multispectral intensity features based on several channels were more useful than those based on one channel. Automatic change detection for buildings and roads was also demonstrated by utilising the new multispectral ALS data in combination with old map vectors. In change detection of buildings, an old digital surface model (DSM) based on single-channel ALS data was also used. Overall, our analyses suggest that the new data have high potential for further increasing the automation level in mapping. Unlike passive aerial imaging commonly used in mapping, the multispectral ALS technology is independent of external illumination conditions, and there are no shadows on intensity images produced from the data. These are significant advantages in developing automated classification and change detection procedures.
On-board multispectral classification study
NASA Technical Reports Server (NTRS)
Ewalt, D.
1979-01-01
The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.
Multispectral Filter Arrays: Recent Advances and Practical Implementation
Lapray, Pierre-Jean; Wang, Xingbo; Thomas, Jean-Baptiste; Gouton, Pierre
2014-01-01
Thanks to some technical progress in interferencefilter design based on different technologies, we can finally successfully implement the concept of multispectral filter array-based sensors. This article provides the relevant state-of-the-art for multispectral imaging systems and presents the characteristics of the elements of our multispectral sensor as a case study. The spectral characteristics are based on two different spatial arrangements that distribute eight different bandpass filters in the visible and near-infrared area of the spectrum. We demonstrate that the system is viable and evaluate its performance through sensor spectral simulation. PMID:25407904
Land use classification utilizing remote multispectral scanner data and computer analysis techniques
NASA Technical Reports Server (NTRS)
Leblanc, P. N.; Johannsen, C. J.; Yanner, J. E.
1973-01-01
An airborne multispectral scanner was used to collect the visible and reflective infrared data. A small subdivision near Lafayette, Indiana was selected as the test site for the urban land use study. Multispectral scanner data were collected over the subdivision on May 1, 1970 from an altitude of 915 meters. The data were collected in twelve wavelength bands from 0.40 to 1.00 micrometers by the scanner. The results indicated that computer analysis of multispectral data can be very accurate in classifying and estimating the natural and man-made materials that characterize land uses in an urban scene.
NASA Astrophysics Data System (ADS)
Wu, Yu; Zheng, Lijuan; Xie, Donghai; Zhong, Ruofei
2017-07-01
In this study, the extended morphological attribute profiles (EAPs) and independent component analysis (ICA) were combined for feature extraction of high-resolution multispectral satellite remote sensing images and the regularized least squares (RLS) approach with the radial basis function (RBF) kernel was further applied for the classification. Based on the major two independent components, the geometrical features were extracted using the EAPs method. In this study, three morphological attributes were calculated and extracted for each independent component, including area, standard deviation, and moment of inertia. The extracted geometrical features classified results using RLS approach and the commonly used LIB-SVM library of support vector machines method. The Worldview-3 and Chinese GF-2 multispectral images were tested, and the results showed that the features extracted by EAPs and ICA can effectively improve the accuracy of the high-resolution multispectral image classification, 2% larger than EAPs and principal component analysis (PCA) method, and 6% larger than APs and original high-resolution multispectral data. Moreover, it is also suggested that both the GURLS and LIB-SVM libraries are well suited for the multispectral remote sensing image classification. The GURLS library is easy to be used with automatic parameter selection but its computation time may be larger than the LIB-SVM library. This study would be helpful for the classification application of high-resolution multispectral satellite remote sensing images.
NASA Astrophysics Data System (ADS)
Wicaksono, Pramaditya; Salivian Wisnu Kumara, Ignatius; Kamal, Muhammad; Afif Fauzan, Muhammad; Zhafarina, Zhafirah; Agus Nurswantoro, Dwi; Noviaris Yogyantoro, Rifka
2017-12-01
Although spectrally different, seagrass species may not be able to be mapped from multispectral remote sensing images due to the limitation of their spectral resolution. Therefore, it is important to quantitatively assess the possibility of mapping seagrass species using multispectral images by resampling seagrass species spectra to multispectral bands. Seagrass species spectra were measured on harvested seagrass leaves. Spectral resolution of multispectral images used in this research was adopted from WorldView-2, Quickbird, Sentinel-2A, ASTER VNIR, and Landsat 8 OLI. These images are widely available and can be a good representative and baseline for previous or future remote sensing images. Seagrass species considered in this research are Enhalus acoroides (Ea), Thalassodendron ciliatum (Tc), Thalassia hemprichii (Th), Cymodocea rotundata (Cr), Cymodocea serrulata (Cs), Halodule uninervis (Hu), Halodule pinifolia (Hp), Syringodum isoetifolium (Si), Halophila ovalis (Ho), and Halophila minor (Hm). Multispectral resampling analysis indicate that the resampled spectra exhibit similar shape and pattern with the original spectra but less precise, and they lose the unique absorption feature of seagrass species. Relying on spectral bands alone, multispectral image is not effective in mapping these seagrass species individually, which is shown by the poor and inconsistent result of Spectral Angle Mapper (SAM) classification technique in classifying seagrass species using seagrass species spectra as pure endmember. Only Sentinel-2A produced acceptable classification result using SAM.
NASA Astrophysics Data System (ADS)
Broderson, D.; Dierking, C.; Stevens, E.; Heinrichs, T. A.; Cherry, J. E.
2016-12-01
The Geographic Information Network of Alaska (GINA) at the University of Alaska Fairbanks (UAF) uses two direct broadcast antennas to receive data from a number of polar-orbiting weather satellites, including the Suomi National Polar Partnership (S-NPP) satellite. GINA uses data from S-NPP's Visible Infrared Imaging Radiometer Suite (VIIRS) to generate a variety of multispectral imagery products developed with the needs of the National Weather Service operational meteorologist in mind. Multispectral products have two primary advantages over single-channel products. First, they can more clearly highlight some terrain and meteorological features which are less evident in the component single channels. Second, multispectral present the information from several bands through just one image, thereby sparing the meteorologist unnecessary time interrogating the component single bands individually. With 22 channels available from the VIIRS instrument, the number of possible multispectral products is theoretically huge. A small number of products will be emphasized in this presentation, with the products chosen based on their proven utility in the forecasting environment. Multispectral products can be generated upstream of the end user or by the end user at their own workstation. The advantage and disadvantages of both approaches will be outlined. Lastly, the technique of improving the appearance of multispectral imagery by correcting for atmospheric reflectance at the shorter wavelengths will be described.
Multispectral remote observations of hydrologic features on the North Slope of Alaska
NASA Technical Reports Server (NTRS)
Hall, D. K.; Bryan, M. L.
1977-01-01
Visible and near-infrared satellite data and active and passive microwave aircraft data are used to analyze some hydrologic features in Arctic Alaska. The following features have been studied: the small thaw lakes on the Arctic Coastal Plain (oriented lakes), Chandalar Lake in the Brooks Range, several North Slope rivers, surface water on the tundra, and snowcover on the North Slope and in the Brooks Range. Passive microwave brightness temperatures (T sub b) as seen on Electrically Scanned Microwave Radiometer (ESMR) imagery are shown to increase with increasing ice thickness on all of the lakes studied. Aufeis, an important hydrologic parameter in the Arctic, is observable in the Sagavanirktok River channel on April ESMR imagery. LANDSAT imagery with better (80 m) resolution is useful for measuring aufeis extent using band 5 imagery obtained just after snowmelt in June. It is shown that the extent of aufeis (as measured on LANDSAT imagery) varies with meteorological conditions and, therefore, may be a useful indicator of annual climate fluctuations on the North Slope. Snow and ice breakup has been traced from the Brooks Range Mountains to the Arctic Ocean Coast using LANDSAT band 7 imagery in May when melting begins in the mountains.
NASA Technical Reports Server (NTRS)
Shahrokhi, F. (Principal Investigator); Sharber, L. A.
1977-01-01
The author has identified the following significant results. LANDSAT imagery and supplementary aircraft photography of the New River drainage basin were subjected to a multilevel analysis using conventional photointerpretation methods, densitometric techniques, multispectral analysis, and statistical tests to determine the accuracy of LANDSAT-1 imagery for measuring strip mines of common size. The LANDSAT areas were compared with low altitude measurements. The average accuracy over all the mined land sample areas mapped from LANDSAT-1 was 90%. The discrimination of strip mine subcategories is somewhat limited on LANDSAT imagery. A mine site, whether active or inactive, can be inferred by lack of vegetation, by shape, or image texture. Mine ponds are difficult or impossible to detect because of their small size and turbidity. Unless bordered and contrasted with vegetation, haulage roads are impossible to delineate. Preparation plants and refuge areas are not detectable. Density slicing of LANDSAT band 7 proved most useful in the detection of reclamation progress within the mined areas. For most state requirements for year-round monitoring of surface mined land, LANDSAT is of limited value. However, for periodic updating of regional surface maps, LANDSAT may provide sufficient accuracies for some users.
Flood mapping from Sentinel-1 and Landsat-8 data: a case study from river Evros, Greece
NASA Astrophysics Data System (ADS)
Kyriou, Aggeliki; Nikolakopoulos, Konstantinos
2015-10-01
Floods are suddenly and temporary natural events, affecting areas which are not normally covered by water. The influence of floods plays a significant role both in society and the natural environment, therefore flood mapping is crucial. Remote sensing data can be used to develop flood map in an efficient and effective way. This work is focused on expansion of water bodies overtopping natural levees of the river Evros, invading the surroundings areas and converting them in flooded. Different techniques of flood mapping were used using data from active and passive remote sensing sensors like Sentinlel-1 and Landsat-8 respectively. Space borne pairs obtained from Sentinel-1 were processed in this study. Each pair included an image during the flood, which is called "crisis image" and another one before the event, which is called "archived image". Both images covering the same area were processed producing a map, which shows the spread of the flood. Multispectral data From Landsat-8 were also processed in order to detect and map the flooded areas. Different image processing techniques were applied and the results were compared to the respective results of the radar data processing.
2010-01-01
failure, whereas the polymer nanocomposite gave ductile failure with less surface damage. Task 2. Highly reflective self-assembled coatings . The...AFRL-RX-WP-TR-2010-4036 MULTISPECTRAL COATINGS Eric Grulke University of Kentucky Thad Druffel Optical Dynamics JANUARY...REPORT TYPE 3. DATES COVERED (From - To) January 2010 Final 28 November 2005 – 30 September 2008 4. TITLE AND SUBTITLE MULTISPECTRAL COATINGS 5a
NASA Technical Reports Server (NTRS)
Menzel, W. Paul; Moeller, Christopher, C; Huh, Oscar K.; Roberts, Harry H.
1998-01-01
The influence that cold front passages have on Louisiana coastal environments, including land loss and land building processes, has been the primary topic of this multidisciplinary research. This research has combined meteorological, remote sensing, and coastal expertise from the University of Wisconsin (UW) and Louisiana State University (LSU). Analyzed data sets include remotely sensed radiometric data (AVHRR on NOAA-12,13,14, Multispectral Atmospheric Mapping Sensor (MAMS) and MODIS Airborne Simulator (MAS) on NASA ER-2), U.S. Army Corps of Engineers (USACE) water level data, water quality data from the Coastal Studies Institute (CSI) at LSU, USACE river discharge data, National Weather Service (NWS) and CSI wind in sitzi measurements, geomorphic measurements from aerial photography (NASA ER-2 and Learjet), and CSI ground based sediment burial pipes (for monitoring topographic change along the Louisiana coast) and sediment cores. The work reported here-in is a continuation of an initial investigation into coastal Louisiana landform modification by cold front systems. That initial effort demonstrated the importance of cold front winds in the Atchafalaya Bay sediment plume distribution (Moeller et al.), documented the sediment transport and deposition process of the western Louisiana coast (Huh et al.) and developed tools (e.g. water types identification, suspended solids estimation) from multispectral radiometric data for application to the current study. This study has extended that work, developing a Geomorphic Impact Index (GI(sup 2)) for relating atmospheric forcing to coastal response and new tools to measure water motion and sediment transport.
Multispectral computational ghost imaging with multiplexed illumination
NASA Astrophysics Data System (ADS)
Huang, Jian; Shi, Dongfeng
2017-07-01
Computational ghost imaging has attracted wide attention from researchers in many fields over the last two decades. Multispectral imaging as one application of computational ghost imaging possesses spatial and spectral resolving abilities, and is very useful for surveying scenes and extracting detailed information. Existing multispectral imagers mostly utilize narrow band filters or dispersive optical devices to separate light of different wavelengths, and then use multiple bucket detectors or an array detector to record them separately. Here, we propose a novel multispectral ghost imaging method that uses one single bucket detector with multiplexed illumination to produce a colored image. The multiplexed illumination patterns are produced by three binary encoded matrices (corresponding to the red, green and blue colored information, respectively) and random patterns. The results of the simulation and experiment have verified that our method can be effective in recovering the colored object. Multispectral images are produced simultaneously by one single-pixel detector, which significantly reduces the amount of data acquisition.
Multispectral image fusion for target detection
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-09-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in an experiment using MSSF against two established methods: Averaging and Principle Components Analysis (PCA), and against its two source bands, visible and infrared. The task that we studied was: target detection in the cluttered environment. MSSF proved superior to the other fusion methods. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
Study on multispectral imaging detection and recognition
NASA Astrophysics Data System (ADS)
Jun, Wang; Na, Ding; Gao, Jiaobo; Yu, Hu; Jun, Wu; Li, Junna; Zheng, Yawei; Fei, Gao; Sun, Kefeng
2009-07-01
Multispectral imaging detecting technology use target radiation character in spectral spatial distribution and relation between spectral and image to detect target and remote sensing measure. Its speciality is multi channel, narrow bandwidth, large amount of information, high accuracy. The ability of detecting target in environment of clutter, camouflage, concealment and beguilement is improved. At present, spectral imaging technology in the range of multispectral and hyperspectral develop greatly. The multispectral imaging equipment of unmanned aerial vehicle can be used in mine detection, information, surveillance and reconnaissance. Spectral imaging spectrometer operating in MWIR and LWIR has already been applied in the field of remote sensing and military in the advanced country. The paper presents the technology of multispectral imaging. It can enhance the reflectance, scatter and radiation character of the artificial targets among nature background. The targets among complex background and camouflage/stealth targets can be effectively identified. The experiment results and the data of spectral imaging is obtained.
Spectral signature selection for mapping unvegetated soils
NASA Technical Reports Server (NTRS)
May, G. A.; Petersen, G. W.
1975-01-01
Airborne multispectral scanner data covering the wavelength interval from 0.40-2.60 microns were collected at an altitude of 1000 m above the terrain in southeastern Pennsylvania. Uniform training areas were selected within three sites from this flightline. Soil samples were collected from each site and a procedure developed to allow assignment of scan line and element number from the multispectral scanner data to each sampling location. These soil samples were analyzed on a spectrophotometer and laboratory spectral signatures were derived. After correcting for solar radiation and atmospheric attenuation, the laboratory signatures were compared to the spectral signatures derived from these same soils using multispectral scanner data. Both signatures were used in supervised and unsupervised classification routines. Computer-generated maps using the laboratory and multispectral scanner derived signatures resulted in maps that were similar to maps resulting from field surveys. Approximately 90% agreement was obtained between classification maps produced using multispectral scanner derived signatures and laboratory derived signatures.
Optimal wavelength band clustering for multispectral iris recognition.
Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi
2012-07-01
This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.
MOVING BEYOND COLOR: THE CASE FOR MULTISPECTRAL IMAGING IN BRIGHTFIELD PATHOLOGY.
Cukierski, William J; Qi, Xin; Foran, David J
2009-01-01
A multispectral camera is capable of imaging a histologic slide at narrow bandwidths over the range of the visible spectrum. While several uses for multispectral imaging (MSI) have been demonstrated in pathology [1, 2], there is no unified consensus over when and how MSI might benefit automated analysis [3, 4]. In this work, we use a linear-algebra framework to investigate the relationship between the spectral image and its standard-image counterpart. The multispectral "cube" is treated as an extension of a traditional image in a high-dimensional color space. The concept of metamers is introduced and used to derive regions of the visible spectrum where MSI may provide an advantage. Furthermore, histological stains which are amenable to analysis by MSI are reported. We show the Commission internationale de l'éclairage (CIE) 1931 transformation from spectrum to color is non-neighborhood preserving. Empirical results are demonstrated on multispectral images of peripheral blood smears.
Multispectral Imaging for Determination of Astaxanthin Concentration in Salmonids
Dissing, Bjørn S.; Nielsen, Michael E.; Ersbøll, Bjarne K.; Frosch, Stina
2011-01-01
Multispectral imaging has been evaluated for characterization of the concentration of a specific cartenoid pigment; astaxanthin. 59 fillets of rainbow trout, Oncorhynchus mykiss, were filleted and imaged using a rapid multispectral imaging device for quantitative analysis. The multispectral imaging device captures reflection properties in 19 distinct wavelength bands, prior to determination of the true concentration of astaxanthin. The samples ranged from 0.20 to 4.34 g per g fish. A PLSR model was calibrated to predict astaxanthin concentration from novel images, and showed good results with a RMSEP of 0.27. For comparison a similar model were built for normal color images, which yielded a RMSEP of 0.45. The acquisition speed of the multispectral imaging system and the accuracy of the PLSR model obtained suggest this method as a promising technique for rapid in-line estimation of astaxanthin concentration in rainbow trout fillets. PMID:21573000
Feng, Lei; Fang, Hui; Zhou, Wei-Jun; Huang, Min; He, Yong
2006-09-01
Site-specific variable nitrogen application is one of the major precision crop production management operations. Obtaining sufficient crop nitrogen stress information is essential for achieving effective site-specific nitrogen applications. The present paper describes the development of a multi-spectral nitrogen deficiency sensor, which uses three channels (green, red, near-infrared) of crop images to determine the nitrogen level of canola. This sensor assesses the nitrogen stress by means of estimated SPAD value of the canola based on canola canopy reflectance sensed using three channels (green, red, near-infrared) of the multi-spectral camera. The core of this investigation is the calibration methods between the multi-spectral references and the nitrogen levels in crops measured using a SPAD 502 chlorophyll meter. Based on the results obtained from this study, it can be concluded that a multi-spectral CCD camera can provide sufficient information to perform reasonable SPAD values estimation during field operations.
NASA Astrophysics Data System (ADS)
Shi, Liangliang; Mao, Zhihua; Wang, Zheng
2018-02-01
Satellite imagery has played an important role in monitoring water quality of lakes or coastal waters presently, but scarcely been applied in inland rivers. This paper presents an attempt of feasibility to apply regression model to quantify and map the concentrations of total suspended matter (CTSM) in inland rivers which have a large scale of spatial and a high CTSM dynamic range by using high resolution satellite remote sensing data, WorldView-2. An empirical approach to quantify CTSM by integrated use of high resolution WorldView-2 multispectral data and 21 in situ CTSM measurements. Radiometric correction, geometric and atmospheric correction involved in image processing procedure is carried out for deriving the surface reflectance to correlate the CTSM and satellite data by using single-variable and multivariable regression technique. Results of regression model show that the single near-infrared (NIR) band 8 of WorldView-2 have a relative strong relationship (R2=0.93) with CTSM. Different prediction models were developed on various combinations of WorldView-2 bands, the Akaike Information Criteria approach was used to choose the best model. The model involving band 1, 3, 5, and 8 of WorldView-2 had a best performance, whose R2 reach to 0.92, with SEE of 53.30 g/m3. The spatial distribution maps were produced by using the best multiple regression model. The results of this paper indicated that it is feasible to apply the empirical model by using high resolution satellite imagery to retrieve CTSM of inland rivers in routine monitoring of water quality.
Fast Lossless Compression of Multispectral-Image Data
NASA Technical Reports Server (NTRS)
Klimesh, Matthew
2006-01-01
An algorithm that effects fast lossless compression of multispectral-image data is based on low-complexity, proven adaptive-filtering algorithms. This algorithm is intended for use in compressing multispectral-image data aboard spacecraft for transmission to Earth stations. Variants of this algorithm could be useful for lossless compression of three-dimensional medical imagery and, perhaps, for compressing image data in general.
Multispectral data compression through transform coding and block quantization
NASA Technical Reports Server (NTRS)
Ready, P. J.; Wintz, P. A.
1972-01-01
Transform coding and block quantization techniques are applied to multispectral aircraft scanner data, and digitized satellite imagery. The multispectral source is defined and an appropriate mathematical model proposed. The Karhunen-Loeve, Fourier, and Hadamard encoders are considered and are compared to the rate distortion function for the equivalent Gaussian source and to the performance of the single sample PCM encoder.
Tissue classification for laparoscopic image understanding based on multispectral texture analysis
NASA Astrophysics Data System (ADS)
Zhang, Yan; Wirkert, Sebastian J.; Iszatt, Justin; Kenngott, Hannes; Wagner, Martin; Mayer, Benjamin; Stock, Christian; Clancy, Neil T.; Elson, Daniel S.; Maier-Hein, Lena
2016-03-01
Intra-operative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on multispectral image patches. In a comprehensive ex vivo study we show (1) that multispectral imaging data is superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descriptors and (2) that combining the tissue texture with the reflectance spectrum improves the classification performance. Multispectral tissue analysis could thus evolve as a key enabling technique in computer-assisted laparoscopy.
Lattice algebra approach to multispectral analysis of ancient documents.
Valdiviezo-N, Juan C; Urcid, Gonzalo
2013-02-01
This paper introduces a lattice algebra procedure that can be used for the multispectral analysis of historical documents and artworks. Assuming the presence of linearly mixed spectral pixels captured in a multispectral scene, the proposed method computes the scaled min- and max-lattice associative memories to determine the purest pixels that best represent the spectra of single pigments. The estimation of fractional proportions of pure spectra at each image pixel is used to build pigment abundance maps that can be used for subsequent restoration of damaged parts. Application examples include multispectral images acquired from the Archimedes Palimpsest and a Mexican pre-Hispanic codex.
Inverse analysis of non-uniform temperature distributions using multispectral pyrometry
NASA Astrophysics Data System (ADS)
Fu, Tairan; Duan, Minghao; Tian, Jibin; Shi, Congling
2016-05-01
Optical diagnostics can be used to obtain sub-pixel temperature information in remote sensing. A multispectral pyrometry method was developed using multiple spectral radiation intensities to deduce the temperature area distribution in the measurement region. The method transforms a spot multispectral pyrometer with a fixed field of view into a pyrometer with enhanced spatial resolution that can give sub-pixel temperature information from a "one pixel" measurement region. A temperature area fraction function was defined to represent the spatial temperature distribution in the measurement region. The method is illustrated by simulations of a multispectral pyrometer with a spectral range of 8.0-13.0 μm measuring a non-isothermal region with a temperature range of 500-800 K in the spot pyrometer field of view. The inverse algorithm for the sub-pixel temperature distribution (temperature area fractions) in the "one pixel" verifies this multispectral pyrometry method. The results show that an improved Levenberg-Marquardt algorithm is effective for this ill-posed inverse problem with relative errors in the temperature area fractions of (-3%, 3%) for most of the temperatures. The analysis provides a valuable reference for the use of spot multispectral pyrometers for sub-pixel temperature distributions in remote sensing measurements.
Uncertainty in multispectral lidar signals caused by incidence angle effects
Nevalainen, Olli; Hakala, Teemu; Kaasalainen, Mikko
2018-01-01
Multispectral terrestrial laser scanning (TLS) is an emerging technology. Several manufacturers already offer commercial dual or three wavelength airborne laser scanners, while multispectral TLS is still carried out mainly with research instruments. Many of these research efforts have focused on the study of vegetation. The aim of this paper is to study the uncertainty of the measurement of spectral indices of vegetation with multispectral lidar. Using two spectral indices as examples, we find that the uncertainty is due to systematic errors caused by the wavelength dependency of laser incidence angle effects. This finding is empirical, and the error cannot be removed by modelling or instrument modification. The discovery and study of these effects has been enabled by hyperspectral and multispectral TLS, and it has become a subject of active research within the past few years. We summarize the most recent studies on multi-wavelength incidence angle effects and present new results on the effect of specular reflection from the leaf surface, and the surface structure, which have been suggested to play a key role. We also discuss the consequences to the measurement of spectral indices with multispectral TLS, and a possible correction scheme using a synthetic laser footprint. PMID:29503718
Mapping CDOM Concentration in Waters Influenced by the Mississippi River Plume
NASA Technical Reports Server (NTRS)
Miller, Richard L.; DelCastillo, Carlos E.; Powell, Rodney T.; DSa, Eurico; Spiering, Bruce
2002-01-01
Colored dissolved organic matter (CDOM) is often an important component of the organic carbon pool in river-dominated coastal margins. CDOM directly influences remote sensing applications through its strong absorption in the UV and blue regions of the spectrum. This effect can complicate the use of chlorophyll a retrieval algorithms and phytoplankton production models that are based on remotely sensed ocean color. As freshwater input is the principle source of CDOM in coastal margins, CDOM distribution can often be described by conservative mixing with open ocean waters and may serve as an optical tracer of riverine water. Hence, there is considerable interest in the ability to accurately measure and map CDOM concentrations as well as understand the processes that govern the optical properties and distribution of CDOM in coastal environments. We are examining CDOM dynamics in the waters influenced by the Mississippi River plume. Our program incorporates discrete samples, flow-through measurements, and remote sensing. CDOM absorption spectra of discrete samples are measured at sea using a portable, multiple pathlength waveguide system. A SAFire multi-spectral fluorescence meter provides spectral characterization of CDOM (fluorescence and absorption) using a ship flow-through system for continuous surface mapping. In situ reflectance spectra are obtained by a hand held spectroradiometer. Remotely sensed images are obtained from the SeaWiFS and CRIS (Coastal Research Imaging Spectrometer) instruments. We describe here the instruments used, sampling protocols employed, and the relationships derived between in situ measurements and remotely sensed data for this optically complex environment.
Socio-economic Impact Analysis for Near Real-Time Flood Detection in the Lower Mekong River Basin
NASA Astrophysics Data System (ADS)
Oddo, P.; Ahamed, A.; Bolten, J. D.
2017-12-01
Flood events pose a severe threat to communities in the Lower Mekong River Basin. The combination of population growth, urbanization, and economic development exacerbate the impacts of these flood events. Flood damage assessments are frequently used to quantify the economic losses in the wake of storms. These assessments are critical for understanding the effects of flooding on the local population, and for informing decision-makers about future risks. Remote sensing systems provide a valuable tool for monitoring flood conditions and assessing their severity more rapidly than traditional post-event evaluations. The frequency and severity of extreme flood events are projected to increase, further illustrating the need for improved flood monitoring and impact analysis. In this study we implement a socio-economic damage model into a decision support tool with near real-time flood detection capabilities (NASA's Project Mekong). Surface water extent for current and historical floods is found using multispectral Moderate-resolution Imaging Spectroradiometer (MODIS) 250-meter imagery and the spectral Normalized Difference Vegetation Index (NDVI) signatures of permanent water bodies (MOD44W). Direct and indirect damages to populations, infrastructure, and agriculture are assessed using the 2011 Southeast Asian flood as a case study. Improved land cover and flood depth assessments result in a more refined understanding of losses throughout the Mekong River Basin. Results suggest that rapid initial estimates of flood impacts can provide valuable information to governments, international agencies, and disaster responders in the wake of extreme flood events.
Detecting early stage pressure ulcer on dark skin using multispectral imager
NASA Astrophysics Data System (ADS)
Yi, Dingrong; Kong, Linghua; Sprigle, Stephen; Wang, Fengtao; Wang, Chao; Liu, Fuhan; Adibi, Ali; Tummala, Rao
2010-02-01
We are developing a handheld multispectral imaging device to non-invasively inspect stage I pressure ulcers in dark pigmented skins without the need of touching the patient's skin. This paper reports some preliminary test results of using a proof-of-concept prototype. It also talks about the innovation's impact to traditional multispectral imaging technologies and the fields that will potentially benefit from it.
New Capabilities in the Astrophysics Multispectral Archive Search Engine
NASA Astrophysics Data System (ADS)
Cheung, C. Y.; Kelley, S.; Roussopoulos, N.
The Astrophysics Multispectral Archive Search Engine (AMASE) uses object-oriented database techniques to provide a uniform multi-mission and multi-spectral interface to search for data in the distributed archives. We describe our experience of porting AMASE from Illustra object-relational DBMS to the Informix Universal Data Server. New capabilities and utilities have been developed, including a spatial datablade that supports Nearest Neighbor queries.
NASA Astrophysics Data System (ADS)
Mansoor, Awais; Robinson, J. Paul; Rajwa, Bartek
2009-02-01
Modern automated microscopic imaging techniques such as high-content screening (HCS), high-throughput screening, 4D imaging, and multispectral imaging are capable of producing hundreds to thousands of images per experiment. For quick retrieval, fast transmission, and storage economy, these images should be saved in a compressed format. A considerable number of techniques based on interband and intraband redundancies of multispectral images have been proposed in the literature for the compression of multispectral and 3D temporal data. However, these works have been carried out mostly in the elds of remote sensing and video processing. Compression for multispectral optical microscopy imaging, with its own set of specialized requirements, has remained under-investigated. Digital photography{oriented 2D compression techniques like JPEG (ISO/IEC IS 10918-1) and JPEG2000 (ISO/IEC 15444-1) are generally adopted for multispectral images which optimize visual quality but do not necessarily preserve the integrity of scientic data, not to mention the suboptimal performance of 2D compression techniques in compressing 3D images. Herein we report our work on a new low bit-rate wavelet-based compression scheme for multispectral fluorescence biological imaging. The sparsity of signicant coefficients in high-frequency subbands of multispectral microscopic images is found to be much greater than in natural images; therefore a quad-tree concept such as Said et al.'s SPIHT1 along with correlation of insignicant wavelet coefficients has been proposed to further exploit redundancy at high-frequency subbands. Our work propose a 3D extension to SPIHT, incorporating a new hierarchal inter- and intra-spectral relationship amongst the coefficients of 3D wavelet-decomposed image. The new relationship, apart from adopting the parent-child relationship of classical SPIHT, also brought forth the conditional "sibling" relationship by relating only the insignicant wavelet coefficients of subbands at the same level of decomposition. The insignicant quadtrees in dierent subbands in the high-frequency subband class are coded by a combined function to reduce redundancy. A number of experiments conducted on microscopic multispectral images have shown promising results for the proposed method over current state-of-the-art image-compression techniques.
Aerospace remote sensing of the coastal zone for water quality and biotic productivity applications
NASA Technical Reports Server (NTRS)
Pritchard, E. B.; Harriss, R. C.
1981-01-01
Remote sensing can provide the wide area synoptic coverage of surface waters which is required for studies of such phenomena as river plume mixing, phytoplankton dynamics, and pollutant transport and fate, but which is not obtainable by conventional oceanographic techniques. The application of several remote sensors (aircraftborne and spacecraftborne multispectral scanners, passive microwave radiometers, and active laser systems) to coastal zone research is discussed. Current measurement capabilities (particulates, chlorophyll a, temperature, salinity, ocean dumped materials, other pollutants, and surface winds and roughness) are defined and the results of recent remote sensing experiments conducted in the North Atlantic coastal zone are presented. The future development of remote sensing must rely on an integrated laboratory research program in optical physics. Recent results indicate the potential for separation of particulates into subsets by remote sensors.
Orbit/launch vehicle tradeoff studies. Earth Observatory Satellite system definition study (EOS)
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation of the Earth Observatory Satellite (EOS) design, performance, and cost factors which affect the choices of an orbit and a launch vehicle is presented. Primary emphasis is given to low altitude (300 to 900 nautical miles) land resources management applications for which payload design factors are defined. The subjects considered are: (1) a mission model, (2) orbit analysis and characterization, (3) characteristics and capabilities of candidate conventional launch vehicles, and space shuttle support. Recommendations are submitted for the EOS-A mission, the Single Multispectral Scanner payload, the Single Multispectral Scanner plus Thematic Mapper payload, the Dual Multispectral Scanner payload, and the Dual Multispectral Scanner plus Thematic Mapper payload.
Multispectral laser imaging for advanced food analysis
NASA Astrophysics Data System (ADS)
Senni, L.; Burrascano, P.; Ricci, M.
2016-07-01
A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.
MOVING BEYOND COLOR: THE CASE FOR MULTISPECTRAL IMAGING IN BRIGHTFIELD PATHOLOGY
Cukierski, William J.; Qi, Xin; Foran, David J.
2009-01-01
A multispectral camera is capable of imaging a histologic slide at narrow bandwidths over the range of the visible spectrum. While several uses for multispectral imaging (MSI) have been demonstrated in pathology [1, 2], there is no unified consensus over when and how MSI might benefit automated analysis [3, 4]. In this work, we use a linear-algebra framework to investigate the relationship between the spectral image and its standard-image counterpart. The multispectral “cube” is treated as an extension of a traditional image in a high-dimensional color space. The concept of metamers is introduced and used to derive regions of the visible spectrum where MSI may provide an advantage. Furthermore, histological stains which are amenable to analysis by MSI are reported. We show the Commission internationale de l’éclairage (CIE) 1931 transformation from spectrum to color is non-neighborhood preserving. Empirical results are demonstrated on multispectral images of peripheral blood smears. PMID:19997528
MSS D Multispectral Scanner System
NASA Technical Reports Server (NTRS)
Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (Principal Investigator)
1982-01-01
The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.
Theory on data processing and instrumentation. [remote sensing
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1978-01-01
A selection of NASA Earth observations programs are reviewed, emphasizing hardware capabilities. Sampling theory, noise and detection considerations, and image evaluation are discussed for remote sensor imagery. Vision and perception are considered, leading to numerical image processing. The use of multispectral scanners and of multispectral data processing systems, including digital image processing, is depicted. Multispectral sensing and analysis in application with land use and geographical data systems are also covered.
Clancy, Neil T.; Stoyanov, Danail; James, David R. C.; Di Marco, Aimee; Sauvage, Vincent; Clark, James; Yang, Guang-Zhong; Elson, Daniel S.
2012-01-01
Sequential multispectral imaging is an acquisition technique that involves collecting images of a target at different wavelengths, to compile a spectrum for each pixel. In surgical applications it suffers from low illumination levels and motion artefacts. A three-channel rigid endoscope system has been developed that allows simultaneous recording of stereoscopic and multispectral images. Salient features on the tissue surface may be tracked during the acquisition in the stereo cameras and, using multiple camera triangulation techniques, this information used to align the multispectral images automatically even though the tissue or camera is moving. This paper describes a detailed validation of the set-up in a controlled experiment before presenting the first in vivo use of the device in a porcine minimally invasive surgical procedure. Multispectral images of the large bowel were acquired and used to extract the relative concentration of haemoglobin in the tissue despite motion due to breathing during the acquisition. Using the stereoscopic information it was also possible to overlay the multispectral information on the reconstructed 3D surface. This experiment demonstrates the ability of this system for measuring blood perfusion changes in the tissue during surgery and its potential use as a platform for other sequential imaging modalities. PMID:23082296
[Detecting fire smoke based on the multispectral image].
Wei, Ying-Zhuo; Zhang, Shao-Wu; Liu, Yan-Wei
2010-04-01
Smoke detection is very important for preventing forest-fire in the fire early process. Because the traditional technologies based on video and image processing are easily affected by the background dynamic information, three limitations exist in these technologies, i. e. lower anti-interference ability, higher false detection rate and the fire smoke and water fog being not easily distinguished. A novel detection method for detecting smoke based on the multispectral image was proposed in the present paper. Using the multispectral digital imaging technique, the multispectral image series of fire smoke and water fog were obtained in the band scope of 400 to 720 nm, and the images were divided into bins. The Euclidian distance among the bins was taken as a measurement for showing the difference of spectrogram. After obtaining the spectral feature vectors of dynamic region, the regions of fire smoke and water fog were extracted according to the spectrogram feature difference between target and background. The indoor and outdoor experiments show that the smoke detection method based on multispectral image can be applied to the smoke detection, which can effectively distinguish the fire smoke and water fog. Combined with video image processing method, the multispectral image detection method can also be applied to the forest fire surveillance, reducing the false alarm rate in forest fire detection.
NASA Astrophysics Data System (ADS)
Saager, Rolf B.; Baldado, Melissa L.; Rowland, Rebecca A.; Kelly, Kristen M.; Durkin, Anthony J.
2018-04-01
With recent proliferation in compact and/or low-cost clinical multispectral imaging approaches and commercially available components, questions remain whether they adequately capture the requisite spectral content of their applications. We present a method to emulate the spectral range and resolution of a variety of multispectral imagers, based on in-vivo data acquired from spatial frequency domain spectroscopy (SFDS). This approach simulates spectral responses over 400 to 1100 nm. Comparing emulated data with full SFDS spectra of in-vivo tissue affords the opportunity to evaluate whether the sparse spectral content of these imagers can (1) account for all sources of optical contrast present (completeness) and (2) robustly separate and quantify sources of optical contrast (crosstalk). We validate the approach over a range of tissue-simulating phantoms, comparing the SFDS-based emulated spectra against measurements from an independently characterized multispectral imager. Emulated results match the imager across all phantoms (<3 % absorption, <1 % reduced scattering). In-vivo test cases (burn wounds and photoaging) illustrate how SFDS can be used to evaluate different multispectral imagers. This approach provides an in-vivo measurement method to evaluate the performance of multispectral imagers specific to their targeted clinical applications and can assist in the design and optimization of new spectral imaging devices.
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator)
1975-01-01
The author has identified the following significant results. One of the most significant results of this Skylab research involved the geometric correction and overlay of the Skylab multispectral scanner data with the LANDSAT multispectral scanner data, and also with a set of topographic data, including elevation, slope, and aspect. The Skylab S192 multispectral scanner data had distinct differences in noise level of the data in the various wavelength bands. Results of the temporal evaluation of the SL-2 and SL-3 photography were found to be particularly important for proper interpretation of the computer-aided analysis of the SL-2 and SL-3 multispectral scanner data. There was a quality problem involving the ringing effect introduced by digital filtering. The modified clustering technique was found valuable when working with multispectral scanner data involving many wavelength bands and covering large geographic areas. Analysis of the SL-2 scanner data involved classification of major cover types and also forest cover types. Comparison of the results obtained wth Skylab MSS data and LANDSAT MSS data indicated that the improved spectral resolution of the Skylab scanner system enabled a higher classification accuracy to be obtained for forest cover types, although the classification performance for major cover types was not significantly different.
Liu, Bo; Zhang, Lifu; Zhang, Xia; Zhang, Bing; Tong, Qingxi
2009-01-01
Data simulation is widely used in remote sensing to produce imagery for a new sensor in the design stage, for scale issues of some special applications, or for testing of novel algorithms. Hyperspectral data could provide more abundant information than traditional multispectral data and thus greatly extend the range of remote sensing applications. Unfortunately, hyperspectral data are much more difficult and expensive to acquire and were not available prior to the development of operational hyperspectral instruments, while large amounts of accumulated multispectral data have been collected around the world over the past several decades. Therefore, it is reasonable to examine means of using these multispectral data to simulate or construct hyperspectral data, especially in situations where hyperspectral data are necessary but hard to acquire. Here, a method based on spectral reconstruction is proposed to simulate hyperspectral data (Hyperion data) from multispectral Advanced Land Imager data (ALI data). This method involves extraction of the inherent information of source data and reassignment to newly simulated data. A total of 106 bands of Hyperion data were simulated from ALI data covering the same area. To evaluate this method, we compare the simulated and original Hyperion data by visual interpretation, statistical comparison, and classification. The results generally showed good performance of this method and indicated that most bands were well simulated, and the information both preserved and presented well. This makes it possible to simulate hyperspectral data from multispectral data for testing the performance of algorithms, extend the use of multispectral data and help the design of a virtual sensor. PMID:22574064
Photographic techniques for enhancing ERTS MSS data for geologic information
NASA Technical Reports Server (NTRS)
Yost, E.; Geluso, W.; Anderson, R.
1974-01-01
Satellite multispectral black-and-white photographic negatives of Luna County, New Mexico, obtained by ERTS on 15 August and 2 September 1973, were precisely reprocessed into positive images and analyzed in an additive color viewer. In addition, an isoluminous (uniform brightness) color rendition of the image was constructed. The isoluminous technique emphasizes subtle differences between multispectral bands by greatly enhancing the color of the superimposed composite of all bands and eliminating the effects of brightness caused by sloping terrain. Basaltic lava flows were more accurately displayed in the precision processed multispectral additive color ERTS renditions than on existing state geological maps. Malpais lava flows and small basaltic occurrences not appearing on existing geological maps were identified in ERTS multispectral color images.
Multispectral system analysis through modeling and simulation
NASA Technical Reports Server (NTRS)
Malila, W. A.; Gleason, J. M.; Cicone, R. C.
1977-01-01
The design and development of multispectral remote sensor systems and associated information extraction techniques should be optimized under the physical and economic constraints encountered and yet be effective over a wide range of scene and environmental conditions. Direct measurement of the full range of conditions to be encountered can be difficult, time consuming, and costly. Simulation of multispectral data by modeling scene, atmosphere, sensor, and data classifier characteristics is set forth as a viable alternative, particularly when coupled with limited sets of empirical measurements. A multispectral system modeling capability is described. Use of the model is illustrated for several applications - interpretation of remotely sensed data from agricultural and forest scenes, evaluating atmospheric effects in Landsat data, examining system design and operational configuration, and development of information extraction techniques.
Multispectral system analysis through modeling and simulation
NASA Technical Reports Server (NTRS)
Malila, W. A.; Gleason, J. M.; Cicone, R. C.
1977-01-01
The design and development of multispectral remote sensor systems and associated information extraction techniques should be optimized under the physical and economic constraints encountered and yet be effective over a wide range of scene and environmental conditions. Direct measurement of the full range of conditions to be encountered can be difficult, time consuming, and costly. Simulation of multispectral data by modeling scene, atmosphere, sensor, and data classifier characteristics is set forth as a viable alternative, particularly when coupled with limited sets of empirical measurements. A multispectral system modeling capability is described. Use of the model is illustrated for several applications - interpretation of remotely sensed data from agricultural and forest scenes, evaluating atmospheric effects in LANDSAT data, examining system design and operational configuration, and development of information extraction techniques.
FRIT characterized hierarchical kernel memory arrangement for multiband palmprint recognition
NASA Astrophysics Data System (ADS)
Kisku, Dakshina R.; Gupta, Phalguni; Sing, Jamuna K.
2015-10-01
In this paper, we present a hierarchical kernel associative memory (H-KAM) based computational model with Finite Ridgelet Transform (FRIT) representation for multispectral palmprint recognition. To characterize a multispectral palmprint image, the Finite Ridgelet Transform is used to achieve a very compact and distinctive representation of linear singularities while it also captures the singularities along lines and edges. The proposed system makes use of Finite Ridgelet Transform to represent multispectral palmprint image and it is then modeled by Kernel Associative Memories. Finally, the recognition scheme is thoroughly tested with a benchmarking multispectral palmprint database CASIA. For recognition purpose a Bayesian classifier is used. The experimental results exhibit robustness of the proposed system under different wavelengths of palm image.
Unsupervised classification of remote multispectral sensing data
NASA Technical Reports Server (NTRS)
Su, M. Y.
1972-01-01
The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.
Konrad, C.P.; Black, R.W.; Voss, F.; Neale, C. M. U.
2008-01-01
Setback levees, in which levees are reconstructed at a greater distance from a river channel, are a promising restoration technique particularly for alluvial rivers with broad floodplains where river-floodplain connectivity is essential to ecological processes. Documenting the ecological outcomes of restoration activities is essential for assessing the comparative benefits of different restoration approaches and for justifying new restoration projects. Remote sensing of aquatic habitats offers one approach for comprehensive, objective documentation of river and floodplain habitats, but is difficult in glacial rivers because of high suspended-sediment concentrations, braiding and a lack of large, well-differentiated channel forms such as riffles and pools. Remote imagery and field surveys were used to assess the effects of recent and planned setback levees along the Puyallup River and, more generally, the application of multispectral imagery for classifying aquatic and riparian habitats in glacial-melt water rivers. Airborne images were acquired with a horizontal ground resolution of 0.5 m in three spectral bands (0.545-0.555, 0.665-0.675 and 0.790-0.810 ??m) spanning from green to near infrared (NIR) wavelengths. Field surveys identified river and floodplain habitat features and provided the basis for a comparative hydraulic analysis. Broad categories of aquatic habitat (smooth and rough water surface), exposed sediment (sand and boulder) and vegetated surfaces (herbaceous and deciduous shrub/forest) were classified accurately using the airborne images. Other categories [e.g. conifers, boulder, large woody debtis (LWD)] and subdivisions of broad categories (e.g. riffles and runs) were not successfully classified either because these features did not form large patches that could be identified on the imagery or their spectral reflectances were not distinct from those of other habitat types. Airborne imagery was critical for assessing fine-scale aquatic habitat heterogeneity including shallow, low-velocity regions that were not feasible or practical to map in the field in many cases due to their widespread distribution, small size and poorly defined boundaries with other habitat types. At the reach-scale, the setback levee affected the amount and distribution of riparian and aquatic habitats: (1) the area of all habitats was greater where levees had been set back and with relatively more vegetated floodplain habitat and relatively less exposed sediment and aquatic habitat, (2) where levees confine the river, less low-velocity aquatic habitat is present over a range of flows with a higher degree of bed instability during high flows. As river restoration proceeds in the Pacific Northwest and elsewhere, remotely acquired imagery will be important for documenting its effects on the amount and distribution of aquatic and floodplain habitats, complimenting field data as a quantitative basis for evaluating project efficacy.
Compact multispectral photodiode arrays using micropatterned dichroic filters
NASA Astrophysics Data System (ADS)
Chandler, Eric V.; Fish, David E.
2014-05-01
The next generation of multispectral instruments requires significant improvements in both spectral band customization and portability to support the widespread deployment of application-specific optical sensors. The benefits of spectroscopy are well established for numerous applications including biomedical instrumentation, industrial sorting and sensing, chemical detection, and environmental monitoring. In this paper, spectroscopic (and by extension hyperspectral) and multispectral measurements are considered. The technology, tradeoffs, and application fits of each are evaluated. In the majority of applications, monitoring 4-8 targeted spectral bands of optimized wavelength and bandwidth provides the necessary spectral contrast and correlation. An innovative approach integrates precision spectral filters at the photodetector level to enable smaller sensors, simplify optical designs, and reduce device integration costs. This method supports user-defined spectral bands to create application-specific sensors in a small footprint with scalable cost efficiencies. A range of design configurations, filter options and combinations are presented together with typical applications ranging from basic multi-band detection to stringent multi-channel fluorescence measurement. An example implementation packages 8 narrowband silicon photodiodes into a 9x9mm ceramic LCC (leadless chip carrier) footprint. This package is designed for multispectral applications ranging from portable color monitors to purpose- built OEM industrial and scientific instruments. Use of an eight-channel multispectral photodiode array typically eliminates 10-20 components from a device bill-of-materials (BOM), streamlining the optical path and shrinking the footprint by 50% or more. A stepwise design approach for multispectral sensors is discussed - including spectral band definition, optical design tradeoffs and constraints, and device integration from prototype through scalable volume production. Additional customization options are explored for application-specific OEM sensors integrated into portable devices using multispectral photodiode arrays.
Skin condition measurement by using multispectral imaging system (Conference Presentation)
NASA Astrophysics Data System (ADS)
Jung, Geunho; Kim, Sungchul; Kim, Jae Gwan
2017-02-01
There are a number of commercially available low level light therapy (LLLT) devices in a market, and face whitening or wrinkle reduction is one of targets in LLLT. The facial improvement could be known simply by visual observation of face, but it cannot provide either quantitative data or recognize a subtle change. Clinical diagnostic instruments such as mexameter can provide a quantitative data, but it costs too high for home users. Therefore, we designed a low cost multi-spectral imaging device by adding additional LEDs (470nm, 640nm, white LED, 905nm) to a commercial USB microscope which has two LEDs (395nm, 940nm) as light sources. Among various LLLT skin treatments, we focused on getting melanin and wrinkle information. For melanin index measurements, multi-spectral images of nevus were acquired and melanin index values from color image (conventional method) and from multi-spectral images were compared. The results showed that multi-spectral analysis of melanin index can visualize nevus with a different depth and concentration. A cross section of wrinkle on skin resembles a wedge which can be a source of high frequency components when the skin image is Fourier transformed into a spatial frequency domain map. In that case, the entropy value of the spatial frequency map can represent the frequency distribution which is related with the amount and thickness of wrinkle. Entropy values from multi-spectral images can potentially separate the percentage of thin and shallow wrinkle from thick and deep wrinkle. From the results, we found that this low cost multi-spectral imaging system could be beneficial for home users of LLLT by providing the treatment efficacy in a quantitative way.
Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping
NASA Astrophysics Data System (ADS)
Rapinel, Sébastien; Hubert-Moy, Laurence; Clément, Bernard
2015-05-01
Although wetlands play a key role in controlling flooding and nonpoint source pollution, sequestering carbon and providing an abundance of ecological services, the inventory and characterization of wetland habitats are most often limited to small areas. This explains why the understanding of their ecological functioning is still insufficient for a reliable functional assessment on areas larger than a few hectares. While LiDAR data and multispectral Earth Observation (EO) images are often used separately to map wetland habitats, their combined use is currently being assessed for different habitat types. The aim of this study is to evaluate the combination of multispectral and multiseasonal imagery and LiDAR data to precisely map the distribution of wetland habitats. The image classification was performed combining an object-based approach and decision-tree modeling. Four multispectral images with high (SPOT-5) and very high spatial resolution (Quickbird, KOMPSAT-2, aerial photographs) were classified separately. Another classification was then applied integrating summer and winter multispectral image data and three layers derived from LiDAR data: vegetation height, microtopography and intensity return. The comparison of classification results shows that some habitats are better identified on the winter image and others on the summer image (overall accuracies = 58.5 and 57.6%). They also point out that classification accuracy is highly improved (overall accuracy = 86.5%) when combining LiDAR data and multispectral images. Moreover, this study highlights the advantage of integrating vegetation height, microtopography and intensity parameters in the classification process. This article demonstrates that information provided by the synergetic use of multispectral images and LiDAR data can help in wetland functional assessment
Spatial arrangement of color filter array for multispectral image acquisition
NASA Astrophysics Data System (ADS)
Shrestha, Raju; Hardeberg, Jon Y.; Khan, Rahat
2011-03-01
In the past few years there has been a significant volume of research work carried out in the field of multispectral image acquisition. The focus of most of these has been to facilitate a type of multispectral image acquisition systems that usually requires multiple subsequent shots (e.g. systems based on filter wheels, liquid crystal tunable filters, or active lighting). Recently, an alternative approach for one-shot multispectral image acquisition has been proposed; based on an extension of the color filter array (CFA) standard to produce more than three channels. We can thus introduce the concept of multispectral color filter array (MCFA). But this field has not been much explored, particularly little focus has been given in developing systems which focuses on the reconstruction of scene spectral reflectance. In this paper, we have explored how the spatial arrangement of multispectral color filter array affects the acquisition accuracy with the construction of MCFAs of different sizes. We have simulated acquisitions of several spectral scenes using different number of filters/channels, and compared the results with those obtained by the conventional regular MCFA arrangement, evaluating the precision of the reconstructed scene spectral reflectance in terms of spectral RMS error, and colorimetric ▵E*ab color differences. It has been found that the precision and the the quality of the reconstructed images are significantly influenced by the spatial arrangement of the MCFA and the effect will be more and more prominent with the increase in the number of channels. We believe that MCFA-based systems can be a viable alternative for affordable acquisition of multispectral color images, in particular for applications where spatial resolution can be traded off for spectral resolution. We have shown that the spatial arrangement of the array is an important design issue.
The fusion of satellite and UAV data: simulation of high spatial resolution band
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata
2017-10-01
Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.
Dabo-Niang, S; Zoueu, J T
2012-09-01
In this communication, we demonstrate how kriging, combine with multispectral and multimodal microscopy can enhance the resolution of malaria-infected images and provide more details on their composition, for analysis and diagnosis. The results of this interpolation applied to the two principal components of multispectral and multimodal images illustrate that the examination of the content of Plasmodium falciparum infected human erythrocyte is improved. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.
NASA Technical Reports Server (NTRS)
Hasell, P. G., Jr.; Peterson, L. M.; Thomson, F. J.; Work, E. A.; Kriegler, F. J.
1977-01-01
The development of an experimental airborne multispectral scanner to provide both active (laser illuminated) and passive (solar illuminated) data from a commonly registered surface scene is discussed. The system was constructed according to specifications derived in an initial programs design study. The system was installed in an aircraft and test flown to produce illustrative active and passive multi-spectral imagery. However, data was not collected nor analyzed for any specific application.
Hyperspectral analysis of columbia spotted frog habitat
Shive, J.P.; Pilliod, D.S.; Peterson, C.R.
2010-01-01
Wildlife managers increasingly are using remotely sensed imagery to improve habitat delineations and sampling strategies. Advances in remote sensing technology, such as hyperspectral imagery, provide more information than previously was available with multispectral sensors. We evaluated accuracy of high-resolution hyperspectral image classifications to identify wetlands and wetland habitat features important for Columbia spotted frogs (Rana luteiventris) and compared the results to multispectral image classification and United States Geological Survey topographic maps. The study area spanned 3 lake basins in the Salmon River Mountains, Idaho, USA. Hyperspectral data were collected with an airborne sensor on 30 June 2002 and on 8 July 2006. A 12-year comprehensive ground survey of the study area for Columbia spotted frog reproduction served as validation for image classifications. Hyperspectral image classification accuracy of wetlands was high, with a producer's accuracy of 96 (44 wetlands) correctly classified with the 2002 data and 89 (41 wetlands) correctly classified with the 2006 data. We applied habitat-based rules to delineate breeding habitat from other wetlands, and successfully predicted 74 (14 wetlands) of known breeding wetlands for the Columbia spotted frog. Emergent sedge microhabitat classification showed promise for directly predicting Columbia spotted frog egg mass locations within a wetland by correctly identifying 72 (23 of 32) of known locations. Our study indicates hyperspectral imagery can be an effective tool for mapping spotted frog breeding habitat in the selected mountain basins. We conclude that this technique has potential for improving site selection for inventory and monitoring programs conducted across similar wetland habitat and can be a useful tool for delineating wildlife habitats. ?? 2010 The Wildlife Society.
Low SWaP multispectral sensors using dichroic filter arrays
NASA Astrophysics Data System (ADS)
Dougherty, John; Varghese, Ron
2015-06-01
The benefits of multispectral imaging are well established in a variety of applications including remote sensing, authentication, satellite and aerial surveillance, machine vision, biomedical, and other scientific and industrial uses. However, many of the potential solutions require more compact, robust, and cost-effective cameras to realize these benefits. The next generation of multispectral sensors and cameras needs to deliver improvements in size, weight, power, portability, and spectral band customization to support widespread deployment for a variety of purpose-built aerial, unmanned, and scientific applications. A novel implementation uses micro-patterning of dichroic filters1 into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. This approach can be implemented across a variety of wavelength ranges and on a variety of detector types including linear, area, silicon, and InGaAs. This dichroic filter array approach can also reduce payloads and increase range for unmanned systems, with the capability to support both handheld and autonomous systems. Recent examples and results of 4 band RGB + NIR dichroic filter arrays in multispectral cameras are discussed. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and scalable production.
Hu, J H; Wang, Y; Cahill, P T
1997-01-01
This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.
Feasibility study and quality assessment of unmanned aircraft system-derived multispectral images
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen
2017-04-01
The purpose of study is to explore the precision and the applicability of UAS-derived multispectral images. In this study, the Micro-MCA6 multispectral camera was mounted on quadcopter. The Micro-MCA6 shoot images synchronized of each single band. By means of geotagged images and control points, the orthomosaic images of each single band generated firstly by 14cm resolution. The multispectral image was merged complete with 6 bands. In order to improve the spatial resolution, the 6 band image fused with 9cm resolution image taken from RGB camera. Quality evaluation of the image is verified of the each single band by using control points and check points. The standard deviations of errors are within 1 to 2 pixel resolution of each band. The quality of the multispectral image is compared with 3 cm resolution orthomosaic RGB image gathered from UAV in the same mission, as well. The standard deviations of errors are within 2 to 3 pixel resolution. The result shows that the errors resulting from the blurry and the band dislocation of the objects edge identification. To the end, the normalized difference vegetation index (NDVI) extracted from the image to explore the condition of vegetation and the nature of the environment. This study demonstrates the feasibility and the capability of the high resolution multispectral images.
Wide field-of-view dual-band multispectral muzzle flash detection
NASA Astrophysics Data System (ADS)
Montoya, J.; Melchor, J.; Spiliotis, P.; Taplin, L.
2013-06-01
Sensor technologies are undergoing revolutionary advances, as seen in the rapid growth of multispectral methodologies. Increases in spatial, spectral, and temporal resolution, and in breadth of spectral coverage, render feasible sensors that function with unprecedented performance. A system was developed that addresses many of the key hardware requirements for a practical dual-band multispectral acquisition system, including wide field of view and spectral/temporal shift between dual bands. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that creates two side-by-side images of a scene on a single sensor. A high-speed CMOS sensor was used to simultaneously capture data from the entire scene in both spectral bands using a short focal-length lens that provided a wide field-of-view. The beam-splitter components were arranged such that the two images were maintained in optical alignment and real-time intra-band processing could be carried out using only simple arithmetic on the image halves. An experiment related to limitations of the system to address multispectral detection requirements was performed. This characterized the system's low spectral variation across its wide field of view. This paper provides lessons learned on the general limitation of key hardware components required for multispectral muzzle flash detection, using the system as a hardware example combined with simulated multispectral muzzle flash and background signatures.
Spectral correction algorithm for multispectral CdTe x-ray detectors
NASA Astrophysics Data System (ADS)
Christensen, Erik D.; Kehres, Jan; Gu, Yun; Feidenhans'l, Robert; Olsen, Ulrik L.
2017-09-01
Compared to the dual energy scintillator detectors widely used today, pixelated multispectral X-ray detectors show the potential to improve material identification in various radiography and tomography applications used for industrial and security purposes. However, detector effects, such as charge sharing and photon pileup, distort the measured spectra in high flux pixelated multispectral detectors. These effects significantly reduce the detectors' capabilities to be used for material identification, which requires accurate spectral measurements. We have developed a semi analytical computational algorithm for multispectral CdTe X-ray detectors which corrects the measured spectra for severe spectral distortions caused by the detector. The algorithm is developed for the Multix ME100 CdTe X-ray detector, but could potentially be adapted for any pixelated multispectral CdTe detector. The calibration of the algorithm is based on simple attenuation measurements of commercially available materials using standard laboratory sources, making the algorithm applicable in any X-ray setup. The validation of the algorithm has been done using experimental data acquired with both standard lab equipment and synchrotron radiation. The experiments show that the algorithm is fast, reliable even at X-ray flux up to 5 Mph/s/mm2, and greatly improves the accuracy of the measured X-ray spectra, making the algorithm very useful for both security and industrial applications where multispectral detectors are used.
Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian
2011-01-01
In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of floating macrophytes accumulated behind bridge constrictions and dams; in 2008, high flows during the early part of the growing season carried floating macrophytes past bridges and over dams, minimizing accumulations. Samples of Lemna were collected and weighed to provide an estimate of Lemna biomass based on areal coverage during the summer growing seasons at eight sites in the five impoundments. Average estimated biomass during 2007 was approximately twice the 2008 biomass in each of the areas monitored. In 2007, in situ hyperspectral and high-resolution, multispectral data from the IKONOS satellite were obtained to evaluate the feasibility of using remote sensing to monitor the extent of aquatic plant growth in Assabet River impoundments. Three vegetation indices based on light reflectance were used to develop metrics with which the hyperspectral and satellite data were compared. The results of the comparisons confirmed that the high-resolution satellite imagery could differentiate among the common aquatic-plant associations found in the impoundments. The use of satellite imagery could counterbalance emphasis on the subjective judgment of a human observer, and airborne hyperspectral data can provide higher resolution imagery than multispectral satellite data. In 2007 and 2008, the potential for sediment flux of phosphorus was examined in free-flowing reaches of the river and in the two largest impoundments-Hudson and Ben Smith. These studies were undertaken to determine in situ flux rates prior to the implementation of the Assabet River Total Maximum Daily Load (TMDL) for phosphorus and to compare these rates with those used in the development and evaluation of the TMDL. Water samples collected from a chamber placed on the river bottom were analyzed for total phosphorus and orthophosphorus. Ambient dissolved oxygen concentrations and seasonal temperature differences appeared to affect the rates of sequestration and sediment release of phosphorus. When dissolved oxygen concentrations remained relatively high in the chambers and when the temperature was relatively low, the tendency was for phosphorus concentrations to decrease in the chambers, indicating sediment sequestration of phosphorus; when dissolved oxygen concentrations dropped to near zero and temperatures were warmest, phosphorus concentrations increased in the chambers, indicating phosphorus flux from the sediment. The rates of release and sequestration in the in situ studies were generally comparable with the rates determined in laboratory studies of Assabet River sediment cores for State and Federal agencies. Sediment-core and chamber studies produced substantial sediment fluxes to the water column only under extremely low-DO or anaerobic conditions rarely found in the Assabet River impoundments; thus, sediment is not likely to be a major phosphorus source, especially when compared to the wastewater effluent, which sustains higher ambient concentrations. The regulatory agencies now (2011) have substantial laboratory and field data with which to determine the required 90-percent reduction in phosphorus flux after the completion of upgrades to the wastewater-treatment plants that discharge to the Assabet River.
Multispectral Image Compression Based on DSC Combined with CCSDS-IDC
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741
Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation.
Li, Ziwei; Suo, Jinli; Hu, Xuemei; Deng, Chao; Fan, Jingtao; Dai, Qionghai
2017-01-27
Combining spectral imaging with compressive sensing (CS) enables efficient data acquisition by fully utilizing the intrinsic redundancies in natural images. Current compressive multispectral imagers, which are mostly based on array sensors (e.g, CCD or CMOS), suffer from limited spectral range and relatively low photon efficiency. To address these issues, this paper reports a multispectral imaging scheme with a single-pixel detector. Inspired by the spatial resolution redundancy of current spatial light modulators (SLMs) relative to the target reconstruction, we design an all-optical spectral splitting device to spatially split the light emitted from the object into several counterparts with different spectrums. Separated spectral channels are spatially modulated simultaneously with individual codes by an SLM. This no-moving-part modulation ensures a stable and fast system, and the spatial multiplexing ensures an efficient acquisition. A proof-of-concept setup is built and validated for 8-channel multispectral imaging within 420~720 nm wavelength range on both macro and micro objects, showing a potential for efficient multispectral imager in macroscopic and biomedical applications.
A new multi-spectral feature level image fusion method for human interpretation
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-03-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in a three-task experiment using MSSF against two established methods: averaging and principle components analysis (PCA), and against its two source bands, visible and infrared. The three tasks that we studied were: (1) simple target detection, (2) spatial orientation, and (3) camouflaged target detection. MSSF proved superior to the other fusion methods in all three tests; MSSF also outperformed the source images in the spatial orientation and camouflaged target detection tasks. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
Multispectral image compression based on DSC combined with CCSDS-IDC.
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.
Blast investigation by fast multispectral radiometric analysis
NASA Astrophysics Data System (ADS)
Devir, A. D.; Bushlin, Y.; Mendelewicz, I.; Lessin, A. B.; Engel, M.
2011-06-01
Knowledge regarding the processes involved in blasts and detonations is required in various applications, e.g. missile interception, blasts of high-explosive materials, final ballistics and IED identification. Blasts release large amount of energy in short time duration. Some part of this energy is released as intense radiation in the optical spectral bands. This paper proposes to measure the blast radiation by a fast multispectral radiometer. The measurement is made, simultaneously, in appropriately chosen spectral bands. These spectral bands provide extensive information on the physical and chemical processes that govern the blast through the time-dependence of the molecular and aerosol contributions to the detonation products. Multi-spectral blast measurements are performed in the visible, SWIR and MWIR spectral bands. Analysis of the cross-correlation between the measured multi-spectral signals gives the time dependence of the temperature, aerosol and gas composition of the blast. Farther analysis of the development of these quantities in time may indicate on the order of the detonation and amount and type of explosive materials. Examples of analysis of measured explosions are presented to demonstrate the power of the suggested fast multispectral radiometric analysis approach.
NASA Astrophysics Data System (ADS)
Matikainen, L.; Karila, K.; Hyyppä, J.; Puttonen, E.; Litkey, P.; Ahokas, E.
2017-10-01
This article summarises our first results and experiences on the use of multispectral airborne laser scanner (ALS) data. Optech Titan multispectral ALS data over a large suburban area in Finland were acquired on three different dates in 2015-2016. We investigated the feasibility of the data from the first date for land cover classification and road mapping. Object-based analyses with segmentation and random forests classification were used. The potential of the data for change detection of buildings and roads was also demonstrated. The overall accuracy of land cover classification results with six classes was 96 % compared with validation points. The data also showed high potential for road detection, road surface classification and change detection. The multispectral intensity information appeared to be very important for automated classifications. Compared to passive aerial images, the intensity images have interesting advantages, such as the lack of shadows. Currently, we focus on analyses and applications with the multitemporal multispectral data. Important questions include, for example, the potential and challenges of the multitemporal data for change detection.
NASA Astrophysics Data System (ADS)
Dong, Yang; He, Honghui; He, Chao; Ma, Hui
2016-10-01
Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.
NASA Astrophysics Data System (ADS)
Menenti, M.; Ghafarian, H.; Tang, B.; Faivre, R.; Colin, J.; Jia, L.; Roupios, L.
2013-01-01
This paper summarizes the results of studies carried in the framework of the Dragon 2 Program - Project 5322 Key Eco-Hydrological Parameters Retrieval and Land Data Assimilation System Development in a Typical Inland River Basin of Chinas Arid Region. The investigations were focused on monitoring the fluxes of energy and water at the land-atmosphere interface across a range of spatial scales, using multi-spectral radiometric data collected by space-borne imaging radiometers. At the local scale a new approach to parameterize heat and vapour fluxes was developed and applied using Computational Fluid Dynamics to describe state and dynamics of the boundary layer over the heterogeneous and 3D structured land surface. An airborne scanning LIDAR was used to capture in detail surface geometry. Over the large area of the Qinghai-Tibet Plateau a land-atmospheric model was used to characterize the atmospheric Planetary Boundary Layer. The effect of land surface heterogeneity and structure on the exchange of heat and water was captured using the bi-angular observations of brightness temperature provided by the AATSR imaging radiometer. The heat and water flux densities were calculated hourly with Feng-Yun C, D and E VISSR data over the Qinghai-Tibet Plateau and the headwaters of main rivers around it.
The Multispectral Imaging Science Working Group. Volume 3: Appendices
NASA Technical Reports Server (NTRS)
Cox, S. C. (Editor)
1982-01-01
The status and technology requirements for using multispectral sensor imagery in geographic, hydrologic, and geologic applications are examined. Critical issues in image and information science are identified.
Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca
1999-01-01
A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.
Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.
1999-07-27
A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.
A COST EFFECTIVE MULTI-SPECTRAL SCANNER FOR NATURAL GAS DETECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan
The objective of this project is to design, fabricate and field demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first six months of the project, the design for a laboratory version of the multispectral scanner was completed. The optical, mechanical, and electronic design for the scanner was completed. The optical design was analyzed using Zeemax Optical Design software and found to provide sufficiently resolved performance for the scanner. The electronic design was evaluated using a bread board and very high signal to noise ratios were obtained. Fabrication of a laboratorymore » version of the multi-spectral scanner is currently in progress. A technology status report and a research management plan was also completed during the same period.« less
Using Landsat MSS data with soils information to identify wetland habitats
NASA Technical Reports Server (NTRS)
Ernst, C. L.; Hoffer, R. M.
1981-01-01
A previous study showed that certain fresh water wetland vegetation types can be spectrally separated when a maximum likelihood classification procedure is applied to Landsat spectral data. However, wetland and upland types which have similar vegetative life forms (e.g., upland hardwoods and hardwood swamps) are often confused because of spectral similarity. Therefore, the current investigation attempts to differentiate similar wetland and upland types by combining Landsat multispectral scanner (MSS) data with soils information. The Pigeon River area in northern Indiana used in the earlier study was also employed in this investigation. A layered classification algorithm which combined soils and spectral data was used to generate a wetland classification. The results of the spectral/soils wetland classification are compared to the previous classification that had been based on spectral data alone. The results indicate wetland habitat mapping can be improved by combining soils and other ancillary data with Landsat spectral data.
Multi crop area estimation in Idaho using EDITOR
NASA Technical Reports Server (NTRS)
Sheffner, E. J.
1984-01-01
The use of LANDSAT multispectral scanner digital data for multi-crop acreage estimation in the central Snake River Plain of Idaho was examined. Two acquisitions of LANDSAT data covering ground sample units selected from a U.S. Department of Agriculture sampling frame in a four country study site were used to train a maximum likelihood classifier which, subsequently, classified all picture elements in the study site. Acreage estimates for six major crops, by county and for the four counties combined, were generated from the classification using the Battesse-Fuller model for estimation by regression in small areas. Results from the regression analysis were compared to those obtained by direct expansion of the ground data. Using the LANDSAT data significantly decreased the errors associated with the estimates for the three largest acreage crops. The late date of the second LANDSAT acquisition may have contributed to the poor results for three summer crops.
NASA Technical Reports Server (NTRS)
Jensen, John R.; Hodgson, Michael E.; Mackey, Halkard E., Jr.; Krabill, William
1987-01-01
Wetlands in a portion of the Savannah River swamp forest, the Steel Creek Delta, were mapped using April 26, 1985 high-resolution aircraft multispectral scanner (MSS) data. Due to the complex spectral characteristics of the wetland vegetation, it was necessary to implement several techniques in the classification of the MSS imagery of the Steel Creek Delta. In particular, when performing unsupervised classification, an iterative cluster busting technique was used which simplified the cluster labeling process. In addition to the MSS data, light detecting and ranging (LIDAR) data were acquired by National Aeronautics and Space Administration (NASA) personnel along two flightlines over the Steel Creek Delta. These data were registered with the wetland classification map and correlated. Statistical analyses demonstrated that the laser derived canopy height information was significantly correlated with the Steel Creek Delta wetland classes encountered along the profiling transect of the LIDAR data.
Skylab/EREP application to ecological, geological, and oceanographic investigations of Delaware Bay
NASA Technical Reports Server (NTRS)
Klemas, V.; Bartlett, D. S.; Philpot, W. D.; Rogers, R. H.; Reed, L. E.
1978-01-01
Skylab/EREP S190A and S190B film products were optically enhanced and visually interpreted to extract data suitable for; (1) mapping coastal land use; (2) inventorying wetlands vegetation; (3) monitoring tidal conditions; (4) observing suspended sediment patterns; (5) charting surface currents; (6) locating coastal fronts and water mass boundaries; (7) monitoring industrial and municipal waste dumps in the ocean; (8) determining the size and flow direction of river, bay and man-made discharge plumes; and (9) observing ship traffic. Film products were visually analyzed to identify and map ten land-use and vegetation categories at a scale of 1:125,000. Digital tapes from the multispectral scanner were used to prepare thematic maps of land use. Classification accuracies obtained by comparison of derived thematic maps of land-use with USGS-CARETS land-use maps in southern Delaware ranged from 44 percent to 100 percent.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Sausen, T. M.
1981-01-01
The relationship between the dispersion and concentration of sediment in the superficial layers of the Tres Marias reservoir and the dynamics of the drainage basins of its tributaries was verified using LANDSAT MSS imagery. The drainage network, dissection patterns, and land use of each watershed were considered in an analysis of multispectral images, corresponding to bands 4,5, and 7, of dry and rainy seasons in 1973, 1975, 1977, and 1978. The superficial layer water layers of the reservoir were also divided according to the grey level pattern of each image. Two field trips were made to collect Secchi depths and in situ water reflectance. It is concluded that it is possible to determine the main factors that act in the dynamics of the drainage basins of a reservoir by simultaneous control of the physical variables and the antropic action of each basin.
Aircraft MSS data registration and vegetation classification of wetland change detection
Christensen, E.J.; Jensen, J.R.; Ramsey, Elijah W.; Mackey, H.E.
1988-01-01
Portions of the Savannah River floodplain swamp were evaluated for vegetation change using high resolution (5a??6 m) aircraft multispectral scanner (MSS) data. Image distortion from aircraft movement prevented precise image-to-image registration in some areas. However, when small scenes were used (200-250 ha), a first-order linear transformation provided registration accuracies of less than or equal to one pixel. A larger area was registered using a piecewise linear method. Five major wetland classes were identified and evaluated for change. Phenological differences and the variable distribution of vegetation limited wetland type discrimination. Using unsupervised methods and ground-collected vegetation data, overall classification accuracies ranged from 84 per cent to 87 per cent for each scene. Results suggest that high-resolution aircraft MSS data can be precisely registered, if small areas are used, and that wetland vegetation change can be accurately detected and monitored.
Interactive color display for multispectral imagery using correlation clustering
NASA Technical Reports Server (NTRS)
Haskell, R. E. (Inventor)
1979-01-01
A method for processing multispectral data is provided, which permits an operator to make parameter level changes during the processing of the data. The system is directed to production of a color classification map on a video display in which a given color represents a localized region in multispectral feature space. Interactive controls permit an operator to alter the size and change the location of these regions, permitting the classification of such region to be changed from a broad to a narrow classification.
Multispectral histogram normalization contrast enhancement
NASA Technical Reports Server (NTRS)
Soha, J. M.; Schwartz, A. A.
1979-01-01
A multispectral histogram normalization or decorrelation enhancement which achieves effective color composites by removing interband correlation is described. The enhancement procedure employs either linear or nonlinear transformations to equalize principal component variances. An additional rotation to any set of orthogonal coordinates is thus possible, while full histogram utilization is maintained by avoiding the reintroduction of correlation. For the three-dimensional case, the enhancement procedure may be implemented with a lookup table. An application of the enhancement to Landsat multispectral scanning imagery is presented.
The use of ERTS-1 multispectral imagery for crop identification in a semi-arid climate
NASA Technical Reports Server (NTRS)
Stockton, J. G.; Bauer, M. E.; Blair, B. O.; Baumgardner, M. F.
1975-01-01
Crop identification using multispectral satellite imagery and multivariate pattern recognition was used to identify wheat accurately in Greeley County, Kansas. A classification accuracy of 97 percent was found for wheat and the wheat estimate in hectares was within 5 percent of the USDA's Statistical Reporting Service estimate for 1973. The multispectral response of cotton and sorghum in Texas was not unique enough to distinguish between them nor to separate them from other cultivated crops.
The use of four band multispectral photography to identify forest cover types
NASA Technical Reports Server (NTRS)
Downs, S. W., Jr.
1977-01-01
Four-band multispectral aerial photography and a color additive viewer were employed to identify forest cover types in Northern Alabama. The multispectral photography utilized the blue, green, red and near-infrared spectral regions and was made with black and white infrared film. On the basis of color differences alone, a differentiation between conifers and hardwoods was possible; however, supplementary information related to forest ecology proved necessary for the differentiation of various species of pines and hardwoods.
Multispectral imaging method and apparatus
Sandison, D.R.; Platzbecker, M.R.; Vargo, T.D.; Lockhart, R.R.; Descour, M.R.; Richards-Kortum, R.
1999-07-06
A multispectral imaging method and apparatus are described which are adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging. 5 figs.
Digital computer processing of peach orchard multispectral aerial photography
NASA Technical Reports Server (NTRS)
Atkinson, R. J.
1976-01-01
Several methods of analysis using digital computers applicable to digitized multispectral aerial photography, are described, with particular application to peach orchard test sites. This effort was stimulated by the recent premature death of peach trees in the Southeastern United States. The techniques discussed are: (1) correction of intensity variations by digital filtering, (2) automatic detection and enumeration of trees in five size categories, (3) determination of unhealthy foliage by infrared reflectances, and (4) four band multispectral classification into healthy and declining categories.
Multispectral imaging method and apparatus
Sandison, David R.; Platzbecker, Mark R.; Vargo, Timothy D.; Lockhart, Randal R.; Descour, Michael R.; Richards-Kortum, Rebecca
1999-01-01
A multispectral imaging method and apparatus adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging
Proportion estimation and classification of mixed pixels in multispectral data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouse, K.R.
1979-01-01
Remote sensing applications to crop productivity estimations are discussed with detailed instructions for developing classifier skills in multispectral data analysis for corn, soybeans, oats, and alfalfa crops. (PCS)
Solid state high resolution multi-spectral imager CCD test phase
NASA Technical Reports Server (NTRS)
1973-01-01
The program consisted of measuring the performance characteristics of charge coupled linear imaging devices, and a study defining a multispectral imaging system employing advanced solid state photodetection techniques.
Wetland Vegetation Integrity Assessment with Low Altitude Multispectral Uav Imagery
NASA Astrophysics Data System (ADS)
Boon, M. A.; Tesfamichael, S.
2017-08-01
The use of multispectral sensors on Unmanned Aerial Vehicles (UAVs) was until recently too heavy and bulky although this changed in recent times and they are now commercially available. The focus on the usage of these sensors is mostly directed towards the agricultural sector where the focus is on precision farming. Applications of these sensors for mapping of wetland ecosystems are rare. Here, we evaluate the performance of low altitude multispectral UAV imagery to determine the state of wetland vegetation in a localised spatial area. Specifically, NDVI derived from multispectral UAV imagery was used to inform the determination of the integrity of the wetland vegetation. Furthermore, we tested different software applications for the processing of the imagery. The advantages and disadvantages we experienced of these applications are also shortly presented in this paper. A JAG-M fixed-wing imaging system equipped with a MicaScene RedEdge multispectral camera were utilised for the survey. A single surveying campaign was undertaken in early autumn of a 17 ha study area at the Kameelzynkraal farm, Gauteng Province, South Africa. Structure-from-motion photogrammetry software was used to reconstruct the camera position's and terrain features to derive a high resolution orthoretified mosaic. MicaSense Atlas cloud-based data platform, Pix4D and PhotoScan were utilised for the processing. The WET-Health level one methodology was followed for the vegetation assessment, where wetland health is a measure of the deviation of a wetland's structure and function from its natural reference condition. An on-site evaluation of the vegetation integrity was first completed. Disturbance classes were then mapped using the high resolution multispectral orthoimages and NDVI. The WET-Health vegetation module completed with the aid of the multispectral UAV products indicated that the vegetation of the wetland is largely modified ("D" PES Category) and that the condition is expected to deteriorate (change score) in the future. However a lower impact score were determined utilising the multispectral UAV imagery and NDVI. The result is a more accurate estimation of the impacts in the wetland.
Single sensor that outputs narrowband multispectral images
Kong, Linghua; Yi, Dingrong; Sprigle, Stephen; Wang, Fengtao; Wang, Chao; Liu, Fuhan; Adibi, Ali; Tummala, Rao
2010-01-01
We report the work of developing a hand-held (or miniaturized), low-cost, stand-alone, real-time-operation, narrow bandwidth multispectral imaging device for the detection of early stage pressure ulcers. PMID:20210418
Application of multispectral scanner data to the study of an abandoned surface coal mine
NASA Technical Reports Server (NTRS)
Spisz, E. W.
1978-01-01
The utility of aircraft multispectral scanner data for describing the land cover features of an abandoned contour-mined coal mine is considered. The data were obtained with an 11 band multispectral scanner at an altitude of 1.2 kilometers. Supervised, maximum-likelihood statistical classifications of the data were made to establish land-cover classes and also to describe in more detail the barren surface features as they may pertain to the reclamation or restoration of the area. The scanner data for the surface-water areas were studied to establish the variability and range of the spectral signatures. Both day and night thermal images of the area are presented. The results of the study show that a high degree of statistical separation can be obtained from the multispectral scanner data for the various land-cover features.
Geometric Calibration and Radiometric Correction of the Maia Multispectral Camera
NASA Astrophysics Data System (ADS)
Nocerino, E.; Dubbini, M.; Menna, F.; Remondino, F.; Gattelli, M.; Covi, D.
2017-10-01
Multispectral imaging is a widely used remote sensing technique, whose applications range from agriculture to environmental monitoring, from food quality check to cultural heritage diagnostic. A variety of multispectral imaging sensors are available on the market, many of them designed to be mounted on different platform, especially small drones. This work focuses on the geometric and radiometric characterization of a brand-new, lightweight, low-cost multispectral camera, called MAIA. The MAIA camera is equipped with nine sensors, allowing for the acquisition of images in the visible and near infrared parts of the electromagnetic spectrum. Two versions are available, characterised by different set of band-pass filters, inspired by the sensors mounted on the WorlView-2 and Sentinel2 satellites, respectively. The camera details and the developed procedures for the geometric calibrations and radiometric correction are presented in the paper.
NASA Technical Reports Server (NTRS)
Matic, Roy M.; Mosley, Judith I.
1994-01-01
Future space-based, remote sensing systems will have data transmission requirements that exceed available downlinks necessitating the use of lossy compression techniques for multispectral data. In this paper, we describe several algorithms for lossy compression of multispectral data which combine spectral decorrelation techniques with an adaptive, wavelet-based, image compression algorithm to exploit both spectral and spatial correlation. We compare the performance of several different spectral decorrelation techniques including wavelet transformation in the spectral dimension. The performance of each technique is evaluated at compression ratios ranging from 4:1 to 16:1. Performance measures used are visual examination, conventional distortion measures, and multispectral classification results. We also introduce a family of distortion metrics that are designed to quantify and predict the effect of compression artifacts on multi spectral classification of the reconstructed data.
Computational multispectral video imaging [Invited].
Wang, Peng; Menon, Rajesh
2018-01-01
Multispectral imagers reveal information unperceivable to humans and conventional cameras. Here, we demonstrate a compact single-shot multispectral video-imaging camera by placing a micro-structured diffractive filter in close proximity to the image sensor. The diffractive filter converts spectral information to a spatial code on the sensor pixels. Following a calibration step, this code can be inverted via regularization-based linear algebra to compute the multispectral image. We experimentally demonstrated spectral resolution of 9.6 nm within the visible band (430-718 nm). We further show that the spatial resolution is enhanced by over 30% compared with the case without the diffractive filter. We also demonstrate Vis-IR imaging with the same sensor. Because no absorptive color filters are utilized, sensitivity is preserved as well. Finally, the diffractive filters can be easily manufactured using optical lithography and replication techniques.
Landsat 8 Multispectral and Pansharpened Imagery Processing on the Study of Civil Engineering Issues
NASA Astrophysics Data System (ADS)
Lazaridou, M. A.; Karagianni, A. Ch.
2016-06-01
Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM - Landsat 8) is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion - pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.
Acquisition performance of LAPAN-A3/IPB multispectral imager in real-time mode of operation
NASA Astrophysics Data System (ADS)
Hakim, P. R.; Permala, R.; Jayani, A. P. S.
2018-05-01
LAPAN-A3/IPB satellite was launched in June 2016 and its multispectral imager has been producing Indonesian coverage images. In order to improve its support for remote sensing application, the imager should produce images with high quality and quantity. To improve the quantity of LAPAN-A3/IPB multispectral image captured, image acquisition could be executed in real-time mode from LAPAN ground station in Bogor when the satellite passes west Indonesia region. This research analyses the performance of LAPAN-A3/IPB multispectral imager acquisition in real-time mode, in terms of image quality and quantity, under assumption of several on-board and ground segment limitations. Results show that with real-time operation mode, LAPAN-A3/IPB multispectral imager could produce twice as much as image coverage compare to recorded mode. However, the images produced in real-time mode will have slightly degraded quality due to image compression process involved. Based on several analyses that have been done in this research, it is recommended to use real-time acquisition mode whenever it possible, unless for some circumstances that strictly not allow any quality degradation of the images produced.
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...
2014-12-09
We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less
Schwartzkopf, Wade C; Bovik, Alan C; Evans, Brian L
2005-12-01
Traditional chromosome imaging has been limited to grayscale images, but recently a 5-fluorophore combinatorial labeling technique (M-FISH) was developed wherein each class of chromosomes binds with a different combination of fluorophores. This results in a multispectral image, where each class of chromosomes has distinct spectral components. In this paper, we develop new methods for automatic chromosome identification by exploiting the multispectral information in M-FISH chromosome images and by jointly performing chromosome segmentation and classification. We (1) develop a maximum-likelihood hypothesis test that uses multispectral information, together with conventional criteria, to select the best segmentation possibility; (2) use this likelihood function to combine chromosome segmentation and classification into a robust chromosome identification system; and (3) show that the proposed likelihood function can also be used as a reliable indicator of errors in segmentation, errors in classification, and chromosome anomalies, which can be indicators of radiation damage, cancer, and a wide variety of inherited diseases. We show that the proposed multispectral joint segmentation-classification method outperforms past grayscale segmentation methods when decomposing touching chromosomes. We also show that it outperforms past M-FISH classification techniques that do not use segmentation information.
Bhateja, Vikrant; Moin, Aisha; Srivastava, Anuja; Bao, Le Nguyen; Lay-Ekuakille, Aimé; Le, Dac-Nhuong
2016-07-01
Computer based diagnosis of Alzheimer's disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer's disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Component Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).
NASA Technical Reports Server (NTRS)
Harston, Craig; Schumacher, Chris
1992-01-01
Automated schemes are needed to classify multispectral remotely sensed data. Human intelligence is often required to correctly interpret images from satellites and aircraft. Humans suceed because they use various types of cues about a scene to accurately define the contents of the image. Consequently, it follows that computer techniques that integrate and use different types of information would perform better than single source approaches. This research illustrated that multispectral signatures and topographical information could be used in concert. Significantly, this dual source tactic classified a remotely sensed image better than the multispectral classification alone. These classifications were accomplished by fusing spectral signatures with topographical information using neural network technology. A neural network was trained to classify Landsat mulitspectral signatures. A file of georeferenced ground truth classifications were used as the training criterion. The network was trained to classify urban, agriculture, range, and forest with an accuracy of 65.7 percent. Another neural network was programmed and trained to fuse these multispectral signature results with a file of georeferenced altitude data. This topological file contained 10 levels of elevations. When this nonspectral elevation information was fused with the spectral signatures, the classifications were improved to 73.7 and 75.7 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhateja, Vikrant, E-mail: bhateja.vikrant@gmail.com, E-mail: nhuongld@hus.edu.vn; Moin, Aisha; Srivastava, Anuja
Computer based diagnosis of Alzheimer’s disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer’s disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Componentmore » Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).« less
Multispectral image fusion for illumination-invariant palmprint recognition
Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng
2017-01-01
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied. PMID:28558064
Multispectral image fusion for illumination-invariant palmprint recognition.
Lu, Longbin; Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng
2017-01-01
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied.
Wang, Yan-Cang; Gu, Xiao-He; Zhu, Jin-Shan; Long, Hui-Ling; Xu, Peng; Liao, Qin-Hong
2014-01-01
The present study aims to assess the feasibility of multi-spectral data in monitoring soil organic matter content. The data source comes from hyperspectral measured under laboratory condition, and simulated multi-spectral data from the hyperspectral. According to the reflectance response functions of Landsat TM and HJ-CCD (the Environment and Disaster Reduction Small Satellites, HJ), the hyperspectra were resampled for the corresponding bands of multi-spectral sensors. The correlation between hyperspectral, simulated reflectance spectra and organic matter content was calculated, and used to extract the sensitive bands of the organic matter in the north fluvo-aquic soil. The partial least square regression (PLSR) method was used to establish experiential models to estimate soil organic matter content. Both root mean squared error (RMSE) and coefficient of the determination (R2) were introduced to test the precision and stability of the modes. Results demonstrate that compared with the hyperspectral data, the best model established by simulated multi-spectral data gives a good result for organic matter content, with R2=0.586, and RMSE=0.280. Therefore, using multi-spectral data to predict tide soil organic matter content is feasible.
Initial clinical testing of a multi-spectral imaging system built on a smartphone platform
NASA Astrophysics Data System (ADS)
Mink, Jonah W.; Wexler, Shraga; Bolton, Frank J.; Hummel, Charles; Kahn, Bruce S.; Levitz, David
2016-03-01
Multi-spectral imaging systems are often expensive and bulky. An innovative multi-spectral imaging system was fitted onto a mobile colposcope, an imaging system built around a smartphone in order to image the uterine cervix from outside the body. The multi-spectral mobile colposcope (MSMC) acquires images at different wavelengths. This paper presents the clinical testing of MSMC imaging (technical validation of the MSMC system is described elsewhere 1 ). Patients who were referred to colposcopy following abnormal screening test (Pap or HPV DNA test) according to the standard of care were enrolled. Multi-spectral image sets of the cervix were acquired, consisting of images from the various wavelengths. Image acquisition took 1-2 sec. Areas suspected for dysplasia under white light imaging were biopsied, according to the standard of care. Biopsied sites were recorded on a clockface map of the cervix. Following the procedure, MSMC data was processed from the sites of biopsied sites. To date, the initial histopathological results are still outstanding. Qualitatively, structures in the cervical images were sharper at lower wavelengths than higher wavelengths. Patients tolerated imaging well. The result suggests MSMC holds promise for cervical imaging.
Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor.
Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong
2016-12-29
When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications.
Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor
Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong
2016-01-01
When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications. PMID:28036073
NASA Technical Reports Server (NTRS)
Hasell, P. G., Jr.
1974-01-01
The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.
Atmospheric transformation of multispectral remote sensor data. [Great Lakes
NASA Technical Reports Server (NTRS)
Turner, R. E. (Principal Investigator)
1977-01-01
The author has identified the following significant results. The effects of earth's atmosphere were accounted for, and a simple algorithm, based upon a radiative transfer model, was developed to determine the radiance at earth's surface free of atmospheric effects. Acutal multispectral remote sensor data for Lake Erie and associated optical thickness data were used to demonstrate the effectiveness of the atmospheric transformation algorithm. The basic transformation was general in nature and could be applied to the large scale processing of multispectral aircraft or satellite remote sensor data.
Radiometric sensitivity comparisons of multispectral imaging systems
NASA Technical Reports Server (NTRS)
Lu, Nadine C.; Slater, Philip N.
1989-01-01
Multispectral imaging systems provide much of the basic data used by the land and ocean civilian remote-sensing community. There are numerous multispectral imaging systems which have been and are being developed. A common way to compare the radiometric performance of these systems is to examine their noise-equivalent change in reflectance, NE Delta-rho. The NE Delta-rho of a system is the reflectance difference that is equal to the noise in the recorded signal. A comparison is made of the noise equivalent change in reflectance of seven different multispectral imaging systems (AVHRR, AVIRIS, ETM, HIRIS, MODIS-N, SPOT-1, HRV, and TM) for a set of three atmospheric conditions (continental aerosol with 23-km visibility, continental aerosol with 5-km visibility, and a Rayleigh atmosphere), five values of ground reflectance (0.01, 0.10, 0.25, 0.50, and 1.00), a nadir viewing angle, and a solar zenith angle of 45 deg.
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Fomins, Sergejs
2010-11-01
Multispectral color analysis was used for spectral scanning of Ishihara and Rabkin color deficiency test book images. It was done using tunable liquid-crystal LC filters built in the Nuance II analyzer. Multispectral analysis keeps both, information on spatial content of tests and on spectral content. Images were taken in the range of 420-720nm with a 10nm step. We calculated retina neural activity charts taking into account cone sensitivity functions, and processed charts in order to find the visibility of latent symbols in color deficiency plates using cross-correlation technique. In such way the quantitative measure is found for each of diagnostics plate for three different color deficiency carrier types - protanopes, deutanopes and tritanopes. Multispectral color analysis allows to determine the CIE xyz color coordinates of pseudoisochromatic plate design elements and to perform statistical analysis of these data to compare the color quality of available color deficiency test books.
Multispectral imaging for biometrics
NASA Astrophysics Data System (ADS)
Rowe, Robert K.; Corcoran, Stephen P.; Nixon, Kristin A.; Ostrom, Robert E.
2005-03-01
Automated identification systems based on fingerprint images are subject to two significant types of error: an incorrect decision about the identity of a person due to a poor quality fingerprint image and incorrectly accepting a fingerprint image generated from an artificial sample or altered finger. This paper discusses the use of multispectral sensing as a means to collect additional information about a finger that significantly augments the information collected using a conventional fingerprint imager based on total internal reflectance. In the context of this paper, "multispectral sensing" is used broadly to denote a collection of images taken under different polarization conditions and illumination configurations, as well as using multiple wavelengths. Background information is provided on conventional fingerprint imaging. A multispectral imager for fingerprint imaging is then described and a means to combine the two imaging systems into a single unit is discussed. Results from an early-stage prototype of such a system are shown.
Novel approach to multispectral image compression on the Internet
NASA Astrophysics Data System (ADS)
Zhu, Yanqiu; Jin, Jesse S.
2000-10-01
Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.
Changes of multispectral soil patterns with increasing crop canopy
NASA Technical Reports Server (NTRS)
Kristof, S. J.; Baumgardner, M. F.
1972-01-01
Multispectral data and automatic data processing were used to map surface soil patterns and to follow the changes in multispectral radiation from a field of maize (Zea mays L.) during a period from seeding to maturity. Panchromatic aerial photography was obtained in early May 1970 and multispectral scanner missions were flown on May 6, June 30, August 11 and September 5, 1970 to obtain energy measurements in 13 wavelength bands. The orange portion of the visible spectrum was used in analyzing the May and June data to cluster relative radiance of the soils into eight different radiance levels. The reflective infrared spectral band was used in analyzing the August and September data to cluster maize into different spectral categories. The computer-produced soil patterns had a striking similarity to the soil pattern of the aerial photograph. These patterns became less distinct as the maize canopy increased.
NASA Technical Reports Server (NTRS)
Coker, A. E.; Marshall, R.; Thomson, F.
1972-01-01
A study was made of the spatial registration of fluoride and phosphate pollution parameters in central Florida by utilizing remote sensing techniques. Multispectral remote sensing data were collected over the area and processed to produce multispectral recognition maps. These processed data were used to map land areas and waters containing concentrations of fluoride and phosphate. Maps showing distribution of affected and unaffected vegetation were produced. In addition, the multispectral data were processed by single band radiometric slicing to produce radiometric maps used to delineate areas of high ultraviolet radiance, which indicates high fluoride concentrations. The multispectral parameter maps and radiometric maps in combination showed distinctive patterns, which are correlated with areas known to be affected by fluoride and phosphate contamination. These remote sensing techniques have the potential for regional use to assess the environmental impact of fluoride and phosphate wastes in central Florida.
Interpretation of multispectral and infrared thermal surveys of the Suez Canal Zone, Egypt
NASA Technical Reports Server (NTRS)
Elshazly, E. M.; Hady, M. A. A. H.; Hafez, M. A. A.; Salman, A. B.; Morsy, M. A.; Elrakaiby, M. M.; Alaassy, I. E. E.; Kamel, A. F.
1977-01-01
Remote sensing airborne surveys were conducted, as part of the plan of rehabilitation, of the Suez Canal Zone using I2S multispectral camera and Bendix LN-3 infrared passive scanner. The multispectral camera gives four separate photographs for the same scene in the blue, green, red, and near infrared bands. The scanner was operated in the microwave bands of 8 to 14 microns and the thermal surveying was carried out both at night and in the day time. The surveys, coupled with intensive ground investigations, were utilized in the construction of new geological, structural lineation and drainage maps for the Suez Canal Zone on a scale of approximately 1:20,000, which are superior to the maps made by normal aerial photography. A considerable number of anomalies belonging to various types were revealed through the interpretation of the executed multispectral and infrared thermal surveys.
Multispectral imaging reveals biblical-period inscription unnoticed for half a century
Cordonsky, Michael; Levin, David; Moinester, Murray; Sass, Benjamin; Turkel, Eli; Piasetzky, Eli; Finkelstein, Israel
2017-01-01
Most surviving biblical period Hebrew inscriptions are ostraca—ink-on-clay texts. They are poorly preserved and once unearthed, fade rapidly. Therefore, proper and timely documentation of ostraca is essential. Here we show a striking example of a hitherto invisible text on the back side of an ostracon revealed via multispectral imaging. This ostracon, found at the desert fortress of Arad and dated to ca. 600 BCE (the eve of Judah’s destruction by Nebuchadnezzar), has been on display for half a century. Its front side has been thoroughly studied, while its back side was considered blank. Our research revealed three lines of text on the supposedly blank side and four "new" lines on the front side. Our results demonstrate the need for multispectral image acquisition for both sides of all ancient ink ostraca. Moreover, in certain cases we recommend employing multispectral techniques for screening newly unearthed ceramic potsherds prior to disposal. PMID:28614416
Multispectral imaging reveals biblical-period inscription unnoticed for half a century.
Faigenbaum-Golovin, Shira; Mendel-Geberovich, Anat; Shaus, Arie; Sober, Barak; Cordonsky, Michael; Levin, David; Moinester, Murray; Sass, Benjamin; Turkel, Eli; Piasetzky, Eli; Finkelstein, Israel
2017-01-01
Most surviving biblical period Hebrew inscriptions are ostraca-ink-on-clay texts. They are poorly preserved and once unearthed, fade rapidly. Therefore, proper and timely documentation of ostraca is essential. Here we show a striking example of a hitherto invisible text on the back side of an ostracon revealed via multispectral imaging. This ostracon, found at the desert fortress of Arad and dated to ca. 600 BCE (the eve of Judah's destruction by Nebuchadnezzar), has been on display for half a century. Its front side has been thoroughly studied, while its back side was considered blank. Our research revealed three lines of text on the supposedly blank side and four "new" lines on the front side. Our results demonstrate the need for multispectral image acquisition for both sides of all ancient ink ostraca. Moreover, in certain cases we recommend employing multispectral techniques for screening newly unearthed ceramic potsherds prior to disposal.
Remote sensing and spectral analysis of plumes from ocean dumping in the New York Bight Apex
NASA Technical Reports Server (NTRS)
Johnson, R. W.
1980-01-01
The application of the remote sensing techniques of aerial photography and multispectral scanning in the qualitative and quantitative analysis of plumes from ocean dumping of waste materials is investigated in the New York Bight Apex. Plumes resulting from the dumping of acid waste and sewage sludge were observed by Ocean Color Scanner at an altitude of 19.7 km and by Modular Multispectral Scanner and mapping camera at an altitude of 3.0 km. Results of the qualitative analysis of multispectral and photographic data for the mapping, location, and identification of pollution features without concurrent sea truth measurements are presented which demonstrate the usefulness of in-scene calibration. Quantitative distributions of the suspended solids in sewage sludge released in spot and line dumps are also determined by a multiple regression analysis of multispectral and sea truth data.
Fusion of multi-spectral and panchromatic images based on 2D-PWVD and SSIM
NASA Astrophysics Data System (ADS)
Tan, Dongjie; Liu, Yi; Hou, Ruonan; Xue, Bindang
2016-03-01
A combined method using 2D pseudo Wigner-Ville distribution (2D-PWVD) and structural similarity(SSIM) index is proposed for fusion of low resolution multi-spectral (MS) image and high resolution panchromatic (PAN) image. First, the intensity component of multi-spectral image is extracted with generalized IHS transform. Then, the spectrum diagrams of the intensity components of multi-spectral image and panchromatic image are obtained with 2D-PWVD. Different fusion rules are designed for different frequency information of the spectrum diagrams. SSIM index is used to evaluate the high frequency information of the spectrum diagrams for assigning the weights in the fusion processing adaptively. After the new spectrum diagram is achieved according to the fusion rule, the final fusion image can be obtained by inverse 2D-PWVD and inverse GIHS transform. Experimental results show that, the proposed method can obtain high quality fusion images.
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Sig-NganLam, Nina; Quattrochi, Dale A.
2004-01-01
The accuracy of traditional multispectral maximum-likelihood image classification is limited by the skewed statistical distributions of reflectances from the complex heterogenous mixture of land cover types in urban areas. This work examines the utility of local variance, fractal dimension and Moran's I index of spatial autocorrelation in segmenting multispectral satellite imagery. Tools available in the Image Characterization and Modeling System (ICAMS) were used to analyze Landsat 7 imagery of Atlanta, Georgia. Although segmentation of panchromatic images is possible using indicators of spatial complexity, different land covers often yield similar values of these indices. Better results are obtained when a surface of local fractal dimension or spatial autocorrelation is combined as an additional layer in a supervised maximum-likelihood multispectral classification. The addition of fractal dimension measures is particularly effective at resolving land cover classes within urbanized areas, as compared to per-pixel spectral classification techniques.
NASA Astrophysics Data System (ADS)
McMackin, Lenore; Herman, Matthew A.; Weston, Tyler
2016-02-01
We present the design of a multi-spectral imager built using the architecture of the single-pixel camera. The architecture is enabled by the novel sampling theory of compressive sensing implemented optically using the Texas Instruments DLP™ micro-mirror array. The array not only implements spatial modulation necessary for compressive imaging but also provides unique diffractive spectral features that result in a multi-spectral, high-spatial resolution imager design. The new camera design provides multi-spectral imagery in a wavelength range that extends from the visible to the shortwave infrared without reduction in spatial resolution. In addition to the compressive imaging spectrometer design, we present a diffractive model of the architecture that allows us to predict a variety of detailed functional spatial and spectral design features. We present modeling results, architectural design and experimental results that prove the concept.
NASA Astrophysics Data System (ADS)
Lorang, M. S.; Stanford, J.; Steele, B.
2009-12-01
In this research we take a systems ecology approach to the evaluation of river floodplains by ranking them according to their energetic complexity at or near base flow conditions. The underlying hypothesis is that energetic complexity equates to a higher potential for sustaining maximum biological diversity, in particular as it relates to Salmonids. Fr number is a hydraulic index of relative specific energy in a flowing water column ranging from calm, no flow conditions where Fr = 0 to 0.8 at the onset of rapids and higher values approaching 1 or > at locations of breaking waves and hydraulic jumps. Most of the water flowing in a gravel-bed river exists in the transition range of Fr = 0.1 to 0.8, creating a complex array of potential hydrologic habitat commonly described through observation as riffles, runs, pools eddies, and so on. We use 1.6 m2 resolution multispectral satellite imagery to predict and map water depth (h), mean flow velocity (V) and Froude number (Fr=V/(gh)^0.5) by using a distribution-free statistical learner and error analysis approach. This approach links measures of V and h made from a raft deploying an acoustic Doppler profiler (ADP) and GPS with the reflectance characteristics from the satellite imagery (4 bands) that correspond to each ADP profile. This analysis of Fr space in combination with independent classification of depth and velocity provides physical metrics related to the energetic state of flow in the river at the time of image acquisition. We use these metrics, determined from a suite of 23 floodplains spread across the rim of the North Pacific (including British Columbia, Alaska and the Kamchatka Peninsula of Russia) and covering the range in fluvial geomorphic type from braided to meandering, to rank them in terms of energetic complexity.
NASA Astrophysics Data System (ADS)
Barreto, M.; Cabrera, N.; Torres, J.; Caraballo Álvarez, I. O.
2016-02-01
A study of beach geomorphology changes was conducted in beach systems located near to the river mouth of the Rio Grande de Manatí in the north-central coast of Puerto Rico Island (1977-2015). The main objective of this study was identify the role of river and land cover and land use changes (LCLUC) over changes in beach geomorphology. An integration of field work, remote sensing (historical aerial photos and multispectral images), Global Positioning Systems (GPS), Geographic Information Systems (GIS) and evaluation of published databanks (USGS water data, LCLUC) were used to generate and analyze data in this study. Results showed three different beach geomorphic systems along the study site. These are: 1) a wider terrigenous beach located westward to the river mouth; 2) a narrow mixed terrigenous and biogenic beach on the eastward site of the river mouth; and 3) a wide biogenic beach on the eastern site of the coastline. Historical shoreline changes showed that major loss of sand was observed along all beaches from 1995 to 1997 period (10 to 50 meters). Shift from accretion to erosion and vice versa were found in beach segments from 1971 to 1977, 1977-1985, 1985-1991, 1997-2003 and 2003-2010 periods, where major shoreline changes were identified mainly in the biogenic beach. LCLUC distribution showed a major reduction in agriculture land use (from 58% to 6%) from 1977 to 2010. This land was converted mainly to forest and rangeland during this period. Major flood events occurred in the study site from 1992 to 1995 may associated with major loss of sand on beaches in the study area. Detail association between shoreline changes and LCLUC/hydrological process will be defined during the second year of the project. This assessment is important to generate information to develop coastal management plans that helps community and ecosystems planners to be proactive during risk events in the area.
Multi-spectral confocal microendoscope for in-vivo imaging
NASA Astrophysics Data System (ADS)
Rouse, Andrew Robert
The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.
Semiconductor Laser Multi-Spectral Sensing and Imaging
Le, Han Q.; Wang, Yang
2010-01-01
Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers. PMID:22315555
Semiconductor laser multi-spectral sensing and imaging.
Le, Han Q; Wang, Yang
2010-01-01
Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.
MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BYPRODUCTS IN DRINKING WATER
This paper discusses the identification of organic disinfection byproducts (DBPs) at a pilot plant in Evansville, IN, which uses chlorine dioxide as a primary disinfectant. Unconventional multispectral identification techniques (gas chromatography combined with high- and low reso...
MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE BYPRODUCTS IN DRINKING WATER
This paper discusses the identification of organic disinfectant byproducts (DNPS) at a pilot plant in Evansville, IN, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high- and low-resolu...
Monitoring terrestrial dissolved organic carbon export at land-water interfaces using remote sensing
NASA Astrophysics Data System (ADS)
Yu, Q.; Li, J.; Tian, Y. Q.
2017-12-01
Carbon flux from land to oceans and lakes is a crucial component of carbon cycling. However, this lateral carbon flow at land-water interface is often neglected in the terrestrial carbon cycle budget, mainly because observations of the carbon dynamics are very limited. Monitoring CDOM/DOC dynamics using remote sensing and assessing DOC export from land to water remains a challenge. Current CDOM retrieval algorithms in the field of ocean color are not simply applicable to inland aquatic ecosystems since they were developed for coarse resolution ocean-viewing imagery and less complex water types in open-sea. We developed a new semi-analytical algorithm, called SBOP (Shallow water Bio-Optical Properties algorithm) to adapt to shallow inland waters. SBOP was first developed and calibrated based on in situ hyperspectral radiometer data. Then we applied it to the Landsat-8 OLI images and evaluated the effectiveness of the multispectral images on inversion of CDOM absorption based on our field sampling at the Saginaw Bay in the Lake Huron. The algorithm performances (RMSE = 0.17 and R2 = 0.87 in the Saginaw Bay; R2 = 0.80 in the northeastern US lakes) is promising and we conclude the CDOM absorption can be derived from Landsat-8 OLI image in both optically deep and optically shallow waters with high accuracy. Our method addressed challenges on employing appropriate atmospheric correction, determining bottom reflectance influence for shallow waters, and improving for bio-optical properties retrieval, as well as adapting to both hyperspectral and the multispectral remote sensing imagery. Over 100 Landsat-8 images in Lake Huron, northeastern US lakes, and the Arctic major rivers were processed to understand the CDOM spatio-temporal dynamics and its associated driving factors.
Development of a multispectral light-scatter sensor for bacterial colonies
USDA-ARS?s Scientific Manuscript database
We report a multispectral elastic-light-scatter instrument that can simultaneously detect three-wavelength scatter patterns and associated optical densities from individual bacterial colonies, overcoming the limits of the single-wavelength predecessor. Absorption measurements on liquid bacterial sam...
Multispectral image dissector camera flight test
NASA Technical Reports Server (NTRS)
Johnson, B. L.
1973-01-01
It was demonstrated that the multispectral image dissector camera is able to provide composite pictures of the earth surface from high altitude overflights. An electronic deflection feature was used to inject the gyro error signal into the camera for correction of aircraft motion.
Multispectral Mosaic of the Aristarchus Crater and Plateau
1998-06-03
The Aristarchus region is one of the most diverse and interesting areas on the Moon. About 500 images from NASA's Clementine spacecraft were processed and combined into a multispectral mosaic of this region. http://photojournal.jpl.nasa.gov/catalog/PIA00090
NASA Astrophysics Data System (ADS)
Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Guimarães, Francisco E. G.
2017-07-01
This study clearly demonstrates that multispectral confocal microscopy images analyzed by artificial neural networks provides a powerful tool to real-time monitoring photosensitizer uptake, as well as photochemical transformations occurred.
MULTISPECTRAL IDENTIFICATION OF ALKYL AND CHLOROALKYL PHOSPHATES FROM AN INDUSTRIAL EFFLUENT
Multispectral techniques (gas chromatography combined with low and high resolution electron-impact mass spectrometry, low and high resolution chemical ionization mass spectrometry, and Fourier transform infrared mass spectroscopy) were used to identify 13 alkyl and chloralkyl pho...
Diagnosing hypoxia in murine models of rheumatoid arthritis from reflectance multispectral images
NASA Astrophysics Data System (ADS)
Glinton, Sophie; Naylor, Amy J.; Claridge, Ela
2017-07-01
Spectra computed from multispectral images of murine models of Rheumatoid Arthritis show a characteristic decrease in reflectance within the 600-800nm region which is indicative of the reduction in blood oxygenation and is consistent with hypoxia.
MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BY-PRODUCTS IN DRINKING WATER
This paper discusses the identification of organic disinfection by-products (DBPs) at a pilot plant in Evansville, Indiana, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high and low r...
Fourier Spectral Filter Array for Optimal Multispectral Imaging.
Jia, Jie; Barnard, Kenneth J; Hirakawa, Keigo
2016-04-01
Limitations to existing multispectral imaging modalities include speed, cost, range, spatial resolution, and application-specific system designs that lack versatility of the hyperspectral imaging modalities. In this paper, we propose a novel general-purpose single-shot passive multispectral imaging modality. Central to this design is a new type of spectral filter array (SFA) based not on the notion of spatially multiplexing narrowband filters, but instead aimed at enabling single-shot Fourier transform spectroscopy. We refer to this new SFA pattern as Fourier SFA, and we prove that this design solves the problem of optimally sampling the hyperspectral image data.
Generalization of the Lyot filter and its application to snapshot spectral imaging.
Gorman, Alistair; Fletcher-Holmes, David William; Harvey, Andrew Robert
2010-03-15
A snapshot multi-spectral imaging technique is described which employs multiple cascaded birefringent interferometers to simultaneously spectrally filter and demultiplex multiple spectral images onto a single detector array. Spectral images are recorded directly without the need for inversion and without rejection of light and so the technique offers the potential for high signal-to-noise ratio. An example of an eight-band multi-spectral movie sequence is presented; we believe this is the first such demonstration of a technique able to record multi-spectral movie sequences without the need for computer reconstruction.
Trophic classification of selected Colorado lakes
NASA Technical Reports Server (NTRS)
Blackwell, R. J.; Boland, D. H. P.
1979-01-01
Multispectral scanner data, acquired over several Colorado lakes using LANDSAT-1 and aircraft, were used in conjunction with contact-sensed water quality data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators. Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state.
The application of UV multispectral technology in extract trace evdidence
NASA Astrophysics Data System (ADS)
Guo, Jingjing; Xu, Xiaojing; Li, Zhihui; Xu, Lei; Xie, Lanchi
2015-11-01
Multispectral imaging is becoming more and more important in the field of examination of material evidence, especially the ultraviolet spectral imaging. Fingerprints development, questioned document detection, trace evidence examination-all can used of it. This paper introduce a UV multispectral equipment which was developed by BITU & IFSC, it can extract trace evidence-extract fingerprints. The result showed that this technology can develop latent sweat-sebum mixed fingerprint on photo and ID card blood fingerprint on steel hold. We used the UV spectrum data analysis system to make the UV spectral image clear to identify and analyse.
NASA Technical Reports Server (NTRS)
Edgett, Kenneth S.; Anderson, Donald L.
1995-01-01
This paper describes an empirical method to correct TIMS (Thermal Infrared Multispectral Scanner) data for atmospheric effects by transferring calibration from a laboratory thermal emission spectrometer to the TIMS multispectral image. The method does so by comparing the laboratory spectra of samples gathered in the field with TIMS 6-point spectra for pixels at the location of field sampling sites. The transference of calibration also makes it possible to use spectra from the laboratory as endmembers in unmixing studies of TIMS data.
Multi-spectral endogenous fluorescence imaging for bacterial differentiation
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.
2017-07-01
In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.
NASA Astrophysics Data System (ADS)
Taruttis, Adrian; Razansky, Daniel; Ntziachristos, Vasilis
2012-02-01
Optoacoustic imaging has enabled the visualization of optical contrast at high resolutions in deep tissue. Our Multispectral optoacoustic tomography (MSOT) imaging results reveal internal tissue heterogeneity, where the underlying distribution of specific endogenous and exogenous sources of absorption can be resolved in detail. Technical advances in cardiac imaging allow motion-resolved multispectral measurements of the heart, opening the way for studies of cardiovascular disease. We further demonstrate the fast characterization of the pharmacokinetic profiles of lightabsorbing agents. Overall, our MSOT findings indicate new possibilities in high resolution imaging of functional and molecular parameters.
NASA Technical Reports Server (NTRS)
Coker, A. E.; Marshall, R.; Thomson, N. S.
1977-01-01
Data were collected near Bartow, Florida, for the purpose of studying land collapse phenomena using remote sensing techniques. Data obtained using the multispectral scanner system consisted of various combinations of 18 spectral bands ranging from 0.4-14.0 microns and several types of photography. The multispectral data were processed on a special-purpose analog computer in order to detect moisture-stressed vegetation and to enhance terrain surface temperatures. The processed results were printed on film to show the patterns of distribution of the proposed hydrogeologic indicators.
Liu, Changhong; Liu, Wei; Lu, Xuzhong; Ma, Fei; Chen, Wei; Yang, Jianbo; Zheng, Lei
2014-01-01
Multispectral imaging with 19 wavelengths in the range of 405-970 nm has been evaluated for nondestructive determination of firmness, total soluble solids (TSS) content and ripeness stage in strawberry fruit. Several analysis approaches, including partial least squares (PLS), support vector machine (SVM) and back propagation neural network (BPNN), were applied to develop theoretical models for predicting the firmness and TSS of intact strawberry fruit. Compared with PLS and SVM, BPNN considerably improved the performance of multispectral imaging for predicting firmness and total soluble solids content with the correlation coefficient (r) of 0.94 and 0.83, SEP of 0.375 and 0.573, and bias of 0.035 and 0.056, respectively. Subsequently, the ability of multispectral imaging technology to classify fruit based on ripeness stage was tested using SVM and principal component analysis-back propagation neural network (PCA-BPNN) models. The higher classification accuracy of 100% was achieved using SVM model. Moreover, the results of all these models demonstrated that the VIS parts of the spectra were the main contributor to the determination of firmness, TSS content estimation and classification of ripeness stage in strawberry fruit. These results suggest that multispectral imaging, together with suitable analysis model, is a promising technology for rapid estimation of quality attributes and classification of ripeness stage in strawberry fruit.
Multispectral infrared target detection: phenomenology and modeling
NASA Astrophysics Data System (ADS)
Cederquist, Jack N.; Rogne, Timothy J.; Schwartz, Craig R.
1993-10-01
Many targets of interest provide only very small signature differences from the clutter background. The ability to detect these small difference targets should be improved by using data which is diverse in space, time, wavelength or some other observable. Target materials often differ from background materials in the variation of their reflectance or emittance with wavelength. A multispectral sensor is therefore considered as a means to improve detection of small signal targets. If this sensor operates in the thermal infrared, it will not need solar illumination and will be useful at night as well as during the day. An understanding of the phenomenology of the spectral properties of materials and an ability to model and simulate target and clutter signatures is needed to understand potential target detection performance from multispectral infrared sensor data. Spectral variations in material emittance are due to vibrational energy transitions in molecular bonds. The spectral emittances of many materials of interest have been measured. Examples are vegetation, soil, construction and road materials, and paints. A multispectral infrared signature model has been developed which includes target and background temperature and emissivity, sky, sun, cloud and background irradiance, multiple reflection effects, path radiance, and atmospheric attenuation. This model can be used to predict multispectral infrared signatures for small signal targets.
de Castro, Ana-Isabel; Jurado-Expósito, Montserrat; Gómez-Casero, María-Teresa; López-Granados, Francisca
2012-01-01
In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops. PMID:22629171
de Castro, Ana-Isabel; Jurado-Expósito, Montserrat; Gómez-Casero, María-Teresa; López-Granados, Francisca
2012-01-01
In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops.
Use of multispectral data in design of forest sample surveys
NASA Technical Reports Server (NTRS)
Titus, S. J.; Wensel, L. C.
1977-01-01
The use of multispectral data in design of forest sample surveys using a computer software package is described. The system allows evaluation of a number of alternative sampling systems and, with appropriate cost data, estimates the implementation cost for each.
Use of multispectral data in design of forest sample surveys
NASA Technical Reports Server (NTRS)
Titus, S. J.; Wensel, L. C.
1977-01-01
The use of multispectral data in design of forest sample surveys using a computer software package, WILLIAM, is described. The system allows evaluation of a number of alternative sampling systems and, with appropriate cost data, estimates the implementation cost for each.
Severe storm environments: A Skylab EREP report
NASA Technical Reports Server (NTRS)
Pitts, D. E.; Sasaki, Y.; Lee, J. T. (Principal Investigator)
1978-01-01
The results from the severe storm experiment over Texas and Oklahoma are presented. Correlation of data, soil moisture, water temperature, and cloud characteristics were considered. The sensors used in this study were multispectral band cameras, multispectral band scanners, infrared spectrometers, radiometers, and scatterometers.
On-board multispectral classification study. Volume 2: Supplementary tasks. [adaptive control
NASA Technical Reports Server (NTRS)
Ewalt, D.
1979-01-01
The operational tasks of the onboard multispectral classification study were defined. These tasks include: sensing characteristics for future space applications; information adaptive systems architectural approaches; data set selection criteria; and onboard functional requirements for interfacing with global positioning satellites.
MULTISPECTRAL IDENTIFICATION AND CONFIRMATION OF ORGANIC COMPOUNDS IN WASTEWATER EXTRACTS
Application of multispectral identification techniques to samples from industrial and POTW wastewaters revealed identities of 63 compounds that had not been identified by empirical matching of mass spectra with spectral libraries. wenty-five of the compounds had not been found in...
Long Term Dynamic Stream Nitrate and Phosphate Changes Following Watershed Wildfires
NASA Technical Reports Server (NTRS)
Ambrosia, Vincent G.; Brass, James A.; Riggan, Philip J.; Ewing, Roy; Sebesta, Paul D.; Peterson, David L. (Technical Monitor)
1994-01-01
During and following the 1988 Yellowstone National Park wildfires, airborne remotely sensed data were collected in order to characterize various vegetative components, fire front movements and bum intensities. ER-2 derived Thematic Mapper Simulator (TMS) data were used in conjunction with water sampling and chemistry analysis to determine fire intensities in various watersheds and aquatic system condition changes. The airborne Daedalus multispectral TMS data allowed the characterization of various bum intensities in watersheds. Stream sampling was then conducted in those various burned watersheds to determine nitrate and phosphate concentration changes. Six stream watersheds were monitored for five years (1989-1993) during non-snow periods (May/June through September): Cache Creek (intensely burned), Blacktail Deer Creek (intensely burned), Snake River (moderately burned), Lamar River (mixed burning), Soda Butte Creek (lightly burned), and Amphitheatre Creek (unburned). One litre samples were collected from those streams with ISCO water samplers every 12 hours. The samples were removed every 14 days .(28 Samples), and water chemistry analysis was performed. Chemistry analysis indicated that nitrate and phosphate concentrations were elevated in moderately burned watersheds and significantly elevated in severely burned watersheds. The results during the five year study indicate that bum intensities regulate stream water nitrate and phosphate concentrations, and that remotely sensed data can be used effectively to predict watershed chemical changes which will affect aquatic conditions.
NASA Astrophysics Data System (ADS)
Behrooz, Ali; Vasquez, Kristine O.; Waterman, Peter; Meganck, Jeff; Peterson, Jeffrey D.; Miller, Peter; Kempner, Joshua
2017-02-01
Intraoperative resection of tumors currently relies upon the surgeon's ability to visually locate and palpate tumor nodules. Undetected residual malignant tissue often results in the need for additional treatment or surgical intervention. The Solaris platform is a multispectral open-air fluorescence imaging system designed for translational fluorescence-guided surgery. Solaris supports video-rate imaging in four fixed fluorescence channels ranging from visible to near infrared, and a multispectral channel equipped with a liquid crystal tunable filter (LCTF) for multispectral image acquisition (520-620 nm). Identification of tumor margins using reagents emitting in the visible spectrum (400-650 nm), such as fluorescein isothiocyanate (FITC), present challenges considering the presence of auto-fluorescence from tissue and food in the gastrointestinal (GI) tract. To overcome this, Solaris acquires LCTF-based multispectral images, and by applying an automated spectral unmixing algorithm to the data, separates reagent fluorescence from tissue and food auto-fluorescence. The unmixing algorithm uses vertex component analysis to automatically extract the primary pure spectra, and resolves the reagent fluorescent signal using non-negative least squares. For validation, intraoperative in vivo studies were carried out in tumor-bearing rodents injected with FITC-dextran reagent that is primarily residing in malignant tissue 24 hours post injection. In the absence of unmixing, fluorescence from tumors is not distinguishable from that of surrounding tissue. Upon spectral unmixing, the FITC-labeled malignant regions become well defined and detectable. The results of these studies substantiate the multispectral power of Solaris in resolving FITC-based agent signal in deep tumor masses, under ambient and surgical light, and enhancing the ability to surgically resect them.
Using Remote-sensing to Survey Topography and Morphologic Change on Large Braided River Beds
NASA Astrophysics Data System (ADS)
Maurice, D.; Hicks, M.; Shankar, U.
2007-12-01
Since 1999 we have made extensive use of a variety of remote-sensing technologies to survey bed topography over reaches of large braided gravel-bed rivers on the east coast of New Zealand's South Island. The motivations have been (i) to collect input and validation data for 2-d hydrodynamic models for quantifying in-stream physical habitat and for predicting flood levels and (ii) to survey spatially-distributed riverbed erosion and deposition in order to estimate bedload fluxes by the 'morphological' method. Typical applications have been to river reaches 3-4 km long and 1 km wide, with grid cells from 1-5 m. We use different techniques to survey dry and wet areas of braided riverbed. For dry areas, we have used digital photogrammetry and infra-red airborne LiDAR. For wetted channels, we have generally used ortho-rectified colour imagery or multi-spectral scanning to map water depth, then we map bed topography by subtracting the water depth from a DEM of the water surface obtained from photogrammetry or LiDAR. The imagery is calibrated to water depth using field measurements on the day of imagery acquisition. Surveys are undertaken during low flows to maximise bed exposure. We use ground-based RTK-GPS and echo-sounding to collect calibration and validation data, and sometimes simply use these methods to survey the wetted areas. Orthoimagery at multiple river flows is used to validate 2-d model results. We have been able to achieve elevation accuracies at interpolated points of the order of 10-15 cm for dry areas. This accuracy typically degrades to 20-30 cm for wetted areas. Our experience has exposed a number of issues relating to survey accuracy and practicality at large river scales. These include: changing geoidal models between surveys; local systematic error with photogrammetric model mosaics; geospatial synchronisation of multi-platform data; time-synchronisation of LiDAR and imagery- collecting aeroplanes and suitable weather and river conditions; confusions in water depth mapping; and the critical importance of good data at key hydraulic controls for eco-hydrologic applications. We suggest that high resolution bathymetric LiDAR offers the best potential for future surveys in large river reaches. While the current bathymetry LiDAR systems do not appear to deliver a significantly better accuracy of submerged bed elevations than we have achieved with mixed-technology approaches for dry and wet areas, and their cost remains high, a one-stop package is hard to beat in terms of practicality and data synchronisation.
Multispectral Photography: the obscure becomes the obvious
ERIC Educational Resources Information Center
Polgrean, John
1974-01-01
Commonly used in map making, real estate zoning, and highway route location, aerial photography planes equipped with multispectral cameras may, among many environmental applications, now be used to locate mineral deposits, define marshland boundaries, study water pollution, and detect diseases in crops and forests. (KM)
Multispectral image analysis for object recognition and classification
NASA Astrophysics Data System (ADS)
Viau, C. R.; Payeur, P.; Cretu, A.-M.
2016-05-01
Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.
Liu, Jinxia; Cao, Yue; Wang, Qiu; Pan, Wenjuan; Ma, Fei; Liu, Changhong; Chen, Wei; Yang, Jianbo; Zheng, Lei
2016-01-01
Water-injected beef has aroused public concern as a major food-safety issue in meat products. In the study, the potential of multispectral imaging analysis in the visible and near-infrared (405-970 nm) regions was evaluated for identifying water-injected beef. A multispectral vision system was used to acquire images of beef injected with up to 21% content of water, and partial least squares regression (PLSR) algorithm was employed to establish prediction model, leading to quantitative estimations of actual water increase with a correlation coefficient (r) of 0.923. Subsequently, an optimized model was achieved by integrating spectral data with feature information extracted from ordinary RGB data, yielding better predictions (r = 0.946). Moreover, the prediction equation was transferred to each pixel within the images for visualizing the distribution of actual water increase. These results demonstrate the capability of multispectral imaging technology as a rapid and non-destructive tool for the identification of water-injected beef. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Shanshan; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki
2006-09-01
The article proposes a multispectral image compression scheme using nonlinear spectral transform for better colorimetric and spectral reproducibility. In the method, we show the reduction of colorimetric error under a defined viewing illuminant and also that spectral accuracy can be improved simultaneously using a nonlinear spectral transform called Labplus, which takes into account the nonlinearity of human color vision. Moreover, we show that the addition of diagonal matrices to Labplus can further preserve the spectral accuracy and has a generalized effect of improving the colorimetric accuracy under other viewing illuminants than the defined one. Finally, we discuss the usage of the first-order Markov model to form the analysis vectors for the higher order channels in Labplus to reduce the computational complexity. We implement a multispectral image compression system that integrates Labplus with JPEG2000 for high colorimetric and spectral reproducibility. Experimental results for a 16-band multispectral image show the effectiveness of the proposed scheme.
Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples
Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.
2014-01-01
Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510
A multispectral photon-counting double random phase encoding scheme for image authentication.
Yi, Faliu; Moon, Inkyu; Lee, Yeon H
2014-05-20
In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.
Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images
Kang, Wonseok; Yu, Soohwan; Ko, Seungyong; Paik, Joonki
2015-01-01
In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures. PMID:26007744
Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images.
Kang, Wonseok; Yu, Soohwan; Ko, Seungyong; Paik, Joonki
2015-05-22
In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures.
Non-contact assessment of melanin distribution via multispectral temporal illumination coding
NASA Astrophysics Data System (ADS)
Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.
2015-03-01
Melanin is a pigment that is highly absorptive in the UV and visible electromagnetic spectra. It is responsible for perceived skin tone, and protects against harmful UV effects. Abnormal melanin distribution is often an indicator for melanoma. We propose a novel approach for non-contact melanin distribution via multispectral temporal illumination coding to estimate the two-dimensional melanin distribution based on its absorptive characteristics. In the proposed system, a novel multispectral, cross-polarized, temporally-coded illumination sequence is synchronized with a camera to measure reflectance under both multispectral and ambient illumination. This allows us to eliminate the ambient illumination contribution from the acquired reflectance measurements, and also to determine the melanin distribution in an observed region based on the spectral properties of melanin using the Beer-Lambert law. Using this information, melanin distribution maps can be generated for objective, quantitative assessment of skin type of individuals. We show that the melanin distribution map correctly identifies areas with high melanin densities (e.g., nevi).
1970-01-01
This 1970 photograph shows Skylab's Multispectral Scanner, one of the major components of an Earth Resources Experiment Package (EREP). It was designed to evaluate the on-orbit use of multispectral scanning of Earth resources. Investigators could evaluate the usefulness of spacecraft multispectral data for crop identification, vegetation mapping, soil moisture measurements, identification of contaminated areas in large bodies of water, and surface temperature mapping. The overall purpose of the EREP was to test the use of sensors that operated in the visible, infrared, and microwave portions of the electromagnetic spectrum to monitor and study Earth resources. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
NASA Technical Reports Server (NTRS)
1982-01-01
The state-of-the-art of multispectral sensing is reviewed and recommendations for future research and development are proposed. specifically, two generic sensor concepts were discussed. One is the multispectral pushbroom sensor utilizing linear array technology which operates in six spectral bands including two in the SWIR region and incorporates capabilities for stereo and crosstrack pointing. The second concept is the imaging spectrometer (IS) which incorporates a dispersive element and area arrays to provide both spectral and spatial information simultaneously. Other key technology areas included very large scale integration and the computer aided design of these devices.
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Arneson, H. M.; Farrand, W. H.; Goetz, W.; Hayes, A. G.; Herkenhoff, K.; Johnson, M. J.; Johnson, J. R.; Joseph, J.; Kinch, K.
2005-01-01
Introduction. The panoramic camera (Pancam) multispectral, stereoscopic imaging systems on the Mars Exploration Rovers Spirit and Opportunity [1] have acquired and downlinked more than 45,000 images (35 Gbits of data) over more than 700 combined sols of operation on Mars as of early January 2005. A large subset of these images were acquired as part of 26 large multispectral and/or broadband "albedo" panoramas (15 on Spirit, 11 on Opportunity) covering large ranges of azimuth (12 spanning 360 ) and designed to characterize major regional color and albedo characteristics of the landing sites and various points along both rover traverses.
NASA Technical Reports Server (NTRS)
Johnson, R. W.; Hall, J. B., Jr.
1977-01-01
Ocean dumping of waste materials is a significant environmental concern in the New York Bight. One of these waste materials, sewage sludge, was monitored in an experiment conducted in the New York Bight on September 22, 1975. Remote sensing over controlled sewage sludge dumping included an 11-band multispectral scanner, fiver multispectral cameras and one mapping camera. Concurrent in situ water samples were taken and acoustical measurements were made of the sewage sludge plumes. Data were obtained for sewage sludge plumes resulting from line (moving barge) and spot (stationary barge) dumps. Multiple aircraft overpasses were made to evaluate temporal effects on the plume signature.
Airborne multispectral identification of individual cotton plants using consumer-grade cameras
USDA-ARS?s Scientific Manuscript database
Although multispectral remote sensing using consumer-grade cameras has successfully identified fields of small cotton plants, improvements to detection sensitivity are needed to identify individual or small clusters of plants. The imaging sensor of consumer-grade cameras are based on a Bayer patter...
USDA-ARS?s Scientific Manuscript database
Advances in technologies associated with unmanned aerial vehicles (UAVs) has allowed for researchers, farmers and agribusinesses to incorporate UAVs coupled with various imaging systems into data collection activities and aid expert systems for making decisions. Multispectral imageries allow for a q...
Optimal optical filters of fluorescence excitation and emission for poultry fecal detection
USDA-ARS?s Scientific Manuscript database
Purpose: An analytic method to design excitation and emission filters of a multispectral fluorescence imaging system is proposed and was demonstrated in an application to poultry fecal inspection. Methods: A mathematical model of a multispectral imaging system is proposed and its system parameters, ...
Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...
Liu, Changhong; Liu, Wei; Lu, Xuzhong; Ma, Fei; Chen, Wei; Yang, Jianbo; Zheng, Lei
2014-01-01
Multispectral imaging with 19 wavelengths in the range of 405–970 nm has been evaluated for nondestructive determination of firmness, total soluble solids (TSS) content and ripeness stage in strawberry fruit. Several analysis approaches, including partial least squares (PLS), support vector machine (SVM) and back propagation neural network (BPNN), were applied to develop theoretical models for predicting the firmness and TSS of intact strawberry fruit. Compared with PLS and SVM, BPNN considerably improved the performance of multispectral imaging for predicting firmness and total soluble solids content with the correlation coefficient (r) of 0.94 and 0.83, SEP of 0.375 and 0.573, and bias of 0.035 and 0.056, respectively. Subsequently, the ability of multispectral imaging technology to classify fruit based on ripeness stage was tested using SVM and principal component analysis-back propagation neural network (PCA-BPNN) models. The higher classification accuracy of 100% was achieved using SVM model. Moreover, the results of all these models demonstrated that the VIS parts of the spectra were the main contributor to the determination of firmness, TSS content estimation and classification of ripeness stage in strawberry fruit. These results suggest that multispectral imaging, together with suitable analysis model, is a promising technology for rapid estimation of quality attributes and classification of ripeness stage in strawberry fruit. PMID:24505317
Distant Determination of Bilirubin Distribution in Skin by Multi-Spectral Imaging
NASA Astrophysics Data System (ADS)
Saknite, I.; Jakovels, D.; Spigulis, J.
2011-01-01
For mapping the bilirubin distribution in bruised skin the multi-spectral imaging technique was employed, which made it possible to observe temporal changes of the bilirubin content in skin photo-types II and III. The obtained results confirm the clinical potential of this technique for skin bilirubin diagnostics.
Summary of Michigan multispectral investigations program
NASA Technical Reports Server (NTRS)
Legault, R. R.
1970-01-01
The development of techniques to extend spectral signatures in space and time is reported. Signatures that were valid for 30 miles have been extended for 129 miles using transformation and sun sensor data so that a complicated multispectral recognition problem that required 219 learning sets can now be done with 13 learning sets.
USDA-ARS?s Scientific Manuscript database
Using unmanned aircraft systems (UAS) as remote sensing platforms offers the unique ability for repeated deployment for acquisition of high temporal resolution data at very high spatial resolution. Most image acquisitions from UAS have been in the visible bands, while multispectral remote sensing ap...
Employing airborne multispectral digital imagery to map Brazilian pepper infestation in south Texas.
USDA-ARS?s Scientific Manuscript database
A study was conducted in south Texas to determine the feasibility of using airborne multispectral digital imagery for differentiating the invasive plant Brazilian pepper (Schinus terebinthifolius) from other cover types. Imagery obtained in the visible, near infrared, and mid infrared regions of th...
A preliminary report of multispectral scanner data from the Cleveland harbor study
NASA Technical Reports Server (NTRS)
Shook, D.; Raquet, C.; Svehla, R.; Wachter, D.; Salzman, J.; Coney, T.; Gedney, D.
1975-01-01
Imagery obtained from an airborne multispectral scanner is presented. A synoptic view of the entire study area is shown for a number of time periods and for a number of spectral bands. Using several bands, sediment distributions, thermal plumes, and Rhodamine B dye distributions are shown.
USDA-ARS?s Scientific Manuscript database
This research developed a multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet/blue LED excitation for detection of fecal contamination on Golden Delicious apples. Using a hyperspectral line-scan imaging system consisting of an EMCCD camera, spectrograph, an...
Multispectral fluorescence image algorithms for detection of frass on mature tomatoes
USDA-ARS?s Scientific Manuscript database
A multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet LED excitation was developed for the detection of frass contamination on mature tomatoes. The algorithm utilized the fluorescence intensities at five wavebands, 515 nm, 640 nm, 664 nm, 690 nm, and 724 nm...
Results of the spatial resolution simulation for multispectral data (resolution brochures)
NASA Technical Reports Server (NTRS)
1982-01-01
The variable information content of Earth Resource products at different levels of spatial resolution and in different spectral bands is addressed. A low-cost brochure that scientists and laymen could use to visualize the effects of increasing the spatial resolution of multispectral scanner images was produced.
Information content of data from the LANDSAT-4 Thematic Mapper (TM) and multispectral scanner (MSS)
NASA Technical Reports Server (NTRS)
Price, J. C.
1983-01-01
The progress of an investigation to quantify the increased information content of thematic mapper (TM) data as compared to that from the LANDSAT 4 multispectral scanner (MSS) is reported. Two night infrared images were examined and compared with Heat Capacity Mapping Mission data.
Detection of sudden death syndrome using a multispectral imaging sensor
USDA-ARS?s Scientific Manuscript database
Sudden death syndrome (SDS), caused by the fungus Fusarium solani f. sp. glycines, is a widespread mid- to late-season disease with distinctive foliar symptoms. This paper reported the development of an image analysis based method to detect SDS using a multispectral image sensor. A hue, saturation a...
Fusion of remotely sensed data from airborne and ground-based sensors for cotton regrowth study
USDA-ARS?s Scientific Manuscript database
The study investigated the use of aerial multispectral imagery and ground-based hyperspectral data for the discrimination of different crop types and timely detection of cotton plants over large areas. Airborne multispectral imagery and ground-based spectral reflectance data were acquired at the sa...
Analysis of variograms with various sample sizes from a multispectral image
USDA-ARS?s Scientific Manuscript database
Variograms play a crucial role in remote sensing application and geostatistics. In this study, the analysis of variograms with various sample sizes of remotely sensed data was conducted. A 100 X 100 pixel subset was chosen from an aerial multispectral image which contained three wavebands, green, ...
USDA-ARS?s Scientific Manuscript database
Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (= 10 m) and plant canopy (= 1 m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral...
Warrick, J.A.; Mertes, L.A.K.; Siegel, D.A.; Mackenzie, C.
2004-01-01
A technique is presented for estimating suspended sediment concentrations of turbid coastal waters with remotely sensed multi-spectral data. The method improves upon many standard techniques, since it incorporates analyses of multiple wavelength bands (four for Sea-viewing Wide Field of view Sensor (SeaWiFS)) and a nonlinear calibration, which produce highly accurate results (expected errors are approximately ±10%). Further, potential errors produced by erroneous atmospheric calibration in excessively turbid waters and influences of dissolved organic materials, chlorophyll pigments and atmospheric aerosols are limited by a dark pixel subtraction and removal of the violet to blue wavelength bands. Results are presented for the Santa Barbara Channel, California where suspended sediment concentrations ranged from 0–200+ mg l−1 (±20 mg l−1) immediately after large river runoff events. The largest plumes were observed 10–30 km off the coast and occurred immediately following large El Niño winter floods.
Color infrared video mapping of upland and wetland communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, H.E. Jr.; Jensen, J.R.; Hodgson, M.E.
1987-01-01
Color infrared images were obtained using a video remote sensing system at 3000 and 5000 feet over a variety of terrestrial and wetland sites on the Savannah River Plant near Aiken, SC. The terrestrial sites ranged from secondary successional old field areas to even aged pine stands treated with varying levels of sewage sludge. The wetland sites ranged from marsh and macrophyte areas to mature cypress-tupelo swamp forests. The video data were collected in three spectral channels, 0.5-0.6 ..mu..m, 0.6-0.7 ..mu..m, and 0.7-1.1 ..mu..m at a 12.5 mm focal length. The data were converted to digital form and processed withmore » standard techniques. Comparisons of the video images were made with aircraft multispectral scanner (MSS) data collected previously from the same sites. The analyses of the video data indicated that this technique may present a low cost alternative for evaluation of vegetation and landcover types for environmental monitoring and assessment.« less
Investigation of a high speed data handling system for use with multispectral aircraft scanners
NASA Technical Reports Server (NTRS)
Kelly, W. L.; Meredith, B. D.
1978-01-01
A buffer memory data handling technique for use with multispectral aircraft scanners is presented which allows digital data generated at high data rates to be recorded on magnetic tape. A digital memory is used to temporarily store the data for subsequent recording at slower rates during the passive time of the scan line, thereby increasing the maximum data rate recording capability over real-time recording. Three possible implementations are described and the maximum data rate capability is defined in terms of the speed capability of the key hardware components. The maximum data rates can be used to define the maximum ground resolution achievable by a multispectral aircraft scanner using conventional data handling techniques.
Intelligent multi-spectral IR image segmentation
NASA Astrophysics Data System (ADS)
Lu, Thomas; Luong, Andrew; Heim, Stephen; Patel, Maharshi; Chen, Kang; Chao, Tien-Hsin; Chow, Edward; Torres, Gilbert
2017-05-01
This article presents a neural network based multi-spectral image segmentation method. A neural network is trained on the selected features of both the objects and background in the longwave (LW) Infrared (IR) images. Multiple iterations of training are performed until the accuracy of the segmentation reaches satisfactory level. The segmentation boundary of the LW image is used to segment the midwave (MW) and shortwave (SW) IR images. A second neural network detects the local discontinuities and refines the accuracy of the local boundaries. This article compares the neural network based segmentation method to the Wavelet-threshold and Grab-Cut methods. Test results have shown increased accuracy and robustness of this segmentation scheme for multi-spectral IR images.
Shift-variant linear system modeling for multispectral scanners
NASA Astrophysics Data System (ADS)
Amini, Abolfazl M.; Ioup, George E.; Ioup, Juliette W.
1995-07-01
Multispectral scanner data are affected both by the spatial impulse response of the sensor and the spectral response of each channel. To achieve a realistic representation for the output data for a given scene spectral input, both of these effects must be incorporated into a forward model. Each channel can have a different spatial response and each has its characteristic spectral response. A forward model is built which includes the shift invariant spatial broadening of the input for the channels and the shift variant spectral response across channels. The model is applied to the calibrated airborne multispectral scanner as well as the airborne terrestrial applications sensor developed at NASA Stennis Space Center.
NASA Technical Reports Server (NTRS)
Martinko, Edward A.; Merchant, James W.
1988-01-01
During 1986 to 1987, the Kansas Applied Remote Sensing (KARS) Program continued to build upon long-term research efforts oriented towards enhancement and development of technologies for using remote sensing in the inventory and evaluation of land use and renewable resources (both natural and agricultural). These research efforts directly addressed needs and objectives of NASA's Land-Related Global Habitability Program as well as needs of and interests of public agencies and private firms. The KARS Program placed particular emphasis on two major areas: development of intelligent algorithms to improve automated classification of digital multispectral data; and integrating and merging digital multispectral data with ancillary data in spatial modes.
Wavelength band selection method for multispectral target detection.
Karlholm, Jörgen; Renhorn, Ingmar
2002-11-10
A framework is proposed for the selection of wavelength bands for multispectral sensors by use of hyperspectral reference data. Using the results from the detection theory we derive a cost function that is minimized by a set of spectral bands optimal in terms of detection performance for discrimination between a class of small rare targets and clutter with known spectral distribution. The method may be used, e.g., in the design of multispectral infrared search and track and electro-optical missile warning sensors, where a low false-alarm rate and a high-detection probability for detection of small targets against a clutter background are of critical importance, but the required high frame rate prevents the use of hyperspectral sensors.
A procedure for automated land use mapping using remotely sensed multispectral scanner data
NASA Technical Reports Server (NTRS)
Whitley, S. L.
1975-01-01
A system of processing remotely sensed multispectral scanner data by computer programs to produce color-coded land use maps for large areas is described. The procedure is explained, the software and the hardware are described, and an analogous example of the procedure is presented. Detailed descriptions of the multispectral scanners currently in use are provided together with a summary of the background of current land use mapping techniques. The data analysis system used in the procedure and the pattern recognition software used are functionally described. Current efforts by the NASA Earth Resources Laboratory to evaluate operationally a less complex and less costly system are discussed in a separate section.
Spectral mapping of soil organic matter
NASA Technical Reports Server (NTRS)
Kristof, S. J.; Baumgardner, M. F.; Johannsen, C. J.
1974-01-01
Multispectral remote sensing data were examined for use in the mapping of soil organic matter content. Computer-implemented pattern recognition techniques were used to analyze data collected in May 1969 and May 1970 by an airborne multispectral scanner over a 40-km flightline. Two fields within the flightline were selected for intensive study. Approximately 400 surface soil samples from these fields were obtained for organic matter analysis. The analytical data were used as training sets for computer-implemented analysis of the spectral data. It was found that within the geographical limitations included in this study, multispectral data and automatic data processing techniques could be used very effectively to delineate and map surface soils areas containing different levels of soil organic matter.
Optical filters for the Multispectral Instrument (MSI) on Sentinel-2
NASA Astrophysics Data System (ADS)
Merschdorf, M.; Camus, F.; Kirschner, V.
2017-11-01
Multi-spectral optical filters are essential parts of spaceborne optical imagers such as the Multispectral Instrument (MSI) for the Sentinel-2 satellite in the framework of ESA's GMES programme for earth observation. In this development, Jena-Optronik is responsible for the design, manufacturing and test of the spectral filter assemblies. They are the key elements that define the spectral quality of the instrument. Besides the challenging spectral requirements straylight aspects are of crucial importance due to the close neighbourhood of the filter elements to the detector. Results will be presented of the extensive analyses and measurements that have been performed on component and assembly level to ensure the optical performance.
USDA-ARS?s Scientific Manuscript database
The amount of visible and near infrared light reflected by plants varies depending on their health. In this study, multispectral images were acquired by quadcopter for detecting tomato spot wilt virus amongst twenty genetic varieties of peanuts. The plants were visually assessed to acquire ground ...
The trophic classification of lakes using ERTS multispectral scanner data
NASA Technical Reports Server (NTRS)
Blackwell, R. J.; Boland, D. H.
1975-01-01
Lake classification methods based on the use of ERTS data are described. Preliminary classification results obtained by multispectral and digital image processing techniques indicate satisfactory correlation between ERTS data and EPA-supplied water analysis. Techniques for determining lake trophic levels using ERTS data are examined, and data obtained for 20 lakes are discussed.
Engineering evaluation of 24 channel multispectral scanner. [from flight tests
NASA Technical Reports Server (NTRS)
Lambeck, P. F.
1973-01-01
The results of flight tests to evaluate the performance of the 24 channel multispectral scanner are reported. The flight plan and test site are described along with the time response and channel registration. The gain and offset drift, and moire patterns are discussed. Aerial photographs of the test site are included.
NASA Cold Land Processes Experiment (CLPX 2002/03): Spaceborne remote sensing
Robert E. Davis; Thomas H. Painter; Don Cline; Richard Armstrong; Terry Haran; Kyle McDonald; Rick Forster; Kelly Elder
2008-01-01
This paper describes satellite data collected as part of the 2002/03 Cold Land Processes Experiment (CLPX). These data include multispectral and hyperspectral optical imaging, and passive and active microwave observations of the test areas. The CLPX multispectral optical data include the Advanced Very High Resolution Radiometer (AVHRR), the Landsat Thematic Mapper/...
Thematic mapper design parameter investigation
NASA Technical Reports Server (NTRS)
Colby, C. P., Jr.; Wheeler, S. G.
1978-01-01
This study simulated the multispectral data sets to be expected from three different Thematic Mapper configurations, and the ground processing of these data sets by three different resampling techniques. The simulated data sets were then evaluated by processing them for multispectral classification, and the Thematic Mapper configuration, and resampling technique which provided the best classification accuracy were identified.
Information content of data from the LANDSAT 4 Thematic Mapper (TM) and multispectral scanner (MSS)
NASA Technical Reports Server (NTRS)
Price, J. C.
1983-01-01
Simultaneous data acquisition by the LANDSAT 4 thematic mapper and the multispectral scanner permits the comparison of the two types of image data with respect to engineering performance and data applications. Progress in the evaluation of information content of matching scenes in agricultural areas is briefly reported.
USDA-ARS?s Scientific Manuscript database
This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...
Apollo 9 Mission image - S0-65 Multispectral Photography - Mexico
2009-02-19
AS09-26A-3768A (10 March 1969) --- Color infrared photograph of Mexico: Cerro Malinche, east end of neo-volcanic plateau, as seen from the Apollo 9 spacecraft during its 109th revolution of Earth. This picture was taken as a part of the SO65 Multispectral Terrain Photography Experiment.
NASA Technical Reports Server (NTRS)
Hiesinger, H.; Jaumann, R.; Neukum, G.
1993-01-01
Both the Apollo 17 and the Mare Serenitatis region were observed by Galileo during its fly-by in December 1992. We used earth-based multispectral data to define mare units which then can be compared with the results of the Galileo SSI data evaluation.
NASA Technical Reports Server (NTRS)
Ellefsen, R.; Swain, P. H.; Wray, J. R.
1973-01-01
The study is reported to develop computer produced urban land use maps using multispectral scanner data from a satellite is reported. Data processing is discussed along with the results of the San Francisco Bay area, which was chosen as the test area.
USDA-ARS?s Scientific Manuscript database
Tomatoes, an important agricultural product in fresh-cut markets, are sometimes a source of foodborne illness, mainly Salmonella spp. Growth cracks on tomatoes can be a pathway for bacteria, so its detection prior to consumption is important for public health. In this study, multispectral Visible/Ne...
USDA-ARS?s Scientific Manuscript database
Citrus greening or Huanglongbing (HLB) is a devastating disease spread in many citrus groves since first found in 2005 in Florida. Multispectral (MS) and hyperspectral (HS) airborne images of citrus groves in Florida were taken to detect citrus greening infected trees in 2007 and 2010. Ground truthi...
USDA-ARS?s Scientific Manuscript database
Structured-illumination reflectance imaging (SIRI) is a new, promising imaging modality for enhancing quality detection of food. A liquid-crystal tunable filter (LCTF)-based multispectral SIRI system was developed and used for selecting optimal wavebands to detect bruising in apples. Immediately aft...
Multispectral Resource Sampler: Proof of concept. Literature survey of bidirectional reflectance
NASA Technical Reports Server (NTRS)
1981-01-01
A bibliography compiled in order to give a comprehensive review of previous work in scene bidirectional reflectance, particularly those studies relevant to the Multispectral Resource Sampler (MRS) is presented. The bibliography contains 124 abstracts. In addition a synthesis of the literature results is given along with background information concerning MRS.
Improvement of a Harvester Based, Multispectral, Seed Cotton Fiber Quality Sensor
USDA-ARS?s Scientific Manuscript database
A multispectral sensor for in-situ seed cotton fiber quality measurement was developed and tested at Texas A&M University. Results of initial testing of the sensor using machine harvested seed cotton have shown promise. Improvements have been made to the system and the measurement method to meet t...
Polarimetric Multispectral Imaging Technology
NASA Technical Reports Server (NTRS)
Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.
1993-01-01
The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.
Fluorescence multispectral imaging-based diagnostic system for atherosclerosis.
Ho, Cassandra Su Lyn; Horiuchi, Toshikatsu; Taniguchi, Hiroaki; Umetsu, Araya; Hagisawa, Kohsuke; Iwaya, Keiichi; Nakai, Kanji; Azmi, Amalina; Zulaziz, Natasha; Azhim, Azran; Shinomiya, Nariyoshi; Morimoto, Yuji
2016-08-20
Composition of atherosclerotic arterial walls is rich in lipids such as cholesterol, unlike normal arterial walls. In this study, we aimed to utilize this difference to diagnose atherosclerosis via multispectral fluorescence imaging, which allows for identification of fluorescence originating from the substance in the arterial wall. The inner surface of extracted arteries (rabbit abdominal aorta, human coronary artery) was illuminated by 405 nm excitation light and multispectral fluorescence images were obtained. Pathological examination of human coronary artery samples were carried out and thickness of arteries were calculated by measuring combined media and intima thickness. The fluorescence spectra in atherosclerotic sites were different from those in normal sites. Multiple regions of interest (ROI) were selected within each sample and a ratio between two fluorescence intensity differences (where each intensity difference is calculated between an identifier wavelength and a base wavelength) from each ROI was determined, allowing for discrimination of atherosclerotic sites. Fluorescence intensity and thickness of artery were found to be significantly correlated. These results indicate that multispectral fluorescence imaging provides qualitative and quantitative evaluations of atherosclerosis and is therefore a viable method of diagnosing the disease.
A spectral reflectance estimation technique using multispectral data from the Viking lander camera
NASA Technical Reports Server (NTRS)
Park, S. K.; Huck, F. O.
1976-01-01
A technique is formulated for constructing spectral reflectance curve estimates from multispectral data obtained with the Viking lander camera. The multispectral data are limited to six spectral channels in the wavelength range from 0.4 to 1.1 micrometers and most of these channels exhibit appreciable out-of-band response. The output of each channel is expressed as a linear (integral) function of the (known) solar irradiance, atmospheric transmittance, and camera spectral responsivity and the (unknown) spectral responsivity and the (unknown) spectral reflectance. This produces six equations which are used to determine the coefficients in a representation of the spectral reflectance as a linear combination of known basis functions. Natural cubic spline reflectance estimates are produced for a variety of materials that can be reasonably expected to occur on Mars. In each case the dominant reflectance features are accurately reproduced, but small period features are lost due to the limited number of channels. This technique may be a valuable aid in selecting the number of spectral channels and their responsivity shapes when designing a multispectral imaging system.
NASA Astrophysics Data System (ADS)
Manessa, Masita Dwi Mandini; Kanno, Ariyo; Sagawa, Tatsuyuki; Sekine, Masahiko; Nurdin, Nurjannah
2018-01-01
Lyzenga's multispectral bathymetry formula has attracted considerable interest due to its simplicity. However, there has been little discussion of the effect that variation in optical conditions and bottom types-which commonly appears in coral reef environments-has on this formula's results. The present paper evaluates Lyzenga's multispectral bathymetry formula for a variety of optical conditions and bottom types. A noiseless dataset of above-water remote sensing reflectance from WorldView-2 images over Case-1 shallow coral reef water is simulated using a radiative transfer model. The simulation-based assessment shows that Lyzenga's formula performs robustly, with adequate generality and good accuracy, under a range of conditions. As expected, the influence of bottom type on depth estimation accuracy is far greater than the influence of other optical parameters, i.e., chlorophyll-a concentration and solar zenith angle. Further, based on the simulation dataset, Lyzenga's formula estimates depth when the bottom type is unknown almost as accurately as when the bottom type is known. This study provides a better understanding of Lyzenga's multispectral bathymetry formula under various optical conditions and bottom types.
Pansharpening Techniques to Detect Mass Monument Damaging in Iraq
NASA Astrophysics Data System (ADS)
Baiocchi, V.; Bianchi, A.; Maddaluno, C.; Vidale, M.
2017-05-01
The recent mass destructions of monuments in Iraq cannot be monitored with the terrestrial survey methodologies, for obvious reasons of safety. For the same reasons, it's not advisable the use of classical aerial photogrammetry, so it was obvious to think to the use of multispectral Very High Resolution (VHR) satellite imagery. Nowadays VHR satellite images resolutions are very near airborne photogrammetrical images and usually they are acquired in multispectral mode. The combination of the various bands of the images is called pan-sharpening and it can be carried on using different algorithms and strategies. The correct pansharpening methodology, for a specific image, must be chosen considering the specific multispectral characteristics of the satellite used and the particular application. In this paper a first definition of guidelines for the use of VHR multispectral imagery to detect monument destruction in unsafe area, is reported. The proposed methodology, agreed with UNESCO and soon to be used in Libya for the coastal area, has produced a first report delivered to the Iraqi authorities. Some of the most evident examples are reported to show the possible capabilities of identification of damages using VHR images.
NASA Astrophysics Data System (ADS)
Onojeghuo, Alex Okiemute; Onojeghuo, Ajoke Ruth
2017-07-01
This study investigated the combined use of multispectral/hyperspectral imagery and LiDAR data for habitat mapping across parts of south Cumbria, North West England. The methodology adopted in this study integrated spectral information contained in pansharp QuickBird multispectral/AISA Eagle hyperspectral imagery and LiDAR-derived measures with object-based machine learning classifiers and ensemble analysis techniques. Using the LiDAR point cloud data, elevation models (such as the Digital Surface Model and Digital Terrain Model raster) and intensity features were extracted directly. The LiDAR-derived measures exploited in this study included Canopy Height Model, intensity and topographic information (i.e. mean, maximum and standard deviation). These three LiDAR measures were combined with spectral information contained in the pansharp QuickBird and Eagle MNF transformed imagery for image classification experiments. A fusion of pansharp QuickBird multispectral and Eagle MNF hyperspectral imagery with all LiDAR-derived measures generated the best classification accuracies, 89.8 and 92.6% respectively. These results were generated with the Support Vector Machine and Random Forest machine learning algorithms respectively. The ensemble analysis of all three learning machine classifiers for the pansharp QuickBird and Eagle MNF fused data outputs did not significantly increase the overall classification accuracy. Results of the study demonstrate the potential of combining either very high spatial resolution multispectral or hyperspectral imagery with LiDAR data for habitat mapping.
Atmospheric correction for remote sensing image based on multi-spectral information
NASA Astrophysics Data System (ADS)
Wang, Yu; He, Hongyan; Tan, Wei; Qi, Wenwen
2018-03-01
The light collected from remote sensors taken from space must transit through the Earth's atmosphere. All satellite images are affected at some level by lightwave scattering and absorption from aerosols, water vapor and particulates in the atmosphere. For generating high-quality scientific data, atmospheric correction is required to remove atmospheric effects and to convert digital number (DN) values to surface reflectance (SR). Every optical satellite in orbit observes the earth through the same atmosphere, but each satellite image is impacted differently because atmospheric conditions are constantly changing. A physics-based detailed radiative transfer model 6SV requires a lot of key ancillary information about the atmospheric conditions at the acquisition time. This paper investigates to achieve the simultaneous acquisition of atmospheric radiation parameters based on the multi-spectral information, in order to improve the estimates of surface reflectance through physics-based atmospheric correction. Ancillary information on the aerosol optical depth (AOD) and total water vapor (TWV) derived from the multi-spectral information based on specific spectral properties was used for the 6SV model. The experimentation was carried out on images of Sentinel-2, which carries a Multispectral Instrument (MSI), recording in 13 spectral bands, covering a wide range of wavelengths from 440 up to 2200 nm. The results suggest that per-pixel atmospheric correction through 6SV model, integrating AOD and TWV derived from multispectral information, is better suited for accurate analysis of satellite images and quantitative remote sensing application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getman, Daniel J
2008-01-01
Many attempts to observe changes in terrestrial systems over time would be significantly enhanced if it were possible to improve the accuracy of classifications of low-resolution historic satellite data. In an effort to examine improving the accuracy of historic satellite image classification by combining satellite and air photo data, two experiments were undertaken in which low-resolution multispectral data and high-resolution panchromatic data were combined and then classified using the ECHO spectral-spatial image classification algorithm and the Maximum Likelihood technique. The multispectral data consisted of 6 multispectral channels (30-meter pixel resolution) from Landsat 7. These data were augmented with panchromatic datamore » (15m pixel resolution) from Landsat 7 in the first experiment, and with a mosaic of digital aerial photography (1m pixel resolution) in the second. The addition of the Landsat 7 panchromatic data provided a significant improvement in the accuracy of classifications made using the ECHO algorithm. Although the inclusion of aerial photography provided an improvement in accuracy, this improvement was only statistically significant at a 40-60% level. These results suggest that once error levels associated with combining aerial photography and multispectral satellite data are reduced, this approach has the potential to significantly enhance the precision and accuracy of classifications made using historic remotely sensed data, as a way to extend the time range of efforts to track temporal changes in terrestrial systems.« less
NASA Astrophysics Data System (ADS)
Klaessens, John H. G. M.; Nelisse, Martin; Verdaasdonk, Rudolf M.; Noordmans, Herke Jan
2013-03-01
Clinical interventions can cause changes in tissue perfusion, oxygenation or temperature. Real-time imaging of these phenomena could be useful for surgical strategy or understanding of physiological regulation mechanisms. Two noncontact imaging techniques were applied for imaging of large tissue areas: LED based multispectral imaging (MSI, 17 different wavelengths 370 nm-880 nm) and thermal imaging (7.5 to 13.5 μm). Oxygenation concentration changes were calculated using different analyzing methods. The advantages of these methods are presented for stationary and dynamic applications. Concentration calculations of chromophores in tissue require right choices of wavelengths The effects of different wavelength choices for hemoglobin concentration calculations were studied in laboratory conditions and consequently applied in clinical studies. Corrections for interferences during the clinical registrations (ambient light fluctuations, tissue movements) were performed. The wavelength dependency of the algorithms were studied and wavelength sets with the best results will be presented. The multispectral and thermal imaging systems were applied during clinical intervention studies: reperfusion of tissue flap transplantation (ENT), effectiveness of local anesthetic block and during open brain surgery in patients with epileptic seizures. The LED multispectral imaging system successfully imaged the perfusion and oxygenation changes during clinical interventions. The thermal images show local heat distributions over tissue areas as a result of changes in tissue perfusion. Multispectral imaging and thermal imaging provide complementary information and are promising techniques for real-time diagnostics of physiological processes in medicine.
Applying reconfigurable hardware to the analysis of multispectral and hyperspectral imagery
NASA Astrophysics Data System (ADS)
Leeser, Miriam E.; Belanovic, Pavle; Estlick, Michael; Gokhale, Maya; Szymanski, John J.; Theiler, James P.
2002-01-01
Unsupervised clustering is a powerful technique for processing multispectral and hyperspectral images. Last year, we reported on an implementation of k-means clustering for multispectral images. Our implementation in reconfigurable hardware processed 10 channel multispectral images two orders of magnitude faster than a software implementation of the same algorithm. The advantage of using reconfigurable hardware to accelerate k-means clustering is clear; the disadvantage is the hardware implementation worked for one specific dataset. It is a non-trivial task to change this implementation to handle a dataset with different number of spectral channels, bits per spectral channel, or number of pixels; or to change the number of clusters. These changes required knowledge of the hardware design process and could take several days of a designer's time. Since multispectral data sets come in many shapes and sizes, being able to easily change the k-means implementation for these different data sets is important. For this reason, we have developed a parameterized implementation of the k-means algorithm. Our design is parameterized by the number of pixels in an image, the number of channels per pixel, and the number of bits per channel as well as the number of clusters. These parameters can easily be changed in a few minutes by someone not familiar with the design process. The resulting implementation is very close in performance to the original hardware implementation. It has the added advantage that the parameterized design compiles approximately three times faster than the original.
NASA Astrophysics Data System (ADS)
Kim, Manjae; Kim, Sewoong; Hwang, Minjoo; Kim, Jihun; Je, Minkyu; Jang, Jae Eun; Lee, Dong Hun; Hwang, Jae Youn
2017-02-01
To date, the incident rates of various skin diseases have increased due to hereditary and environmental factors including stress, irregular diet, pollution, etc. Among these skin diseases, seborrheic dermatitis and psoriasis are a chronic/relapsing dermatitis involving infection and temporary alopecia. However, they typically exhibit similar symptoms, thus resulting in difficulty in discrimination between them. To prevent their associated complications and appropriate treatments for them, it is crucial to discriminate between seborrheic dermatitis and psoriasis with high specificity and sensitivity and further continuously/quantitatively to monitor the skin lesions during their treatment at other locations besides a hospital. Thus, we here demonstrate a mobile multispectral imaging system connected to a smartphone for selfdiagnosis of seborrheic dermatitis and further discrimination between seborrheic dermatitis and psoriasis on the scalp, which is the more challenging case. Using the system developed, multispectral imaging and analysis of seborrheic dermatitis and psoriasis on the scalp was carried out. It was here found that the spectral signatures of seborrheic dermatitis and psoriasis were discernable and thus seborrheic dermatitis on the scalp could be distinguished from psoriasis by using the system. In particular, the smartphone-based multispectral imaging and analysis moreover offered better discrimination between seborrheic dermatitis and psoriasis than the RGB imaging and analysis. These results suggested that the multispectral imaging system based on a smartphone has the potential for self-diagnosis of seborrheic dermatitis with high portability and specificity.
NASA Astrophysics Data System (ADS)
Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz
2015-10-01
In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.
Evaluation of Chilling Injury in Mangoes Using Multispectral Imaging.
Hashim, Norhashila; Onwude, Daniel I; Osman, Muhamad Syafiq
2018-05-01
Commodities originating from tropical and subtropical climes are prone to chilling injury (CI). This injury could affect the quality and marketing potential of mango after harvest. This will later affect the quality of the produce and subsequent consumer acceptance. In this study, the appearance of CI symptoms in mango was evaluated non-destructively using multispectral imaging. The fruit were stored at 4 °C to induce CI and 12 °C to preserve the quality of the control samples for 4 days before they were taken out and stored at ambient temperature for 24 hr. Measurements using multispectral imaging and standard reference methods were conducted before and after storage. The performance of multispectral imaging was compared using standard reference properties including moisture content (MC), total soluble solids (TSS) content, firmness, pH, and color. Least square support vector machine (LS-SVM) combined with principal component analysis (PCA) were used to discriminate CI samples with those of control and before storage, respectively. The statistical results demonstrated significant changes in the reference quality properties of samples before and after storage. The results also revealed that multispectral parameters have a strong correlation with the reference parameters of L * , a * , TSS, and MC. The MC and L * were found to be the best reference parameters in identifying the severity of CI in mangoes. PCA and LS-SVM analysis indicated that the fruit were successfully classified into their categories, that is, before storage, control, and CI. This indicated that the multispectral imaging technique is feasible for detecting CI in mangoes during postharvest storage and processing. This paper demonstrates a fast, easy, and accurate method of identifying the effect of cold storage on mango, nondestructively. The method presented in this paper can be used industrially to efficiently differentiate different fruits from each other after low temperature storage. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Renaud, Rémi; Bendahmane, Mounir; Chery, Romain; Martin, Claire; Gurden, Hirac; Pain, Frederic
2012-06-01
Wide field multispectral imaging of light backscattered by brain tissues provides maps of hemodynamics changes (total blood volume and oxygenation) following activation. This technique relies on the fit of the reflectance images obtain at two or more wavelengths using a modified Beer-Lambert law1,2. It has been successfully applied to study the activation of several sensory cortices in the anesthetized rodent using visible light1-5. We have carried out recently the first multispectral imaging in the olfactory bulb6 (OB) of anesthetized rats. However, the optimization of wavelengths choice has not been discussed in terms of cross talk and uniqueness of the estimated parameters (blood volume and saturation maps) although this point was shown to be crucial for similar studies in Diffuse Optical Imaging in humans7-10. We have studied theoretically and experimentally the optimal sets of wavelength for multispectral imaging of rodent brain activation in the visible. Sets of optimal wavelengths have been identified and validated in vivo for multispectral imaging of the OB of rats following odor stimulus. We studied the influence of the wavelengths sets on the magnitude and time courses of the oxy- and deoxyhemoglobin concentration variations as well as on the spatial extent of activated brain areas following stimulation. Beyond the estimation of hemodynamic parameters from multispectral reflectance data, we observed repeatedly and for all wavelengths a decrease of light reflectance. For wavelengths longer than 590 nm, these observations differ from those observed in the somatosensory and barrel cortex and question the basis of the reflectance changes during activation in the OB. To solve this issue, Monte Carlo simulations (MCS) have been carried out to assess the relative contribution of absorption, scattering and anisotropy changes to the intrinsic optical imaging signals in somatosensory cortex (SsC) and OB model.
NASA Astrophysics Data System (ADS)
Meyer, Hanna; Lehnert, Lukas W.; Wang, Yun; Reudenbach, Christoph; Nauss, Thomas; Bendix, Jörg
2016-04-01
Pastoralism is the dominant land-use on the Qinghai-Tibet-Plateau (QTP) providing the major economic resource for the local population. However, the pastures are highly supposed to be affected by ongoing degradation whose extent is still disputed. This study uses hyperspectral in situ measurements and multispectral satellite images to assess vegetation cover and above ground biomass (AGB) as proxies of pasture degradation on a regional scale. Using Random Forests in conjunction with recursive feature selection as modeling tool, it is tested whether the full hyperspectral information is needed or if multispectral information is sufficient to accurately estimate vegetation cover and AGB. To regionalize pasture degradation proxies, the transferability of the locally derived models to high resolution multispectral satellite data is assessed. For this purpose, 1183 hyperspectral measurements and vegetation records were sampled at 18 locations on the QTP. AGB was determined on 25 0.5x0.5m plots. Proxies for pasture degradation were derived from the spectra by calculating narrow-band indices (NBI). Using the NBI as predictor variables vegetation cover and AGB were modeled. Models were calculated using the hyperspectral data as well as the same data resampled to WorldView-2, QuickBird and RapidEye channels. The hyperspectral results were compared to the multispectral results. Finally, the models were applied to satellite data to map vegetation cover and AGB on a regional scale. Vegetation cover was accurately predicted by Random Forest if hyperspectral measurements were used. In contrast, errors in AGB estimations were considerably higher. Only small differences in accuracy were observed between the models based on hyper- compared to multispectral data. The application of the models to satellite images generally resulted in an increase of the estimation error. Though this reflects the challenge of applying in situ measurements to satellite data, the results still show a high potential to map pasture degradation proxies on the QTP even for larger scales.
Farberg, Aaron S; Winkelmann, Richard R; Tucker, Natalie; White, Richard; Rigel, Darrell S
2017-09-01
BACKGROUND: Early diagnosis of melanoma is critical to survival. New technologies, such as a multi-spectral digital skin lesion analysis (MSDSLA) device [MelaFind, STRATA Skin Sciences, Horsham, Pennsylvania] may be useful to enhance clinician evaluation of concerning pigmented skin lesions. Previous studies evaluated the effect of only the binary output. OBJECTIVE: The objective of this study was to determine how decisions dermatologists make regarding pigmented lesion biopsies are impacted by providing both the underlying classifier score (CS) and associated probability risk provided by multi-spectral digital skin lesion analysis. This outcome was also compared against the improvement reported with the provision of only the binary output. METHODS: Dermatologists attending an educational conference evaluated 50 pigmented lesions (25 melanomas and 25 benign lesions). Participants were asked if they would biopsy the lesion based on clinical images, and were asked this question again after being shown multi-spectral digital skin lesion analysis data that included the probability graphs and classifier score. RESULTS: Data were analyzed from a total of 160 United States board-certified dermatologists. Biopsy sensitivity for melanoma improved from 76 percent following clinical evaluation to 92 percent after quantitative multi-spectral digital skin lesion analysis information was provided ( p <0.0001). Specificity improved from 52 percent to 79 percent ( p <0.0001). The positive predictive value increased from 61 percent to 81 percent ( p <0.01) when the quantitative data were provided. Negative predictive value also increased (68% vs. 91%, p<0.01), and overall biopsy accuracy was greater with multi-spectral digital skin lesion analysis (64% vs. 86%, p <0.001). Interrater reliability improved (intraclass correlation 0.466 before, 0.559 after). CONCLUSION: Incorporating the classifier score and probability data into physician evaluation of pigmented lesions led to both increased sensitivity and specificity, thereby resulting in more accurate biopsy decisions.
NASA Technical Reports Server (NTRS)
1982-01-01
The format of the HDT-AM product which contains partially processed LANDSAT D and D Prime multispectral scanner image data is defined. Recorded-data formats, tape format, and major frame types are described.
Resolution Enhancement of Hyperion Hyperspectral Data using Ikonos Multispectral Data
2007-09-01
spatial - resolution hyperspectral image to produce a sharpened product. The result is a product that has the spectral properties of the ...multispectral sensors. In this work, we examine the benefits of combining data from high- spatial - resolution , low- spectral - resolution spectral imaging...sensors with data obtained from high- spectral - resolution , low- spatial - resolution spectral imaging sensors.
NASA Technical Reports Server (NTRS)
Norwood, V. T.; Fermelia, L. R.; Tadler, G. A.
1972-01-01
The four-band Multispectral Scanner System (MSS) is discussed. Included is a description of the MSS with major emphasis on the flight subsystem (scanner and multiplexer), the theory for the MSS calibration system processing techniques, system calibration data, and a summary of the performance of the two four-band MSS systems.
Airborne multispectral data collection
NASA Technical Reports Server (NTRS)
Hasell, P. G., Jr.
1974-01-01
Multispectral mapping accomplishments using the M7 airborne scanner are summarized. The M7 system is described and overall results of specific data collection flight operations since June 1971 are reviewed. A major advantage of the M7 system is that all spectral bands of the scanner are in common spatial registration, whereas in the M5 they were not.
Multispectral Landsat images of Antartica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucchitta, B.K.; Bowell, J.A.; Edwards, K.L.
1988-01-01
The U.S. Geological Survey has a program to map Antarctica by using colored, digitally enhanced Landsat multispectral scanner images to increase existing map coverage and to improve upon previously published Landsat maps. This report is a compilation of images and image mosaic that covers four complete and two partial 1:250,000-scale quadrangles of the McMurdo Sound region.
T.C. Knight; A.W. Ezell; D.R. Shaw; J.D. Byrd; D.L. Evans
2004-01-01
Multispectral reflectance data were collected in midrotation loblolly pine plantations during spring, summer, and fall seasons with a hand-held spectroradiometer. All data were analyzed by discriminant analysis. Analyses resulted in species classifications with accuracies of 83 percent during the spring season, 54 percent during summer, and 82 percent during fall....
Prototype active scanner for nighttime oil spill mapping and classification
NASA Technical Reports Server (NTRS)
Sandness, G. A.; Ailes, S. B.
1977-01-01
A prototype, active, aerial scanner system was constructed for nighttime water pollution detection and nighttime multispectral imaging of the ground. An arc lamp was used to produce the transmitted light and four detector channels provided a multispectral measurement capability. The feasibility of the design concept was demonstrated by laboratory and flight tests of the prototype system.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a Jet Propulsion Laboratory SBIR (Small Business Innovative Research), Cambridge Research and Instrumentation Inc., developed a new class of filters for the construction of small, low-cost multispectral imagers. The VariSpec liquid crystal enables users to obtain multi-spectral, ultra-high resolution images using a monochrome CCD (charge coupled device) camera. Application areas include biomedical imaging, remote sensing, and machine vision.
Pattern recognition: A basis for remote sensing data analysis
NASA Technical Reports Server (NTRS)
Swain, P. H.
1973-01-01
The theoretical basis for the pattern-recognition-oriented algorithms used in the multispectral data analysis software system is discussed. A model of a general pattern recognition system is presented. The receptor or sensor is usually a multispectral scanner. For each ground resolution element the receptor produces n numbers or measurements corresponding to the n channels of the scanner.
Bandwidth compression of multispectral satellite imagery
NASA Technical Reports Server (NTRS)
Habibi, A.
1978-01-01
The results of two studies aimed at developing efficient adaptive and nonadaptive techniques for compressing the bandwidth of multispectral images are summarized. These techniques are evaluated and compared using various optimality criteria including MSE, SNR, and recognition accuracy of the bandwidth compressed images. As an example of future requirements, the bandwidth requirements for the proposed Landsat-D Thematic Mapper are considered.
NASA Technical Reports Server (NTRS)
Malila, W. A.; Crane, R. B.; Richardson, W.
1973-01-01
Recent improvements in remote sensor technology carry implications for data processing. Multispectral line scanners now exist that can collect data simultaneously and in registration in multiple channels at both reflective and thermal (emissive) wavelengths. Progress in dealing with two resultant recognition processing problems is discussed: (1) More channels mean higher processing costs; to combat these costs, a new and faster procedure for selecting subsets of channels has been developed. (2) Differences between thermal and reflective characteristics influence recognition processing; to illustrate the magnitude of these differences, some explanatory calculations are presented. Also introduced, is a different way to process multispectral scanner data, namely, radiation balance mapping and related procedures. Techniques and potentials are discussed and examples presented.
Multispectral imaging determination of pigment concentration profiles in meat
NASA Astrophysics Data System (ADS)
Sáenz Gamasa, Carlos; Hernández Salueña, Begoña; Alberdi Odriozola, Coro; Alfonso Ábrego, Santiago; Berrogui Arizu, Miguel; Diñeiro Rubial, José Manuel
2006-01-01
The possibility of using multispectral techniques to determine the concentration profiles of myoglobin derivatives as a function of the distance to the meat surface during meat oxygenation is demonstrated. Reduced myoglobin (Mb) oxygenated oxymyoglobin (MbO II) and oxidized Metmyoglobin (MMb) concentration profiles are determined with a spatial resolutions better than of 0.01235 mm/pixel. Pigment concentrations are calculated using (K/S) ratios at isobestic points (474, 525, 572 and 610 nm) of the three forms of myoglobin pigments. This technique greatly improves previous methods, based on visual determination of pigment layers by their color, which allowed only estimations of pigment layer position and width. The multispectral technique avoids observer and illumination related bias in the pigment layer determination.
Investigation related to multispectral imaging systems
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Erickson, J. D.
1974-01-01
A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.
The NEAR Multispectral Imager.
NASA Astrophysics Data System (ADS)
Hawkins, S. E., III
1998-06-01
Multispectral Imager, one of the primary instruments on the Near Earth Asteroid Rendezvous (NEAR) spacecraft, uses a five-element refractive optics telescope, an eight-position filter wheel, and a charge-coupled device detector to acquire images over its sensitive wavelength range of ≍400 - 1100 nm. The primary science objectives of the Multispectral Imager are to determine the morphology and composition of the surface of asteroid 433 Eros. The camera will have a critical role in navigating to the asteroid. Seven narrowband spectral filters have been selected to provide multicolor imaging for comparative studies with previous observations of asteroids in the same class as Eros. The eighth filter is broadband and will be used for optical navigation. An overview of the instrument is presented, and design parameters and tradeoffs are discussed.
Urban land use monitoring from computer-implemented processing of airborne multispectral data
NASA Technical Reports Server (NTRS)
Todd, W. J.; Mausel, P. W.; Baumgardner, M. F.
1976-01-01
Machine processing techniques were applied to multispectral data obtained from airborne scanners at an elevation of 600 meters over central Indianapolis in August, 1972. Computer analysis of these spectral data indicate that roads (two types), roof tops (three types), dense grass (two types), sparse grass (two types), trees, bare soil, and water (two types) can be accurately identified. Using computers, it is possible to determine land uses from analysis of type, size, shape, and spatial associations of earth surface images identified from multispectral data. Land use data developed through machine processing techniques can be programmed to monitor land use changes, simulate land use conditions, and provide impact statistics that are required to analyze stresses placed on spatial systems.
An improved feature extraction algorithm based on KAZE for multi-spectral image
NASA Astrophysics Data System (ADS)
Yang, Jianping; Li, Jun
2018-02-01
Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.
NASA Technical Reports Server (NTRS)
Mobasseri, B. G.; Mcgillem, C. D.; Anuta, P. E. (Principal Investigator)
1978-01-01
The author has identified the following significant results. The probability of correct classification of various populations in data was defined as the primary performance index. The multispectral data being of multiclass nature as well, required a Bayes error estimation procedure that was dependent on a set of class statistics alone. The classification error was expressed in terms of an N dimensional integral, where N was the dimensionality of the feature space. The multispectral scanner spatial model was represented by a linear shift, invariant multiple, port system where the N spectral bands comprised the input processes. The scanner characteristic function, the relationship governing the transformation of the input spatial, and hence, spectral correlation matrices through the systems, was developed.
Registration of 3D and Multispectral Data for the Study of Cultural Heritage Surfaces
Chane, Camille Simon; Schütze, Rainer; Boochs, Frank; Marzani, Franck S.
2013-01-01
We present a technique for the multi-sensor registration of featureless datasets based on the photogrammetric tracking of the acquisition systems in use. This method is developed for the in situ study of cultural heritage objects and is tested by digitizing a small canvas successively with a 3D digitization system and a multispectral camera while simultaneously tracking the acquisition systems with four cameras and using a cubic target frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions and to project the multispectral acquisitions on the 3D model. PMID:23322103
Hydrologic land use classification of the Patuxent River watershed using remotely sensed data
NASA Technical Reports Server (NTRS)
Dallam, W. C.; Rango, A.; Shima, L.
1975-01-01
The Patuxent River Watershed is located in central Maryland between Baltimore and Washington, D.C. and is approximately 2330 sq km in area and 175 km long. This region is now at a critical point because of major concerns such as water management and quality, flooding and land use within the watershed. Data from the NASA-directed LANDSAT and Earth Resources Aircraft Programs were used to provide a new dimension in information collection and processing for the management of watersheds. Digital data from LANDSAT-1 were analyzed along with selected IR photography from U-2 flight number 74-060B taken 28 April 1974, which was digitized in three channels. Processing of the data was accomplished using a multispectral analysis system. Land use themes consisting of surface water, wetlands, forest, residential, cropland/pasture, urban, and extractive were developed and delineated through the watershed. Area measurements of watershed themes were obtained and will serve as a calibration input to a deterministic hydrologic model on a sub-watershed. Using the derived residential and urban theme areas from LANDSAT an estimated basin imperviousness was also calculated. Thematic maps were produced at 1:62,500 scale. Floodprone areas were also classified and delineated at a scale of 1:24,000. Comparison with standard floodprone area maps at the same scale have indicated a few areas of discrepancy. Such information can be used for updating or checking floodprone area boundaries as well as monitoring changes in floodplain areas.
Ouyang, Zu-Tao; Gao, Yu; Xie, Xiao; Guo, Hai-Qiang; Zhang, Ting-Ting; Zhao, Bin
2013-01-01
Spartina alterniflora has widely invaded the saltmarshes of the Yangtze River Estuary and brought negative effects to the ecosystem. Remote sensing technique has recently been used to monitor its distribution, but the similar morphology and canopy structure among S. alterniflora and its neighbor species make it difficult even with high-resolution images. Nevertheless, these species have divergence on phenological stages throughout the year, which cause distinguishing spectral characteristics among them and provide opportunities for discrimination. The field spectra of the S. alterniflora community as well as its major victims, native Phragmites australis and Scirpus mariqueter, were measured in 2009 and 2010 at multi-phenological stages in the Yangtze River Estuary, aiming to find the most appropriate periods for mapping S. alterniflora. Collected spectral data were analyzed separately for every stage firstly by re-sampling reflectance curves into continued 5-nm-wide hyper-spectral bands and then by re-sampling into broad multi-spectral bands – the same as the band ranges of the TM sensor, as well as calculating commonly used vegetation indices. The results showed that differences among saltmarsh communities’ spectral characteristics were affected by their phenological stages. The germination and early vegetative growth stage and the flowering stage were probably the best timings to identify S. alterniflora. Vegetation indices like NDVI, ANVI, VNVI, and RVI are likely to enhance spectral separability and also make it possible to discriminate S. alterniflora at its withering stage. PMID:23826265
1973-07-01
SL3-34-336 (July-September 1973) --- A vertical view of a portion of northern California near the Pacific coast as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the Skylab space station. A cloud deck covers the Pacific Ocean. Most of Cape Mendocino is clear of clouds and extends into the Pacific as the westernmost part of California. The sinuous pattern of the Bel River (in center) flows northward into the ocean and is characteristic of the rivers that drain the coastal ranges. This area is immediately southeast of Eureka. During Skylab 3 extensive forest fires occurred near Briceland and the smoke rising from the fires is clearly visible next to the cloud bank. Redwood and fir forests are sources of lumber in this region; and a variety of clear cut (timbering) patterns appear as light against the dark forest. The patterns appear to be related to the topography. Analysis of this photograph will aid Dr. P.G. Langley, Earth Satellite Corporation, in developing methods for forest inventory using space photography. Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA
2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladden, J.B.
2003-08-28
Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is amore » United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay- caps on the Mixed Waste Management Facility (MWMF). This report first describes the principles of hyperspectral remote sensing. In situ measurement and hyperspectral remote sensing methods used to analyze hazardous waste sites on the Savannah River Site are then presented.« less
Using multi-spectral imagery to detect and map stress induced by Russian wheat aphid
NASA Astrophysics Data System (ADS)
Backoulou, Georges Ferdinand
Scope and Method of Study. The rationale of this study was to assess the stress in wheat field induced by the Russian wheat aphid using multispectral imagery. The study was conducted to (a) determine the relationship between RWA and edaphic and topographic factors; (b) identify and quantify the spatial pattern of RWA infestation within wheat fields; (c) differentiate the stress induced by RWA from other stress causing factors. Data used for the analysis included RWA population density from the wheat field in, Texas, Colorado, Wyoming, and Nebraska, Digital Elevation Model from the Unites States Geological Survey (USGS), soil data from the Soil Survey Geographic database (SSURGO), and multispectral imagery acquired in the panhandle of Oklahoma. Findings and Conclusions. The study revealed that the population density of the Russian wheat aphid was related to topographic and edaphic factors. Slope and sand were predictor variables that were positively related to the density of RWA at the field level. The study has also demonstrated that stress induced by the RWA has a specific spatial pattern that can be distinguished from other stress causing factors using a combination of landscape metrics and topographic and edaphic characteristics of wheat fields. Further field-based studies using multispectral imagery and spatial pattern analysis are suggested. The suggestions require acquiring biweekly multispectral imagery and collecting RWA, topographic and edaphic data at the sampling points during the phonological growth development of wheat plants. This is an approach that may pretend to have great potential for site specific technique for the integrated pest management.
Zhao, Yong-guang; Ma, Ling-ling; Li, Chuan-rong; Zhu, Xiao-hua; Tang, Ling-li
2015-07-01
Due to the lack of enough spectral bands for multi-spectral sensor, it is difficult to reconstruct surface retlectance spectrum from finite spectral information acquired by multi-spectral instrument. Here, taking into full account of the heterogeneity of pixel from remote sensing image, a method is proposed to simulate hyperspectral data from multispectral data based on canopy radiation transfer model. This method first assumes the mixed pixels contain two types of land cover, i.e., vegetation and soil. The sensitive parameters of Soil-Leaf-Canopy (SLC) model and a soil ratio factor were retrieved from multi-spectral data based on Look-Up Table (LUT) technology. Then, by combined with a soil ratio factor, all the parameters were input into the SLC model to simulate the surface reflectance spectrum from 400 to 2 400 nm. Taking Landsat Enhanced Thematic Mapper Plus (ETM+) image as reference image, the surface reflectance spectrum was simulated. The simulated reflectance spectrum revealed different feature information of different surface types. To test the performance of this method, the simulated reflectance spectrum was convolved with the Landsat ETM + spectral response curves and Moderate Resolution Imaging Spectrometer (MODIS) spectral response curves to obtain the simulated Landsat ETM+ and MODIS image. Finally, the simulated Landsat ETM+ and MODIS images were compared with the observed Landsat ETM+ and MODIS images. The results generally showed high correction coefficients (Landsat: 0.90-0.99, MODIS: 0.74-0.85) between most simulated bands and observed bands and indicated that the simulated reflectance spectrum was well simulated and reliable.
Leica ADS40 Sensor for Coastal Multispectral Imaging
NASA Technical Reports Server (NTRS)
Craig, John C.
2007-01-01
The Leica ADS40 Sensor as it is used for coastal multispectral imaging is presented. The contents include: 1) Project Area Overview; 2) Leica ADS40 Sensor; 3) Focal Plate Arrangements; 4) Trichroid Filter; 5) Gradient Correction; 6) Image Acquisition; 7) Remote Sensing and ADS40; 8) Band comparisons of Satellite and Airborne Sensors; 9) Impervious Surface Extraction; and 10) Impervious Surface Details.
Material Characterization using Passive Multispectral Polarimetric Imagery
2013-03-01
least intuitive RS technique is undoubtedly polarimetry . Polarization is a property of all TEM waves, so its applications are not limited to any...Shaw. “Review of passive imaging polarimetry for remote sensing applications”. Applied Optics, 45(22):5453–5469, 2006. [48] Vanderbilt, V.C. and...refractive index; polarimetry ; multispectral; polarization; polarisation; polarimetric imagery; dispersion; Drude model; Cauchy equation; remote
Tree health mapping with multispectral remote sensing data at UC Davis, California
Q. Xiao; E.G. McPherson
2005-01-01
Tree health is a critical parameter for evaluating urban ecosystem health and sustainability. TradiÂtionally, this parameter has been derived from field surveys. We used multispectral remote sensing data and GIS techniques to determine tree health at the University of California, Davis. The study area (363 ha) contained 8,962 trees of 215 species. Tree health...
NASA Astrophysics Data System (ADS)
Pronichev, A. N.; Polyakov, E. V.; Tupitsyn, N. N.; Frenkel, M. A.; Mozhenkova, A. V.
2017-01-01
The article describes the use of a computer optical microscopy with multispectral camera to characterize the texture of blasts bone marrow of patients with different variants of acute lymphoblastic leukemia: B- and T- types. Specific characteristics of the chromatin of the nuclei of blasts for different types of acute lymphoblastic leukemia were obtained.
USDA-ARS?s Scientific Manuscript database
We investigated the use of multispectral thermal imagery to retrieve land surface emissivity and temperature. Conversely to concurrent methods, the temperature emissivity separation (TES) method simply requires single overpass without any ancillary information. This is possible since TES makes use o...
Resource inventory techniques used in the California Desert Conservation Area
NASA Technical Reports Server (NTRS)
Mcleod, R. G.; Johnson, H. B.
1981-01-01
A variety of conventional and remotely sensed data for the 25 million acre California Desert Conservation Area (CDCA) have been integrated and analyzed to estimate range carrying capacity. Multispectral classification was performed on a digital mosaic of ten Landsat frames. Multispectral classes were correlated with low level aerial photography, quantified and aggregated by grazing allotment, land ownership, and slope.
Multiplex Quantitative Histologic Analysis of Human Breast Cancer Cell Signaling and Cell Fate
2010-05-01
Breast cancer, cell signaling, cell proliferation, histology, image analysis 15. NUMBER OF PAGES - 51 16. PRICE CODE 17. SECURITY CLASSIFICATION...revealed by individual stains in multiplex combinations; and (3) software (FARSIGHT) for automated multispectral image analysis that (i) segments...Task 3. Develop computational algorithms for multispectral immunohistological image analysis FARSIGHT software was developed to quantify intrinsic
NASA Technical Reports Server (NTRS)
Realmuto, V. J.; Sutton, A. J.; Elias, T.
1996-01-01
The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well-suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS).
Procedure M - A framework for stratified area estimation. [in multispectral scanner data processing
NASA Technical Reports Server (NTRS)
Kauth, R. J.; Cicone, R. C.; Malila, W. A.
1980-01-01
This paper describes Procedure M, a systematic approach to processing multispectral scanner data for classification and acreage estimation. A general discussion of the rationale and development of the procedure is given in the context of large-area agricultural applications. Specific examples are given in the form of test results on acreage estimation of spring small grains.
Airborne Multi-Spectral Minefield Survey
2005-05-01
Swedish Defence Research Agency), GEOSPACE (Austria), GTD ( Ingenieria de Sistemas y Software Industrial, Spain), IMEC (Ineruniversity MicroElectronic...RTO-MP-SET-092 18 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Airborne Multi-Spectral Minefield Survey Dirk-Jan de Lange, Eric den...actions is the severe lack of baseline information. To respond to this in a rapid way, cost-efficient data acquisition methods are a key issue. de
Adaptive coding of MSS imagery. [Multi Spectral band Scanners
NASA Technical Reports Server (NTRS)
Habibi, A.; Samulon, A. S.; Fultz, G. L.; Lumb, D.
1977-01-01
A number of adaptive data compression techniques are considered for reducing the bandwidth of multispectral data. They include adaptive transform coding, adaptive DPCM, adaptive cluster coding, and a hybrid method. The techniques are simulated and their performance in compressing the bandwidth of Landsat multispectral images is evaluated and compared using signal-to-noise ratio and classification consistency as fidelity criteria.
NASA Technical Reports Server (NTRS)
Blonski, Slawomir; Glasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki
2003-01-01
Spectral band synthesis is a key step in the process of creating a simulated multispectral image from hyperspectral data. In this step, narrow hyperspectral bands are combined into broader multispectral bands. Such an approach has been used quite often, but to the best of our knowledge accuracy of the band synthesis simulations has not been evaluated thus far. Therefore, the main goal of this paper is to provide validation of the spectral band synthesis algorithm used in the ART software. The next section contains a description of the algorithm and an example of its application. Using spectral responses of AVIRIS, Hyperion, ALI, and ETM+, the following section shows how the synthesized spectral bands compare with actual bands, and it presents an evaluation of the simulation accuracy based on results of MODTRAN modeling. In the final sections of the paper, simulated images are compared with data acquired by actual satellite sensors. First, a Landsat 7 ETM+ image is simulated using an AVIRIS hyperspectral data cube. Then, two datasets collected with the Hyperion instrument from the EO-1 satellite are used to simulate multispectral images from the ALI and ETM+ sensors.
Airborne multispectral detection of regrowth cotton fields
NASA Astrophysics Data System (ADS)
Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.
2015-01-01
Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.
Perceptual evaluation of color transformed multispectral imagery
NASA Astrophysics Data System (ADS)
Toet, Alexander; de Jong, Michael J.; Hogervorst, Maarten A.; Hooge, Ignace T. C.
2014-04-01
Color remapping can give multispectral imagery a realistic appearance. We assessed the practical value of this technique in two observer experiments using monochrome intensified (II) and long-wave infrared (IR) imagery, and color daylight (REF) and fused multispectral (CF) imagery. First, we investigated the amount of detail observers perceive in a short timespan. REF and CF imagery yielded the highest precision and recall measures, while II and IR imagery yielded significantly lower values. This suggests that observers have more difficulty in extracting information from monochrome than from color imagery. Next, we measured eye fixations during free image exploration. Although the overall fixation behavior was similar across image modalities, the order in which certain details were fixated varied. Persons and vehicles were typically fixated first in REF, CF, and IR imagery, while they were fixated later in II imagery. In some cases, color remapping II imagery and fusion with IR imagery restored the fixation order of these image details. We conclude that color remapping can yield enhanced scene perception compared to conventional monochrome nighttime imagery, and may be deployed to tune multispectral image representations such that the resulting fixation behavior resembles the fixation behavior corresponding to daylight color imagery.
Image denoising and deblurring using multispectral data
NASA Astrophysics Data System (ADS)
Semenishchev, E. A.; Voronin, V. V.; Marchuk, V. I.
2017-05-01
Currently decision-making systems get widespread. These systems are based on the analysis video sequences and also additional data. They are volume, change size, the behavior of one or a group of objects, temperature gradient, the presence of local areas with strong differences, and others. Security and control system are main areas of application. A noise on the images strongly influences the subsequent processing and decision making. This paper considers the problem of primary signal processing for solving the tasks of image denoising and deblurring of multispectral data. The additional information from multispectral channels can improve the efficiency of object classification. In this paper we use method of combining information about the objects obtained by the cameras in different frequency bands. We apply method based on simultaneous minimization L2 and the first order square difference sequence of estimates to denoising and restoring the blur on the edges. In case of loss of the information will be applied an approach based on the interpolation of data taken from the analysis of objects located in other areas and information obtained from multispectral camera. The effectiveness of the proposed approach is shown in a set of test images.
High performance multi-spectral interrogation for surface plasmon resonance imaging sensors.
Sereda, A; Moreau, J; Canva, M; Maillart, E
2014-04-15
Surface plasmon resonance (SPR) sensing has proven to be a valuable tool in the field of surface interactions characterization, especially for biomedical applications where label-free techniques are of particular interest. In order to approach the theoretical resolution limit, most SPR-based systems have turned to either angular or spectral interrogation modes, which both offer very accurate real-time measurements, but at the expense of the 2-dimensional imaging capability, therefore decreasing the data throughput. In this article, we show numerically and experimentally how to combine the multi-spectral interrogation technique with 2D-imaging, while finding an optimum in terms of resolution, accuracy, acquisition speed and reduction in data dispersion with respect to the classical reflectivity interrogation mode. This multi-spectral interrogation methodology is based on a robust five parameter fitting of the spectral reflectivity curve which enables monitoring of the reflectivity spectral shift with a resolution of the order of ten picometers, and using only five wavelength measurements per point. In fine, such multi-spectral based plasmonic imaging system allows biomolecular interaction monitoring in a linear regime independently of variations of buffer optical index, which is illustrated on a DNA-DNA model case. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Volkov, Boris; Mathews, Marlon S.; Abookasis, David
2015-03-01
Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.
Adaptive illumination source for multispectral vision system applied to material discrimination
NASA Astrophysics Data System (ADS)
Conde, Olga M.; Cobo, Adolfo; Cantero, Paulino; Conde, David; Mirapeix, Jesús; Cubillas, Ana M.; López-Higuera, José M.
2008-04-01
A multispectral system based on a monochrome camera and an adaptive illumination source is presented in this paper. Its preliminary application is focused on material discrimination for food and beverage industries, where monochrome, color and infrared imaging have been successfully applied for this task. This work proposes a different approach, in which the relevant wavelengths for the required discrimination task are selected in advance using a Sequential Forward Floating Selection (SFFS) Algorithm. A light source, based on Light Emitting Diodes (LEDs) at these wavelengths is then used to sequentially illuminate the material under analysis, and the resulting images are captured by a CCD camera with spectral response in the entire range of the selected wavelengths. Finally, the several multispectral planes obtained are processed using a Spectral Angle Mapping (SAM) algorithm, whose output is the desired material classification. Among other advantages, this approach of controlled and specific illumination produces multispectral imaging with a simple monochrome camera, and cold illumination restricted to specific relevant wavelengths, which is desirable for the food and beverage industry. The proposed system has been tested with success for the automatic detection of foreign object in the tobacco processing industry.
Multispectral imaging of plant stress for detection of CO2 leaking from underground
NASA Astrophysics Data System (ADS)
Rouse, J.; Shaw, J. A.; Repasky, K. S.; Lawrence, R. L.
2008-12-01
Multispectral imaging of plant stress is a potentially useful method of detecting CO2 leaking from underground. During the summers of 2007 and 2008, we deployed a multispectral imager for vegetation sensing as part of an underground CO2 release experiment conducted at the Zero Emission Research and Technology (ZERT) field site near the Montana State University campus in Bozeman, Montana. The imager was mounted on a low tower and observed the vegetation in a region near an underground pipe during a multi-week CO2 release. The imager was calibrated to measure absolute reflectance, from which vegetation indices were calculated as a measure of vegetation health. The temporal evolution of these indices over the course of the experiment show that the vegetation nearest the pipe exhibited more stress than the vegetation located further from the pipe. The imager observed notably increased stress in vegetation at locations exhibiting particularly high flux of CO2 from the ground into the atmosphere. These data from the 2007 and 2008 experiments will be used to demonstrate the utility of a tower-mounted multispectral imaging system for detecting CO2 leakage from below ground with the ability to operate continuously during clear and cloudy conditions.
NASA Astrophysics Data System (ADS)
Banks, Benjamin Daniel
Aerial imagery analysis has a long history in European archaeology and despite early attempts little progress has been made to promote its use in North America. Recent advances in multispectral satellite and aerial sensors are helping to make aerial imagery analysis more effective in North America, and more cost effective. A site in northeastern Kansas is explored using multispectral aerial and satellite imagery allowing buried features to be mapped. Many of the problems associated with early aerial imagery analysis are explored, such as knowledge of archeological processes that contribute to crop mark formation. Use of multispectral imagery provides a means of detecting and enhancing crop marks not easily distinguishable in visible spectrum imagery. Unsupervised computer classifications of potential archaeological features permits their identification and interpretation while supervised classifications, incorporating limited amounts of geophysical data, provide a more detailed understanding of the site. Supervised classifications allow archaeological processes contributing to crop mark formation to be explored. Aerial imagery analysis is argued to be useful to a wide range of archeological problems, reducing person hours and expenses needed for site delineation and mapping. This technology may be especially useful for cultural resources management.
NASA Astrophysics Data System (ADS)
King, Michael D.; Tsay, Si-Chee; Ackerman, Steven A.; Larsen, North F.
1998-12-01
A multispectral scanning spectrometer was used to obtain measurements of the reflection function and brightness temperature of smoke, clouds, and terrestrial surfaces at 50 discrete wavelengths between 0.55 and 14.2 μm. These observations were obtained from the NASA ER-2 aircraft as part of the Smoke, Clouds, and Radiation-Brazil (SCAR-B) campaign, conducted over a 1500×1500 km region of cerrado and rain forest throughout Brazil between August 16 and September 11, 1995. Multispectral images of the reflection function and brightness temperature in 10 distinct bands of the MODIS airborne simulator (MAS) were used to derive a confidence in clear sky (or alternatively the probability of cloud), shadow, fire, and heavy aerosol. In addition to multispectral imagery, monostatic lidar data were obtained along the nadir ground track of the aircraft and used to assess the accuracy of the cloud mask results. This analysis shows that the cloud and aerosol mask being developed for operational use on the moderate-resolution imaging spectroradiometer (MODIS), and tested using MAS data in Brazil, is quite capable of separating cloud, aerosol, shadow, and fires during daytime conditions over land.
3D tensor-based blind multispectral image decomposition for tumor demarcation
NASA Astrophysics Data System (ADS)
Kopriva, Ivica; Peršin, Antun
2010-03-01
Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).
Development and bench testing of a multi-spectral imaging technology built on a smartphone platform
NASA Astrophysics Data System (ADS)
Bolton, Frank J.; Weiser, Reuven; Kass, Alex J.; Rose, Donny; Safir, Amit; Levitz, David
2016-03-01
Cervical cancer screening presents a great challenge for clinicians across the developing world. In many countries, cervical cancer screening is done by visualization with the naked eye. Simple brightfield white light imaging with photo documentation has been shown to make a significant impact on cervical cancer care. Adoption of smartphone based cervical imaging devices is increasing across Africa. However, advanced imaging technologies such as multispectral imaging systems, are seldom deployed in low resource settings, where they are needed most. To address this challenge, the optical system of a smartphone-based mobile colposcopy imaging system was refined, integrating components required for low cost, portable multi-spectral imaging of the cervix. This paper describes the refinement of the mobile colposcope to enable it to acquire images of the cervix at multiple illumination wavelengths, including modeling and laboratory testing. Wavelengths were selected to enable quantifying the main absorbers in tissue (oxyand deoxy-hemoglobin, and water), as well as scattering parameters that describe the size distribution of scatterers. The necessary hardware and software modifications are reviewed. Initial testing suggests the multi-spectral mobile device holds promise for use in low-resource settings.
Gong, Yin-Xi; He, Cheng; Yan, Fei; Feng, Zhong-Ke; Cao, Meng-Lei; Gao, Yuan; Miao, Jie; Zhao, Jin-Long
2013-10-01
Multispectral remote sensing data containing rich site information are not fully used by the classic site quality evaluation system, as it merely adopts artificial ground survey data. In order to establish a more effective site quality evaluation system, a neural network model which combined remote sensing spectra factors with site factors and site index relations was established and used to study the sublot site quality evaluation in the Wangyedian Forest Farm in Inner Mongolia Province, Chifeng City. Based on the improved back propagation artificial neural network (BPANN), this model combined multispectral remote sensing data with sublot survey data, and took larch as example, Through training data set sensitivity analysis weak or irrelevant factor was excluded, the size of neural network was simplified, and the efficiency of network training was improved. This optimal site index prediction model had an accuracy up to 95.36%, which was 9.83% higher than that of the neural network model based on classic sublot survey data, and this shows that using multi-spectral remote sensing and small class survey data to determine the status of larch index prediction model has the highest predictive accuracy. The results fully indicate the effectiveness and superiority of this method.
Nam, Hyeong Soo; Kang, Woo Jae; Lee, Min Woo; Song, Joon Woo; Kim, Jin Won; Oh, Wang-Yuhl; Yoo, Hongki
2018-01-01
The pathophysiological progression of chronic diseases, including atherosclerosis and cancer, is closely related to compositional changes in biological tissues containing endogenous fluorophores such as collagen, elastin, and NADH, which exhibit strong autofluorescence under ultraviolet excitation. Fluorescence lifetime imaging (FLIm) provides robust detection of the compositional changes by measuring fluorescence lifetime, which is an inherent property of a fluorophore. In this paper, we present a dual-modality system combining a multispectral analog-mean-delay (AMD) FLIm and a high-speed swept-source optical coherence tomography (OCT) to simultaneously visualize the cross-sectional morphology and biochemical compositional information of a biological tissue. Experiments using standard fluorescent solutions showed that the fluorescence lifetime could be measured with a precision of less than 40 psec using the multispectral AMD-FLIm without averaging. In addition, we performed ex vivo imaging on rabbit iliac normal-looking and atherosclerotic specimens to demonstrate the feasibility of the combined FLIm-OCT system for atherosclerosis imaging. We expect that the combined FLIm-OCT will be a promising next-generation imaging technique for diagnosing atherosclerosis and cancer due to the advantages of the proposed label-free high-precision multispectral lifetime measurement. PMID:29675330
NASA Astrophysics Data System (ADS)
Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz
2017-04-01
This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.
Atmospheric effects in multispectral remote sensor data
NASA Technical Reports Server (NTRS)
Turner, R. E.
1975-01-01
The problem of radiometric variations in multispectral remote sensing data which occur as a result of a change in geometric and environmental factors is studied. The case of spatially varying atmospheres is considered and the effect of atmospheric scattering is analyzed for realistic conditions. Emphasis is placed upon a simulation of LANDSAT spectral data for agricultural investigations over the United States. The effect of the target-background interaction is thoroughly analyzed in terms of various atmospheric states, geometric parameters, and target-background materials. Results clearly demonstrate that variable atmospheres can alter the classification accuracy and that the presence of various backgrounds can change the effective target radiance by a significant amount. A failure to include these effects in multispectral data analysis will result in a decrease in the classification accuracy.
Multispectral linear array visible and shortwave infrared sensors
NASA Astrophysics Data System (ADS)
Tower, J. R.; Warren, F. B.; Pellon, L. E.; Strong, R.; Elabd, H.; Cope, A. D.; Hoffmann, D. M.; Kramer, W. M.; Longsderff, R. W.
1984-08-01
All-solid state pushbroom sensors for multispectral linear array (MLA) instruments to replace mechanical scanners used on LANDSAT satellites are introduced. A buttable, four-spectral-band, linear-format charge coupled device (CCD) and a buttable, two-spectral-band, linear-format, shortwave infrared CCD are described. These silicon integrated circuits may be butted end to end to provide multispectral focal planes with thousands of contiguous, in-line photosites. The visible CCD integrated circuit is organized as four linear arrays of 1024 pixels each. Each array views the scene in a different spectral window, resulting in a four-band sensor. The shortwave infrared (SWIR) sensor is organized as 2 linear arrays of 512 detectors each. Each linear array is optimized for performance at a different wavelength in the SWIR band.
Tasseled cap transformation for HJ multispectral remote sensing data
NASA Astrophysics Data System (ADS)
Han, Ling; Han, Xiaoyong
2015-12-01
The tasseled cap transformation of remote sensing data has been widely used in environment, agriculture, forest and ecology. Tasseled cap transformation coefficients matrix of HJ multi-spectrum data has been established through Givens rotation matrix to rotate principal component transform vector to whiteness, greenness and blueness direction of ground object basing on 24 scenes year-round HJ multispectral remote sensing data. The whiteness component enhances the brightness difference of ground object, and the greenness component preserves more detailed information of vegetation change while enhances the vegetation characteristic, and the blueness component significantly enhances factory with blue plastic house roof around the town and also can enhance brightness of water. Tasseled cap transformation coefficients matrix of HJ will enhance the application effect of HJ multispectral remote sensing data in their application fields.
Spectrum slicer for snapshot spectral imaging
NASA Astrophysics Data System (ADS)
Tamamitsu, Miu; Kitagawa, Yutaro; Nakagawa, Keiichi; Horisaki, Ryoichi; Oishi, Yu; Morita, Shin-ya; Yamagata, Yutaka; Motohara, Kentaro; Goda, Keisuke
2015-12-01
We propose and demonstrate an optical component that overcomes critical limitations in our previously demonstrated high-speed multispectral videography-a method in which an array of periscopes placed in a prism-based spectral shaper is used to achieve snapshot multispectral imaging with the frame rate only limited by that of an image-recording sensor. The demonstrated optical component consists of a slicing mirror incorporated into a 4f-relaying lens system that we refer to as a spectrum slicer (SS). With its simple design, we can easily increase the number of spectral channels without adding fabrication complexity while preserving the capability of high-speed multispectral videography. We present a theoretical framework for the SS and its experimental utility to spectral imaging by showing real-time monitoring of a dynamic colorful event through five different visible windows.
Multispectral InGaAs/GaAs/AlGaAs laser arrays by MBE growth on patterned substrates
NASA Astrophysics Data System (ADS)
Kamath, K.; Bhattacharya, P.; Singh, J.
1997-05-01
Multispectral semiconductor laser arrays on single chip is demonstrated by molecular beam epitaxial (MBE) growth of {In0.2Ga0.8As}/{GaAs} quantum well lasers on GaAs (1 0 0) substrates patterned by dry etching. No regrowth is needed for simple edge emitting lasers. It was observed that the laser characteristics are not degraded by the patterned growth. The shift in the emission wavelength obtained by this method can be controlled by varying the width of the pre-patterned ridges as well as by selecting the regions with different number of vertical sidewalls on both sides. We have also shown that multispectral vertical cavity surface emitting laser (VCSEL) arrays can be made by this technique with a single regrowth.
Multilayer metal-oxide-metal nanopatterns via nanoimprint and strip-off for multispectral resonance
NASA Astrophysics Data System (ADS)
Jeon, Sohee; Sung, Sang-Keun; Jang, Eun-Hwan; Jeong, Junho; Surabhi, Srivathsava; Choi, Jun-Hyuk; Jeong, Jong-Ryul
2018-01-01
A fabrication technology for multispectral plasmonic resonators is presented on a basis of metal-insulator-metal (MIM) nanopattern arrays. Resonators comprised of MIM nanopatterns were fabricated using nanoimprint-based transfer and strip-off following MIM depositions. Two different kinds of configuration (web and hole) were developed for three and five layers of MIMs. The corresponding measured transmittance and reflectance spectroscopies were compared to their counterpart finite difference time domain (FDTD) simulation results. The results implied various plasmonic resonance couplings occurred at different locations around the metal structures, dependent on the layer and array configuration. By tuning the model geometry and simulation conditions, agreement between the experimental results and simulation was achieved. This work is believed to provide a viable fabrication method for multispectral resonance filters or sensors.
LANDSAT-4 multispectral scanner (MSS) subsystem radiometric characterization
NASA Technical Reports Server (NTRS)
Alford, W. (Editor); Barker, J. (Editor); Clark, B. P.; Dasgupta, R.
1983-01-01
The multispectral band scanner (mass) and its spectral characteristics are described and methods are given for relating video digital levels on computer compatible tapes to radiance into the sensor. Topics covered include prelaunch calibration procedures and postlaunch radiometric processng. Examples of current data resident on the MSS image processing system are included. The MSS on LANDSAT 4 is compared with the scanners on earlier LANDSAT satellites.
2014-03-01
U.S. Air Force, and others have demonstrated the utility of SUAS in natural disasters such as the Fukushima Daiichi meltdown to take photographs at...factor. Multispectral Imagery (MSI) has proven capable of dismount detection with several distinct wavelengths. This research proposes a spectral...Epipolar lines depicted in blue, show the geometric relationship between the two cameras after stereo rectification
ADP of multispectral scanner data for land use mapping
NASA Technical Reports Server (NTRS)
Hoffer, R. M.
1971-01-01
The advantages and disadvantages of various remote sensing instrumentation and analysis techniques are reviewed. The use of multispectral scanner data and the automatic data processing techniques are considered. A computer-aided analysis system for remote sensor data is described with emphasis on the image display, statistics processor, wavelength band selection, classification processor, and results display. Advanced techniques in using spectral and temporal data are also considered.
Multispectral Analysis of NMR Imagery
NASA Technical Reports Server (NTRS)
Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.
1985-01-01
Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.
USDA-ARS?s Scientific Manuscript database
The Lower Rio Grande Valley in the south of Texas is experiencing rapid increase of population to bring up urban growth that continues influencing on the irrigation districts in the region. This study evaluated the Landsat satellite multi-spectral imagery to provide information for GIS-based urbaniz...
NASA Technical Reports Server (NTRS)
Bryant, N. A.; Mcleod, R. G.; Zobrist, A. L.; Johnson, H. B.
1979-01-01
Procedures for adjustment of brightness values between frames and the digital mosaicking of Landsat frames to standard map projections are developed for providing a continuous data base for multispectral thematic classification. A combination of local terrain variations in the Californian deserts and a global sampling strategy based on transects provided the framework for accurate classification throughout the entire geographic region.
Andrew T. Hudak; Nicholas L. Crookston; Jeffrey S. Evans; Michael K. Falkowski; Alistair M. S. Smith; Paul E. Gessler; Penelope Morgan
2006-01-01
We compared the utility of discrete-return light detection and ranging (lidar) data and multispectral satellite imagery, and their integration, for modeling and mapping basal area and tree density across two diverse coniferous forest landscapes in north-central Idaho. We applied multiple linear regression models subset from a suite of 26 predictor variables derived...
NASA Technical Reports Server (NTRS)
Alberotanza, L.; Lechi, G. M.
1977-01-01
Surveys employing a two channel Daedalus infrared scanner and multispectral photography were performed. The spring waning tide, the velocity of the water mass, and the types of suspended matter were among the topics studied. Temperature, salinity, sediment transport, and ebb stream velocity were recorded. The bottom topography was correlated with the dynamic characteristics of the sea surface.
A Constrained-Clustering Approach to the Analysis of Remote Sensing Data.
1983-01-01
One old and two new clustering methods were applied to the constrained-clustering problem of separating different agricultural fields based on multispectral remote sensing satellite data. (Constrained-clustering involves double clustering in multispectral measurement similarity and geographical location.) The results of applying the three methods are provided along with a discussion of their relative strengths and weaknesses and a detailed description of their algorithms.
Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors
NASA Technical Reports Server (NTRS)
Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.
1991-01-01
The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.
The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors
NASA Technical Reports Server (NTRS)
Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.
1992-01-01
We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.
Unmixing the Materials and Mechanics Contributions in Non-resolved Object Signatures
2008-09-01
abundances from hyperspectral or multi-spectral time - resolved signatures. A Fourier analysis of temporal variation of material abundance provides...factorization technique to extract the temporal variation of material abundances from hyperspectral or multi-spectral time - resolved signatures. A Fourier...approximately one hundred wavelengths in the visible spectrum. The frame rate for the instrument was not large enough to collect time resolved data. However
The Case For A Warm Wet Early Mars
NASA Astrophysics Data System (ADS)
Craddock, R. A.; Howard, A. D.; Irwin, R. P., III
2016-12-01
Many current climate models fail to explain how early Mars could have experienced surface water under faint young Sun conditions, so the debate regarding the nature of the early martian climate continues. However, the geologic evidence is quite clear: early Mars was warm and wet. Older impact craters in the highlands are preserved at different sizes and in various states of degradation. These craters indicate that an early climate supported rainfall and surface runoff, and this climate persisted through the Noachian. When compared to terrestrial streams martian valley networks typically have shorter lengths, constant widths, and lower sinuosity. Divides between tributaries are rare, and the measured drainage densities are low. These observations indicate that valley networks represent immature drainage systems that did not fully integrate with the cratered landscape. The development of large alluvial fans, the limited amount of breaching of formerly enclosed drainage basins, and the style of entrenchment of rivers suggest that the more humid environmental conditions that supported valley network formation were maintained for only a geologically brief period of time (potentially as short as 104-106 years) at the end of the Noachian/beginning of the Hesperian. Other fluvial features include the large catastrophic outflow channels, which also suggest that climatic conditions reached an optimum during the Hesperian. Outflow channels may also indicated that there were sizeable lakes and seas at this time. Although multispectral observations of phyllosilicates and sulfates been interpreted differently, recent geochemical modeling indicates that the commonly observed stratigraphic relationship where sulfates overlie phyllosilicates can be explained simply if acid rain had leached through a deposit of basaltic rock. There is also multispectral evidence for chloride-bearing deposits that are best explained by evaporation of small standing bodies of water. Perhaps the most controversial geologic feature are putative shorelines that may have resulted from a former ocean contained in the northern lowlands. However, this interpretation is supported by recent modeling of the Olympus Mons basal scarp, which could have formed if early eruptions occurred in an ocean.
A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors.
He, Xiyan; Condat, Laurent; Bioucas-Diaz, Jose; Chanussot, Jocelyn; Xia, Junshi
2014-06-27
The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed Split Augmented Lagrangian Shrinkage (SALSA) algorithm to effectively solve the proposed variational formulations. Experimental results on simulated and real remote sensing images show the effectiveness of the proposed pansharpening method compared to the state-of-the-art.
NASA Astrophysics Data System (ADS)
Bell, James F.; Wellington, Danika; Hardgrove, Craig; Godber, Austin; Rice, Melissa S.; Johnson, Jeffrey R.; Fraeman, Abigail
2016-10-01
The Mars Science Laboratory (MSL) Curiosity rover Mastcam is a pair of multispectral CCD cameras that have been imaging the surface and atmosphere in three broadband visible RGB color channels as well as nine additional narrowband color channels between 400 and 1000 nm since the rover's landing in August 2012. As of Curiosity sol 1159 (the most recent PDS data release as of this writing), approximately 140 multispectral imaging targets have been imaged using all twelve unique bandpasses. Near-simultaneous imaging of an onboard calibration target allows rapid relative reflectance calibration of these data to radiance factor and estimated Lambert albedo, for direct comparison to lab reflectance spectra of rocks, minerals, and mixtures. Surface targets among this data set include a variety of outcrop and float rocks (some containing light-toned veins), unconsolidated pebbles and clasts, and loose sand and soil. Some of these targets have been brushed, scuffed, or otherwise disturbed by the rover in order to reveal the (less dusty) interiors of these materials, and those targets and each of Curiosity's drill holes and tailings piles have been specifically targeted for multispectral imaging.Analysis of the relative reflectance spectra of these materials, sometimes in concert with additional compositional and/or mineralogic information from Curiosity's ChemCam LIBS and passive-mode spectral data and CheMin XRD data, reveals the presence of relatively broad solid state crystal field and charge transfer absorption features characteristic of a variety of common iron-bearing phases, including hematite (both nanophase and crystalline), ferric sulfate, olivine, and pyroxene. In addition, Mastcam is sensitive to a weak hydration feature in the 900-1000 nm region that can provide insight on the hydration state of some of these phases, especially sulfates. Here we summarize the Mastcam multispectral data set and the major potential phase identifications made using that data set during the traverse so far in Gale crater, and describe the ways that Mastcam multispectral observations will continue to inform the ongoing ascent and exploration of Mt. Sharp, Gale crater's layered central mound of sedimentary rocks.
Automated road network extraction from high spatial resolution multi-spectral imagery
NASA Astrophysics Data System (ADS)
Zhang, Qiaoping
For the last three decades, the Geomatics Engineering and Computer Science communities have considered automated road network extraction from remotely-sensed imagery to be a challenging and important research topic. The main objective of this research is to investigate the theory and methodology of automated feature extraction for image-based road database creation, refinement or updating, and to develop a series of algorithms for road network extraction from high resolution multi-spectral imagery. The proposed framework for road network extraction from multi-spectral imagery begins with an image segmentation using the k-means algorithm. This step mainly concerns the exploitation of the spectral information for feature extraction. The road cluster is automatically identified using a fuzzy classifier based on a set of predefined road surface membership functions. These membership functions are established based on the general spectral signature of road pavement materials and the corresponding normalized digital numbers on each multi-spectral band. Shape descriptors of the Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects (e.g., crop fields, parking lots, and buildings). An iterative and localized Radon transform is developed for the extraction of road centerlines from the classified images. The purpose of the transform is to accurately and completely detect the road centerlines. It is able to find short, long, and even curvilinear lines. The input image is partitioned into a set of subset images called road component images. An iterative Radon transform is locally applied to each road component image. At each iteration, road centerline segments are detected based on an accurate estimation of the line parameters and line widths. Three localization approaches are implemented and compared using qualitative and quantitative methods. Finally, the road centerline segments are grouped into a road network. The extracted road network is evaluated against a reference dataset using a line segment matching algorithm. The entire process is unsupervised and fully automated. Based on extensive experimentation on a variety of remotely-sensed multi-spectral images, the proposed methodology achieves a moderate success in automating road network extraction from high spatial resolution multi-spectral imagery.
Use of Visible Satellite Imagery to Determine Velocity in Tidal Rivers
NASA Astrophysics Data System (ADS)
Mied, R. P.; Donato, T. F.; Chen, W.
2006-05-01
In the open ocean and on the continental shelf, current velocities have traditionally been calculated remotely using the Maximum Correlation Coefficient (MCC) technique to track features between sequential sea surface temperature image scenes. These images are obtained from NOAA polar orbiters having an effective ground pixel size of 1.47 km. In contrast to this relatively large distance, spatial scales over which current velocities can vary in rivers and estuaries are hundreds of meters; associated temporal scales vary from tens of minutes to hours. Traditional in-situ measurements can be instructive in determining some aspects of the flow, but truly synoptic overviews are possible only with remote sensing, provided high-resolution imagery is available. With the advent of a constellation of moderate- to high-resolution imaging systems (e.g., Landsat, ASTER, SPOT, Quickbird, Ikonos, and Orbview-3) it is now available to extend current estimations to these areas. For instance, Landsat-7 and ASTER produce imagery with spatial resolutions on the order of 30 m or less and within 30 min of each other. This is sufficient to spatially resolve a wide variety of surface features, and to maintain feature integrity over time for tracking purposes. We apply this approach to a portion of the tidal Potomac River by using pairs of co-registered, sequential, multi-spectral Landsat-7 and ASTER images. The final data used in the analysis set contain three spectral bands (green, red, and near-infrared), and have a ground pixel spacing (GSD) of 30m. The time step between each Landsat-7 and ASTER pair is approximately 29 minutes. Two image sets are used in the present study, one occurring on 5 October 2001 and the other on 2 April 2003. We show current maps derived from both image pairs an discuss the results in the light of model and
NASA Astrophysics Data System (ADS)
Seeber, Christoph; Hartmann, Heike; Xiang, Wei; King, Lorenz
2010-05-01
Land use / land cover change (LUCC) is the most important human alteration of the earth's surface and is primarily studied in cases where it leads to severe environmental problems. The construction of the Three Gorges Dam on the Yangtze River in China has an extensive impact on the ecosystems and the local population. To assess its impact, the Xiangxi Catchment is taken as an example. The outlet of the Xiangxi River, a northern tributary of the Yangtze River, is located about 40 km upstream of the Three Gorges Dam. Due to the loss of fertile arable land and residential land which is mainly induced by the inundation and measures of resettlement, enormous LUCC is observed in the study area by depicting the land use / land cover by classification of LandsatTM data retrieved in 1987 and 2007. LUCC in the Xiangxi Catchment during this period can generally be characterized as decrease of cultivated land, increase of woodland and fallow land, and a shift in cropping from traditional smallholder farming to the establishment of citrus orchards, which are implemented as cash crops. Not only the inundation and the resettlement have an impact on LUCC, also the newly built and improved traffic infrastructure, growth of urban structures and land use policies in terms of environmental protection are expected to play an important role concerning LUCC. To assess the spatial and temporal impact of influencing factors, a LUCC gradient is generated based on post-classification change analysis of multispectral data. Furthermore, inter-stages between 1987 and 2007 have to be examined, to reach for a higher temporal resolution, which shall help to figure out temporal relationships between LUCC and the occurrence of driving factors. Once influence factors and and their spatial and temporal impacts are identified, a basis for predicting LUCC in the future for is provided for this area.
Spectrally based mapping of riverbed composition
Legleiter, Carl; Stegman, Tobin K.; Overstreet, Brandon T.
2016-01-01
Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader range of fluvial environments is needed to substantiate our initial results, this case study suggests that bed composition in shallow, clear-flowing rivers potentially could be mapped remotely.
NASA Astrophysics Data System (ADS)
Waugh, W.; Nagler, P. L.; Vogel, J.; Glenn, E.; Nguyen, U.; Jarchow, C. J.
2016-12-01
Tamarisk (Tamarix spp.) is a non-native tree that competes with native species for water in riparian corridors of the southwestern U.S. The beetle, Diorhabda carinulata, which was released as a biocontrol agent, may be affecting tamarisk health. After several years of defoliation, tamarisk is now coming back along many southwestern rivers because of dwindling beetle numbers. We studied effects of changes in riparian plant communities dominated by tamarisk on evapotranspiration (ET) at uranium mill tailings sites. We used an unmanned aerial system (UAS) to acquire high resolution spectral data needed to estimate spatial and temporal variability in ET in riparian ecosystems at uranium mill tailings sites adjacent to the San Juan River near Shiprock, New Mexico, and the Colorado River near Moab, Utah. UAS imagery allowed us to monitor changes in phenology, fractional greenness, ET, and effects on water resources at these sites. We timed ground data and UAS image acquisition with an August 2016 Landsat image to assist with spatiotemporal scaling techniques. We measured leaf area index (LAI) and sampled biomass on tamarisk, cottonwood (Populus spp.), and willow (Salix spp.) within the UAS acquisition areas to scale leaf area on individual branches to LAI of whole trees. UAS cameras included a Sony Alpha A5100 for species-level vegetation mapping and a MicaSense Red Edge five-band multispectral camera to map Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). The UAS products were correlated with satellite imagery. Our goal was to scale plant water use acquired from UAS imagery to Landsat and/or MODIS to provide a time-series documenting long-term trends and relationships of ET and groundwater elevation. NDVI and EVI were calibrated across UAS, MODIS and Landsat images using regression and ET was calculated using NDVI, EVI, ground meteorological data, and an existing empirical algorithm.
NASA Astrophysics Data System (ADS)
Dafflon, B.; Leger, E.; Peterson, J.; Falco, N.; Wainwright, H. M.; Wu, Y.; Tran, A. P.; Brodie, E.; Williams, K. H.; Versteeg, R.; Hubbard, S. S.
2017-12-01
Improving understanding and modelling of terrestrial systems requires advances in measuring and quantifying interactions among subsurface, land surface and vegetation processes over relevant spatiotemporal scales. Such advances are important to quantify natural and managed ecosystem behaviors, as well as to predict how watershed systems respond to increasingly frequent hydrological perturbations, such as droughts, floods and early snowmelt. Our study focuses on the joint use of UAV-based multi-spectral aerial imaging, ground-based geophysical tomographic monitoring (incl., electrical and electromagnetic imaging) and point-scale sensing (soil moisture sensors and soil sampling) to quantify interactions between above and below ground compartments of the East River Watershed in the Upper Colorado River Basin. We evaluate linkages between physical properties (incl. soil composition, soil electrical conductivity, soil water content), metrics extracted from digital surface and terrain elevation models (incl., slope, wetness index) and vegetation properties (incl., greenness, plant type) in a 500 x 500 m hillslope-floodplain subsystem of the watershed. Data integration and analysis is supported by numerical approaches that simulate the control of soil and geomorphic characteristic on hydrological processes. Results provide an unprecedented window into critical zone interactions, revealing significant below- and above-ground co-dynamics. Baseline geophysical datasets provide lithological structure along the hillslope, which includes a surface soil horizon, underlain by a saprolite layer and the fractured Mancos shale. Time-lapse geophysical data show very different moisture dynamics in various compartments and locations during the winter and growing season. Integration with aerial imaging reveals a significant linkage between plant growth and the subsurface wetness, soil characteristics and the topographic gradient. The obtained information about the organization and connectivity of the landscape is being transferred to larger regions using aerial imaging and will be used to constrain multi-scale, multi-physics hydro-biogeochemical simulations of the East River watershed response to hydrological perturbations.
Mapping turbidity in the Charles River, Boston using a high-resolution satellite.
Hellweger, Ferdi L; Miller, Will; Oshodi, Kehinde Sarat
2007-09-01
The usability of high-resolution satellite imagery for estimating spatial water quality patterns in urban water bodies is evaluated using turbidity in the lower Charles River, Boston as a case study. Water turbidity was surveyed using a boat-mounted optical sensor (YSI) at 5 m spatial resolution, resulting in about 4,000 data points. The ground data were collected coincidently with a satellite imagery acquisition (IKONOS), which consists of multispectral (R, G, B) reflectance at 1 m resolution. The original correlation between the raw ground and satellite data was poor (R2 = 0.05). Ground data were processed by removing points affected by contamination (e.g., sensor encounters a particle floc), which were identified visually. Also, the ground data were corrected for the memory effect introduced by the sensor's protective casing using an analytical model. Satellite data were processed to remove pixels affected by permanent non-water features (e.g., shoreline). In addition, water pixels within a certain buffer distance from permanent non-water features were removed due to contamination by the adjacency effect. To determine the appropriate buffer distance, a procedure that explicitly considers the distance of pixels to the permanent non-water features was applied. Two automatic methods for removing the effect of temporary non-water features (e.g., boats) were investigated, including (1) creating a water-only mask based on an unsupervised classification and (2) removing (filling) all local maxima in reflectance. After the various processing steps, the correlation between the ground and satellite data was significantly better (R2 = 0.70). The correlation was applied to the satellite image to develop a map of turbidity in the lower Charles River, which reveals large-scale patterns in water clarity. However, the adjacency effect prevented the application of this method to near-shore areas, where high-resolution patterns were expected (e.g., outfall plumes).
Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L
2014-02-01
Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Mars-Microscopic imager-Multispectral imaging-Spectroscopy-Habitability-Arm instrument.
NASA Astrophysics Data System (ADS)
Schneiderwind, S.; Mason, J.; Wiatr, T.; Papanikolaou, I.; Reicherter, K.
2015-09-01
Two normal faults on the Island of Crete and mainland Greece were studied to create and test an innovative workflow to make palaeoseismic trench logging more objective, and visualise the sedimentary architecture within the trench wall in 3-D. This is achieved by combining classical palaeoseismic trenching techniques with multispectral approaches. A conventional trench log was firstly compared to results of iso cluster analysis of a true colour photomosaic representing the spectrum of visible light. Passive data collection disadvantages (e.g. illumination) were addressed by complementing the dataset with active near-infrared backscatter signal image from t-LiDAR measurements. The multispectral analysis shows that distinct layers can be identified and it compares well with the conventional trench log. According to this, a distinction of adjacent stratigraphic units was enabled by their particular multispectral composition signature. Based on the trench log, a 3-D-interpretation of GPR data collected on the vertical trench wall was then possible. This is highly beneficial for measuring representative layer thicknesses, displacements and geometries at depth within the trench wall. Thus, misinterpretation due to cutting effects is minimised. Sedimentary feature geometries related to earthquake magnitude can be used to improve the accuracy of seismic hazard assessments. Therefore, this manuscript combines multiparametric approaches and shows: (i) how a 3-D visualisation of palaeoseismic trench stratigraphy and logging can be accomplished by combining t-LiDAR and GRP techniques, and (ii) how a multispectral digital analysis can offer additional advantages and a higher objectivity in the interpretation of palaeoseismic and stratigraphic information. The multispectral datasets are stored allowing unbiased input for future (re-)investigations.
NASA Astrophysics Data System (ADS)
Dube, Timothy; Mutanga, Onisimo
2015-03-01
Aboveground biomass estimation is critical in understanding forest contribution to regional carbon cycles. Despite the successful application of high spatial and spectral resolution sensors in aboveground biomass (AGB) estimation, there are challenges related to high acquisition costs, small area coverage, multicollinearity and limited availability. These challenges hamper the successful regional scale AGB quantification. The aim of this study was to assess the utility of the newly-launched medium-resolution multispectral Landsat 8 Operational Land Imager (OLI) dataset with a large swath width, in quantifying AGB in a forest plantation. We applied different sets of spectral analysis (test I: spectral bands; test II: spectral vegetation indices and test III: spectral bands + spectral vegetation indices) in testing the utility of Landsat 8 OLI using two non-parametric algorithms: stochastic gradient boosting and the random forest ensembles. The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis and Pinus taeda especially when using the extracted spectral information together with the derived spectral vegetation indices. We also noted that incorporating the optimal subset of the most important selected medium-resolution multispectral Landsat 8 OLI bands improved AGB accuracies. We compared medium-resolution multispectral Landsat 8 OLI AGB estimates with Landsat 7 ETM + estimates and the latter yielded lower estimation accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the relatively affordable and readily available newly-launched medium-resolution Landsat 8 OLI dataset, with a large swath width (185-km) in precisely estimating AGB. This strength of the Landsat OLI dataset is crucial especially in sub-Saharan Africa where high-resolution remote sensing data availability remains a challenge.
Retinex Preprocessing for Improved Multi-Spectral Image Classification
NASA Technical Reports Server (NTRS)
Thompson, B.; Rahman, Z.; Park, S.
2000-01-01
The goal of multi-image classification is to identify and label "similar regions" within a scene. The ability to correctly classify a remotely sensed multi-image of a scene is affected by the ability of the classification process to adequately compensate for the effects of atmospheric variations and sensor anomalies. Better classification may be obtained if the multi-image is preprocessed before classification, so as to reduce the adverse effects of image formation. In this paper, we discuss the overall impact on multi-spectral image classification when the retinex image enhancement algorithm is used to preprocess multi-spectral images. The retinex is a multi-purpose image enhancement algorithm that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The retinex has been successfully applied to the enhancement of many different types of grayscale and color images. We show in this paper that retinex preprocessing improves the spatial structure of multi-spectral images and thus provides better within-class variations than would otherwise be obtained without the preprocessing. For a series of multi-spectral images obtained with diffuse and direct lighting, we show that without retinex preprocessing the class spectral signatures vary substantially with the lighting conditions. Whereas multi-dimensional clustering without preprocessing produced one-class homogeneous regions, the classification on the preprocessed images produced multi-class non-homogeneous regions. This lack of homogeneity is explained by the interaction between different agronomic treatments applied to the regions: the preprocessed images are closer to ground truth. The principle advantage that the retinex offers is that for different lighting conditions classifications derived from the retinex preprocessed images look remarkably "similar", and thus more consistent, whereas classifications derived from the original images, without preprocessing, are much less similar.
NASA Astrophysics Data System (ADS)
Fernandez, Valerie; Martimort, Philippe; Spoto, Francois; Sy, Omar; Laberinti, Paolo
2013-10-01
GMES is a joint initiative of the European Commission (EC) and the European Space Agency (ESA), designed to establish a European capacity for the provision and use of operational monitoring information for environment and security applications. ESA's role in GMES is to provide the definition and the development of the space- and ground-related system elements. GMES Sentinel-2 mission provides continuity to services relying on multi-spectral highresolution optical observations over global terrestrial surfaces. The key mission objectives for Sentinel-2 are: (1) to provide systematic global acquisitions of high-resolution multi-spectral imagery with a high revisit frequency, (2) to provide enhanced continuity of multi-spectral imagery provided by the SPOT series of satellites, and (3) to provide observations for the next generation of operational products such as landcover maps, land change detection maps, and geophysical variables. Consequently, Sentinel-2 will directly contribute to the Land Monitoring, Emergency Response, and Security services. The corresponding user requirements have driven the design towards a dependable multi-spectral Earthobservation system featuring the MSI with 13 spectral bands spanning from the visible and the near infrared to the short wave infrared. The spatial resolution varies from 10 m to 60 m depending on the spectral band with a 290 km field of view. This unique combination of high spatial resolution, wide field of view and large spectral coverage will represent a major step forward compared to current multi-spectral missions. The mission foresees a series of satellites, each having a 7.25-year lifetime (extendable to 12 years) over a 20-year period starting with the launch of Sentinel-2A foreseen by mid-2014. During full operations two identical satellites will be maintained in the same sun synchronous orbit with a phase delay of 180° providing a revisit time of five days at the equator.
Study of on-board compression of earth resources data
NASA Technical Reports Server (NTRS)
Habibi, A.
1975-01-01
The current literature on image bandwidth compression was surveyed and those methods relevant to compression of multispectral imagery were selected. Typical satellite multispectral data was then analyzed statistically and the results used to select a smaller set of candidate bandwidth compression techniques particularly relevant to earth resources data. These were compared using both theoretical analysis and simulation, under various criteria of optimality such as mean square error (MSE), signal-to-noise ratio, classification accuracy, and computational complexity. By concatenating some of the most promising techniques, three multispectral data compression systems were synthesized which appear well suited to current and future NASA earth resources applications. The performance of these three recommended systems was then examined in detail by all of the above criteria. Finally, merits and deficiencies were summarized and a number of recommendations for future NASA activities in data compression proposed.
Improvements in estimating proportions of objects from multispectral data
NASA Technical Reports Server (NTRS)
Horwitz, H. M.; Hyde, P. D.; Richardson, W.
1974-01-01
Methods for estimating proportions of objects and materials imaged within the instantaneous field of view of a multispectral sensor were developed further. Improvements in the basic proportion estimation algorithm were devised as well as improved alien object detection procedures. Also, a simplified signature set analysis scheme was introduced for determining the adequacy of signature set geometry for satisfactory proportion estimation. Averaging procedures used in conjunction with the mixtures algorithm were examined theoretically and applied to artificially generated multispectral data. A computationally simpler estimator was considered and found unsatisfactory. Experiments conducted to find a suitable procedure for setting the alien object threshold yielded little definitive result. Mixtures procedures were used on a limited amount of ERTS data to estimate wheat proportion in selected areas. Results were unsatisfactory, partly because of the ill-conditioned nature of the pure signature set.
NASA Technical Reports Server (NTRS)
Trumbull, J. V. A. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Three Skylab earth resources passes over Puerto Rico and St. Croix on 6 June and 30 November 1973 and 18 January 1974 resulted in color photography and multispectral photography and scanner imagery. Bathymetric and turbid water features are differentiable by use of the multispectral data. Photography allows mapping of coral reefs, offshore sand deposits, areas of coastal erosion, and patterns of sediment transport. Bottom sediment types could not be differentiated. Patterns of bottom dwelling biologic communities are well portrayed but are difficult to differentiate from bathymetric detail. Effluent discharges and oil slicks are readily detected and are differentiated from other phenomena by the persistence of their images into the longer wavelength multispectral bands.
HERCULES/MSI: a multispectral imager with geolocation for STS-70
NASA Astrophysics Data System (ADS)
Simi, Christopher G.; Kindsfather, Randy; Pickard, Henry; Howard, William, III; Norton, Mark C.; Dixon, Roberta
1995-11-01
A multispectral intensified CCD imager combined with a ring laser gyroscope based inertial measurement unit was flown on the Space Shuttle Discovery from July 13-22, 1995 (Space Transport System Flight No. 70, STS-70). The camera includes a six position filter wheel, a third generation image intensifier, and a CCD camera. The camera is integrated with a laser gyroscope system that determines the ground position of the imagery to an accuracy of better than three nautical miles. The camera has two modes of operation; a panchromatic mode for high-magnification imaging [ground sample distance (GSD) of 4 m], or a multispectral mode consisting of six different user-selectable spectral ranges at reduced magnification (12 m GSD). This paper discusses the system hardware and technical trade-offs involved with camera optimization, and presents imagery observed during the shuttle mission.
NASA Technical Reports Server (NTRS)
Bodechtel, J.; Nithack, J.; Dibernardo, G.; Hiller, K.; Jaskolla, F.; Smolka, A.
1975-01-01
Utilizing LANDSAT and Skylab multispectral imagery of 1972 and 1973, a land use map of the mountainous regions of Italy was evaluated at a scale of 1:250,000. Seven level I categories were identified by conventional methods of photointerpretation. Images of multispectral scanner (MSS) bands 5 and 7, or equivalents were mainly used. Areas of less than 200 by 200 m were classified and standard procedures were established for interpretation of multispectral satellite imagery. Land use maps were produced for central and southern Europe indicating that the existing land use maps could be updated and optimized. The complexity of European land use patterns, the intensive morphology of young mountain ranges, and time-cost calculations are the reasons that the applied conventional techniques are superior to automatic evaluation.
NASA Technical Reports Server (NTRS)
1973-01-01
Topics discussed include the management and processing of earth resources information, special-purpose processors for the machine processing of remotely sensed data, digital image registration by a mathematical programming technique, the use of remote-sensor data in land classification (in particular, the use of ERTS-1 multispectral scanning data), the use of remote-sensor data in geometrical transformations and mapping, earth resource measurement with the aid of ERTS-1 multispectral scanning data, the use of remote-sensor data in the classification of turbidity levels in coastal zones and in the identification of ecological anomalies, the problem of feature selection and the classification of objects in multispectral images, the estimation of proportions of certain categories of objects, and a number of special systems and techniques. Individual items are announced in this issue.
Multispectral Remote Sensing of the Earth and Environment Using KHawk Unmanned Aircraft Systems
NASA Astrophysics Data System (ADS)
Gowravaram, Saket
This thesis focuses on the development and testing of the KHawk multispectral remote sensing system for environmental and agricultural applications. KHawk Unmanned Aircraft System (UAS), a small and low-cost remote sensing platform, is used as the test bed for aerial video acquisition. An efficient image geotagging and photogrammetric procedure for aerial map generation is described, followed by a comprehensive error analysis on the generated maps. The developed procedure is also used for generation of multispectral aerial maps including red, near infrared (NIR) and colored infrared (CIR) maps. A robust Normalized Difference Vegetation index (NDVI) calibration procedure is proposed and validated by ground tests and KHawk flight test. Finally, the generated aerial maps and their corresponding Digital Elevation Models (DEMs) are used for typical application scenarios including prescribed fire monitoring, initial fire line estimation, and tree health monitoring.
Alexandridis, Thomas K; Tamouridou, Afroditi Alexandra; Pantazi, Xanthoula Eirini; Lagopodi, Anastasia L; Kashefi, Javid; Ovakoglou, Georgios; Polychronos, Vassilios; Moshou, Dimitrios
2017-09-01
In the present study, the detection and mapping of Silybum marianum (L.) Gaertn. weed using novelty detection classifiers is reported. A multispectral camera (green-red-NIR) on board a fixed wing unmanned aerial vehicle (UAV) was employed for obtaining high-resolution images. Four novelty detection classifiers were used to identify S. marianum between other vegetation in a field. The classifiers were One Class Support Vector Machine (OC-SVM), One Class Self-Organizing Maps (OC-SOM), Autoencoders and One Class Principal Component Analysis (OC-PCA). As input features to the novelty detection classifiers, the three spectral bands and texture were used. The S. marianum identification accuracy using OC-SVM reached an overall accuracy of 96%. The results show the feasibility of effective S. marianum mapping by means of novelty detection classifiers acting on multispectral UAV imagery.
Retrieval of methanol absorption parameters at terahertz frequencies using multispectral fitting
NASA Astrophysics Data System (ADS)
Slocum, David M.; Xu, Li-Hong; Giles, Robert H.; Goyette, Thomas M.
2015-12-01
A high-resolution broadband study of the methanol absorption spectrum was performed at 1.480-1.495 THz. The transmittance was recorded under both self- and air-broadening conditions for multiple pressures at a resolution of 500 kHz. A multispectral fitting analysis was then performed. The transition frequency, absolute intensity, self- and air-broadening coefficients, and self- and air-induced pressure shifts were retrieved for 221 absorption lines using the multispectral fitting routine. Observed in the data were two different series of transitions, both a b-type Q-branch with K = - 7 ← - 6 and an a-type R-branch with J = 31 ← 30 . The retrieved frequency position values were compared with values from spectral databases and trends within the different series were identified. An analysis of the precision of the fitting routine was also performed.
Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei
2011-04-01
An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.
1973-01-01
The improvement and extension of the capabilities of the Environmental Research Institute of Michigan processing facility in handling multispectral data are discussed. Improvements consisted of implementing hardware modifications which permitted more rapid access to the recorded data through improved numbering and indexing of such data. In addition, techniques are discussed for handling data from sources other than the ERIM M-5 and M-7 scanner systems.
NASA Astrophysics Data System (ADS)
Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula
2009-10-01
State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.
Apollo 9 Mission image - S0-65 Multispectral Photography - California
2009-02-19
AS09-26A-3798A (12 March 1969) --- Color infrared photograph of the San Diego County and San Diego area of southern California as photographed from the Apollo 9 spacecraft during its 136th revolution of Earth. This picture was taken as a part of the SO65 Multispectral Terrain Photography Experiment. Tijuana and a portion of Baja California, Mexico, are also visible in picture.
NASA Technical Reports Server (NTRS)
Hall, M. J.
1981-01-01
An inventory technique based upon using remote sensing technology, interpreting both high altitude aerial photography and LANDSAT multispectral scanner imagery, is discussed. It is noted that once the final land use inventory maps of irrigated agricultural lands are available and approximately scaled they may be overlaid directly onto either multispectral scanner or return beam vidicon prints, thereby providing an inexpensive updating procedure.
Photogeologic mapping in central southwest Bahia, using LANDSAT-1 multispectral images. [Brazil
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Ohara, T.
1981-01-01
The interpretation of LANDSAT multispectral imagery for geologic mapping of central southwest Bahia, Brazil is described. Surface features such as drainage, topography, vegetation and land use are identified. The area is composed of low grade Precambrian rocks covered by Mezozoic and Cenozoic sediments. The principal mineral prospects of economic value are fluorite and calcareous rocks. Gold, calcite, rock crystal, copper, potassium nitrate and alumina were also identified.
Use and Assessment of Multi-Spectral Satellite Imagery in NWS Operational Forecasting Environments
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Fuell, Kevin; Stano, Geoffrey; McGrath, Kevin; Schultz, Lori; LeRoy, Anita
2015-01-01
NOAA's Satellite Proving Grounds have established partnerships between product developers and NWS WFOs for the evaluation of new capabilities from the GOES-R and JPSS satellite systems. SPoRT has partnered with various WFOs to evaluate multispectral (RGB) products from MODIS, VIIRS and Himawari/AHI to prepare for GOES-R/ABI. Assisted through partnerships with GINA, UW/CIMSS, NOAA, and NASA Direct Broadcast capabilities.
NASA Astrophysics Data System (ADS)
Zabarylo, U.; Minet, O.
2010-01-01
Investigations on the application of optical procedures for the diagnosis of rheumatism using scattered light images are only at the beginning both in terms of new image-processing methods and subsequent clinical application. For semi-automatic diagnosis using laser light, the multispectral scattered light images are registered and overlapped to pseudo-coloured images, which depict diagnostically essential contents by visually highlighting pathological changes.
NASA Astrophysics Data System (ADS)
Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula
2010-02-01
State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.
Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei
2015-01-01
The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057
Bautista, Pinky A; Yagi, Yukako
2012-05-01
Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M < N principal component (PC) vectors. The pixel's enhanced spectrum is transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.
NASA Astrophysics Data System (ADS)
Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei
2015-06-01
The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.
NASA Astrophysics Data System (ADS)
Matsui, Daichi; Ishii, Katsunori; Awazu, Kunio
2015-07-01
Atherosclerosis is a primary cause of critical ischemic diseases like heart infarction or stroke. A method that can provide detailed information about the stability of atherosclerotic plaques is required. We focused on spectroscopic techniques that could evaluate the chemical composition of lipid in plaques. A novel angioscope using multispectral imaging at wavelengths around 1200 nm for quantitative evaluation of atherosclerotic plaques was developed. The angioscope consists of a halogen lamp, an indium gallium arsenide (InGaAs) camera, 3 optical band pass filters transmitting wavelengths of 1150, 1200, and 1300 nm, an image fiber having 0.7 mm outer diameter, and an irradiation fiber which consists of 7 multimode fibers. Atherosclerotic plaque phantoms with 100, 60, 20 vol.% of lipid were prepared and measured by the multispectral angioscope. The acquired datasets were processed by spectral angle mapper (SAM) method. As a result, simulated plaque areas in atherosclerotic plaque phantoms that could not be detected by an angioscopic visible image could be clearly enhanced. In addition, quantitative evaluation of atherosclerotic plaque phantoms based on the lipid volume fractions was performed up to 20 vol.%. These results show the potential of a multispectral angioscope at wavelengths around 1200 nm for quantitative evaluation of the stability of atherosclerotic plaques.
Kainerstorfer, Jana M.; Polizzotto, Mark N.; Uldrick, Thomas S.; Rahman, Rafa; Hassan, Moinuddin; Najafizadeh, Laleh; Ardeshirpour, Yasaman; Wyvill, Kathleen M.; Aleman, Karen; Smith, Paul D.; Yarchoan, Robert; Gandjbakhche, Amir H.
2013-01-01
Diffuse multi-spectral imaging has been evaluated as a potential non-invasive marker of tumor response. Multi-spectral images of Kaposi sarcoma skin lesions were taken over the course of treatment, and blood volume and oxygenation concentration maps were obtained through principal component analysis (PCA) of the data. These images were compared with clinical and pathological responses determined by conventional means. We demonstrate that cutaneous lesions have increased blood volume concentration and that changes in this parameter are a reliable indicator of treatment efficacy, differentiating responders and non-responders. Blood volume decreased by at least 20% in all lesions that responded by clinical criteria and increased in the two lesions that did not respond clinically. Responses as assessed by multi-spectral imaging also generally correlated with overall patient clinical response assessment, were often detectable earlier in the course of therapy, and are less subject to observer variability than conventional clinical assessment. Tissue oxygenation was more variable, with lesions often showing decreased oxygenation in the center surrounded by a zone of increased oxygenation. This technique could potentially be a clinically useful supplement to existing response assessment in KS, providing an early, quantitative, and non-invasive marker of treatment effect. PMID:24386302
Evaluation of eelgrass beds mapping using a high-resolution airborne multispectral scanner
Su, H.; Karna, D.; Fraim, E.; Fitzgerald, M.; Dominguez, R.; Myers, J.S.; Coffland, B.; Handley, L.R.; Mace, T.
2006-01-01
Eelgrass (Zostera marina) can provide vital ecological functions in stabilizing sediments, influencing current dynamics, and contributing significant amounts of biomass to numerous food webs in coastal ecosystems. Mapping eelgrass beds is important for coastal water and nearshore estuarine monitoring, management, and planning. This study demonstrated the possible use of high spatial (approximately 5 m) and temporal (maximum low tide) resolution airborne multispectral scanner on mapping eelgrass beds in Northern Puget Sound, Washington. A combination of supervised and unsupervised classification approaches were performed on the multispectral scanner imagery. A normalized difference vegetation index (NDVI) derived from the red and near-infrared bands and ancillary spatial information, were used to extract and mask eelgrass beds and other submerged aquatic vegetation (SAV) in the study area. We evaluated the resulting thematic map (geocoded, classified image) against a conventional aerial photograph interpretation using 260 point locations randomly stratified over five defined classes from the thematic map. We achieved an overall accuracy of 92 percent with 0.92 Kappa Coefficient in the study area. This study demonstrates that the airborne multispectral scanner can be useful for mapping eelgrass beds in a local or regional scale, especially in regions for which optical remote sensing from space is constrained by climatic and tidal conditions. ?? 2006 American Society for Photogrammetry and Remote Sensing.
NASA Technical Reports Server (NTRS)
Reginato, R. J.; Vedder, J. F.; Idso, S. B.; Jackson, R. D.; Blanchard, M. B.; Goettelman, R.
1977-01-01
For several days in March of 1975, reflected solar radiation measurements were obtained from smooth and rough surfaces of wet, drying, and continually dry Avondale loam at Phoenix, Arizona, with pyranometers located 50 cm above the ground surface and a multispectral scanner flown at a 300-m height. The simple summation of the different band radiances measured by the multispectral scanner proved equally as good as the pyranometer data for estimating surface soil water content if the multispectral scanner data were standardized with respect to the intensity of incoming solar radiation or the reflected radiance from a reference surface, such as the continually dry soil. Without this means of standardization, multispectral scanner data are most useful in a spectral band ratioing context. Our results indicated that, for the bands used, no significant information on soil water content could be obtained by band ratioing. Thus the variability in soil water content should insignificantly affect soil-type discrimination based on identification of type-specific spectral signatures. Therefore remote sensing, conducted in the 0.4- to 1.0-micron wavelength region of the solar spectrum, would seem to be much More suited to identifying crop and soil types than to estimating of soil water content.
Quality assessment of butter cookies applying multispectral imaging
Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne
2013-01-01
A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4–16 min and 160–200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400–700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center. PMID:24804036
NASA Astrophysics Data System (ADS)
Liu, Xin; Samil Yetik, Imam
2012-04-01
Use of multispectral magnetic resonance imaging has received a great interest for prostate cancer localization in research and clinical studies. Manual extraction of prostate tumors from multispectral magnetic resonance imaging is inefficient and subjective, while automated segmentation is objective and reproducible. For supervised, automated segmentation approaches, learning is essential to obtain the information from training dataset. However, in this procedure, all patients are assumed to have similar properties for the tumor and normal tissues, and the segmentation performance suffers since the variations across patients are ignored. To conquer this difficulty, we propose a new iterative normalization method based on relative intensity values of tumor and normal tissues to normalize multispectral magnetic resonance images and improve segmentation performance. The idea of relative intensity mimics the manual segmentation performed by human readers, who compare the contrast between regions without knowing the actual intensity values. We compare the segmentation performance of the proposed method with that of z-score normalization followed by support vector machine, local active contours, and fuzzy Markov random field. Our experimental results demonstrate that our method outperforms the three other state-of-the-art algorithms, and was found to have specificity of 0.73, sensitivity of 0.69, and accuracy of 0.79, significantly better than alternative methods.
COMPARISON OF RETINAL PATHOLOGY VISUALIZATION IN MULTISPECTRAL SCANNING LASER IMAGING.
Meshi, Amit; Lin, Tiezhu; Dans, Kunny; Chen, Kevin C; Amador, Manuel; Hasenstab, Kyle; Muftuoglu, Ilkay Kilic; Nudleman, Eric; Chao, Daniel; Bartsch, Dirk-Uwe; Freeman, William R
2018-03-16
To compare retinal pathology visualization in multispectral scanning laser ophthalmoscope imaging between the Spectralis and Optos devices. This retrospective cross-sectional study included 42 eyes from 30 patients with age-related macular degeneration (19 eyes), diabetic retinopathy (10 eyes), and epiretinal membrane (13 eyes). All patients underwent retinal imaging with a color fundus camera (broad-spectrum white light), the Spectralis HRA-2 system (3-color monochromatic lasers), and the Optos P200 system (2-color monochromatic lasers). The Optos image was cropped to a similar size as the Spectralis image. Seven masked graders marked retinal pathologies in each image within a 5 × 5 grid that included the macula. The average area with detected retinal pathology in all eyes was larger in the Spectralis images compared with Optos images (32.4% larger, P < 0.0001), mainly because of better visualization of epiretinal membrane and retinal hemorrhage. The average detection rate of age-related macular degeneration and diabetic retinopathy pathologies was similar across the three modalities, whereas epiretinal membrane detection rate was significantly higher in the Spectralis images. Spectralis tricolor multispectral scanning laser ophthalmoscope imaging had higher rate of pathology detection primarily because of better epiretinal membrane and retinal hemorrhage visualization compared with Optos bicolor multispectral scanning laser ophthalmoscope imaging.
Image processing of underwater multispectral imagery
Zawada, D. G.
2003-01-01
Capturing in situ fluorescence images of marine organisms presents many technical challenges. The effects of the medium, as well as the particles and organisms within it, are intermixed with the desired signal. Methods for extracting and preparing the imagery for analysis are discussed in reference to a novel underwater imaging system called the low-light-level underwater multispectral imaging system (LUMIS). The instrument supports both uni- and multispectral collections, each of which is discussed in the context of an experimental application. In unispectral mode, LUMIS was used to investigate the spatial distribution of phytoplankton. A thin sheet of laser light (532 nm) induced chlorophyll fluorescence in the phytoplankton, which was recorded by LUMIS. Inhomogeneities in the light sheet led to the development of a beam-pattern-correction algorithm. Separating individual phytoplankton cells from a weak background fluorescence field required a two-step procedure consisting of edge detection followed by a series of binary morphological operations. In multispectral mode, LUMIS was used to investigate the bio-assay potential of fluorescent pigments in corals. Problems with the commercial optical-splitting device produced nonlinear distortions in the imagery. A tessellation algorithm, including an automated tie-point-selection procedure, was developed to correct the distortions. Only pixels corresponding to coral polyps were of interest for further analysis. Extraction of these pixels was performed by a dynamic global-thresholding algorithm.
Development of online lines-scan imaging system for chicken inspection and differentiation
NASA Astrophysics Data System (ADS)
Yang, Chun-Chieh; Chan, Diane E.; Chao, Kuanglin; Chen, Yud-Ren; Kim, Moon S.
2006-10-01
An online line-scan imaging system was developed for differentiation of wholesome and systemically diseased chickens. The hyperspectral imaging system used in this research can be directly converted to multispectral operation and would provide the ideal implementation of essential features for data-efficient high-speed multispectral classification algorithms. The imaging system consisted of an electron-multiplying charge-coupled-device (EMCCD) camera and an imaging spectrograph for line-scan images. The system scanned the surfaces of chicken carcasses on an eviscerating line at a poultry processing plant in December 2005. A method was created to recognize birds entering and exiting the field of view, and to locate a Region of Interest on the chicken images from which useful spectra were extracted for analysis. From analysis of the difference spectra between wholesome and systemically diseased chickens, four wavelengths of 468 nm, 501 nm, 582 nm and 629 nm were selected as key wavelengths for differentiation. The method of locating the Region of Interest will also have practical application in multispectral operation of the line-scan imaging system for online chicken inspection. This line-scan imaging system makes possible the implementation of multispectral inspection using the key wavelengths determined in this study with minimal software adaptations and without the need for cross-system calibration.
Unmixing chromophores in human skin with a 3D multispectral optoacoustic mesoscopy system
NASA Astrophysics Data System (ADS)
Schwarz, Mathias; Aguirre, Juan; Soliman, Dominik; Buehler, Andreas; Ntziachristos, Vasilis
2016-03-01
The absorption of visible light by human skin is governed by a number of natural chromophores: Eumelanin, pheomelanin, oxyhemoglobin, and deoxyhemoglobin are the major absorbers in the visible range in cutaneous tissue. Label-free quantification of these tissue chromophores is an important step of optoacoustic (photoacoustic) imaging towards clinical application, since it provides relevant information in diseases. In tumor cells, for instance, there are metabolic changes (Warburg effect) compared to healthy cells, leading to changes in oxygenation in the environment of tumors. In malignant melanoma changes in the absorption spectrum have been observed compared to the spectrum of nonmalignant nevi. So far, optoacoustic imaging has been applied to human skin mostly in single-wavelength mode, providing anatomical information but no functional information. In this work, we excited the tissue by a tunable laser source in the spectral range from 413-680 nm with a repetition rate of 50 Hz. The laser was operated in wavelengthsweep mode emitting consecutive pulses at various wavelengths that allowed for automatic co-registration of the multispectral datasets. The multispectral raster-scan optoacoustic mesoscopy (MSOM) system provides a lateral resolution of <60 μm independent of wavelength. Based on the known absorption spectra of melanin, oxyhemoglobin, and deoxyhemoglobin, three-dimensional absorption maps of all three absorbers were calculated from the multispectral dataset.
NASA Technical Reports Server (NTRS)
Taranik, James V.; Davis, David; Borengasser, Marcus
1986-01-01
The Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the Donner Pass area in California on September 12, 1985. The higher peaks in the area approach 9,200 feet in elevation, while the canyon of the north fork of the American River is only 3000 feet in elevation. The vegetation is dominated by conifers, although manzanita and other shrubs are present in areas where soils have developed. The data contain noise patterns which cut across scan lines diagonally. The TIMS data were analyzed using both photointerpretative and digital processing techniques. Preliminary image interpretation and field analysis confirmed that TIMS image data displays the chert units and silicic volcanics as bright red. The imagery appears to display zoning in the batholithic and hypabyssal intrusive rocks, although this was not field checked at this time. Rocks which appear to be more dioritic in composition appear purple on the imagery, while rocks more granitic in composition appear shades of red and pink. Areas that have more than 40% vegetative cover appear green on the imagery.
The development of spectro-signature indicators of root disease impacts on forest stands
NASA Technical Reports Server (NTRS)
Weber, F. P.; Wear, J. F.
1970-01-01
A field research program was begun in 1969 and intensified in 1970 on the physiology and biophysical responses of second-growth Douglas fir infected with root rot fungus. A double tramway system was suspended between three 100-foot instrument towers to carry sensors for measuring the energy response from above both healthy and infected trees. Processing and analysis was completed of airborne multispectral scanner imagery collected over the Wind River research area in 1969. Likelihood ratio processing of three-channel infrared data and Euclidean distance analysis of ten-channel spectrometer data did not identify incipient root rot infection outside the training sets. In all cases infected fir was misclassified as healthy fir. It was concluded from careful examination of physiological data that Poria root rot infection has little effect on water metabolism and energy exchange. What was identified was a low-grade stress that affects respiration and metabolism over long periods of time. This led to minor changes in the external physical symptoms of Poria-infected trees which was revealed only in the shortwave reflectance data.
Spatial and spectral resolution necessary for remotely sensed vegetation studies
NASA Technical Reports Server (NTRS)
Rock, B. N.
1982-01-01
An outline is presented of the required spatial and spectral resolution needed for accurate vegetation discrimination and mapping studies as well as for determination of state of health (i.e., detection of stress symptoms) of actively growing vegetation. Good success was achieved in vegetation discrimination and mapping of a heterogeneous forest cover in the ridge and valley portion of the Appalachians using multispectral data acquired with a spatial resolution of 15 m (IFOV). A sensor system delivering 10 to 15 m spatial resolution is needed for both vegetation mapping and detection of stress symptoms. Based on the vegetation discrimination and mapping exercises conducted at the Lost River site, accurate products (vegetation maps) are produced using broad-band spectral data ranging from the .500 to 2.500 micron portion of the spectrum. In order of decreasing utility for vegetation discrimination, the four most valuable TM simulator VNIR bands are: 6 (1.55 to 1.75 microns), 3 (0.63 to 0.69 microns), 5 (1.00 to 1.30 microns) and 4 (0.76 to 0.90 microns).
Multisensor analysis of hydrologic features with emphasis on the Seasat SAR
NASA Technical Reports Server (NTRS)
Foster, J. L.; Hall, D. K.
1981-01-01
Synthetic aperture radar (SAR) imagery of the Wind River Range area in Wyoming is compared with visible and near-infrared imagery of the same area. Data from the Seasat L-Band SAR and an aircraft X-Band SAR are compared with Landsat Return Beam Vidicon (RBV) visible data and near-infrared aerial photography and topographic maps of the same area. It is noted that visible and near-infrared data provide more information than the SAR data when conditions are the most favorable. The SAR penetrates clouds and snow, however, and data can be acquired day or night. Drainage density detail is good on SAR imagery because individual streams show up well owing to riparian vegetation; this causes higher radar reflections which result from the 'rough' surface which vegetation creates. In the winter image, the X-Band radar data show high returns because of cracks on the lake ice surfaces. High returns can also be seen in the L-Band SAR imagery of the lakes due to ripples on the surface induced by wind. It is concluded that the use of multispectral data would optimize analysis of hydrologic features.
Observations and model predictions of water skin temperatures at MTI core site lakes and reservoirs
NASA Astrophysics Data System (ADS)
Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, Byron L.; Parker, Matthew J.; Pendergast, Malcolm M.; Villa-Aleman, Eliel; Pagnutti, Mary A.
2001-08-01
The Savannah River Technology Center (SRTC) measured water skin temperatures at four of the Multi-spectral Thermal Imager (MTI) core sites. The depression of the skin temperature relative to the bulk water temperature ((Delta) T) a few centimeters below the surface is a complex function of the weather conditions, turbulent mixing in the water and the bulk water temperature. Observed skin temperature depressions range from near zero to more than 1.0 degree(s)C. Skin temperature depressions tend to be larger when the bulk water temperature is high, but large depressions were also observed in cool bodies of water in calm conditions at night. We compared (Delta) T predictions from three models (SRTC, Schlussel and Wick) against measured (Delta) T's from 15 data sets taken at the MTI core sites. The SRTC and Wick models performed somewhat better than the Schlussel model, with RMSE and average absolute errors of about 0.2 degree(s)C, relative to 0.4 degree(s)C for the Schlussel model. The average observed (Delta) T for all 15 databases was -0.7 degree(s)C.
NASA Astrophysics Data System (ADS)
Hu, Chuanmin; Lee, Zhongping; Muller-Karger, Frank E.; Carder, Kendall L.
2003-05-01
A spectra-matching optimization algorithm, designed for hyperspectral sensors, has been implemented to process SeaWiFS-derived multi-spectral water-leaving radiance data. The algorithm has been tested over Southwest Florida coastal waters. The total spectral absorption and backscattering coefficients can be well partitioned with the inversion algorithm, resulting in RMS errors generally less than 5% in the modeled spectra. For extremely turbid waters that come from either river runoff or sediment resuspension, the RMS error is in the range of 5-15%. The bio-optical parameters derived in this optically complex environment agree well with those obtained in situ. Further, the ability to separate backscattering (a proxy for turbidity) from the satellite signal makes it possible to trace water movement patterns, as indicated by the total absorption imagery. The derived patterns agree with those from concurrent surface drifters. For waters where CDOM overwhelmingly dominates the optical signal, however, the procedure tends to regard CDOM as the sole source of absorption, implying the need for better atmospheric correction and for adjustment of some model coefficients for this particular region.
NASA Technical Reports Server (NTRS)
Rejmankova, E.; Roberts, D. R.; Pawley, A.; Manguin, S.; Polanco, J.
1995-01-01
Remote sensing is particularly helpful for assessing the location and extent of vegetation formations, such as herbaceous wetlands, that are difficult to examine on the ground. Marshes that are sparsely populated with emergent macrophytes and dense cyanobacterial mats have previously been identified as very productive Anopheles albimanus larval habitats. This type of habitat was detectable on a classified multispectral System Probatoire d'Observation de la Terre image of northern Belize as a mixture of two isoclasses. A similar spectral signature is characteristic for vegetation of river margins consisting of aquatic grasses and water hyacinth, which constitutes another productive larval habitat. Based on the distance between human settlements (sites) of various sizes and the nearest marsh/river exhibiting this particular class combination, we selected two groups of sites: those located closer than 500 m and those located more than 1,500 m from such habitats. Based on previous adult collections near larval habitats, we defined a landing rate of 0.5 mosquitoes/human/min from 6:30 PM to 8:00 PM as the threshold for high (> or = 0.5 mosquitoes/human/min) versus low (< 0.5 mosquitoes/human/min) densities of An. albimanus. Sites located less than 500 m from the habitat were predicted as having values higher than this threshold, while lower values were predicted for sites located greater than 1,500 m from the habitat. Predictions were verified by collections of mosquitoes landing on humans. The predictions were 100% accurate for sites in the > 1,500-m category and 89% accurate for sites in the < 500-m category.
Detroit, Michigan metropolitan area photographed from Skylab
1973-08-05
SL3-83-0152 (July-September 1973) --- A near vertical view of the metropolitan Detroit, Michigan area is seen in this Skylab 3 Earth Resources Experiments Package S190-B (five-inch Earth terrain camera) photograph taken from the Skylab space station in Earth orbit. The 25-mile long Detroit River drains the smaller body of water (Lake St. Clair) and flows southwestward separating Detroit from Windsor, Ontario, and empties into Lake Erie. The Detroit River handles a great deal of Great Lakes barge and ship traffic. Major streets and thoroughfares radiating from the city are clearly visible. Fighting Island is the highly reflective, white area located almost in the center of the picture. This high reflectivity is caused by the functional use of the island-disposal ponds for chemical salts. Sedimentation and/or pollution patterns in the area provide interesting visual phenomena for speculation and analysis. Distinct and rather unique cultivated field patterns can be observed south and east of Windsor, Ontario. This is a direct result of an English survey and land tenure system which was utilized when the area was settled. New areas of residential development are fairly easy to differentiate from older, established residential areas. Vegetation and extent of area coverage can be determined. The Oakland County Planning Commission and the Federal Bureau of Outdoor Recreation working closely with Irv Sattinger of the Environmental Research Institute of Michigan (University of Michigan) are presently processing and analyzing photographic and Multispectral scanner data to determine its usefulness for recreation and open space site studies for this area. Photo credit: NASA
2011-03-01
electromagnetic spectrum. With the availability of multispectral and hyperspectral systems, both spatial and spectral information for a scene are...an image. The boundary conditions for NDGRI and NDSI are set from diffuse spectral reflectance values for the range of skin types determined in [28...wearing no standard uniform and blending into the urban population. To assist with enemy detection and tracking, imaging systems that acquire spectral
Multi-Spectral Solar Telescope Array. IV - The soft X-ray and extreme ultraviolet filters
NASA Technical Reports Server (NTRS)
Lindblom, Joakim F.; O'Neal, Ray H.; Walker, Arthur B. C., Jr.; Powell, Forbes R.; Barbee, Troy W., Jr.; Hoover, Richard B.
1991-01-01
NASA's Multi-Spectral Solar Telescope Array uses various combinations of thin foil filters composed of Al, C, Te, Be, Mo, Rh, and phthalocyanine to achieve the requisite radiation-rejection characteristics. Such rejection is demanded by the presence of strong EUV radiation at longer wavelengths where the specular reflectivity of multilayer mirrors can cause 'contamination' of the image in the narrow band defined by the Bragg condition.
NASA Astrophysics Data System (ADS)
Smith, W.; Weisz, E.; McNabb, J. M. C.
2017-12-01
A technique is described which enables the combination of high vertical resolution (1 to 2-km) JPSS hyper-spectral soundings (i.e., from AIRS, CrIS, and IASI) with high horizontal (2-km) and temporal (15-min) resolution GOES multi-spectral imagery (i.e., provided by ABI) to produce low latency sounding products with the highest possible spatial and temporal resolution afforded by the instruments.
Wachman, Elliot S; Geyer, Stanley J; Recht, Joel M; Ward, Jon; Zhang, Bill; Reed, Murray; Pannell, Chris
2014-05-01
An acousto-optic tunable filter (AOTF)-based multispectral imaging microscope system allows the combination of cellular morphology and multiple biomarker stainings on a single microscope slide. We describe advances in AOTF technology that have greatly improved spectral purity, field uniformity, and image quality. A multispectral imaging bright field microscope using these advances demonstrates pathology results that have great potential for clinical use.
Unmanned spacecraft for surveying earth's resources
NASA Technical Reports Server (NTRS)
George, T. A.
1970-01-01
The technical objectives and payloads for ERTS A and B are discussed. The primary emphasis is on coverage of the United States and the ocean areas immediately adjacent, using 3-camera return beam vidicon TV system, 4-channel multispectral point scanner, data collection system, and wideband video tape recorder. The expected performance and system characteristics of the RBV system and the 4-band multispectral object plane point scanner are outlined. Ground station considerations are also given.
Chemical Vapor Deposition of Multispectral Domes
1975-04-01
optical testing, was also cut out as indicated in Figure 10. The image spoiling measureinents were performed at the Air Force Avionics Laboratory on...AD-A014 362 CHEMICAL VAPOR DEPOSITION OF MULTISPECTRAL DOMES B. A. diBenedetto, et al Raytheon Company Prepared for: Air Force Materials Laboratory...Approved for public release; distribution unlimited. ) F) .• •~~EP 7 ’+ i.i AIR FORCE MATERIALS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATrERSON AIR
Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian; Oakes, Keith; Moselund, Peter Morten; Leick, Lasse; Bang, Ole; Podoleanu, Adrian
2016-06-01
We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150 nJ/10 nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source.
Data processing 1: Advancements in machine analysis of multispectral data
NASA Technical Reports Server (NTRS)
Swain, P. H.
1972-01-01
Multispectral data processing procedures are outlined beginning with the data display process used to accomplish data editing and proceeding through clustering, feature selection criterion for error probability estimation, and sample clustering and sample classification. The effective utilization of large quantities of remote sensing data by formulating a three stage sampling model for evaluation of crop acreage estimates represents an improvement in determining the cost benefit relationship associated with remote sensing technology.
NASA Astrophysics Data System (ADS)
Zhao, Shaoshuai; Ni, Chen; Cao, Jing; Li, Zhengqiang; Chen, Xingfeng; Ma, Yan; Yang, Leiku; Hou, Weizhen; Qie, Lili; Ge, Bangyu; Liu, Li; Xing, Jin
2018-03-01
The remote sensing image is usually polluted by atmosphere components especially like aerosol particles. For the quantitative remote sensing applications, the radiative transfer model based atmospheric correction is used to get the reflectance with decoupling the atmosphere and surface by consuming a long computational time. The parallel computing is a solution method for the temporal acceleration. The parallel strategy which uses multi-CPU to work simultaneously is designed to do atmospheric correction for a multispectral remote sensing image. The parallel framework's flow and the main parallel body of atmospheric correction are described. Then, the multispectral remote sensing image of the Chinese Gaofen-2 satellite is used to test the acceleration efficiency. When the CPU number is increasing from 1 to 8, the computational speed is also increasing. The biggest acceleration rate is 6.5. Under the 8 CPU working mode, the whole image atmospheric correction costs 4 minutes.