Sample records for river basin management

  1. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    NASA Astrophysics Data System (ADS)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case

  2. A comparison of integrated river basin management strategies: A global perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  3. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    NASA Astrophysics Data System (ADS)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  4. Scaling issues in sustainable river basin management

    NASA Astrophysics Data System (ADS)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  5. Foundations of the participatory approach in the Mekong River basin management.

    PubMed

    Budryte, Paulina; Heldt, Sonja; Denecke, Martin

    2018-05-01

    Integrated Water Resource Management (IWRM) was acknowledged as a leading concept in the water management for the last two decades by academia, political decision-makers and experts. It strongly promotes holistic management and participatory approaches. The flexibility and adaptability of IWRM concept are especially important for large, transboundary river basins - e.g. the Mekong river basin - where natural processes and hazards, as well as, human-made "disasters" are demanding for a comprehensive approach. In the Mekong river basin, the development and especially the enforcement of one common strategy has always been a struggle. The past holds some unsuccessful experiences. In 2016 Mekong River Commission published IWRM-based Basin Development Strategy 2016-2020 and The Mekong River Commission Strategic Plan 2016-2020. They should be the main guiding document for the Mekong river development in the near future. This study analyzes how the concept of public participation resembles the original IWRM participatory approach in these documents. Therefore, IWRM criteria for public participation in international literature and official documents from the Mekong river basin are compared. As there is often a difference between "de jure" and "de facto" implementation of public participation in management concepts, the perception of local stakeholders was assessed in addition. The results of social survey give an insight if local people are aware of Mekong river basin development and present their dominant attitudes about the issue. The findings enable recommendations how to mitigate obstacles in the implementation of common development strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    PubMed

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  7. River Basin Scale Management and Governance: Competing Interests for Western Water

    NASA Astrophysics Data System (ADS)

    Lindquist, Eric

    2015-04-01

    One of the most significant issues in regard to how social scientists understand environmental and resource management is the question of scale: what is the appropriate scale at which to consider environmental problems, and associated stakeholders (including hydrologists) and their interests, in order to "govern" them? Issues of scale touch on the reality of political boundaries, from the international to the local, and their overlap and conflict across jurisdictions. This presentation will consider the questions of environmental management and governance at the river basin scale through the case of the Boise River Basin (BRB), in southwest Idaho. The river basin scale provides a viable, and generalizable, unit of analysis with which to consider theoretical and empirical questions associated with governance and the role of hydrological science in decision making. As a unit of analysis, the "river basin" is common among engineers and hydrologists. Indeed, hydrological data is often collected and assessed at the basin level, not at an institutional or jurisdictional level. In the case of the BRB much is known from the technical perspective, such as infrastructure and engineering factors, who manages the river and how, and economic perspectives, in regard to benefits in support of major agricultural interests in the region. The same level of knowledge cannot be said about the political and societal factors, and related concepts of institutions and power. Compounding the situation is the increasing probability of climate change impacts in the American West. The geographic focus on the Boise River Basin provides a compelling example of what the future might hold in the American West, and how resource managers and other vested interests make or influence river basin policy in the region. The BRB represents a complex and dynamic environment covering approximately 4,100 square miles of land. The BRB is a highly managed basin, with multiple dams and diversions, and is

  8. An Integrated Decision Support System for Water Quality Management of Songhua River Basin

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping; Yin, Qiuxiao; Chen, Ling

    2010-11-01

    In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.

  9. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    PubMed

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  10. Water Demand Management Strategies and Challenges in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Kuhn, R. E.

    2016-12-01

    Under the 1922 Colorado River Compact, the Upper Basin (Colorado, New Mexico, Utah, and Wyoming) has flow obligations at Lee Ferry to downstream states and Mexico. The Colorado River Storage Project Act (CRSPA) of 1956 led to the construction of four large storage reservoirs. These provide river regulation to allow the Upper Basin to meet its obligations. Lake Powell, the largest and most important, and Lake Mead are now operated in a coordinated manner under the 2007 Interim Guidelines. Studies show that at current demand levels and if the hydrologic conditions the Basin has experienced since the mid-1980s continue or get drier, reservoir operations, alone, may not provide the necessary water to meet the Upper Basin's obligations. Therefore, the Upper Basin states are now studying demand management strategies that will reduce consumptive uses when total system reservoir storage reaches critically low levels. Demand management has its own economic, political and technical challenges and limitations and will provide new opportunities for applied research. This presentation will discuss some of those strategies, their challenges, and the kinds of information that research could provide to inform demand management.

  11. River enhancement in the Upper Mississippi River basin: Approaches based on river uses, alterations, and management agencies

    USGS Publications Warehouse

    O'Donnell, T. K.; Galat, D.L.

    2007-01-01

    The Upper Mississippi River is characterized by a series of locks and dams, shallow impoundments, and thousands of river channelization structures that facilitate commercial navigation between Minneapolis, Minnesota, and Cairo, Illinois. Agriculture and urban development over the past 200 years have degraded water quality and increased the rate of sediment and nutrient delivery to surface waters. River enhancement has become an important management tool employed to address causes and effects of surface water degradation and river modification in the Upper Mississippi River Basin. We report information on individual river enhancement projects and contrast project densities, goals, activities, monitoring, and cost between commercially non-navigated and navigated rivers (Non-navigated and Navigated Rivers, respectively). The total number of river enhancement projects collected during this effort was 62,108. Cost of all projects reporting spending between 1972 and 2006 was about US$1.6 billion. Water quality management was the most cited project goal within the basin. Other important goals in Navigated Rivers included in-stream habitat improvement and flow modification. Most projects collected for Non-navigated Rivers and their watersheds originated from the U.S. Department of Agriculture (USDA). The U.S. Army Corps of Engineers and the USDA were important sources for projects in Navigated Rivers. Collaborative efforts between agencies that implement projects in Non-navigated and Navigated Rivers may be needed to more effectively address river impairment. However, the current state of data sources tracking river enhancement projects deters efficient and broad-scale integration. ?? Journal compilation ?? 2007 Society for Ecological Restoration International.

  12. Sustainable Land Management in the Lim River Basin

    NASA Astrophysics Data System (ADS)

    Grujic, Gordana; Petkovic, Sava; Tatomir, Uros

    2017-04-01

    In the cross-border belt between Serbia and Montenegro are located more than one hundred torrential water flows that belong to the Lim River Basin. Under extreme climate events they turned into floods of destructive power and great energy causing enormous damage on the environment and socio-economic development in the wider region of the Western Balkans. In addition, anthropogenic factors influence the land instability, erosion of river beds and loss of topsoil. Consequently, this whole area is affected by pluvial and fluvial erosion of various types and intensity. Terrain on the slopes over 5% is affected by intensive degree of erosion, while strong to medium degree covers 70% of the area. Moreover, in the Lim River Basin were built several hydro-energetic systems and accumulations which may to a certain extent successfully regulate the water regime downstream and to reduce the negative impact on the processes of water erosion. However, siltation of accumulation reduces their useful volume and threatens the basic functions (water reservoirs), especially those ones for water supply, irrigation and energy production that have lost a significant part of the usable volume due to accumulated sediments. Facing the negative impacts of climate change and human activities on the process of land degradation in the Lim River basin imposes urgent need of adequate preventive and protective measures at the local and regional level, which can be effectively applied only through enhanced cross-border cooperation among affected communities in the region. The following set of activities were analyzed to improve the actual management of river catchment: Identifying priorities in the spatial planning, land use and water resources management while respecting the needs of local people and the communities in the cross border region; development of cooperation and partnership between the local population, owners and users of real estate (pastures, agricultural land, forests, fisheries

  13. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  14. Ecosystem based river basin management planning in critical water catchment in Mongolia

    NASA Astrophysics Data System (ADS)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  15. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Inland River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Li, X.; Cheng, G.; Tian, W.; Zhang, Y.; Zhou, J.; Pan, X.; Ge, Y.; Hu, X.

    2013-12-01

    Inland river basins take about 11.4% of the land area of the world and most of them are distributed over arid regions. Understanding the hydrological cycle of inland river basin is important for water resource management in water scarcity regions. This paper illustrated hydrological cycle of a typical inland river basin in China, the Heihe River Basin (HRB). First, water balance in upper, middle and lower reaches of the HRB was conceptualized by analyzing dominant hydrological processes in different parts of the river basin. Then, we used a modeling approach to study the water cycle in the HRB. In the upper reaches, we used the GBHM-SHAW, a distributed hydrological model with a new frozen soil parameterization. In the middle and lower reaches, we used the GWSiB, a three-dimensionally coupled land surface-groundwater model. Modeling results were compared with water balance observations in different landscapes and cross-validated with other results to ensure the reliability. The results show that the hydrological cycle in HRB has some distinctive characteristics. Mountainous area generates almost all of the runoff for the whole river basin. High-elevation zones have much larger runoff/precipitation ratio. Cryospheric hydrology plays an important role. Although snow melting and glacier runoff take less than 25% of total runoff, these processes regulate inter-annual variation of runoff and thus provide stable water resource for oases downstream. Forest area contributes almost no runoff but it smoothes runoff and reduces floods by storing water in soil and releasing it out slowly. In the middle reaches, artificial hydrological cycle is much more dominated than natural one. River water and groundwater, recharged by runoff from mountainous area, is the water resource to support the agriculture and nurture the riparian ecosystem. Precipitation, approximately 150 mm in average, is only a supplement to agriculture use but sufficient to sustain desert vegetation. Water

  16. A coupled modeling framework for sustainable watershed management in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Furqan Khan, Hassaan; Yang, Y. C. Ethan; Xie, Hua; Ringler, Claudia

    2017-12-01

    There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural-human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model (SWAT) and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food-water-energy-environment (FWEE) nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow) through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of eco

  17. Optimally managing water resources in large river basins for an uncertain future

    USGS Publications Warehouse

    Edwin A. Roehl, Jr.; Conrads, Paul

    2014-01-01

    Managers of large river basins face conflicting needs for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting local economies for years. The Savannah River Basin’s coastal area contains municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent since the 1970s. There is a planned deepening of the harbor that includes flow-alteration features to minimize further migration of salinity. The effectiveness of the flow-alteration features will only be known after they are constructed. One of the challenges of basin management is the optimization of water use through ongoing development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to significantly reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the

  18. Managing water quality under drought conditions in the Llobregat River Basin.

    PubMed

    Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín

    2015-01-15

    The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  20. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    USGS Publications Warehouse

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  1. Can the Gila River reduce risk in the Colorado River Basin?

    NASA Astrophysics Data System (ADS)

    Wade, L. C.; Rajagopalan, B.; Lukas, J.; Kanzer, D.

    2012-12-01

    The Colorado River is the most important source of water in the southwest United States and Northern Mexico, providing water to approximately 35 million people and 4-5 million acres of irrigated lands. To manage the water resources of the basin, estimated to be about 17 million acre-feet (MAF) of undepleted supplies per year, managers use reservoir facilities that can store more than 60 MAF. As the demands on the water resources of the basin approach or exceed the average annual supply, and with average flow projected to decrease due to climate change, smart water management is vital for its sustainability. To quantify the future risk of depleting reservoir storage, Rajagopalan et al. (2009) developed a water-balance model and ran it under scenarios based on historical, paleo-reconstructed and future projections of flows, and different management alternatives. That study did not consider the impact of the Gila River, which enters the Colorado River below all major reservoirs and U.S. diversions. Due to intensive use in Central Arizona, the Gila only has significant inflows to the Colorado in wet years. However, these irregular inflows could beneficially influence system reliability in the US by helping to meet a portion of the 1.5 MAF delivery obligations to Mexico. To help quantify the potential system reliability benefit of the Gila River, we modify the Rajagopalan et al (2009) model to incorporate simulated Gila River inflows. These new data inputs to the water balance model are based on historical flows and tree-ring reconstructions of flow in the Upper Colorado River Basin (at Lee's Ferry), the Lower Colorado River Basin (tributary inflows), and the intermittent flows from the Gila River which are generated using extreme value analysis methods. Incorporating Gila River inflows, although they are highly variable and intermittent, reduces the modeled cumulative risk of reservoir depletion by 4 to 11% by 2057, depending on the demand schedule, reservoir operation

  2. 78 FR 17643 - Greater Mississippi River Basin Water Management Board; Engineer Regulation No. 15-2-13

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... structure and is aligned with water management activities during recent flood and drought events in the... operating activities concerned with water management within the Greater Mississippi River Basin. The Greater... require coordination of basin-wide water management activities. b. To serve as a forum for discussion of...

  3. The costs of uncoordinated infrastructure management in multi-reservoir river basins

    NASA Astrophysics Data System (ADS)

    Jeuland, Marc; Baker, Justin; Bartlett, Ryan; Lacombe, Guillaume

    2014-10-01

    Though there are surprisingly few estimates of the economic benefits of coordinated infrastructure development and operations in international river basins, there is a widespread belief that improved cooperation is beneficial for managing water scarcity and variability. Hydro-economic optimization models are commonly-used for identifying efficient allocation of water across time and space, but such models typically assume full coordination. In the real world, investment and operational decisions for specific projects are often made without full consideration of potential downstream impacts. This paper describes a tractable methodology for evaluating the economic benefits of infrastructure coordination. We demonstrate its application over a range of water availability scenarios in a catchment of the Mekong located in Lao PDR, the Nam Ngum River Basin. Results from this basin suggest that coordination improves system net benefits from irrigation and hydropower by approximately 3-12% (or US12-53 million/yr) assuming moderate levels of flood control, and that the magnitude of coordination benefits generally increases with the level of water availability and with inflow variability. Similar analyses would be useful for developing a systematic understanding of the factors that increase the costs of non-cooperation in river basin systems worldwide, and would likely help to improve targeting of efforts to stimulate complicated negotiations over water resources.

  4. Proceedings of the Colorado River Basin Science and Resource Management Symposium, November 18-20, 2008, Scottsdale, Arizona

    USGS Publications Warehouse

    Melis, Theodore S.; Hamill, John F.; Bennett, Glenn E.; Coggins,, Lewis G.; Grams, Paul E.; Kennedy, Theodore A.; Kubly, Dennis M.; Ralston, Barbara E.

    2010-01-01

    Since the 1980s, four major science and restoration programs have been developed for the Colorado River Basin to address primarily the conservation of native fish and other wildlife pursuant to the Endangered Species Act (ESA): (1) Recovery Implementation Program for Endangered Fish Species in the Upper Colorado River Basin (commonly called the Upper Colorado River Endangered Fish Recovery Program) (1988); (2) San Juan River Basin Recovery Implementation Program (1992); (3) Glen Canyon Dam Adaptive Management Program (1997); and (4) Lower Colorado River Multi-Species Conservation Program (2005). Today, these four programs, the efforts of which span the length of the Colorado River, have an increasingly important influence on water management and resource conservation in the basin. The four efforts involve scores of State, Federal, and local agencies; Native American Tribes; and diverse stakeholder representatives. The programs have many commonalities, including similar and overlapping goals and objectives; comparable resources and threats to those resources; and common monitoring, research, and restoration strategies. In spite of their commonalities, until recently there had been no formal opportunity for information exchange among the programs. To address this situation, the U.S. Geological Survey (USGS) worked in coordination with the four programs and numerous Federal and State agencies to organize the first Colorado River Basin Science and Resource Management Symposium, which took place in Scottsdale, AZ, in November 2008. The symposium's primary purpose was to promote an exchange of information on research and management activities related to the restoration and conservation of the Colorado River and its major tributaries. A total of 283 managers, scientists, and stakeholders attended the 3-day symposium, which included 87 presentations and 27 posters. The symposium featured plenary talks by experts on a variety of topics, including overviews of the four

  5. Digital Earth system based river basin data integration

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Wanqing; Lin, Chao

    2014-12-01

    Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

  6. Legacy phosphorus accumulation and management in the global context: insights from long-term analysis of major river basins

    NASA Astrophysics Data System (ADS)

    Powers, S. M.; Burt, T. P.; Chan, N. I.; Elser, J. J.; Haygarth, P. M.; Howden, N. J. K.; Jarvie, H. P.; Peterson, H. M.; Shen, J.; Worrall, F.; Sharpley, A. N.

    2014-12-01

    Phosphorus (P) is closely linked to major societal concerns including food security and water quality, and human activities strongly control the modern global P cycle. Current knowledge of the P cycle includes many insights about relatively short-term processes, but a long-term and landscape-level view may be needed to understand P status and optimize P management towards P sustainability. We reconstructed long-term (>40 years) P mass balances and rates of P accumulation in three major river basins where excess P pollution is demanding improvements in P management at local, national, and international levels. We focus on: Maumee River Basin, a major source of agricultural P to Lake Erie, the southernmost and shallowest of the Laurentian Great Lakes; Thames River Basin, where fluxes of effluent P from the London, England metropolitan area have declined following improvements in wastewater treatment; Yangtze (Changjiang) River Basin, the largest in China, which is undergoing rapid economic development. The Maumee and Thames are intensively monitored, and show long-term declines in basin P inputs that represent a step towards P sustainability. However, river P outputs have been slower to decline, consistent with the hypothesis that legacy P is mobilizing from soils or from within the river network. Published data on the Yangtze indicate the P flux from land to water has clearly increased with industrialization and population growth. Historical trajectories of P accumulation and depletion in major river basins are providing new understanding about the long-term impacts of P management, including watershed P legacies and response times, that may inform future policy towards local, national, and global P sustainability.

  7. Informed Decision Making Process for Managing Environmental Flows in Small River Basins

    NASA Astrophysics Data System (ADS)

    Padikkal, S.; Rema, K. P.

    2013-03-01

    Numerous examples exist worldwide of partial or complete alteration to the natural flow regime of river systems as a consequence of large scale water abstraction from upstream reaches. The effects may not be conspicuous in the case of very large rivers, but the ecosystems of smaller rivers or streams may be completely destroyed over a period of time. While restoration of the natural flow regime may not be possible, at present there is increased effort to implement restoration by regulating environmental flow. This study investigates the development of an environmental flow management model at an icon site in the small river basin of Bharathapuzha, west India. To determine optimal environmental flow regimes, a historic flow model based on data assimilated since 1978 indicated a satisfactory minimum flow depth for river ecosystem sustenance is 0.907 m (28.8 m3/s), a value also obtained from the hydraulic model; however, as three of the reservoirs were already operational at this time a flow depth of 0.922 m is considered a more viable estimate. Analysis of daily stream flow in 1997-2006, indicated adequate flow regimes during the monsoons in June-November, but that sections of the river dried out in December-May with alarming water quality conditions near the river mouth. Furthermore, the preferred minimum `dream' flow regime expressed by stakeholders of the region is a water depth of 1.548 m, which exceeds 50 % of the flood discharge in July. Water could potentially be conserved for environmental flow purposes by (1) the de-siltation of existing reservoirs or (2) reducing water spillage in the transfer between river basins. Ultimately environmental flow management of the region requires the establishment of a co-ordinated management body and the regular assimilation of water flow information from which science based decisions are made, to ensure both economic and environmental concerns are adequately addressed.

  8. Ephemeral rivers and their development: testing an approach to basin management committees on the Kuiseb River, Namibia

    NASA Astrophysics Data System (ADS)

    Botes, A.; Henderson, J.; Nakale, T.; Nantanga, K.; Schachtschneider, K.; Seely, M.

    Ephemeral rivers are located in the world’s drylands where aridity and climate variability are key environmental determinants. The Kuiseb River is one of two diversely developed ephemeral rivers in western-central Namibia. From up to down stream, freehold-tenure farmers, a national park, communal farmers and the port and municipality of Walvis Bay all derive water from this source. Upstream farmers impound surface water during brief rainfall periods while remaining stakeholders’ abstract water from the alluvial aquifer. The draft Water Resources Management Act for Namibia devotes one chapter to basin management committees as mechanisms to ensure more equitable, efficient and effective sharing of water resources and their benefits. Two pilot committees are being established in Namibia, one of which is in the Kuiseb basin. The Environmental Learning and Action in the Kuiseb project, implemented by the Desert Research Foundation of Namibia in close consultation with Namibia’s Water Resources Management Review with funding from the European Union, has brought all stakeholders together. The Department of Water Affairs, NamWater and the Gobabeb Training and Research Centre are contributing information to enhance understanding of the river’s functions and services provided. All stakeholders are sharing information concerning their needs, expectations and contributions toward integrated management of the Kuiseb. After negotiation for one-and-a-half years, a formal committee is established and mechanisms for its functioning and sustainability are being identified. The main benefit to date is the dialogue, good will and interest that have been established amongst the stakeholders. If the momentum is maintained, this will lead to a new, more integrated approach to resource management in the entire basin.

  9. Integrated Forecast-Decision Systems For River Basin Planning and Management

    NASA Astrophysics Data System (ADS)

    Georgakakos, A. P.

    2005-12-01

    A central application of climatology, meteorology, and hydrology is the generation of reliable forecasts for water resources management. In principle, effective use of forecasts could improve water resources management by providing extra protection against floods, mitigating the adverse effects of droughts, generating more hydropower, facilitating recreational activities, and minimizing the impacts of extreme events on the environment and the ecosystems. In practice, however, realization of these benefits depends on three requisite elements. First is the skill and reliability of forecasts. Second is the existence of decision support methods/systems with the ability to properly utilize forecast information. And third is the capacity of the institutional infrastructure to incorporate the information provided by the decision support systems into the decision making processes. This presentation discusses several decision support systems (DSS) using ensemble forecasting that have been developed by the Georgia Water Resources Institute for river basin management. These DSS are currently operational in Africa, Europe, and the US and address integrated water resources and energy planning and management in river basins with multiple water uses, multiple relevant temporal and spatial scales, and multiple decision makers. The article discusses the methods used and advocates that the design, development, and implementation of effective forecast-decision support systems must bring together disciplines, people, and institutions necessary to address today's complex water resources challenges.

  10. Klamath River Basin water-quality data

    USGS Publications Warehouse

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  11. Gila River Basin Native Fishes Conservation Program

    Treesearch

    Doug Duncan; Robert W. Clarkson

    2013-01-01

    The Gila River Basin Native Fishes Conservation Program was established to conserve native fishes and manage against nonnative fishes in response to several Endangered Species Act biological opinions between the Bureau of Reclamation and the U.S. Fish and Wildlife Service on Central Arizona Project (CAP) water transfers to the Gila River basin. Populations of some Gila...

  12. Decentralized water resources management in Mozambique: Challenges of implementation at the river basin level

    NASA Astrophysics Data System (ADS)

    Inguane, Ronaldo; Gallego-Ayala, Jordi; Juízo, Dinis

    In the context of integrated water resources management implementation, the decentralization of water resources management (DWRM) at the river basin level is a crucial aspect for its success. However, decentralization requires the creation of new institutions on the ground, to stimulate an environment enabling stakeholder participation and integration into the water management decision-making process. In 1991, Mozambique began restructuring its water sector toward operational decentralized water resources management. Within this context of decentralization, new legal and institutional frameworks have been created, e.g., Regional Water Administrations (RWAs) and River Basin Committees. This paper identifies and analyzes the key institutional challenges and opportunities of DWRM implementation in Mozambique. The paper uses a critical social science research methodology for in-depth analysis of the roots of the constraining factors for the implementation of DWRM. The results obtained suggest that RWAs should be designed considering the specific geographic and infrastructural conditions of their jurisdictional areas and that priorities should be selected in their institutional capacity building strategies that match local realities. Furthermore, the results also indicate that RWAs have enjoyed limited support from basin stakeholders, mainly in basins with less hydraulic infrastructure, in securing water availability for their users and minimizing the effect of climate variability.

  13. Ten key questions about the management of water in the Yellow River basin.

    PubMed

    Barnett, Jon; Webber, Michael; Wang, Mark; Finlayson, Brian; Dickinson, Debbie

    2006-08-01

    Water is scarce in many regions of the world, clean water is difficult to find in most developing countries, there are conflicts between irrigation needs and urban demands, and there is wide debate over appropriate means of resolving these problems. Similarly, in China, there is limited understanding of the ways in which people, groups, and institutions contribute to, are affected by, and respond to changes in water quantity and quality. We use the example of the Yellow River basin to argue that these social, managerial, and policy dimensions of the present water problems are significant and overshadow the physical ones. Despite this, they receive relatively little attention in the research agenda, particularly of the lead agencies in the management of the Yellow River basin. To this end, we ask ten research questions needed to address the policy needs of water management in the basin, split into two groups of five. The first five relate to the importance of water in this basin and the changes that have affected water problems and will continue to do so. The second five questions represent an attempt to explore possible solutions to these problems.

  14. Linking local vulnerability to climatic hazard damage assessment for integrated river basin management

    NASA Astrophysics Data System (ADS)

    Hung, Hung-Chih; Liu, Yi-Chung; Chien, Sung-Ying

    2015-04-01

    1. Background Major portions of areas in Asia are expected to increase exposure and vulnerability to climate change and weather extremes due to rapid urbanization and overdevelopment in hazard-prone areas. To prepare and confront the potential impacts of climate change and related hazard risk, many countries have implemented programs of integrated river basin management. This has led to an impending challenge for the police-makers in many developing countries to build effective mechanism to assess how the vulnerability distributes over river basins, and to understand how the local vulnerability links to climatic (climate-related) hazard damages and risks. However, the related studies have received relatively little attention. This study aims to examine whether geographic localities characterized by high vulnerability experience significantly more damages owing to onset weather extreme events at the river basin level, and to explain what vulnerability factors influence these damages or losses. 2. Methods and data An indicator-based assessment framework is constructed with the goal of identifying composite indicators (including exposure, biophysical, socioeconomic, land-use and adaptive capacity factors) that could serve as proxies for attributes of local vulnerability. This framework is applied by combining geographical information system (GIS) techniques with multicriteria decision analysis (MCDA) to evaluate and map integrated vulnerability to climatic hazards across river basins. Furthermore, to explain the relationship between vulnerability factors and disaster damages, we develop a disaster damage model (DDM) based on existing disaster impact theory. We then synthesize a Zero-Inflated Poisson regression model with a Tobit regression analysis to identify and examine how the disaster impacts and vulnerability factors connect to typhoon disaster damages and losses. To illustrate the proposed methodology, the study collects data on the vulnerability attributes of

  15. Seasonal predictions of precipitation in the Aksu-Tarim River basin for improved water resources management

    NASA Astrophysics Data System (ADS)

    Hartmann, Heike; Snow, Julie A.; Su, Buda; Jiang, Tong

    2016-12-01

    Since the 1950s, the population in the arid to hyperarid Tarim River basin has grown rapidly concurrent with an expansion of irrigated agriculture. This threatens the Tarim River basin's natural ecosystems and causes water shortages, even though increased discharges in the headwaters have been observed more recently. These increases have mainly been attributed to receding glaciers and are projected to cease when the glaciers are unable to provide sufficient amounts of meltwater. Under these circumstances water management will face a serious challenge in adapting its strategies to changes in river discharge, which to a greater extent will depend on changes in precipitation. In this paper, we aim to develop accurate seasonal predictions of precipitation to improve water resources management. Possible predictors of precipitation for the Tarim River basin were either downloaded directly or calculated using NCEP/NCAR Reanalysis 1 and NOAA Extended Reconstructed Sea Surface Temperature (SST) V3b data in monthly resolution. To evaluate the significance of the predictors, they were then correlated with the monthly precipitation dataset GPCCv6 extracted for the Tarim River basin for the period 1961 to 2010. Prior to the Spearman rank correlation analyses, the precipitation data were averaged over the subbasins of the Tarim River. The strongest correlations were mainly detected with lead times of four and five months. Finally, an artificial neural network model, namely a multilayer perceptron (MLP), and a multiple linear regression (LR) model were developed each in two different configurations for the Aksu River subbasin, predicting precipitation five months in advance. Overall, the MLP using all predictors shows the best performance. The performance of both models drops only slightly when restricting the model input to the SST of the Black Sea and the Siberian High Intensity (SHI) pointing towards their importance as predictors.

  16. How widely applicable is river basin management? An analysis of wastewater management in an arid transboundary case.

    PubMed

    Dombrowsky, Ines; Almog, Ram; Becker, Nir; Feitelson, Eran; Klawitter, Simone; Lindemann, Stefan; Mutlak, Natalie

    2010-05-01

    The basin scale has been promoted universally as the optimal management unit that allows for the internalization of all external effects caused by multiple water uses. However, the basin scale has been put forward largely on the basis of experience in temperate zones. Hence whether the basin scale is the best scale for management in other settings remains questionable. To address these questions this paper analyzes the economic viability and the political feasibility of alternative management options in the Kidron/Wadi Nar region. The Kidron/Wadi Nar is a small basin in which wastewater from eastern Jerusalem flows through the desert to the Dead Sea. Various options for managing these wastewater flows were analyzed ex ante on the basis of both a cost benefit and a multi-criteria analysis. The paper finds that due to economies of scale, a pure basin approach is not desirable from a physical and economic perspective. Furthermore, in terms of political feasibility, it seems that the option which prompts the fewest objections from influential stakeholder groups in the two entities under the current asymmetrical political setting is not a basin solution either, but a two plant solution based on an outsourcing arrangement. These findings imply that the river basin management approach can not be considered the best management approach for the arid transboundary case at hand, and hence is not unequivocally universally applicable.

  17. How Widely Applicable is River Basin Management? An Analysis of Wastewater Management in an Arid Transboundary Case

    NASA Astrophysics Data System (ADS)

    Dombrowsky, Ines; Almog, Ram; Becker, Nir; Feitelson, Eran; Klawitter, Simone; Lindemann, Stefan; Mutlak, Natalie

    2010-05-01

    The basin scale has been promoted universally as the optimal management unit that allows for the internalization of all external effects caused by multiple water uses. However, the basin scale has been put forward largely on the basis of experience in temperate zones. Hence whether the basin scale is the best scale for management in other settings remains questionable. To address these questions this paper analyzes the economic viability and the political feasibility of alternative management options in the Kidron/Wadi Nar region. The Kidron/Wadi Nar is a small basin in which wastewater from eastern Jerusalem flows through the desert to the Dead Sea. Various options for managing these wastewater flows were analyzed ex ante on the basis of both a cost benefit and a multi-criteria analysis. The paper finds that due to economies of scale, a pure basin approach is not desirable from a physical and economic perspective. Furthermore, in terms of political feasibility, it seems that the option which prompts the fewest objections from influential stakeholder groups in the two entities under the current asymmetrical political setting is not a basin solution either, but a two plant solution based on an outsourcing arrangement. These findings imply that the river basin management approach can not be considered the best management approach for the arid transboundary case at hand, and hence is not unequivocally universally applicable.

  18. Dynamic water accounting in heavily committed river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  19. Post conflict water management: learning from the past for recovery planning in the Orontes River basin

    NASA Astrophysics Data System (ADS)

    Saadé-Sbeih, Myriam; Zwahlen, François; Haj Asaad, Ahmed; Gonzalez, Raoul; Jaubert, Ronald

    2016-10-01

    Water management is a fundamental issue in post-conflict planning in Syria. Based on historical water balance assessment, this study identifies the drivers of the profound changes that took place in the Lebanese and Syrian parts of the Orontes River basin since the 1930s. Both drastic effects of the conflict on the hydro-system and the strong uncontrolled anthropization of the river basin prior to the crisis have to be considered in the design of recovery interventions.

  20. From information to participation and self-organization: Visions for European river basin management.

    PubMed

    Euler, Johannes; Heldt, Sonja

    2018-04-15

    The European Union Water Framework Directive (EU WFD, 2000) calls for active inclusion of the public in the governance of waterbodies to enhance the effectiveness and legitimacy of water management schemes across the EU. As complex socio-ecological systems, river basins in western Europe could benefit from further support for inclusive management schemes. This paper makes use of case studies from Germany, England and Spain to explore the potential opportunities and challenges of different participatory management approaches. Grounded in theoretical considerations around participation within ecological management schemes, including Arnstein's Ladder of Participation and commons theories, this work provides an evaluation of each case study based on key indicators, such as inclusivity, representativeness, self-organization, decision-making power, spatial fit and temporal continuity. As investors and the public develop a heightened awareness for long-term sustainability of industrial projects, this analysis supports the suggestion that increased participatory river basin management is both desirable and economically feasible, and should thus be considered a viable option for future projects aiming to move beyond current requirements of the European Union Water Framework Directive. Copyright © 2017. Published by Elsevier B.V.

  1. Rivers Run Through It: Discovering the Interior Columbia River Basin.

    ERIC Educational Resources Information Center

    Davis, Shelley; Wojtanik, Brenda Lincoln; Rieben, Elizabeth

    1998-01-01

    Explores the Columbia River Basin, its ecosystems, and challenges faced by natural resource managers. By studying the basin's complexity, students can learn about common scientific concepts such as the power of water and effects of rain shadows. Students can also explore social-scientific issues such as conflicts between protecting salmon runs and…

  2. Integrating understanding of biophysical processes governing larval fish dispersal with basin-scale management decisions: lessons from the Missouri River, USA

    NASA Astrophysics Data System (ADS)

    Erwin, S. O.; Jacobson, R. B.; Fischenich, C. J.; Bulliner, E. A., IV; McDonald, R.; DeLonay, A. J.; Braaten, P.; Elliott, C. M.; Chojnacki, K.

    2017-12-01

    Management of the Missouri River—the longest river in the USA, with a drainage basin covering one sixth of the conterminous USA—is increasingly driven by the need to understand biophysical processes governing the dispersal of 8-mm long larval pallid sturgeon. In both the upper and lower basin, survival of larval sturgeon is thought to be a bottleneck limiting populations, but because of different physical processes at play, different modeling frameworks and resolutions are required to link management actions with population-level responses. In the upper basin, a series of impoundments reduce the length of river for the drifting larval sturgeon to complete their development. Downstream from the mainstem dams, recruitment is most likely diminished by channelization and reduced floodplain connectivity that limit the benthic habitat available for larval sturgeon to settle and initiate feeding. We present a synthesis of complementary field studies, laboratory observations, and numerical simulations that evaluate the physical processes related to larval dispersal of sturgeon in the Missouri River basin. In the upper basin, we use one-dimensional advection-dispersion models, calibrated with field experiments conducted in 2016-2017 using surrogate particles and tracers, to evaluate reservoir management alternatives. Results of field experimentation and numerical modeling show that proposed management alternatives in the upper basin may be limited by insufficient lengths of flowing river for drifting larvae to fully develop into their juvenile lifestage. In the intensively engineered lower basin, we employ higher resolution measurements and models to evaluate potential for channel reconfiguration and flow alteration to promote successful interception of drifting larvae into supportive benthic habitats for the initiation of feeding and transition to the juvenile life stage. We illustrate how refined understanding of small-scale biophysical process has been incorporated

  3. Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s

    NASA Astrophysics Data System (ADS)

    Sauquet, Eric

    2015-04-01

    The Durance River is one of the major rivers located in the Southern part of France. Water resources are under high pressure due to significant water abstractions for human uses within and out of the natural boundaries of the river basin through an extended open channel network. Water demands are related to irrigation, hydropower, drinking water, industries and more recently water management has included water needs for recreational uses as well as for preserving ecological services. Water is crucial for all these activities and for the socio-economic development of South Eastern France. Both socio-economic development and population evolution will probably modify needs for water supply, irrigation, energy consumption, tourism, industry, etc. In addition the Durance river basin will have to face climate change and its impact on water availability that may question the sustainability of the current rules for water allocation. The research project R²D²-2050 "Risk, water Resources and sustainable Development within the Durance river basin in 2050" aims at assessing future water availability and risks of water shortage in the 2050s by taking into account changes in both climate and water management. R²D²-2050 is partially funded by the French Ministry in charge of Ecology and the Rhône-Méditerranée Water Agency. This multidisciplinary project (2010-2014) involves Irstea, Electricité de France (EDF), the University Pierre et Marie Curie (Paris), LTHE (CNRS), the Société du Canal de Provence (SCP) and the research and consultancy company ACTeon. A set of models have been developed to simulate climate at regional scale (given by 330 projections obtained by applying three downscaling methods), water resources (provided by seven rainfall-runoff models forced by a subset of 330 climate projections), water demand for agriculture and drinking water, for different sub basins of the Durance River basin upstream of Mallemort under present day and under future conditions

  4. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  5. The institutionalization of River Basin Management as politics of scale - Insights from Mongolia

    NASA Astrophysics Data System (ADS)

    Houdret, Annabelle; Dombrowsky, Ines; Horlemann, Lena

    2014-11-01

    River Basin Management (RBM) as an approach to sustainable water use has become the dominant model of water governance. Its introduction, however, entails a fundamental realignment and rescaling of water-sector institutions along hydrological boundaries. Creating such a new governance scale is inherently political, and is being described as politics of scale. This paper analyzes how the politics of scale play out in the institutionalization of RBM in Mongolia. It furthermore scrutinizes the role of the broader political decentralization process in the introduction of RBM, an issue that has so far received little attention. Finally, it assesses whether the river basin is an adequate water management scale in Mongolia. This article finds that institutionalizing RBM in Mongolia is indeed a highly political negotiation process that does not only concern the choice of the governance scale, but also its detailed institutional design. It furthermore reveals that Mongolia's incomplete political decentralization process has for a long time negatively impacted the decentralization of water-related tasks and the implementation of RBM. However, the 2011 Budget Law and the 2012 Water Law provide for a fiscal strengthening of local governments and clearer sharing of responsibilities among the various different institutions involved in water management. Nevertheless, only if the 2012 Water Law is complemented by adequate by-laws - and if the newly created river basin institutions are adequately equipped - can RBM be effectively put into practice. This article confirms the usefulness of a politics-of-scale approach to understand scalar practices and changes in water management. However, the article also argues for a broadening of the analytical perspective to take the interdependencies between changes in water governance and other political processes, such as decentralization, into account.

  6. Decision support system for optimally managing water resources to meet multiple objectives in the Savannah River Basin

    USGS Publications Warehouse

    Roehl, Edwin A.; Conrads, Paul

    2015-01-01

    Managers of large river basins face conflicting demands for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin, for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting dependent economies for years. The Savannah River estuary contains two municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor to expand ship traffic since the 1970s have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent. A planned deepening of the harbor includes flow-alteration features to minimize further migration of salinity, whose effectiveness will only be known after all construction is completed.One of the challenges of large basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge, while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of

  7. Hydro-meteorological risk reduction and climate change adaptation in the Sava River Basin

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Šraj, Mojca; Kryžanowski, Andrej

    2017-04-01

    The Sava River Basin covered the teritory of several countries. There were, in past thirty years, several flood hazard events with almost hundred years return period. Parts of the basin suffer by severe droughts also. In the presentation we covered questions of: • Flood hazard in complex hydrology structure • Landslide and flush flood in mountainous regions • Floods on karst polje • Flood risk management in the complex international and hydrological condition. • Impact of man made structures: hydropower storages, inundation ponds, river regulation, alternate streams, levees system, pumping stations, Natura 2000 areas etc. • How to manage droughts in the international river basin The basin is well covered by information and managed by international the SRB Commission (http://savacommission.org/) that could help. We develop study for climate change impact on floods on entire river basin financing by UNECE. There is also study provide climate change impact on the water management provide by World Bank and on which we take part. Recently is out call by world bank for study »Flood risk management plan for the SRB«.

  8. Challenging Futures Studies To Enhance Participatory River Basin Management

    NASA Astrophysics Data System (ADS)

    van der Helm, R.

    Can the field of futures research help advance participatory management of river basins? This question is supposed to be answered by the present study of which this paper will mainly address the theoretical and conceptual point of view. The 2000 EU Framework directive on water emphasises at least two aspects that will mark the future management of river basins: the need for long-term planning, and a demand for participation. Neither the former nor the latter are new concepts as such, but its combination is in some sense revolutionary. Can long-term plans be made (and implemented) in a participative way, what tools could be useful in this respect, and does this lead to a satisfactory situation in terms of both reaching physical targets and enhancing social-institutional manageability? A possibly rich way to enter the discussion is to challenge futures research as a concept and a practice for enabling multiple stakeholders to design appropriate policies. Futures research is the overall field in which several methods and techniques (like scenario analysis) are mobilised to systematically think through and/or design the future. As such they have proven to be rich exercises to trigger ideas, stimulate debate and design desirable futures (and how to get there). More importantly these exercises have the capability to reconstitute actor relations, and by nature go beyond the institutional boundaries. Arguably the relation between futures research and the planning process is rather distant. Understandably commitments on the direct implementation of the results are hardly ever made, but its impact on changes in the capabilities of the network of actors involved may be large. As a hypothesis we consider that the distant link between an image of the future and the implementation in policy creates sufficient distance for actors to participate (in terms of responsibilities, legal constraints, etc.) and generate potentials, and enough degrees of freedom needed for a successful

  9. Yazoo River Basin (Lower Mississippi River) Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Davidson, G.; Altinakar, M.; Holt, R.

    2004-12-01

    The proposed Yazoo River Basin Hydrologic Observatory consists of the 34,000 square km Yazoo River watershed in northwestern Mississippi and a 320 km segment of the Mississippi River separated from the watershed by a manmade levee. Discharge from the basin flows from the Yazoo River into the Mississippi River north of Vicksburg, MS. Major streams within the basin include the Yazoo, Tallahatchie, Yalobusha, Coldwater, Yocona, and Big Sunflower Rivers. Four large flood control reservoirs (Arkabutla, Enid, Sardis, and Grenada) and two national forests (Delta and Holly Springs) are also located within the basin. The watershed is divided between upland forested hills and intensively cultivated lowlands. The lowland area, locally known as the "Delta", lies on the ancestral floodplain of the Mississippi River. Flooding by the Mississippi River was once a common event, but is now limited by the levee system. Abundant wetlands occupy abandoned stream channels throughout the Delta. The Yazoo River Basin has many unique features that make it an attractive site for an Hydrologic Observatory. Example features and issues of scientific interest include: 1) Extensive system of levees which have altered recharge to the regional aquifer, shifted population centers, and created backwater flooding areas. 2) Abundant wetlands with a century-long history of response to agricultural sediment and chemical fluxes. 3) Erosion of upland streams, and stream sediment loads that are the highest in the nation. 4) Groundwater mining in spite of abundant precipitation due to a regional surface clay layer that limits infiltration. 5) A history of agricultural Best Management Practices enabling evaluation of the effectiveness of such measures. 6) Large scale catfish farming with heavy reliance on groundwater. 7) Near enough to the Gulf coast to be impacted by hurricane events. 8) Already existing network of monitoring stations for stream flow, sediment-load, and weather, including complete coverage

  10. A Novel Approach to River Basin Management that Utilizes a Multi-Day Forum to Educate Stakeholders

    NASA Astrophysics Data System (ADS)

    Langston, M. A.

    2015-12-01

    Large scale river basin management has long been a challenging task. Stakeholder involvement has often been posited as a means to provide a broad base of input and support for management decisions. This has been successful in some situations and not in others. The Desert Landscape Conservation Cooperative (LCC) has proposed a novel approach to large scale watershed management for conservation purposes by stakeholders. This approach involves conducting a multi-day stakeholder forum to gather interested parties, provide them science-based information about the watershed, and solicit their input regarding the research and management needs within the basin. Included within this forum is a Water Tournament patterned after those being developed by the U.S. Army Corps of Engineers' Institute for Water Resources. These tournaments bring stakeholders (such as the various water users, agencies, conservation organizations, and others) in small teams that develop watershed management scenarios (within appropriate constraints) that are then judged based on their merit for addressing the various issues within the basin. These tournaments serve to educate participants and to sensitize them to the perspectives of other participants. Another goal of the forum is to recruit a representative group of stakeholders who will provide guidance for further research to meet the basins management needs. The South Central Climate Science Center (SC CSC) has partnered with the Desert, Southern Rockies, Gulf Coast Prairie, Great Plains, and Gulf Coastal Plains and Ozarks LCCs to implement this approach in the Rio Grande and the Red River Basins. The LCCs are well positioned to convene stakeholders from across political boundaries and throughout these basins. The SC CSC's roles will be providing leadership, funding climate science for the effort, and evaluating the effectiveness of the forum-centered approach.

  11. Optimally managing water resources in large river basins for an uncertain future

    USGS Publications Warehouse

    Roehl, Edwin A.; Conrads, Paul

    2014-01-01

    One of the challenges of basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the flow-alteration features after the deepening also is demonstrated.

  12. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cheng, Guodong; Ge, Yingchun; Li, Hongyi; Han, Feng; Hu, Xiaoli; Tian, Wei; Tian, Yong; Pan, Xiaoduo; Nian, Yanyun; Zhang, Yanlin; Ran, Youhua; Zheng, Yi; Gao, Bing; Yang, Dawen; Zheng, Chunmiao; Wang, Xusheng; Liu, Shaomin; Cai, Ximing

    2018-01-01

    Endorheic basins around the world are suffering from water and ecosystem crisis. To pursue sustainable development, quantifying the hydrological cycle is fundamentally important. However, knowledge gaps exist in how climate change and human activities influence the hydrological cycle in endorheic basins. We used an integrated ecohydrological model, in combination with systematic observations, to analyze the hydrological cycle in the Heihe River Basin, a typical endorheic basin in arid region of China. The water budget was closed for different landscapes, river channel sections, and irrigation districts of the basin from 2001 to 2012. The results showed that climate warming, which has led to greater precipitation, snowmelt, glacier melt, and runoff, is a favorable factor in alleviating water scarcity. Human activities, including ecological water diversion, cropland expansion, and groundwater overexploitation, have both positive and negative effects. The natural oasis ecosystem has been restored considerably, but the overuse of water in midstream and the use of environmental flow for agriculture in downstream have exacerbated the water stress, resulting in unfavorable changes in surface-ground water interactions and raising concerns regarding how to fairly allocate water resources. Our results suggest that the water resource management in the region should be adjusted to adapt to a changing hydrological cycle, cropland area must be reduced, and the abstraction of groundwater must be controlled. To foster long-term benefits, water conflicts should be handled from a broad socioeconomic perspective. The findings can provide useful information on endorheic basins to policy makers and stakeholders around the world.

  13. Technical knowledge and water resources management: A comparative study of river basin councils, Brazil

    NASA Astrophysics Data System (ADS)

    Lemos, Maria Carmen; Bell, Andrew R.; Engle, Nathan L.; Formiga-Johnsson, Rosa Maria; Nelson, Donald R.

    2010-06-01

    Better understanding of the factors that shape the use of technical knowledge in water management is important both to increase its relevance to decision-making and sustainable governance and to inform knowledge producers where needs lie. This is particularly critical in the context of the many stressors threatening water resources around the world. Recent scholarship focusing on innovative water management institutions emphasizes knowledge use as critical to water systems' adaptive capacity to respond to these stressors. For the past 15 years, water resources management in Brazil has undergone an encompassing reform that has created a set of participatory councils at the river basin level. Using data from a survey of 626 members of these councils across 18 river basins, this article examines the use of technical knowledge (e.g., climate and weather forecasts, reservoir streamflow models, environmental impact assessments, among others) within these councils. It finds that use of knowledge positively aligns with access, a more diverse and broader discussion agenda, and a higher sense of effectiveness. Yet, use of technical knowledge is also associated with skewed levels of power within the councils.

  14. Linking Governance to Sustainable Management Outcomes: Applying Dynamic Indicator Profiles to River Basin Organization Case Studies around the World.

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Bouckaert, F. W.

    2017-12-01

    Institutional best practice for integrated river basin management advocates the river basin organisation (RBO) model as pivotal to achieve sustainable management outcomes and stakeholder engagement. The model has been widely practiced in transboundary settings and is increasingly adopted at national scales, though its effectiveness remains poorly studied. A meta-analysis of four river basins has been conducted to assess governance models and linking it to evaluation of biophysical management outcomes. The analysis is based on a Theory of Change framework, and includes functional dynamic governance indicator profiles, coupled to sustainable ecosystem management outcome profiles. The governance and outcome profiles, informed by context specific indicators, demand that targets for setting objectives are required in multiple dimensions, and trajectory outlines are a useful tool to track progress along the journey mapped out by the Theory of Change framework. Priorities, trade-offs and objectives vary in each basin, but the diagnostics tool allows comparison between basins in their capacity to reach targets through successive evaluations. The distance between capacity and target scores determines how program planning should be prioritized and resources allocated for implementation; this is a dynamic process requiring regular evaluations and adaptive management. The findings of this study provide a conceptual framework for combining dimensions of integrated water management principles that bridge tensions between (i) stakeholder engagement and participatory management (bottom-up approach) using localized knowledge and (ii) decision-making, control-and-command, system-scale, accountable and equitable management (top-down approach).The notion of adaptive management is broadened to include whole-of-program learnings, rather than single hypothesis based learning adjustments. This triple loop learning combines exploitative methods refinement with explorative evaluation of

  15. Selecting quantitative water management measures at the river basin scale in a global change context

    NASA Astrophysics Data System (ADS)

    Girard, Corentin; Rinaudo, Jean-Daniel; Caballero, Yvan; Pulido-Velazquez, Manuel

    2013-04-01

    One of the main challenges in the implementation of the Water Framework Directive (WFD) in the European Union is the definition of programme of measures to reach the good status of the European water bodies. In areas where water scarcity is an issue, one of these challenges is the selection of water conservation and capacity expansion measures to ensure minimum environmental in-stream flow requirements. At the same time, the WFD calls for the use of economic analysis to identify the most cost-effective combination of measures at the river basin scale to achieve its objective. With this respect, hydro-economic river basin models, by integrating economics, environmental and hydrological aspects at the river basin scale in a consistent framework, represent a promising approach. This article presents a least-cost river basin optimization model (LCRBOM) that selects the combination of quantitative water management measures to meet environmental flows for future scenarios of agricultural and urban demand taken into account the impact of the climate change. The model has been implemented in a case study on a Mediterranean basin in the south of France, the Orb River basin. The water basin has been identified as in need for quantitative water management measures in order to reach the good status of its water bodies. The LCRBOM has been developed using GAMS, applying Mixed Integer Linear Programming. It is run to select the set of measures that minimizes the total annualized cost of the applied measures, while meeting the demands and minimum in-stream flow constraints. For the economic analysis, the programme of measures is composed of water conservation measures on agricultural and urban water demands. It compares them with measures mobilizing new water resources coming from groundwater, inter-basin transfers and improvement in reservoir operating rules. The total annual cost of each measure is calculated for each demand unit considering operation, maintenance and

  16. Environment, poverty and health linkages in the Wami River basin: A search for sustainable water resource management

    NASA Astrophysics Data System (ADS)

    Madulu, Ndalahwa F.

    The Wami Rivers basin is an important area due to its diversified use which benefits a multi-diversity of stakeholders. While large scale irrigated sugar production is the main issue of concern upstream, there are other equally important socio-economic activities which include biodiversity and environmental conservation, domestic water supply, livestock water needs, and fishing. A large water supply project has just been completed downstream of the Wami River to provide water for the Chalinze township and surrounding villages. Other important undertakings include irrigated rice farming in Dakawa area, livestock keeping activities, and the establishment of the Sadani National Park (SANAPA) and the Wami-Mbiki Wildlife Management Area (WMA). The Wami River basin forms significant parts of both the Wami-Mbiki WMA and the SANAPA wildlife conservation areas. Regardless of its importance, the basin is increasingly being degraded through deforestation for agricultural expansion, timber, and more important charcoal making. The basin is also being polluted through disposal of excess molasses from the sugar industry, and use of poisonous substances and herbs in fishing. The worsening environmental condition in the basin has become a health threat to both people in the surrounding villages and wildlife. To a large extent, such changes are intensifying poverty levels among the local population. These changes are raising concerns about the long-term environmental sustainability and health implications of the current water use competition and conflicts in the basin. The purpose of this paper is to examine the main water resource use conflicts and how they affect environmental sustainability in the long-run. It also intends to establish linkages between wildlife management, pastoralism, agricultural activities and how such linkages influence poverty alleviation efforts in the basin. An attempt has been made to examine the environmental and health implications of human activities

  17. Integrated water resources management : A case study in the Hehei river basin, China

    NASA Astrophysics Data System (ADS)

    Jia, Siqi; Deng, Xiangzheng

    2017-04-01

    The lack of water resources experienced in different parts of the world has now been recognized and analyzed by different international organizations such as WHO, the World Bank, etc. Add to this the growing urbanization and the fast socio-economic development, the water supply of many urban areas is already or will be severely threatened. Recently published documents from the UN Environmental Program confirms that severe water shortage affects 400 million people today and will affect 4 billion people by 2050. Water nowadays is getting scarce, and access to clean drinking water and water for agricultural usage is unequally distributed. The biggest opportunity and challenge for future water management is how to achieve water sustainability to reduce water consumption. Integrated Water Resources Management (IWRM) is a process which promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. We take the Heibe river basin where agriculture water there accounted for 90% of total water consumption as an example to study the impacts of IWRM on regional water resources. We calculated the elasticity of substitution values between labor and land, water by each irrigation areas to find the variable elastic value among irrigation areas, and the water-use efficiency based on NPP estimation with the C-fix model and WUE estimation with NPP and ET. The empirical analysis indicated that the moderate scale of farmland is 0.27-0.53hm2 under the condition of technical efficiency of irrigation water and production. Agricultural water use accounted for 94% of the social and economic water consumption in 2012, but water efficiency and water productivity were both at a low stage. In conclusion, land use forms at present in Heihe river basin have a detrimental impact on the availability of ecological water use. promoting water

  18. Social-ecological resilience and law in the Platte River Basin

    USGS Publications Warehouse

    Birge, Hannah E.; Allen, Craig R.; Craig, Robin; Garmestani, Ahjond S.; Hamm, Joseph A.; Babbitt, Christina; Nemec, Kristine T.; Schlager, Edella

    2014-01-01

    Efficiency and resistance to rapid change are hallmarks of both the judicial and legislative branches of the United States government. These defining characteristics, while bringing stability and predictability, pose challenges when it comes to managing dynamic natural systems. As our understanding of ecosystems improves, we must devise ways to account for the non-linearities and uncertainties rife in complex social-ecological systems. This paper takes an in-depth look at the Platte River basin over time to explore how the system's resilience—the capacity to absorb disturbance without losing defining structures and functions—responds to human driven change. Beginning with pre-European settlement, the paper explores how water laws, policies, and infrastructure influenced the region's ecology and society. While much of the post-European development in the Platte River basin came at a high ecological cost to the system, the recent tri-state and federal collaborative Platte River Recovery and Implementation Program is a first step towards flexible and adaptive management of the social-ecological system. Using the Platte River basin as an example, we make the case that inherent flexibility and adaptability are vital for the next iteration of natural resources management policies affecting stressed basins. We argue that this can be accomplished by nesting policy in a resilience framework, which we describe and attempt to operationalize for use across systems and at different levels of jurisdiction. As our current natural resources policies fail under the weight of looming global change, unprecedented demand for natural resources, and shifting land use, the need for a new generation of adaptive, flexible natural resources govern-ance emerges. Here we offer a prescription for just that, rooted in the social , ecological and political realities of the Platte River basin. Social-Ecological Resilience and Law in the Platte River Basin (PDF Download Available). Available

  19. A social–ecological perspective for riverscape management in the Columbia River Basin

    USGS Publications Warehouse

    Hand, Brian K.; Flint, Courtney G.; Frissell, Chris A.; Muhlfeld, Clint C.; Devlin, Shawn P.; Kennedy, Brian P.; Crabtree, Robert L.; McKee, W. Arthur; Luikart, Gordon; Stanford, Jack A.

    2018-01-01

    Riverscapes are complex, landscape-scale mosaics of connected river and stream habitats embedded in diverse ecological and socioeconomic settings. Social–ecological interactions among stakeholders often complicate natural-resource conservation and management of riverscapes. The management challenges posed by the conservation and restoration of wild salmonid populations in the Columbia River Basin (CRB) of western North America are one such example. Because of their ecological, cultural, and socioeconomic importance, salmonids present a complex management landscape due to interacting environmental factors (eg climate change, invasive species) as well as socioeconomic and political factors (eg dams, hatcheries, land-use change, transboundary agreements). Many of the problems in the CRB can be linked to social–ecological interactions occurring within integrated ecological, human–social, and regional–climatic spheres. Future management and conservation of salmonid populations therefore depends on how well the issues are understood and whether they can be resolved through effective communication and collaboration among ecologists, social scientists, stakeholders, and policy makers.

  20. Water - Essential Resource of the Southern Flint River Basin, Georgia

    USGS Publications Warehouse

    Warner, Debbie; Norton, Virgil

    2004-01-01

    Introduction Abundant water resources of the Flint River Basin have played a major role in the history and development of southwestern Georgia. The Flint River-along with its tributaries, wetlands, and swamps-and the productive aquifers of the river basin are essential components of the area's diverse ecosystems. These resources also are necessary for sustained agricultural, industrial, and municipal activities. Increasing, and in some cases conflicting, demand for water makes careful monitoring and wise planning and management of southwestern Georgia's water resources critical to the ecological and economic future of the area. This poster presents the major issues associated with increasing competition for water resources in the southern Flint River Basin.

  1. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin.

    PubMed

    Gao, Xin; Niu, Cuijuan; Chen, Yushun; Yin, Xuwang

    2014-04-01

    Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin.

  2. MANAGEMENT OF DIFFUSE POLLUTION IN AGRICULTURAL WATERSHEDS: LESSONS FROM THE MINNESOTA RIVER BASIN. (R825290)

    EPA Science Inventory

    Abstract

    The Minnesota River (Minnesota, USA) receives large non-point source pollutant loads. Complex interactions between agricultural, state agency, environmental groups, and issues of scale make watershed management difficult. Subdividing the basin's 12 major water...

  3. Modeling and management of water in the Klamath River Basin: overcoming politics and conflicts

    USGS Publications Warehouse

    Flug, Marshall; Scott, John F.; Abt, Steven R.; Young-Pezeshk, Jayne; Watson, Chester C.

    1998-01-01

    The network flow model MODSIM, which was designed as a water quantity mass balance model for evaluating and selecting water management alternatives, has been applied to the Klamath River basin. A background of conflicting issues in the basin is presented. The complexity of water quantity model development, while satisfying the many stakeholders and involved special interest groups is discussed, as well as the efforts taken to have the technical model accepted and used, and overcome stakeholder criticism, skepticism, and mistrust of the government.

  4. Potential relationships between the river discharge and the precipitation in the Jinsha River basin, China

    NASA Astrophysics Data System (ADS)

    Wang, Gaoxu; Zeng, Xiaofan; Zhao, Na; He, Qifang; Bai, Yiran; Zhang, Ruoyu

    2018-02-01

    The relationships between the river discharge and the precipitation in the Jinsha River basin are discussed in this study. In addition, the future precipitation trend from 2011-2050 and its potential influence on the river discharge are analysed by applying the CCLM-modelled precipitation. According to the observed river discharge and precipitation, the annual river discharge at the two main hydrological stations displays good correlations with the annual precipitation in the Jinsha River basin. The predicted future precipitation tends to change similarly as the change that occurred during the observation period, whereas the monthly distributions over a year could be more uneven, which is unfavourable for water resources management.

  5. An integrated fuzzy-based advanced eutrophication simulation model to develop the best management scenarios for a river basin.

    PubMed

    Srinivas, Rallapalli; Singh, Ajit Pratap

    2018-03-01

    Assessment of water quality status of a river with respect to its discharge has become prerequisite to sustainable river basin management. The present paper develops an integrated model for simulating and evaluating strategies for water quality management in a river basin management by controlling point source pollutant loadings and operations of multi-purpose projects. Water Quality Analysis and Simulation Program (WASP version 8.0) has been used for modeling the transport of pollutant loadings and their impact on water quality in the river. The study presents a novel approach of integrating fuzzy set theory with an "advanced eutrophication" model to simulate the transmission and distribution of several interrelated water quality variables and their bio-physiochemical processes in an effective manner in the Ganges river basin, India. After calibration, simulated values are compared with the observed values to validate the model's robustness. Fuzzy technique of order preference by similarity to ideal solution (F-TOPSIS) has been used to incorporate the uncertainty associated with the water quality simulation results. The model also simulates five different scenarios for pollution reduction, to determine the maximum pollutant loadings during monsoon and dry periods. The final results clearly indicate how modeled reduction in the rate of wastewater discharge has reduced impacts of pollutants in the downstream. Scenarios suggesting a river discharge rate of 1500 m 3 /s during the lean period, in addition to 25 and 50% reduction in the load rate, are found to be the most effective option to restore quality of river Ganges. Thus, the model serves as an important hydrologic tool to the policy makers by suggesting appropriate remediation action plans.

  6. The "WFD-effect" on upstream-downstream relations in international river basins - insights from the Rhine and the Elbe basins

    NASA Astrophysics Data System (ADS)

    Moellenkamp, S.

    2007-06-01

    The upstream-downstream relationship in international river basins is a traditional challenge in water management. Water use in upstream countries often has a negative impact on water use in downstream countries. This is most evident in the classical example of industrial pollution in upstream countries hindering drinking water production downstream. The European Water Framework Directive (WFD) gives new impetus to the river basin approach and to international co-operation in European catchments. It aims at transforming a mainly water quality oriented management into a more integrated approach of ecosystem management. After discussing the traditional upstream-downstream relationship, this article shows that the WFD has a balancing effect on upstream-downstream problems and that it enhances river basin solidarity in international basins. While it lifts the downstream countries to the same level as the upstream countries, it also leads to new duties for the downstream states. Following the ecosystem approach, measures taken by downstream countries become increasingly more important. For example, downstream countries need to take measures to allow for migrating fish species to reach upstream stretches of river systems. With the WFD, fish populations receive increased attention, as they are an important indicator for the ecological status. The European Commission acquires a new role of inspection and control in river basin management, which finally also leads to enhanced cooperation and solidarity among the states in a basin. In order to achieve better water quality and to mitigate upstream-downstream problems, also economic instruments can be applied and the WFD does not exclude the possibility of making use of financial compensations, if at the same time the polluter pays principle is taken into account. The results presented in this article originate from a broader study on integrated water resources management conducted at Bonn University and refer to the Rhine and

  7. Delaware River Basin

    USGS Publications Warehouse

    Fischer, Jeffrey M.

    1999-01-01

    Assessing the quality of water in every location of the Nation would not be practical. Therefore, NAWQA investigations are conducted within 59 selected areas called study units (fig. 1). These study units encompass important river and aquifer systems in the United States and represent the diverse geographic, waterresource, land-use, and water-use characteristics of the Nation. The Delaware River Basin is one of 15 study units in which work began in 1996. Water-quality sampling in the study unit will begin in 1999. This fact sheet provides a brief overview of the NAWQA program, describes the Delaware River Basin study unit, identifies the major water-quality issues in the basin, and documents the plan of study that will be followed during the study-unit investigation.

  8. Dynamic reorganization of river basins.

    PubMed

    Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu

    2014-03-07

    River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.

  9. Water and Benefit Sharing in Transboundary River Basins

    NASA Astrophysics Data System (ADS)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  10. Mapping Water Vulnerability of the Yangtze River Basin: 1994-2013.

    PubMed

    Sun, Fengyun; Kuang, Wenhui; Xiang, Weining; Che, Yue

    2016-11-01

    A holistic understanding of the magnitude and long-term trend of water vulnerability is essential for making management decisions in a given river basin. Existing procedures to assess the spatiotemporal dynamic of water vulnerability in complex mega-scale river basins are inadequate; a new method named ensemble hydrologic assessment was proposed in this study, which allows collection of data and knowledge about many aspects of water resources to be synthesized in a useful way for vulnerability assessment. The objective of this study is to illustrate the practical utility of such an integrated approach in examining water vulnerability in the Yangtze River Basin. Overall, the results demonstrated that the ensemble hydrologic assessment model could largely explain the spatiotemporal evolution of water vulnerability. This paper improves understanding of the status and trends of water resources in the Yangtze River Basin.

  11. Managing water scarcity in the Magdalena river basin in Colombia.An economic assessment

    NASA Astrophysics Data System (ADS)

    Bolivar Lobato, Martha Isabel; Schneider, Uwe A.

    2014-05-01

    Key words: global change, water scarcity, river basin In Colombia, serious water conflicts began to emerge with the economic development in the 70ies and 80ies and the term "water scarcity" became a common word in this tropical country. Despite a mean annual runoff of 1840 mm, which classifies Colombia as a water rich country, shortfalls in fresh water availability have become a frequent event in the last two decades. One reason for the manifestation of water scarcity is the long-held perception of invulnerable water abundance, which has delayed technical and political developments to use water more efficiently. The Magdalena watershed is the most important and complex area in Colombia, because of its huge anthropogenic present, economic development and increasing environmental problems. This river basin has a total area of 273,459 km2, equivalent to 24% of the territory of the country. It is home to 79% of the country's population (32.5 million of inhabitants) and approximately 85% of Gross Domestic Product of Colombia is generated in this area. Since the economic development of the 1970s and 1980s, large changes in land cover and related environmental conditions have occurred in the Magdalena basin. These changes include deforestation, agricultural land expansion, soil degradation, lower groundwater and increased water pollution. To assess the consequences of geophysical alteration and economic development, we perform an integrated analysis of water demand, water supply, land use changes and possible water management strategies. The main objective of this study is to determine how global and local changes affect the balance between water supply and demand in the Magdalena river basin in Colombia, the consequences of different water pricing schemes, and the social benefits of public or private investments into various water management infrastructures. To achieve this goal, a constrained welfare maximization model has been developed. The General Algebraic Modeling

  12. Morphodynamics and Sediment connectivity in the Kosi River basin in the Himalaya and their implications for river management

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Mishra, K.; Swrankar, S.; Jain, V.; Nepal, S.; Uddin, K.

    2017-12-01

    Sediment flux of large tropical rivers is strongly influenced by the degree of linkage between the sediments sources and sink (i.e. sediment connectivity). Sediment connectivity, especially at the catchment scale, depends largely on the morphological characteristics of the catchment such as relief, terrain roughness, slope, elevation, stream network density and catchment shape and the combined effects of land use, particularly vegetation. Understanding the spatial distribution of sediment connectivity and its temporal evolution can be useful for the characterization of sediment source areas. Specifically, these areas represent sites of instability and their connectivity influences the probability of sediment transfer at a local scale that will propagate downstream through a feedback system. This paper evaluates the morphodynamics and sediment connectivity of the Kosi basin in Nepal and India at various spatial and temporal scales. Our results provide the first order assessment of the spatial sediment connectivity in terms of the channel connectivity (IC outlet) and source to channel connectivity (IC channel) of the upstream and midstream Kosi basin. This assessment helped in the characterization of sediment dynamics in the complex morphological settings and in a mixed environment. Further, Revised Universal Soil Loss Equation (RUSLE) was used to quantify soil erosion and sediment transport capacity equation is used to quantify sediment flux at each cell basis. Sediment Delivery Ratio (SDR) was calculated for each sub-basin to identify the sediment production and transport capacity limited sub-basin. We have then integrated all results to assess the sediment flux in the Kosi basin in relation to sediment connectivity and the factors controlling the pathways of sediment delivery. Results of this work have significant implications for sediment management of the Kosi river in terms of identification of hotspots of sediment accumulation that will in turn be manifested

  13. Comparison and evaluation of satellite- and reanalysis-based precipitation products for water resources management in the Brahmaputra River basin

    NASA Astrophysics Data System (ADS)

    Saleh Khan, Abu; Sohel Masud, Md.; Abdulla Hel Kafi, Md.; Sultana, Tashrifa; Lopez Lopez, Patricia

    2017-04-01

    The Brahmaputra River, with a transboundary basin area of approx. 554,500 km2, has its origin on the northern slope of the Himalayas in China, from where it flows through India, Bhutan and finally Bangladesh. Brahmaputra basin's climatology is heavily conditioned by precipitation during the monsoon months, concentrating about the 85 % of the rainfall in this period and originating severe and frequent floods that impact specially the Bangladeshi population in the delta region. Recent campaigns to increase the quality and to share ground-based hydro-meteorological data, in particular precipitation, within the basin have provided limited results. Global rainfall data from satellite and reanalysis may improve the temporal and spatial availability of in-situ observations for advanced water resources management. This study aims to evaluate the applicability of several global precipitation products from satellite and reanalysis in comparison with in-situ data to quantify their added value for hydrological modeling at a basin and sub-basin scale for the Brahmaputra River. Precipitation products from CMORPH, TRMM-3B42, GsMAP, WFDEI, MSWEP and various combinations with ground-based data were evaluated at basin and sub-basin level at a daily and monthly temporal resolution. The Brahmaputra was delineated into 54 sub-basins for a more detailed evaluation of the precipitation products. The data were analysed and inter-compared for the time period from 2002 to 2010. Precipitation performance assessment was conducted including several indicators, such as probability of detection (POD), false alarm ratio (FAR), Pearson's correlation coefficient (r), bias and root mean square error (RMSE). Preliminary results indicate high correlation and low bias and RMSE values between WFDEI, TRMM-3B42 and CMORPH precipitation and in-situ observations at a monthly time scale. Lower correlations and higher bias and RMSE values were found between GsMAP and MSWEP and ground-observed precipitation

  14. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    NASA Astrophysics Data System (ADS)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  15. Evaluation of genetic population structure of smallmouth bass in the Susquehanna River basin, Pennsylvania

    USGS Publications Warehouse

    Schall, Megan K.; Bartron, Meredith L.; Wertz, Timothy; Niles, Jonathan M.; Shaw, Cassidy H.; Wagner, Tyler

    2017-01-01

    The Smallmouth Bass Micropterus dolomieu was introduced into the Susquehanna River basin, Pennsylvania, nearly 150 years ago. Since introduction, it has become an economically and ecologically important species that supports popular recreational fisheries. It is also one of the most abundant top predators in the system. Currently, there is no information on the level of genetic diversity or genetic structuring that may have occurred since introduction. An understanding of genetic diversity is important for the delineation of management units and investigation of gene flow at various management scales. The goals of this research were to investigate population genetic structure of Smallmouth Bass at sites within the Susquehanna River basin and to assess genetic differentiation relative to Smallmouth Bass at an out-of-basin site (Allegheny River, Pennsylvania) located within the species’ native range. During spring 2015, fin clips (n = 1,034) were collected from adults at 11 river sites and 13 tributary sites in the Susquehanna River basin and at one site on the Allegheny River. Fin clips were genotyped at 12 polymorphic microsatellite loci. Based on our results, adults sampled throughout the Susquehanna River basin did not represent separate genetic populations. There were only subtle differences in genetic diversity among sites (mean pairwise genetic differentiation index FST = 0.012), and there was an overall lack of population differentiation (K = 3 admixed populations). The greatest genetic differentiation was observed between fish collected from the out-of-basin site and those from the Susquehanna River basin sites. Knowledge that separate genetic populations of Smallmouth Bass do not exist in the Susquehanna River basin is valuable information for fisheries management in addition to providing baseline genetic data on an introduced sport fish population.

  16. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    NASA Astrophysics Data System (ADS)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  17. Decomposition analysis of water footprint changes in a water-limited river basin: a case study of the Haihe River basin, China

    NASA Astrophysics Data System (ADS)

    Zhi, Y.; Yang, Z. F.; Yin, X. A.

    2014-05-01

    Decomposition analysis of water footprint (WF) changes, or assessing the changes in WF and identifying the contributions of factors leading to the changes, is important to water resource management. Instead of focusing on WF from the perspective of administrative regions, we built a framework in which the input-output (IO) model, the structural decomposition analysis (SDA) model and the generating regional IO tables (GRIT) method are combined to implement decomposition analysis for WF in a river basin. This framework is illustrated in the WF in Haihe River basin (HRB) from 2002 to 2007, which is a typical water-limited river basin. It shows that the total WF in the HRB increased from 4.3 × 1010 m3 in 2002 to 5.6 × 1010 m3 in 2007, and the agriculture sector makes the dominant contribution to the increase. Both the WF of domestic products (internal) and the WF of imported products (external) increased, and the proportion of external WF rose from 29.1 to 34.4%. The technological effect was the dominant contributor to offsetting the increase of WF. However, the growth of WF caused by the economic structural effect and the scale effect was greater, so the total WF increased. This study provides insights about water challenges in the HRB and proposes possible strategies for the future, and serves as a reference for WF management and policy-making in other water-limited river basins.

  18. Integrated Watershed Assessment: The Northern River Basins Study

    NASA Astrophysics Data System (ADS)

    Wrona, F. J.; Gummer, W. D.

    2001-05-01

    Begun in 1991 and completed in 1996, the Northern River Basins Study (NRBS) was a \\$12 M initiative established by the governments of Canada, Alberta, and the Northwest Territories to assess the cumulative impacts of development, particularly pulp mill related effluent discharges, on the health of the Peace, Athabasca and Slave river basins. The NRBS was launched in response to concerns expressed by northern residents following the 1991 approval of the Alberta Pacific Pulp Mill in Athabasca. Although initiated by governments, the NRBS was set-up to be `arms-length' and was managed by a 25 member Study Board that represented the many interests in the basins, including industry, environmental groups, aboriginal peoples, health, agriculture, education, municipalities, and the federal, territorial and provincial governments. Overseen by an independent Science Advisory Committee, an integrated research program was designed covering eight scientific components: fate and distribution of contaminants, food chain impacts, nutrients, hydrology/hydraulics and sediment transport, uses of the water resources, drinking water quality, traditional knowledge, and synthesis/modeling. Using a 'weight of evidence' approach with a range of ecological and sociological indicators, cumulative impacts from pulp and paper-related discharges and other point and non-point sources of pollution were determined in relation to the health and contaminant levels of aquatic biota, nutrient and dissolved oxygen-related stress, hydrology and climate related changes, and human health and use of the river basins. Based on this assessment and Study Board deliberations, site-specific and basin-wide scientific and management-related recommendations were made to Ministers regarding regulatory and policy changes, basin management and monitoring options, and future research. The Study reinforces the importance of conducting ecosystem-based , interdisciplinary science and the need for public involvement in

  19. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.

    PubMed

    He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan

    2009-01-01

    Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.

  20. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data

    NASA Astrophysics Data System (ADS)

    Rai, Praveen Kumar; Chandel, Rajeev Singh; Mishra, Varun Narayan; Singh, Prafull

    2018-03-01

    Satellite based remote sensing technology has proven to be an effectual tool in analysis of drainage networks, study of surface morphological features and their correlation with groundwater management prospect at basin level. The present study highlights the effectiveness and advantage of remote sensing and GIS-based analysis for quantitative and qualitative assessment of flood plain region of lower Kosi river basin based on morphometric analysis. In this study, ASTER DEM is used to extract the vital hydrological parameters of lower Kosi river basin in ARC GIS software. Morphometric parameters, e.g., stream order, stream length, bifurcation ratio, drainage density, drainage frequency, drainage texture, form factor, circularity ratio, elongation ratio, etc., have been calculated for the Kosi basin and their hydrological inferences were discussed. Most of the morphometric parameters such as bifurcation ratio, drainage density, drainage frequency, drainage texture concluded that basin has good prospect for water management program for various purposes and also generated data base that can provide scientific information for site selection of water-harvesting structures and flood management activities in the basin. Land use land cover (LULC) of the basin were also prepared from Landsat data of 2005, 2010 and 2015 to assess the change in dynamic of the basin and these layers are very noteworthy for further watershed prioritization.

  1. South Platte River Basin - Colorado, Nebraska, and Wyoming

    USGS Publications Warehouse

    Dennehy, Kevin F.; Litke, David W.; Tate, Cathy M.; Heiny, Janet S.

    1993-01-01

    The South Platte River Basin was one of 20 study units selected in 1991 for investigation under the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. One of the initial tasks undertaken by the study unit team was to review the environmental setting of the basin and assemble ancillary data on natural and anthropogenic factors in the basin. The physical, chemical, and biological quality of the water in the South Platte River Basin is explicitly tied to its environmental setting. The resulting water quality is the product of the natural conditions and human factors that make up the environmental setting of the basin.This description of the environmental setting of the South Platte River Basin and its implications to the water quality will help guide the design of the South Platte NAWQA study. Natural conditions such as physiography, climate, geology, and soils affect the ambient water quality while anthropogenic factors such as water use, population, land use and water-management practices can have a pronounced effect on water quality in the basin. The relative effects of mining, urban, and agricultural land- and water-uses on water-quality constituents are not well understood. The interrelation of the surface-water and ground-water systems and the chemical and biological processes that affect the transport of constituents needs to be addressed. Interactions between biological communities and the water resources also should be considered. The NAWQA program and the South Platte River Basin study will provide information to minimize existing knowledge gaps, so that we may better understand the effect these natural conditions and human factors have on the water-quality conditions in the basin, now and in the future.

  2. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Regional or river basin planning. 725.7 Section 725.7 Conservation of Power and Water Resources WATER RESOURCES COUNCIL... basin Level B Studies and regional water resource management plans, the responsible official...

  3. Hotspots within the Transboundary Selenga River Basin

    NASA Astrophysics Data System (ADS)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  4. GIS environmental information analysis of the Darro River basin as the key for the management and hydrological forest restoration.

    PubMed

    Fernandez, Paz; Delgado, Expectación; Lopez-Alonso, Mónica; Poyatos, José Manuel

    2018-02-01

    This article presents analyses of soil and environmental information for the Darro River basin (Granada-Spain) preliminary to its hydrological and forestry restoration. These analyses were carried out using a geographical information system (GIS) and employing a new procedure that adapts hydrological forest-restoration methods. The complete analysis encompasses morphological conditions, soil and climate characteristics as well as vegetation and land use. The study investigates soil erosion in the basin by using Universal Soil Loss Equation (USLE) and by mapping erosion fragility units. The results are presented in a set of maps and their analysis, providing the starting point for river basin management and the hydrological and forestry-restoration project that was approved at the end of 2015. The presence of soft substrates (e.g. gravel and sand) indicates that the area is susceptible to erosion, particularly the areas that are dominated by human activity and have little soil protection. Finally, land use and vegetation cover were identified as key factors in the soil erosion in the basin. According to the results, river authorities have included several measures in the restoration project aimed at reducing the erosion and helping to recover the environmental value of this river basin and to include it in recreation possibilities for the community of Granada. The presented analytical approach, designed by the authors, would be useful as a tool for environmental restoration in other small Mediterranean river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Work plan for the Sangamon River basin, Illinois

    USGS Publications Warehouse

    Stamer, J.K.; Mades, Dean M.

    1983-01-01

    The U.S. Geological Survey, in cooperation with the Division of Water Resources of the Illinois Department of Transportation and other State agencies, recognizes the need for basin-type assessments in Illinois. This report describes a plan of study for a water-resource assessment of the Sangamon River basin in central Illinois. The purpose of the study would be to provide information to basin planners and regulators on the quantity, quality, and use of water to guide management decisions regarding basin development. Water quality and quantity problems in the Sangamon River basin are associated primarily with agricultural and urban activities, which have contributed high concentrations of suspended sediment, nitrogen, phosphorus, and organic matter to the streams. The impact has resulted in eutrophic lakes, diminished capacity of lakes to store water, low concentrations of dissolved oxygen, and turbid stream and lake waters. The four elements of the plan of study include: (1) determining suspended sediment and nutrient transport, (2) determining the distribution of selected inorganic and organic residues in streambed sediments, (3) determining the waste-load assimilative capacity of the Sangamon River, and (4) applying a hydraulic model to high streamflows. (USGS)

  6. Ecological River Basin Management.

    ERIC Educational Resources Information Center

    Smith, Anthony Wayne

    Addressing the Seventh American Water Resources Conference, Washington, D. C., October, 1971, Anthony Wayne Smith, President, National Parks and Conservation Association, presents an expose on how rivers should be managed by methods which restores and preserve the natural life balances of the localities and regions through which they flow. The…

  7. Simulation of streamflow temperatures in the Yakima River basin, Washington, April-October 1981

    USGS Publications Warehouse

    Vaccaro, J.J.

    1986-01-01

    The effects of storage, diversion, return flow, and meteorological variables on water temperature in the Yakima River, in Washington State, were simulated, and the changes in water temperature that could be expected under four alternative-management scenarios were examined for improvement in anadromous fish environment. A streamflow routing model and Lagrangian streamflow temperature model were used to simulate water discharge and temperature in the river. The estimated model errors were 12% for daily discharge and 1.7 C for daily temperature. Sensitivity analysis of the simulation of water temperatures showed that the effect of reservoir outflow temperatures diminishes in a downstream direction. A 4 C increase in outflow temperatures results in a 1.0 C increase in mean irrigation season water temperature at Umtanum in the upper Yakima River basin, but only a 0.01C increase at Prosser in the lower basin. The influence of air temperature on water temperature increases in a downstream direction and is the dominant influence in the lower basin. A 4 C increase in air temperature over the entire basin resulted in a 2.34 C increase in river temperatures at Prosser in the lower basin and 1.46 C at Umtanum in the upper basin. Changes in wind speed and model wind-function parameters had little effect on the model predicted water temperature. Of four alternative management scenarios suggested by the U.S. Bureau of Indian Affairs and the Yakima Indian Nation, the 1981 reservoir releases maintained without diversions or return flow in the river basin produced water temperatures nearest those considered as preferable for salmon and steelhead trout habitat. The alternative management scenario for no reservoir storage and no diversions or return flows in the river basin (estimate of natural conditions) produced conditions that were the least like those considered as preferable for salmon and steelhead trout habitat. (Author 's abstract)

  8. Streamflow distribution maps for the Cannon River drainage basin, southeast Minnesota, and the St. Louis River drainage basin, northeast Minnesota

    USGS Publications Warehouse

    Smith, Erik A.; Sanocki, Chris A.; Lorenz, David L.; Jacobsen, Katrin E.

    2017-12-27

    Streamflow distribution maps for the Cannon River and St. Louis River drainage basins were developed by the U.S. Geological Survey, in cooperation with the Legislative-Citizen Commission on Minnesota Resources, to illustrate relative and cumulative streamflow distributions. The Cannon River was selected to provide baseline data to assess the effects of potential surficial sand mining, and the St. Louis River was selected to determine the effects of ongoing Mesabi Iron Range mining. Each drainage basin (Cannon, St. Louis) was subdivided into nested drainage basins: the Cannon River was subdivided into 152 nested drainage basins, and the St. Louis River was subdivided into 353 nested drainage basins. For each smaller drainage basin, the estimated volumes of groundwater discharge (as base flow) and surface runoff flowing into all surface-water features were displayed under the following conditions: (1) extreme low-flow conditions, comparable to an exceedance-probability quantile of 0.95; (2) low-flow conditions, comparable to an exceedance-probability quantile of 0.90; (3) a median condition, comparable to an exceedance-probability quantile of 0.50; and (4) a high-flow condition, comparable to an exceedance-probability quantile of 0.02.Streamflow distribution maps were developed using flow-duration curve exceedance-probability quantiles in conjunction with Soil-Water-Balance model outputs; both the flow-duration curve and Soil-Water-Balance models were built upon previously published U.S. Geological Survey reports. The selected streamflow distribution maps provide a proactive water management tool for State cooperators by illustrating flow rates during a range of hydraulic conditions. Furthermore, after the nested drainage basins are highlighted in terms of surface-water flows, the streamflows can be evaluated in the context of meeting specific ecological flows under different flow regimes and potentially assist with decisions regarding groundwater and surface

  9. Planning and design of studies for river-quality assessment in the Truckee and Carson River basins, California and Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.; Brown, W.M.; Smith, L.H.; Hoffman, R.J.

    1980-01-01

    The objectives of the Geological Survey 's river-quality assessment in the Truckee and Carson River basins in California and Nevada are to identify the significant resource management problems; to develop techniques to assess the problems; and to effectively communicate results to responsible managers. Six major elements of the assessment to be completed by October 1981 are (1) a detailing of the legal, institutional, and structural development of water resources in the basins and the current problems and conflicts; (2) a compilation and synthesis of the physical hydrology of the basins; (3) development of a special workshop approach to involve local management in the direction and results of the study; (4) development of a comprehensive streamflow model emcompassing both basins to provide a quantitative hydrologic framework for water-quality analysis; (5) development of a water-quality transport model for selected constituents and characteristics on selected reaches of the Truckee River; and (6) a detailed examination of selected fish habitats for specified reaches of the Truckee River. Progress will be periodically reported in reports, maps, computer data files, mathematical models, a bibliography, and public presentations. In building a basic framework to develop techniques, the basins were viewed as a single hydrologic unit because of interconnecting diversion structures. The framework comprises 13 hydrographic subunits to facilitate modeling and sampling. Several significant issues beyond the scope of the assessment were considered as supplementary proposals; water-quality loadings in Truckee and Carson Rivers, urban runoff in Reno and management alternatives, and a model of limnological processes in Lahontan Reservoir. (USGS)

  10. Socio-Hydrology of Channel Flows in Complex River Basins: Rivers, Canals, and Distributaries in Punjab, Pakistan

    NASA Astrophysics Data System (ADS)

    Wescoat, James L.; Siddiqi, Afreen; Muhammad, Abubakr

    2018-01-01

    This paper presents a socio-hydrologic analysis of channel flows in Punjab province of the Indus River basin in Pakistan. The Indus has undergone profound transformations, from large-scale canal irrigation in the mid-nineteenth century to partition and development of the international river basin in the mid-twentieth century, systems modeling in the late-twentieth century, and new technologies for discharge measurement and data analytics in the early twenty-first century. We address these processes through a socio-hydrologic framework that couples historical geographic and analytical methods at three levels of flow in the Punjab. The first level assesses Indus River inflows analysis from its origins in 1922 to the present. The second level shows how river inflows translate into 10-daily canal command deliveries that vary widely in their conformity with canal entitlements. The third level of analysis shows how new flow measurement technologies raise questions about the performance of established methods of water scheduling (warabandi) on local distributaries. We show how near real-time measurement sheds light on the efficiency and transparency of surface water management. These local socio-hydrologic changes have implications in turn for the larger scales of canal and river inflow management in complex river basins.

  11. Connecting science to managers in river restoration in the Upper Klamath Basin, Oregon and California

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.

    2009-12-01

    The semi-arid Upper Klamath Basin is a complex landscape of agricultural land, pasture and forests, drained by rivers, lakes, and wetlands. Unique characteristics of the river systems include high natural nutrient loadings, large springs, low gradients, high sinuosity, fine sediment, herbaceous-dominated riparian vegetation, and habitat for salmonid and sucker fish. Following listing of several fish species under the Endangered Species Act in the 1980s to 90s, the Upper Klamath Basin has become a focal point of river management and restoration. Drought conditions in 2001 resulted in a cutoff of irrigation water and a political crisis. The crisis engendered a distrust of scientists by many residents of the basin. Political conflict over allocation of water resources and ecosystem management has continued since 2001. In this environment, multiple groups, including federal and state agencies and NGOs, have developed restoration assessments and agendas, and they have also implemented numerous restoration projects. These restoration guidance documents are typically based on input from local residents and landowners as well as the published scientific literature. The documents from different groups are generally consistent but priorities vary somewhat. Gaps in scientific understanding of the river systems are recognized as a handicap in restoration planning. The science knowledge base has been growing since 2001 but generally lags behind on-the-ground restoration activities. Research can help in addressing two critical questions important in restoration implementation. What restoration strategies are best suited to the processes and dynamics of this system? Are the specific restoration designs being employed effective at meeting restoration goals? In addition to following scientific standards of practice, scientific research needs to be framed with an awareness of how formal and informal knowledge is used in restoration implementation.

  12. Probabilistic evaluation of the water footprint of a river basin: Accounting method and case study in the Segura River Basin, Spain.

    PubMed

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2018-06-15

    In the current study a method for the probabilistic accounting of the water footprint (WF) at the river basin level has been proposed and developed. It is based upon the simulation of the anthropised water cycle and combines a hydrological model and a decision support system. The methodology was carried out in the Segura River Basin (SRB) in South-eastern Spain, and four historical scenarios were evaluated (1998-2010-2015-2027). The results indicate that the WF of the river basin reached 5581 Mm 3 /year on average in the base scenario, with a high variability. The green component (3231 Mm 3 /year), mainly generated by rainfed crops (62%), was responsible for the great variability of the WF. The blue WF (1201 Mm 3 /year) was broken down into surface water (56%), renewable groundwater (20%) and non-renewable groundwater (24%), and it showed the generalized overexploitation of aquifers. Regarding the grey component (1150 Mm 3 /year), the study reveals that wastewater, especially phosphates (90%), was the main culprit producing water pollution in surface water bodies. The temporal evolution of the four scenarios highlighted the successfulness of the water treatment plans developed in the river basin, with a sharp decrease in the grey WF, as well as the stability of the WF and its three components in the future. So, the accounting of the three components of the WF in a basin was integrated into the management of water resources, it being possible to predict their evolution, their spatial characterisation and even their assessment in probabilistic terms. Then, the WF was incorporated into the set of indicators that usually is used in water resources management and hydrological planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Megascopic lithologic studies of coals in the Powder River basin in Wyoming and in adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Trippi, Michael H.; Stricker, Gary D.; Flores, Romeo M.; Stanton, Ronald W.; Chiehowsky, Lora A.; Moore, Timothy A.

    2010-01-01

    Between 1999 and 2007, the U.S. Geological Survey (USGS) investigated coalbed methane (CBM) resources in the Wyoming portion of the Powder River Basin. The study also included the CBM resources in the North Dakota portion of the Williston Basin of North Dakota and the Wyoming portion of the Green River Basin of Wyoming. This project involved the cooperation of the State Office, Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) in Casper, Wyo., and 16 independent gas operators in the Powder River, Williston, and Green River Basins. The USGS and BLM entered into agreements with these CBM operators to supply samples for the USGS to analyze and provide the RMG with rapid, timely results of total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data. This program resulted in the collection of 963 cored coal samples from 37 core holes. This report presents megascopic lithologic descriptive data collected from canister samples extracted from the 37 wells cored for this project.

  14. Geomorphological reference condition definition as a basis for river restoration and river management: the example of Oiartzun, Oria and Urumea River basins (Basque Country)

    NASA Astrophysics Data System (ADS)

    Ibisate, Askoa; Ollero, Alfredo; Sáenz de Olazagoitia, Ana; Acín, Vanesa; Granado, David; Herrero, Xabier; Horacio, Jesús

    2017-04-01

    The application of hydrogeomorphology as a tool for river management and decision making on reference condition definition for river restoration is presented. Water Framework Directive (2000/60/CE) requires the identification of reference conditions and attainable target images, to achieve the good ecological status, taking into account the direct and indirect changes in the basin and river course. Data collection was done through an exhaustive fieldwork and GIS tools. Based on geomorphological homogeneous river reaches identification (waterfall, bedrock, step-pool, cascade, coluvial, run, riffle-pool, heavily modified), the hydrogeomorphological assessment of all of them in relation to its "natural" condition allowed the identification of those with a good or very good hydrogeomorphological condition, considered as reference condition. The loss of hydrogeomorphological quality was closely linked to sociodemographical pressure, due to artificial elements in the river course, floodplain and land use changes on the basin. The assessment done based on pressures and impacts allowed the proposal of specific restoration objectives which facilitated the identification of the elements that degrade the hydrogeomorphological quality of the reaches, and helped the identification of specific restoration actions. In addition it was possible to set the reaches with the potentiality of being restored, those reversible and those that due to its high degradation were considered irreversible, and therefore not able to be restored, except for some rehabilitation or mitigation measures. The application in two basins, Oria and Oiartzun, concluded that 36% of the reaches could recover their geomorphological good status and a 40% could be considered as reference condition for other reaches. This geomorphological based reference condition definition could be linked and complete with ecological data.

  15. Assessing and forecasting the impacts of global change on Mediterranean rivers. The SCARCE Consolider project on Iberian basins.

    PubMed

    Navarro-Ortega, Alícia; Acuña, Vicenç; Batalla, Ramon J; Blasco, Julián; Conde, Carlos; Elorza, Francisco J; Elosegi, Arturo; Francés, Félix; La-Roca, Francesc; Muñoz, Isabel; Petrovic, Mira; Picó, Yolanda; Sabater, Sergi; Sanchez-Vila, Xavier; Schuhmacher, Marta; Barceló, Damià

    2012-05-01

    The Consolider-Ingenio 2010 project SCARCE, with the full title "Assessing and predicting effects on water quantity and quality in Iberian Rivers caused by global change" aims to examine and predict the relevance of global change on water availability, water quality, and ecosystem services in Mediterranean river basins of the Iberian Peninsula, as well as their socio-economic impacts. Starting in December 2009, it brought together a multidisciplinary team of 11 partner Spanish institutions, as well as the active involvement of water authorities, river basin managers, and other relevant agents as stakeholders. The study areas are the Llobregat, Ebro, Jucar, and Guadalquivir river basins. These basins have been included in previous studies and projects, the majority of whom considered some of the aspects included in SCARCE but individually. Historical data will be used as a starting point of the project but also to obtain longer time series. The main added value of SCARCE project is the inclusion of scientific disciplines ranging from hydrology, geomorphology, ecology, chemistry, and ecotoxicology, to engineering, modeling, and economy, in an unprecedented effort in the Mediterranean area. The project performs data mining, field, and lab research as well as modeling and upscaling of the findings to apply them to the entire river basin. Scales ranging from the laboratory to river basins are addressed with the potential to help improve river basin management. The project emphasizes, thus, linking basic research and management practices in a single framework. In fact, one of the main objectives of SCARCE is to act as a bridge between the scientific and the management and to transform research results on management keys and tools for improving the River Basin Management Plans. Here, we outline the general structure of the project and the activities conducted within the ten Work Packages of SCARCE.

  16. Colorado River basin sensitivity to disturbance impacts

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing

  17. Influences of historical and projected changes in climate and land management practices on nutrient fluxes in the Mississippi River Basin, 1948-2100

    NASA Astrophysics Data System (ADS)

    Spak, S.; Ward, A. S.; Li, Y.; Dalrymple, K. E.

    2016-12-01

    Nitrogen fertilization is central to contemporary row crop production in the U.S., but resultant nitrate transport leads to eutrophication, hypoxia, and algal blooms throughout the Mississippi River Basin and in coastal waters of the Gulf of Mexico. Effective basin-scale nutrient management requires a comprehensive understanding of the dynamics of nitrate transport in this large river catchment and the roles of individual management practices, that must then be operationalized to optimize management for both local geophysical and agricultural conditions and in response to decadal and inter-annual variations in local and regional climate. Here, we apply ensemble simulations with Agro-IBIS and THMB using spatially and temporally specific land cover, soil, agricultural, topographic, and climate data to simulate the individual and combined effects of land management and climate on historical (1948-2007) nitrate concentrations and transport in the Mississippi River Basin. We further identify sensitivities of in-stream nitrate dynamics to local and regional applications of Best Management Practices. The ensemble resolves the effects of techniques recommended in the Iowa Nutrient Reduction Strategy, including crop rotations, fertilizer management, tillage and residue management, and cover crops. Analysis of the nitrate transport response surfaces identifies non-linear effects of combined nutrient management tactics, and quantifies the stationarity of the relative and absolute influences of land management and climate during the 60-year study period.

  18. The watershed and river systems management program

    USGS Publications Warehouse

    Markstrom, S.L.; Frevert, D.; Leavesley, G.H.; ,

    2005-01-01

    The Watershed and River System Management Program (WaRSMP), a joint effort between the U.S. Geological Survey (USGS) and the U.S. Bureau of Reclamation (Reclamation), is focused on research and development of decision support systems and their application to achieve an equitable balance among diverse water resource management demands. Considerations include: (1) legal and political constraints; (2) stake holder and consensus-building; (3) sound technical knowledge; (4) flood control, consumptive use, and hydropower; (5) water transfers; (6) irrigation return flows and water quality; (7) recreation; (8) habitat for endangered species; (9) water supply and proration; (10) near-surface groundwater; and (11) water ownership, accounting, and rights. To address the interdisciplinary and multi-stake holder needs of real-time watershed management, WaRSMP has developed a decision support system toolbox. The USGS Object User Interface facilitates the coupling of Reclamation's RiverWare reservoir operations model with the USGS Modular Modeling and Precipitation Runoff Modeling Systems through a central database. This integration is accomplished through the use of Model and Data Management Interfaces. WaRSMP applications include Colorado River Main stem and Gunnison Basin, the Yakima Basin, the Middle Rio Grande Basin, the Truckee-Carson Basin, and the Umatilla Basin.

  19. Establishment of a non-governmental regional approach to La Plata River Basin integrated watershed management promoted throughout three international workshops supported by UN and Japanese agencies, led by ILEC

    NASA Astrophysics Data System (ADS)

    Calcagno, Alberto; Yamashiki, Yosuke; Mugetti, Ana

    2002-08-01

    The La Plata River Basin is one of the largest international river basins in the world, with an area of about 3 million km2. It spreads across five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), and its water resources are essential for their economic development. Together with reservoir development, extensive deforestation, intensive agriculture practices and large urban developments took place in the Paraná, Paraguay and Uruguay basins, affecting environmental conditions and raising important issues concerning water resources use and conservation. Therefore, the need to promote participatory and cooperative efforts among water resources stakeholders, as well as the systematic exchange of information and experiences on common regional problems among organizations and experts from throughout the basin who are devoted to water resources use and management, was reported by researchers and managers gathered at the First and Second International Workshops on Regional Approaches for Reservoir Development and Management in the La Plata River Basin (held in 1991 and 1994). As a concrete response to this need, the efforts of a number of organizations from various countries within the basin, with the support of international and national governmental organizations, resulted in the foundation of La Plata River Basin Environmental Research and Management Network (RIGA) in March 2001. This was within the framework of the Third International Workshop, which was precisely one of the short-term activities included in the RIGA Action Plan. During the preparatory processes for the RIGA Network, the presence of Japanese cooperation supporting the La Plata River Basin Workshops through a non-governmental international organization (ILEC) played an important role in stimulating such an organization-based joint approach in the basin. This outcome, although not originally planned, constituted a welcomed byproduct of its main specific interest in the region, which was the

  20. Changing sediment budget of the Mekong: Cumulative threats and management strategies for a large river basin.

    PubMed

    Kondolf, G Mathias; Schmitt, Rafael J P; Carling, Paul; Darby, Steve; Arias, Mauricio; Bizzi, Simone; Castelletti, Andrea; Cochrane, Thomas A; Gibson, Stanford; Kummu, Matti; Oeurng, Chantha; Rubin, Zan; Wild, Thomas

    2018-06-01

    Two decades after the construction of the first major dam, the Mekong basin and its six riparian countries have seen rapid economic growth and development of the river system. Hydropower dams, aggregate mines, flood-control dykes, and groundwater-irrigated agriculture have all provided short-term economic benefits throughout the basin. However, it is becoming evident that anthropic changes are significantly affecting the natural functioning of the river and its floodplains. We now ask if these changes are risking major adverse impacts for the 70 million people living in the Mekong Basin. Many livelihoods in the basin depend on ecosystem services that will be strongly impacted by alterations of the sediment transport processes that drive river and delta morpho-dynamics, which underpin a sustainable future for the Mekong basin and Delta. Drawing upon ongoing and recently published research, we provide an overview of key drivers of change (hydropower development, sand mining, dyking and water infrastructures, climate change, and accelerated subsidence from pumping) for the Mekong's sediment budget, and their likely individual and cumulative impacts on the river system. Our results quantify the degree to which the Mekong delta, which receives the impacts from the entire connected river basin, is increasingly vulnerable in the face of declining sediment loads, rising seas and subsiding land. Without concerted action, it is likely that nearly half of the Delta's land surface will be below sea level by 2100, with the remaining areas impacted by salinization and frequent flooding. The threat to the Delta can be understood only in the context of processes in the entire river basin. The Mekong River case can serve to raise awareness of how the connected functions of river systems in general depend on undisturbed sediment transport, thereby informing planning for other large river basins currently embarking on rapid economic development. Copyright © 2017 Elsevier B.V. All

  1. A system dynamics approach for integrated management of the Jucar River Basin

    NASA Astrophysics Data System (ADS)

    Rubio-Martin, Adria; Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2017-04-01

    System dynamics (SD) is a modelling approach that allows the analysis of complex systems through the mathematical definition of variables and their relationships. Based on systems thinking, SD is suitable for interdisciplinary studies of the management of complex systems. Over the past 50 years, SD tools have been applied to fields as diverse as economics, ecology, politics, sociology and resource management. Its application to the field of water resources has grown significantly over the last two decades, facilitating the enhancement of models by adding social, economic and ecological components. However, its application to the operation of complex multireservoir systems has been very limited so far. In this contribution, we have developed a SD model for the Jucar River Basin, one of the most vulnerable basins in the western Mediterranean region with regard to droughts. The system has three main reservoirs, which allows for a multiannual management of the storage that compensates the highly variable streamflow from upstream. Our SD model of the Jucar River Basin is able to capture the complexity of the water resource system. The model developed consists of five interlinked subsystems: a) Topology of the system network, including the 3 main reservoirs, water seepage and evaporation, inflows and catchments. b) Monthly operating rules of each reservoir. The rules were derived from the expert knowledge eluded from the operators of the reservoirs. c) Monthly urban, agricultural and environmental water demands. d) State index of the system and drought mitigation measures triggered depending on the state index. e) Mancha Oriental aquifer and stream-aquifer interaction with the Jucar River. The comparison between observed and simulated series showed that the model provides a good representation of the observed reservoir operation and total deficits. The interdisciplinary and open nature of the methodology allows to add new variables and dynamics to the model that are

  2. Development of river flood model in lower reach of urbanized river basin

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  3. Sharing water and benefits in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  4. Land Use/Cover Change in the Middle Reaches of the Heihe River Basin over 2000-2011 and Its Implications for Sustainable Water Resource Management

    PubMed Central

    Hu, Xiaoli; Lu, Ling; Li, Xin; Wang, Jianhua; Guo, Ming

    2015-01-01

    The Heihe River Basin (HRB) is a typical arid inland river basin in northwestern China. From the 1960s to the 1990s, the downstream flow in the HRB declined as a result of large, artificial changes in the distribution of water and land and a lack of effective water resource management. Consequently, the ecosystems of the lower reaches of the basin substantially deteriorated. To restore these degraded ecosystems, the Ecological Water Diversion Project (EWDP) was initiated by the Chinese government in 2000. The project led to agricultural and ecological changes in the middle reaches of the basin. In this study, we present three datasets of land use/cover in the middle reaches of the HRB derived from Landsat TM/ETM+ images in 2000, 2007 and 2011. We used these data to investigate changes in land use/cover between 2000 and 2011 and the implications for sustainable water resource management. The results show that the most significant land use/cover change in the middle reaches of the HRB was the continuous expansion of farmland for economic interests. From 2000 to 2011, the farmland area increased by 12.01%. The farmland expansion increased the water resource stress; thus, groundwater was over-extracted and the ecosystem was degraded in particular areas. Both consequences are negative and potentially threaten the sustainability of the middle reaches of the HRB and the entire river basin. Local governments should therefore improve the management of water resources, particularly groundwater management, and should strictly control farmland reclamation. Then, water resources could be ecologically and socioeconomically sustained, and the balance between upstream and downstream water demands could be ensured. The results of this study can also serve as a reference for the sustainable management of water resources in other arid inland river basins. PMID:26115484

  5. Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran

    USDA-ARS?s Scientific Manuscript database

    The paradigm of integrated water resources management requires coupled analysis of hydrology and water resources in a river basin. Population growth and uncertainties due to climate change make historic data not a reliable source of information for future planning of water resources, hence necessit...

  6. Web-Based Water Accounting Scenario Platform to Address Uncertainties in Water Resources Management in the Mekong : A Case Study in Ca River Basin, Vietnam

    NASA Astrophysics Data System (ADS)

    Apirumanekul, C.; Purkey, D. R.; Pudashine, J.; Seifollahi-Aghmiuni, S.; Wang, D.; Ate, P.; Meechaiya, C.

    2017-12-01

    Rapid economic development in the Mekong Region is placing pressure on environmental resources. Uncertain changes in land-use, increasing urbanization, infrastructure development, migration patterns and climate risks s combined with scarce water resources are increasing water demand in various sectors. More appropriate policies, strategies and planning for sustainable water resource management are urgently needed. Over the last five years, Vietnam has experienced more frequent and intense droughts affecting agricultural and domestic water use during the dry season. The Ca River Basin is the third largest river basin in Vietnam with 35% of its area located in Lao PDR. The delta landscape comprises natural vegetation, forest, paddy fields, farming and urban areas. The Ca River Basin is experiencing ongoing water scarcity that impacts on crop production, farming livelihoods and household water consumption. Water scarcity is exacerbated by uncertainties in policy changes (e.g. changes in land-use, crop types), basin development (e.g. reservoir construction, urban expansion), and climate change (e.g. changes in rainfall patterns and onset of monsoon). The Water Evaluation And Planning (WEAP) model, with inputs from satellite-based information and institutional data, is used to estimate water supply, water use and water allocation in various sectors (e.g. household, crops, irrigation and flood control) under a wide range of plausible future scenarios in the Ca River Basin. Web-Based Water Allocation Scenario Platform is an online implementation of WEAP model structured in terms of a gaming experience. The online game, as an educational tool, helps key agencies relevant to water resources management understand and explore the complexity of integrated system of river basin under a wide range of scenarios. Performance of the different water resources strategies in Ca River Basin (e.g. change of dam operation to address needs in various sectors, construction of dams, changes

  7. A framework for identifying water management typologies for agent based modeling of water resources and its application in the Boise River Basin, USA.

    NASA Astrophysics Data System (ADS)

    Kaiser, K. E.; Flores, A. N.; Hillis, V.; Moroney, J.; Schneider, J.

    2017-12-01

    Modeling the management of water resources necessitates incorporation of complex social and hydrologic dynamics. Simulation of these socio-ecological systems requires characterization of the decision-making process of relevant actors, the mechanisms through which they exert control on the biophysical system, their ability to react and adapt to regional environmental conditions, and the plausible behaviors in response to changes in those conditions. Agent based models (ABMs) are a useful tool in simulating these complex adaptive systems because they can dynamically couple hydrological models and the behavior of decision making actors. ABMs can provide a flexible, integrated framework that can represent multi-scale interactions, and the heterogeneity of information networks and sources. However, the variability in behavior of water management actors across systems makes characterizing agent behaviors and relationships challenging. Agent typologies, or agent functional types (AFTs), group together individuals and/or agencies with similar functional roles, management objectives, and decision-making strategies. AFTs have been used to represent archetypal land managers in the agricultural and forestry sectors in large-scale socio-economic system models. A similar typology of water actors could simplify the representation of water management across river basins, and increase transferability and scaling of resulting ABMs. Here, we present a framework for identifying and classifying major water actors and show how we will link an ABM of water management to a regional hydrologic model in a western river basin. The Boise River Basin in southwest Idaho is an interesting setting to apply our AFT framework because of the diverse stakeholders and associated management objectives which include managing urban growth pressures and water supply in the face of climate change. Precipitation in the upper basin supplies 90% of the surface water used in the basin, thus managers of the

  8. Strengthen the collaboration between the River Basin Management Organization of China and International Environmental Specimen Bank Group.

    PubMed

    Tan, Lingzhi; Liu, Hui; Shu, Jinxiang; Xia, Fan

    2015-02-01

    Several types of emerging organic contaminants were investigated in many recent researches, such as persistent toxic substance (PTS), persistent organic pollutants (POPs), endocrine disrupters (EDs), and volatile organic compounds (VOCs). But the Chinese country standard detection methods of emerging organic pollutants were not developed with the dramatic increasing of the organic substances production. Hence, it is necessary to obtain the latest informations about the long-term storage of representative environmental specimens, which could provide scientific basis for environmental management and environmental decision-making of the water resources protection and management organization. As the significant water resource conservation organization, the Water Environment Monitoring Center of Yangtze River Basin is experienced in water environmental monitoring and records many useful water resources and environment informations. It is also our responsibility to monitor all the pollutants in water environment of the Yangtze River valley, especially the emerging organic contaminants. Meanwhile, the International Environmental Specimen Bank (IESB) accumulates lots environmental organic pollution specimens and plays a significant role in environmental monitoring. Thus, the collaboration between the two parties will be greatly helpful for each further researches and monitoring work of organic contaminants in Yangtze River Basin.

  9. Near real time water resources data for river basin management

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  10. Artificial Post mining lakes - a challenge for the integration in natural hydrography and river basin management

    NASA Astrophysics Data System (ADS)

    Fleischhammel, Petra; Schoenheinz, Dagmar; Grünewald, Uwe

    2010-05-01

    In terms of the European Water Framework Directive (WFD), post mining lakes are artificial water bodies (AWB). The sustainable integration of post mining lakes in the groundwater and surface water landscape and their consideration in river basin management plans have to be linked with various (geo)hydrological, hydro(geo)chemical, technological and socioeconomic issues. The Lower Lusatian lignite mining district in eastern Germany is part of the major river basins of river Elbe and river Oder. Regionally, the mining area is situated in the sub-basins of river Spree and Schwarze Elster. After the cessation of mining activities and thereby of the artificially created groundwater drawdown in numerous mining pits, a large number of post mining lakes are evolving as consequence of natural groundwater table recovery. The lakes' designated uses vary from water reservoirs to landscape, recreation or fish farming lakes. Groundwater raise is not only substantial for the lake filling, but also for the area rehabilitation and a largely self regulated water balance in post mining landscapes. Since the groundwater flow through soil and dump sites being affected by the former mining activities, groundwater experiences various changes in its hydrochemical properties as e.g. mineralization and acidification. Consequently, downstream located groundwater fed running and standing water bodies will be affected too. Respective the European Water Framework Directive, artificial post mining lakes are not allowed to cause significant adverse impacts on the good ecological status/potential of downstream groundwater and surface water bodies. The high sulphate concentrations of groundwater fed mining lakes which reach partly more than 1,000 mg/l are e.g. damaging concrete constructures in downstream water bodies thereby representing threats for hydraulic facilities and drinking water supply. Due to small amounts of nutrients, the lakes are characterised by oligo¬trophic to slightly

  11. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  12. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    NASA Astrophysics Data System (ADS)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  13. Value of Adaptive Drought Forecasting and Management for the ACF River Basin in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Georgakakos, A. P.; Kistenmacher, M.

    2016-12-01

    In recent times, severe droughts in the southeast U.S. occur every 6 to 10 years and last for up to 4 years. During such drought episodes, the ACF River Basin supplies decline by up to 50 % of their normal levels, and water stresses increase rather markedly, exacerbating stakeholder anxiety and conflicts. As part of the ACF Stakeholder planning process, GWRI has developed new tools and carried out comprehensive assessments to provide quantitative answers to several important questions related to drought prediction and management: (i) Can dry and wet climatic periods be reliably anticipated with sufficiently long lead times? What drought indices can support reliable, skillful, and long-lead forecasts? (ii) What management objectives can seasonal climate forecasts benefit? How should benefits/impacts be shared? (iii) What operational adjustments are likely to mitigate stakeholder impacts or increase benefits consistent with stakeholder expectations? Regarding drought prediction, a large number of indices were defined and tested at different basin locations and lag times. These included local/cumulative unimpaired flows (UIFs) at 10 river nodes; Mean Areal Precipitation (MAP); Standard Precipitation Index (SPI); Palmer Drought Severity Index; Palmer Modified Drought Index; Palmer Z-Index; Palmer Hydrologic Drought Severity Index; and Soil Moisture—GWRI watershed model. Our findings show that all ACF sub-basins exhibit good forecast skill throughout the year and with sufficient lead time. Index variables with high explanatory value include: previous UIFs, soil moisture states (generated by the GWRI watershed model), and PDSI. Regarding drought management, assessments with coupled forecast-management schemes demonstrate that the use of adaptive forecast-management procedures improves reservoir operations and meets basin demands more reliably. Such improvements can support better management of lake levels, higher environmental and navigation flows, higher dependable

  14. Temporal and spatial variation of hydrological condition in the Ziwu River Basin of the Han River in China

    NASA Astrophysics Data System (ADS)

    Li, Ziyan; Liu, Dengfeng; Huang, Qiang; Bai, Tao; Zhou, Shuai; Lin, Mu

    2018-06-01

    The middle route of South-To-North Water Diversion in China transfers water from the Han River and Han-To-Wei Water Diversion project of Shaanxi Province will transfer water from the Ziwu River, which is a tributary of the Han River. In order to gain a better understanding of future changes in the hydrological conditions within the Ziwu River basin, a Mann-Kendall (M-K) trend analysis is coupled with a persistence analysis using the rescaled range analysis (R/S) method. The future change in the hydrological characteristics of the Ziwu River basin is obtained by analysing the change of meteorological factors. The results show that, the future precipitation and potential evaporation are seasonal, and the spatial variation is significant. The proportion of basin area where the spring, summer, autumn and winter precipitation is predicted to continue increase is 0.00, 100.00, 19.00 and 16.00 %, meanwhile, the proportion of basin area that will continue to decrease in the future respectively will be 100.00, 0.00, 81.00 and 74.00 %.The future potential evapotranspiration of the four seasons in the basin shows a decreasing trend. The future water supply situation in the spring and autumn of the Ziwu River basin will degrade, and the future water supply situation in the summer and winter will improve. In addition, the areas with the same water supply situation are relatively concentrated. The results will provide scientific basis for the planning and management of river basin water resources and socio-hydrological processes analysis.

  15. Are calanco landforms similar to river basins?

    PubMed

    Caraballo-Arias, N A; Ferro, V

    2017-12-15

    In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Assessing the effectiveness of Multi-Sector Partnerships to manage droughts: The case of the Jucar river basin

    NASA Astrophysics Data System (ADS)

    Carmona, María.; Máñez Costa, María.; Andreu, Joaquín.; Pulido-Velazquez, Manuel; Haro-Monteagudo, David; Lopez-Nicolas, Antonio; Cremades, Roger

    2017-07-01

    South-east Spain is a drought prone area, characterized by climate variability and water scarcity. The Jucar River Basin, located in Eastern Spain, has suffered many historical droughts with significant socio-economic impacts. For nearly a hundred years, the institutional and non-institutional strategies to cope with droughts have been successful through the development of institutions and partnerships for drought management including multiple actors. In this paper, we show how the creation and institutionalisation of Multi-Sector Partnerships (MSPs) has supported the development of an efficient drought management. Furthermore, we analyze the performance of one of the suggested instruments by the partnership related to drought management in the basin. Two methodologies are used for these purposes. On one hand, the Capital Approach Framework to analyze the effectiveness of the governance processes in a particular partnership (Permanent Drought Commission), which aims to highlight the governance strength and weakness of the MSP for enhancing drought management in the Jucar River Basin. Through a dynamic analysis of the changes that the partnership has undergone over time to successfully deal with droughts, its effectiveness on drought management is demonstrated. On the other hand, an econometric approach is used to analyze the economic efficiency of the emergency drought wells as one of the key drought mitigation measures suggested by the Permanent Drought Commission and implemented. The results demonstrate the potential and efficiency of applying drought wells as mitigation measures (significant reduction of economic losses, around 50 M€ during the drought period, 2005-2008).

  17. Susquehanna River Basin Flood Control Review Study

    DTIC Science & Technology

    1980-08-01

    22 Archeological and Historial Resources 25 Biological Resources 25 Social -Economic History 28 Contemporary Social -Economic Setting 29 Development and... social needs of the people. The study was initiated in 1963 with the formation of the Susquehanna River Basin Coordinating Committee consisting of...the basin. Social -Economic History The early history of the Susquehanna River Basin was influenced by the Susquehanna River as a source of

  18. Suwannee river basin and estuary integrated science workshop: September 22-24, 2004 Cedar Key, Florida

    USGS Publications Warehouse

    Katz, Brian; Raabe, Ellen

    2004-01-01

    In response to the growing number of environmental concerns in the mostly pristine Suwannee River Basin and the Suwannee River Estuary system, the States of Florida and Georgia, the Federal government, and other local organizations have identified the Suwannee River as an ecosystem in need of protection because of its unique biota and important water resources. Organizations with vested interests in the region formed a coalition, the Suwannee Basin Interagency Alliance (SBIA), whose goals are to promote coordination in the identification, management, and scientific knowledge of the natural resources in the basin and estuary. To date, an integrated assessment of the physical, biological, and water resources has not been completed. A holistic, multi-disciplinary approach is being pursued to address the research needs in the basin and estuary and to provide supportive data for meeting management objectives of the entire ecosystem. The USGS is well situated to focus on the larger concerns of the basin and estuary by addressing specific research questions linking water supply and quality to ecosystem function and health across county and state boundaries. A strategic plan is being prepared in cooperation with Federal, State, and local agencies to identify and implement studies to address the most compelling research issues and management questions, and to conduct fundamental environmental monitoring studies. The USGS, Suwannee River Water Management District and the Florida Marine Research Institute are co-sponsoring this scientific workshop on the Suwannee River Basin and Estuary to: Discuss current and past research findings, Identify information gaps and research priorities, and Develop an action plan for coordinated and relevant research activities in the future. This workshop builds on the highly successful basin-wide conference sponsored by the Suwannee Basin Interagency Alliance that was held three years ago in Live Oak, Florida. This years workshop will focus on

  19. The Watershed and River Systems Management Program: Decision Support for Water- and Environmental-Resource Management

    NASA Astrophysics Data System (ADS)

    Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.

    2004-12-01

    Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.

  20. Integrated resource assessment of the Drina River Basin

    NASA Astrophysics Data System (ADS)

    Almulla, Youssef; Ramos, Eunice; Gardumi, Francesco; Howells, Mark

    2017-04-01

    The integrated assessment and management of resources: water, energy, food and environment is of fundamental importance, yet it is a very challenging task especially when it is carried out on the transboundary level. This study focuses on the Drina River Basin (DRB) which is a transboundary basin in South East Europe spreading across Bosnia and Herzegovina, Serbia and Montenegro with a total surface area of 19,982 km2. Water resources from the Drina River Basin are shared among many activities in the basin: domestic water supply, electricity generation, fishery, tourism and, to a lesser extent, irrigation, industry and mining. The region has recently experienced repeated events of floods and droughts causing significant damage to the economy, showing a high vulnerability of the area to the effects of climate change. The assessment of the Drina River Basin is carried out in the framework of the project "Water food energy ecosystems nexus in transboundary river basins" under the UNECE Water Convention. This study aims to: 1) Improve the cooperation in the operation of dams and hydropower plants in the DRB for optimized production; 2) Explore the opportunities generated by electricity trade between the DRB countries as a mechanism to enhance cooperation and as an enabler for the synchronised operation of hydropower plants; 3) Motivate the implementation of energy efficiency measures to reduce the electricity production requirement from hydro and thermal power. In order to achieve that, a multi-country electricity system model was developed for the three countries of Drina river basin using the Open Source energy MOdelling SYStem (OSeMOSYS). The model represents the whole electricity system of each country, with special cascade representation of hydropower plants along Drina river and its tributaries. The results show that, in a scenario of synchronised operation of all power plants along Drina and its tributaries, those downstream can significantly increase their

  1. Lessons from Australian Water Reform for the Colorado River Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Udall, B.

    2010-12-01

    The Murray Darling Basin in Australia (MDB) and the Colorado River Basin (CRB) share many geographical, climatic, and legal similarities. Both are predominantly arid, approximately the same size, occupy similar latitudes, have major snowmelt tributaries as well as very arid tributaries, were allocated by interstate agreements early in the 20th century, have multi-year carryover storage, are threatened by mid-latitude climate change related drying, and during the last ten years have suffered under droughts of historic proportions. Some management practices have begun to change in the CRB, e.g. the multi-state 2007 shortage-sharing agreement, but in the MDB significant water management reform began in 1994 and has accelerated during the recent drought. The Australian language around water, conservation ethic, national and state policies, infrastructure, especially desalination, and even water management entities have undergone substantial changes during the last five years. Australia’s new National Water Commission, set up specifically to oversee reform, is on the verge of releasing a new basin management plan which will govern MDB management over the next decade. Which of these many reform-related lessons from Australia might be applicable to the Colorado River Basin and why? And which of the lessons might not be applicable and why?

  2. An evaluation of public participation in UK river basin management planning

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Benson, D.

    2012-04-01

    The EU Water Framework Directive is reshaping multi-level environmental governance structures in many Member States. One area where re-structuring should be highly visible is in regards to public participation in water management. The Directive legally mandates that implementing agencies should make information publicly available relating to river basin management planning, include the public in the planning process and encourage the active involvement of 'interested parties' both during and after the planning stage. Yet critical questions arise over the extent to which these requirements have actually been met in Member States and the outcomes of participatory processes on the ground. In this study, public participation was evaluated in England and Wales by conducting: a) a broad based quantitative survey of the implementation strategy undertaken across all 11 River Basin Districts (RBDs); and, b) an in-depth analysis of the Anglian RBD drawing on theoretical notions of social learning; a critical measure of participatory processes. Results from the survey showed all RBDs complied with the minimum regulatory requirements on public access to information and written consultation, and even went further with provisions for oral consultation and stakeholder engagement. But the focus was clearly on stakeholder groups with little public involvement beyond minimal legally mandated requirements. Analysis of case study data provided some evidence of social learning at every level (instrumental, communicative and transformative) and beyond the individual scale (wider community and organisational learning). Learning was however significantly limited by participant's high level of expertise and environmental awareness. Also apparent was the influence of other factors, operating at various institutional scales, in shaping learning. The paper then speculates on the implications of the findings for both future research and policy, particularly in light of the European Commission

  3. Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins

    NASA Astrophysics Data System (ADS)

    Vink, Rona; Behrendt, Horst

    2002-11-01

    Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

  4. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    ,

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  5. "Climate change impact on water resources - a challenge for IWRM". BRAHMATWINN - Twinning European and South Asian River Basins to enhance capacity and implement adaptive management approaches

    NASA Astrophysics Data System (ADS)

    Bartosch, A.; Pechstädt, J.; Müller Schmied, H.; Flügel, W.-A.

    2009-04-01

    BRAHMATWINN addresses climate change impact of the hydrology of two macro-scale river basins having headwaters in alpine mountain massifs. The project will elaborate on the consequential vulnerability of present IWRM and river basin management that have been persistent in these basins during the past decades and will develop tested approaches and technologies for adaptive IWRM and resilience. The overall objective of BRAHMATWINN is to enhance and improve capacity to carry out a harmonized integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs in respect to impacts from likely climate change, and to transfer professional IWRM expertise, approaches and tools based on case studies carried out in twinning European and Asian river basins, the Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB). Sustainable IWRM in river basins of such kind face common problems: (i) floods e.g. during spring melt or heavy storms and droughts during summer; (ii) competing water demands for agriculture, hydropower, rural, urban and industrial development, and the environment; (iii) pollution from point as well as diffuse sources; and (iv) socio-economic and legal issues related to water allocation. Besides those common topics both basins also differ in other issues requiring the adaptation of the IWRM tools; these are for example climate conditions, the density of monitoring network, political framework and trans-boundary conflicts. An IWRM has to consider all water-related issues like the securing of water supply for the population in sufficient quantity and quality, the protection of the ecological function of water bodies and it has to consider the probability of natural hazards like floods and droughts. Furthermore the resource water should be threatened in a way that the needs of future generations can be satisfied. Sustainable development is one of the

  6. An Ecologic Characterization and Landscape Assessment of the Humboldt River Basin

    EPA Science Inventory

    The Humboldt River Basin covers a large part of northern Nevada. Very little is known about the water quality of the entire Basin. The people living in this area depend on clean water. Not knowing about water quality is a concern because people will need to manage the negative...

  7. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok).

    PubMed

    Trang, Nguyen Thi Thuy; Shrestha, Sangam; Shrestha, Manish; Datta, Avishek; Kawasaki, Akiyuki

    2017-01-15

    Assessment of the climate and land-use change impacts on the hydrology and water quality of a river basin is important for the development and management of water resources in the future. The objective of this study was to examine the impact of climate and land-use change on the hydrological regime and nutrient yield from the 3S River Basin (Sekong, Srepok, and Sesan) into the 3S River system in Southeast Asia. The 3S Rivers are important tributaries of the Lower Mekong River, accounting for 16% of its annual flow. This transboundary basin supports the livelihoods of nearly 3.5 million people in the countries of Laos, Vietnam, and Cambodia. To reach a better understanding of the process and fate of pollution (nutrient yield) as well as the hydrological regime, the Soil and Water Assessment Tool (SWAT) was used to simulate water quality and discharge in the 3S River Basin. Future scenarios were developed for three future periods: 2030s (2015-2039), 2060s (2045-2069), and 2090s (2075-2099), using an ensemble of five GCMs (General Circulation Model) simulations: (HadGEM2-AO, CanESM2, IPSL-CM5A-LR, CNRM-CM5, and MPI-ESM-MR), driven by the climate projection for RCPs (Representative Concentration Pathways): RCP4.5 (medium emission) and RCP8.5 (high emission) scenarios, and two land-use change scenarios. The results indicated that the climate in the study area would generally become warmer and wetter under both emission scenarios. Discharge and nutrient yield is predicted to increase in the wet season and decrease in the dry. Overall, the annual discharge and nutrient yield is projected to increase throughout the twenty-first century, suggesting sensitivity in the 3S River Basin to climate and land-use change. The results of this study can assist water resources managers and planners in developing water management strategies for uncertain climate change scenarios in the 3S River Basin. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Metabolic principles of river basin organization.

    PubMed

    Rodriguez-Iturbe, Ignacio; Caylor, Kelly K; Rinaldo, Andrea

    2011-07-19

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics.

  9. Tritium hydrology of the Mississippi River basin

    USGS Publications Warehouse

    Michel, R.L.

    2004-01-01

    In the early 1960s, the US Geological Survey began routinely analysing river water samples for tritium concentrations at locations within the Mississippi River basin. The sites included the main stem of the Mississippi River (at Luling Ferry, Louisiana), and three of its major tributaries, the Ohio River (at Markland Dam, Kentucky), the upper Missouri River (at Nebraska City, Nebraska) and the Arkansas River (near Van Buren, Arkansas). The measurements cover the period during the peak of the bomb-produced tritium transient when tritium concentrations in precipitation rose above natural levels by two to three orders of magnitude. Using measurements of tritium concentrations in precipitation, a tritium input function was established for the river basins above the Ohio River, Missouri River and Arkansas River sampling locations. Owing to the extent of the basin above the Luling Ferry site, no input function was developed for that location. The input functions for the Ohio and Missouri Rivers were then used in a two-component mixing model to estimate residence times of water within these two basins. (The Arkansas River was not modelled because of extremely large yearly variations in flow during the peak of the tritium transient.) The two components used were: (i) recent precipitation (prompt outflow) and (ii) waters derived from the long-term groundwater reservoir of the basin. The tritium concentration of the second component is a function of the atmospheric input and the residence times of the groundwaters within the basin. Using yearly time periods, the parameters of the model were varied until a best fit was obtained between modelled and measured tritium data. The results from the model indicate that about 40% of the flow in the Ohio River was from prompt outflow, as compared with 10% for the Missouri River. Mean residence times of 10 years were calculated for the groundwater component of the Ohio River versus 4 years for the Missouri River. The mass flux of

  10. Assessing the potential of economic instruments for managing drought risk at river basin scale

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, M.; Lopez-Nicolas, A.; Macian-Sorribes, H.

    2015-12-01

    Economic instruments work as incentives to adapt individual decisions to collectively agreed goals. Different types of economic instruments have been applied to manage water resources, such as water-related taxes and charges (water pricing, environmental taxes, etc.), subsidies, markets or voluntary agreements. Hydroeconomic models (HEM) provide useful insight on optimal strategies for coping with droughts by simultaneously analysing engineering, hydrology and economics of water resources management. We use HEMs for evaluating the potential of economic instruments on managing drought risk at river basin scale, considering three criteria for assessing drought risk: reliability, resilience and vulnerability. HEMs allow to calculate water scarcity costs as the economic losses due to water deliveries below the target demands, which can be used as a vulnerability descriptor of drought risk. Two generic hydroeconomic DSS tools, SIMGAMS and OPTIGAMS ( both programmed in GAMS) have been developed to evaluate water scarcity cost at river basin scale based on simulation and optimization approaches. The simulation tool SIMGAMS allocates water according to the system priorities and operating rules, and evaluate the scarcity costs using economic demand functions. The optimization tool allocates water resources for maximizing net benefits (minimizing total water scarcity plus operating cost of water use). SIMGAS allows to simulate incentive water pricing policies based on water availability in the system (scarcity pricing), while OPTIGAMS is used to simulate the effect of ideal water markets by economic optimization. These tools have been applied to the Jucar river system (Spain), highly regulated and with high share of water use for crop irrigation (greater than 80%), where water scarcity, irregular hydrology and groundwater overdraft cause droughts to have significant economic, social and environmental consequences. An econometric model was first used to explain the variation

  11. Exploring the effectiveness of sustainable water management structures in the Upper Pungwe river basin

    NASA Astrophysics Data System (ADS)

    Nyikadzino, B.; Chibisa, P.; Makurira, H.

    The study endeavoured to assess the effectiveness of stakeholder structures and their participation in sustainable water resources management in the Upper Pungwe river basin shared by Zimbabwe and Mozambique. The study sought to assess the level and effectiveness of stakeholder, gender and the vulnerable groups representation in sustainable water resources management as well as the whole stakeholder participation process. The study employed both qualitative and quantitative methods for data collection and analysis. Sampling data was obtained from 15 stakeholder representatives (councillors) constituting Pungwe Subcatchment Council, 30 water users ranging from small scale to large scale users and professionals in water resources management. Two different questionnaires and three structured interviews were administered during the study. Water permit database, financial reports and other source documents were also analysed. The study established that the sustainability and effectiveness of stakeholder structures and their participation in water resources management is being compromised by lack of stakeholder awareness. Water utilisation is very high in the subcatchment (99%) while women participation is still low (20%). The study therefore recommends the use of quotas for the participation of women in stakeholder structures. Stakeholder structures are encouraged to intensify stakeholder awareness on issues of river protection, efficient water use and pollution control. Further research is recommended to be carried out on the effectiveness of stakeholder structures in combating water pollution and enhancing river protection.

  12. Water-Food Nexus on Lancang-Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Do, P.; Tian, F.; Hu, H.

    2017-12-01

    Water-Food-Energy nexus on Lancang-Mekong river basin In the Lancang-Mekong river basin, the connexions between climate and the water-food-energy nexus are strong. One of them can be reflected by the hydropower energy and irrigation sectors, impacted since these last years by intense droughts and increasing salinity. The purpose of this study is to understand quantitatively how the current hydropower impact on the streamflow and the irrigated crops will be influenced by the climate change for the next 30 years. A hydropower-crop model is computed to reproduce hydropower generation and revenue, revenue from crop and crop area in 2050. The outcomes will be used for water management in the region and strengthen the cooperation mechanisms between Mekong riparian countries.

  13. Evaluation of Managed Aquifer Recharge Scenarios using Treated Wastewater: a Case study of the Zarqa River Basin, Jordan

    NASA Astrophysics Data System (ADS)

    El-Rawy, Mustafa; Zlotnik, Vitaly; Al-Maktoumi, Ali; Al-Raggad, Marwan; Kacimov, Anvar; Abdalla, Osman

    2016-04-01

    Jordan is an arid country, facing great challenges due to limited water resources. The shortage of water resources constrains economy, especially agriculture that consumes the largest amount of available water (about 53 % of the total demand). According to the Jordan Water Strategy 2008 - 2022, groundwater is twice greater than the recharge rate. Therefore, the government charged the planners to consider treated wastewater (TWW) as a choice in the water resources management and development strategies. In Jordan, there are 31 TWW plants. Among them, As Samra plant serving the two major cities, Amman and Zarqa, is the largest, with projected maximum capacity of 135 Million m3/year. This plant is located upstream of the Zarqa River basin that accepts all TWW discharges. The Zarqa River is considered the most important source of surface water in Jordan and more than 78 % of its current is composed of TWW. The main objectives were to develop a conceptual model for a selected part of the Zarqa River basin, including the As Samrapant, and to provide insights to water resources management in the area using TWW. The groundwater flow model was developed using MODFLOW 2005 and used to assess changes in the aquifer and the Zarqa River under a set of different increments in discharge rates from the As Samra plant and different groundwater pumping rates. The results show that the water table in the study area underwent an average water table decline of 29 m prior to the As Samra plant construction, comparing with the current situation (with annual TWW discharge of 110 Million m3). The analysis of the TWW rate increase to 135 million m3/year (maximum capacity of the As Samra plant) shows that the average groundwater level will rise 0.55 m, compared to the current conditions. We found that the best practices require conjunctive use management of surface- and groundwater. The simulated scenarios highlight the significant role of TWW in augmenting the aquifer storage, improving

  14. Comprehensive Characterization of Droughts to Assess the Effectiveness of a Basin-Wide Integrated Water Management in the Yakima River Basin

    NASA Astrophysics Data System (ADS)

    Demissie, Y.; Mortuza, M. R.; Li, H. Y.

    2017-12-01

    Better characterization and understanding of droughts and their potential links to climate and hydrologic factors are essential for water resources planning and management in drought-sensitive but agriculturally productive regions like the Yakima River Basin (YKB) in Washington State. The basin is semi-arid and heavily relies on a fully appropriated irrigation water for fruit and crop productions that worth more than 3 billion annually. The basin experienced three major droughts since 2000 with estimated 670 million losses in farm revenue. In response to these and expected worsening drought conditions in the future, there is an ongoing multi-agency effort to adopt a basin-wide integrated water management to ensure water security during severe droughts. In this study, the effectiveness of the proposed water management plan to reduce the frequency and severity of droughts was assessed using a new drought index developed based on the seasonal variations of precipitation, temperature, snow accumulation, streamflow, and reservoir storages. In order to uncover the underlying causes of the various types of droughts observed during the 1961-2016, explanatory data analysis using deep learning was conducted for the local climate and hydrologic data including total water supply available, as well as global climatic phenomenon (El Niño/Southern Oscillation, Pacific Decadal Oscillation and North Atlantic Oscillation). The preliminary results showed that besides shortage in annual precipitation, various combinations of climate and hydrologic factors are responsible for the different drought conditions in the basin. Particularly, the winter snowpack, which provides about 2/3 of the surface water in the basin along with the carryover storage from the reservoirs play an important role during both single- and multiple-year drought events. Besides providing the much-needed insights about characteristics of droughts and their contributing factors, the outcome of the study is expected

  15. Greater Platte River Basins - Science to sustain ecosystems and communities

    USGS Publications Warehouse

    Thormodsgard, June M.

    2009-01-01

    The Greater Platte River Basins (GPRB), located in the heartland of the United States, provides a collaborative opportunity for the U.S. Geological Survey (USGS) and its partners to understand the sustainability of natural and managed ecosystems under changing climate and resource requirements.The Greater Platte River Basins, an area of about 140,000 square miles, sustains thousands of acres of lakes and wetlands, which provide a staging and resting area for the North American Central Flyway. Part of the GPRB is within the U.S. Corn Belt, one of the most productive agricultural ecosystems on Earth. Changes in water and land use, changing patterns of snowmelt in the Rocky Mountains, drought, and increasing demands for irrigation have reduced flows in the Platte River. These changes raise questions about the sustainability of the region for both wildlife and agriculture.The USGS and partners are developing a science strategy that will help natural-resource managers address and balance the needs of this region.

  16. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    NASA Astrophysics Data System (ADS)

    Zhao, T. H.; Yin, Z.; Song, Y. Z.

    2012-11-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  17. Water accounting for stressed river basins based on water resources management models.

    PubMed

    Pedro-Monzonís, María; Solera, Abel; Ferrer, Javier; Andreu, Joaquín; Estrela, Teodoro

    2016-09-15

    Water planning and the Integrated Water Resources Management (IWRM) represent the best way to help decision makers to identify and choose the most adequate alternatives among other possible ones. The System of Environmental-Economic Accounting for Water (SEEA-W) is displayed as a tool for the building of water balances in a river basin, providing a standard approach to achieve comparability of the results between different territories. The target of this paper is to present the building up of a tool that enables the combined use of hydrological models and water resources models to fill in the SEEA-W tables. At every step of the modelling chain, we are capable to build the asset accounts and the physical water supply and use tables according to SEEA-W approach along with an estimation of the water services costs. The case study is the Jucar River Basin District (RBD), located in the eastern part of the Iberian Peninsula in Spain which as in other many Mediterranean basins is currently water-stressed. To guide this work we have used PATRICAL model in combination with AQUATOOL Decision Support System (DSS). The results indicate that for the average year the total use of water in the district amounts to 15,143hm(3)/year, being the Total Water Renewable Water Resources 3909hm(3)/year. On the other hand, the water service costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-conventional resources, such as desalinated water, reused water and water transferred from other regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  19. The cost of noncooperation in international river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Kinzelbach, W.

    2012-01-01

    In recent years there has been a renewed interest for water supply enhancement strategies in order to deal with the exploding demand for water in some regions, particularly in Asia and Africa. Within such strategies, reservoirs, especially multipurpose ones, are expected to play a key role in enhancing water security. This renewed impetus for the traditional supply-side approach to water management may indeed contribute to socioeconomic development and poverty reduction if the planning process considers the lessons learned from the past, which led to the recommendations by the World Commission on Dams and other relevant policy initiatives. More specifically, the issues dealing with benefit sharing within an efficient and equitable utilization of water resources are key elements toward the successful development of those river basins. Hence, there is a need for improved coordination and cooperation among water users, sectors, and riparian countries. However, few studies have explicitly tried to quantify, in monetary terms, the economic costs of noncooperation, which we believe to be important information for water managers and policy makers, especially at a time when major developments are planned. In this paper we propose a methodology to assess the economic costs of noncooperation when managing large-scale water resources systems involving multiple reservoirs, and where the dominant uses are hydropower generation and irrigated agriculture. An analysis of the Zambezi River basin, one of the largest river basins in Africa that is likely to see major developments in the coming decades, is carried out. This valuation exercise reveals that the yearly average cost of noncooperation would reach 350 million US$/a, which is 10% of the annual benefits derived from the system.

  20. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Regional or river basin... Responsibilities § 725.7 Regional or river basin planning. (a) In agreements between river basin commissions or other regional planning sponsors and the Council for the preparation and revision of regional and river...

  1. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Regional or river basin... Responsibilities § 725.7 Regional or river basin planning. (a) In agreements between river basin commissions or other regional planning sponsors and the Council for the preparation and revision of regional and river...

  2. Hydric potential of the river basin: Prądnik, Polish Highlands

    NASA Astrophysics Data System (ADS)

    Lepeška, Tomáš; Radecki-Pawlik, Artur; Wojkowski, Jakub; Walega, Andrzej

    2017-12-01

    Human society deals with floods, drought and water pollution. Facing those problems, the question how to prevent or at least to minimalize the adverse effects of water-related issues is asked of the landscape managers. In this way, any help given to landscape managers seems to be an additional useful tool. Within this paper, an approach leading to mitigation of water-related problems is presented that relates the retention of precipitation and the use of ecosystems as a tool for improving the quality, quantity of water resources and availability throughout the region. One approach is the determination of the landscape's hydric potential (LHP). This study examines one example of using this method within the conditions of Poland. The results of the research show that national data are entirely appropriate for implementation of the LHP method. Further, this approach revealed the classes of the hydric potential of the Prądnik river basin which was selected as the experimental territory. LHP results reflect the ecosystem attributes of the model river basin; areas of average LHP cover 63.26%, areas of high and limited hydric potential cover approximately 18.3% each. The spatial distribution of LHP means the results of this study provide a baseline for management of the river basin.

  3. Water-quality and algal conditions in the Clackamas River basin, Oregon, and their relations to land and water management

    USGS Publications Warehouse

    Carpenter, Kurt D.

    2003-01-01

    In 1998, the U.S. Geological Survey sampled the Clackamas River, its major tributaries, and reservoirs to characterize basic water quality (nutrients, dissolved oxygen, pH, temperature, and conductance), water quantity (water sources within the basin), and algal conditions (biomass and species composition). Sampling locations reflected the dominant land uses in the basin (forest management, agriculture, and urban development) as well as the influence of hydroelectric projects, to examine how these human influences might be affecting water quality and algal conditions. Nuisance algal growths, with accompanying negative effects on water quality, were observed at several locations in the basin during this study. Algal biomass in the lower Clackamas River reached a maximum of 300 mg/m2 chlorophyll a, producing nuisance algal conditions, including fouled stream channels and daily fluctuations in pH and dissolved oxygen concentrations to levels that did not meet water-quality standards. Algal biomass was highest at sites immediately downstream from the hydroelectric project's reservoirs and/or powerhouses. Nuisance algal conditions also were observed in some of the tributaries, including the North Fork of the Clackamas River, Clear Creek, Rock Creek, and Sieben Creek. High amounts of drifting algae increased turbidity levels in the Clackamas River during June, which coincided with a general increase in the concentration of disinfection by-products found in treated Clackamas River water used for drinking, presumably due to the greater amounts of organic matter in the river. The highest nutrient concentrations were found in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks), where most of the agriculture and urban development is concentrated. Of these, the greatest load of nutrients came from Deep Creek, which had both high nutrient concentrations and relatively high streamflow. Streams draining forestland in the upper basin (upper Clackamas River

  4. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  5. Upper Illinois River basin

    USGS Publications Warehouse

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  6. Implementation of Theeuropeanwater Framework Directive In France: New Challenges For River Basin Organisat Ion, Planning and Participation

    NASA Astrophysics Data System (ADS)

    Allain, S.

    The European Water Framework Directive (2000/60/EC) establishes a system of participatory river basin planning for national and international basins. The French institutional framework for water management is already very close to this system: the 1964 Water Law actually set up basin bodies, the Agences de l'Eau ("Water Agencies"), at the level of large river basins, and multipartite basin commissions, the Comités de Bassin ("River Basin Authorities"), in order to monitor the Agences de l'Eau's policies; besides, the 1992 Water Law created a planning procedure at this level, the Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE : "General Water Management Plan"), aiming to determine general orientations for the management of water resources and having to be defined by the Comités de Bassin. At first glance therefore, the implementation of the European Water Framework Directive should not raise a lot of problems in France. However, a quick analysis of the current situation shows that it is not so obvious : if the French Water Policy set up two basin organisations, neither of them deals concretely with the management of the water resources, and the implementation of water management plans depends on many stakeholders; the SDAGE itself only partially meets the demands of the Directive, regarding e. g. the economic analysis; finally, in spite of the creation of multipartite basin commissions, the public participation is very restricted. Such an analysis leads to pay more attention to the relations to establish between organisation, planning and participation at the level of large river basins. An analysis of other elements of the French institutional framework can help us in this way : another planning procedure was actually created by the 1992 Water Law, the Schéma d'Aménagement et de Gestion des Eaux (SAGE : "Water Management Plan"), aiming to fix general objectives to manage the water resources at the level of small river basins, and having to be

  7. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the studymore » of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.« less

  8. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the studymore » of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.« less

  9. Sustainable water use and management options in a water-stressed river basin in Kenya

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera; Dadson, Simon; Dyer, Ellen; Barbour, Emily; Charles, Katrina; Hope, Robert

    2017-04-01

    Sustainable water resource is critical for maintaining healthy ecosystems and supporting socio-economic sectors. Hydro-climatic change and variability, population growth as well as new infrastructure developments create water security risks. Therefore, evidence-based management decisions are necessary to improve water security and meet the future water demands of multiple competing sectors. In this work we perform water resource modelling in order to investigate the impact of increasing water demand (expanding agriculture, booming industry, growing population) on the sustainable water use in Turkwel river basin, located in arid north-western Kenya. We test different management options to determine those that meet the water demands of the concerned sectors whilst minimising environmental impact. We perform scenario analysis using Water Evaluation And Planning (WEAP) model to explore different ranges of climate conditions, population growth rates, irrigation scale, reservoir operations, and economic development. The results can be used as a scientific guideline for the policy makers who decide the alternative management options that ensure the sustainable water use in the basin. The work is part of the REACH - improving water security for the poor program (http://reachwater.org.uk/), aiming to support a pathway to sustainable growth and poverty reduction

  10. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control [[Page 25878

  11. Elements of an environmental decision support system for seasonal wetland salt management in a river basin subjected to water quality regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, N.W.T.

    Seasonally managed wetlands in the Grasslands Basin on the west-side of California's San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the San Joaquin River and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality managementmore » has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the San Joaquin River. Past attempts to build environmental monitoring and decision support systems (EDSS's) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the San Joaquin River Basin.« less

  12. Understanding Socio-Hydrology System in the Kissimmee River Basin

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards

  13. Scaling issues in multi-criteria evaluation of combinations of measures for integrated river basin management

    NASA Astrophysics Data System (ADS)

    Dietrich, Jörg

    2016-05-01

    In integrated river basin management, measures for reaching the environmental objectives can be evaluated at different scales, and according to multiple criteria of different nature (e.g. ecological, economic, social). Decision makers, including responsible authorities and stakeholders, follow different interests regarding criteria and scales. With a bottom up approach, the multi criteria assessment could produce a different outcome than with a top down approach. The first assigns more power to the local community, which is a common principle of IWRM. On the other hand, the development of an overall catchment strategy could potentially make use of synergetic effects of the measures, which fulfils the cost efficiency requirement at the basin scale but compromises local interests. Within a joint research project for the 5500 km2 Werra river basin in central Germany, measures have been planned to reach environmental objectives of the European Water Framework directive (WFD) regarding ecological continuity and nutrient loads. The main criteria for the evaluation of the measures were costs of implementation, reduction of nutrients, ecological benefit and social acceptance. The multi-criteria evaluation of the catchment strategies showed compensation between positive and negative performance of criteria within the catchment, which in the end reduced the discriminative power of the different strategies. Furthermore, benefit criteria are partially computed for the whole basin only. Both ecological continuity and nutrient load show upstream-downstream effects in opposite direction. The principles of "polluter pays" and "overall cost efficiency" can be followed for the reduction of nutrient losses when financial compensations between upstream and downstream users are made, similar to concepts of emission trading.

  14. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  15. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  16. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    DOE PAGES

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt; ...

    2018-01-26

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash–Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that futuremore » disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate–disturbance scenarios is at least 6–11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15–21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. Furthermore, these findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.« less

  17. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    NASA Astrophysics Data System (ADS)

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt; McDowell, Nathan G.; Xu, Chonggang; Vivoni, Enrique; Middleton, Richard S.

    2018-01-01

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash-Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that future disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate-disturbance scenarios is at least 6-11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15-21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. These findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.

  18. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash–Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that futuremore » disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate–disturbance scenarios is at least 6–11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15–21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. Furthermore, these findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.« less

  19. Climate change impact on the management of water resources in the Seine River basin, France

    NASA Astrophysics Data System (ADS)

    Dorchies, David; Thirel, Guillaume; Chauveau, Mathilde; Jay-Allemand, Maxime; Perrin, Charles; Dehay, Florine

    2013-04-01

    It is today commonly accepted that adaptation strategies will be needed to cope with the hydrological consequences of projected climate change. The main objective of the IWRM-Net Climaware project is to design adaptation strategies for various socio-economic sectors and evaluate their relevance at the European scale. Within the project, the Seine case study focuses on dam management. The Seine River basin at Paris (43800km²) shows major socio-economic stakes in France. Due to its important and growing demography, the number of industries depending on water resources or located on the river sides, and the developed agricultural sector, the consequences of droughts and floods may be dramatic. To mitigate the extreme hydrological events, a system of four large multi-purpose reservoirs was built in the upstream part of the basin between 1949 and 1990. The IPCC reports indicate modifications of the climate conditions in northern France in the future. An increase of mean temperature is very likely, and the rainfall patterns could be modified: the uncertainty on future trends is still high, but summer periods could experience lower quantities of rainfall. Anticipating these changes are crucial: will the present reservoirs system be adapted to these conditions? Here we propose to evaluate the capacity of the Seine River reservoirs to withstand future projected climate conditions using the current management rules. For this study a modeling chain was designed. We used two hydrological models: GR4J, a lumped model used as a benchmark, and TGR, a semi-distributed model. TGR was tuned to explicitly account for reservoir management rules. Seven climatic models forced by the moderate A1B IPCC scenario and downscaled using a weather-type method (DSCLIM, Pagé et al., 2009), were used. A quantile-quantile type method was applied to correct bias in climate simulations. A model to mimic the way reservoirs are managed was also developed. The evolution of low flows, high flows and

  20. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    NASA Astrophysics Data System (ADS)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2016-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is

  1. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    NASA Astrophysics Data System (ADS)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2017-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is

  2. Valuing tradeoffs between agricultural production and ecosystem services in the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Li, Z.; Deng, X.; Wu, F.

    2017-12-01

    Ecosystem services are faced with multiple stress from complex driving factors, such as climate change and human interventions. The Heihe River Basin (HRB), as the second largest inland river basin in China, is a typical semi-arid and arid region with fragile and sensitive ecological environment. For the past decades, agricultural production activities in the basin has affected ecosystem services in different degrees, leading to complex relations among "water-land-climate-ecology-human", in which hydrological process and water resource management is the key. In this context, managing trade-offs among water uses in the river basin to sustain multiple ecosystem services is crucial for healthy ecosystem and sustainable socioeconomic development. In this study, we analyze the trade-offs between different water uses in agricultural production and key ecosystem services in the HRB by applying production frontier analysis, with the aim to explore the potential for managing them. This method traces out joint production frontiers showing the combinations of ecosystem services and agricultural production that can be generated in a given area, and it deals with the economic problem of the allocation of scarce water resources under presumed objective, which aims to highlight synergies and reduce trade-offs between alternative water uses. Thus, management schemes that targets to both sustain agricultural production and increase the provision of key ecosystem services have to consider not only the technological or biological nature of interrelationships, but also the economic interdependencies among them.

  3. Investigating the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Wu, S.; Wei, Y.; Zhao, Y.; Zheng, H.

    2017-12-01

    Human's innovative abilities do not only enable rapid expansion of civilization, but also lead to enormous modifications on the natural environment. Technology, while a key factor embedded in socioeconomic developments, its impacts have been rarely appropriately considered in river basin management. This research aims to examine the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China, and how its characteristics interacted with the river basin environment. It adopts a content analysis approach to collect and summarize quantitative technological information in the Heihe River Basin across a time span of more than 2000 years from the Han Dynasty (206 BC) to 2015. Two Chinese academic research databases: Wan Fang Data and China National Knowledge Infrastructure (CNKI) were chosen as data sources. The results show that irrigated agricultural technologies in Heihe River Basin have shifted from focusing on developing new farming tools and cultivation methods to adapting modernized, water-saving irrigation methods and water diversion infrastructures. In additions, the center of irrigated agricultural technology in the Heihe river basin has moved from downstream to middle stream since the Ming Dynasty (1368AD) as a result of degraded natural environment. The developing trend of technology in the Heihe River Basin thus coincides with the change of societal focus from agricultural production efficiency to the human-water balance and environmental remediation. This research demonstrates that irrigated agricultural technologies had a twisted evolutionary history in the Heihe River Basin, influenced by a diverse range of environmental and socioeconomic factors. It provides insights into the fact that technology exhibits a co-evolutionary characteristic with the social development history in the region, pointing towards the urgent need to maintain the balance between human and environment.

  4. The "normal" elongation of river basins

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  5. Drainage divides, Massachusetts; Blackstone and Thames River basins

    USGS Publications Warehouse

    Krejmas, Bruce E.; Wandle, S. William

    1982-01-01

    Drainage boundaries for selected subbasins of the Blackstone and Thames River basins in eastern Hampden, eastern Hampshire, western Norfolk, southern Middlesex, and southern Worcester Counties, Massachusetts, are delineated on 12 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 miles on tributary streams or 15 square miles along the Blackstone River, French River, or Quinebaug River. (USGS)

  6. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    PubMed

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  7. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China

    PubMed Central

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale. PMID:26544070

  8. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  9. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... Basin Salinity Control Advisory Council (Council) will meet as detailed below. The meeting of the... INFORMATION: The Colorado River Basin Salinity Control Advisory Council was established by the Colorado River...

  10. Managing Tradeoffs between Hydropower and the Environment in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Loucks, Daniel P.; Wild, Thomas B.

    2015-04-01

    Hydropower dams are being designed and constructed at a rapid pace in the Mekong/Lancang River basin in Southeast Asia. These reservoirs are expected to trap significant amounts sediment, decreasing much of the river's capability to transport nutrients and maintain its geomorphology and habitats. We apply a simulation model for identifying and evaluating alternative dam siting, design and operating policy (SDO) options that could help maintain more natural sediment regimes downstream of dams and for evaluating the effect of these sediment-focused SDO strategies on hydropower production and reliability. We apply this approach to the planned reservoirs that would prevent a significant source of sediment from reaching critical Mekong ecosystems such as Cambodia's Tonle Sap Lake and the Mekong delta in Vietnam. Model results suggest that various SDO modifications could increase sediment discharge from this site by 300-450% compared to current plans, but a 30-55% loss in short-term annual energy production depending on various configurations of upstream reservoirs. Simulation results also suggest that sediment management-focused reservoir operating policies could cause ecological damage if they are not properly implemented.

  11. Quantifying Changes in Accessible Water in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  12. Integrated river basin management, ICT and DSS: Challenges and needs

    NASA Astrophysics Data System (ADS)

    Gourbesville, Philippe

    River basin management is a complex task. Therefore, instruments that help to assess the present situation and assist in the development and evaluation of solutions may be important. Since several decades and after the implementation of the first compulsory legal environments and institutional organizations for IWRM and IRBM, the need for an efficient support in the different decision-making processes has emerged. After several experiences, the demonstration of the interest of ICT and DSS systems is obvious in the water resources management domain. However and until now, most of the efforts have been focused on the theoretical aspects with very few integrations into operational approaches. The implementation of the new European water framework directive (2000) represents today one key example from which some lessons can be learned in the way of definition and use of ICT and DSS systems for IWRM and IRBM. The paper presents the concepts available through ICT and DSS. The example of the WFD is used to underline the challenges and the difficulties for the elaboration of new tools - DSSs - which could be able to answer of the challenges of IWRM and IRBM.

  13. Hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.

    2011-01-01

    The Chehalis River has the largest drainage basin of any river entirely contained within the State of Washington with a watershed of approximately 2,700 mi2 and has correspondingly diverse geology and land use. Demands for water resources have prompted the local citizens and governments of the Chehalis River basin to coordinate with Federal, State and Tribal agencies through the Chehalis Basin Partnership to develop a long-term watershed management plan. The recognition of the interdependence of groundwater and surface-water resources of the Chehalis River basin became the impetus for this study, the purpose of which is to describe the hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin. Surficial geologic maps and 372 drillers' lithostratigraphic logs were used to generalize the basin-wide hydrogeologic framework. Five hydrogeologic units that include aquifers within unconsolidated glacial and alluvial sediments separated by discontinuous confining units were identified. These five units are bounded by a low permeability unit comprised of Tertiary bedrock. A water table map, and generalized groundwater-flow directions in the surficial aquifers, were delineated from water levels measured in wells between July and September 2009. Groundwater generally follows landsurface-topography from the uplands to the alluvial valley of the Chehalis River. Groundwater gradients are highest in tributary valleys such as the Newaukum River valley (approximately 23 cubic feet per mile), relatively flat in the central Chehalis River valley (approximately 6 cubic feet per mile), and become tidally influenced near the outlet of the Chehalis River to Grays Harbor. The dynamic interaction between groundwater and surface-water was observed through the synoptic streamflow measurements, termed a seepage run, made during August 2010, and monitoring of water levels in wells during the 2010 Water Year. The seepage run revealed an overall gain of 56

  14. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region).

    PubMed

    Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Ashraf, Muhammad; Bhatti, Muhammad Tousif

    2015-02-01

    A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatio-temporal change and the hydrological response of these sub-basins is important so as to better manage water resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100 m above sea level; m asl afterwards), obtained using MODIS satellite snow cover images, with data from a previously-studied high-altitude basin, the Hunza (mean catchment elevation, 4650 m asl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Basin-scale characterization of river hydromorphology by map derived information: A case study on the Red River (Sông Hông), Vietnam

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J.; Bizzi, S.; Castelletti, A.

    2012-12-01

    The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since fluvial geomorphic processes shape physical habitat, affect river infrastructures and influence freshwater ecological processes. Characterization of river hydromorphological features is commonly location specific and highly demanding in terms of field-works, resource and expertise required. Therefore, its routine application at regional or national scales, although an urgent need of catchment management, is infeasible at present. Recently available high-resolution data, such as DEM or LIDAR, opens up novel potential for basin-wide analysis of fluvial processes at limited effort and cost. Specifically, in this study we assess the feasibility of characterizing river hydromorphology from specific map derived geomorphic controls namely: channel gradient, bankfull flow, specific stream power, and degree of channel confinement. The river network, extracted from a digital elevation model and validated with available network shape-files and optical satellite imagery, available flow gauging stations and GIS processing allow producing continuous values of geomorphic drivers defined over given length segments at catchment or regional scales. This generic framework was applied to the Red River (Sông Hông) basin, the second largest basin (87,800 km2) in Vietnam. Besides its economic importance, the river since few years is experiencing severe river bed incisions due to the building of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high developing rate, current efforts to increase water productivity by infrastructure and management measures require a thorough understanding of fluvial system and, in particular, of the basin-wide river hydromorphology. The framework proposed has allowed producing high-dimensional samples of spatially

  16. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ...] Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L.93-320) (Act) to...

  17. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  18. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  19. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Public Law 93-320) (Act) to receive reports and advise Federal agencies on...

  20. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  1. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  2. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory...: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal...

  3. An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon

    NASA Astrophysics Data System (ADS)

    Venticinque, Eduardo; Forsberg, Bruce; Barthem, Ronaldo; Petry, Paulo; Hess, Laura; Mercado, Armando; Cañas, Carlos; Montoya, Mariana; Durigan, Carlos; Goulding, Michael

    2016-11-01

    Despite large-scale infrastructure development, deforestation, mining and petroleum exploration in the Amazon Basin, relatively little attention has been paid to the management scale required for the protection of wetlands, fisheries and other aspects of aquatic ecosystems. This is due, in part, to the enormous size, multinational composition and interconnected nature of the Amazon River system, as well as to the absence of an adequate spatial model for integrating data across the entire Amazon Basin. In this data article we present a spatially uniform multi-scale GIS framework that was developed especially for the analysis, management and monitoring of various aspects of aquatic systems in the Amazon Basin. The Amazon GIS-Based River Basin Framework is accessible as an ESRI geodatabase at doi:10.5063/F1BG2KX8.

  4. Assessing and managing water scarcity within the Nile River Transboundary Basin

    NASA Astrophysics Data System (ADS)

    Butts, M. B.; Wendi, D.; Jessen, O. Z.; Riegels, N. D.

    2012-04-01

    The Nile Basin is the main source of water in the North Eastern Region of Africa and is perhaps one of the most critical river basins in Africa as the riparian countries constitute 40% of the population on the continent but only 10% of the area. This resource is under considerable stress with rising levels of water scarcity, high population growth, watershed degradation, and loss of environmental services. The potential impacts of climate change may significantly exacerbate this situation as the water resources in the Nile Basin are critically sensitive to climate change (Conway, Hanson, Doherty, & Persechino, 2007). The motivation for this study is an assessment of climate change impacts and adaptation potential for floods and droughts within the UNEP project "Adapting to climate change induced water stress in the Nile River Basin", supported by SIDA. This project is being carried out as collaboration between DHI, the UK Met Office, and the Nile Basin Initiative (NBI). The Nile Basin exhibits highly diverse climatological and hydrological characteristics. Thus climate change impacts and adaptive capacity must be addressed at both regional and sub-basin scales. While the main focus of the project is the regional scale, sub-basin scale modelling is required to reflect variability within the basin. One of the major challenges in addressing this variability is the scarcity of data. This paper presents an initial screening modelling study of the water balance of the Nile Basin along with estimates of expected future impacts of climate change on the water balance. This initial study is focussed on the Ethiopian Highlands and the Lake Victoria regions, where the impact of climate change on rainfall is important. A robust sub-basin based monthly water balance model is developed and applied to selected sub-basins. The models were developed and calibrated using publicly available data. One of the major challenges in addressing this variability within the basin is the

  5. Gas desorption and adsorption isotherm studies of coals in the Powder River basin, Wyoming and adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; McGarry, Dwain E.; Stillwell, Dean P.; Hoppe, Daniel J.; Stillwell, Cathy R.; Ochs, Alan M.; Ellis, Margaret S.; Osvald, Karl S.; Taylor, Sharon L.; Thorvaldson, Marjorie C.; Trippi, Michael H.; Grose, Sherry D.; Crockett, Fred J.; Shariff, Asghar J.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with the State Office, Reservoir Management Group (RMG), of the Bureau of Land Management (BLM) in Casper (Wyoming), investigated the coalbed methane resources (CBM) in the Powder River Basin, Wyoming and Montana, from 1999 to the present. Beginning in late 1999, the study also included the Williston Basin in Montana and North and South Dakota and Green River Basin and Big Horn Basin in Wyoming. The rapid development of CBM (referred to as coalbed natural gas by the BLM) during the early 1990s, and the lack of sufficient data for the BLM to fully assess and manage the resource in the Powder River Basin, in particular, gave impetus to the cooperative program. An integral part of the joint USGS-BLM project was the participation of 25 gas operators that entered individually into confidential agreements with the USGS, and whose cooperation was essential to the study. The arrangements were for the gas operators to drill and core coal-bed reservoirs at their cost, and for the USGS and BLM personnel to then desorb, analyze, and interpret the coal data with joint funding by the two agencies. Upon completion of analyses by the USGS, the data were to be shared with both the BLM and the gas operator that supplied the core, and then to be released or published 1 yr after the report was submitted to the operator.

  6. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  7. An Integrated Hydrologic-Economic Modeling Tool for Evaluating Water Management Responses to Climate Change in the Boise River Basin

    NASA Astrophysics Data System (ADS)

    Schmidt, R. D.; Taylor, R. G.; Stodick, L. D.; Contor, B. A.

    2009-12-01

    A recent federal interagency report on climate change and water management (Brekke et. al., 2009) describes several possible management responses to the impacts of climate change on water supply and demand. Management alternatives include changes to water supply infrastructure, reservoir system operations, and water demand policies. Water users in the Bureau of Reclamation’s Boise Project (located in the Lower Boise River basin in southwestern Idaho) would be among those impacted both hydrologically and economically by climate change. Climate change and management responses to climate change are expected to cause shifts in water supply and demand. Supply shifts would result from changes in basin precipitation patterns, and demand shifts would result from higher evapotranspiration rates and a longer growing season. The impacts would also extend to non-Project water users in the basin, since most non-Project groundwater pumpers and drain water diverters rely on hydrologic externalities created by seepage losses from Boise Project water deliveries. An integrated hydrologic-economic model was developed for the Boise basin to aid Reclamation in evaluating the hydrologic and economic impacts of various management responses to climate change. A spatial, partial-equilibrium, economic optimization model calculates spatially-distinct equilibrium water prices and quantities, and maximizes a social welfare function (the sum of consumer and producers surpluses) for all agricultural and municipal water suppliers and demanders (both Project and non-Project) in the basin. Supply-price functions and demand-price functions are exogenous inputs to the economic optimization model. On the supply side, groundwater and river/reservoir models are used to generate hydrologic responses to various management alternatives. The response data is then used to develop water supply-price functions for Project and non-Project water users. On the demand side, crop production functions

  8. Simulation of ground-water flow and evaluation of water-management alternatives in the Assabet River Basin, Eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.

    2004-01-01

    Water-supply withdrawals and wastewater disposal in the Assabet River Basin in eastern Massachusetts alter the flow and water quality in the basin. Wastewater discharges and stream-flow depletion from ground-water withdrawals adversely affect water quality in the Assabet River, especially during low-flow months (late summer) and in headwater areas. Streamflow depletion also contributes to loss of aquatic habitat in tributaries to the river. In 19972001, water-supply withdrawals averaged 9.9 million gallons per day (Mgal/d). Wastewater discharges to the Assabet River averaged 11 Mgal/d and included about 5.4 Mgal/d that originated from sources outside of the basin. The effects of current (2004) and future withdrawals and discharges on water resources in the basin were investigated in this study. Steady-state and transient ground-water-flow models were developed, by using MODFLOW-2000, to simulate flow in the surficial glacial deposits and underlying crystalline bedrock in the basin. The transient model simulated the average annual cycle at dynamic equilibrium in monthly intervals. The models were calibrated to 19972001 conditions of water withdrawals, wastewater discharges, water levels, and nonstorm streamflow (base flow plus wastewater discharges). Total flow through the simulated hydrologic system averaged 195 Mgal/d annually. Recharge from precipitation and ground-water discharge to streams were the dominant inflow and outflow, respectively. Evapotranspiration of ground water from wetlands and non-wetland areas also were important losses from the hydrologic system. Water-supply withdrawals and infiltration to sewers averaged 5 and 1.3 percent, respectively, of total annual out-flows and were larger components (12 percent in September) of the hydrologic system during low-flow months. Water budgets for individual tributary and main stem subbasins identified areas, such as the Fort Meadow Brook and the Assabet Main Stem Upper subbasins, where flows resulting from

  9. Spatiotemporal hazard mapping of a flood event "migration" in a transboundary river basin as an operational tool in flood risk management

    NASA Astrophysics Data System (ADS)

    Perrou, Theodora; Papastergios, Asterios; Parcharidis, Issaak; Chini, Marco

    2017-10-01

    Flood disaster is one of the heaviest disasters in the world. It is necessary to monitor and evaluate the flood disaster in order to mitigate the consequences. As floods do not recognize borders, transboundary flood risk management is imperative in shared river basins. Disaster management is highly dependent on early information and requires data from the whole river basin. Based on the hypothesis that the flood events over the same area with same magnitude have almost identical evolution, it is crucial to develop a repository database of historical flood events. This tool, in the case of extended transboundary river basins, could constitute an operational warning system for the downstream area. The utility of SAR images for flood mapping, was demonstrated by previous studies but the SAR systems in orbit were not characterized by high operational capacity. Copernicus system will fill this gap in operational service for risk management, especially during emergency phase. The operational capabilities have been significantly improved by newly available satellite constellation, such as the Sentinel-1A AB mission, which is able to provide systematic acquisitions with a very high temporal resolution in a wide swath coverage. The present study deals with the monitoring of a transboundary flood event in Evros basin. The objective of the study is to create the "migration story" of the flooded areas on the basis of the evolution in time for the event occurred from October 2014 till May 2015. Flood hazard maps will be created, using SAR-based semi-automatic algorithms and then through the synthesis of the related maps in a GIS-system, a spatiotemporal thematic map of the event will be produced. The thematic map combined with TanDEM-X DEM, 12m/pixel spatial resolution, will define the non- affected areas which is a very useful information for the emergency planning and emergency response phases. The Sentinels meet the main requirements to be an effective and suitable

  10. Numerical representation of rainfall field in the Yarmouk River Basin

    NASA Astrophysics Data System (ADS)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    , geomorphologic and climatic division of the basin. Difference between regional curves is comparable with amplitude of rainfall variance within the regions. In general, rainfall increases with altitude and decreases from west to east (south-east). It should be emphasized that (i) Lake Kinneret Basin (2,490 sq. km) was earlier divided into seven "orographic regions" and (ii) the Lake Kinneret Basin and the Yarmouk River Basin are presented by the system of regional curves X = f (Z) as one whole rainfall field in the Upper Jordan River Basin, where the mean annual rain (X) increases with altitude (Z) and decreases from west to east and from north to south. In the Yarmouk Basin there is much less rainfall (344 mm) than in the Lake Kinneret Basin (749 mm), wherein mean annual rain (2,352 MCM versus 1,865 MCM) is shared between Syria, Jordan and Israel as 80%, 15% and 5%, respectively. The provided rainfall data allow more precise estimations of surface water balances and of recharge to the regional aquifers in the Upper Jordan River Basin. The derived rates serve as fundamental input data for numerical modeling of groundwater flow. This method can be applied to other areas at different temporal and spatial scales. The general applicability makes it a very useful tool in several hydrological problems connected with assessment, management and policy-making of water resources, as well as their changes due to climate and anthropogenic factors. Reference: I. Shentsis (1990). Mathematical models for long-term prediction of mountainous river runoff: methods, information and results, Hydrological Sciences Journal, 35:5, 487-500, DOI: 10.1080/02626669009492453

  11. River habitat assessment for ecological restoration of Wei River Basin, China.

    PubMed

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  12. The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China.

    PubMed

    Di, Hui; Liu, Xingpeng; Zhang, Jiquan; Tong, Zhijun; Ji, Meichen

    2018-03-15

    Water environmental risk is the probability of the occurrence of events caused by human activities or the interaction of human activities and natural processes that will damage a water environment. This study proposed a water environmental risk index (WERI) model to assess the water environmental risk in the Yinma River Basin based on hazards, exposure, vulnerability, and regional management ability indicators in a water environment. The data for each indicator were gathered from 2000, 2005, 2010, and 2015 to assess the spatial and temporal variations in water environmental risk using particle swarm optimization and the analytic hierarchy process (PSO-AHP) method. The results showed that the water environmental risk in the Yinma River Basin decreased from 2000 to 2015. The risk level of the water environment was high in Changchun, while the risk levels in Yitong and Yongji were low. The research methods provide information to support future decision making by the risk managers in the Yinma River Basin, which is in a high-risk water environment. Moreover, water environment managers could reduce the risks by adjusting the indicators that affect water environmental risks.

  13. The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China

    PubMed Central

    Di, Hui; Liu, Xingpeng; Tong, Zhijun; Ji, Meichen

    2018-01-01

    Water environmental risk is the probability of the occurrence of events caused by human activities or the interaction of human activities and natural processes that will damage a water environment. This study proposed a water environmental risk index (WERI) model to assess the water environmental risk in the Yinma River Basin based on hazards, exposure, vulnerability, and regional management ability indicators in a water environment. The data for each indicator were gathered from 2000, 2005, 2010, and 2015 to assess the spatial and temporal variations in water environmental risk using particle swarm optimization and the analytic hierarchy process (PSO-AHP) method. The results showed that the water environmental risk in the Yinma River Basin decreased from 2000 to 2015. The risk level of the water environment was high in Changchun, while the risk levels in Yitong and Yongji were low. The research methods provide information to support future decision making by the risk managers in the Yinma River Basin, which is in a high-risk water environment. Moreover, water environment managers could reduce the risks by adjusting the indicators that affect water environmental risks. PMID:29543706

  14. Groundwater quality in the Colorado River basins, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  15. Modelling the changing cumulative vulnerability to climate-related hazards for river basin management using a GIS-based multicriteria decision approach

    NASA Astrophysics Data System (ADS)

    Hung, Hung-Chih; Wu, Ju-Yu; Hung, Chih-Hsuan

    2017-04-01

    1. Background Asia-Pacific region is one of the most vulnerable areas of the world to climate-related hazards and extremes due to rapid urbanization and over-development in hazard-prone areas. It is thus increasingly recognized that the management of land use and reduction of hazard risk are inextricably linked. This is especially critical from the perspective of integrated river basin management. A range of studies has targeted existing vulnerability assessments. However, limited attention has been paid to the cumulative effects of multiple vulnerable factors and their dynamics faced by local communities. This study proposes a novel methodology to access the changing cumulative vulnerability to climate-related hazards, and to examine the relationship between the attraction factors relevant to the general process of urbanization and vulnerability variability with a focus on a river basin management unit. 2. Methods and data The methods applied in this study include three steps. First, using Intergovernmental Panel on Climate Change's (IPCC) approach, a Cumulative Vulnerability Assessment Framework (CVAF) is built with a goal to characterize and compare the vulnerability to climate-related hazards within river basin regions based on a composition of multiple indicators. We organize these indicator metrics into three categories: (1) hazard exposure; (2) socioeconomic sensitivity, and (3) adaptive capacity. Second, the CVAF is applied by combining a geographical information system (GIS)-based spatial statistics technique with a multicriteria decision analysis (MCDA) to assess and map the changing cumulative vulnerability, comparing conditions in 1996 and 2006 in Danshui River Basin, Taiwan. Third, to examine the affecting factors of vulnerability changing, we develop a Vulnerability Changing Model (VCM) using four attraction factors to reflect how the process of urban developments leads to vulnerability changing. The factors are transport networks, land uses

  16. Adapting to a Changing Colorado River: Making Future Water Deliveries More Reliable Through Robust Management Strategies

    NASA Astrophysics Data System (ADS)

    Groves, D.; Bloom, E.; Fischbach, J. R.; Knopman, D.

    2013-12-01

    The U.S. Bureau of Reclamation and water management agencies representing the seven Colorado River Basin States initiated the Colorado River Basin Study in January 2010 to evaluate the resiliency of the Colorado River system over the next 50 years and compare different options for ensuring successful management of the river's resources. RAND was asked to join this Basin Study Team in January 2012 to help develop an analytic approach to identify key vulnerabilities in managing the Colorado River basin over the coming decades and to evaluate different options that could reduce this vulnerability. Using a quantitative approach for planning under uncertainty called Robust Decision Making (RDM), the RAND team assisted the Basin Study by: identifying future vulnerable conditions that could lead to imbalances that could cause the basin to be unable to meet its water delivery objectives; developing a computer-based tool to define 'portfolios' of management options reflecting different strategies for reducing basin imbalances; evaluating these portfolios across thousands of future scenarios to determine how much they could improve basin outcomes; and analyzing the results from the system simulations to identify key tradeoffs among the portfolios. This talk will describe RAND's contribution to the Basin Study, focusing on the methodologies used to to identify vulnerabilities for Upper Basin and Lower Basin water supply reliability and to compare portfolios of options. Several key findings emerged from the study. Future Streamflow and Climate Conditions Are Key: - Vulnerable conditions arise in a majority of scenarios where streamflows are lower than historical averages and where drought conditions persist for eight years or more. - Depending where the shortages occur, problems will arise for delivery obligations for the upper river basin and the lower river basin. The lower river basin is vulnerable to a broader range of plausible future conditions. Additional Investments in

  17. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... 4 p.m. ADDRESSES: The meeting will be held at the Bureau of Reclamation, Yakima Field Office, 1917... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Yakima River Basin Conservation Advisory Group...: Notice of public meeting. SUMMARY: As required by the Federal Advisory Committee Act, the Yakima River...

  18. The Delaware River Basin Landsat-Data Collection System Experiment

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. This experiment successfully demonstrated that standard U.S. Geological Survey field instrumentation could be easily interfaced with the LANDSAT-DCS and the data made to flow smoothly to water resources management agencies. The experiment was conducted in the Delaware River basin. A truly operational system could not be deployed.

  19. Water quality in select regions of Cauvery Delta River basin, southern India, with emphasis on monsoonal variation.

    PubMed

    Solaraj, Govindaraj; Dhanakumar, Selvaraj; Murthy, Kuppuraj Rutharvel; Mohanraj, Rangaswamy

    2010-07-01

    Delta regions of the Cauvery River basin are one of the significant areas of rice production in India. In spite of large-scale utilization of the river basin for irrigation and drinking purposes, the lack of appropriate water management has seemingly deteriorated the water quality due to increasing anthropogenic activities. To assess the extent of deterioration, physicochemical characteristics of surface water were analyzed monthly in select regions of Cauvery Delta River basin, India, during July 2007 to December 2007. Total dissolved solids, chemical oxygen demand, and phosphate recorded maximum levels of 1,638, 96, and 0.43 mg/l, respectively, exceeding the permissible levels at certain sampling stations. Monsoonal rains in Cauvery River basin and the subsequent increase in river flow rate influences certain parameters like dissolved solids, phosphate, and dissolved oxygen. Agricultural runoff from watershed, sewage, and industrial effluents are suspected as probable factors of water pollution.

  20. A market-based approach to share water and benefits in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-04-01

    The equitable sharing of benefits in transboundary river basins is necessary to reach a consensus on basin-wide development and management activities. Benefit sharing arrangements must be collaboratively developed to be perceived as efficient, as well as equitable, in order to be considered acceptable to all riparian countries. The current literature falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. In this methodology (i) a hydro-economic model is used to efficiently allocate scarce water resources to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges are equitably redistributed as monetary compensation to users. The amount of monetary compensation, for each water user, is determined through the application of a sharing method developed by stakeholder input, based on a stakeholder vision of fairness, using an axiomatic approach. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The technique ensures economic efficiency and may lead to more equitable solutions in the sharing of benefits in transboundary river basins because the definition of the sharing rule is not in question, as would be the case if existing methods, such as game theory, were applied, with their inherent definitions of fairness.

  1. Simulation of daily streamflow for nine river basins in eastern Iowa using the Precipitation-Runoff Modeling System

    USGS Publications Warehouse

    Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.

    2015-10-14

    The accuracy of Precipitation-Runoff Modeling System model streamflow estimates of nine river basins in eastern Iowa as compared to measured values at U.S. Geological Survey streamflow-gaging stations varied. The Precipitation-Runoff Modeling System models of nine river basins in eastern Iowa were satisfactory at estimating daily streamflow at 57 of the 79 calibration sites and 13 of the 14 validation sites based on statistical results. Unsatisfactory performance can be contributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) the availability and accuracy of meteorological input data. The Precipitation- Runoff Modeling System models of nine river basins in eastern Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.

  2. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  3. Water Withdrawals, Use, and Wastewater Return Flows in the Concord River Basin, Eastern Massachusetts, 1996-2000

    USGS Publications Warehouse

    Barlow, Lora K.; Hutchins, Linda M.; Desimone, Leslie A.

    2009-01-01

    total water use in the basin. Wastewater return flows discharged in the basin were estimated at 11,800 Mgal/yr, of which 6,620 Mgal/yr were discharged from municipal wastewater-treatment facilities to surface waters and 5,190 Mgal/yr were self-disposed through septic systems to ground water; wastewater disposed through septic systems was generated by both public- and self-supply use. Water use and management in the Concord River Basin resulted in an estimated import of 6,460 Mgal/yr of potable water for public supply and an estimated export of 6,590 Mgal/yr of wastewater. Water was imported into the Assabet, Sudbury, and Lower Concord (the area draining directly to the Concord River) River Basins for public supply. Wastewater was imported into the Assabet River Basin, but exported from the Sudbury and Lower Concord River Basins. Of the 25 subbasins in the Concord River Basin for which water use was analyzed, 20 subbasins imported potable water, 4 subbasins exported potable water (Fort Meadow Brook, Indian Brook, Lower Sudbury River, and Whitehall Brook), and potable water was neither imported nor exported in one subbasin (Elizabeth Brook). Wastewater was imported into the Assabet Headwaters, Assabet Main Stem, and Hop Brook subbasins; wastewater was neither imported to nor exported from the Elizabeth Brook, Nashoba Brook, and Pine Brook subbasins; and wastewater was exported from all other subbasins. Water use and management in the basin also resulted in a net transfer of water from ground water to surface water, discharged as wastewater, of about 4,000 Mgal/yr.

  4. Science-society collaboration for robust adaptation planning in water management - The Maipo River Basin in Chile

    NASA Astrophysics Data System (ADS)

    Ocampo Melgar, Anahí; Vicuña, Sebastián; Gironás, Jorge

    2015-04-01

    The Metropolitan Region (M.R.) in Chile is populated by over 6 million people and supplied by the Maipo River and its large number of irrigation channels. Potential environmental alterations caused by global change will extremely affect managers and users of water resources in this semi-arid basin. These hydro-climatological impacts combined with demographic and economic changes will be particularly complex in the city of Santiago, due to the diverse, counterpoised and equally important existing activities and demands. These challenges and complexities request the implementation of flexible plans and actions to adapt policies, institutions, infrastructure and behaviors to a new future with climate change. Due to the inherent uncertainties in the future, a recent research project entitled MAPA (Maipo Adaptation Plan for its initials in Spanish) has formed a collaborative science-society platform to generate insights into the vulnerabilities, challenges and possible mitigation measures that would be necessary to deal with the potential changes in the M.R. This large stakeholder platform conformed by around 30 public, private and civil society organizations, both at the local and regional level and guided by a Robust Decision Making Framework (RDMF) has identified vulnerabilities, future scenarios, performance indicators and mitigation measures for the Maipo River basin. The RDMF used in this project is the XLRM framework (Lempert et al. 2006) that incorporates policy levers (L), exogenous uncertainties (X), measures of performance standards (M) and relationships (R) in an interlinked process. Both stakeholders' expertise and computational capabilities have been used to create hydrological models for the urban, rural and highland sectors supported also by the Water Evaluation and Planning system software (WEAP). The identification of uncertainties and land use transition trends was used to develop future development scenarios to explore possible water management

  5. The Interior Columbia River Basin: patterns of population, employment, and income change.

    Treesearch

    Wendy J. McGinnis; Harriet H. Christensen

    1996-01-01

    Public expectations for management of public resources are changing, and public agencies are moving toward sustainable ecosystem management that incorporates information on ecological, economic, and social systems. A broad assessment of these systems is being undertaken for the interior Columbia River basin. This paper describes some basic population characteristics of...

  6. Whole Watershed Management to Maximize Total Water Storage: Case Study of the American-Cosumnes River Basin

    NASA Astrophysics Data System (ADS)

    Goharian, E.; Gailey, R.; Medellin-Azuara, J.; Maples, S.; Adams, L. E.; Sandoval Solis, S.; Fogg, G. E.; Dahlke, H. E.; Harter, T.; Lund, J. R.

    2016-12-01

    Drought and unrelenting water demands by urban, agricultural and ecological entities present a need to manage and perhaps maximize all the major stores of water, including mountain snowpack and soil moisture, surface reservoirs, and groundwater reservoirs for the future. During drought, the over-exploitations of groundwater, which supplies up to 60% of California's agricultural water demand, has caused serious overdraft in many areas. Moreover, owing to climate change, faster and earlier snowmelt in Mediterranean climate systems such as California dictates that less water can be stored in reservoirs. If we are to substantially compensate for this loss of stored water without drastically cutting back water supply, a new era of radically increased groundwater recharge will be needed. Managed aquifer recharge (MAR) has become a common and fast-growing management option, especially in areas with high water availability variation intra- and inter-annually. Enhancing the recharge by the use of peak runoff requires integrated river basin management to improve prospects to downstream users and ecology. This study implements a quantitative approach to assess the physical and economic feasibility of MAR for American-Cosumnes River basin, CA. For this purpose, two scenarios are considered, the pre-development condition which is represented by unimpaired flows, and the other one in which available peak flow releases from Folsom reservoir derived from the CalSim II hydrologic simulation model will be employed to estimated available water for recharge. Preliminary results show peak flows during winter (Dec-Feb) and extended winter (Nov-Mar) from the American River flow can be captured within a range of 64,000 to 198,000 af/month through the Folsom South Canal for recharge. Changes in groundwater storage are estimated by using California Central Valley Groundwater-Surface Water Simulation Model (C2VSim). Results show increasing groundwater recharge benefits not only the regional

  7. Fishes of the White River basin, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  8. Hydrologic reconnaissance of the Unalakleet River basin, Alaska, 1982-83

    USGS Publications Warehouse

    Sloan, C.E.; Kernodle, D.R.; Huntsinger, Ronald

    1986-01-01

    The Unalakleet River, Alaska, from its headwaters to the confluence of the Chiroskey River has been designated as a wild river and is included in the National Wild and Scenic Rivers System. Yearly low flow, which occurs during the winter, is sustained by groundwater discharge; there are few lakes in the basin and the cold climate prevents winter runoff. The amount of winter streamflow was greatest in the lower parts of streams with the exception of the South River and was apparently proportional to the amount of unfrozen alluvium upstream from the measuring sites. Unit discharge in late winter ranged from nearly zero at the mouth of the South River to 0.24 cu ft/sec/sq mi in the Unalakleet River main stem below Tenmile River. Summer runoff at the time of the reconnaissance may have been slightly higher than normal owing to recent rains. Unit runoff ranged from a low of 1.0 cu ft/sec/sq mi at the South River, to a high value of 2.4 cu ft/sec/sq mi at the North Fork Unalakleet River. Flood marks were present in the basin well above streambank levels but suitable sections to measure the maximum evident flood by slope-area methods were not found. Flood peaks were calculated for the Unalakleet River and its tributaries using basin characteristics. Calculated unit runoff for the 50-year flood ranged from about 17 to 45 cu ft/sec/sq mi. Water quality was good throughout the basin, and an abundant and diversified community of benthic invertebrates was found in samples collected during the summer reconnaissance. Permafrost underlies most of the basin, but groundwater can be found in unfrozen alluvium in the stream valleys, most abundantly in the lower part of the main tributaries and along the main stem of the Unalakleet River. Groundwater sustains river flow through the winter; an estimate of its quantity can be found through low-flow measurements. Groundwater quality in the basin appears to be satisfactory for most uses. Currently, little groundwater is used within the

  9. Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin

    USGS Publications Warehouse

    Reynolds, Lindsay V.; Shafroth, Patrick B.

    2016-01-20

    Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.

  10. Regional scale groundwater modelling study for Ganga River basin

    NASA Astrophysics Data System (ADS)

    Maheswaran, R.; Khosa, R.; Gosain, A. K.; Lahari, S.; Sinha, S. K.; Chahar, B. R.; Dhanya, C. T.

    2016-10-01

    Subsurface movement of water within the alluvial formations of Ganga Basin System of North and East India, extending over an area of 1 million km2, was simulated using Visual MODFLOW based transient numerical model. The study incorporates historical groundwater developments as recorded by various concerned agencies and also accommodates the role of some of the major tributaries of River Ganga as geo-hydrological boundaries. Geo-stratigraphic structures, along with corresponding hydrological parameters,were obtained from Central Groundwater Board, India,and used in the study which was carried out over a time horizon of 4.5 years. The model parameters were fine tuned for calibration using Parameter Estimation (PEST) simulations. Analyses of the stream aquifer interaction using Zone Budget has allowed demarcation of the losing and gaining stretches along the main stem of River Ganga as well as some of its principal tributaries. From a management perspective,and entirely consistent with general understanding, it is seen that unabated long term groundwater extraction within the study basin has induced a sharp decrease in critical dry weather base flow contributions. In view of a surge in demand for dry season irrigation water for agriculture in the area, numerical models can be a useful tool to generate not only an understanding of the underlying groundwater system but also facilitate development of basin-wide detailed impact scenarios as inputs for management and policy action.

  11. Zinc and Its Isotopes in the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  12. A Decision Support System For The Real-Time Allocation Of The Water Resource Of The Tarim River Basin, China

    NASA Astrophysics Data System (ADS)

    Wei, J.; Wang, G.; Liu, R.

    2008-12-01

    The Tarim River Basin is the longest inland river in China. Due to water scarcity, ecologically-fragile is becoming a significant constraint to sustainable development in this region. To effectively manage the limited water resources for ecological purposes and for conventional water utilization purposes, a real-time water resources allocation Decision Support System (DSS) has been developed. Based on workflows of the water resources regulations and comprehensive analysis of the efficiency and feasibility of water management strategies, the DSS includes information systems that perform data acquisition, management and visualization, and model systems that perform hydrological forecast, water demand prediction, flow routing simulation and water resources optimization of the hydrological and water utilization process. An optimization and process control strategy is employed to dynamically allocate the water resources among the different stakeholders. The competitive targets and constraints are taken into considered by multi-objective optimization and with different priorities. The DSS of the Tarim River Basin has been developed and been successfully utilized to support the water resources management of the Tarim River Basin since 2005.

  13. Remote sensing research on fragile ecological environment in continental river basin

    NASA Astrophysics Data System (ADS)

    Wang, Ranghui; Peng, Ruyan; Zhang, Huizhi

    2003-07-01

    Based on some remote sensing data and software platform of image processing and analysis, the standard image for ecological thematic mapping is decided. Moreover, the vegetation type maps and land sandy desertification type maps are made. Relaying on differences of natural resources and ecological environment in Tarim River Basin, the assessment indicator system and ecological fragility index (EFI) of ecological environment are built up. The assessment results are very severely. That is, EFI is only 0.08 in Akesu River Basin, it belongs to slight fragility area. EFI of Yarkant River Basin and upper reaches of Tarim River Basin are 0.23 and 0.25 respectively, both of them belong to general fragility areas. Meanwhile, EFI of Hotan River Basin and middle reaches of Tarim River Basin are 0.32 and 0.49 respectively; they all belong to middle fragility areas. However, the fragility of the lower reaches of Tarim River Basin belongs to severe fragility area that the EFI is 0.87.The maladjustment among water with hot and land as well as salt are hindrance of energy transfer and material circulation and information transmission. It is also the main reason that caused ecological environment fragility.

  14. Contributions of watershed management research to ecosystem-based management in the Colorado River Basin

    Treesearch

    Malchus B. Baker; Peter F. Ffolliott

    2000-01-01

    The Rocky Mountains and Southwestern United States, essentially the Colorado River Basin, have been the focus of a wide range of research efforts to learn more about the effects of natural and human induced disturbances on the functioning, processes, and components of the regions’s ecosystems. Watershed research, spearheaded by the USDA Forest Service and its...

  15. A Survey of the Freshwater Mussel Fauna of the Little Kanawha River Basin,

    DTIC Science & Technology

    Mussels, * Aquatic biology, Surveys, Rivers, Basins(Geographic), Natural resources, Population, Distribution, Sampling, Environmental impact...Chemical analysis, Pesticides, Metals, Water quality, Waste water , Waste management, Decision making, West Virginia, Fresh water , Workshops

  16. Water Induced Hazard Mapping in Nepal: A Case Study of East Rapti River Basin

    NASA Astrophysics Data System (ADS)

    Neupane, N.

    2010-12-01

    This paper presents illustration on typical water induced hazard mapping of East Rapti River Basin under the DWIDP, GON. The basin covers an area of 2398 sq km. The methodology includes making of base map of water induced disaster in the basin. Landslide hazard maps were prepared by SINMAP approach. Debris flow hazard maps were prepared by considering geology, slope, and saturation. Flood hazard maps were prepared by using two approaches: HEC-RAS and Satellite Imagery Interpretation. The composite water-induced hazard maps were produced by compiling the hazards rendered by landslide, debris flow, and flood. The monsoon average rainfall in the basin is 1907 mm whereas maximum 24 hours precipitation is 456.8 mm. The peak discharge of the Rapati River in the year of 1993 at station was 1220 cu m/sec. This discharge nearly corresponds to the discharge of 100-year return period. The landslides, floods, and debris flows triggered by the heavy rain of July 1993 claimed 265 lives, affected 148516 people, and damaged 1500 houses in the basin. The field investigation and integrated GIS interpretation showed that the very high and high landslide hazard zones collectively cover 38.38% and debris flow hazard zone constitutes 6.58%. High flood hazard zone occupies 4.28% area of the watershed. Mitigation measures are recommendated according to Integrated Watershed Management Approach under which the non-structural and structural measures are proposed. The non-structural measures includes: disaster management training, formulation of evacuation system (arrangement of information plan about disaster), agriculture management practices, protection of water sources, slope protections and removal of excessive bed load from the river channel. Similarly, structural measures such as dike, spur, rehabilitation of existing preventive measures and river training at some locations are recommendated. The major factors that have contributed to induce high incidences of various types of mass

  17. Drainage areas in the Vermillion River basin in eastern South Dakota

    USGS Publications Warehouse

    Benson, Rick D.; Freese, M.D.; Amundson, Frank D.

    1988-01-01

    Above-normal precipitation in the northern portion of the Vermillion River basin from 1982 through 1987 caused substantial rises in lake levels in the Lake Thompson chain of lakes, resulting in discharge from Lake Thompson to the East Fork Vermillion River. Prior to 1986, the Lake Thompson chain of lakes was thought to be a noncontributing portion of the Vermillion River basin. To better understand surface drainage, the map delineates all named stream basins, and all unnamed basins larger than approximately 10 sq mi within the Vermillion River basin in South Dakota and lists by stream name the area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey 7 1/2 minute topographic maps. Two tables list areas of drainage basins and reaches, as well as drainage areas above gaging stations. (USGS)

  18. Climate controls on streamflow variability in the Missouri River Basin

    NASA Astrophysics Data System (ADS)

    Wise, E.; Woodhouse, C. A.; McCabe, G. J., Jr.; Pederson, G. T.; St-Jacques, J. M.

    2017-12-01

    The Missouri River's hydroclimatic variability presents a challenge for water managers, who must balance many competing demands on the system. Water resources in the Missouri River Basin (MRB) have increasingly been challenged by the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, we use observed and modeled hydroclimatic data and estimated natural flow records to describe the climatic controls on streamflow in the upper and lower portions of the MRB, examine atmospheric and oceanic patterns associated with high- and low-flow years, and investigate trends in climate and streamflow over the instrumental period. Results indicate that the two main source regions for total outflow, in the uppermost and lowermost parts of the basin, are under the influence of very different sets of climatic controls. Winter precipitation, impacted by changes in zonal versus meridional flow from the Pacific Ocean, as well as spring precipitation and temperature, play a key role in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. The upper basin, with decreasing snowpack and streamflow and warming spring temperatures, will be less likely to provide important flow supplements to the lower basin in the future.

  19. Adaptation of Arabidopsis thaliana to the Yangtze River basin.

    PubMed

    Zou, Yu-Pan; Hou, Xing-Hui; Wu, Qiong; Chen, Jia-Fu; Li, Zi-Wen; Han, Ting-Shen; Niu, Xiao-Min; Yang, Li; Xu, Yong-Chao; Zhang, Jie; Zhang, Fu-Min; Tan, Dunyan; Tian, Zhixi; Gu, Hongya; Guo, Ya-Long

    2017-12-28

    Organisms need to adapt to keep pace with a changing environment. Examining recent range expansion aids our understanding of how organisms evolve to overcome environmental constraints. However, how organisms adapt to climate changes is a crucial biological question that is still largely unanswered. The plant Arabidopsis thaliana is an excellent system to study this fundamental question. Its origin is in the Iberian Peninsula and North Africa, but it has spread to the Far East, including the most south-eastern edge of its native habitats, the Yangtze River basin, where the climate is very different. We sequenced 118 A. thaliana strains from the region surrounding the Yangtze River basin. We found that the Yangtze River basin population is a unique population and diverged about 61,409 years ago, with gene flows occurring at two different time points, followed by a population dispersion into the Yangtze River basin in the last few thousands of years. Positive selection analyses revealed that biological regulation processes, such as flowering time, immune and defense response processes could be correlated with the adaptation event. In particular, we found that the flowering time gene SVP has contributed to A. thaliana adaptation to the Yangtze River basin based on genetic mapping. A. thaliana adapted to the Yangtze River basin habitat by promoting the onset of flowering, a finding that sheds light on how a species can adapt to locales with very different climates.

  20. Hydrologic analysis of Mojave River Basin, California, using electric analog model

    USGS Publications Warehouse

    Hardt, W.F.

    1971-01-01

    The water needs of the Mojave River basin will increase because of population and industrial growth. The Mojave Water Agency is responsible for providing sufficient water of good quality for the full economic development of the area. The U.S. Geological Survey suggested an electric analog model of the basin as a predictive tool to aid management. About 1,375 square miles of the alluvial basin was simulated by a passive resistor-capacitor network. The Mojave River, the main source of recharge, was simulated by subdividing the river into 13 reaches, depending on intermittent or perennial flow and on phreatophytes. The water loss to the aquifer was based on records at five gaging stations. The aquifer system depends on river recharge to maintain the water table as most of the ground-water pumping and development is adjacent to the river. The accuracy and reliability of the model was assessed by comparing the water-level changes computed by the model for the period 1930-63 with the changes determined from field data for the same period. The model was used to predict the effects on the physical system by determining basin-wide water-level changes from 1930-2000 under different pumping rates and extremes in flow of the Mojave River. Future pumping was based on the 1960-63 rate, on an increase of 20 percent from this rate, and on population projections to 2000 in the Barstow area. For future predictions, the Mojave River was modeled as average flow based on 1931-65 records and also as high flow, 1937-46, and low flow, 1947-65. Other model runs included water-level change 1930-63 assuming aquifer depletion only and no recharge, effects of a well field pumping 10,000 acre-feet in 4 months north of Victorville and southeast of Yermo, and effects of importing 10,000, 35,000, and 50,800 acre-feet of water per year from the California Water Project into the Mojave River for conveyance downstream.

  1. Sahra integrated modeling approach to address water resources management in semi-arid river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, E. P.; Gupta, Hoshin V.; Brookshire, David S.

    Water resources decisions in the 21Sf Century that will affect allocation of water for economic and environmental will rely on simulations from integrated models of river basins. These models will not only couple natural systems such as surface and ground waters, but will include economic components that can assist in model assessments of river basins and bring the social dimension to the decision process. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated models to assess impacts of climate variability and land use change on water resources inmore » semi-arid river basins. The objectives of this paper are to describe the SAHRA integrated modeling approach and to describe the linkage between social and natural sciences in these models. Water resources issues that arise from climate variability or land use change may require different resolution models to answer different questions. For example, a question related to streamflow may not need a high-resolution model whereas a question concerning the source and nature of a pollutant will. SAHRA has taken a multiresolution approach to integrated model development because one cannot anticipate the questions in advance, and the computational and data resources may not always be available or needed for the issue to be addressed. The coarsest resolution model is based on dynamic simulation of subwatersheds or river reaches. This model resolution has the advantage of simplicity and social factors are readily incorporated. Users can readily take this model (and they have) and examine the effects of various management strategies such as increased cost of water. The medium resolution model is grid based and uses variable grid cells of 1-12 km. The surface hydrology is more physically based using basic equations for energy and water balance terms, and modules are being incorporated that will simulate engineering

  2. Framework for Assessing Water Resource Sustainability in River Basins

    NASA Astrophysics Data System (ADS)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  3. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.

    2008-01-01

    Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (<15 m tall) and operate as water diversion projects.While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  4. Water reuse in river basins with multiple users: A literature review

    NASA Astrophysics Data System (ADS)

    Simons, G. W. H. (Gijs); Bastiaanssen, W. G. M. (Wim); Immerzeel, W. W. (Walter)

    2015-03-01

    Unraveling the interaction between water users in a river basin is essential for sound water resources management, particularly in a context of increasing water scarcity and the need to save water. While most attention from managers and decision makers goes to allocation and withdrawals of surface water resources, reuse of non-consumed water gets only marginal attention despite the potentially significant volumes. As a consequence, claims of water saving are often grossly exaggerated. It is the purpose of this paper to explore the processes associated with water reuse in a river basin among users of varying nature and review existing methods for directly or indirectly describing non-consumed water, recoverable flow and/or water reuse. First a conceptual representation of processes surrounding water withdrawals and associated definitions is discussed, followed by a section on connectivity between individual withdrawals and the complex dynamics arising from dependencies and tradeoffs within a river basin. The current state-of-the-art in categorizing basin hydrological flows is summarized and its applicability to a water system where reuse occurs is explored. The core of the paper focuses on a selection and demonstration of existing indicators developed for assessing water reuse and its impacts. It is concluded that although several methods for analyses of water reuse and recoverable flows have been developed, a number of essential aspects of water reuse are left out of existing indicators. Moreover, a proven methodology for obtaining crucial quantitative information on recoverable flows is currently lacking. Future studies should aim at spatiotemporal tracking of the recoverable portion of water withdrawals and showing the dependency of multiple water users on such flows to water policy makers.

  5. Installation of a groundwater monitoring-well network on the east side of the Uncompahgre River in the Lower Gunnison River Basin, Colorado, 2012

    USGS Publications Warehouse

    Thomas, Judith C.; Arnold, Larry R. Rick

    2015-07-06

    The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Ten monitoring wells were installed during October and November 2012. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system will provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.

  6. Tracing nitrates and sulphates in river basins using isotope techniques.

    PubMed

    Rock, L; Mayer, B

    2006-01-01

    The objective of this paper is to outline how stable isotope techniques can contribute to the elucidation of the sources and the fate of riverine nitrate and sulphate in watershed studies. The example used is the Oldman River Basin (OMRB), located in southern Alberta (Canada). Increasing sulphate concentrations and decreasing delta(34)S values along the flowpath of the Oldman River indicate that oxidation of pyrite in tills is a major source of riverine sulphate in the agriculturally used portion of the OMRB. Chemical and isotopic data showed that manure-derived nitrogen contributes significantly to the increase in nitrate concentrations in the Oldman River and its tributaries draining agricultural land. It is suggested that hydrological conditions control agricultural return flows to the surface water bodies in southern Alberta and impart significant seasonal variations on concentrations and isotopic compositions of riverine nitrate. Combining isotopic, chemical, and hydrometric data permitted us to estimate the relative contribution of major sources to the total solute fluxes. Hence, we submit that isotopic measurements can make an important contribution to the identification of nutrient and pollutant sources and to river basin management.

  7. Metal Chemical and Isotope Characterisation in the Upper Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Widory, D.; Nigris, R.; Morard, A.; Gassama, N.; Poirier, A.; Bourrain, X.

    2016-12-01

    The Water Framework Directive (WFD) elaborated by the European Commission regulates water resources in the EC based on five years management plans. A new management plan that started in 2016 imposes strict water quality criteria to its member states, including good status thresholds for metallic contaminants. The Loire River, the most important river in France, flows through areas with lithologies naturally containing high metal concentrations in the upper part of its basin. Understanding these metal fluxes into the river is thus a prerequisite to understand their potential impact on the quality of its water in regards to the criteria defined by the WFD. The Massif Central, a residue of the Hercynian chain, is composed of granitic and volcanic rocks. Both its upstream position in the Loire basin and its numerous metal mineralizations made this region a good candidate for characterizing the natural metal geochemical background of its surface waters. To fulfill this objective we focused on the Pb, Cd and Zn chemical and isotope characteristics of selected non-anthropized small watersheds. The investigated small watersheds were selected for supposedly draining a single lithology and undergoing (as far as possible) negligible to no anthropogenic pressure. Results showed that although the high metal potential of the upper part of the Loire River basin has been highly exploited by humans for centuries, metal concentrations during the hydrological cycle are still under the guidelines defined by the WFD. Isotope compositions/ratios are strongly related to the corresponding lithologies along the rivers and help precisely define the local geochemical background that can then be used to identify and quantify any anthropogenic inputs downstream.

  8. Simulation of daily streamflow for 12 river basins in western Iowa using the Precipitation-Runoff Modeling System

    USGS Publications Warehouse

    Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.

    2017-10-24

    models of 12 river basins in western Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.

  9. RED RIVER BASIN BIOLOGICAL MONITORING WORKGROUP

    EPA Science Inventory

    The goal of this project is to improve coordination of biological monitoring efforts in the Red River Basin. This is to be accomplished through coordination of a study to develop sampling protocols for macroinvertebrates in the main stream and lower tributaries of the Red River....

  10. Groundwater quality in the Chemung River, Eastern Lake Ontario, and Lower Hudson River Basins, New York, 2013

    USGS Publications Warehouse

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2015-11-10

    The Lower Hudson River Basin study area covers 5,607 square miles and encompasses the part of the Lower Hudson River Basin that lies within New York plus the parts of the Housatonic, Hackensack, Bronx, and Saugatuck River Basins that are in New York. Twelve of the wells sampled in the Lower Hudson River Basin are completed in sand-and-gravel deposits, and 13 are completed in bedrock. Groundwater in the Lower Hudson River Basin was generally of good quality, although properties and concentrations of some constituents—pH, sodium, chloride, dissolved solids, arsenic, aluminum, iron, manganese, radon-222, total coliform bacteria, fecal coliform bacteria, Escherichia coli bacteria, and heterotrophic plate count—equaled or exceeded primary, secondary, or proposed drinking-water standards. The constituent most frequently detected in concentrations exceeding drinking-water standards (20 of 25 samples) was radon-222.

  11. Forecasting domestic water demand in the Haihe river basin under changing environment

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Jun; Zhang, Jian-Yun; Shahid, Shamsuddin; Xie, Yu-Xuan; Zhang, Xu

    2018-02-01

    A statistical model has been developed for forecasting domestic water demand in Haihe river basin of China due to population growth, technological advances and climate change. Historical records of domestic water use, climate, population and urbanization are used for the development of model. An ensemble of seven general circulation models (GCMs) namely, BCC-CSM1-1, BNU-ESM, CNRM-CM5, GISS-E2-R, MIROC-ESM, PI-ESM-LR, MRI-CGCM3 were used for the projection of climate and the changes in water demand in the Haihe River basin under Representative Concentration Pathways (RCPs) 4.5. The results showed that domestic water demand in different sub-basins of the Haihe river basin will gradually increase due to continuous increase of population and rise in temperature. It is projected to increase maximum 136.22 × 108 m3 by GCM BNU-ESM and the minimum 107.25 × 108 m3 by CNRM-CM5 in 2030. In spite of uncertainty in projection, it can be remarked that climate change and population growth would cause increase in water demand and consequently, reduce the gap between water supply and demand, which eventually aggravate the condition of existing water stress in the basin. Water demand management should be emphasized for adaptation to ever increasing water demand and mitigation of the impacts of environmental changes.

  12. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    USGS Publications Warehouse

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine

    2016-01-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  13. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine A.

    2016-05-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  14. Distribution and status of redband trout in the interior Columbia river basin and portions of the Klamath river and great basins

    Treesearch

    Russell F. Thurow; Bruce E. Rieman; Danny C. Lee; Philip J. Howell; Raymon D. Perkinson

    2007-01-01

    We summarized existing knowledge (circa 1996) of the potential historical range and the current distribution and status of non-anadromous interior redband trout Oncorhynchus mykiss ssp. in the U.S. portion of the interior Columbia River Basin and portions of the Klamath River and Great Basins (ICRB). We estimated that the potential historical range included 5,458...

  15. New vitrinite reflectance data for the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.

  16. Status and risk of extinction for westslope cutthroat trout in the Upper River Basin, Montana

    Treesearch

    Bradley B. Shepard; Brian Sanborn; Linda Ulmer; Danny C. Lee

    1997-01-01

    Westslope cutthroat trout Oncorhynchus clarki lewisi now occupy less than 5% of the subspecies' historical range within the upper Missouri River drainage in Montana. We assessed the risk of extinction for 144 known populations inhabiting streams within federally managed lands in the upper Missouri River basin using a Bayesian...

  17. Review of waterpower withdrawals in Weiser River Basin, Idaho

    USGS Publications Warehouse

    Colbert, Jesse Lane; Young, Loyd L.

    1964-01-01

    The Weiser River basin is primarily agricultural and is supported by extensive irrigation. The Geological Survey has initiated withdrawals, or has made powersite classifications of lands having value for reservoir sites and for waterpower production. These withdrawals have been examined to see if they should continue in force or if it is in the public interest to restore them. The 1960 report, "Upper Snake River Basin," by the U.S. bureau of Reclamation, and U.S. Army Corps of Engineers included recommendations conooming potential water resource-development sites in Water River basin. That report furnished much of the information for this review.

  18. Marginal Economic Value of Streamflow: A Case Study for the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Brown, Thomas C.; Harding, Benjamin L.; Payton, Elizabeth A.

    1990-12-01

    The marginal economic value of streamflow leaving forested areas in the Colorado River Basin was estimated by determining the impact on water use of a small change in streamflow and then applying economic value estimates to the water use changes. The effect on water use of a change in streamflow was estimated with a network flow model that simulated salinity levels and the routing of flow to consumptive uses and hydroelectric dams throughout the Basin. The results show that, under current water management institutions, the marginal value of streamflow in the Colorado River Basin is largely determined by nonconsumptive water uses, principally energy production, rather than by consumptive agricultural or municipal uses. The analysis demonstrates the importance of a systems framework in estimating the marginal value of streamflow.

  19. Streamflow model of the six-country transboundary Ganges-Bhramaputra and Meghna river basin

    NASA Astrophysics Data System (ADS)

    Rahman, K.; Lehmann, A.; Dennedy-Frank, P. J.; Gorelick, S.

    2014-12-01

    Extremely large-scale river basin modelling remains a challenge for water resources planning in the developing world. Such planning is particularly difficult in the developing world because of the lack of data on both natural (climatological, hydrological) processes and complex anthropological influences. We simulate three enormous river basins located in south Asia. The Ganges-Bhramaputra and Meghna (GBM) River Basins cover an area of 1.75 million km2 associated with 6 different countries, including the Bengal delta, which is the most densely populated delta in the world with ~600 million people. We target this developing region to better understand the hydrological system and improve water management planning in these transboundary watersheds. This effort uses the Soil and Water Assessment Tool (SWAT) to simulate streamflow in the GBM River Basins and assess the use of global climatological datasets for such large scale river modeling. We evaluate the utility of three global rainfall datasets to reproduce measured river discharge: the Tropical Rainfall Measuring Mission (TRMM) from NASA, the National Centers for Environmental Prediction (NCEP) reanalysis, and the World Metrological Organization (WMO) reanalysis. We use global datasets for spatial information as well: 90m DEM from the Shuttle Radar Topographic Mission, 300m GlobCover land use maps, and 1000 km FAO soil map. We find that SWAT discharge estimates match the observed streamflow well (NSE=0.40-0.66, R2=0.60-0.70) when using meteorological estimates from the NCEP reanalysis. However, SWAT estimates diverge from observed discharge when using meteorological estimates from TRMM and the WMO reanalysis.

  20. Water management for development of water quality in the Ruhr River basin.

    PubMed

    Klopp, R

    2000-01-01

    On the Ruhr, a small river running through hilly country and with a mean flow of 76 m3/s, 27 water works use the method of artificial groundwater recharge to produce 350 million m3 of drinking water annually. On the basis of a special act, the Ruhr River Association is responsible for water quality and water quantity management in the Ruhr basin. The present 94 municipal sewage treatment plants ensure that the raw water is sufficiently good to be turned into drinking water. In the Ruhr's lower reaches, where dry weather results in a 20% share of the entire water flow being treated wastewater, comparatively high concentration of substances of domestic or industrial origin are likely, including substances which municipal wastewater treatment measures cannot entirely remove. These substances include ammonium, coliform bacteria or pathogens, boron and organic trace substances. Although water treatment measures have greatly contributed to the considerable improvement of the Ruhr's water quality in the last few decades, it is desirable to continue to aim at a high standard of drinking water production technologies since the Ruhr is a surface water body influenced by anthropogenic factors. However, in the case of substances infiltrating into drinking water, legislation is required if a reduction of pollution appears to be necessary.

  1. Evolution of the vegetation system in the Heihe River basin in the last 2000 years

    NASA Astrophysics Data System (ADS)

    Li, Shoubo; Zhao, Yan; Wei, Yongping; Zheng, Hang

    2017-08-01

    The response of vegetation systems to the long-term changes in climate, hydrology, and social-economic conditions in river basins is critical for sustainable river basin management. This study aims to investigate the evolution of natural and crop vegetation systems in the Heihe River basin (HRB) over the past 2000 years. Archived Landsat images, historical land use maps and hydrological records were introduced to derive the long-term spatial distribution of natural and crop vegetation and the corresponding biomass levels. The major findings are that (1) both natural and crop vegetation experienced three development stages: a pre-development stage (before the Republic of China), a rapid development stage (Republic of China - 2000), and a post-development stage (after 2000). Climate and hydrological conditions did not show significant impacts over crop vegetation, while streamflow presented synchronous changes with natural vegetation in the first stage. For the second stage, warmer temperature and increasing streamflow were found to be important factors for the increase in both natural and crop vegetation in the middle reaches of the HRB. For the third stage, positive climate and hydrological conditions, together with policy interventions, supported the overall vegetation increase in both the middle and lower HRB; (2) there was a significantly faster increase in crop biomass than that of native vegetation since 1949, which could be explained by the technological development; and (3) the ratio of natural vegetation to crop vegetation decreased from 16 during the Yuan Dynasty to about 2.2 since 2005. This ratio reflects the reaction of land and water development to a changing climate and altering social-economic conditions at the river basin level; therefore, it could be used as an indicator of water and land management at river basins.

  2. An integrated multiscale river basin observing system in the Heihe River Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.

    2015-12-01

    Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.

  3. Isotope studies in large river basins: A new global research focus

    NASA Astrophysics Data System (ADS)

    Gibson, John J.; Aggarwal, Pradeep; Hogan, James; Kendall, Carol; Martinelli, Luiz A.; Stichler, Willi; Rank, Dieter; Goni, Ibrahim; Choudhry, Manzoor; Gat, Joel; Bhattacharya, Sourendra; Sugimoto, Atsuko; Fekete, Balazs; Pietroniro, Alain; Maurer, Thomas; Panarello, Hector; Stone, David; Seyler, Patrick; Maurice-Bourgoin, Laurence; Herczeg, Andrew

    Rivers are an important linkage in the global hydrological cycle, returning about 35%of continental precipitation to the oceans. Rivers are also the most important source of water for human use. Much of the world's population lives along large rivers, relying on them for trade, transportation, industry, agriculture, and domestic water supplies. The resulting pressure has led to the extreme regulation of some river systems, and often a degradation of water quantity and quality For sustainable management of water supply agriculture, flood-drought cycles, and ecosystem and human health, there is a basic need for improving the scientific understanding of water cycling processes in river basins, and the ability to detect and predict impacts of climate change and water resources development.

  4. Understanding the Impacts of Climate Change in the Tana River Basin, Kenya

    NASA Astrophysics Data System (ADS)

    Muthuwatta, Lal; Sood, Aditya; McCartney, Matthew; Sandeepana Silva, Nishchitha; Opere, Alfred

    2018-06-01

    In the Tana River Basin in Kenya, six Regional Circulation Models (RCMs) simulating two Representative Concentration Pathways (RCPs) (i.e., 4.5 and 8.5) were used as input to the Soil and Water Assessment Tool (SWAT) model to determine the possible implications for the hydrology and water resources of the basin. Four hydrological characteristics - water yield, groundwater recharge, base flow and flow regulation - were determined and mapped throughout the basin for three 30-year time periods: 2020-2049, 2040-2069 and 2070-2099. Results were compared with a baseline period, 1983-2011. All four hydrological characteristics show steady increases under both RCPs for the entire basin but with considerable spatial heterogeneity and greater increases under RCP 8.5 than RCP 4.5. The results have important implications for the way water resources in the basin are managed. It is imperative that water managers and policy makers take into account the additional challenges imposed by climate change in operating built infrastructure.

  5. Population dynamics modeling of introduced smallmouth bass in the upper Colorado River basin

    USGS Publications Warehouse

    Breton, André R.; Winkelman, Dana L.; Bestgen, Kevin R.; Hawkins, John A.

    2014-01-01

    The purpose of these analyses was to identify an effective control strategy to further reduce smallmouth bass in the upper Colorado River basin from the current level. Our simulation results showed that “the surge”, an early to mid-summer increase in electrofishing effort targeting nest-guarding male smallmouth bass, should be made a core component of any future smallmouth bass management strategy in the upper basin. Immigration from off channel reservoirs is supporting smallmouth bass popualtions in the Yampa River and our modeling analyses suggest that smallmouth bass  in Little Yampa Canyon might go extinct in a few years under the present level of exploitation.

  6. Large-scale conservation assessment for Neotropical migratory land birds in the interior Columbia River basin.

    Treesearch

    Victoria A. Saab; Terrell D. Rich

    1997-01-01

    The status and habitats of Neotropical migratory land birds (NTMB) are evaluated within the interior Columbia River basin (interior basin). Objectives are to examine population trends, estimate NTMB responses to alternative management activities, and provide recommendations by habitat and species for the long-term persistence of NTMB populations. Among 132 NTMBs that...

  7. Twinning European and South Asian river basins to enhance capacity and implement adaptive integrated water resources management approaches - results from the EC-project BRAHMATWINN

    NASA Astrophysics Data System (ADS)

    Flügel, W.-A.

    2011-04-01

    The EC-project BRAHMATWINN was carrying out a harmonised integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs of the twinning Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basins (UBRB) in Europe and Southeast Asia respectively. Social and natural scientists in cooperation with water law experts and local stakeholders produced the project outcomes presented in Chapter 2 till Chapter 10 of this publication. BRAHMATWINN applied a holistic approach towards IWRM comprising climate modelling, socio-economic and governance analysis and concepts together with methods and integrated tools of applied Geoinformatics. A detailed description of the deliverables produced by the BRAHMATWINN project is published on the project homepage http://www.brahmatwinn.uni-jena.de.

  8. The role of Natural Flood Management in managing floods in large scale basins during extreme events

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; Owen, Gareth; ODonnell, Greg; Nicholson, Alex; Hetherington, David

    2016-04-01

    There is a strong evidence database showing the negative impacts of land use intensification and soil degradation in NW European river basins on hydrological response and to flood impact downstream. However, the ability to target zones of high runoff production and the extent to which we can manage flood risk using nature-based flood management solution are less known. A move to planting more trees and having less intense farmed landscapes is part of natural flood management (NFM) solutions and these methods suggest that flood risk can be managed in alternative and more holistic ways. So what local NFM management methods should be used, where in large scale basin should they be deployed and how does flow is propagate to any point downstream? Generally, how much intervention is needed and will it compromise food production systems? If we are observing record levels of rainfall and flow, for example during Storm Desmond in Dec 2015 in the North West of England, what other flood management options are really needed to complement our traditional defences in large basins for the future? In this paper we will show examples of NFM interventions in the UK that have impacted at local scale sites. We will demonstrate the impact of interventions at local, sub-catchment (meso-scale) and finally at the large scale. These tools include observations, process based models and more generalised Flood Impact Models. Issues of synchronisation and the design level of protection will be debated. By reworking observed rainfall and discharge (runoff) for observed extreme events in the River Eden and River Tyne, during Storm Desmond, we will show how much flood protection is needed in large scale basins. The research will thus pose a number of key questions as to how floods may have to be managed in large scale basins in the future. We will seek to support a method of catchment systems engineering that holds water back across the whole landscape as a major opportunity to management water

  9. Hydroclimatology of the Missouri River basin

    USGS Publications Warehouse

    Wise, Erika K.; Woodhouse, Connie A.; McCabe, Gregory; Pederson, Gregory T.; St. Jacques, Jeannine-Marie

    2018-01-01

    Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.

  10. Evaluation of potential effects of federal land management alternatives on trends of salmonids and their habitats in the interior Columbia River basin.

    Treesearch

    Bruce Rieman; James T. Peterson; James Clayton; Philip Howell; Russell Thurow; William Thompson; Danny Lee

    2001-01-01

    Aquatic species throughout the interior Columbia River basin are at risk. Evaluation of the potential effects of federal land management on aquatic ecosystems across this region is an important but challenging task. Issues include the size and complexity of the systems, uncertainty in important processes and existing states, flexibility and consistency in the...

  11. International river basins of the world

    USGS Publications Warehouse

    Wolf, Aaron T.; Natharius, Jeffrey A.; Danielson, Jeffrey J.; Ward, Brian S.; Pender, Jan K.

    1999-01-01

    It is becoming acknowledged that water is likely to be the most pressing environmental concern of the next century. Difficulties in river basin management are only exacerbated when the resource crosses international boundaries. One critical aid in the assessment of international waters has been the Register of International Rivers a compendium which listed 214 international waterways that cover 47% of the earth's continental land surface. The Register, though, was last updated in 1978 by the now defunct United Nations Department of Economic and Social Affairs. The purpose of this paper is to update the Register in order to reflect the quantum changes that have taken place over the last 22 years, both in global geopolitics and in map coverage and technology. By accessing digital elevation models at spatial resolutions of 30 arc seconds, corroborating at a unified global map coverage of at least 1:1 000 000, and superimposing the results over complete coverage of current political boundaries, we are able to provide a new register which lists 261 international rivers, covering 45.3% of the land surface of the earth (excluding Antarctica). This paper lists all international rivers with their watershed areas, the nations which share each watershed,their respective territorial percentages, and notes on changes in or disputes over international boundaries since 1978.

  12. Integration of research advances in modelling and monitoring in support of WFD river basin management planning in the context of climate change.

    PubMed

    Quevauviller, Philippe; Barceló, Damia; Beniston, Martin; Djordjevic, Slobodan; Harding, Richard J; Iglesias, Ana; Ludwig, Ralf; Navarra, Antonio; Navarro Ortega, Alícia; Mark, Ole; Roson, Roberto; Sempere, Daniel; Stoffel, Markus; van Lanen, Henny A J; Werner, Micha

    2012-12-01

    The integration of scientific knowledge about possible climate change impacts on water resources has a direct implication on the way water policies are being implemented and evolving. This is particularly true regarding various technical steps embedded into the EU Water Framework Directive river basin management planning, such as risk characterisation, monitoring, design and implementation of action programmes and evaluation of the "good status" objective achievements (in 2015). The need to incorporate climate change considerations into the implementation of EU water policy is currently discussed with a wide range of experts and stakeholders at EU level. Research trends are also on-going, striving to support policy developments and examining how scientific findings and recommendations could be best taken on board by policy-makers and water managers within the forthcoming years. This paper provides a snapshot of policy discussions about climate change in the context of the WFD river basin management planning and specific advancements of related EU-funded research projects. Perspectives for strengthening links among the scientific and policy-making communities in this area are also highlighted. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Spatial design principles for sustainable hydropower development in river basins

    DOE PAGES

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; ...

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatialmore » decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.« less

  14. Multisource Data-Based Integrated Agricultural Drought Monitoring in the Huai River Basin, China

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Zhang, Qiang; Wen, Qingzhi; Singh, Vijay P.; Shi, Peijun

    2017-10-01

    Drought monitoring is critical for early warning of drought hazard. This study attempted to develop an integrated remote sensing drought monitoring index (IRSDI), based on meteorological data for 2003-2013 from 40 meteorological stations and soil moisture data from 16 observatory stations, as well as Moderate Resolution Imaging Spectroradiometer data using a linear trend detection method, and standardized precipitation evapotranspiration index. The objective was to investigate drought conditions across the Huai River basin in both space and time. Results indicate that (1) the proposed IRSDI monitors and describes drought conditions across the Huai River basin reasonably well in both space and time; (2) frequency of drought and severe drought are observed during April-May and July-September. The northeastern and eastern parts of Huai River basin are dominated by frequent droughts and intensified drought events. These regions are dominated by dry croplands, grasslands, and highly dense population and are hence more sensitive to drought hazards; (3) intensified droughts are detected during almost all months except January, August, October, and December. Besides, significant intensification of droughts is discerned mainly in eastern and western Huai River basin. The duration and regions dominated by intensified drought events would be a challenge for water resources management in view of agricultural and other activities in these regions in a changing climate.

  15. Hydrological effects of cropland and climatic changes in arid and semi-arid river basins: A case study from the Yellow River basin, China

    NASA Astrophysics Data System (ADS)

    Li, Huazhen; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-06-01

    The Yellow River basin is a typical semi-arid river basin in northern China. Serious water shortages have negative impacts on regional socioeconomic development. Recent years have witnessed changes in streamflow processes due to increasing human activities, such as agricultural activities and construction of dams and water reservoirs, and climatic changes, e.g. precipitation and temperature. This study attempts to investigate factors potentially driving changes in different streamflow components defined by different quantiles. The data used were daily streamflow data for the 1959-2005 period from 5 hydrological stations, daily precipitation and temperature data from 77 meteorological stations and data pertaining to cropland and large reservoirs. Results indicate a general decrease in streamflow across the Yellow River basin. Moreover significant decreasing streamflow has been observed in the middle and lower Yellow River basin with change points during the mid-1980s till the mid-1990s. The changes of cropland affect the streamflow components and also the cumulative effects on streamflow variations. Recent years have witnessed moderate cropland variations which result in moderate streamflow changes. Further, precipitation also plays a critical role in changes of streamflow components and human activities, i.e. cropland changes, temperature changes and building of water reservoirs, tend to have increasing impacts on hydrological processes across the Yellow River basin. This study provides a theoretical framework for the study of the hydrological effects of human activities and climatic changes on basins over the globe.

  16. Water security evaluation in Yellow River basin

    NASA Astrophysics Data System (ADS)

    Jiang, Guiqin; He, Liyuan; Jing, Juan

    2018-03-01

    Water security is an important basis for making water security protection strategy, which concerns regional economic and social sustainable development. In this paper, watershed water security evaluation index system including 3 levels of 5 criterion layers (water resources security, water ecological security and water environment security, water disasters prevention and control security and social economic security) and 24 indicators were constructed. The entropy weight method was used to determine the weights of the indexes in the system. The water security index of 2000, 2005, 2010 and 2015 in Yellow River basin were calculated by linear weighting method based on the relative data. Results show that the water security conditions continue to improve in Yellow River basin but still in a basic security state. There is still a long way to enhance the water security in Yellow River basin, especially the water prevention and control security, the water ecological security and water environment security need to be promoted vigorously.

  17. Upper Colorado River Basin Climate Effects Network

    USGS Publications Warehouse

    Belnap, Jayne; Campbell, Donald; Kershner, Jeff

    2011-01-01

    The Upper Colorado River Basin (UCRB) Climate Effects Network (CEN) is a science team established to provide information to assist land managers in future decision making processes by providing a better understanding of how future climate change, land use, invasive species, altered fire cycles, human systems, and the interactions among these factors will affect ecosystems and the services they provide to human communities. The goals of this group are to (1) identify science needs and provide tools to assist land managers in addressing these needs, (2) provide a Web site where users can access information pertinent to this region, and (3) provide managers technical assistance when needed. Answers to the team's working science questions are intended to address how interactions among climate change, land use, and management practices may affect key aspects of water availability, ecosystem changes, and societal needs within the UCRB.

  18. Pawcatuck and Woonasquatucket River Basins and Narragansett Bay Local Drainage Area. Main Report.

    DTIC Science & Technology

    1981-10-01

    building and housing codes are recommended. Flood warning systems, urban renewal, tax incentives, and public open space acquisition will also help...RIVER GROUP WATERSHEDLD LOCAL DRAINAGE PD, WOONASQUATUCKET - MOSI4ASSUCK - PROVIDENCE RIVERS SUB-BASIN PD2 BLACKSTONE RIVER SUB-BASIN orPD 3 TENMiLE...of the Taunton River Basin in Massachusetts, 1979 PNB Water Supply Study, January 1979 Big River Reservoir Project, July 1981 Blackstone River

  19. Flood of September 18-19, 2004 in the Upper Delaware River Basin, New York

    USGS Publications Warehouse

    Brooks, Lloyd T.

    2005-01-01

    The interaction between the remnants of tropical depression Ivan and a frontal boundary in the upper Delaware River basin on September 18-19, 2004, produced 4 to more than 6 inches of rainfall over a 5-county area within a 24-hour period. Significant flooding occurred on the East Branch Delaware River and its tributaries, and the main stem of the Delaware River. The resultant flooding damaged more than 100 homes and displaced more than 1,000 people. All of the counties within the basin were declared Federal disaster areas, but flood damage in New York was most pronounced in Delaware, Orange, and Sullivan Counties. Flood damage totaled more than $10 million. Peak water-surface elevations at some study sites in the basin exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey (USGS) streamflow-gaging stations were the highest ever recorded.

  20. Watershed models for decision support in the Yakima River basin, Washington

    USGS Publications Warehouse

    Mastin, M.C.; Vaccaro, J.J.

    2002-01-01

    A Decision Support System (DSS) is being developed by the U.S. Geological Survey and the Bureau of Reclamation as part of a long-term project, the Watershed and River Systems Management Program. The goal of the program is to apply the DSS to U.S. Bureau of Reclamation projects in the western United States. The DSS was applied to the Reclamation's Yakima Project in the Yakima River Basin in eastern Washington. An important component of the DSS is the physical hydrology modeling. For the application to the Yakima River Basin, the physical hydrology component consisted of constructing four watershed models using the U.S. Geological Survey's Precipitation-Runoff Modeling System within the Modular Modeling System. The implementation of these models is described. To facilitate calibration of the models, mean annual streamflow also was estimated for ungaged subbasins. The models were calibrated for water years 1950-94 and tested for water years 1995-98. The integration of the models in the DSS for real-time water-management operations using an interface termed the Object User Interface is also described. The models were incorporated in the DSS for use in long-term to short-term planning and have been used in a real-time operational mode since water year 1999.

  1. Spatiotemporal classification of environmental monitoring data in the Yeongsan River basin, Korea, using self-organizing maps.

    PubMed

    Jin, Y-H; Kawamura, A; Park, S-C; Nakagawa, N; Amaguchi, H; Olsson, J

    2011-10-01

    Environmental monitoring data for planning, implementing and evaluating the Total Maximum Daily Loads (TMDL) management system have been measured at about 8-day intervals in a number of rivers in Korea since 2004. In the present study, water quality parameters such as Suspended Solids (SS), Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), Total Nitrogen (TN), and Total Phosphorus (TP) and the corresponding runoff were collected from six stations in the Yeongsan River basin for six years and transformed into monthly mean values. With the primary objective to understand spatiotemporal characteristics of the data, a methodologically systematic application of a Self-Organizing Map (SOM) was made. The SOM application classified the environmental monitoring data into nine clusters showing exclusively distinguishable patterns. Data frequency at each station on a monthly basis identified the spatiotemporal distribution for the first time in the study area. Consequently, the SOM application provided useful information that the sub-basin containing a metropolitan city is associated with deteriorating water quality and should be monitored and managed carefully during spring and summer for water quality improvement in the river basin.

  2. Selected basin characteristics and water-quality data of the Minnesota River basin

    USGS Publications Warehouse

    Winterstein, T.A.; Payne, G.A.; Miller, R.A.; Stark, J.R.

    1993-01-01

    Selected basin characteristics and water-quality dam for the Minnesota River Basin are presented in this report as 71 maps, 22 graphs, and 8 tables. The data were compiled as part of a four-year study to identify non-point sources of pollution and the effect of this pollution on water quality. The maps were prepared from geographic information system data bases. Federal, State, and local agencies, and colleges and universities collected and assembled these data as part of the Minnesota River Assessment Project.

  3. Water-level changes in the High Plains aquifer, Republican River Basin in Colorado, Kansas, and Nebraska, 2002 to 2015

    USGS Publications Warehouse

    McGuire, V.L.

    2016-12-29

    The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. More than 95 percent of the water withdrawn from the High Plains aquifer is used for irrigation. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). The Republican River Basin is 15.9 million acres (about 25,000 square miles) and is located in northeast Colorado, northern Kansas, and southwest Nebraska. The Republican River Basin overlies the High Plains aquifer for 87 percent of the basin area. Water-level declines had begun in parts of the High Plains aquifer within the Republican River Basin by 1964. In 2002, management practices were enacted in the Middle Republican Natural Resources District in Nebraska to comply with the Republican River Compact Final Settlement. The U.S. Geological Survey, in cooperation with the Middle Republican Natural Resources District, completed a study of water-level changes in the High Plains aquifer within the Republican River Basin from 2002 to 2015 to enable the Middle Republican Natural Resources District to assess the effect of the management practices, which were specified by the Republican River Compact Final Settlement. Water-level changes determined from this study are presented in this report.Water-level changes from 2002 to 2015 in the High Plains aquifer within the Republican River Basin, by well, ranged from a rise of 9.4 feet to a decline of 43.2 feet. The area-weighted, average water-level change from 2002 to 2015 in this part of the aquifer was a decline of 4.5 feet.

  4. Susquehanna River Basin Hydrologic Observing System (SRBHOS)

    NASA Astrophysics Data System (ADS)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.

    2004-12-01

    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested

  5. A stream temperature model for the Peace-Athabasca River basin

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  6. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  7. 77 FR 16558 - Yakima River Basin Conservation Advisory Group Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... on the structure and implementation of the Yakima River Basin Water Conservation Program. The basin... water conservation measures in the Yakima River basin. Improvements in the efficiency of water delivery and use will result in improved streamflows for fish and wildlife and improve the reliability of water...

  8. Problematising and conceptualising local participation in transboundary water resources management: The case of Limpopo river basin in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Fatch, Joanna J.; Manzungu, Emmanuel; Mabiza, Collin

    IWRM-led water reforms in southern Africa have emphasised the creation of new stakeholder institutions with little explanation of how they will operate at different levels, especially at the local level. A case in point is the subsidiarity principle, which advocates for water management to be undertaken at the lowest appropriate level. The main objective of the study was to investigate the conceptualisation and application of the subsidiarity principle in the Limpopo river basin in Zimbabwe. This was done by analysing how state-led frameworks at the regional, basin, national and local level provided for local participation. These frameworks were compared to a bottom-up approach based on action research in three second tier local government administrative units (wards) in Shashe subcatchment of Mzingwane catchment. The catchment represents the entirety of the Limpopo basin in Zimbabwe. Data collection was based on document reviews, key informants, focus group discussions and participatory observations. In general the top-down efforts were found to express intent but lacked appropriately conceptualised implementation guidelines. Views of local people regarding how they could meaningfully participate in transboundary water resource management were based on practical considerations rather than theoretical abstractions. This was shown by a different conceptualisation of stakeholder identification and representation, demarcation of boundaries, role of intermediate institutions, and direct participation of local people at the basin level. The paper concludes that a bottom-up institutional model can enhance the conceptualisation and application of the subsidiarity principle. It also provides evidence that prescriptive approaches may not be the best way to achieve participatory governance in transboundary water resource management.

  9. Hydrologic modeling of Guinale River Basin using HEC-HMS and synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Bien, Ferdinand E.; Plopenio, Joanaviva C.

    2017-09-01

    This paper presents the methods and results of hydrologic modeling of Guinale river basin through the use of HEC-HMS software and Synthetic Aperture Radar Digital Elevation Model (SAR DEM). Guinale River Basin is located in the province of Albay, Philippines which is one of the river basins covered by the Ateneo de Naga University (ADNU) Phil-LiDAR 1. This research project was funded by the Department of Science and Technology (DOST) through the Philippine Council for Industry, Energy and Emerging Technology Research and Development (PCIEERD). Its objectives are to simulate the hydrologic model of Guinale River basin using HEC-HMS software and SAR DEM. Its basin covers an area of 165.395 sq.km. and the hydrologic model was calibrated using the storm event typhoon Nona (international name Melor). Its parameter had undergone a series of optimization processes of HEC-HMS software in order to produce an acceptable level of model efficiency. The Nash-Sutcliffe (E), Percent Bias and Standard Deviation Ratio were used to measure the model efficiency, giving values of 0.880, 0.260 and 0.346 respectively which resulted to a "very good" performance rating of the model. The flood inundation model was simulated using Legazpi Rainfall Intensity Duration Frequency Curves (RIDF) and HEC-RAS software developed by the US Army corps of Engineers (USACE). This hydrologic model will provide the Municipal Disaster Risk Reduction Management Office (MDRRMO), Local Government units (LGUs) and the community a tool for the prediction of runoff in the area.

  10. Future Water Management in the South Platte River Basin: Impacts of Hydraulic Fracturing, Population, Agriculture, and Climate Change in a Semi-Arid Region.

    NASA Astrophysics Data System (ADS)

    Walker, E. L.; Hogue, T. S.; Anderson, A. M.; Read, L.

    2015-12-01

    In semi-arid basins across the world, the gap between water supply and demand is growing due to climate change, population growth, and shifts in agriculture and unconventional energy development. Water conservation efforts among residential and industrial water users, recycling and reuse techniques and innovative regulatory frameworks for water management strive to mitigate this gap, however, the extent of these strategies are often difficult to quantify and not included in modeling water allocations. Decision support systems (DSS) are purposeful for supporting water managers in making informed decisions when competing demands create the need to optimize water allocation between sectors. One region of particular interest is the semi-arid region of the South Platte River basin in northeastern Colorado, where anthropogenic and climatic effects are expected to increase the gap between water supply and demand in the near future. Specifically, water use in the South Platte is impacted by several high-intensity activities, including unconventional energy development, i.e. hydraulic fracturing, and large withdrawals for agriculture; these demands are in addition to a projected population increase of 100% by 2050. The current work describes the development of a DSS for the South Platte River basin, using the Water Evaluation and Planning system software (WEAP) to explore scenarios of how variation in future water use in the energy, agriculture, and municipal sectors will impact water allocation decisions. Detailed data collected on oil and gas water use in the Niobrara shale play will be utilized to predict future sector use. We also employ downscaled climate projections for the region to quantify the potential range of water availability in the basin under each scenario, and observe whether or not, and to what extent, climate may impact management decisions at the basin level.

  11. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    NASA Astrophysics Data System (ADS)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  12. Distributed Leadership in Drainage Basin Management: A Critical Analysis of ‘River Chief Policy’ from a Distributed Leadership Perspective

    NASA Astrophysics Data System (ADS)

    Zhang, Liuyi

    2018-02-01

    Water resources management has been more significant than ever since the official file stipulated ‘three red lines’ to scrupulously control water usage and water pollution, accelerating the promotion of ‘River Chief Policy’ throughout China. The policy launches creative approaches to include people from different administrative levels to participate and distributes power to increase drainage basin management efficiency. Its execution resembles features of distributed leadership theory, a vastly acknowledged western leadership theory with innovative perspective and visions to suit the modern world. This paper intends to analyse the policy from a distributed leadership perspective using Taylor’s critical policy analysis framework.

  13. Spatial and temporal variations of river nitrogen exports from major basins in China.

    PubMed

    Ti, Chaopu; Yan, Xiaoyuan

    2013-09-01

    Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km(-2) year(-1) in the Changjiang River basin, 107 to 223 kg N km(-2) year(-1) in the Huanghe River basin, and 412 to 1,219 kg N km(-2) year(-1) in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980-2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario.

  14. A field conference on Impacts of coalbed methane development in the Powder River basin, Wyoming

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Meyer, Joseph F.; Doll, Thomas E.; Norton, Pierce H.; Livingston, Robert J.; Jennings, M. Craig; Kinney, Scott; Mitchell, Heather; Dunn, Steve

    2001-01-01

    Coalbed methane (CBM) development from the Paleocene Fort Union Formation coal beds in the Powder River Basin in Wyoming has been rapidly expanding since 1993.  During the past ten years the number of CBM producing wells rose to about 4,000 wells as of October, 2000.  About 3,500 of these wells were completed since 1998.  About 13-14 percent of these CBM wells are on Federal lands while the majority are on State and private lands.  More than 50 percent of the lands in the Powder River Basin contains mineral rights owned by the Federal government.  CBM development on Federal lands creates impacts in the basin resulting from associated drilling, facilities, gas gathering systems (e.g., pipeline networks), access roads, and withdrawal and disposal of co-produced water from CBM wells.  The Bureau of Land Management (BLM) assesses the land-use management and impacts of drilling CBM wells on lands where mineral rights are controlled by the Federal government.

  15. Coal-bed methane discoveries in Powder River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matson, R.E.

    1991-06-01

    The Powder River basin of northeastern Wyoming and southeastern Montana contains the nation's largest supply of subbituminous coal. The coal beds have been mapped with surprising continuity, with thickness of individual beds exceeding 200 ft. The Paleocene Tongue River Member of the Fort Union Formation contains the bulk of the reserves. The coal near surface along the eastern part of the basin is subbituminous C, while in the deeper part and in the northwestern part of the basin the rank is subbituminous B or A. Commercial exploitation of methane in the Powder River was initiated by Wyatt Petroleum in themore » Recluse area north of Gillette in 1986. Early production was from sands occurring between major coal beds. Production directly from coal beds along the shallow eastern part of the Powder River basin was achieved by Betop Inc. in the Rawhide field a short distance north of Gillette in early 1989 from five wells. Fifteen additional wells were drilled and completed in the field in late 1990. Other shallow coal-bed methane production has been achieved from the same thick Wyodak coalbed nearby by Martins and Peck Operating, Wasatch Energy, and DCD Inc. Numerous deeper tests have been drilled and tested by various companies including Coastal Oil and Gas, Materi Exploration, Cenex, Gilmore Oil and Gas, and Betop Inc., none of which has attained commercial success. Recent exploration in the northwestern part of the basin has resulted in two apparent discoveries.« less

  16. A study of ecological red-line area partitioning in the Chishui River Basin in Guizhou

    NASA Astrophysics Data System (ADS)

    Yang, S. F.; An, Y. L.

    2016-08-01

    Maintaining ecosystem balance and realizing the strategic goal of sustainable development are key objectives in the field of environmental sciences. Accordingly, drawing ecological red lines in sensitive and vulnerable environmental areas and important ecological function areas, determining the distribution range of ecological red-line areas, providing scientific guidance for developmental activities, and effectively managing the ecological environment are significant work tasks supported by policy guidance from the State Council and from knowledge gained in educational circles. Taking the Chishui River Basin in Guizhou as the study object, this research selected water and soil loss sensitivity, as well as assessments of karst rocky desertification sensitivity as background assessments of the eco-environment. Furthermore, the functions of soil conservation, water conservation, and biodiversity protection were integrated with exploitation-prohibited areas, and an organic combination of ecological needs and social service functions was created. Spatial comprehensive overlay analysis and processing revealed that the combination marked nine major ecological red-line areas in a total area of 5,030.58 km2, which occupied 44.16% of the total basin area. By combining the current eco-environmental situation of the Chishui River Basin with the marked out red-line areas, this research proposed corresponding ecological red-line area management suggestions. These suggestions are expected to provide a scientific foundation for eco-environmental protection and subsequent scientific research in Chishui River Basin.

  17. Status and distribution of chinook salmon and steelhead in the interior Columbia River basin and portions of the Klamath River basin [Chapter 12

    Treesearch

    Russell F. Thurow; Danny C. Lee; Bruce E. Rieman

    2000-01-01

    This chapter summarizes information on presence, absence, current status, and probable historical distribution of steelhead Oncorhynchus mykiss and stream-type (age-1 migrant) and ocean type (age-0 migrant) chinook salmon O. tshawytscha in the interior Columbia River basin and portions of the Klamath River basin. Data were compiled from existing sources and via surveys...

  18. Educating for action: Aligning skills with policies for sustainable development in the Danube river basin.

    PubMed

    Irvine, Kenneth; Weigelhofer, Gabriele; Popescu, Ioana; Pfeiffer, Ellen; Păun, Andrei; Drobot, Radu; Gettel, Gretchen; Staska, Bernadette; Stanica, Adrian; Hein, Thomas; Habersack, Helmut

    2016-02-01

    Sustainable river basin management depends on knowledge, skills and education. The DANCERS project set out to identify feasible options for achieving education for sustainable water management across the Danube river basin, and its integration with broader education and economic development. The study traced the historic, regulatory and educational landscape of water management in the basin, contrasting it with the complex political decision-making, data-heavy decision support, learning-centred collaboration, and information-based participation that are all inherent components of Integrated Water Resource Management (IWRM). While there is a wide range of educational opportunities and mobility schemes available to individuals, there is no coherent network related to training in water management and sustainable development in the study region. Progress in addressing the multi-layered environmental challenges within the basin requires further aligning of economic, environmental and educational policies, advancing the EU Bologna Process across the region, and the development of dedicated training programmes that combine technical and relational skills. The DANCERS project identified key short and medium term needs for education and research to support progressive adoption of sustainable development, and the necessary dialogue across the public and private sectors to align policies. These include the development of new education networks for masters and PhD programmes, including joint programmes; improved access to technical training and life-long learning programmes for skills development; developing formalized and certified competency structures and associated accreditation of institutions where such skilled individuals work; and developing a co-ordinated research infrastructure and pan-basin programme for research for water management and sustainable development. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    NASA Astrophysics Data System (ADS)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2017-05-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  20. Causes of variations in water quality and aquatic ecology in rivers of the Upper Mississippi River Basin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Stark, James R.

    1996-01-01

    Physical and aquatic biological conditions differ among the Mississippi River and its major tributaries (the St. Croix and Minnesota Rivers) in Minnesota and Wisconsin. The quality of surface water and the ecological condition of rivers affect the ways in which we use them. The St. Croix River is used for recreation; the Mississippi River is used for recreation and is a corridor for commerce; and the Minnesota River primarily drains agricultural lands. Analysis of the environmental framework of the basins and water-quality and ecological information by the National Water-Quality Assessment (NAWQA) Program shows that the conditions of the rivers are a product of a combination of factors including climate, hydrology, geology, soils, land use, land cover, water management, and water use.

  1. Chinese mitten crab surveys of San Joaquin River basin and Suisun Marsh, California, 2000

    USGS Publications Warehouse

    May, Jason T.; Brown, Larry R.

    2001-01-01

    Juvenile Chinese mitten crabs (Eriocheir sinensis) are known to use both brackish and freshwater habitats as rearing areas. The objectives of this study were to examine the habitat use and potential effects of mitten crabs in the freshwater habitats of the San Joaquin River drainage up-stream of the Sacramento-San Joaquin Delta. After several unsuccessful attempts to catch or observe mitten crabs by trapping, electrofishing, and visual observations, the study was redirected to determine the presence of crabs in the San Joaquin River (in the vicinity of Mossdale) and Suisun Marsh. Monthly surveys using baited traps in the San Joaquin River were done from June through November 2000 and in the Suisun Marsh from August through October 2000. No mitten crabs were caught in the San Joaquin River Basin and only one mitten crab was caught in Suisun Marsh. Surveys were conducted at 92 locations in the San Joaquin River Basin by deploying 352 traps for 10,752 hours of trapping effort; in Suisun Marsh, 34 locations were investigated by deploying 150 traps for 3,600 hours of trapping effort. The baited traps captured a variety of organisms, including catfishes (Ictularidae), yellowfin gobies (Acantho-gobius flavimanus), and crayfish (Decapoda). It is unclear whether the failure to capture mitten crabs in the San Joaquin River Basin and Suisun Marsh was due to ineffective trapping methods, or repre-sents a general downward trend in populations of juvenile mitten crabs in these potential rearing areas or a temporary decline related to year-class strength. Available data (since 1998) on the number of mitten crabs entrained at federal and state fish salvage facilities indicate a downward trend in the number of crabs, which may indicate a declining trend in use of the San Joaquin River Basin by juvenile mitten crabs. Continued monitoring for juvenile Chinese mitten crabs in brackish and freshwater portions of the Sacramento-San Joaquin River Basins is needed to better assess the

  2. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2004-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  3. A Project for Developing an Original Methodology Intended for Determination of the River Basin/Sub-Basin Boundaries and Codes in Western Mediterranean Basin in Turkey with Perspective of European Union Directives

    NASA Astrophysics Data System (ADS)

    Gökgöz, Türkay; Ozulu, Murat; Erdoǧan, Mustafa; Seyrek, Kemal

    2016-04-01

    From the view of integrated river basin management, basin/sub-basin boundaries should be determined and encoded systematically with sufficient accuracy and precision. Today basin/sub-basin boundaries are mostly derived from digital elevation models (DEM) in geographic information systems (GIS). The accuracy and precision of the basin/sub-basin boundaries depend primarily on the accuracy and resolution of the DEMs. In this regard, in Turkey, a survey was made for the first time within the scope of this project to identify current situation, problems and needs in General Directorates of State Hydraulic Works, Water Management, Forestry, Meteorology, Combating Desertification and Erosion, which are the major institutions with responsibility and authority. Another factor that determines the accuracy and precision of basin/sub-basin boundaries is the flow accumulation threshold value to be determined at a certain stage according to a specific methodology in deriving the basin/sub-basin boundaries from DEM. Generally, in Turkey, either the default value given by GIS tool is used directly without any geomorphological, hydrological and cartographic bases or it is determined by trial and error. Although there is a system of catchments and rivers network at 1:250,000 scale and a proper method has already been developed on systematic coding of the basin by the General Directorate of State Hydraulic Works, it is stated that a new system of catchments, rivers network and coding at larger scale (i.e. 1:25,000) is needed. In short, the basin/sub-basin boundaries and codes are not available currently at the required accuracy and precision for the fulfilment of the obligations described in European Union (EU) Water Framework Directive (WFD). In this case, it is clear that there is not yet any methodology to obtain such products. However, a series of projects should be completed such that the basin/sub-basin boundaries and codes are the fundamental data infrastructure. This task

  4. The Saskatchewan River Basin - a large scale observatory for water security research (Invited)

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.

    2013-12-01

    The 336,000 km2 Saskatchewan River Basin (SaskRB) in Western Canada illustrates many of the issues of Water Security faced world-wide. It poses globally-important science challenges due to the diversity in its hydro-climate and ecological zones. With one of the world's more extreme climates, it embodies environments of global significance, including the Rocky Mountains (source of the major rivers in Western Canada), the Boreal Forest (representing 30% of Canada's land area) and the Prairies (home to 80% of Canada's agriculture). Management concerns include: provision of water resources to more than three million inhabitants, including indigenous communities; balancing competing needs for water between different uses, such as urban centres, industry, agriculture, hydropower and environmental flows; issues of water allocation between upstream and downstream users in the three prairie provinces; managing the risks of flood and droughts; and assessing water quality impacts of discharges from major cities and intensive agricultural production. Superimposed on these issues is the need to understand and manage uncertain water futures, including effects of economic growth and environmental change, in a highly fragmented water governance environment. Key science questions focus on understanding and predicting the effects of land and water management and environmental change on water quantity and quality. To address the science challenges, observational data are necessary across multiple scales. This requires focussed research at intensively monitored sites and small watersheds to improve process understanding and fine-scale models. To understand large-scale effects on river flows and quality, land-atmosphere feedbacks, and regional climate, integrated monitoring, modelling and analysis is needed at large basin scale. And to support water management, new tools are needed for operational management and scenario-based planning that can be implemented across multiple scales and

  5. How to allocate water resources under climate change in the arid endorheic river basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Feng, D.; Tian, Y.; Zheng, Y.

    2017-12-01

    Water resource is of fundamental importance to the society and ecosystem in arid endorheic river basins, and water-use conflicts between upstream and downstream are usually significant. Heihe river basin (HRB) is the second largest endorheic river basin in china, which is featured with dry climate, intensively irrigated farmlands in oases and significant surface water-groundwater interaction. The irrigation districts in the middle HRB consume a large portion of the river flow, and the low HRB, mainly Gobi Desert, has an extremely vulnerable ecological environment. The water resources management has significantly altered the hydrological processes in HRB, and is now facing multiple challenges, including decline of groundwater table in the middle HRB, insufficient environmental flow for the lower HRB. Furthermore, future climate change adds substantial uncertainty to the water system. Thus, it is imperative to have a sustainable water resources management in HRB in order to tackle the existing challenges and future uncertainty. Climate projection form a dynamical downscaled climate change scenario shows precipitation will increase at a rate of approximately 3 millimeter per ten years and temperature will increase at a rate of approximately 0.2 centigrade degree per ten years in the following 50 years in the HRB. Based on an integrated ecohydrological model, we evaluated how the climate change and agricultural development would collaboratively impact the water resources and ecological health in the middle and lower HRB, and investigated how the water management should cope with the complex impact.

  6. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...

  7. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...

  8. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...

  9. Recent Trends in the Ebro River Basin: Is It All "Just" Climate Change?

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie; Merz, Ralf

    2016-04-01

    Water resources are under pressure from a variety of stressors such as industry, agriculture, water abstraction or pollution. Changing climate can potentially enhance the impact of these stressors, especially under water scarcity conditions. The aim of the GLOBAQUA project ("Managing the effects of multiple stressors on aquatic ecosystems under water scarcity") is, therefore, to analyze the combined effect of multiple stressors in the context of increasing water scarcity. As part of the GLOBAQUA project, this study examines recent trends in climate, water quantity and quality parameters in the Ebro River Basin in Northern Spain to identify stressors and determine their joint impact on water resources. Mann-Kendall trend analyses of temperature, precipitation, streamflow, groundwater level, streamwater and groundwater quality data (spanning between 15 and 40 years) were performed. Moreover, anthropogenic pressures such as land use and alteration of natural flow by reservoirs were considered. Climate data indicate increasing temperatures in the Ebro River Basin especially in summer and autumn, and decreasing precipitation particularly in summer. In contrast, precipitation mostly shows upwards trends in autumn, but these are counterbalanced by greater evapotranspiration due to higher temperatures. Overall, this results in annual and seasonal streamflow decreases at the majority of gauging stations. Declining trends in streamflow are most pronounced during summer and are also observed in subbasins without reservoirs. Diminishing water resources become also apparent in generally decreasing groundwater levels in the Ebro River Basin. This decrease is most pronounced in areas where groundwater serves as main origin for irrigation water, which demonstrates how land use acts as a local rather than regional driver of change. Increasing air temperatures correlate with increasing water temperatures over the past 30 years, which indicates the effect of changing climate on water

  10. Residence times in river basins as determined by analysis of long-term tritium records

    USGS Publications Warehouse

    Michel, R.L.

    1992-01-01

    The US Geological Survey has maintained a network of stations to collect samples for the measurement of tritium concentrations in precipitation and streamflow since the early 1960s. Tritium data from outflow waters of river basins draining 4500-75000 km2 are used to determine average residence times of water within the basins. The basins studied are the Colorado River above Cisco, Utah; the Kissimmee River above Lake Okeechobee, Florida; the Mississippi River above Anoka, Minnesota; the Neuse River above Streets Ferry Bridge near Vanceboro, North Carolina; the Potomac River above Point of Rocks, Maryland; the Sacramento River above Sacramento, California; the Susquehanna River above Harrisburg, Pennsylvania. The basins are modeled with the assumption that the outflow in the river comes from two sources-prompt (within-year) runoff from precipitation, and flow from the long-term reservoirs of the basin. Tritium concentration in the outflow water of the basin is dependent on three factors: (1) tritium concentration in runoff from the long-term reservoir, which depends on the residence time for the reservoir and historical tritium concentrations in precipitation; (2) tritium concentrations in precipitation (the within-year runoff component); (3) relative contributions of flow from the long-term and within-year components. Predicted tritium concentrations for the outflow water in the river basins were calculated for different residence times and for different relative contributions from the two reservoirs. A box model was used to calculate tritium concentrations in the long-term reservoir. Calculated values of outflow tritium concentrations for the basin were regressed against the measured data to obtain a slope as close as possible to 1. These regressions assumed an intercept of zero and were carried out for different values of residence time and reservoir contribution to maximize the fit of modeled versus actual data for all the above rivers. The final slopes of the

  11. Anthropogenic impacts on hydrology of Karkheh River Basin

    NASA Astrophysics Data System (ADS)

    Ashraf, B.; Aghakouchak, A.; Alizadeh, A.; Mousavi Baygi, M.

    2015-12-01

    The Karkheh River Basin (KRB) in southwest Iran is a key region for agriculture and energy production. KRB has high human-induced water demand and suffers from low water productivity. The future of the KRB and its growth clearly relies on sustainable water resources and hence, requires a holistic, basin-wide management and monitoring of natural resources (water, soil, vegetation, livestock, etc.). The KRB has dry regions in which water scarcity is a major challenge. In this study, we investigate changes in the hydrology of the basin during the past three decades including human-induced alterations of the system. We evaluate climatic variability, agricultural water use, land cover change and agriculture production. In this reaserch, we have developed a simple indicator for quantifying human influence on the hydrologic cycle. The results show that KRB's hydrology is significantly dominated by human activities. The anthropogenic water demand has increased substantially caused by growth in agriculture industry. In fact, the main reason for water scarcity in the region appears to be due to the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades. Our results show that continued growth in the region is not sustainable without considering major changes in water use efficiency, land cover management and water productivity.

  12. The Cauvery river basin in southern India: major challenges and possible solutions in the 21st century.

    PubMed

    Vanham, D; Weingartner, R; Rauch, W

    2011-01-01

    India is facing major challenges in its water resources management (WRM) sector. Water shortages are attributed to issues such as an explosion in population, rapid urbanization and industrialization, environmental degradation and inefficient water use, all aggravated by changing climate and its impacts on demand, supply and water quality. This paper focuses on the contemporary and future situation in the Cauvery river basin in Southern India, shared by different states, predominantly Karnataka and Tamil Nadu. As water issues largely fall under the authority of the states, inter-state water disputes have a long tradition in the Cauvery river basin. Future changes in precipitation during the two monsoon seasons will only increase these tensions. Both states depend on the arrival of these monsoon rains to water their crops and to replenish the groundwater. The paper identifies the major challenges and general possible solutions for sustainable WRM within the river basin. It synthesises the relevant literature, describes practices that should be addressed in the scope of integrated WRM--including water availability increase and demand management--and stresses the need for further quantitative analyses.

  13. Water resources of the River Rouge basin southeastern Michigan

    USGS Publications Warehouse

    Knutilla, R.L.

    1971-01-01

    The River Rouge basin is characterized by moderately hilly topography to the northwest graduating to a relatively level land surface to the south east.Stream gradients near the northwestern basin divide are relatively steep; but many become more steep in reaches where they cross beach lines of former glacial lakes. In the lower reaches of the River Rouge gradients lessen.

  14. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Wu, Feng; Zhang, Qian

    Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers' decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers' response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.

  15. Geohydrologic summary of the Pearl River basin, Mississippi and Louisiana

    USGS Publications Warehouse

    Lang, Joseph W.

    1972-01-01

    little or no treatment for most uses. The water is a soft, sodium bicarbonate type and therefore has a low to moderate dissolved-solids content. Mineral content increases generally downdip in an aquifer. Excessive iron, common in shallow aquifers, is objectionable for some water uses. Water from the streams, except in salty tidal reaches, is less mineralized than ground water; in 10 sites the median dissolved-solids content in streamflow was 50 milligrams per liter or less. Moderately intensive ground-water development has been made in the Bogalusa area, Louisiana; at the Mississippi Test Facility, Hancock County, Miss. ; and in the Jackson area, Mississippi. Wells with pumping rates of 500 to 1,000 gallons per minute each are common throughout the Pearl River basin, and some deep wells flow more than 3,000 gallons per minute in the coastal lowland areas. Probably 20 million gallons per day of artesian water flows uncontrolled from wells in the southern part of the basin. Ground-water levels, except in the higher altitudes, are within 60 feet of the surface, and flowing wells are common in the valleys and in the coastal Pine Meadows. Decline of water level is a problem in only a few small areas. Saline water as a resource is available for development from aquifers and streams near the coast and from aquifers at considerable depth in most of the Pearl River basin. Pollution is a problem in oil fields and in reaches of some streams below sewage and other waste-disposal points. The basin estuary contains water of variable quality but has potential for certain water-use developments that will require special planning and management.

  16. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    USGS Publications Warehouse

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  17. Quantitative analysis of the effect of climate change and human activities on runoff in the Liujiang River Basin

    NASA Astrophysics Data System (ADS)

    LI, X.

    2017-12-01

    Abstract: As human basic and strategic natural resources, Water resources have received an unprecedented challenge under the impacts of global climate change. Analyzing the variation characteristics of runoff and the effect of climate change and human activities on runoff could provide the basis for the reasonable utilization and management of water resources. Taking the Liujiang River Basin as the research object, the discharge data of hydrological station and meteorological data at 24 meteorological stations in the Guangxi Province as the basis, the variation characteristics of runoff and precipitation in the Liujiang River Basin was analyzed, and the quantitatively effect of climate change and human activities on runoff was proposed. The results showed that runoff and precipitation in the Liujiang River Basin had an increasing trend from 1964 to 2006. Using the method of accumulative anomaly and the orderly cluster method, the runoff series was divided into base period and change period. BP - ANN model and sensitivity coefficient method were used for quantifying the influences of climate change and human activities on runoff. We found that the most important factor which caused an increase trend of discharges in the Liujiang River Basin was precipitation. Human activities were also important factors which influenced the intra-annual distribution of runoff. Precipitation had a more sensitive influence to runoff variation than potential evaporation in the Liujiang River Basin. Key words: Liujiang River Basin, climate change, human activities, BP-ANN, sensitivity coefficient method

  18. Drainage areas of the Potomac River basin, West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Hunt, Michelle L.; Stewart, Donald K.

    1996-01-01

    This report contains data for 776 drainage-area divisions of the Potomac River Basin, from the headwaters to the confluence of the Potomac River and the Shenandoah River. Data, compiled in downstream order, are listed for streams with a drainage area of approximately 2 square miles or larger within West Virginia and for U.S. Geological Survey streamflow-gaging stations. The data presented are the stream name, the geographical limits in river miles, the latitude and longitude of the point, the name of the county, and the 7 1/2-minute quadrangle in which the point lies, and the drainage area of that site. The total drainage area of the Potomac River Basin downstream of the confluence of the Shenandoah River at the State boundary is 9,367.29 square miles.

  19. The Transboundary Waters Assessment Programme (TWAP) River Basin Component Methods and Results

    NASA Astrophysics Data System (ADS)

    de Sherbinin, A. M.; Glennie, P.

    2014-12-01

    The Transboundary Waters Assessment Programme (TWAP) was initiated by the Global Environment Facility (GEF) to create the first baseline assessment of all of the planet's transboundary water resources. The TWAP River Basin component consists of a baseline comparative assessment of 270 transboundary river basins, including all but the smallest basins, to enable the identification of priority issues and hotspots at risk from a variety of stressors. The assessment is indicator based and it is intended to provide a relative analysis of basins based on risks to societies and ecosystems. Models and observational data have been used to create 14 indicators covering environmental, human and agricultural water stress; nutrient and wastewater pollution; extinction risk; governance and institutions; economic dependence on water resources; societal wellbeing at sub-basin scales; and societal risks from climate extremes. The methodology is not limited to transboundary basins, but can be applied to all river basins. This presentation will provide a summary of the methods and results of the TWAP River Basin component. It will also briefly discuss preliminary results of the TWAP lakes and aquifer components.

  20. Installation of a groundwater monitoring-well network on the east side of the Uncompahgre River in the Lower Gunnison River Basin, Colorado, 2014

    USGS Publications Warehouse

    Thomas, Judith C.

    2015-10-07

    The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Thirty wells total were installed for this project: 10 in 2012 (DS 923, http://dx.doi.org/10.3133/ds923), and 20 monitoring wells were installed during April and June 2014 which are presented in this report. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system can provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.

  1. Long-term accumulation and transport of anthropogenic phosphorus in three river basins

    NASA Astrophysics Data System (ADS)

    Powers, Stephen M.; Bruulsema, Thomas W.; Burt, Tim P.; Chan, Neng Iong; Elser, James J.; Haygarth, Philip M.; Howden, Nicholas J. K.; Jarvie, Helen P.; Lyu, Yang; Peterson, Heidi M.; Sharpley, Andrew N.; Shen, Jianbo; Worrall, Fred; Zhang, Fusuo

    2016-05-01

    Global food production depends on phosphorus. Phosphorus is broadly applied as fertilizer, but excess phosphorus contributes to eutrophication of surface water bodies and coastal ecosystems. Here we present an analysis of phosphorus fluxes in three large river basins, including published data on fertilizer, harvested crops, sewage, food waste and river fluxes. Our analyses reveal that the magnitude of phosphorus accumulation has varied greatly over the past 30-70 years in mixed agricultural-urban landscapes of the Thames Basin, UK, the Yangtze Basin, China, and the rural Maumee Basin, USA. Fluxes of phosphorus in fertilizer, harvested crops, food waste and sewage dominate over the river fluxes. Since the late 1990s, net exports from the Thames and Maumee Basins have exceeded inputs, suggesting net mobilization of the phosphorus pool accumulated in earlier decades. In contrast, the Yangtze Basin has consistently accumulated phosphorus since 1980. Infrastructure modifications such as sewage treatment and dams may explain more recent declines in total phosphorus fluxes from the Thames and Yangtze Rivers. We conclude that human-dominated river basins may undergo a prolonged but finite accumulation phase when phosphorus inputs exceed agricultural demand, and this accumulated phosphorus may continue to mobilize long after inputs decline.

  2. National Water-Quality Assessment Program; the Allegheny-Monongahela River Basin

    USGS Publications Warehouse

    McAuley, Steven D.

    1995-01-01

    In 1991, the U.S. Geological Survey (USGS) began a National Water-Quality Assessment (NAWQA) program. The three major objectives of the NAWQA program are to provide a consistent description of current water-quality conditions for a large part of the Nation's water resources, define long-term trends in water quality, and identify, describe, and explain the major factors that affect water-quality conditions and trends. The program produces water-quality information that is useful to policy makers and managers at the National, State, and local levels.The program will be implemented through 60 separate investigations of river basins and aquifer systems called study units. These study-unit investigations will be conducted at the State and local level and will form the foundation on which national- and regional-level assessments are based. The 60 study units are hydrologic systems that include parts of most major river basins and aquifer systems. The study-unit areas range from 1,000 to more than 60,000 square miles and include about 60 to 70 percent of the Nation's water use and population served by public water supplies. Twenty studyunit investigations were started in 1991, 20 started in 1994, and 20 more are planned to start in 1997. The Allegheny-Monongahela River Basin was selected to begin assessment activities as a NAWQA study unit in 1994. The study team will work from the office of the USGS in Pittsburgh, Pa.

  3. Water Budget Closure Based on GRACE Measurements and Reconstructed Evapotranspiration Using GLDAS and Water Use Data over the Yellow River and Changjiang River Basins

    NASA Astrophysics Data System (ADS)

    Lv, M.; Ma, Z.; Yuan, X.

    2017-12-01

    It is important to evaluate the water budget closure on the basis of the currently available data including precipitation, evapotranspiration (ET), runoff, and GRACE-derived terrestrial water storage change (TWSC) before using them to resolve water-related issues. However, it remains challenging to achieve the balance without the consideration of human water use (e.g., inter-basin water diversion and irrigation) for the estimation of other water budget terms such as the ET. In this study, the terrestrial water budget closure is tested over the Yellow River Basin (YRB) and Changjiang River Basin (CJB, Yangtze River Basin) of China. First, the actual ET is reconstructed by using the GLDAS-1 land surface models, the high quality observation-based precipitation, naturalized streamflow, and the irrigation water (hereafter, ETrecon). The ETrecon, evaluated using the mean annual water-balance equation, is of good quality with the absolute relative errors less than 1.9% over the two studied basins. The total basin discharge (Rtotal) is calculated as the residual of the water budget among the observation-based precipitation, ETrecon, and the GRACE-TWSC. The value of the Rtotal minus the observed total basin discharge is used to evaluate the budget closure, with the consideration of inter-basin water diversion. After the ET reconstruction, the mean absolute imbalance value reduced from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year over the YRB and CJB, respectively. The estimation-to-observation ratios of total basin discharge improved from 180.8% to 86.8% over the YRB, and from 67.0% to 101.1% over the CJB. The proposed ET reconstruction method is applicable to other human-managed river basins to provide an alternative estimation.

  4. 18 CFR 701.209 - River basin commissions and field committees.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false River basin commissions and field committees. 701.209 Section 701.209 Conservation of Power and Water Resources WATER... field committees. (a) River basin commissions established pursuant to Title II of the Water Resources...

  5. 18 CFR 701.209 - River basin commissions and field committees.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false River basin commissions and field committees. 701.209 Section 701.209 Conservation of Power and Water Resources WATER... field committees. (a) River basin commissions established pursuant to Title II of the Water Resources...

  6. 18 CFR 701.209 - River basin commissions and field committees.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false River basin commissions and field committees. 701.209 Section 701.209 Conservation of Power and Water Resources WATER... field committees. (a) River basin commissions established pursuant to Title II of the Water Resources...

  7. 18 CFR 701.209 - River basin commissions and field committees.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false River basin commissions and field committees. 701.209 Section 701.209 Conservation of Power and Water Resources WATER... field committees. (a) River basin commissions established pursuant to Title II of the Water Resources...

  8. 18 CFR 701.209 - River basin commissions and field committees.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true River basin commissions and field committees. 701.209 Section 701.209 Conservation of Power and Water Resources WATER... field committees. (a) River basin commissions established pursuant to Title II of the Water Resources...

  9. Selected economic and demographic data for counties of the interior Columbia River Basin.

    Treesearch

    Wendy J. McGinnis

    1996-01-01

    A variety of county data have been assembled in support of the Interior Columbia River Basin Ecosystem Management Project. This research note is an effort to make some of the basic demographic and economic data available to the public for the counties involved in the assessment.

  10. Environmental and hydrologic overview of the Yukon River basin, Alaska and Canada

    USGS Publications Warehouse

    Brabets, Timothy P.; Wang, Bronwen; Meade, Robert H.

    2000-01-01

    The Yukon River, located in northwestern Canada and central Alaska, drains an area of more than 330,000 square miles, making it the fourth largest drainage basin in North America. Approximately 126,000 people live in this basin and 10 percent of these people maintain a subsistence lifestyle, depending on the basin's fish and game resources. Twenty ecoregions compose the Yukon River Basin, which indicates the large diversity of natural features of the watershed, such as climate, soils, permafrost, and geology. Although the annual mean discharge of the Yukon River near its mouth is more than 200,000 cubic feet per second, most of the flow occurs in the summer months from snowmelt, rainfall, and glacial melt. Eight major rivers flow into the Yukon River. Two of these rivers, the Tanana River and the White River, are glacier-fed rivers and together account for 29 percent of the total water flow of the Yukon. Two others, the Porcupine River and the Koyukuk River, are underlain by continuous permafrost and drain larger areas than the Tanana and the White, but together contribute only 22 percent of the total water flow in the Yukon. At its mouth, the Yukon River transports about 60 million tons of suspended sediment annually into the Bering Sea. However, an estimated 20 million tons annually is deposited on flood plains and in braided reaches of the river. The waters of the main stem of the Yukon River and its tributaries are predominantly calcium magnesium bicarbonate waters with specific conductances generally less than 400 microsiemens per centimeter. Water quality of the Yukon River Basin varies temporally between summer and winter. Water quality also varies spatially among ecoregions

  11. Using spatial information technologies as monitoring devices in international watershed conservation along the Senegal River Basin of West Africa.

    PubMed

    Merem, Edmund C; Twumasi, Yaw A

    2008-12-01

    In this paper, we present the applications of spatial technologies-Geographic Information Systems (GIS) and remote sensing-in the international monitoring of river basins particularly analyzing the ecological, hydrological, and socio-economic issues along the Senegal River. The literature on multinational water crisis has for decades focused on mediation aspects of trans-boundary watershed management resulting in limited emphasis placed on the application of advances in geo-spatial information technologies in multinational watershed conservation in the arid areas of the West African sub-region within the Senegal River Basin for decision-making and monitoring. While the basin offers life support in a complex ecosystem that stretches across different nations in a mostly desert region characterized by water scarcity and subsistence economies, there exists recurrent environmental stress induced by both socio-economic and physical factors. Part of the problems consists of flooding, drought and limited access to sufficient quantities of water. These remain particularly sensitive issues that are crucial for the health of a rapidly growing population and the economy. The problems are further compounded due to the threats of climate change and the resultant degradation of almost the region's entire natural resources base. While the pace at which the institutional framework for managing the waters offers opportunities for hydro electricity and irrigated agriculture through the proliferation of dams, it has raised other serious concerns in the region. Even where data exists for confronting these issues, some of them are incompatible and dispersed among different agencies. This not only widens the geo-spatial data gaps, but it hinders the ability to monitor water problems along the basin. This study will fill that gap in research through mix scale methods built on descriptive statistics, GIS and remote sensing techniques by generating spatially referenced data to supplement

  12. Using Spatial Information Technologies as Monitoring Devices in International Watershed Conservation along the Senegal River Basin of West Africa

    PubMed Central

    Merem, Edmund C.; Twumasi, Yaw A.

    2008-01-01

    In this paper, we present the applications of spatial technologies—Geographic Information Systems (GIS) and remote sensing—in the international monitoring of river basins particularly analyzing the ecological, hydrological, and socio-economic issues along the Senegal River. The literature on multinational water crisis has for decades focused on mediation aspects of trans-boundary watershed management resulting in limited emphasis placed on the application of advances in geo-spatial information technologies in multinational watershed conservation in the arid areas of the West African sub-region within the Senegal River Basin for decision-making and monitoring. While the basin offers life support in a complex ecosystem that stretches across different nations in a mostly desert region characterized by water scarcity and subsistence economies, there exists recurrent environmental stress induced by both socio-economic and physical factors. Part of the problems consists of flooding, drought and limited access to sufficient quantities of water. These remain particularly sensitive issues that are crucial for the health of a rapidly growing population and the economy. The problems are further compounded due to the threats of climate change and the resultant degradation of almost the region’s entire natural resources base. While the pace at which the institutional framework for managing the waters offers opportunities for hydro electricity and irrigated agriculture through the proliferation of dams, it has raised other serious concerns in the region. Even where data exists for confronting these issues, some of them are incompatible and dispersed among different agencies. This not only widens the geo-spatial data gaps, but it hinders the ability to monitor water problems along the basin. This study will fill that gap in research through mix scale methods built on descriptive statistics, GIS and remote sensing techniques by generating spatially referenced data to

  13. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    USGS Publications Warehouse

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  14. Chloride control and monitoring program in the Wichita River Basin, Texas, 1996-2009

    USGS Publications Warehouse

    Haynie, M.M.; Burke, G.F.; Baldys, Stanley

    2011-01-01

    Water resources of the Wichita River Basin in north-central Texas are vital to the water users in Wichita Falls, Tex., and surrounding areas. The Wichita River Basin includes three major forks of the Wichita River upstream from Lake Kemp, approximately 50 miles southwest of Wichita Falls, Tex. The main stem of the Wichita River is formed by the confluence of the North Wichita River and Middle Fork Wichita River upstream from Truscott Brine Lake. The confluence of the South Wichita River with the Wichita River is northwest of Seymour, Tex. (fig. 1). Waters from the Wichita River Basin, which is part of the Red River Basin, are characterized by high concentrations of chloride and other salinity-related constituents from salt springs and seeps (hereinafter salt springs) in the upper reaches of the basin. These salt springs have their origins in the Permian Period when the Texas Panhandle and western Oklahoma areas were covered by a broad shallow sea. Over geologic time, evaporation of the shallow seas resulted in the formation of salt deposits, which today are part of the geologic formations underlying the area. Groundwater in these formations is characterized by high chloride concentrations from these salt deposits, and some of this groundwater is discharged by the salt springs into the Wichita River.

  15. Evaluation of Ensemble Water Supply and Demands Forecasts for Water Management in the Klamath River Basin

    NASA Astrophysics Data System (ADS)

    Broman, D.; Gangopadhyay, S.; McGuire, M.; Wood, A.; Leady, Z.; Tansey, M. K.; Nelson, K.; Dahm, K.

    2017-12-01

    The Upper Klamath River Basin in south central Oregon and north central California is home to the Klamath Irrigation Project, which is operated by the Bureau of Reclamation and provides water to around 200,000 acres of agricultural lands. The project is managed in consideration of not only water deliveries to irrigators, but also wildlife refuge water demands, biological opinion requirements for Endangered Species Act (ESA) listed fish, and Tribal Trust responsibilities. Climate change has the potential to impact water management in terms of volume and timing of water and the ability to meet multiple objectives. Current operations use a spreadsheet-based decision support tool, with water supply forecasts from the National Resources Conservation Service (NRCS) and California-Nevada River Forecast Center (CNRFC). This tool is currently limited in its ability to incorporate in ensemble forecasts, which offer the potential for improved operations by quantifying forecast uncertainty. To address these limitations, this study has worked to develop a RiverWare based water resource systems model, flexible enough to use across multiple decision time-scales, from short-term operations out to long-range planning. Systems model development has been accompanied by operational system development to handle data management and multiple modeling components. Using a set of ensemble hindcasts, this study seeks to answer several questions: A) Do a new set of ensemble streamflow forecasts have additional skill beyond what?, and allow for improved decision making under changing conditions? B) Do net irrigation water requirement forecasts developed in this project to quantify agricultural demands and reservoir evaporation forecasts provide additional benefits to decision making beyond water supply forecasts? C) What benefit do ensemble forecasts have in the context of water management decisions?

  16. Updated estimates of long-term average dissolved-solids loading in streams and rivers of the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating over 4.5 million acres of farmland, and annually generating about 12 billion kilowatt hours of hydroelectric power. The Upper Colorado River Basin, part of the Colorado River Basin, encompasses more than 110,000 mi2 and is the source of much of more than 9 million tons of dissolved solids that annually flows past the Hoover Dam. High dissolved-solids concentrations in the river are the cause of substantial economic damages to users, primarily in reduced agricultural crop yields and corrosion, with damages estimated to be greater than 300 million dollars annually. In 1974, the Colorado River Basin Salinity Control Act created the Colorado River Basin Salinity Control Program to investigate and implement a broad range of salinity control measures. A 2009 study by the U.S. Geological Survey, supported by the Salinity Control Program, used the Spatially Referenced Regressions on Watershed Attributes surface-water quality model to examine dissolved-solids supply and transport within the Upper Colorado River Basin. Dissolved-solids loads developed for 218 monitoring sites were used to calibrate the 2009 Upper Colorado River Basin Spatially Referenced Regressions on Watershed Attributes dissolved-solids model. This study updates and develops new dissolved-solids loading estimates for 323 Upper Colorado River Basin monitoring sites using streamflow and dissolved-solids concentration data through 2012, to support a planned Spatially Referenced Regressions on Watershed Attributes modeling effort that will investigate the contributions to dissolved-solids loads from irrigation and rangeland practices.

  17. Lake Murray, Fly and Strickland River Basins, Papua, New Guinea

    NASA Image and Video Library

    1991-12-01

    Lake Murray, a manmade reservoir, lies between the Fly and Strickland River Basins, Papua, New Guinea (7.0S, 141.5E). The region, photographed in sunglint, shows the water level in the reservoir and the full extent of the drainage basins of both river systems as the rivers meander through wide alluvial floodplains. Some forest clearing can be seen in places throughout the region, but most of the area remains in closed canopy forest.

  18. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam of...

  19. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam of...

  20. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  1. Using multi-objective robust decision making to support seasonal water management in the Chao Phraya River basin, Thailand

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Jessen, Oluf; Madsen, Henrik

    2016-04-01

    A multi-objective robust decision making approach is demonstrated that supports seasonal water management in the Chao Phraya River basin in Thailand. The approach uses multi-objective optimization to identify a Pareto-optimal set of management alternatives. Ensemble simulation is used to evaluate how each member of the Pareto set performs under a range of uncertain future conditions, and a robustness criterion is used to select a preferred alternative. Data mining tools are then used to identify ranges of uncertain factor values that lead to unacceptable performance for the preferred alternative. The approach is compared to a multi-criteria scenario analysis approach to estimate whether the introduction of additional complexity has the potential to improve decision making. Dry season irrigation in Thailand is managed through non-binding recommendations about the maximum extent of rice cultivation along with incentives for less water-intensive crops. Management authorities lack authority to prevent river withdrawals for irrigation when rice cultivation exceeds recommendations. In practice, this means that water must be provided to irrigate the actual planted area because of downstream municipal water supply requirements and water quality constraints. This results in dry season reservoir withdrawals that exceed planned withdrawals, reducing carryover storage to hedge against insufficient wet season runoff. The dry season planning problem in Thailand can therefore be framed in terms of decisions, objectives, constraints, and uncertainties. Decisions include recommendations about the maximum extent of rice cultivation and incentives for growing less water-intensive crops. Objectives are to maximize benefits to farmers, minimize the risk of inadequate carryover storage, and minimize incentives. Constraints include downstream municipal demands and water quality requirements. Uncertainties include the actual extent of rice cultivation, dry season precipitation, and

  2. Soil erosion assessment of a Himalayan river basin using TRMM data

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Mishra, S. K.; Gautam, A. K.; Kumar, D.

    2015-04-01

    In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha-1 h-1 year-1. Using intensity-erosivity relationships and eight years of the TRMM daily rainfall dataset (1998-2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha-1 h-1 year-1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha-1 year-1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha-1 year-1), Moderate (5 to 10 t ha-1 year-1), High (10 to 20 t ha-1 year-1), Very High (20 to 40 t ha-1 year-1), Severe (40 to 80 t ha-1 year-1) and Very Severe (>80 t ha-1 year-1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.

  3. Monitoring of perfluoroalkyl substances in the Ebro and Guadalquivir River basins (Spain)

    NASA Astrophysics Data System (ADS)

    Lorenzo, Maria; Campo, Julian; Andreu, Vicente; Pico, Yolanda; Farre, Marinella; Barcelo, Damia

    2015-04-01

    Relevant concentrations of a broad range of pollutants have been found in Spanish Mediterranean River basins, as consequence of anthropogenic pressures and overexploitation (Campo et al., 2014). In this study, the occurrence and sources of 21 perfluoroalkyl substances (PFASs) were determined in water and sediment of the Ebro and Guadalquivir River basins (Spain). PFASs are persistent, bio-accumulative and toxic, which make them a hazard to human health and wildlife. The Ebro and Guadalquivir Rivers are the two most important rivers of Spain. They are representative examples of Mediterranean rivers heavily managed, and previous researches have reported their high pesticide contamination (Masiá et al., 2013). Analytes were extracted by solid phase extraction (SPE) and determined by liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS). In water samples, from 21 analytes screened, 11 were found in Ebro samples and 9 in Guadalquivir ones. In both basins, the most frequents were PFBA, PFPeA, PFHxS and PFOS. Maximum concentration was detected for PFBA, with 251.3 ng L-1 in Ebro and 742.9 ng L-1 in Guadalquivir. Regarding the sediment samples, 8 PFASs were detected in those coming from Ebro basin and 9 in those from Guadalquivir. The PFASs most frequently detected were PFBA, PFPeA, PFOS and PFBS. Maximum concentration in Ebro samples was detected for PFOA, with 32.4 ng g-1 dw, and in Guadalquivir samples for PFBA with 63.8 ng g-1 dw. Ubiquity of these compounds in the environment was proved with high PFAS concentration values detected in upper parts of the rivers. Results confirm that most of the PFASs are only partially eliminated during the secondary treatment suggesting that they can be a focal point of contamination to the rivers where they can bio-accumulate and produce adverse effects on wildlife and humans. Acknowledgment The Spanish Ministry of Economy and Competitiveness has supported this work through the projects SCARCE-CSD2009-00065, CGL2011

  4. Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina

    USGS Publications Warehouse

    Reid, Jeffrey C.; Milici, Robert C.

    2008-01-01

    This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data

  5. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    USGS Publications Warehouse

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the

  6. A framework model for water-sharing among co-basin states of a river basin

    NASA Astrophysics Data System (ADS)

    Garg, N. K.; Azad, Shambhu

    2018-05-01

    A new framework model is presented in this study for sharing of water in a river basin using certain governing variables, in an effort to enhance the objectivity for a reasonable and equitable allocation of water among co-basin states. The governing variables were normalised to reduce the governing variables of different co-basin states of a river basin on same scale. In the absence of objective methods for evaluating the weights to be assigned to co-basin states for water allocation, a framework was conceptualised and formulated to determine the normalised weighting factors of different co-basin states as a function of the governing variables. The water allocation to any co-basin state had been assumed to be proportional to its struggle for equity, which in turn was assumed to be a function of the normalised discontent, satisfaction, and weighting factors of each co-basin state. System dynamics was used effectively to represent and solve the proposed model formulation. The proposed model was successfully applied to the Vamsadhara river basin located in the South-Eastern part of India, and a sensitivity analysis of the proposed model parameters was carried out to prove its robustness in terms of the proposed model convergence and validity over the broad spectrum values of the proposed model parameters. The solution converged quickly to a final allocation of 1444 million cubic metre (MCM) in the case of the Odisha co-basin state, and to 1067 MCM for the Andhra Pradesh co-basin state. The sensitivity analysis showed that the proposed model's allocation varied from 1584 MCM to 1336 MCM for Odisha state and from 927 to 1175 MCM for Andhra, depending upon the importance weights given to the governing variables for the calculation of the weighting factors. Thus, the proposed model was found to be very flexible to explore various policy options to arrive at a decision in a water sharing problem. It can therefore be effectively applied to any trans-boundary problem where

  7. Water-Quality Trends in the Neuse River Basin, North Carolina, 1974-2003

    NASA Astrophysics Data System (ADS)

    Harned, D. A.

    2003-12-01

    Data from two U.S. Geological Survey (USGS) sites in the Neuse River basin were reviewed for trends in major ions, sediment, nutrients, and pesticides during the period 1974-2003. In 1997, the North Carolina Division of Water Quality implemented management rules to reduce nitrogen loading to the Neuse River by 30 percent by 2003. Therefore, the 1997-2003 period was reviewed for trends associated with the management changes. The Neuse River at Kinston basin (2,695 square miles) includes much of Raleigh, N.C., with 8-percent urban and 30-percent agricultural land use (1992 data). The Contentnea Creek basin (734 square miles), a Neuse River tributary, is 42-percent agricultural and 3-percent urban. Agricultural land uses in the Contentnea Creek basin have changed over the last decade from predominantly corn, soybean, and tobacco row crops to corn, soybeans, and cotton, with reduced tobacco acreages, and development of the hog industry. Data for this analysis were collected by the USGS for the National Stream Quality Accounting Network and National Water-Quality Assessment Program. Data were examined for trends using the Seasonal Kendall trend test or Tobit regression. The Seasonal Kendall test, which accounts for seasonal variability and adjusts for effects of streamflow on concentration with residuals from LOWESS (LOcally Weighted Sum of Squares) curves, was used to analyze trends in major ions, nutrients, and sediment. The Tobit test, appropriate for examining values with reporting limits, was used for the pesticide analysis. Monotonic trends are considered significant at the alpha < 0.05 probability level. Long-term (1974-2003) decreasing trends in the Neuse River at Kinston were detected for dissolved oxygen, silica, and sediment concentrations; increasing trends were detected for potassium, alkalinity, and chloride. Decreasing trends in Contentnea Creek were detected for silica, sulfate, and sediment concentrations during 1979-2003; increasing trends were

  8. Bibliography of selected water-resources information for the Arkansas River basin in Colorado through 1985

    USGS Publications Warehouse

    Kuzmiak, John M.; Strickland, Hyla H.

    1994-01-01

    The Arkansas River basin composes most of southeastern Colorado, and the numerous population centers and vast areas of agricultural development are located primarily in the semiarid part of the basin east of the Continental Divide. Because effective management and development of water resources in this semiarid area are essential to the viability of the basin, many hydrologic data- collection programs and investigations have been done. This report contains a bibliography of selected water-resources information about the basin, including regularly published information and special investigations, from Federal, State, and other organizations. To aid the reader, the infor- mation is indexed by author, subject, county, and hydrologic unit (drainage basin).

  9. Hydrogeology of the West Branch Delaware River basin, Delaware County, New York

    USGS Publications Warehouse

    Reynolds, Richard J.

    2013-01-01

    In 2009, the U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, began a study of the hydrogeology of the West Branch Delaware River (Cannonsville Reservoir) watershed. There has been recent interest by energy companies in developing the natural gas reserves that are trapped within the Marcellus Shale, which is part of the Hamilton Group of Devonian age that underlies all the West Branch Delaware River Basin. Knowing the extent and thickness of stratified-drift (sand and gravel) aquifers within this basin can help State and Federal regulatory agencies evaluate any effects on these aquifers that gas-well drilling might produce. This report describes the hydrogeology of the 455-square-mile basin in the southwestern Catskill Mountain region of southeastern New York and includes a detailed surficial geologic map of the basin. Analysis of surficial geologic data indicates that the most widespread surficial geologic unit within the basin is till, which is present as deposits of ablation till in major stream valleys and as thick deposits of lodgment till that fill upland basins. Till and colluvium (remobilized till) cover about 89 percent of the West Branch Delaware River Basin, whereas stratified drift (outwash and ice-contact deposits) and alluvium account for 8.9 percent. The Cannonsville Reservoir occupies about 1.9 percent of the basin area. Large areas of outwash and ice-contact deposits occupy the West Branch Delaware River valley along its entire length. These deposits form a stratified-drift aquifer that ranges in thickness from 40 to 50 feet (ft) in the upper West Branch Delaware River valley, from 70 to 140 ft in the middle West Branch Delaware River valley, and from 60 to 70 ft in the lower West Branch Delaware River valley. The gas-bearing Marcellus Shale underlies the entire West Branch Delaware River Basin and ranges in thickness from 600 to 650 ft along the northern divide of the basin to 750 ft thick

  10. Storm-rhine -simulation Tool For River Management

    NASA Astrophysics Data System (ADS)

    Heun, J. C.; Schotanus, T. D.; de Groen, M. M.; Werner, M.

    The Simulation Tool for River Management (STORM), based on the River Rhine case, aims to provide insight into river and floodplain management, by (1) raising aware- ness of river functions, (2) exploring alternative strategies, (3) showing the links be- tween natural processes, spatial planning, engineering interventions, river functions and stakeholder interests, (4) facilitating the debate between different policy makers and stakeholders from across the basin and (5) enhancing co-operation and mutual un- derstanding. The simulation game is built around the new concepts of SRoom for the & cedil;RiverT, Flood Retention Areas, Resurrection of former River Channels and SLiving & cedil;with the FloodsT. The Game focuses on the Lower and Middle Rhine from the Dutch Delta to Maxau in Germany. Influences from outside the area are included as scenarios for boundary conditions. The heart of the tool is the hydraulic module, which calcu- lates representative high- and low water-levels for different hydrological scenarios and influenced by river engineering measures and physical planning in the floodplains. The water levels are translated in flood risks, navigation potential, nature development and land use opportunities in the floodplain. Players of the Game represent the institutions: National, Regional, Municipal Government and Interest Organisations, with interests in flood protection, navigation, agriculture, urban expansion, mining and nature. Play- ers take typical river and floodplain engineering, physical planning and administrative measures to pursue their interests in specific river functions. The players are linked by institutional arrangements and budgetary constraints. The game particularly aims at middle and higher level staff of local and regional government, water boards and members of interest groups from across the basin, who deal with particular stretches or functions of the river but who need (1) to be better aware of the integrated whole, (2) to

  11. GIS/RS-based Integrated Eco-hydrologic Modeling in the East River Basin, South China

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    Land use/cover change (LUCC) has significantly altered the hydrologic system in the East River (Dongjiang) Basin. Quantitative modeling of hydrologic impacts of LUCC is of great importance for water supply, drought monitoring and integrated water resources management. An integrated eco-hydrologic modeling system of Distributed Monthly Water Balance Model (DMWBM), Surface Energy Balance System (SEBS) was developed with aid of GIS/RS to quantify LUCC, to conduct physically-based ET (evapotranspiration) mapping and to predict hydrologic impacts of LUCC. To begin with, in order to evaluate LUCC, understand implications of LUCC and provide boundary condition for the integrated eco-hydrologic modeling, firstly the long-term vegetation dynamics was investigated based on Normalized Difference Vegetation Index (NDVI) data, and then LUCC was analyzed with post-classification methods and finally LUCC prediction was conducted based on Markov chain model. The results demonstrate that the vegetation activities decreased significantly in summer over the years. Moreover, there were significant changes in land use/cover over the past two decades. Particularly there was a sharp increase of urban and built-up area and a significant decrease of grassland and cropland. All these indicate that human activities are intensive in the East River Basin and provide valuable information for constructing scenarios for studying hydrologic impacts of LUCC. The physically-remote-sensing-based Surface Energy Balance System (SEBS) was employed to estimate areal actual ET for a large area rather than traditional point measurements . The SEBS was enhanced for application in complex vegetated area. Then the inter-comparison with complimentary ET model and distributed monthly water balance model was made to validate the enhanced SEBS (ESEBS). The application and test of ESEBS show that it has a good accuracy both monthly and annually and can be effectively applied in the East River Basin. The results of

  12. Nitrogen Removal by Streams and Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    Our study, based on chemistry and channel dimensions data collected at 893 randomly-selected stream and river sites in the Mississippi River basin, demonstrated the interaction of stream chemistry, stream size, and NO3-N uptake metrics across a range of stream sizes and across re...

  13. Vitrinite Reflectance Data for the Wind River Basin, Central Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.; Roberts, Laura N.R.; Pawlewicz, Mark J.

    2006-01-01

    Introduction: The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 mi2 in central Wyoming. The basin boundaries are defined by fault-bounded Laramide uplifts that surround it, including the Owl Creek and Bighorn Mountains to the north, Wind River Range to the west, Granite Mountains to the south, and Casper Arch to the east. The purpose of this report is to present new vitrinite reflectance data to be used in support of the U.S Geological Survey assessment of undiscovered oil and gas resources of the Wind River Basin. One hundred and nineteen samples were collected from Jurassic through Tertiary rocks, mostly coal-bearing strata, in an effort to better understand and characterize the thermal maturation and burial history of potential source rocks.

  14. Backwater effects in the Amazon River basin of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  15. Diazinon and chlorpyrifos loads in the San Joaquin River basin, California, January and February 2000

    USGS Publications Warehouse

    Kratzer, Charles R.; Zamora, Celia; Knifong, Donna L.

    2002-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2000 in the San Joaquin River Basin was less than 21 percent of application in 1993 and 1994. A total of 13 sites were sampled weekly during nonstorm periods and more frequently during two storm periods. The sites included five major river and eight minor tributary sites. The highest concentrations of diazinon and chlorpyrifos occurred during the storm periods. Four samples from major river sites (Tuolumne River and two San Joaquin River sites) had diazinon concentrations greater than 0.08 microgram per liter, the concentration being considered by the state of California as its criterion maximum concentration for the protection of aquatic habitat. One sample from a major river site (San Joaquin River) exceeded the equivalent State guideline of 0.02 microgram per liter for chlorpyrifos. At the eight minor tributary sites, 24 samples exceeded the diazinon guideline and four samples exceeded the chlorpyrifos guideline. The total diazinon load in the San Joaquin River near Vernalis during January and February 2000 was 19.6 pounds active ingredient; of this, 8.17 pounds active ingredient was transported during two storms. In 1994, 27.4 pounds active ingredient was transported during two storms. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2000 was 5.68 pounds active ingredient; of this, 2.17 pounds active ingredient was transported during the two storms. During the frequently sampled February 2000 storm, the main sources of diazinon in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (25 percent), Tuolumne River Basin (14 percent), and the Stanislaus River Basin (10 percent). The main sources of chlorpyrifos in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (17 percent), Tuolumne River Basin (13 percent), and the Merced River Basin (11 percent). The total January and February diazinon load in the

  16. Two distinct phylogenetic clades of infectious hematopoietic necrosis virus overlap within the Columbia River basin

    USGS Publications Warehouse

    Garver, K.A.; Troyer, R.M.; Kurath, G.

    2003-01-01

    Infectious hematopoietic necrosis virus (IHNV), an aquatic rhabdovirus, causes a highly lethal disease of salmonid fish in North America. To evaluate the genetic diversity of IHNV from throughout the Columbia River basin, excluding the Hagerman Valley, Idaho, the sequences of a 303 nt region of the glycoprotein gene (mid-G) of 120 virus isolates were determined. Sequence comparisons revealed 30 different sequence types, with a maximum nucleotide diversity of 7.3% (22 mismatches) and an intrapopulational nucleotide diversity of 0.018. This indicates that the genetic diversity of IHNV within the Columbia River basin is 3-fold higher than in Alaska, but 2-fold lower than in the Hagerman Valley, Idaho. Phylogenetic analyses separated the Columbia River basin IHNV isolates into 2 major clades, designated U and M. The 2 clades geographically overlapped within the lower Columbia River basin and in the lower Snake River and tributaries, while the upper Columbia River basin had only U clade and the upper Snake River basin had only M clade virus types. These results suggest that there are co-circulating lineages of IHNV present within specific areas of the Columbia River basin. The epidemiological significance of these findings provided insight into viral traffic patterns exhibited by IHNV in the Columbia River basin, with specific relevance to how the Columbia River basin IHNV types were related to those in the Hagerman Valley. These analyses indicate that there have likely been 2 historical events in which Hagerman Valley IHNV types were introduced and became established in the lower Columbia River basin. However, the data also clearly indicates that the Hagerman Valley is not a continuous source of waterborne virus infecting salmonid stocks downstream.

  17. Power-law tail probabilities of drainage areas in river basins

    USGS Publications Warehouse

    Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.

    2003-01-01

    The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.

  18. Assessment of River Habitat Quality in the Hai River Basin, Northern China.

    PubMed

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-09-17

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 10⁴ km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 10⁴ km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m³); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08-16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  19. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    PubMed Central

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-01-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  20. Improving Flood Forecasting in International River Basins

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal; Katiyar, Nitin

    2006-01-01

    In flood-prone international river basins (IRBs), many riparian nations that are located close to a basin's outlet face a major problem in effectively forecasting flooding because they are unable to assimilate in situ rainfall data in real time across geopolitical boundaries. NASA's proposed Global Precipitation Measurement (GPM) mission, which is expected to begin in 2010, will comprise high-resolution passive microwave (PM) sensors (at resolution ~3-6 hours, 10 × 10 square kilometers) that may provide new opportunities to improve flood forecasting in these river basins. Research is now needed to realize the potential of GPM. With adequate research in the coming years, it may be possible to identify the specific IRBs that would benefit cost-effectively from a preprogrammed satellite-based forecasting system in anticipation of GPM. Acceleration of such a research initiative is worthwhile because it could reduce the risk of the cancellation of GPM [see Zielinski, 2005].

  1. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  2. Hydrological responses to climatic changes in the Yellow River basin, China: Climatic elasticity and streamflow prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Liu, Jianyu; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-11-01

    Prediction of streamflow of the Yellow River basin was done using downscaled precipitation and temperature based on outputs of 12 GCMs under RCP2.6 and RCP8.5 scenarios. Streamflow changes of 37 tributaries of the Yellow River basin during 2070-2099 were predicted related to different GCMs and climatic scenarios using Budyko framework. The results indicated that: (1) When compared to precipitation and temperature during 1960-1979, increasing precipitation and temperature are dominant during 2070-2099. Particularly, under RCP8.5, increase of 10% and 30% can be detected for precipitation and temperature respectively; (2) Precipitation changes have larger fractional contribution to streamflow changes than temperature changes, being the major driver for spatial and temporal patterns of water resources across the Yellow River basin; (3) 2070-2099 period will witness increased streamflow depth and decreased streamflow can be found mainly in the semi-humid regions and headwater regions of the Yellow River basin, which can be attributed to more significant increase of temperature than precipitation in these regions; (4) Distinctly different picture of streamflow changes can be observed with consideration of different outputs of GCMs which can be attributed to different outputs of GCMs under different scenarios. Even so, under RCP2.6 and RCP8.5 scenarios, 36.8% and 71.1% of the tributaries of the Yellow River basin are dominated by increasing streamflow. The results of this study are of theoretical and practical merits in terms of management of water resources and also irrigated agriculture under influences of changing climate.

  3. Operational Hydrologic Forecasts in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Shrestha, K. Y.; Curry, J. A.; Webster, P. J.; Toma, V. E.; Jelinek, M.

    2013-12-01

    The Columbia River Basin (CRB) covers an area of ~670,000 km2 and stretches across parts of seven U.S. states and one Canadian province. The basin is subject to a variable climate, and moisture stored in snowpack during the winter is typically released in spring and early summer. These releases contribute to rapid increases in flow. A number of impoundments have been constructed on the Columbia River main stem and its tributaries for the purposes of flood control, navigation, irrigation, recreation, and hydropower. Storage reservoirs allow water managers to adjust natural flow patterns to benefit water and energy demands. In the past decade, the complexity of water resource management issues in the basin has amplified the importance of streamflow forecasting. Medium-range (1-10 day) numerical weather forecasts of precipitation and temperature can be used to drive hydrological models. In this work, probabilistic meteorological variables from the European Center for Medium Range Weather Forecasting (ECMWF) are used to force the Variable Infiltration Capacity (VIC) model. Soil textures were obtained from FAO data; vegetation types / land cover information from UMD land cover data; stream networks from USGS HYDRO1k; and elevations from CGIAR version 4 SRTM data. The surface energy balance in 0.25° (~25 km) cells is closed through an iterative process operating at a 6 hour timestep. Output fluxes from a number of cells in the basin are combined through one-dimensional flow routing predicated on assumptions of linearity and time invariance. These combinations lead to daily mean streamflow estimates at key locations throughout the basin. This framework is suitable for ingesting daily numerical weather prediction data, and was calibrated using USGS mean daily streamflow data at the Dalles Dam (TDA). Operational streamflow forecasts in the CRB have been active since October 2012. These are 'naturalized' or unregulated forecasts. In 2013, increases of ~2600 m3/s (~48% of

  4. Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Sun, Fubao; Li, Yanzhong; Zhang, Guoqing; Sang, Yan-Fang; Lim, Wee Ho; Liu, Jiahong; Wang, Hong; Bai, Peng

    2018-01-01

    The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of in situ hydro-climatic observations. In this study, we investigate the seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982-2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations). A water balance-based two-step procedure, which considers the changes in basin-scale water storage on the annual scale, is also adopted to calculate actual ET. The results indicated that precipitation (mainly snowfall from mid-autumn to next spring), which are mainly concentrated during June-October (varied among different monsoons-impacted basins), was the major contributor to the runoff in TP basins. The P, ET and Q were found to marginally increase in most TP basins during the past 30 years except for the upper Yellow River basin and some sub-basins of Yalong River, which were mainly affected by the weakening east Asian monsoon. Moreover, the aridity index (PET/P) and runoff coefficient (Q/P) decreased slightly in most basins, which were in agreement with the warming and moistening climate in the Tibetan Plateau. The results obtained demonstrated the usefulness of integrating multi-source datasets to hydrological applications in the data-sparse regions. More generally, such an approach might offer helpful insights into understanding the water and energy budgets and sustainability of water resource management practices of data-sparse regions in a changing environment.

  5. [Age structure and genetic diversity of Homatula pycnolepis in the Nujiang River basin].

    PubMed

    Yue, Xing-Jian; Liu, Shao-Ping; Liu, Ming-Dian; Duan, Xin-Bin; Wang, Deng-Qiang; Chen, Da-Qing

    2013-08-01

    This study examined the age structure of the Loach, Homatula pycnolepis through the otolith growth rings in 204 individual specimens collected from the Xiaomengtong River of the Nujiang River (Salween River) basin in April, 2008. There were only two different age classes, 1 and 2 years of age-no 3 year olds were detected. The age structure of H. pycnolepis was simple. The complete mitochondrial DNA cytochrome b gene sequences (1140) of 80 individuals from 4 populations collected in the Nujiang River drainage were sequenced and a total of 44 variable sites were found among 4 different haplotypes. The global haplotype diversity (Hd) and nucleotide diversity (Pi) were calculated at 0.7595, 0.0151 respectively, and 0, 0 in each population, indicating a consistent lack of genetic diversity in each small population. There was obvious geographic structure in both the Nujiang River basin (NJB) group, and the Nanding River (NDR) group. The genetic distance between NJB and NDR was calculated at 0.0356, suggesting that genetic divergence resulted from long-term isolation of individual population. Such a simple age structure and a lack of genetic diversity in H. pycnolepis may potentially be due to small populations and locale fishing pressures. Accordingly, the results of this study prompt us to recommend that the NJB, NDR and Lancang River populations should be protected as three different evolutionary significant units or separated management units.

  6. The Pine-Popple River basin--Hydrology of a wild river area, northeastern Wisconsin

    USGS Publications Warehouse

    Oakes, Edward L.; Field, Stephen J.; Seeger, Lawrence P.

    1973-01-01

    The Pine and Popple Rivers, virtually unaltered by man, flow through a semiprimitive area of forests, lakes, and glacial hills. White-water streams, natural lakes, fish and animal life, and abundant vegetation contribute to the unique recreational and aesthetic characteristics of the area. Resource planning or development should recognize the interrelationships within the hydrologic system and the possible effects of water and land-use changes upon the wild nature of the area. The basin covers about 563 square miles in northeastern Wisconsin. Swamps and wetlands cover nearly 110 square miles, and the 70 lakes cover about 11 square miles. The undulating topography is formed by glacial deposits overlying an irregular, resistant surface of bedrock. An annual average of 30 inches of precipitation, highest from late spring to early autumn, falls on the basin. Of this amount, evapotranspiration, highest in mid summer and late summer, averages 19 inches; the remaining 11 inches is runoff, which is highest in spring and early summer. Ground water from the glacial drift is the source of water for the minor withdrawal use in the basin. Ground-water movement is to streams and lakes and regionally follows the slope of topography and the bedrock surface, which is generally west to east. Ground water is of good quality, although locally high in iron. The major uses of water are for recreation and power generation. Domestic use is slight. No water is withdrawn from lakes or streams, and no sewage or industrial wastes are added to lakes or streams. Most of the flow of the Pine River is used for power generation. The main stems of the Pine and Popple Rivers contain 114 canoeable miles, of which 95 percent is without such major obstructions as falls or large rapids. In general streams support cold-water fish, and lakes support warm-water fish. Trout is the principal stream and game fish in the basin. The basin has no significant water problems. Future development between the Pine

  7. Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Orth, Dr. Donald J; Dolloff, Dr. Charles A

    2013-01-01

    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationshipsmore » could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.« less

  8. Coupled Teleconnections and River Dynamics for Enhanced Hydrologic Forecasting in the Upper Colorado River Basin USA

    NASA Astrophysics Data System (ADS)

    Matter, M. A.; Garcia, L. A.; Fontane, D. G.

    2005-12-01

    Accuracy of water supply forecasts has improved for some river basins in the western U.S.A. by integrating knowledge of climate teleconnections, such as El Niño/Southern Oscillation (ENSO), into forecasting routines, but in other basins, such as the Colorado River Basin (CRB), forecast accuracy has declined (Pagano et al. 2004). Longer lead time and more accurate seasonal forecasts, particularly during floods or drought, could help reduce uncertainty and risk in decision-making and lengthen the period for planning more efficient and effective strategies for water use and ecosystem management. The goal of this research is to extend the lead time for snowmelt hydrograph estimation by 4-6 months (from spring to the preceding fall), and at the same time increase the accuracy of snowmelt runoff estimates in the Upper CRB (UCRB). We hypothesize that: (1) UCRB snowpack accumulation and melt are driven by large scale climate modes, including ENSO, PDO and AMO, that establish by fall and persist into early spring; (2) forecast analysis may begin in the fall prior to the start of the primary snow accumulation period and when energy to change the climate system is decreasing; and (3) between fall and early spring, streamflow hydrographs will amplify precipitation and temperature signals, and thus will evolve characteristically in response to wet, dry or average hydroclimatic conditions. Historical in situ records from largely unregulated river reaches and undeveloped time periods of the UCRB are used to test this hypothesis. Preliminary results show that, beginning in the fall (e.g., October or November) streamflow characteristics, including magnitude, rate of change and variability, as well as timing and magnitude of fall/early winter and late winter/early spring season flow volumes, are directly correlated with the magnitude of the upcoming snowmelt runoff (or annual basin yield). The use of climate teleconnections to determine characteristic streamflow responses in the

  9. Carbon-Water-Energy Relations for Selected River Basins

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  10. Irrigation and streamflow depletion in Columbia River basin above The Dalles, Oregon

    USGS Publications Warehouse

    Simons, Wilbur Douglas

    1953-01-01

    The Columbia River is the largest stream in western United States. Above The Dalles, Oregon, it drains an area of 237,000 square miles, of which 39,000 square miles is in Canada. This area is largely mountainous and lies between the Rocky Mountains and the Cascade Range. The Kootenai, Pend Oreille, and Snake Rivers are the principal tributaries. Precipitation varies from 7 inches near Kennewick, Wash. to over 100 inches in some of the mountainous regions. Most of the runoff occurs in the spring and summer months as a result of melting snow. Precipitation is generally light during the summer months, and irrigation is necessary for sustained crop production. Historical data indicate that irrigation in the Columbia River basin began prior to 1840 at the site of missions established near Walla Walla, Wash. and Lewiston, Idaho. During the next half century the increase in irrigated area was slow and by 1890 included only 506,000 acres. The period 1890 to 1910 was marked by phenomenal increase to a total of 2,276,000 acres in 1910. Since that time there has been more gradual addition to a total of 4,004,S00 acres of irrigated land in 1946 in the Columbia River basin above The Dalles, Oreg. Of this total 918,000 acres were located in the Columbia Basin above the mouth of the Snake River; 2,830,000 acres in the Snake River basin, and the balance, 256,000 acres below the mouth of the Snake River. Values of net consumptive use were determined or estimated for various tributary basins of the Columbia River basin and compared to available experimental data. These values were then used to compute the average depletion which could be directly attributed to irrigation. The yield of a drainage basin was considered to be the rum of the ob- served runoff and the estimated depletion. For purposes of comparison, the depletion was expressed both in terms of acre-feet and as a percentage of the yield of the basin. This percentage depletion varied from less than 1 percent for many

  11. Modeling of soil erosion and sediment transport in the East River Basin in southern China.

    PubMed

    Wu, Yiping; Chen, Ji

    2012-12-15

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide. Published by Elsevier B.V.

  12. Modeling of soil erosion and sediment transport in the East River Basin in southern China

    USGS Publications Warehouse

    Wu, Yping; Chen, Ji

    2012-01-01

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.

  13. Contamination characteristics of organochlorine pesticides in multimatrix sampling of the Hanjiang River Basin, southeast China.

    PubMed

    Liu, Jia; Qi, Shihua; Yao, Jun; Yang, Dan; Xing, Xinli; Liu, Hongxia; Qu, Chengkai

    2016-11-01

    Hanjiang River, the second largest river in Guangdong Province, Southern China, is the primary source of drinking water for the cities of Chaozhou and Shantou. Our previous studies indicated that soils from an upstream catchment area of the Hanjiang River are moderately contaminated with organochlorine pesticides (OCPs), which can easily enter the river system via soil runoff. Therefore, OCPs, especially downstream drinking water sources, may pose harmful health and environmental risks. On the basis of this hypothesis, we measured the OCP concentrations in dissolved phase (DP), suspended particle matter (SPM), and surface sediment (SS) samples collected along the Hanjiang River Basin in Fujian and Guangdong provinces. OCP residue levels were quantified through electron capture detector gas chromatography to identify the OCP sources and deposits. The concentration ranges of OCPs in DP, SPM, and SS, respectively, were 2.11-12.04 (ng/L), 6.60-64.77 (ng/g), and 0.60-4.71 (ng/g) for hexachlorocyclohexanes (HCHs), and 2.49-4.77 (ng/L), 6.75-80.19 (ng/g), and 0.89-252.27 (ng/g) for dichloro-diphenyl-trichloroethanes (DDTs). Results revealed that DDTs represent an ecotoxicological risk to the Hanjiang River Basin, as indicated by international sediment guidelines. This study serves as a basis for the future management of OCP concentrations in the Hanjiang River Basin, and exemplifies a pattern of OCP movement (like OCP partition among multimedia) from upstream to downstream. This pattern may be observed in similar rivers in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Developing Multi-model Ensemble for Precipitation and Temperature Seasonal Forecasts: Implications for Karkheh River Basin in Iran

    NASA Astrophysics Data System (ADS)

    Najafi, Husain; Massah Bavani, Ali Reza; Wanders, Niko; Wood, Eric; Irannejad, Parviz; Robertson, Andrew

    2017-04-01

    Water resource managers can utilize reliable seasonal forecasts for allocating water between different users within a water year. In the west of Iran where a decline of renewable water resources has been observed, basin-wide water management has been the subject of many inter-provincial conflicts in recent years. The problem is exacerbated when the environmental water requirements is not provided leaving the Hoor-al-Azim marshland in the downstream dry. It has been argued that information on total seasonal rainfall can support the Iranian Ministry of Energy within the water year. This study explores the skill of the North America Multi Model Ensemble for Karkheh River Basin in the of west Iran. NMME seasonal precipitation and temperature forecasts from eight models are evaluated against PERSIANN-CDR and Climate Research Unit (CRU) datasets. Analysis suggests that anomaly correlation for both precipitation and temperature is greater than 0.4 for all individual models. Lead time-dependent seasonal forecasts are improved when a multi-model ensemble is developed for the river basin using stepwise linear regression model. MME R-squared exceeds 0.6 for temperature for almost all initializations suggesting high skill of NMME in Karkheh river basin. The skill of MME for rainfall forecasts is high for 1-month lead time for October, February, March and October initializations. However, for months when the amount of rainfall accounts for a significant proportion of total annual rainfall, the skill of NMME is limited a month in advance. It is proposed that operational regional water companies incorporate NMME seasonal forecasts into water resource planning and management, especially during growing seasons that are essential for agricultural risk management.

  15. Water resource management in river oases along the Tarim River in North-West of China

    NASA Astrophysics Data System (ADS)

    Kliucininkaite, Lina; Disse, Markus

    2013-04-01

    Tarim River is one of the longest inland rivers in the world. It flows its water in the northern part of the Taklamakan desert in Xinjiang, North-west of China, which is a very hostile region due its climatic conditions and particularly due to low precipitation and very high evaporation rates. During the past five decades intensive exploitation of water resources, mainly by agricultural activities, has changed the temporal and spatial distribution of them and caused serious environmental problems in the Tarim River Basin. The support measures for oasis management along the Tarim River under climatic and societal changes became the overarching goal of this research. The temperature has risen by nearly 1° C over the past 50 years in the Tarim River Basin so more water was available in the mountainous areas of Xinjiang, leading to an increasing trend of the headstream discharges of the Tarim Basin. Aksu, Hotan and Yarkant Rivers are three tributaries of the Tarim River, as well as its main water suppliers. However, under the condition of water increase with the volume of 25×108 m3 in headstreams in recent 10 years, the water to the mainstream has increased less than 108 m3 (in Alar hydrological station), which is less than 3% of the increased water volume of runoff. Moreover, the region is one of the biggest cotton and other cash crops producers in China. In addition, expansion of urban and, in particular, of irrigation areas have caused higher water consumption at different parts of the river, leading to severe ecological effects on rural areas, especially in the lower reaches. Moreover, it also highly affects groundwater level and quality. The aim of this research is to support decision makers, planners and engineers to find right measures in the area for the further development of the region, as well as adaptation to changing climate. Different scenarios for water resource management, as well as water distribution and allocation in a more efficient and water

  16. Program Updates - San Antonio River Basin

    EPA Pesticide Factsheets

    This page will house updates for this urban waters partnership location. As projects progress, status updates can be posted here to reflect the ongoing work by partners in San Antonio working on the San Antonio River Basin.

  17. An assessment of the effects of human-caused air pollution on resources within the interior Columbia River basin.

    Treesearch

    Anna W. Schoettle; Kathy Tonnessen; John Turk; John Vimont; Robert Amundson; Ann Acheson; Janice Peterson

    1999-01-01

    An assessment of existing and potential impacts to vegetation, aquatics, and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides,...

  18. [Ecological risk assessment of typical karst basin based on land use change: A case study of Lijiang River basin, Southern China].

    PubMed

    Hu, Jin Long; Zhou, Zhi Xiang; Teng, Ming Jun; Luo, Nan

    2017-06-18

    Taking Lijiang River basin as study area, and based on the remote sensing images of 1973, 1986, 2000 and 2013, the land-use data were extracted, the ecological risk index was constructed, and the characteristics of spatiotemporal variation of ecological risk were analyzed by "3S" technique. The results showed that land use structure of Lijiang River basin was under relatively reasonable state and it was constantly optimizing during 1973-2013. Overall, the ecological risk of Lijiang River basin was maintained at a low level. Lowest and lower ecological risk region was dominant in Lijiang River basin, but the area of highest ecological risk expanded quickly. The spatial distribution of ecological risk was basically stable and showed an obvious ring structure, which gra-dually decreased from the axis of Xingan County Town-Lingchuan County Town-Guilin City-Yangshuo County Town to other regions. Region with lowest ecological risk mainly distributed in natural mountain forest area of the north and mid-eastern parts of Lijiang River basin, and region with highe-st ecological risk concentrated in Guilin City. The ecological risk distribution of Lijiang River basin presented significant slope and altitude differences, and it decreased with increasing slope and altitude. During the study period, the area of low ecological risk converted to high ecological risk gra-dually decreased and vice versa. On the whole, the ecological risk tended to decline rapidly in the Lijiang River basin.

  19. Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi

    USGS Publications Warehouse

    Harned, D.A.; Atkins, J.B.; Harvill, J.S.

    2004-01-01

    A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.

  20. Modeling the hydrologic effects of land and water development interventions: a case study of the upper Blue Nile river basin

    NASA Astrophysics Data System (ADS)

    Haregeweyn, Nigussie; Tsunekawa, Atsushi; Tsubo, Mitsuru; Meshesha, Derege; Adgo, Enyew; Poesen, Jean; Schütt, Brigitta

    2014-05-01

    Over 67% of the Ethiopian landmass has been identified as very vulnerable to climate variability and land degradation. These problems are more prevalent in the Upper Blue Nile (UBN, often called Abay) river basin covering a drainage area of about 199,800 km2. The UBN River runs from Lake Tana (NW Ethiopia) to the Ethiopia-Sudan border. To enhance the adaptive capacity to the high climate variability and land degradation in the basin, different land and water management measures (stone/soil bunds, runoff collector trenches, exclosures) have been extensively implemented, especially since recent years. Moreover, multipurpose water harvesting schemes including the Grand Ethiopian Renaissance Dam (GERD, reservoir area of ca. 4000 km2) and 17 other similar projects are being or to be implemented by 2025. However, impact studies on land and water management aspects rarely include detailed hydrological components especially at river basin scale, although it is generally regarded as a major determinant of hydrological processes. The main aim of this study is therefore to model the significance of land and water management interventions in surface runoff response at scale of UBN river basin and to suggest some recommendations. Spatially-distributed annual surface runoff was simulated for both present-day and future (2025) land and water management conditions using calibrated values of the proportional loss model in ArcGIS environment. Average annual rainfall map (1998-2012) was produced from calibrated TRMM satellite source and shows high spatial variability of rainfall ranging between ca. 1000 mm in the Eastern part of the basin to ca. 2000 mm in the southern part of the basin. Present-day land use day condition was obtained from Abay Basin Master Plan study. The future land use map was created taking into account the land and water development interventions to be implemented by 2025. Under present-day conditions, high spatial variability of annual runoff depth was observed

  1. A topological system for delineation and codification of the Earth's river basins

    USGS Publications Warehouse

    Verdin, K.L.; Verdin, J.P.

    1999-01-01

    A comprehensive reference system for the Earth's river basins is proposed as a support to fiver basin management, global change research, and the pursuit of sustainable development. A natural system for delineation and codification of basins is presented which is based upon topographic control and the topology of the fiver network. These characteristics make the system well suited for implementation and use with digital elevation models (DEMs) and geographic information systems. A demonstration of these traits is made with the 30-arcsecond GTOPO30 DEM for North America. The system has additional appeal owing to its economy of digits and the topological information that they carry. This is illustrated through presentation of comparisons with USGS hydrologic unit codes and demonstration of the use of code numbers to reveal dependence or independence of water use activities within a basin.

  2. Estimation of daily mean streamflow for ungaged stream locations in the Delaware River Basin, water years 1960–2010

    USGS Publications Warehouse

    Stuckey, Marla H.

    2016-06-09

    The ability to characterize baseline streamflow conditions, compare them with current conditions, and assess effects of human activities on streamflow is fundamental to water-management programs addressing water allocation, human-health issues, recreation needs, and establishment of ecological flow criteria. The U.S. Geological Survey, through the National Water Census, has developed the Delaware River Basin Streamflow Estimator Tool (DRB-SET) to estimate baseline (minimally altered) and altered (affected by regulation, diversion, mining, or other anthropogenic activities) and altered streamflow at a daily time step for ungaged stream locations in the Delaware River Basin for water years 1960–2010. Daily mean baseline streamflow is estimated by using the QPPQ method to equate streamflow expressed as a percentile from the flow-duration curve (FDC) for a particular day at an ungaged stream location with the percentile from a FDC for the same day at a hydrologically similar gaged location where streamflow is measured. Parameter-based regression equations were developed for 22 exceedance probabilities from the FDC for ungaged stream locations in the Delaware River Basin. Water use data from 2010 is used to adjust the baseline daily mean streamflow generated from the QPPQ method at ungaged stream locations in the Delaware River Basin to reflect current, or altered, conditions. To evaluate the effectiveness of the overall QPPQ method contained within DRB-SET, a comparison of observed and estimated daily mean streamflows was performed for 109 reference streamgages in and near the Delaware River Basin. The Nash-Sutcliffe efficiency (NSE) values were computed as a measure of goodness of fit. The NSE values (using log10 streamflow values) ranged from 0.22 to 0.98 (median of 0.90) for 45 streamgages in the Upper Delaware River Basin and from -0.37 to 0.98 (median of 0.79) for 41 streamgages in the Lower Delaware River Basin.

  3. Dynamic Management of Releases for the Delaware River Basin using NYC's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Weiss, W.; Wang, L.; Murphy, T.; Muralidhar, D.; Tarrier, B.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. Using an interim version of OST, DEP and the New York State Department of Environmental Conservation (DEC) have developed a provisional, one-year Delaware River Basin reservoir release program to succeed the existing Flexible Flow Management Program (FFMP) which expired on May 31, 2011. The FFMP grew out of the Good Faith Agreement of 1983 among the four Basin states (New York, New Jersey, Pennsylvania, and Delaware) that established modified diversions and flow targets during drought conditions. It provided a set of release schedules as a framework for managing diversions and releases from New York City's Delaware Basin reservoirs in order to support multiple objectives, including water supply, drought mitigation, flood mitigation, tailwaters fisheries, main stem habitat, recreation, and salinity repulsion. The provisional program (OST-FFMP) defines available water based on current Upper Delaware reservoir conditions and probabilistic forecasts of reservoir inflow. Releases are then set based on a set of release schedules keyed to the water availability. Additionally, OST-FFMP attempts to provide enhanced downstream flood protection by making spill mitigation releases to keep the Delaware System reservoirs at a seasonally varying conditional storage objective. The OST-FFMP approach represents a more robust way of managing downstream releases, accounting for predicted future hydrologic conditions by making more water available for release when conditions are forecasted to be wet and protecting water supply reliability when conditions are forecasted to be dry. Further, the dynamic nature of the program allows the release decision to be adjusted as hydrologic conditions change. OST simulations predict that this

  4. Pesticides in the rivers and streams of two river basins in northern Greece.

    PubMed

    Papadakis, Emmanouil-Nikolaos; Tsaboula, Aggeliki; Vryzas, Zisis; Kotopoulou, Athina; Kintzikoglou, Katerina; Papadopoulou-Mourkidou, Euphemia

    2018-05-15

    The pollution caused by pesticides, and their ecotoxicological implications were investigated in water samples from the Strymonas and Nestos river basins (Northern Greece). Chlorpyrifos was the most frequently detected pesticide in both basins (42 and 37% in the Strymonas and Nestos basins, respectively), followed by fluometuron and terbuthylazine (25 and 12%, Strymonas), and bentazone and boscalid (24 and 10%, Nestos). The Annual Average and the Maximum Allowable Concentration of Environmental Quality Standards set in European Union Directives were exceeded in several cases by alphamethrin and chlorpyrifos. Risk Quotient assessment revealed significant ecological risk towards the aquatic organisms in over 20% of the water samples. Insecticides (mostly pyrethroids and organophosphosphates) contributed more in the ecotoxicological risk than herbicides and fungicides. The three main rivers in the current study (Strymonas, Aggitis, Nestos) exhibited similar sum of RQs indicating that aquatic life in all three of them was at the same risk level. However, the sums of RQs were higher in the various streams monitored than the three rivers. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    NASA Astrophysics Data System (ADS)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  6. Regression models for estimating salinity and selenium concentrations at selected sites in the Upper Colorado River Basin, Colorado, 2009-2012

    USGS Publications Warehouse

    Linard, Joshua I.; Schaffrath, Keelin R.

    2014-01-01

    Elevated concentrations of salinity and selenium in the tributaries and main-stem reaches of the Colorado River are a water-quality concern and have been the focus of remediation efforts for many years. Land-management practices with the objective of limiting the amount of salt and selenium that reaches the stream have focused on improving the methods by which irrigation water is conveyed and distributed. Federal land managers implement improvements in accordance with the Colorado River Basin Salinity Control Act of 1974, which directs Federal land managers to enhance and protect the quality of water available in the Colorado River. In an effort to assist in evaluating and mitigating the detrimental effects of salinity and selenium, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, the Colorado River Water Resources District, and the Bureau of Land Management, analyzed salinity and selenium data collected at sites to develop regression models. The study area and sites are on the Colorado River or in one of three small basins in Western Colorado: the White River Basin, the Lower Gunnison River Basin, and the Dolores River Basin. By using data collected from water years 2009 through 2011, regression models able to estimate concentrations were developed for salinity at six sites and selenium at six sites. At a minimum, data from discrete measurement of salinity or selenium concentration, streamflow, and specific conductance at each of the sites were needed for model development. Comparison of the Adjusted R2 and standard error statistics of the two salinity models developed at each site indicated the models using specific conductance as the explanatory variable performed better than those using streamflow. The addition of multiple explanatory variables improved the ability to estimate selenium concentration at several sites compared with use of solely streamflow or specific conductance. The error associated with the log-transformed salinity

  7. Potentiometric-surface map of the Wyodak-Anderson Coal Bed, Powder River Structural Basin, Wyoming, 1973-84

    USGS Publications Warehouse

    Daddow, Pamela B.

    1986-01-01

    Previous water level maps of shallow aquifers in the Powder River structural basin in Wyoming were based on water levels from wells completed in different stratigraphic intervals within thick sequences of sedimentary rocks. A potentiometric surface using water levels from a single aquifer had never been mapped throughout the basin. The sandstone aquifers in the Fort Union Formation of Paleocene age and the Wasatch Formation of Eocene age are discontinuous and lenticular, and do not extend even short distances. Coal aquifers are more continuous and the Wyodak-Anderson coal bed, in the Fort Union Formation, has been mapped in much of the Powder River structural basin in Wyoming. Water level altitudes in the Wyodak-Anderson coal bed and other stratigraphically equivalent coal beds were mapped to determine if they represent a continuous potentiometric surface in the Powder River structural basin. The potentiometric surface, except in the vicinity of the Wyodak mine east of Gillette, represents a premining condition as it was based on water level measurements made during 1973-84 that were not significantly affected by mining. The map was prepared in cooperation with the U.S. Bureau of Land Management. (Lantz-PTT)

  8. An assessment the effects of human-caused air pollution on resources within the interior Columbia River basin

    USGS Publications Warehouse

    Schoettle, A.W.; Tonnessen, K.; Turk, J.; Vimont, J.; Amundson, Ronald; Acheson, A.; Peterson, J.

    1999-01-01

    An assessment of existing and potential impacts to vegetation, aquatics, and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides, particulates, carbon, and ozone. Ecosystems and resources at risk are identified, including certain forests, lichens, cryptogamic crusts, high-elevation lakes and streams, arid lands, and class I areas. Current monitoring data are summarized and air pollution sources identified. The assessment also includes a summary of data gaps and suggestions for future research and monitoring related to air pollution and its effects on resources in the interior Columbia River basin.

  9. Fish communities of the Buffalo River Basin and nearby basins of Arkansas and their relation to selected environmental factors, 2001-2002

    USGS Publications Warehouse

    Petersen, James C.

    2004-01-01

    The Buffalo River lies in north-central Arkansas and is a tributary of the White River. Most of the length of the Buffalo River lies within the boundaries of Buffalo National River, a unit of the National Park Service; the upper 24 river kilometers lie within the boundary of the Ozark National Forest. Much of the upper and extreme lower parts of the basin on the south side of the Buffalo River is within the Ozark National Forest. During the summers of 2001 and 2002, fish communities were sampled at 52 sites in the study area that included the Buffalo River Basin and selected smaller nearby basins within the White River Basin in north-central Arkansas. Water quality (including nutrient and bacteria concentrations) and several other environmental factors (such as stream size, land use, substrate size, and riparian shading) also were measured. A total of 56 species of fish were collected from sites within the Buffalo River Basin in 2001 and 2002. All 56 species also were collected from within the boundaries of Buffalo National River. Twenty-two species were collected from headwater sites on tributaries of the Buffalo River; 27 species were collected from sites within or immediately adjacent to the Ozark National Forest. The list of species collected from Buffalo National River is similar to the list of species reported by previous investigators. Species richness at sites on the mainstem of the Buffalo River generally increased in a downstream direction. The number of species collected (both years combined) increased from 17 at the most upstream site to 38 near the mouth of the Buffalo River. In 2001 and 2002, a total of 53 species of fish were collected from sites outside the Buffalo River Basin. Several fish community metrics varied among sites in different site categories (mainstem, large tributary, small tributary, headwater, and developed out-of-basin sites). Median relative abundances of stonerollers ranged from about 25 to 55 percent and were highest at

  10. Scenario analysis for integrated water resources planning and management under uncertainty in the Zayandehrud river basin

    NASA Astrophysics Data System (ADS)

    Safavi, Hamid R.; Golmohammadi, Mohammad H.; Sandoval-Solis, Samuel

    2016-08-01

    The goal of this study is to develop and analyze three scenarios in the Zayandehrud river basin in Iran using a model already built and calibrated by Safavi et al. (2015) that has results for the baseline scenario. Results from the baseline scenario show that water demands will be supplied at the cost of depletion of surface and ground water resources, making this scenario undesirable and unsustainable. Supply Management, Demand Management, and Meta (supply and demand management) scenarios are the selected scenarios in this study. They are to be developed and declared into the Zayandehrud model to assess and evaluate the imminent status of the basin. Certain strategies will be employed for this purpose to improve and rectify the current management policies. The five performance criteria of time-based and volumetric reliability, resilience, vulnerability, and maximum deficit will be employed in the process of scenario analysis and evaluation. The results obtained from the performance criteria will be summed up into a so-called 'Water Resources Sustainability Index' to facilitate comparison among the likely trade-offs. Uncertainties arising from historical data, management policies, rainfall-runoff model, demand priorities, and performance criteria are considered in the proposed conceptual framework and modeled by appropriate approaches. Results show that the Supply Management scenario can be used to improve upon the demand supply but that it has no tangible effects on the improvement of the resources in the study region. In this regard, the Demand Management scenario is found to be more effective than the water supply one although it still remains unacceptable. Results of the Meta scenario indicate that both the supply and demand management scenarios must be applied if the water resources are to be safeguarded against degradation and depletion. In other words, the supply management scenario is necessary but not adequate; rather, it must be coupled to the demand

  11. Modelling Soil Erosion in the Densu River Basin Using RUSLE and GIS Tools.

    PubMed

    Ashiagbori, G; Forkuo, E K; Laari, P; Aabeyir, R

    2014-07-01

    Soil erosion involves detachment and transport of soil particles from top soil layers, degrading soil quality and reducing the productivity of affected lands. Soil eroded from the upland catchment causes depletion of fertile agricultural land and the resulting sediment deposited at the river networks creates river morphological change and reservoir sedimentation problems. However, land managers and policy makers are more interested in the spatial distribution of soil erosion risk than in absolute values of soil erosion loss. The aim of this paper is to model the spatial distribution of soil erosion in Densu River Basin of Ghana using RUSLE and GIS tools and to use the model to explore the relationship between erosion susceptibility, slope and land use/land cover (LULC) in the Basin. The rainfall map, digital elevation model, soil type map, and land cover map, were input data in the soil erosion model developed. This model was then categorized into four different erosion risk classes. The developed soil erosion map was then overlaid with the slope and LULC maps of the study area to explore their effects on erosion susceptibility of the soil in the Densu River Basin. The Model, predicted 88% of the basin as low erosion risk and 6% as moderate erosion risk, 3% as high erosion risk and 3% as severe risk. The high and severe erosion areas were distributed mainly within the areas of high slope gradient and also sections of the moderate forest LULC class. Also, the areas within the moderate forest LULC class found to have high erosion risk, had an intersecting high erodibility soil group.

  12. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  13. Pesticides in the Lower Clackamas River Basin, Oregon, 2000-01

    USGS Publications Warehouse

    Carpenter, Kurt D.

    2004-01-01

    In 2000-01, the U. S. Geological Survey sampled the Clackamas River and its major lower-basin tributaries during storm runoff conditions for 86 dissolved pesticides and selected breakdown products. Twenty-seven compounds, including 18 herbicides, 7 insecticides, and 2 pesticide breakdown products, were detected in 18 stream samples. The most commonly detected pesticides, in decreasing frequency, included atrazine, simazine, diazinon, metolachlor, and diuron, which variously occurred in 46-92% of samples collected from the tributaries. Of these, atrazine, simazine, and metolachlor, plus six other compounds, also were detected in the main-stem Clackamas River. Pesticides were detected more frequently and at higher concentrations in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks). In these streams, 12 to 18 pesticides were detected per stream in samples collected during spring and fall. Pesticides always occurred with at least one other pesticide, and about half of the samples, including one sample from the Clackamas River in October 2000, contained six or more pesticides. Nine pesticides, including the insecticide diazinon and the herbicides 2,4-D, atrazine, dichlobenil, diuron, imazaquin, metolachlor, simazine, and trifluralin, were detected in five water samples of Clackamas River water. No pesticides were detected in three samples of treated Clackamas River water used for drinking-water supply. Concentrations of six compounds--carbaryl, chlorpyrifos, diazinon, dieldrin, malathion, and the breakdown product of DDT (p,p'-DDE)--exceeded established or recommended criteria for the protection of aquatic life in some of the tributaries, sometimes for multiple pesticides in one sample. Identifying the sources of pesticides detected in the Clackamas River Basin is difficult because of the diverse land use in the basin and the multiple-use nature of many of the pesticides detected. Of the 25 parent compounds detected, 22 have agricultural uses

  14. Turbidity and suspended-sediment transport in the Russian River Basin, California

    USGS Publications Warehouse

    Ritter, John R.; Brown, William M.

    1971-01-01

    The Russian River in north coastal California has a persistent turbidness, which has reportedly caused a decline in the success of the sports fishermen. As a consequence, the number of sports fishermen angling in the river has declined, and industries dependent on their business have suffered. To determine the source of the turbidity and the rate of sediment transport in the basin, a network of sampling station was established in February 1964 along the river, on some of its tributaries, and near Lake Pillsbury in the upper Eel River basin.

  15. Analysis of seasonal water pollution based on rainfall feature at Anyang river basin in Korea

    NASA Astrophysics Data System (ADS)

    Han, J. G.; Lee, Y. K.; Kim, T. H.; Hwang, E. J.

    2005-08-01

    To determine selected water pollution parameters of the Anyang River (one of the biggest contributory branches of the Han River in Korea) and its main tributaries, the geological and topographical and rainfall features in its basin were investigated, and the resulting data were tabulated. Samples were collected at the upper, mid and down parts of the Anyang River and its branches and were analyzed based on biochemical and chemical methods, Korean biotic index (KBI) and Saprobien systems. Selected parameters of concern include BOD, heavy metals, nonpoint pollution and sewage discharge. The Anyang River basin has a torrential heavy rainfall; however, the rate of rainfall significantly varies from season to season. Water pollution levels in the dry season increase dramatically. The mainstream of the Anyang River is classified as fifth grade polysaprobic water according to Saprobien system. In addition, the biotic index is over 2.5 in overall. General pollution at the junction of the Anyang River and each branch stream varies. Possible countermeasures to improve the water quality of the river include intercept the non-treated waste water and sewage at the Anyang River junction and each branch stream, enforcement of water management during the rainy season, and continuous investment on environmental restoration.

  16. Simulation of ground-water flow in the Mojave River basin, California

    USGS Publications Warehouse

    Stamos, Christina L.; Martin, Peter; Nishikawa, Tracy; Cox, Brett F.

    2001-01-01

    The proximity of the Mojave River ground-water basin to the highly urbanized Los Angeles region has led to rapid growth in population and, consequently, to an increase in the demand for water. The Mojave River, the primary source of surface water for the region, normally is dry-except for a small stretch of perennial flow and periods of flow after intense storms. Thus, the region relies almost entirely on ground water to meet its agricultural and municipal needs. Ground-water withdrawal since the late 1800's has resulted in discharge, primarily from pumping wells, that exceeds natural recharge. To better understand the relation between the regional and the floodplain aquifer systems and to develop a management tool that could be used to estimate the effects that future stresses may have on the ground-water system, a numerical ground-water flow model of the Mojave River ground-water basin was developed, in part, on the basis of a previously developed analog model. The ground-water flow model has two horizontal layers; the top layer (layer 1) corresponds to the floodplain aquifer and the bottom layer (layer 2) corresponds to the regional aquifer. There are 161 rows and 200 columns with a horizontal grid spacing of 2,000 by 2,000 feet. Two stress periods (wet and dry) per year are used where the duration of each stress period is a function of the occurrence, quantity of discharge, and length of stormflow from the headwaters each year. A steady-state model provided initial conditions for the transient-state simulation. The model was calibrated to transient-state conditions (1931-94) using a trial-and-error approach. The transient-state simulation results are in good agreement with measured data. Under transient-state conditions, the simulated floodplain aquifer and regional aquifer hydrographs matched the general trends observed for the measured water levels. The simulated streamflow hydrographs matched wet stress period average flow rates and times of no flow at the

  17. Watershed scale response to climate change--Naches River Basin, Washington

    USGS Publications Warehouse

    Mastin, Mark C.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Naches River Basin below Tieton River in Washington.

  18. Umatilla River Basin Anadromous Fsh Habitat Enhancement Project : 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, R. Todd

    2001-12-31

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2000 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla River Basin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Habitat enhancement projects continued to be maintained on 44 private properties, four riparian easements and one in-stream enhancement agreement were secured, two new projects implemented and two existing projects improved to enhance anadromous fish habitat and natural fisheries production capabilitiesmore » in the Umatilla River Basin. New project locations included sites on the mid Umatilla River and Buckaroo Creek. Improvements were implemented at existing project sites on the upper Umatilla River and Wildhorse Creek. A stream bank stabilization project was implemented at approximately River Mile 37.4 Umatilla River to stabilize 760 feet of eroding stream bank and improve in-stream habitat diversity. Habitat enhancements at this site included construction of six rock barbs with one large conifer root wad incorporated into each barb, stinging approximately 10,000 native willow cuttings, planting 195 tubling willows and 1,800 basin wildrye grass plugs, and seeding 40 pounds of native grass seed. Staff time to assist in development of a subcontract and fence materials were provided to establish eight spring sites for off-stream watering and to protect wetlands within the Buckaroo Creek Watershed. A gravel bar was moved and incorporated into an adjacent point bar to reduce stream energy and stream channel confinement within the existing project area at River Mile 85 Umatilla River. Approximately 10,000 native willow cuttings were stung and trenched into the stream channel margins and stream banks, and

  19. Application of a Nested Modeling Approach Using the Precipitation Runoff Modeling System in the Apalachicola-Chattahoochee-Flint River Basin in the Southeastern USA

    NASA Astrophysics Data System (ADS)

    Lafontaine, J.; Hay, L.; Viger, R.; Markstrom, S. L.

    2010-12-01

    In order to help environmental resource managers assess potential effects of climate change on ecosystems, the Southeast Regional Assessment Project (SERAP) began in 2009. One component of the SERAP is development and calibration of a set of multi-resolution hydrologic models of the Apalachicola-Chattahoochee-Flint (ACF) River Basin. The ACF River Basin is home to multiple fish and wildlife species of conservation concern, is regionally important for water supply, and has been a recent focus of complementary environmental and climate-change research. Hydrologic models of varying spatial extents and resolutions are required to address varied local to regional water-resource management questions as required by the scope and limits of potential management actions. These models were developed using the U.S. Geological Survey (USGS) Precipitation Runoff Modeling System (PRMS). The coarse-resolution model for the ACF Basin has a contributing area of approximately 19,200 mi2 with the model outlet located at the USGS streamflow gage on the Apalachicola River near Sumatra, Florida. Six fine-resolution PRMS models ranging in size from 153 mi2 to 1,040 mi2 are nested within the coarse-scale model, and have been developed for the following basins: upper Chattahoochee, Chestatee, and Chipola Rivers, Ichawaynochaway, Potato, and Spring Creeks. All of the models simulate basin hydrology using a daily time-step, measured climate data, and basin characteristics such as land cover and topography. Measured streamflow data are used to calibrate and evaluate computed basin hydrology. Land cover projections will be used in conjunction with downscaled Global Climate Model results to project future hydrologic conditions for this set of models.

  20. Hydrologic reconnaissance of the Noatak River basin, Alaska, 1978

    USGS Publications Warehouse

    Childers, Joseph M.; Kernodle, Donald R.

    1981-01-01

    Hydrologic data were collected in 1978 described water resources of the Noatak River basin, Alaska. Streamflow varies seasonally. No flow was observed from the upper part of the basin in late winter (April). In the lower part of the basin springs support perennial flow in the Kugururok River and downstream along the Noatak. The discharge of the Noatak was 150 cubic feet per second in April 1978. During the summer, rainstorms are common, and runoff produces high flow. During August 1978, flow was normal in the basin; unit runoff averaged about 1 cubic foot per second per square mile. The Noatak is a gravel-bed stream of moderate slope. It drops about 1,800 feet in elevation from a point near the head waters to the mouth, a distance of 400 miles. Streambed material in most places is gravel, cobbles, and boulders, maximum riffle depths and pool widths increase in a downstream direction. Stream velocity in August 1978 increased from about 1 foot per second in the upper basin to about 4 feet per second in the lower reaches. High-water marks of the maximum evident flood were found at elevations from bankfull to 5 feet above bankfull. Maximum evident flood unit runoff rates were estimated to be less than 50 cubic feet per second per square mile. Scars produced by ice jams were seldom seen above bankfull. Bank erosion appears to be most active in the lowlands. Water in the Noatak River basin is virtually unaffected by man 's activity. Water quality varies with location, weather, season, and source; the water is normally clear, cool, and hard. During late winter sea water intrudes into the Lower Noatak Canyon. Benthic invertebrate community composition and variability suggest the river 's undiminished natural quality. (USGS)

  1. [Hygienic evaluation of transboundary pollution of the Ural River basin].

    PubMed

    Iskakov, A Zh; Lestsova, N A; Zasorin, B V; Boev, M V

    2009-01-01

    The anthropogenic pollution of the Ural River and its tributaries is the most important problem of the Ural-Caspian basin. Transboundary inflow from Kazakhstan to Russian is 30.9 km3/year. The border Ilek river pollution was hygienically evaluated and the contribution of pollution sources was ascertained, with the seasonal variations and hydrochemical background being kept in mind, from 2002 to 2007. The monitoring data on the content of priority pollutants of the surface waters of the basin of the Ilek River, a tributary of the Ural River, which come from the Republic of Kazakhstan, are given. Semiquantitative spectral estimation and the atomic absorption method were used to study the chemical composition of bottom sediments in the Ilek River and its tributaries. The magnitude and sources of influence of man-caused pollution on the quality of the river water were established.

  2. Mapping Water Resources, Allocation and Consumption in the Mills River Basin

    NASA Astrophysics Data System (ADS)

    Hodes, J.; Jeuland, M. A.; Barros, A. P.

    2014-12-01

    Mountain basins and the headwaters of river basins along the foothills of major mountain ranges are undergoing rapid environmental change due to urban development, land acquisition by investors, population increase, and climate change. Classical water infrastructure in these regions is primarily designed to meet human water demand associated with agriculture, tourism, and economic development. Often overlooked and ignored is the fundamental interdependence of human water demand, ecosystem water demand, water rights and allocation, and water supply. A truly sustainable system for water resources takes into account ecosystem demand along with human infrastructure and economic demand, as well as the feedbacks that exist between them. Allocation policies need to take into account basin resilience that is the amount of stress the system can handle under varying future scenarios. Changes in stress on the system can be anthropogenic in the form of population increase, land use change, economic development, or may be natural in the form of climate change and decrease in water supply due to changes in precipitation. Mapping the water rights, supply, and demands within the basin can help determine the resiliency and sustainability of the basin. Here, we present a coupled natural human system project based in the French Broad River Basin, in the Southern Appalachians. In the first phase of the project, we are developing and implementing a coupled hydro-economics modeling framework in the Mills River Basin (MRB), a tributary of the French Broad. The Mills River Basin was selected as the core basin for implementing a sustainable system of water allocation that is adaptive and reflects the interdependence of water dependent sectors. The headwaters of the Mills River are in the foothills of the Appalachians, and are currently under substantial land use land cover (LULC) change pressure for agricultural purposes. In this regard, the MRB is representative of similar headwater

  3. Nitrogen and phosphorus in streams of the Great Miami River Basin, Ohio, 1998-2000

    USGS Publications Warehouse

    Reutter, David C.

    2003-01-01

    Sources and loads of nitrogen and phosphorus in streams of the Great Miami River Basin were evaluated as part of the National Water-Quality Assessment program. Water samples were collected by the U.S. Geological Survey from October 1998 through September 2000 (water years 1999 and 2000) at five locations in Ohio on a routine schedule and additionally during selected high streamflows. Stillwater River near Union, Great Miami River near Vandalia, and Mad River near Eagle City were selected to represent predominantly agricultural areas upstream from the Dayton metropolitan area. Holes Creek near Kettering is in the Dayton metropolitan area and was selected to represent an urban area in the Great Miami River Basin. Great Miami River at Hamilton is downstream from the Dayton and Hamilton-Middletown metropolitan areas and was selected to represent mixed agricultural and urban land uses of the Great Miami River Basin. Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the three agricultural basins and for the Great Miami River Basin as a whole. Nutrient inputs from point sources were computed from the facilities that discharge one-half million gallons or more per day into streams of the Great Miami River Basin. Nonpoint-source inputs estimated in this report are atmospheric deposition and commercial-fertilizer and manure applications. Loads of ammonia, nitrate, total nitrogen, orthophosphate, and total phosphorus from the five sites were computed with the ESTIMATOR program. The computations show nitrate to be the primary component of instream nitrogen loads, and particulate phosphorus to be the primary component of instream phosphorus loads. The Mad River contributed the smallest loads of total nitrogen and total phosphorus to the study area upstream from Dayton, whereas the Upper Great Miami River (upstream from Vandalia) contributed the largest loads of total nitrogen and total phosphorus to the Great Miami River Basin

  4. Mapping groundwater availability and adequacy in the Lower Zambezi River basin

    NASA Astrophysics Data System (ADS)

    Pérez-Lapeña, Blanca; Saimone, Francisco; Juizo, Dinis

    2018-05-01

    Groundwater plays an important role as a source of water for various socio-economic uses and environmental requirements in the lower Zambezi basin in Mozambique. Hence it is important to know its availability and adequacy in space to inform decision making for sustainable water management practices. For a derivation of a Groundwater Availability map and a Groundwater Adequacy map we adapted the DRASTIC methodology in a GIS environment to determine how different parameters, such as precipitation, topography, soil drainage, land use and vegetation cover, aquifer characteristics and groundwater quality affect (i) groundwater recharge on a long-term sustainable basis, (ii) the short-term abstraction potential and (iii) the long-term adequacy of groundwater utilization for domestic use. Results showed that groundwater availability in the Zambezi basin varies mostly from medium to low, with highest potential along the perennial rivers and in the delta where it plays a crucial role in environmental preservation. The southern margin of the Zambezi River shows low groundwater availability and also presents low adequacy for domestic use due to poor groundwater quality. The results from this study will be used in determining the most promising future development pathways and select the most attractive strategic development plans of the Mozambican government for the Lower Zambezi basin.

  5. Trends and variability in the hydrological regime of the Mackenzie River Basin

    NASA Astrophysics Data System (ADS)

    Abdul Aziz, Omar I.; Burn, Donald H.

    2006-03-01

    Trends and variability in the hydrological regime were analyzed for the Mackenzie River Basin in northern Canada. The procedure utilized the Mann-Kendall non-parametric test to detect trends, the Trend Free Pre-Whitening (TFPW) approach for correcting time-series data for autocorrelation and a bootstrap resampling method to account for the cross-correlation structure of the data. A total of 19 hydrological and six meteorological variables were selected for the study. Analysis was conducted on hydrological data from a network of 54 hydrometric stations and meteorological data from a network of 10 stations. The results indicated that several hydrological variables exhibit a greater number of significant trends than are expected to occur by chance. Noteworthy were strong increasing trends over the winter month flows of December to April as well as in the annual minimum flow and weak decreasing trends in the early summer and late fall flows as well as in the annual mean flow. An earlier onset of the spring freshet is noted over the basin. The results are expected to assist water resources managers and policy makers in making better planning decisions in the Mackenzie River Basin.

  6. Water supply, demand, and quality indicators for assessing the spatial distribution of water resource vulnerability in the Columbia River Basin

    USGS Publications Warehouse

    Chang, Heejun; Jung, Il-Won; Strecker, Angela L.; Wise, Daniel; Lafrenz, Martin; Shandas, Vivek; ,; Yeakley, Alan; Pan, Yangdong; Johnson, Gunnar; Psaris, Mike

    2013-01-01

    We investigated water resource vulnerability in the US portion of the Columbia River basin (CRB) using multiple indicators representing water supply, water demand, and water quality. Based on the US county scale, spatial analysis was conducted using various biophysical and socio-economic indicators that control water vulnerability. Water supply vulnerability and water demand vulnerability exhibited a similar spatial clustering of hotspots in areas where agricultural lands and variability of precipitation were high but dam storage capacity was low. The hotspots of water quality vulnerability were clustered around the main stem of the Columbia River where major population and agricultural centres are located. This multiple equal weight indicator approach confirmed that different drivers were associated with different vulnerability maps in the sub-basins of the CRB. Water quality variables are more important than water supply and water demand variables in the Willamette River basin, whereas water supply and demand variables are more important than water quality variables in the Upper Snake and Upper Columbia River basins. This result suggests that current water resources management and practices drive much of the vulnerability within the study area. The analysis suggests the need for increased coordination of water management across multiple levels of water governance to reduce water resource vulnerability in the CRB and a potentially different weighting scheme that explicitly takes into account the input of various water stakeholders.

  7. River basin affected by rare perturbation events: the Chaiten volcanic eruption.

    NASA Astrophysics Data System (ADS)

    Picco, Lorenzo; Iroumé, Andrés; Oss-Cazzador, Daniele; Ulloa, Hector

    2017-04-01

    Natural disasters can strongly and rapidly affect a wide array of environments. Among these, volcanic eruptions can exert severe impacts on the dynamic equilibrium of riverine environment. The production and subsequent mobilization of large amounts of sediment all over the river basin, can strongly affect both hydrology and sediment and large wood transport dynamics. The aim of this research is to quantify the impact of a volcanic eruption along the Blanco River basin (Southern Chile), considering the geomorphic settings, the sediment dynamics and wood transport. Moreover, an overview on the possible management strategies to reduce the risks will be proposed. The research was carried out mainly along a 2.2 km-long reach of the fourth-order Blanco stream. Almost the entire river basin was affected by the volcanic eruption, several meters of tephra (up to 8 m) were deposited, affecting the evergreen forest and the fluvial corridor. Field surveys and remote sense analysis were carried out to investigate the effect of such extreme event. A Terrestrial Laser Scanner (TLS) was used to detect the morphological changes by computing Difference of Dems (DoDs), while field surveys were carried out to detect the amount of in-channel wood; moreover aerial photos have been analyzed to detect the extension of the impact of volcanic eruption over the river basin. As expected, the DoDs analysis permitted to detect predominant erosional processes along the channel network. In fact, over 190569 m2 there was erosion that produced about 362999 m3 of sediment mobilized, while the deposition happened just over 58715 m2 for a total amount of 23957 m3. Looking then to the LW recruited and transported downstream, was possible to detect as along the active channel corridor a total amount of 113 m3/ha of wood was present. Moreover, analyzing aerial photographs taken before and after the volcanic eruption was possible to define as a total area of about 2.19 km2 was affected by tephra

  8. Pb-Zn-Cd-Hg multi isotopic characterization of the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Widory, D.; Innocent, C.; Guerrot, C.; Bourrain, X.; Johnson, T. M.

    2012-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition (major ions and pollutants such as metals) of the dissolved load of rivers. Furthermore, this influence can also be evidenced in the suspended solid matter known to play an important role in the transport of heavy metals through river systems. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. Initially, the Loire upstream flows in a south to north direction originating in the Massif Central, and continues up to the city of Orléans, 650 km from the source. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The Loire River then follows a general east to west direction to the Atlantic Ocean. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for heavy metals Zn-Cd-Pb-Hg in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for these metals for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of

  9. Climate Projections and Drought: Verification for the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Santos, N. I.; Piechota, T. C.; Miller, W. P.; Ahmad, S.

    2017-12-01

    The Colorado River Basin has experienced the driest 17 year period (2000-2016) in over 100 years of historical record keeping. While the Colorado River reservoir system began the current drought at near 100% capacity, reservoir storage has fallen to just above 50% during the drought. Even though federal and state water agencies have worked together to mitigate the impact of the drought and have collaboratively sponsored conservation programs and drought contingency plans, the 17-years of observed data beg the question as to whether the most recent climate projections would have been able to project the current drought's severity. The objective of this study is to analyze observations and ensemble projections (e.g. temperature, precipitation, streamflow) from the CMIP3 and CMIP5 archive in the Colorado River Basin and compare metrics related to skill scores, the Palmer Drought Severity Index, and water supply sustainability index. Furthermore, a sub-ensemble of CMIP3/CMIP5 projections, developed using a teleconnection replication verification technique developed by the author, will also be compared to the observed record to assist in further validating the technique as a usable process to increase skill in climatological projections. In the end, this study will assist to better inform water resource managers about the ability of climate ensembles to project hydroclimatic variability and the appearance of decadal drought periods.

  10. Seasonal Movement and Distribution of Fluvial Adult Bull Trout in Selected Watersheds in the Mid-Columbia River and Snake River Basins

    PubMed Central

    Starcevich, Steven J.; Howell, Philip J.; Jacobs, Steven E.; Sankovich, Paul M.

    2012-01-01

    From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5–6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations. PMID

  11. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean rivers, Segura River Basin (Spain).

    PubMed

    Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco

    2011-05-01

    Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.

  12. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level.

    PubMed

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2016-11-15

    One of the main challenges in water management is to determine how the current water use can condition its availability to future generations and hence its sustainability. This study proposes the use of the Water Footprint (WF) indicator to assess the environmental sustainability in water resources management at the river basin level. The current study presents the methodology developed and applies it to a case study. The WF is a relatively new indicator that measures the total volume of freshwater that is used as a production factor. Its application is ever growing in the evaluation of water use in production processes. The calculation of the WF involves water resources (blue), precipitation stored in the soil (green) and pollution (grey). It provides a comprehensive assessment of the environmental sustainability of water use in a river basin. The methodology is based upon the simulation of the anthropised water cycle, which is conducted by combining a hydrological model and a decision support system. The methodology allows the assessment of the environmental sustainability of water management at different levels, and/or ex-ante analysis of how the decisions made in water planning process affect sustainability. The sustainability study was carried out in the Segura River Basin (SRB) in South-eastern Spain. The SRB is among the most complex basins in Europe, given its special peculiarities: competition for the use, overexploitation of aquifers, pollution, alternative sources, among others. The results indicate that blue water use is not sustainable due to the generalised overexploitation of aquifers. They also reveal that surface water pollution, which is not sustainable, is mainly caused by phosphate concentrations. The assessment of future scenarios reveals that these problems will worsen if no additional measures are implemented, and therefore the water management in the SRB is environmentally unsustainable in both the short- and medium-term. Copyright © 2016

  13. Assessment of Anthropogenic Impacts in La Plata River Basin

    NASA Astrophysics Data System (ADS)

    Garcia, N. O.; Venencio, M.

    2006-12-01

    An assessment of the variability of the streamflows in La Plata Basin (LPB), particularly in its major tributaries Paraná and Uruguay, is presented in this work. The La Plata Basin, the fifth largest basin in the world and second only to the Amazon in South America, is 3.6 million km2 and covers portions of 5 countries: Argentina, Brazil, Bolivia, Paraguay, and Uruguay. Sub-basins include the Bermejo, Paraná, Paraguay, Pilcomayo, and Uruguay. Major rivers of the basin are the Paraguay, the Uruguay and the Paraná. Streamflows in the LPB have been above normal in the last decades, e.g. the mean flow in the Paraná river during the 1971-1994 period was 34% higher than the mean flow during the 1931-1970 period. A similar analysis carried out on the precipitation records for the La Plata basin showed only a 14% increase during the same periods for the Upper Paraná basin and a 20% increase for the Uruguay basin. In this paper it is postulated that the increase in the streamflows, not explained by precipitation increases, is due to the changes in cultivation patterns in the upper basins of the Paraná and Uruguay. Particularly, the substitution of coffee plantations for annual crops, mainly soybeans, has produced a change in the infiltration patterns that influenced the discharges.

  14. Flood of May 23, 2004, in the Turkey and Maquoketa River basins, northeast Iowa

    USGS Publications Warehouse

    Eash, David A.

    2006-01-01

    Severe flooding occurred on May 23, 2004, in the Turkey River Basin in Clayton County and in the Maquoketa River Basin in Delaware County following intense thunderstorms over northeast Iowa. Rain gages at Postville and Waucoma, Iowa, recorded 72-hour rainfall of 6.32 and 6.55 inches, respectively, on May 23. Unofficial rainfall totals of 8 to 10 inches were reported in the Turkey River Basin. The peak discharge on May 23 at the Turkey River at Garber streamflow-gaging station was 66,700 cubic feet per second (recurrence interval greater than 500 years) and is the largest flood on record in the Turkey River Basin. The timing of flood crests on the Turkey and Volga Rivers, and local tributaries, coincided to produce a record flood on the lower part of the Turkey River. Three large floods have occurred at the Turkey River at Garber gaging station in a 13-year period. Peak discharges of the floods of June 1991 and May 1999 were 49,900 cubic feet per second (recurrence interval about 150 years) and 53,900 cubic feet per second (recurrence interval about 220 years), respectively. The peak discharge on May 23 at the Maquoketa River at Manchester gaging station was 26,000 cubic feet per second (recurrence interval about 100 years) and is the largest known flood in the upper part of the Maquoketa River Basin.

  15. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the Whitewater River and East Fork White River Basins, Indiana, 2002

    USGS Publications Warehouse

    Caskey, Brian J.; Frey, Jeffrey W.; Lowe, B. Scott

    2007-01-01

    Data were gathered from May through September 2002 at 76 randomly selected sites in the Whitewater River and East Fork White River Basins, Indiana, for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (land use and drainage area) and biolog-ical-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Compo-nents Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related using Spearman's rho to the seasonal algal-biomass, basin-charac-teristics, habitat, seasonal nutrient, and biological-community attribute and metric score data. The periphyton PC1 site score was not significantly related to the nine habitat or 12 nutrient variables examined. One land-use variable, drainage area, was negatively related to the periphyton PC1. Of the 43 fish-community attributes and metrics examined, the periphyton PC1 was negatively related to one attribute (large-river percent) and one metric score (car-nivore percent metric score). It was positively related to three fish-community attributes (headwater percent, pioneer percent, and simple lithophil percent). The periphyton PC1 was not statistically related to any of the 21 invertebrate-community attributes or metric scores examined. Of the 12 nutrient variables examined two were nega-tively related to the seston PC1 site score in two seasons: total Kjeldahl nitrogen (July and September), and TP (May and September). There were no statistically significant relations between the seston PC1 and the five basin-characteristics or nine habitat variables examined. Of the 43 fish-community attributes and metrics examined, the seston PC1 was positively related to one attribute (headwater percent) and negatively related to one metric score (large-river percent metric score) . Of the 21 invertebrate-community attributes

  16. The role of hydrological initial conditions on Atmospheric River floods in the Russian River basin

    NASA Astrophysics Data System (ADS)

    Cao, Q.; Mehran, A.; Ralph, M.; Cannon, F.; Lettenmaier, D. P.

    2017-12-01

    A body of work over the last decade or so has demonstrated that most major floods along the U.S. West Coast are attributable to Atmospheric Rivers (ARs). Antecedent hydrological conditions play an important part in the natural links between precipitation and floods, and this is especially the case in the Pacific Coastal region where precipitation is strongly winter-dominant, and many potentially flood-inducing events occur relatively early in the wet season. The Russian River Basin has these characteristics, the result of which is mostly dry soils at the onset of the fall precipitation season. There is therefore a tradeoff in terms of flood potential between the strength of AR events, and the time history of previous precipitation that has begun to wet soils and raise local water tables. In order to examine flood responses associated with varying precursor hydrological conditions, we first constructed a data set of AR events that were coincident with Peaks Over Threshold (POT) extreme discharge events at selected USGS stream gauges throughout the Russian River basin. We investigated the role of antecedent soil moisture and water table conditions on historical AR flooding, initially using an exploratory data analysis approach. We then implemented the Distributed Hydrology-Soil-Vegetation Model (DHSVM) over the entire basin and conducted modeling experiments for each of the POT events under climatological and extreme antecedent conditions. We reconstructed climatological soil moisture by assimilating in situ observations into long-term soil moisture simulations from the UCLA Western U.S. Drought Monitoring System. We explore an envelope of frequency distributions of floods given a range of AR-related extreme precipitation and various initial hydrologic conditions, which eventually should have implications for flood management decision-making.

  17. Sediment supply as a driver of river evolution in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ahmed, Joshua; Constantine, José Antonio; Dunne, Thomas; Legleiter, Carl; Lazarus, Eli D.

    2015-04-01

    The Amazon represents the only large river basin in the world where there is a sufficient range of sediment supplies and a lack of engineering controls to assess how sediment supply drives the evolution of meandering rivers. Despite recent analytical advances (Asahi et al., 2013; Pittaluga and Seminara, 2011), modern theory does not yet identify or explain the effects of externally imposed sediment supplies, a fundamental river characteristic, on meandering river evolution. These sediment supplies would be radically reduced by the construction of large dams proposed for the Amazon Basin (Finer and Jenkins, 2012). Here, we demonstrate that the sediment loads imposed by their respective drainage basins determine planform changes in lowland rivers across the Amazon. Our analysis, based on Landsat image sequences, indicates that rivers with high sediment loads draining the Andes and associated foreland basin experience annual migration rates that are on average four times faster than rivers with lower sediment loads draining the Central Amazon Trough and shields. Incidents of meander cutoff also occur more frequently along the rivers of the Andes and foreland basin, where the number of oxbows in the floodplains is more than twice that observed in the floodplains of the Central Amazon Trough and shields. Our results, which cannot be explained by differences in channel slope or hydrology, highlight the importance of sediment supply in modulating the ability of meandering alluvial rivers to reshape the floodplain environment through river migration. Asahi, K., Shimizu, Y., Nelson, J., Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2013JF002752. Finer, M., Jenkins, C.N., 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS One, 7(4), e35126. Pittaluga, M.B., Seminara, G., 2011. Nonlinearity and unsteadiness in river

  18. Selected hydrologic data, Price River basin, Utah, water years 1979 and 1980

    USGS Publications Warehouse

    Waddell, K.M.; Dodge, J.E.; Darby, D.W.; Theobald, S.M.

    1982-01-01

    The Price River basin in east-central Utah includes a significant part of the Wasatch Plateau and Book Cliffs coal-fields area (pi. 1) and currently (1980) is part of the most active coal-mining areas in the State.This report presents data gathered by the U.S. Geological Survey as part of a hydrologic study carried out during the water years 1979 and 1980 in cooperation with the U.S. Bureau of Land Management. The data were obtained in the field or from private, State, and other Federal agencies. The purpose of this report is to make the data available to those engaged in coal mining, to those assessing water resources that may possibly be affected by coal mining, and to supplement two interpretive reports that will be published at a later date. Other sources of hydrologic data in the Price River basin include Waddell and others, 1978 and Sumsion, 1979.

  19. An appraisal of the ground-water resources of the Juniata River Basin, Pennsylvania

    USGS Publications Warehouse

    Seaber, Paul R.; Hollyday, Este F.

    1966-01-01

    This report describes the availability, quantity, quality, variability, and cost of development of the ground-water resources in the Juniata River basin, one of the larger sub-basins of the Susquehanna River basin. The report has been prepared for and under specifications established by the Corps of Engineers, U. S. Army, and the Public Health Service, Department of Health, Education, and Welfare.A comprehensive study of the water and related land resources of the Susquehanna River basin was authorized by the Congress of the United States in October 1961, and the task of preparing a report and of coordinating the work being done by others in support of the study was assigned to the Corps of Engineers. The comprehensive study is being conducted by several Federal departments and independent agencies in cooperation with the States of New York, Pennsylvania, and Maryland. The Public Health Service under its authority in the Federal Water Pollution Control Act (P. L. 660) initiated a comprehensive water quality control program for the Chesapeake drainage basin, which includes the Susquehanna River basin.

  20. Linking River Basin Modifications and Rural Soil and Water Management Practices in Tropical Deltas to Sea Level Rise Vulnerability

    NASA Astrophysics Data System (ADS)

    Rogers, K. G.; Brondizio, E.; Roy, K.; Syvitski, J. P.

    2015-12-01

    The increased vulnerability of deltaic communities to coastal flooding as a result of upstream engineering has been acknowledged for decades. What has received less attention is the sensitivity of deltas to the interactions between river basin modifications and local scale cultivation and irrigation. Combined with reduced river and sediment discharge, soil and water management practices in coastal areas may exacerbate the risk of tidal flooding, erosion of arable land, and salinization of soils and groundwater associated with sea level rise. This represents a cruel irony to smallholder subsistence farmers whose priorities are food, water and economic security, rather than sustainability of the environment. Such issues challenge disciplinary approaches and require integrated social-biophysical models able to understand and diagnose these complex relationships. This study applies a new conceptual framework to define the relevant social and physical units operating on the common pool resources of climate, water and sediment in the Bengal Delta (Bangladesh). The new framework will inform development of a nested geospatial analysis and a coupled model to identify multi-scale social-biophysical feedbacks associated with smallholder soil and water management practices, coastal dynamics, basin modification, and climate vulnerability in tropical deltas. The framework was used to create household surveys for collecting data on climate perceptions, land and water management, and governance. Test surveys were administered to rural farmers in 14 villages during a reconnaissance visit to coastal Bangladesh. Initial results demonstrate complexity and heterogeneity at the local scale in both biophysical conditions and decision-making. More importantly, the results illuminate how national and geopolitical-level policies scale down to impact local-level environmental and social stability in communities already vulnerable to coastal flooding. Here, we will discuss components of the

  1. Prediction of Ungauged River Basin for Hydro Power Potential and Flood Risk Mitigation; a Case Study at Gin River, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Ratnayake, A. S.

    2011-12-01

    The most of the primary civilizations of the world emerged in or near river valleys or floodplains. The river channels and floodplains are single hydrologic and geomorphic system. The failure to appreciate the integral connection between floodplains and channel underlies many socioeconomic and environmental problems in river management today. However it is a difficult task of collecting reliable field hydrological data. Under such situations either synthetic or statistically generated data were used for hydraulic engineering designing and flood modeling. The fundamentals of precipitation-runoff relationship through synthetic unit hydrograph for Gin River basin were prepared using the method of the Flood Studies Report of the National Environmental Research Council, United Kingdom (1975). The Triangular Irregular Network model was constructed using Geographic Information System (GIS) to determine hazard prone zones. The 1:10,000 and 1:50,000 topography maps and field excursions were also used for initial site selection of mini-hydro power units and determine flooding area. The turbines output power generations were calculated using the parameters of net head and efficiency of turbine. The peak discharge achieves within 4.74 hours from the onset of the rainstorm and 11.95 hours time takes to reach its normal discharge conditions of Gin River basin. Stream frequency of Gin River is 4.56 (Junctions/ km2) while the channel slope is 7.90 (m/km). The regional coefficient on the catchment is 0.00296. Higher stream frequency and gentle channel slope were recognized as the flood triggering factors of Gin River basin and other parameters such as basins catchment area, main stream length, standard average annual rainfall and soil do not show any significant variations with other catchments of Sri Lanka. The flood management process, including control of flood disaster, prepared for a flood, and minimize it impacts are complicated in human population encroached and modified

  2. Sediment characteristics in the San Antonio River Basin downstream from San Antonio, Texas, and at a site on the Guadalupe River downstream from the San Antonio River Basin, 1966-2013

    USGS Publications Warehouse

    Crow, Cassi L.; Banta, J. Ryan; Opsahl, Stephen P.

    2014-01-01

    San Antonio and surrounding municipalities in Bexar County, Texas, are in a rapidly urbanizing region in the San Antonio River Basin. The U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Texas Water Development Board, compiled historical sediment data collected between 1996 and 2004 and collected suspended-sediment and bedload samples over a range of hydrologic conditions in the San Antonio River Basin downstream from San Antonio, Tex., and at a site on the Guadalupe River downstream from the San Antonio River Basin during 2011–13. In the suspended-sediment samples collected during 2011–13, an average of about 94 percent of the particles was less than 0.0625 millimeter (silt and clay sized particles); the 50 samples for which a complete sediment-size analysis was performed indicated that an average of about 69 percent of the particles was less than 0.002 millimeter. In the bedload samples collected during 2011–13, an average of 51 percent of sediment particles was sand-sized particles in the 0.25–0.5 millimeter-size range. In general, the loads calculated from the samples indicated that bedload typically composed less than 1 percent of the total sediment load. A least-squares log-linear regression was developed between suspended-sediment concentration and instantaneous streamflow and was used to estimate daily mean suspended-sediment loads based on daily mean streamflow. The daily mean suspended-sediment loads computed for each of the sites indicated that during 2011–12, the majority of the suspended-sediment loads originated upstream from the streamflow-gaging station on the San Antonio River near Elmendorf, Tex. A linear regression relation was developed between turbidity and suspended-sediment concentration data collected at the San Antonio River near Elmendorf site because the high-resolution data can facilitate understanding of the complex suspended-sediment dynamics over time and throughout the river basin.

  3. Research on the water resources regulation ability model of dams in the Huai He River Basin considering ecological and management factors

    NASA Astrophysics Data System (ADS)

    Shui, Y.; Liu, H. C.; Li, L. H.; Yu, G. G.; Liu, J.

    2016-08-01

    Research that assesses the scheduling ability of dams gamers a great deal of attention due to the global water resource crisis. These studies can provide useful and practical suggestions for scheduling the water resources of dams to solve problems, such as addressing ecological water needs and so on. Recent studies have primarily evaluated the schedule ability of dams according to their quantifiable attributes, such as water quantity, flow velocity, etc. However, the ecological and management status can directly determine the possibility and efficiency of a dam's water resource scheduling. This paper presents an evaluation model to assess the scheduling capacity of dams that takes into consideration ecological and management factors. In the experiment stage, this paper takes the Sha Ying river of the Huai He River Basin as an example to evaluate the scheduling ability of its dams. The results indicate that the proposed evaluation model can provide more precise and practical suggestions.

  4. Application of synthetic scenarios to address water resource concerns: A management-guided case study from the Upper Colorado River Basin

    USGS Publications Warehouse

    McAfee, Stephanie A.; Pederson, Gregory T.; Woodhouse, Connie A.; McCabe, Gregory

    2017-01-01

    Water managers are increasingly interested in better understanding and planning for projected resource impacts from climate change. In this management-guided study, we use a very large suite of synthetic climate scenarios in a statistical modeling framework to simultaneously evaluate how (1) average temperature and precipitation changes, (2) initial basin conditions, and (3) temporal characteristics of the input climate data influence water-year flow in the Upper Colorado River. The results here suggest that existing studies may underestimate the degree of uncertainty in future streamflow, particularly under moderate temperature and precipitation changes. However, we also find that the relative severity of future flow projections within a given climate scenario can be estimated with simple metrics that characterize the input climate data and basin conditions. These results suggest that simple testing, like the analyses presented in this paper, may be helpful in understanding differences between existing studies or in identifying specific conditions for physically based mechanistic modeling. Both options could reduce overall cost and improve the efficiency of conducting climate change impacts studies.

  5. Li-Zn-Pb multi isotopic characterization of the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A.; Widory, D.; Bourrain, X.

    2013-12-01

    The Loire River in France is approximately 1010 km long and drains an area of 117 800 km2. Upstream, the Loire River flows following a south to north direction from the Massif Central down to the city of Orléans, 650 km from its source. The Loire River is one of the main European riverine inputs to the Atlantic Ocean. Over time, its basin has been exposed to numerous sources of anthropogenic metal pollutions, such as metal mining, industry, agriculture and domestic inputs. The Loire River basin is thus an excellent study site to develop new isotope systematics for tracking anthropogenic sources of metal pollutions (Zn and Pb) and also to investigate Li isotope tracing that can provide key information on the nature of weathering processes at the Loire River Basin scale. Preliminary data show that Li-Zn-Pb concentrations and isotopic compositions span a wide range in river waters of the Loire River main stream and the main tributaries. There is a clear contrast between the headwaters upstream and rivers located downstream in the lowlands. In addition, one of the major tributaries within the Massif Central (the Allier River) is clearly influenced by inputs resulting from mineralizations and thermomineral waters. The results showed that, on their own, each of these isotope systematics reveals important information about the geogenic or anthropogenic origin Li-Zn-Pb. Considered together, they are however providing a more integrated understanding of the overall budgets of these elements at the scale of the Loire River Basin.

  6. System Dynamics Modeling of Transboundary Systems: The Bear River Basin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald Sehlke; Jake Jacobson

    2005-09-01

    System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and groundwater data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or groundwater modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less

  7. System Dynamics Modeling of Transboundary Systems: the Bear River Basin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald Sehlke; Jacob J. Jacobson

    2005-09-01

    System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and ground water data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or ground water modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less

  8. Water quality of streams and springs, Green River Basin, Wyoming

    USGS Publications Warehouse

    DeLong, L.L.

    1986-01-01

    Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)

  9. Geographic Information System and Geoportal «River basins of the European Russia»

    NASA Astrophysics Data System (ADS)

    Yermolaev, O. P.; Mukharamova, S. S.; Maltsev, K. A.; Ivanov, M. A.; Ermolaeva, P. O.; Gayazov, A. I.; Mozzherin, V. V.; Kharchenko, S. V.; Marinina, O. A.; Lisetskii, F. N.

    2018-01-01

    Geographic Information System (GIS) and Geoportal with open access «River basins of the European Russia» were implemented. GIS and Geoportal are based on the map of basins of small rivers of the European Russia with information about natural and anthropogenic characteristics, namely geomorphometry of basins relief; climatic parameters, representing averages, variation, seasonal variation, extreme values of temperature and precipitation; land cover types; soil characteristics; type and subtype of landscape; population density. The GIS includes results of spatial analysis and modelling, in particular, assessment of anthropogenic impact on river basins; evaluation of water runoff and sediment runoff; climatic, geomorphological and landscape zoning for the European part of Russia.

  10. Research on the response of the water sources to the climatic change in Shiyang River Basin

    NASA Astrophysics Data System (ADS)

    Jin, Y. Z.; Zeng, J. J.; Hu, X. Q.; Sun, D. Y.; Song, Z. F.; Zhang, Y. L.; Lu, S. C.; Cui, Y. Q.

    2017-08-01

    The influence of the future climate change to the water resource will directly pose some impact on the watershed management planning and administrative strategies of Shiyang River Basin. With the purpose of exploring the influence of climate change to the runoff, this paper set Shiyang River as the study area and then established a SWAT basin hydrological model based on the data such as DEM, land use, soil, climate hydrology and so on. Besides, algorithm of SUFI2 embedded in SWAT-CUP software is adopted. The conclusion shows that SWAT Model can simulate the runoff process of Nanying River well. During the period of model verification and simulation, the runoff Nash-Sutcliffe efficient coefficient of the verification and simulation is 0.76 and 0.72 separately. The relative error between the simulation and actual measurement and the model efficient coefficient are both within the scope of acceptance, which means that the SWAT hydrological model can be properly applied into the runoff simulation of Shiyang River Basin. Meantime, analysis on the response of the water resources to the climate change in Shiyang River Basin indicates that the impact of climate change on runoff is remarkable under different climate change situations and the annual runoff will be greatly decreased as the precipitation falls and the temperature rises. Influence of precipitation to annual runoff is greater than that of temperature. Annual runoff differs obviously under different climate change situations. All in all, this paper tries to provide some technical assistance for the water sources development and utilization assessment and optimal configuration.

  11. Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin

    NASA Astrophysics Data System (ADS)

    Peng, H.; Jia, Y.; Qiu, Y.

    2011-12-01

    The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin

  12. Characterizing and simulating sediment loads and transport in the lower part of the San Antonio River Basin

    USGS Publications Warehouse

    Banta, J. Ryan; Ockerman, Darwin J.; Crow, Cassi; Opsahl, Stephen P.

    2015-01-01

    This extended abstract is based on the U.S. Geological Survey Scientific Investigations Reports by Crow et al. (2013) and Banta and Ockerman (2014). Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. The quantity and type of suspended sediment can affect the biological communities (Wood and Armitage, 1997), the concentration and movement of natural constituents and anthropogenic contaminants (Moran and others, 2012), and the amount of sediment deposition in coastal environments (Milliman and Meade, 1983). To better understand suspended-sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority and Texas Water Development Board, conducted a two-phase study to (1) collect and analyze sediment data to characterize sediment conditions in the San Antonio River downstream of San Antonio, Texas, and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads for four watersheds in the San Antonio River Basin, downstream from San Antonio, Texas.

  13. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 inmore » order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the

  14. Spatial-temporal Evolution of Vegetation Coverage and Analysis of it’s Future Trends in Wujiang River Basin

    NASA Astrophysics Data System (ADS)

    Xiao, Jianyong; Bai, Xiaoyong; Zhou, Dequan; Qian, Qinghuan; Zeng, Cheng; Chen, Fei

    2018-01-01

    Vegetation coverage dynamics is affected by climatic, topography and human activities, which is an important indicator reflecting the regional ecological environment. Revealing the spatial-temporal characteristics of vegetation coverage is of great significance to the protection and management of ecological environment. Based on MODIS NDVI data and the Maximum Value Composites (MVC), we excluded soil spectrum interference to calculate Fractional Vegetation Coverage (FVC). Then the long-term FVC was used to calculate the spatial pattern and temporal variation of vegetation in Wujiang River Basin from 2000 to 2016 by using Trend analysis and Hurst index. The relationship between topography and spatial distribution of FVC was analyzed. The main conclusions are as follows: (1) The multi-annual mean vegetation coverage reveals a spatial distribution variation characteristic of low value in midstream and high level in other parts of the basin, owing a mean value of 0.6567. (2) From 2000 to 2016, the FVC of the Wujiang River Basin fluctuated between 0.6110 and 0.7380, and the overall growth rate of FVC was 0.0074/a. (3) The area of vegetation coverage tending to improve is more than that going to degrade in the future. Grass land, Arable land and Others improved significantly; karst rocky desertification comprehensive management project lead to persistent vegetation coverage improvement of Grass land, Arable land and Others. Residential land is covered with obviously degraded vegetation, resulting of urban sprawl; (4) The spatial distribution of FVC is positively correlated with TNI. Researches of spatial-temporal evolution of vegetation coverage have significant meaning for the ecological environment protection and management of the Wujiang River Basin.

  15. Trends and variability of daily precipitation extremes during 1960-2012 in the Yangtze River Basin, China

    USDA-ARS?s Scientific Manuscript database

    Trends and variability of extreme precipitation events are important for water-related disaster prevention and mitigation as well as water resource management. Based on daily precipitation dataset from 143 meteorological stations in the Yangtze River Basin (YRB), a suite of precipitation indices rec...

  16. REACH-ER: a tool to evaluate river basin remediation measures for contaminants at the catchment scale

    NASA Astrophysics Data System (ADS)

    van Griensven, Ann; Haest, Pieter Jan; Broekx, Steven; Seuntjens, Piet; Campling, Paul; Ducos, Geraldine; Blaha, Ludek; Slobodnik, Jaroslav

    2010-05-01

    The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good status' by 2015. However, it is a major challenge for river basin managers to meet this requirement in river basins with a high population density as well as intensive agricultural and industrial activities. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded water bodies. For this purpose, a generic collaborative management tool ‘REACH-ER' is being developed that can be used by stakeholders, citizens and water managers to evaluate the ecological and economical effects of different remedial actions on waterbodies. The tool is built using databases from large scale models simulating the hydrological dynamics of the river basing and sub-basins, the costs of the measures and the effectiveness of the measures in terms of ecological impact. Knowledge rules are used to describe the relationships between these data in order to compute the flux concentrations or to compute the effectiveness of measures. The management tool specifically addresses nitrate pollution and pollution by organic micropollutants. Detailed models are also used to predict the effectiveness of site remedial technologies using readily available global data. Rules describing ecological impacts are derived from ecotoxicological data for (mixtures of) specific contaminants (msPAF) and ecological indices relating effects to the presence of certain contaminants. Rules describing the cost-effectiveness of measures are derived from linear programming models identifying the least-cost combination of abatement measures to satisfy multi-pollutant reduction targets and from multi-criteria analysis.

  17. 2014 annual summary of the lower Gunnison River Basin Selenium Management Program water-quality monitoring, Colorado

    USGS Publications Warehouse

    Henneberg, Mark F.

    2016-08-10

    Dissolved-selenium loading analyses of data collected at 18 water-quality sites in the lower Gunnison River Basin in Colorado were completed through water year (WY) 2014. A WY is defined as October 1–September 30. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents information on the dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for WYs 2011–2014. Annual dissolved-selenium loads were calculated at 5 sites with continuous U.S. Geological Survey (USGS) streamflow gages, whereas instantaneous dissolved-selenium loads were calculated for the remaining 13 sites using water-quality samples that had been collected periodically during WYs 2011–2014. Annual dissolved-selenium loads for WY 2014 ranged from 336 pounds (lb) at Uncompahgre River at Colona to 13,300 lb at Gunnison River near Grand Junction (Whitewater). Most sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb per day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream.The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved selenium at selected water-quality sites. Annual 85th percentiles for dissolved selenium were calculated for the five core USGS sites having streamflow gages using estimated dissolved-selenium concentrations from linear regression models. These annual 85th percentiles in WY 2014 ranged from 0.97 µg/L at Uncompahgre River at Colona to 16.7 µg/L at Uncompahgre River at Delta. Uncompahgre River at Delta and Whitewater were the only core sites where water samples exceeded the State of Colorado water-quality standard for dissolved selenium of 4.6 µg/L.Instantaneous 85th percentiles for dissolved selenium were calculated for sites with sufficient data

  18. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin.

    PubMed

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-12-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  19. Characterization of the regional variability of flood regimes within the Omo-Gibe River Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Yared, Adanech; Demissie, Solomon S.; Sivapalan, Murugesu; Viglione, Alberto; MacAlister, Charlotte

    2014-05-01

    Hydrological variability and seasonality is one of the Ethiopia's primary water resource management challenges. Variability is most obviously manifest in endemic, devastating droughts and floods. While the level of flooding is quite often extremely high and destroys human beings and property, in many cases flooding is of vital importance because the community benefits from flood recession agriculture. This is the case of the lower Omo plain whose agriculture is based on the regularity of the inundations due to flooding of the Omo Gibe River. The big flood in 2006, which caused death for more than 300 people and 2000 cattle, poses a dilemma. Flooding must be controlled and regulated in a way that the damages are reduced as much as possible but the flooding-related benefits are not lost. To this aim, characterization and understanding of hydrological variability of the Omo Gibe River basin is fundamental. The goal of this work is to extract the maximal amount of information on the hydrological variability and specially on the flooding regime from the few data available in the region. Because most of the basin is ungauged, hydrological information is reconstructed using the data from 9 gauged catchments. A daily water balance model has been developed, calibrated and validated for 9 gauged catchments and, subsequently, the parameters have been correlated to catchment characteristics in order to establish a functional relationship that allows to apply the model to ungauged catchments. Daily streamflow has been predicted for 15 ungauged catchments, which are assumed to comprehensively represent the hydrological variability of the Omo-Gibe River Basin. Even though both northern and southern catchments are affected by a strong seasonality of precipitation, with most of the rain falling in less than 3 months, most of the northern catchments are humid, while in the southern part of the Omo-Gibe River basin, the catchments are either humid, dry sub humid, semiarid or arid. As

  20. Low-flow characteristics of streams in the lower Wisconsin River basin

    USGS Publications Warehouse

    Gebert, W.A.

    1978-01-01

    Low-flow characteristics estimated for the lower Wisconsin River basin have a high degree of reliability when compared with other basins in Wisconsin, Reliable estimates appear to be related to the relatively uniform geologic features in the basin.

  1. Floods of 1950 in the Red River of the North and Winnipeg River basins

    USGS Publications Warehouse

    ,

    1952-01-01

    The floods of April-July 1950 in the Red River of the North and Winnipeg River Basins were the largest that have occurred in several decades and caused the greatest damage that the flooded area has ever sustained. Five lives were lost in the United States, owing to causes directly connected with the floods. The dual peaks--on upper river and tributaries, one in April and the other in May--of nearly the same size and" the large lake-like body of flood-water ponded between Grand Forks and Winnipeg were notable features of the flood in the Red River of the North Basin. The flood in the Winnipeg River Basin was characterized by the unusually large volume of runoff and the lateness of cresting on the Lake of the Woods.The floods were caused by a combination of causes: high antecedent soil moisture, high antecedent runoff, heavy snowfall, delayed breakup, and heavy precipitation during breakup. Mid-March snow-surveys, made in the area by hydrographers of the United States and Canadian services, showed that the snow pack north of Fargo, N. Dak., had an unusually high water content and a runoff potential increasing from west to east. A narrow band, extending from near Grand Forks, N. Dak., east-northeastward across the basin, had a water content of 5 inches or higher. April 15 marked the beginning of rapid melting throughout the basins; most of the snow was turned into water by the end of the first melt period on April 24. A return of winter-like conditions until May 10 brought more snow and set the stage for second flood crests.The records of stage and discharge collected on the Red River of the North at Grand Forks, N. Dak., since 1882 show that the important 1897 flood slightly exceeded the 1950 flood in both stage and discharge. Records collected by the Geological Survey and Corps of Engineers on the Red River of the North show that the 1950 flood stages exceeded any previously known from just below the mouth of Turtle River to the international boundary. Records for

  2. Characterization of shallow groundwater quality in the Lower St. Johns River Basin: a case study

    Treesearch

    Ying Ouyang; Jia-En Zhang; Prem Parajuli

    2013-01-01

    Characterization of groundwater quality allows the evaluation of groundwater pollution and provides information for better management of groundwater resources. This study characterized the shallow groundwater quality and its spatial and seasonal variations in the Lower St. Johns River Basin, Florida, USA, under agricultural, forest, wastewater, and residential land...

  3. Comparison of the Various Methodologies Used in Studying Runoff and Sediment Load in the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Xu, M., III; Liu, X.

    2017-12-01

    In the past 60 years, both the runoff and sediment load in the Yellow River Basin showed significant decreasing trends owing to the influences of human activities and climate change. Quantifying the impact of each factor (e.g. precipitation, sediment trapping dams, pasture, terrace, etc.) on the runoff and sediment load is among the key issues to guide the implement of water and soil conservation measures, and to predict the variation trends in the future. Hundreds of methods have been developed for studying the runoff and sediment load in the Yellow River Basin. Generally, these methods can be classified into empirical methods and physical-based models. The empirical methods, including hydrological method, soil and water conservation method, etc., are widely used in the Yellow River management engineering. These methods generally apply the statistical analyses like the regression analysis to build the empirical relationships between the main characteristic variables in a river basin. The elasticity method extensively used in the hydrological research can be classified into empirical method as it is mathematically deduced to be equivalent with the hydrological method. Physical-based models mainly include conceptual models and distributed models. The conceptual models are usually lumped models (e.g. SYMHD model, etc.) and can be regarded as transition of empirical models and distributed models. Seen from the publications that less studies have been conducted applying distributed models than empirical models as the simulation results of runoff and sediment load based on distributed models (e.g. the Digital Yellow Integrated Model, the Geomorphology-Based Hydrological Model, etc.) were usually not so satisfied owing to the intensive human activities in the Yellow River Basin. Therefore, this study primarily summarizes the empirical models applied in the Yellow River Basin and theoretically analyzes the main causes for the significantly different results using

  4. Field trip guidebook to the hydrogeology of the Rock-Fox River basin of Southeastern Wisconsin

    USGS Publications Warehouse

    Holt, C. L. R.; Cotter, R.D.; Green, J.H.; Olcott, P.G.

    1970-01-01

    On this trip we will examine some hydrogeologic characteristics of glacial features and emphasize ground-water management within the Rock-Fox River basin. Field stops will include the hydrogeology of a classical glacial terrane--the Kettle moraine--and the management of ground-water resources for industrial, municipal, agricultural, and fish-culture purposes. Descriptions of the geology, soils, water availability and characteristics, water quality, water use, and water problems within the basin are given in the accompanying U.S. Geological Survey Hydrologic Atlas (HA-360). This atlas is a product of the cooperative program of University Extension--the University of Wisconsin Geological and Natural History Survey.

  5. Design rainfall depth estimation through two regional frequency analysis methods in Hanjiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Xu, Yue-Ping; Yu, Chaofeng; Zhang, Xujie; Zhang, Qingqing; Xu, Xiao

    2012-02-01

    Hydrological predictions in ungauged basins are of significant importance for water resources management. In hydrological frequency analysis, regional methods are regarded as useful tools in estimating design rainfall/flood for areas with only little data available. The purpose of this paper is to investigate the performance of two regional methods, namely the Hosking's approach and the cokriging approach, in hydrological frequency analysis. These two methods are employed to estimate 24-h design rainfall depths in Hanjiang River Basin, one of the largest tributaries of Yangtze River, China. Validation is made through comparing the results to those calculated from the provincial handbook approach which uses hundreds of rainfall gauge stations. Also for validation purpose, five hypothetically ungauged sites from the middle basin are chosen. The final results show that compared to the provincial handbook approach, the Hosking's approach often overestimated the 24-h design rainfall depths while the cokriging approach most of the time underestimated. Overall, the Hosking' approach produced more accurate results than the cokriging approach.

  6. Nutrient mitigation in a temporary river basin.

    PubMed

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Cooper, David; Kassotaki, Elissavet

    2014-04-01

    We estimate the nutrient budget in a temporary Mediterranean river basin. We use field monitoring and modelling tools to estimate nutrient sources and transfer in both high and low flow conditions. Inverse modelling by the help of PHREEQC model validated the hypothesis of a losing stream during the dry period. Soil and Water Assessment Tool model captured the water quality of the basin. The 'total daily maximum load' approach is used to estimate the nutrient flux status by flow class, indicating that almost 60% of the river network fails to meet nitrogen criteria and 50% phosphate criteria. We recommend that existing well-documented remediation measures such as reforestation of the riparian area or composting of food process biosolids should be implemented to achieve load reduction in close conjunction with social needs.

  7. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France

  8. Do incentives still matter for the reform of irrigation management in the Yellow River Basin in China?

    NASA Astrophysics Data System (ADS)

    Wang, Jinxia; Huang, Jikun; Zhang, Lijuan; Huang, Qiuqiong

    2014-09-01

    Under the pressure of increasing water shortages and the need to sustain the development of irrigated agriculture, since the middle of the 1990s, officials in the YRB have begun to push for the institutional reform of irrigation management. Based on a panel data set collected in 2001 and 2005 in the Yellow River Basin, the overall goal of this paper is to examine how the irrigation management reform has proceeded since the early 2000s and what the impacts are of the incentive mechanisms on water use and crop yields. The results show that after the early 2000s, irrigation management reform has accelerated. Different from contracting management, more Water User Associations (WUAs) chose not to establish incentive mechanisms. The econometric model results indicate that using incentive mechanisms to promote water savings is effective under the arrangement of contracting management and not effective under WUAs. However, if incentives are provided to the contracting managers, the wheat yield declines significantly. Our results imply that at the later stage of the reform, the cost of reducing water use by providing incentives to managers includes negative impacts on some crop yields. Therefore, how to design win-win supporting policies to ensure the healthy development of the irrigation management reform should be highly addressed by policy makers.

  9. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  10. Characterizing Future El Niño Impacts to the Lower Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Santos, N. I.; Miller, W. P.; Piechota, T. C.; Lakshmi, V.

    2015-12-01

    Past El Niño events in the Colorado River Basin, such as the 1982-1983 event, resulted in one of the basin's wettest years on record. Looking at past events and the current forecasts, which indicate Pacific Ocean conditions could lead to one of the strongest El Niño events on record this winter, it is no wonder that many water management agencies and their customers are expecting a relief in the southwestern United States (US) drought intensity as the probability of a strong El Niño becomes more significant. Despite the conditions in the Pacific Ocean, a strong El Niño is not a guarantee for wet conditions in the Colorado River basin - as can be seen from the 2002 event in which basin conditions were one of the driest on record. There is a great need to understand the range of possible conditions that could be observed under an El Niño event to better inform southwestern US water management agencies so that they may make well-guided decisions regarding their most valuable resource - the Colorado River. This study builds upon past research based on the Coupled Model Intercomparison Project 5 (CMIP5) climatology and hydrology projections and the analysis performed with singular variable decomposition (SVD) to identify climate models with high correlation between historical climate/hydrology in the CRB and sea surface temperature conditions in the Pacific Ocean. Past research methods were able to identify climate models which performed well using the SVD methodology. This current project seeks to analyze the well-performing climate models and identify future El Niño conditions in the Pacific Ocean and the resultant precipitation and temperature impacts in the lower CRB. This analysis will provide an objective, ensemble based outlook for potential climate change impacts under El Niño events.The results of the study can potentially assist lower CRB water management agencies in characterizing the range of future El Niño impacts, under climate change conditions

  11. River Basin Standards Interoperability Pilot

    NASA Astrophysics Data System (ADS)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  12. Automated Mapping of Flood Events in the Mississippi River Basin Utilizing NASA Earth Observations

    NASA Technical Reports Server (NTRS)

    Bartkovich, Mercedes; Baldwin-Zook, Helen Blue; Cruz, Dashiell; McVey, Nicholas; Ploetz, Chris; Callaway, Olivia

    2017-01-01

    The Mississippi River Basin is the fourth largest drainage basin in the world, and is susceptible to multi-level flood events caused by heavy precipitation, snow melt, and changes in water table levels. Conducting flood analysis during periods of disaster is a challenging endeavor for NASA's Short-term Prediction Research and Transition Center (SPoRT), Federal Emergency Management Agency (FEMA), and the U.S. Geological Survey's Hazards Data Distribution Systems (USGS HDDS) due to heavily-involved research and lack of manpower. During this project, an automated script was generated that performs high-level flood analysis to relieve the workload for end-users. The script incorporated Landsat 8 Operational Land Imager (OLI) tiles and utilized computer-learning techniques to generate accurate water extent maps. The script referenced the Moderate Resolution Imaging Spectroradiometer (MODIS) land-water mask to isolate areas of flood induced waters. These areas were overlaid onto the National Land Cover Database's (NLCD) land cover data, the Oak Ridge National Laboratory's LandScan data, and Homeland Infrastructure Foundation-Level Data (HIFLD) to determine the classification of areas impacted and the population density affected by flooding. The automated algorithm was initially tested on the September 2016 flood event that occurred in Upper Mississippi River Basin, and was then further tested on multiple flood events within the Mississippi River Basin. This script allows end users to create their own flood probability and impact maps for disaster mitigation and recovery efforts.

  13. Quality of surface waters in the lower Columbia River Basin

    USGS Publications Warehouse

    Santos, John F.

    1965-01-01

    This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the

  14. An environmental streamflow assessment for the Santiam River basin, Oregon

    USGS Publications Warehouse

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual

  15. Distribution, stock composition and timing, and tagging response of wild Chinook Salmon returning to a large, free-flowing river basin

    USGS Publications Warehouse

    Eiler, John H.; Masuda, Michele; Spencer, Ted R.; Driscoll, Richard J.; Schreck, Carl B.

    2014-01-01

    Chinook Salmon Oncorhynchus tshawytscha returns to the Yukon River basin have declined dramatically since the late 1990s, and detailed information on the spawning distribution, stock structure, and stock timing is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio-tagged in the lower basin during 2002–2004 and tracked upriver. Fish traveled to spawning areas throughout the basin, ranging from several hundred to over 3,000 km from the tagging site. Similar distribution patterns were observed across years, suggesting that the major components of the run were identified. Daily and seasonal composition estimates were calculated for the component stocks. The run was dominated by two regional components comprising over 70% of the return. Substantially fewer fish returned to other areas, ranging from 2% to 9% of the return, but their collective contribution was appreciable. Most regional components consisted of several principal stocks and a number of small, spatially isolated populations. Regional and stock composition estimates were similar across years even though differences in run abundance were reported, suggesting that the differences in abundance were not related to regional or stock-specific variability. Run timing was relatively compressed compared with that in rivers in the southern portion of the species’ range. Most stocks passed through the lower river over a 6-week period, ranging in duration from 16 to 38 d. Run timing was similar for middle- and upper-basin stocks, limiting the use of timing information for management. The lower-basin stocks were primarily later-run fish. Although differences were observed, there was general agreement between our composition and timing estimates and those from other assessment projects within the basin, suggesting that the telemetry-based estimates provided a plausible approximation of the return. However, the short duration of the run, complex stock structure, and

  16. Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications.

    PubMed

    Patel, Priyanka; Raju, N Janardhana; Reddy, B C Sundara Raja; Suresh, U; Sankar, D B; Reddy, T V K

    2018-04-01

    The concentration of heavy metals was analyzed each of 20 river water, suspended sediments and bed sediments along the stretch of Swarnamukhi River Basin. River water is not contaminated with heavy metals except Fe and Mn. Contamination factor in sediments shows considerable to very high degree contamination with Cr, Cu, Pb and Zn. The sources of these metals could be residential wastes, sewer outfall, fertilizers, pesticides (M-45 + carbondine) and traffic activities apart from natural weathering of granitic rocks present in the basin area. Principal component analyses indicate the interaction between metals in different media. The comparison of metals (Cu, Pb and Zn) in bed sediments of Swarnamukhi River with the Indian and world averages indicates that the values obtained in the basin are above the Indian averages and far below to the world averages. Average shale values and sediment quality guidelines point toward the enrichment and contamination of Cu, Cr, Pb and Zn to several fold leading to eco-toxicological risks in basin.

  17. Rising Water Storage in the Niger River basin: Clues and Cause

    NASA Astrophysics Data System (ADS)

    Werth, S.

    2016-12-01

    Heavily populated west African regions along the Niger River are affected by climate and land cover changes, altering the distribution of water resources. To maintain a reliable water supply in the region, water management authorities require knowledge of hydrological changes at various spatial and temporal scales. Local and regional studies reported rising water tables over the last decades as a consequence of complex responses on land use change in the Sahel zone. The spatial extend of this responses is not well understood, as of yet. Thus, this study provides an in-depth investigation of long-term changes in the water storages of Niger River basin and its sub-regions by analyzing more than a decade of satellite based gravity data from the Gravity Recovery And Climate Change (GRACE) satellites. Soil moisture data from four global hydrological models serve to separate freshwater resources (WR) from GRACE-based terrestrial water storage variations. Surface water variations from a global water storage model and trends from altimetry data were applied to separate the groundwater component from WR trends. Errors of all datasets are taken into account. Trends in WR are positive, except for the tropical Upper Niger with negative trends. For the Niger basin, a rise in GW stocks was detected. On the subbasin scale, GW changes are positive for the Sahelian Middle Niger and the Benue. The findings confirm previous observations of water tables in the Sahel and tropical zones, indicating that reported effects of land use change are relevant on large, i.e. basin and subbasin, scales. Our results have implications for Niger water management strategies. While areas with rising water storage are stocking a comfortable backup to mitigate possible future droughts and to deliver water to remote areas with no access to rivers or reservoirs. Increasing groundwater recharges may be accompanied by a reduction in water quality. This study helps to inform authority's decision to address

  18. Comparison of the Abiotic Preferences of Macroinvertebrates in Tropical River Basins

    PubMed Central

    Everaert, Gert; De Neve, Jan; Boets, Pieter; Dominguez-Granda, Luis; Mereta, Seid Tiku; Ambelu, Argaw; Hoang, Thu Huong; Goethals, Peter L. M.; Thas, Olivier

    2014-01-01

    We assessed and compared abiotic preferences of aquatic macroinvertebrates in three river basins located in Ecuador, Ethiopia and Vietnam. Upon using logistic regression models we analyzed the relationship between the probability of occurrence of five macroinvertebrate families, ranging from pollution tolerant to pollution sensitive, (Chironomidae, Baetidae, Hydroptilidae, Libellulidae and Leptophlebiidae) and physical-chemical water quality conditions. Within the investigated physical-chemical ranges, nine out of twenty-five interaction effects were significant. Our analyses suggested river basin dependent associations between the macroinvertebrate families and the corresponding physical-chemical conditions. It was found that pollution tolerant families showed no clear abiotic preference and occurred at most sampling locations, i.e. Chironomidae were present in 91%, 84% and 93% of the samples taken in Ecuador, Ethiopia and Vietnam. Pollution sensitive families were strongly associated with dissolved oxygen and stream velocity, e.g. Leptophlebiidae were only present in 48%, 2% and 18% of the samples in Ecuador, Ethiopia and Vietnam. Despite some limitations in the study design, we concluded that associations between macroinvertebrates and abiotic conditions can be river basin-specific and hence are not automatically transferable across river basins in the tropics. PMID:25279673

  19. Comparison of the abiotic preferences of macroinvertebrates in tropical river basins.

    PubMed

    Everaert, Gert; De Neve, Jan; Boets, Pieter; Dominguez-Granda, Luis; Mereta, Seid Tiku; Ambelu, Argaw; Hoang, Thu Huong; Goethals, Peter L M; Thas, Olivier

    2014-01-01

    We assessed and compared abiotic preferences of aquatic macroinvertebrates in three river basins located in Ecuador, Ethiopia and Vietnam. Upon using logistic regression models we analyzed the relationship between the probability of occurrence of five macroinvertebrate families, ranging from pollution tolerant to pollution sensitive, (Chironomidae, Baetidae, Hydroptilidae, Libellulidae and Leptophlebiidae) and physical-chemical water quality conditions. Within the investigated physical-chemical ranges, nine out of twenty-five interaction effects were significant. Our analyses suggested river basin dependent associations between the macroinvertebrate families and the corresponding physical-chemical conditions. It was found that pollution tolerant families showed no clear abiotic preference and occurred at most sampling locations, i.e. Chironomidae were present in 91%, 84% and 93% of the samples taken in Ecuador, Ethiopia and Vietnam. Pollution sensitive families were strongly associated with dissolved oxygen and stream velocity, e.g. Leptophlebiidae were only present in 48%, 2% and 18% of the samples in Ecuador, Ethiopia and Vietnam. Despite some limitations in the study design, we concluded that associations between macroinvertebrates and abiotic conditions can be river basin-specific and hence are not automatically transferable across river basins in the tropics.

  20. 18 CFR 706.413 - Submission of statements by River Basin Commission Chairmen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Financial Interests § 706.413 Submission of statements by River Basin Commission Chairmen. A statement of employment and financial interest is not required under this part from Chairmen of River Basin Commissions created by the President pursuant to Title II of the U.S. Water Resources Planning Act. The Commission...

  1. Water Quality in the Yakima River Basin, Washington, 1999-2000

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Morace, Jennifer L.; Johnson, Henry M.; Rinella, Joseph F.; Ebbert, James C.; Embrey, Sandra S.; Waite, Ian R.; Carpenter, Kurt D.; Wise, Daniel R.; Hughes, Curt A.

    2004-01-01

    This report contains the major findings of a 1999?2000 assessment of water quality in streams and drains in the Yakima River Basin. It is one of a series of reports by the NAWQA Program that present major findings on water resources in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from large rivers that drain lands having many uses to small agricultural watersheds?and is discussed in terms of local, State, and regional issues. Conditions in the Yakima River Basin are compared to those found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, Tribal, State, or local agencies; universities; public interest groups; or the private sector. The information will be useful in addressing a number of current issues, such as source-water protection, pesticide registration, human health, drinking water, hypoxia and excessive growth of algae and plants, the effects of agricultural land use on water quality, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of water resources in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Yakima River Basin are available. Detailed technical information, data and analyses, methodology, and maps that support the findings presented in this report can be accessed from http://or.water.usgs.gov/yakima. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  2. Improving governance action by an advanced water modelling system applied to the Po river basin in Italy

    NASA Astrophysics Data System (ADS)

    Alessandrini, Cinzia; Del Longo, Mauro; Pecora, Silvano; Puma, Francesco; Vezzani, Claudia

    2013-04-01

    In spite of the historical abundance of water due to rains and to huge storage capacity provided by alpine lakes, Po river basin, the most important Italian water district experienced in the past ten years five drought/water scarcity events respectively in 2003, 2006, 2007 and 2012 summers and in the 2011-2012 winter season. The basic approach to these crises was the observation and the post-event evaluation; from 2007 an advanced numerical modelling system, called Drought Early Warning System for the Po River (DEWS-Po) was developed, providing advanced tools to simulate the hydrological and anthropic processes that affect river flows and allowing to follow events with real-time evaluations. In early 2012 the same system enabled also forecasts. Dews-Po system gives a real-time representation of water distribution across the basin, characterized by high anthropogenic pressure, optimizing with specific tools water allocation in competing situations. The system represents an innovative approach in drought forecast and in water resource management in the Po basin, giving deterministic and probabilistic meteorological forecasts as input to a chain for numerical distributed modelling of hydrological and hydraulic simulations. The system architecture is designed to receive in input hydro-meteorological actually observed and forecasted variables: deterministic meteorological forecasts with a fifteen days lead time, withdrawals data for different uses, natural an artificial reservoirs storage and release data. The model details are very sharp, simulating also the interaction between Adriatic sea and Po river in the delta area in terms of salt intrusion forecasting. Calculation of return period through run-method and of drought stochastic-indicators are enabled to assess the characteristics of the on-going and forecasted event. An Inter-institutional Technical Board is constituted within the Po River Basin Authority since 2008 and meets regularly during water crises to act

  3. Incentive compatibility and conflict resolution in international river basins: A case study of the Nile Basin

    NASA Astrophysics Data System (ADS)

    Wu, Xun; Whittington, Dale

    2006-02-01

    Nation-states rarely go to war over water, but it is equally rare that water conflicts in an international river basin are resolved through cooperation among the riparian countries that use the shared resources. Gains from cooperation will mean little to individual riparians unless the required cooperative behaviors are incentive compatible. Cooperative game theory offers useful insights for assessing cooperative solutions for water conflicts in international river basins. Applying cooperative game theory concepts such as core, nucleolus, and Shapley value to Nile water conflicts, we examine the incentive structure of both cooperative and noncooperative strategies for different riparian countries and establish some baseline conditions for incentive-compatible cooperation in the Nile basin.

  4. An ECOMAG-based Regional Hydrological Model for the Mackenzie River basin

    NASA Astrophysics Data System (ADS)

    Motovilov, Yury; Kalugin, Andrey; Gelfan, Alexander

    2017-04-01

    A physically-based distributed model of runoff generation has been developed for the Mackenzie River basin (the catchment area is 1 660 000 km2). The model is based on the ECOMAG (ECOlogical Model for Applied Geophysics) hydrological modeling platform and describes processes of interception of rainfall/snowfall by the canopy, snow accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen soil, evapotranspiration, thermal and water regime of soil, overland, subsurface and ground flow, flow routing through a channel network accounting for flow regulation by lakes and reservoirs. The governing model's equations are derived from integration of the basic hydro- and thermodynamics equations of water and heat vertical transfer in snowpack, frozen/unfrozen soil, horizontal water flow under and over catchment slopes, etc. The Mackenzie basin's schematization was performed on the basis of the global DEM data (1-km resolution) from the HYDRO1K database of the U.S. Geological Survey. Most of the model parameters are physically meaningful and derived through the global datasets of the basin characteristics: FAO/IIASA Harmonized World Soil Database, USGS EROS Global Land Cover Characteristics project, etc. The 0.5ox0.5o WATCH reanalysis daily precipitation, air temperature and air humidity data were used as the model input for the period of 1971-2002. The daily discharge data provided by the Water Survey of Canada for 10 streamflow gauges, which are located at the Mackenzie River and the main tributaries (Peel River, Great Bear River, Liard River, Slave River and Athabasca River), were used for calibration (1991-2001) and validation (1971-1990) of the model. The gauges' catchment areas vary from 70600 km2 (Peel River above Fort Mopherson) to 1 660 000 km2 (Mackenzie River at Arctic Red River). The model demonstrated satisfactory performance in terms of Nash-and Sutcliffe efficiency (NSE(daily)0.60 and NSE(monthly)0.70) and percent bias

  5. Export of Nitrogen From the Yukon River Basin to the Bering Sea

    NASA Astrophysics Data System (ADS)

    Dornblaser, M. M.; Striegl, R. G.

    2005-12-01

    The US Geological Survey measured nitrogen export from the 831,400 km2 Yukon River basin during 2001-04 as part of a five year water quality study of the Yukon River and its major tributaries. Concentrations of NO2+NO3, NH4+DON, and particulate N were measured ~6 times annually during open water and once under ice cover at three locations on the Yukon River, and on the Porcupine and Tanana Rivers. Concentration and continuous flow data were used to generate daily and annual loads of N species. NH4 concentration was generally negligible when compared to DON concentration, allowing for comparison of the relative importance of DIN vs. DON export at various watershed scales. NO2 concentration was also small compared to NO3. At Pilot Station, the last site on the Yukon before it flows into the Yukon Delta and the Bering Sea, DIN, DON, and particulate N loads averaged 19.3 × 106 kg/yr, 52.6 × 106 kg/yr, and 39.1 × 106 kg/yr, respectively. Normalized for the watershed area at Pilot Station, corresponding N yields were 1.65, 4.52, and 3.35 mmol/m2/yr. DIN yield for the Yukon at Pilot Station is substantially less than the NO3 flux reported for tropical/temperate rivers such as the Amazon, the Yangtze, and the Mississippi. DIN yield in the upper Yukon River basin is similar to that of the Mackenzie and other arctic rivers, but increases substantially downstream. This is likely due to development around Fairbanks in the Tanana River basin. When compared to other headwater basins in the upper Yukon, the Tanana basin yields about four times more DIN and two times more particulate N, while DON yields are only slightly elevated.

  6. Distribution, status, and likely future trends of bull trout within the interior Columbia River and Klamath River basins

    Treesearch

    Bruce E. Rieman; Danny C. Lee; Russell F. Thurow

    1997-01-01

    We summarized existing knowledge regarding the distribution and status of bull trout Salvelinus confluentus across 4,462 subwatersheds of the interior Columbia River basin in Oregon, Washington. Idaho, Montana, and Nevada and of the Klamath River basin in Oregon, a region that represents about 20% of the species' global range. We used classification trees and the...

  7. Mississippi River, Yazoo Basin, Memphis, TN

    NASA Image and Video Library

    1973-06-22

    SL2-05-422 (22 June 1973) --- This section of the lower Mississippi River (34.0N, 90.0W) known as the Yazoo Basin, is characterized by a wide expanse of rich river bottomland with many oxbow lakes, the remains of the many changes in the riverbed over the course of many thousands of years. This soil is very fertile and productive but the region is prone to flooding. In this view, some of the back areas around the Delta National Forest show the effects of heavy spring rains. Photo credit: NASA

  8. Water use and availability in the Woonasquatucket and Moshassuck River basins, north-central Rhode Island

    USGS Publications Warehouse

    Nimiroski, Mark T.; Wild, Emily C.

    2005-01-01

    The Woonasquatucket River Basin includes 51.0 square miles, and the Moshassuck River Basin includes 23.8 square miles in north-central Rhode Island. The study area comprises these two basins. The two basins border each other with the Moshassuck River Basin to the northeast of the Woonasquatucket River Basin. Seven towns are in the Woonasquatucket River Basin, and six towns are in the Moshassuck River Basin. To determine the water use and availability in the study area, water supply and discharge data were collected for these river basins for the 1995–99 period, and compared to estimated long-term water available. The study area is unique in the State of Rhode Island, because no withdrawals from major public suppliers were made during the study period. Withdrawals were, therefore, limited to self-supplied domestic use, two minor suppliers, and one self-supplied industrial user. Because no metered data were available, the summer water withdrawals were assumed to be the same as the estimates for the rest of the year. Seven major water suppliers distribute an average of 17.564 million gallons per day for use in the study area from sources outside of the study area. The withdrawals from minor water suppliers were 0.017 million gallons per day in the study area, all in the town of Smithfield in the Woonasquatucket River Basin. The remaining withdrawals in the study area were estimated to be 0.731 million gallons per day by self-supplied domestic, commercial, industrial, and agricultural users. Return flows in the study area included self-disposed water and disposal from permitted dischargers, including the Smithfield Sewage Treatment Plant. Return flows accounted for 4.116 million gallons per day in the study area. Most public-disposed water (15.195 million gallons per day) is collected by the Narragansett Bay Commission and is disposed outside of the basin in Narragansett Bay. The PART program, a computerized hydrograph-separation application, was used at one index

  9. Environmental setting and water-quality issues of the Mobile River Basin, Alabama, Georgia, Mississippi, and Tennessee

    USGS Publications Warehouse

    Johnson, Gregory C.; Kidd, Robert E.; Journey, Celeste A.; Zappia, Humbert; Atkins, J. Brian

    2002-01-01

    The Mobile River Basin is one of over 50 river basins and aquifer systems being investigated as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. This basin is the sixth largest river basin in the United States, and fourth largest in terms of streamflow, encompassing parts of Alabama, Georgia, Mississippi, and Tennessee. Almost two-thirds of the 44,000-square-mile basin is located in Alabama. Extensive water resources of the Mobile River Basin are influenced by an array of natural and cultural factors. These factors impart unique and variable qualities to the streams, rivers, and aquifers providing abundant habitat to sustain the diverse aquatic life in the basin. Data from Federal, State, and local agencies provide a description of the environmental setting of the Mobile River Basin. Environmental data include natural factors such as physiography, geology, soils, climate, hydrology, ecoregions, and aquatic ecology, and human factors such as reservoirs, land use and population change, water use, and water-quality issues. Characterization of the environmental setting is useful for understanding the physical, chemical, and biological characteristics of surface and ground water in the Mobile River Basin and the possible implications of that environmental setting for water quality. The Mobile River Basin encompasses parts of five physiographic provinces. Fifty-six percent of the basin lies within the East Gulf section of the Coastal Plain Physiographic Province. The remaining northeastern part of the basin lies, from west to east, within the Cumberland Plateau section of the Appalachian Plateaus Physiographic Province, the Valley and Ridge Physiographic Province, the Piedmont Physiographic Province, and the Blue Ridge Physiographic Province. Based on the 1991 land-use data, about 70 percent of the basin is forested, while agriculture, including livestock (poultry, cattle, and swine), row crops (cotton, corn, soybeans, sorghum, and

  10. Variation of Probable Maximum Precipitation in Brazos River Basin, TX

    NASA Astrophysics Data System (ADS)

    Bhatia, N.; Singh, V. P.

    2017-12-01

    The Brazos River basin, the second-largest river basin by area in Texas, generates the highest amount of flow volume of any river in a given year in Texas. With its headwaters located at the confluence of Double Mountain and Salt forks in Stonewall County, the third-longest flowline of the Brazos River traverses within narrow valleys in the area of rolling topography of west Texas, and flows through rugged terrains in mainly featureless plains of central Texas, before its confluence with Gulf of Mexico. Along its major flow network, the river basin covers six different climate regions characterized on the basis of similar attributes of vegetation, temperature, humidity, rainfall, and seasonal weather changes, by National Oceanic and Atmospheric Administration (NOAA). Our previous research on Texas climatology illustrated intensified precipitation regimes, which tend to result in extreme flood events. Such events have caused huge losses of lives and infrastructure in the Brazos River basin. Therefore, a region-specific investigation is required for analyzing precipitation regimes along the geographically-diverse river network. Owing to the topographical and hydroclimatological variations along the flow network, 24-hour Probable Maximum Precipitation (PMP) was estimated for different hydrologic units along the river network, using the revised Hershfield's method devised by Lan et al. (2017). The method incorporates the use of a standardized variable describing the maximum deviation from the average of a sample scaled by the standard deviation of the sample. The hydrometeorological literature identifies this method as more reasonable and consistent with the frequency equation. With respect to the calculation of stable data size required for statistically reliable results, this study also quantified the respective uncertainty associated with PMP values in different hydrologic units. The corresponding range of return periods of PMPs in different hydrologic units was

  11. An integrated model of water resources optimization allocation based on projection pursuit model - Grey wolf optimization method in a transboundary river basin

    NASA Astrophysics Data System (ADS)

    Yu, Sen; Lu, Hongwei

    2018-04-01

    Under the effects of global change, water crisis ranks as the top global risk in the future decade, and water conflict in transboundary river basins as well as the geostrategic competition led by it is most concerned. This study presents an innovative integrated PPMGWO model of water resources optimization allocation in a transboundary river basin, which is integrated through the projection pursuit model (PPM) and Grey wolf optimization (GWO) method. This study uses the Songhua River basin and 25 control units as examples, adopting the PPMGWO model proposed in this study to allocate the water quantity. Using water consumption in all control units in the Songhua River basin in 2015 as reference to compare with optimization allocation results of firefly algorithm (FA) and Particle Swarm Optimization (PSO) algorithms as well as the PPMGWO model, results indicate that the average difference between corresponding allocation results and reference values are 0.195 bil m3, 0.151 bil m3, and 0.085 bil m3, respectively. Obviously, the average difference of the PPMGWO model is the lowest and its optimization allocation result is closer to reality, which further confirms the reasonability, feasibility, and accuracy of the PPMGWO model. And then the PPMGWO model is adopted to simulate allocation of available water quantity in Songhua River basin in 2018, 2020, and 2030. The simulation results show water quantity which could be allocated in all controls demonstrates an overall increasing trend with reasonable and equal exploitation and utilization of water resources in the Songhua River basin in future. In addition, this study has a certain reference value and application meaning to comprehensive management and water resources allocation in other transboundary river basins.

  12. Description of water-systems operations in the Arkansas River basin, Colorado

    USGS Publications Warehouse

    Abbott, P.O.

    1985-01-01

    To facilitate a current project modeling the hydrology of the Arkansas River basin in Colorado, a description of the regulation of water in the basin is necessary. The geographic and climatic setting of the Arkansas River basin that necessitates the use, reuse, importation, and storage of water are discussed. The history of water-resource development in the basin, leading to the present complex of water systems, also is discussed. Municipal, irrigation, industrial, and multipurpose water systems are described. System descriptions are illustrated with schematic line drawings, and supplemented with physical data tables for the lakes, tunnels, conduits, and canals in the various systems. Copies of criteria under which certain of the water systems operate, are included. (USGS)

  13. Hydrology of the Upper Malad River basin, southeastern Idaho

    USGS Publications Warehouse

    Pluhowski, Edward J.

    1970-01-01

    , much greater values were measured in the Malad River between Woddruff and Cherry Creek Lane. With the exception of that reach, the surface water of the project area is suitable for irrigating all but the most sensitive crops. The total water yield is not sufficient to meet all the water needs of the basin. A comprehensive water-management plan is required to ensure optimal use of the water resource.

  14. Digital atlas of the upper Washita River basin, southwestern Oklahoma

    USGS Publications Warehouse

    Becker, Carol J.; Masoner, Jason R.; Scott, Jonathon C.

    2008-01-01

    Numerous types of environmental data have been collected in the upper Washita River basin in southwestern Oklahoma. However, to date these data have not been compiled into a format that can be comprehensively queried for the purpose of evaluating the effects of various conservation practices implemented to reduce agricultural runoff and erosion in parts of the upper Washita River basin. This U.S. Geological Survey publication, 'Digital atlas of the upper Washita River basin, southwestern Oklahoma' was created to assist with environmental analysis. This atlas contains 30 spatial data sets that can be used in environmental assessment and decision making for the upper Washita River basin. This digital atlas includes U.S. Geological Survey sampling sites and associated water-quality, biological, water-level, and streamflow data collected from 1903 to 2005. The data were retrieved from the U.S. Geological Survey National Water Information System database on September 29, 2005. Data sets are from the Geology, Geography, and Water disciplines of the U.S. Geological Survey and cover parts of Beckham, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Kiowa, and Washita Counties in southwestern Oklahoma. A bibliography of past reports from the U.S. Geological Survey and other State and Federal agencies from 1949 to 2004 is included in the atlas. Additionally, reports by Becker (2001), Martin (2002), Fairchild and others (2004), and Miller and Stanley (2005) are provided in electronic format.

  15. Decision support system based on DPSIR framework for a low flow Mediterranean river basin

    NASA Astrophysics Data System (ADS)

    Bangash, Rubab Fatima; Kumar, Vikas; Schuhmacher, Marta

    2013-04-01

    The application of decision making practices are effectively enhanced by adopting a procedural approach setting out a general methodological framework within which specific methods, models and tools can be integrated. Integrated Catchment Management is a process that recognizes the river catchment as a basic organizing unit for understanding and managing ecosystem process. Decision support system becomes more complex by considering unavoidable human activities within a catchment that are motivated by multiple and often competing criteria and/or constraints. DPSIR is a causal framework for describing the interactions between society and the environment. This framework has been adopted by the European Environment Agency and the components of this model are: Driving forces, Pressures, States, Impacts and Responses. The proposed decision support system is a two step framework based on DPSIR. Considering first three component of DPSIR, Driving forces, Pressures and States, hydrological and ecosystem services models are developed. The last two components, Impact and Responses, helped to develop Bayesian Network to integrate the models. This decision support system also takes account of social, economic and environmental aspects. A small river of Catalonia (Northeastern Spain), Francoli River with a low flow (~2 m3/s) is selected for integration of catchment assessment models and to improve knowledge transfer from research to the stakeholders with a view to improve decision making process. DHI's MIKE BASIN software is used to evaluate the low-flow Francolí River with respect to the water bodies' characteristics and also to assess the impact of human activities aiming to achieve good water status for all waters to comply with the WFD's River Basin Management Plan. Based on ArcGIS, MIKE BASIN is a versatile decision support tool that provides a simple and powerful framework for managers and stakeholders to address multisectoral allocation and environmental issues in river

  16. Water resources of the Big Black River basin, Mississippi

    USGS Publications Warehouse

    Wasson, B.E.

    1971-01-01

    Abundant supplies of water of good quality are available in the Big Black River basin from either ground-water or surface-water sources. For 90 percent of the time flow in the lower part of the Big Black River below Pickens is not less than 85 cfs (cubic feet per second), and low flows of more than 5 cfs are available in five of the eastern tributary streams in the upper half of the basin. Chemical quality of water in the streams is excellent, except for impairment caused by pollution at several places. The Big Black River basin is underlain by several thousand feet of clay, silt, sand, gravel, and limestone. This sedimentary material is mostly loose to semiconsolidated and is stratified. The beds dip to the southwest at the rate of 20 to 50 feet per mile. The Big Black River flows southwestward but at a lower gradient; therefore, any specific formation is at a greater depth below the river the farther one goes down stream. The formations crop out in northwest-southeast trending belts. Most of the available ground water is contained in six geologic units; thickness of these individual units ranges from 100 to 1,000 feet. The aquifers overlap to the extent that a well drilled to the base of fresh water will, in most places, penetrate two or more aquifers. Well depths range from less than 10 to 2,400 feet. Water suitable for most needs can be obtained from the aquifers available at most localities. Dissolved-solids content of water within an aquifer increases down the dip. Also, generally the deeper a well is the higher will be the dissolved-solids content of the water. Shallow ground water (less than 200 ft deep) in the basin usually contains about 100 mg/l (milligrams per liter) of dissolved solids. Most water in the basin from more than 2,500 feet below land surface contains m ore than 1,000 mg/l of dissolved solids. In several areas fresh water is deeper than 2,500 feet, but near the mouth of the Big Black River brackish water is only about 300 feet below land

  17. Sources of nitrate yields in the Mississippi River Basin.

    PubMed

    David, Mark B; Drinkwater, Laurie E; McIsaac, Gregory F

    2010-01-01

    Riverine nitrate N in the Mississippi River leads to hypoxia in the Gulf of Mexico. Several recent modeling studies estimated major N inputs and suggested source areas that could be targeted for conservation programs. We conducted a similar analysis with more recent and extensive data that demonstrates the importance of hydrology in controlling the percentage of net N inputs (NNI) exported by rivers. The average fraction of annual riverine nitrate N export/NNI ranged from 0.05 for the lower Mississippi subbasin to 0.3 for the upper Mississippi River basin and as high as 1.4 (4.2 in a wet year) for the Embarras River watershed, a mostly tile-drained basin. Intensive corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] watersheds on Mollisols had low NNI values and when combined with riverine N losses suggest a net depletion of soil organic N. We used county-level data to develop a nonlinear model ofN inputs and landscape factors that were related to winter-spring riverine nitrate yields for 153 watersheds within the basin. We found that river runoff times fertilizer N input was the major predictive term, explaining 76% of the variation in the model. Fertilizer inputs were highly correlated with fraction of land area in row crops. Tile drainage explained 17% of the spatial variation in winter-spring nitrate yield, whereas human consumption of N (i.e., sewage effluent) accounted for 7%. Net N inputs were not a good predictor of riverine nitrate N yields, nor were other N balances. We used this model to predict the expected nitrate N yield from each county in the Mississippi River basin; the greatest nitrate N yields corresponded to the highly productive, tile-drained cornbelt from southwest Minnesota across Iowa, Illinois, Indiana, and Ohio. This analysis can be used to guide decisions about where efforts to reduce nitrate N losses can be most effectively targeted to improve local water quality and reduce export to the Gulf of Mexico.

  18. Studies on water resources carrying capacity in Tuhai river basin based on ecological footprint

    NASA Astrophysics Data System (ADS)

    Wang, Chengshuai; Xu, Lirong; Fu, Xin

    2017-05-01

    In this paper, the method of the water ecological footprint (WEF) was used to evaluate water resources carrying capacity and water resources sustainability of Tuhai River Basin in Shandong Province. The results show that: (1) The WEF had a downward trend in overall volatility in Tuhai River Basin from 2003 to 2011. Agricultural water occupies high proportion, which was a major contributor to the WEF, and about 86.9% of agricultural WEF was used for farmland irrigation; (2) The water resources carrying capacity had a downward trend in general, which was mostly affected by some natural factors in this basin such as hydrology and meteorology in Tuhai River Basin; (3) Based on analysis of water resources ecological deficit, it can be concluded that the water resources utilization mode was in an unhealthy pattern and it was necessary to improve the utilization efficiency of water resources in Tuhai River Basin; (4) In view of water resources utilization problems in the studied area, well irrigation should be greatly developed at the head of Yellow River Irrigation Area(YRIA), however, water from Yellow River should be utilized for irrigation as much as possible, combined with agricultural water-saving measures and controlled exploiting groundwater at the tail of YRIA. Therefore, the combined usage of surface water and ground water of YRIA is an important way to realize agricultural water saving and sustainable utilization of water resources in Tuhai River Basin.

  19. Simulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.

    2002-01-01

    Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were

  20. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational Simplified Surface Energy Balance Model

    USDA-ARS?s Scientific Manuscript database

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. L...

  1. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.

    2017-12-01

    Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are

  2. Surface-water-quality assessment of the upper Illinois River basin in Illinois, Indiana, and Wisconsin; project description

    USGS Publications Warehouse

    Mades, D.M.

    1987-01-01

    In 1986, the U.S. Geological Survey began a National Water-Quality Assessment program to (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation's surface- and ground-water resources; (2) define, where possible, trends in water quality; and (3) identify and describe the relations of both status and trends in water quality to natural factors and the history of land use and land- and waste-management activities. The program is presently in a pilot phase that will test and modify, as necessary, concepts and approaches in preparation for possible full implementation of the program in the future. The upper Illinois River basin is one of four basins selected to test the concepts and approaches of the surface-water-quality element of the national program. The basin drains 10,949 square miles of Illinois, Indiana, and Wisconsin. Three principal tributaries are the Kankakee and Des Plaines Rivers that join to form the Illinois River and the Fox River. Land use is predominantly agricultural; about 75 percent of the basin is cultivated primarily for production of corn and soybeans. About 13 percent of the basin is urban area, most of which is located in the Chicago metropolitan area. The population of the basin is about 7 million. About 6 million people live in the Des Plaines River basin. Many water-quality issues in the upper Illinois River basin are related to sediment, nutrients, potentially toxic inorganic and organic constituents, and to water-management practices. Occurrence of sediment and the chemical constituents in the rivers and lakes within the basin has the potential to adversely affect the water's suitability for aquatic life, recreation, or, through the consumption of fish, human health. The upper Illinois River basin project consists of five major activities. The first activity--analysis of existing information and preparation of a report that describes

  3. Floods of July 23-26, 2010, in the Little Maquoketa River and Maquoketa River Basins, Northeast Iowa

    USGS Publications Warehouse

    Eash, David A.

    2012-01-01

    Minor flooding occurred July 23, 2010, in the Little Maquoketa River Basin and major flooding occurred July 23–26, 2010, in the Maquoketa River Basin in northeast Iowa following severe thunderstorm activity over the region during July 22–24. A breach of the Lake Delhi Dam on July 24 aggravated flooding on the Maquoketa River. Rain gages at Manchester and Strawberry Point, Iowa, recorded 72-hour-rainfall amounts of 7.33 and 12.23 inches, respectively, on July 24. The majority of the rainfall occurred during a 48-hour period. Within the Little Maquoketa River Basin, a peak-discharge estimate of 19,000 cubic feet per second (annual flood-probability estimate of 4 to 10 percent) at the discontinued 05414500 Little Maquoketa River near Durango, Iowa streamgage on July 23 is the sixth largest flood on record. Within the Maquoketa River Basin, peak discharges of 26,600 cubic feet per second (annual flood-probability estimate of 0.2 to 1 percent) at the 05416900 Maquoketa River at Manchester, Iowa streamgage on July 24, and of 25,000 cubic feet per second (annual flood-probability estimate of 1 to 2 percent) at the 05418400 North Fork Maquoketa River near Fulton, Iowa streamgage on July 24 are the largest floods on record for these sites. A peak discharge affected by the Lake Delhi Dam breach on July 24 at the 05418500 Maquoketa River near Maquoketa, Iowa streamgage, located downstream of Lake Delhi, of 46,000 cubic feet per second on July 26 is the third highest on record. High-water marks were measured at five locations along the Little Maquoketa and North Fork Little Maquoketa Rivers between U.S. Highway 52 near Dubuque and County Road Y21 near Rickardsville, a distance of 19 river miles. Highwater marks were measured at 28 locations along the Maquoketa River between U.S. Highway 52 near Green Island and State Highway 187 near Arlington, a distance of 142 river miles. High-water marks were measured at 13 locations along the North Fork Maquoketa River between

  4. From Shoestring Rills to Dendritic River Networks: Documenting the Evolution of River Basins Towards Geometric Similarity Through Divide Migration, Stream Capture and Lateral Branching

    NASA Astrophysics Data System (ADS)

    Beeson, H. W.; McCoy, S. W.; Willett, S.

    2016-12-01

    Erosional river networks dissect much of Earth's surface into drainage basins. Global scaling laws such as Hack's Law suggest that river basins trend toward a particular scale-invariant shape. While erosional instabilities arising from competition between advective and diffusive processes can explain why headwaters branch, the erosional mechanics linking larger scale network branching with evolution towards a characteristic river basin shape remain poorly constrained. We map river steepness and a proxy for the steady-state elevation of river networks, χ, in simulated and real landscapes with a large range in spatial scale (102 -106 m) but with similar inclined, planar surfaces at the time of incipient network formation. We document that the evolution from narrow rill-like networks to dendritic, leaf-shaped river basins follows from drainage area differences between catchments. These serve as instabilities that grow, leading to divide migration, stream capture, lateral branching and network reorganization. As Horton hypothesized, incipient networks formed down gradient on an inclined, planar surface have an unequal distribution of drainage area and nonuniformity in response times such that larger basins erode more rapidly and branch laterally via capture of adjacent streams with lower erosion rates. Positive feedback owing to increase in drainage area furthers the process of branching at the expense of neighboring rivers. We show that drainage area exchange and the degree of network reorganization has a significant effect on river steepness in the Dragon's Back Pressure Ridge, CA, the Sierra Nevada, CA, and the Rocky Mountain High Plains, USA. Similarly, metrics of basin shape reveal that basins are evolving from narrow basins towards more common leaf shapes. Our results suggest that divide migration and stream capture driven by erosional disequilibrium could be fundamental processes by which river basins reach their characteristic geometry and dendritic form.

  5. Changes in projected spatial and seasonal groundwater recharge in the upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-01-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.

  6. Damming the rivers of the Amazon basin.

    PubMed

    Latrubesse, Edgardo M; Arima, Eugenio Y; Dunne, Thomas; Park, Edward; Baker, Victor R; d'Horta, Fernando M; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A; Ribas, Camila C; Norgaard, Richard B; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C

    2017-06-14

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin's floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  7. Sediment Transport in Streams in the Umpqua River Basin, Oregon

    USGS Publications Warehouse

    Onions, C. A.

    1969-01-01

    This report presents tables of suspended-sediment data collected from 1956 to 1967 at 10 sites in the Umpqua River basin. Computations based on these data indicate that average annual suspended-sediment yields at these sites range from 137 to 822 tons per square mile. Because available data for the Umpqua River basin are generally inadequate for accurate determinations of sediment yield and for the definition of characteristics of fluvial sediments, recommendations are made for the collection and analysis of additional sediment data.

  8. Climate change on the Colorado River: a method to search for robust management strategies

    NASA Astrophysics Data System (ADS)

    Keefe, R.; Fischbach, J. R.

    2010-12-01

    The Colorado River is a principal source of water for the seven Basin States, providing approximately 16.5 maf per year to users in the southwestern United States and Mexico. Though the dynamics of the river ensure Upper Basin users a reliable supply of water, the three Lower Basin states (California, Nevada, and Arizona) are in danger of delivery interruptions as Upper Basin demand increases and climate change threatens to reduce future streamflows. In light of the recent drought and uncertain effects of climate change on Colorado River flows, we evaluate the performance of a suite of policies modeled after the shortage sharing agreement adopted in December 2007 by the Department of the Interior. We build on the current literature by using a simplified model of the Lower Colorado River to consider future streamflow scenarios given climate change uncertainty. We also generate different scenarios of parametric consumptive use growth in the Upper Basin and evaluate alternate management strategies in light of these uncertainties. Uncertainty associated with climate change is represented with a multi-model ensemble from the literature, using a nearest neighbor perturbation to increase the size of the ensemble. We use Robust Decision Making to compare near-term or long-term management strategies across an ensemble of plausible future scenarios with the goal of identifying one or more approaches that are robust to alternate assumptions about the future. This method entails using search algorithms to quantitatively identify vulnerabilities that may threaten a given strategy (including the current operating policy) and characterize key tradeoffs between strategies under different scenarios.

  9. Hydrologic Setting and Conceptual Hydrologic Model of the Walker River Basin, West-Central Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. Between 1882 and 2008, agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-ft. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes the hydrologic setting of the Walker River basin and a conceptual hydrologic model of the relations among streams, groundwater, and Walker Lake with emphasis on the lower Walker River basin from Wabuska to Hawthorne, Nevada. The Walker River basin is about 3,950 square miles and straddles the California-Nevada border. Most streamflow originates as snowmelt in the Sierra Nevada. Spring runoff from the Sierra Nevada typically reaches its peak during late May to early June with as much as 2,800 cubic feet per second in the Walker River near Wabuska. Typically, 3 to 4 consecutive years of below average streamflow are followed by 1 or 2 years of average or above average streamflow. Mountain ranges are comprised of consolidated rocks with low hydraulic conductivities, but consolidated rocks transmit water where fractured. Unconsolidated sediments include fluvial deposits along the active channel of the Walker River, valley floors, alluvial slopes, and a playa. Sand and gravel deposited by the Walker River likely are discontinuous strata throughout the valley floor. Thick clay strata likely were deposited in Pleistocene Lake Lahontan and are horizontally continuous, except where strata have been eroded by the Walker River. At Walker Lake, sediments mostly are clay interbedded with alluvial slope, fluvial, and deltaic deposits along the lake margins. Coarse sediments form a multilayered, confined-aquifer system that could extend several miles from the shoreline

  10. Flood Frequency Analysis For Partial Duration Series In Ganjiang River Basin

    NASA Astrophysics Data System (ADS)

    zhangli, Sun; xiufang, Zhu; yaozhong, Pan

    2016-04-01

    Accurate estimation of flood frequency is key to effective, nationwide flood damage abatement programs. The partial duration series (PDS) method is widely used in hydrologic studies because it considers all events above a certain threshold level as compared to the annual maximum series (AMS) method, which considers only the annual maximum value. However, the PDS has a drawback in that it is difficult to define the thresholds and maintain an independent and identical distribution of the partial duration time series; this drawback is discussed in this paper. The Ganjiang River is the seventh largest tributary of the Yangtze River, the longest river in China. The Ganjiang River covers a drainage area of 81,258 km2 at the Wanzhou hydrologic station as the basin outlet. In this work, 56 years of daily flow data (1954-2009) from the Wanzhou station were used to analyze flood frequency, and the Pearson-III model was employed as the hydrologic probability distribution. Generally, three tasks were accomplished: (1) the threshold of PDS by percentile rank of daily runoff was obtained; (2) trend analysis of the flow series was conducted using PDS; and (3) flood frequency analysis was conducted for partial duration flow series. The results showed a slight upward trend of the annual runoff in the Ganjiang River basin. The maximum flow with a 0.01 exceedance probability (corresponding to a 100-year flood peak under stationary conditions) was 20,000 m3/s, while that with a 0.1 exceedance probability was 15,000 m3/s. These results will serve as a guide to hydrological engineering planning, design, and management for policymakers and decision makers associated with hydrology.

  11. Assessment of in-place oil shale resources of the Green River Formation, Greater Green River Basin in Wyoming, Colorado, and Utah

    USGS Publications Warehouse

    Johnson, R.C.; Mercier, T.J.; Brownfield, M.E.

    2011-01-01

    The U.S. Geological Survey (USGS) recently (2011) completed an assessment of in-place oil shale resources, regardless of grade, in the Eocene Green River Formation of the Greater Green River Basin in southwestern Wyoming, northwestern Colorado, and northeastern Utah. Green River Formation oil shale also is present in the Piceance Basin of western Colorado and in the Uinta Basin of eastern Utah and western Colorado, and the results of these assessments are published separately. No attempt was made to estimate the amount of oil that is economically recoverable because there has not yet been an economic method developed to recover the oil from Green River Formation oil shale.

  12. The Role of Cooperation and Information Exchange in Transnational River Basins: the Zambezi River case

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Giuliani, M.; Soncini-Sessa, R.

    2012-12-01

    The presence of multiple, institutionally independent but physically interconnected decision-makers is a distinctive features of many water resources systems, especially of transnational river basins. The adoption of a centralized approach to study the optimal operation of these systems, as mostly done in the water resources literature, is conceptually interesting to quantify the best achievable performance, but of little practical impact given the real political and institutional setting. Centralized management indeed assumes a cooperative attitude and full information exchange by the involved parties. However, when decision-makers belong to different countries or institutions, it is very likely that they act considering only their local objectives, producing global externalities that negatively impact on other objectives. In this work we adopt a Multi-Agent Systems framework, which naturally allows to represent a set of self-interested agents (decision-makers and/or stakeholders) acting in a distributed decision-making process. According to this agent-based approach, each agent represents a decision-maker, whose decisions are defined by an explicit optimization problem considering only the agent's local interests. In particular, this work assesses the role of information exchange and increasing level of cooperation among originally non-cooperative agents. The Zambezi River basin is used to illustrate the methodology: the four largest reservoirs in the basin (Ithezhithezhi, Kafue-Gorge, Kariba and Cahora Bassa) are mainly operated for maximizing the economic revenue from hydropower energy production with considerably negative effects on the aquatic ecosystem in the Zambezi delta due to the alteration of the natural flow regime. We comparatively analyse the ideal centralized solution and the current situation where all the decision-makers act independently and non-cooperatively. Indeed, although a new basin-level institution called Zambezi Watercourse Commission

  13. 1997 flood tracking chart for the Red River of the North basin

    USGS Publications Warehouse

    Wiche, G.J.; Martin, C.R.; Albright, L.L.; Wald, Geraldine B.

    1997-01-01

    near a threatened property might not be the same as the river stages at the gaging stations. The network of river-gaging stations in the Red River of the North Basin is operated by the USGS in cooperation with the U.S. Army Corps of Engineers, the North Dakota State Water Commission, the Minnesota Department of Natural Resources, the Southeast Cass Water Resources District, the Cass County Joint Water Resource District, the Red River Joint Water Resource Board, and the Red River Watershed Management Board. For more information about USGS programs in North Dakota, contact the District Chief, U.S. Geological Survey, North Dakota District, at (701) 250-7400.

  14. Trematode Aspidogastrea found in the freshwater mussels in the Yangtze River basin.

    PubMed

    Zhan, Xiaodong; Li, Chaopin; Wu, Hua

    2017-03-30

    To investigate the prevalence of trematode Aspidogastrea in the freshwater mussels in the Yangtze River basin within Anhui province, China. We initially harvested the freshwater mussels living in the Yangtze River running through Anhui area, and labeled them with corresponding number. Then the samples were dissected for isolating the flukes, which were identified by conventional staining. Infection rate of trematode Aspidogastrea in freshwater mussels in the Yangtze River basin within the territory of Anhui province was 30.38% (103/339) in general, and a total of 912 flukes of Aspidogastrea were detected in the 103 mussels, with average infection rate of 8.85 for each mussel. Trematode Aspidogastrea is prevalent in the freshwater bivalves living in the Yangtze River basin running through Anhui area, and the treamatode was identified as Aspidogaster sp. belong to Aspidogaste under Aspidogastridae of Aspidogastrea.

  15. Towards River Rehabilitation as AN Integrated Approach to Flood Management in Asian Cities

    NASA Astrophysics Data System (ADS)

    Higgitt, David L.

    Flood management in Asian cities has conventionally been approached through structural intervention where floods are regarded as a threat requiring control through engineering infrastructure. Such a command and control paradigm represents a marked transition from the way that monsoon flood regimes have been traditionally perceived across Asia. Rapid urbanization and climate change has imposed increasingly difficult flood management challenges as an extension of impermeable surfaces generates rapid runoff and flash flooding, while cities expand into flood-prone areas. Property and communities are placed at enhanced risk. Urbanization reallocates risk as channel and floodplain modification influences flood regimes, while demands for flood protection at certain locations can redistribute risk to other areas. An increasing concern about flood hazard across Asian cities questions whether conventional solutions reliant on structural intervention are sustainable. Such questioning is mirrored by an alternative paradigm of rehabilitation in integrated river basin management — a recognition that restoring and sustaining functional river ecosystems with high biodiversity is one of the greatest challenges facing society. Rehabilitation initiatives demand a new approach to river basin management which encourage interdisciplinary activity, particularly between engineers, hydrologists, geomorphologists and ecologists. The paper sets out some preliminary ideas from a research project investigating the potential for river rehabilitation as a central tenet of flood management, with a particular focus on Asian cities.

  16. Estimation of pollutant loads considering dam operation in Han River Basin by BASINS/Hydrological Simulation Program-FORTRAN.

    PubMed

    Jung, Kwang-Wook; Yoon, Choon-G; Jang, Jae-Ho; Kong, Dong-Soo

    2008-01-01

    Effective watershed management often demands qualitative and quantitative predictions of the effect of future management activities as arguments for policy makers and administration. The BASINS geographic information system was developed to compute total maximum daily loads, which are helpful to establish hydrological process and water quality modeling system. In this paper the BASINS toolkit HSPF model is applied in 20,271 km(2) large watershed of the Han River Basin is used for applicability of HSPF and BMPs scenarios. For proper evaluation of watershed and stream water quality, comprehensive estimation methods are necessary to assess large amounts of point source and nonpoint-source (NPS) pollution based on the total watershed area. In this study, The Hydrological Simulation Program-FORTRAN (HSPF) was estimated to simulate watershed pollutant loads containing dam operation and applied BMPs scenarios for control NPS pollution. The 8-day monitoring data (about three years) were used in the calibration and verification processes. Model performance was in the range of "very good" and "good" based on percent difference. The water-quality simulation results were encouraging for this large sizable watershed with dam operation practice and mixed land uses; HSPF proved adequate, and its application is recommended to simulate watershed processes and BMPs evaluation. IWA Publishing 2008.

  17. Comparison of Precipitation from Gauge and Tropical Rainfall Measurement Mission (TRMM) for River Basins of India

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Chandniha, S. K.; Lakshmi, V.; Kundu, S.; Hashemi, H.

    2017-12-01

    This study compares the monthly precipitation from the gridded rain gauge data collected by India Meteorological Department (IMD) and the retrievals from the Tropical Rainfall Measurement Mission (TRMM) for the river basins of India using the TRMM Multisatellite Precipitation Analysis (TMPA) version 7 (V7). The IMD and TMPA datasets have the same spatial resolution (0.25°×0.25°) and extend from 1998 to 2013. The TRMM data accuracy for the river basins is assessed by comparison with IMD using root mean square error (RMSE), normalized mean square error (NMSE), Nash-Sutcliffe coefficient (NASH) and correlation coefficient (CC) methods. The Mann-Kendall (MK) and modified Mann-Kendall (MMK) tests have been applied for analyzing the data trend, and the change has been detected by Sen's Slope using both data sets for annual and seasonal time periods. The change in intensity of precipitation is estimated by percentage for comparing actual differences in various river basins. Variation in precipitation is high (>100 mm represents >15% of average annual precipitation) in Brahmaputra, rivers draining into Myanmar (RDM), rivers draining into Bangladesh (RDB), east flowing rivers between Mahanadi and Godavari (EMG), east flowing rivers between Pennar and Cauvery (EPC), Cauvery and Tapi. The NASH and CC values vary between 0.80 to 0.98 and 0.87 to 0.99 in all river basins except area of north Ladakh not draining into Indus (NLI) and east flowing rivers south of Cauvery (ESC), while RMSE and NMSE vary from 15.95 to 101.68 mm and 2.66 to 58.38 mm, respectively. The trends for TMPA and IMD datasets from 1998 to 2013 are quite similar in MK (except 4 river basins) and MMK (except 3 river basins). The estimated results imply that the TMPA precipitation show good agreement and can be used in climate studies and hydrological simulations in locations/river basins where the number of rain gauge stations is not adequate to quantify the spatial variability of precipitation. Keywords

  18. Holocene provenance shift of suspended particulate matter in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Höppner, Natalie; Lucassen, Friedrich; Chiessi, Cristiano M.; Sawakuchi, André O.; Kasemann, Simone A.

    2018-06-01

    The strontium (Sr), neodymium (Nd) and lead (Pb) isotope signatures of suspended particulate matter (SPM) in rivers reflect the radiogenic isotope signatures of the rivers' drainage basin. These signatures are not significantly affected by weathering, transport or depositional cycles, but document the sedimentary contributions of the respective sources. We report new Sr, Nd and Pb isotope ratios and element concentrations of modern SPM from the Brazilian Amazon River basin and document the past evolution of the basin by analyzing radiogenic isotopes of a marine sediment core from the slope off French Guiana archiving the last 40 kyr of Amazon River SPM, and the Holocene section of sediment cores raised between the Amazon River mouth and the slope off French Guiana. The composition of modern SPM confirms two main source areas, the Andes and the cratonic Shield. In the marine sediment core notable changes occurred during the second phase of Heinrich Stadial 1 (i.e. increased proportion of Shield rivers SPM) and during the last deglaciation (i.e. increased proportion of Madeira River SPM) together with elsewhere constant source contributions. Furthermore, we report a prominent offset in Sr and Nd isotopic composition between the average core value (εNd: -11.7 ± 0.9 (2SD), 87Sr/86Sr: 0.7229 ± 0.0016 (2SD)) and the average modern Amazon River SPM signal (εNd: -10.5 ± 0.5 (2SD), 87Sr/86Sr: 0.7213 ± 0.0036 (2SD)). We suggest that a permanent change in the Amazon River basin sediment supply during the late Holocene to a more Andean dominated SPM was responsible for the offset.

  19. Red tree voles in the Columbia River Gorge and Hood River basin, Oregon

    Treesearch

    Eric D. Forsman; James K. Swingle; Michael A. McDonald; Scott A. Graham; Nicholas R. Hatch

    2009-01-01

    In 2003 to 2008, we conducted surveys to document the eastern and northern range limits of red tree voles (Arborimus longicaudus) in the Columbia River Gorge and Hood River basin, Oregon. Our survey indicated the current range of the vole includes the area from Wahkeena Creek, 20 km east of Troutdale to Seneca Fouts State Park, 6 km west of Hood...

  20. Active Layer and Water Geochemistry Dynamics throughout the Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Mutter, E. A.; Toohey, R.; Herman-Mercer, N. M.; Schuster, P. F.

    2017-12-01

    The hydrology of the Yukon River Basin has changed over the last several decades as evidenced by a variety of discharge, gravimetric, and geochemical analyses. The Indigenous Observation Network (ION), a community-based project, was initiated by the Yukon River Inter-Tribal Watershed Council and USGS. Capitalizing on existing USGS monitoring and research infrastructure and supplementing USGS collected data, ION investigates changes in surface water geochemistry and active layer dynamics throughout the Yukon River Basin. Over 1600 samples of surface water geochemistry (i.e., major ions, dissolved organic carbon, and 18O and 2H) have been collected at 35 sites throughout the Yukon River and its major tributaries over the past 15 years. Active layer dynamics (maximum thaw depth, soil temperature and moisture) have been collected at 20 sites throughout the Yukon River Basin for the past eight years. Important regional differences in geochemistry and active layer parameters linked to permafrost continuity and tributaries will be highlighted. Additionally, annual trends and seasonal dynamics describing the spatial and temporal heterogeneity of the watershed will be presented in the context of observed hydrological changes. These data assist the global effort to characterize arctic river fluxes and their relationship to the carbon cycle, weathering and permafrost degradation.

  1. A history of early geologic research in the Deep River Triassic Basin, North Carolina

    USGS Publications Warehouse

    Clark, T.W.

    1998-01-01

    The Deep River Triassic basin has one of the longest recorded histories of geologic research in North Carolina. A quick perusal of nineteenth century geologic literature in North Carolina reveals the Deep River basin has received a tremendous amount of attention, second only, perhaps, to the gold deposits of the Carolina slate belt. While these early researchers' primary interests were coal deposits, many other important discoveries, observations, and hypotheses resulted from their investigations. This article highlights many of the important advances made by these early geo-explorers by trying to include information from every major geologic investigation made in the Deep River basin from 1820 to 1955. This article also provides as thorough a consolidated history as is possible to preserve the exploration history of the Deep River basin for future investigators.

  2. 75 FR 11554 - Yakima River Basin Conservation Advisory Group Charter Renewal; Notice of Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... the reliability of water supplies for irrigation. FOR FURTHER INFORMATION CONTACT: Ms. Dawn Wiedmeier... River Basin Water Conservation Program. In consultation with the State, the Yakama Nation, Yakima River... nonstructural cost-effective water conservation measures in the Yakima River basin. Improvements in the...

  3. Characteristics of Atmospheric River Families in California's Russian River Basin

    NASA Astrophysics Data System (ADS)

    Fish, M. A.; Wilson, A. M.; Ralph, F. M.

    2017-12-01

    Previous studies have shown the importance of antecedent conditions and storm duration on atmospheric river (AR) impacts in California's Russian River basin. This study concludes that successive ARs, or families of ARs, produce an enhanced streamflow response compared to individual storms. This amplifies the impacts of these storms, which contribute to 50% of the annual precipitation in the Russian River basin. Using the Modern Era Retrospective - analysis for Research and Applications 2 dataset and 228 AR events from November 2004 - April 2017 affecting Bodega Bay, CA (BBY), this study identified favorable characteristics for families vs single ARs and their associated impacts. It was found that 111 AR events ( 50%) occurred within 5 days of one another with 44 events ( 40%) occurring within 24 hours. Using the winter of 2017, which had a multitude of successive ARs in Northern California, this study evaluates the applicability of family composites using case study comparisons. The results of this study show large divergences of family composites from the overall AR pattern, depending on the time interval between events. A composite of all AR events show Bodega Bay generally south of the jet exit region, SW-NE tilt of 500mb heights and a more northerly subtropical high. ARs occurring on the same day have faster southerly winds, a weaker low off the coast and a southerly moisture plume extending along the CA coast. Comparatively ARs that occur the following day, feature a more zonal pattern with faster winds north of BBY, a deeper low off the coast and a moisture plume southwest of the Russian River watershed.

  4. Fishes of the Cusiana River (Meta River basin, Colombia), with an identification key to its species

    PubMed Central

    Urbano-Bonilla, Alexander; Ballen, Gustavo A.; Herrera-R, Guido A.; Jhon Zamudio; Herrera-Collazos, Edgar E.; DoNascimiento, Carlos; Saúl Prada-Pedreros; Maldonado-Ocampo, Javier A.

    2018-01-01

    Abstract The Cusiana River sub-basin has been identified as a priority conservation area in the Orinoco region in Colombia due to its high species diversity. This study presents an updated checklist and identification key for fishes of the Cusiana River sub-basin. The checklist was assembled through direct examination of specimens deposited in the main Colombian ichthyological collections. A total of 2020 lots from 167 different localities from the Cusiana River sub-basin were examined and ranged from 153 to 2970 m in elevation. The highest number of records were from the piedmont region (1091, 54.0 %), followed by the Llanos (878, 43.5 %) and Andean (51, 2.5 %). 241 species distributed in 9 orders, 40 families, and 158 genera were found. The fish species richness observed (241), represents 77.7 % of the 314 estimated species (95 % CI=276.1–394.8). The use of databases to develop lists of fish species is not entirely reliable; therefore taxonomic verification of specimens in collections is essential. The results will facilitate comparisons with other sub-basins of the Orinoquia, which are not categorized as areas of importance for conservation in Colombia. PMID:29416408

  5. Small rural communities in the inland Northwest: an assessment of small communities in the interior and upper Columbia River basins.

    Treesearch

    Charles C. Harris; William McLaughlin; Greg Brown; Dennis R. Becker

    2000-01-01

    An assessment of small rural communities in the interior and upper Columbia River basin was conducted for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). The characteristics and conditions of the rural communities in this region, which are complex and constantly changing, were examined. The research also assessed the resilience of the region’s...

  6. Environmental settings of the South Fork Iowa River basin, Iowa, and the Bogue Phalia basin, Mississippi, 2006-10

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Rose, Claire E.; Kalkhoff, Stephen J.

    2012-01-01

    Studies of the transport and fate of agricultural chemicals in different environmental settings were conducted by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program's Agricultural Chemicals Team (ACT) at seven sites across the Nation, including the South Fork Iowa River basin in central Iowa and the Bogue Phalia basin in northwestern Mississippi. The South Fork Iowa River basin is representative of midwestern agriculture, where corn and soybeans are the predominant crops and a large percentage of the cultivated land is underlain by artificial drainage. The Bogue Phalia basin is representative of corn, soybean, cotton, and rice cropping in the humid, subtropical southeastern United States. Details of the environmental settings of these basins and the data-collection activities conducted by the USGS ACT over the 2006-10 study period are described in this report.

  7. Evaluation of Strategies for Balancing Water Use and Streamflow Reductions in the Upper Charles River Basin, Eastern Massachusetts

    USGS Publications Warehouse

    Eggleston, Jack R.

    2004-01-01

    The upper Charles River basin, located 30 miles southwest of Boston, Massachusetts, is experiencing water shortages during the summer. Towns in the basin have instituted water-conservation programs and water-use bans to reduce summertime water use. During July through October, streamflow in the Charles River and its tributaries regularly falls below 0.50 cubic foot per second per square mile, the minimum streamflow used by the U.S. Fish and Wildlife Service as its Aquatic Base Flow standard for maintaining healthy freshwater ecosystems. To examine how human water use could be changed to mitigate these water shortages, a numerical ground-water flow model was modified and used in conjunction with response coefficients and optimization techniques. Streamflows at 10 locations on the Charles River and its tributaries were determined under various water-use scenarios and climatic conditions. A variety of engineered solutions to the water shortages were examined for their ability to increase water supplies and summertime streamflows. Results indicate that although human water use contributes to the problem of low summertime streamflows, human water use is not the only, or even the primary, cause of low flows in the basin. The lowest summertime streamflows increase by 12 percent but remain below the Aquatic Base Flow standard when all public water-supply pumpage and wastewater flows in the basin are eliminated in a simulation under average climatic conditions. Under dry climatic conditions, the same measures increase the lowest average monthly streamflow by 95 percent but do not increase it above the Aquatic Base Flow standard. The most promising water-management strategies to increase streamflows and water supplies, based on the study results, include wastewater recharge to the aquifer, altered management of pumping well schedules, regional water-supply sharing, and water conservation. In a scenario that simulated towns sharing water supplies, streamflow in the Charles

  8. Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins

    USGS Publications Warehouse

    Ward, David L.; Casper, Andrew F.; Counihan, Timothy D.; Bayer, Jennifer M.; Waite, Ian R.; Kosovich, John J.; Chapman, Colin; Irwin, Elise R.; Sauer, Jennifer S.; Ickes, Brian; McKerrow, Alexa

    2017-01-01

    In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to learn from those conducting fish monitoring in other rivers. We briefly examine five long-term fish monitoring programs in large rivers in the United States (Colorado, Columbia, Mississippi, Illinois, and Tallapoosa rivers) and identify opportunities for learning across programs by detailing best monitoring practices and why these practices were chosen. Although monitoring objectives, methods, and program maturity differ between each river system, examples from these five case studies illustrate the important role that long-term monitoring programs play in interpreting temporal and spatial shifts in fish populations for both established objectives and newly emerging questions. We suggest that deliberate efforts to develop a broader collaborative network through benchmarking will facilitate sharing of ideas and development of more effective monitoring programs.

  9. The Influence of Water Conservancy Projects on River Network Connectivity, A Case of Luanhe River Basin

    NASA Astrophysics Data System (ADS)

    Li, Z.; Li, C.

    2017-12-01

    Connectivity is one of the most important characteristics of a river, which is derived from the natural water cycle and determine the renewability of river water. The water conservancy project can change the connectivity of natural river networks, and directly threaten the health and stability of the river ecosystem. Based on the method of Dendritic Connectivity Index (DCI), the impacts from sluices and dams on the connectivity of river network are deeply discussed herein. DCI quantitatively evaluate the connectivity of river networks based on the number of water conservancy facilities, the connectivity of fish and geographical location. The results show that the number of water conservancy facilities and their location in the river basin have a great influence on the connectivity of the river network. With the increase of the number of sluices and dams, DCI is decreasing gradually, but its decreasing range is becoming smaller and smaller. The dam located in the middle of the river network cuts the upper and lower parts of the whole river network, and destroys the connectivity of the river network more seriously. Therefore, this method can be widely applied to the comparison of different alternatives during planning of river basins and then provide a reference for the site selection and design of the water conservancy project and facility concerned.

  10. National Water-Quality Assessment program: The Trinity River Basin

    USGS Publications Warehouse

    Land, Larry F.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at the national, State, and local levels. A major design feature of the NAWQA program will enable water-quality information at different areal scales to be integrated. A major component of the program is study-unit investigations, which comprise the principal building blocks of the program on which national-level assessment activities will be based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Trinity River basin study was among the first 20 NAWQA study units selected for study under the full-scale implementation plan.

  11. National Water-Quality Assessment Program: The Sacramento River Basin

    USGS Publications Warehouse

    Domagalski, Joseph L.; Brown, Larry R.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status of and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to identify the major natural and human factors that affect the quality of those resources. In addressing these goals, the program will provide a wealth of water- quality information that will be useful to policy makers and managers at the national, State, and local levels. A major asset of the NAWQA program is that it will allow for the integration of water-quality information collected at several scales. A major component of the program is the study-unit investigation-the foundation of national- level assessment. The 60 study units of the NAWQA program are hydrologic systems that include parts of most major river basins and aquifer systems of the conterminous United States. These study units cover areas of 1,000 to more than 60,000 square miles and represent 60 to 70 percent of the Nation's water use and population served by public water supplies. Investigations of the first 20 study units began in 1991. In 1994, the Sacramento River Basin was among the second set of 20 NAWQA study units selected for investigation.

  12. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    USGS Publications Warehouse

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST

  13. Tamarisk beetle (Diorhabda spp.) in the Colorado River basin: Synthesis of an expert panel forum

    USGS Publications Warehouse

    Bloodworth, Benjamin R.; Shafroth, Patrick B.; Sher, Anna A.; Manners, Rebecca B.; Bean, Daniel W.; Johnson, Matthew J.; Hinojosa-Huerta, Osvel

    2016-01-01

    In January 2015, the Tamarisk Coalition convened a panel of experts to discuss and present information on probable ecological trajectories in the face of widespread beetle presence and to consider opportunities for restoration and management of riparian systems in the Colorado River Basin (CRB). An in-depth description of the panel discussion follows. 

  14. Continuous estimation of baseflow in snowmelt-dominated streams and rivers in the Upper Colorado River Basin: A chemical hydrograph separation approach

    USGS Publications Warehouse

    Miller, Matthew P.; Susong, David D.; Shope, Christopher L.; Heilweil, Victor M.; Stolp, Bernard J.

    2014-01-01

    Effective science-based management of water resources in large basins requires a qualitative understanding of hydrologic conditions and quantitative measures of the various components of the water budget, including difficult to measure components such as baseflow discharge to streams. Using widely available discharge and continuously collected specific conductance (SC) data, we adapted and applied a long established chemical hydrograph separation approach to quantify daily and representative annual baseflow discharge at fourteen streams and rivers at large spatial (> 1,000 km2 watersheds) and temporal (up to 37 years) scales in the Upper Colorado River Basin. On average, annual baseflow was 21-58% of annual stream discharge, 13-45% of discharge during snowmelt, and 40-86% of discharge during low-flow conditions. Results suggest that reservoirs may act to store baseflow discharged to the stream during snowmelt and release that baseflow during low-flow conditions, and that irrigation return flows may contribute to increases in fall baseflow in heavily irrigated watersheds. The chemical hydrograph separation approach, and associated conceptual model defined here provide a basis for the identification of land use, management, and climate effects on baseflow.

  15. An ecological economic assessment of flow regimes in a hydropower dominated river basin: the case of the lower Zambezi River, Mozambique.

    PubMed

    Fanaian, Safa; Graas, Susan; Jiang, Yong; van der Zaag, Pieter

    2015-02-01

    The flow regime of rivers, being an integral part of aquatic ecosystems, provides many important services benefiting humans in catchments. Past water resource developments characterized by river embankments and dams, however, were often dominated by one (or few) economic use(s) of water. This results in a dramatically changed flow regime negatively affecting the provision of other ecosystem services sustained by the river flow. This study is intended to demonstrate the value of alternative flow regimes in a river that is highly modified by the presence of large hydropower dams and reservoirs, explicitly accounting for a broad range of flow-dependent ecosystem services. In this study, we propose a holistic approach for conducting an ecological economic assessment of a river's flow regime. This integrates recent advances in the conceptualization and classification of ecosystem services (UK NEA, 2011) with the flow regime evaluation technique developed by Korsgaard (2006). This integrated approach allows for a systematic comparison of the economic values of alternative flow regimes, including those that are considered beneficial for aquatic ecosystems. As an illustration, we applied this combined approach to the Lower Zambezi Basin, Mozambique. Empirical analysis shows that even though re-operating dams to create environmentally friendly flow regimes reduces hydropower benefits, the gains to goods derived from the aquatic ecosystem may offset the forgone hydropower benefits, thereby increasing the total economic value of river flow to society. The proposed integrated flow assessment approach can be a useful tool for welfare-improving decision-making in managing river basins. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Occurrence and transport of nutrients in the Missouri River Basin, April through September 2011: Chapter G in 2011 floods of the central United States

    USGS Publications Warehouse

    Kalkhoff, Stephen J.

    2013-01-01

    Heavy snow and early spring rainfall generated substantial amounts of runoff and flooding in the upper part of the Missouri River Basin in 2011. Spring runoff in the upper and middle parts of the basin exceeded the storage capacity of the Missouri River reservoirs and unprecedented amounts of water were released into the lower parts of the basin resulting in record floods from June through September on the Missouri River in Iowa and Nebraska and extending into Kansas and Missouri. Runoff from the Missouri River Basin in April through September 2011 was 8,440,000 hectare meters (68,400,000 acre feet) and was only exceeded during flooding in 1993 when runoff was 11,200,000 hectare meters (90,700,000 acre feet). Nitrate and total phosphorus concentrations in the Missouri River and selected tributaries in April through September, 2011 generally were within the expected range of concentrations measured during the last 30 years. Substantial discharge from the upper and middle parts of the Missouri River Basin resulted in nitrate concentrations decreasing in the lower Missouri River beginning in June. Concentrations of nitrate in water entering the Mississippi River from the Missouri River were less in 2011 than in 1993, but total phosphorus concentrations entering the Mississippi River were substantially greater in 2011 than in 1993. The Missouri River transported an estimated 79,600 megagrams of nitrate and 38,000 megagrams of total phosphorus to the Mississippi River from April through September 2011. The nitrate flux in 2011 was less than 20 percent of the combined total from the Upper Mississippi and Missouri River Basins. In contrast, the total phosphorus flux of 38,000 megagrams from the Missouri River constituted about 39 percent of the combined total from the Upper Mississippi and Missouri River Basins during April through September 2011. Substantially more nitrate but less total phosphorus was transported from the Missouri River Basin during the historic 1993

  17. Fluvial bar dynamics in large meandering rivers with different sediment supply in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Monegaglia, Federico; Zolezzi, Guido; Tubino, Marco; Henshaw, Alex

    2017-04-01

    Sediments in the large meandering rivers of the Amazon basin are known to be supplied by sources providing highly different magnitudes of sediment input and storage, ranging from the sediment-rich Andean region to the sediment-poor Central Trough. Recent observations have highlighted how such differences in sediment supply have an important, net effect on the rates of planform activity of meandering rivers in the basin, in terms of meander migration and frequency of cutoffs. In this work we quantify and discuss the effect of sediment supply on the organization of macroscale sediment bedforms on several large meandering rivers in the Amazon basin, and we link our findings with those regarding the rates of planform activity. Our analysis is conducted through the newly developed software PyRIS, which enables us to perform extensive multitemporal analysis of river morphodynamics from multispectral remotely sensed Landsat imagery in a fully automated fashion. We show that large rivers with low sediment supply tend to develop alternate bars that consistently migrate through long reaches, characterized at the same time by limited planform development. On the contrary, high sediment supply is associated with the development of point bars that are well-attached to the evolving meander bends and that follow temporal oscillations around the bend apexes, which in turn show rapid evlution towards complex meander shapes. Finally, rivers with intermediate rates of sediment supply develop rather steady point bars associated with slowly migrating, regular meanders. We finally discuss the results of the image analysis in the light of the properties of river planform metrics (like channel curvature and width) for the examined classes of river reaches with different sediment supply rates.

  18. Ground-water resources of the Coosa River basin in Georgia and Alabama; Subarea 6 of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa river basins

    USGS Publications Warehouse

    Robinson, James L.; Journey, Celeste A.; Atkins, J. Brian

    1997-01-01

    Drought conditions in the 1980's focused attention on the multiple uses of the surface- and ground-water resources in the Apalachicola-Chattahoochee-Flint (ACF) and Alabama-Coosa-Tallapoosa (ACT) River basins in Georgia, Alabama, and Florida. State and Federal agencies also have proposed projects that would require additional water resources and revise operating practices within the river basins. The existing and proposed water projects create conflicting demands for water by the States and emphasize the problem of water-resource allocation. This study was initiated to describe ground-water availability in the Coosa River basin of Georgia and Alabama, Subarea 6 of the ACF and ACT River basins, and estimate the possible effects of increased ground-water use within the basin. Subarea 6 encompasses about 10,060 square miles in Georgia and Alabama, totaling all but about 100 mi2 of the total area of the Coosa River basin; the remainder of the basin is in Tennessee. Subarea 6 encompasses parts of the Piedmont, Blue Ridge, Cumberland Plateau, Valley and Ridge, and Coastal Plain physiographic provinces. The major rivers of the subarea are the Oostanaula, Etowah, and Coosa. The Etowah and Oostanaula join in Floyd County, Ga., to form the Coosa River. The Coosa River flows southwestward and joins with the Tallapoosa River near Wetumpka, Ala., to form the Alabama River. The Piedmont and Blue Ridge Provinces are underlain by a two-component aquifer system that is composed of a fractured, crystalline-rock aquifer characterized by little or no primary porosity or permeability; and the overlying regolith, which generally behaves as a porous-media aquifer. The Valley and Ridge and Cumberland Plateau Provinces are underlain by fracture- and solution-conduit aquifer systems, similar in some ways to those in the Piedmont and Blue Ridge Provinces. Fracture-conduit aquifers predominate in the well-consolidated sandstones and shales of Paleozoic age; solution-conduit aquifers

  19. Source apportionment of heavy metals and their ecological risk in a tropical river basin system.

    PubMed

    Kumar, Balwant; Singh, Umesh Kumar

    2018-06-27

    Surface water and sediment samples were collected from Ajay River basin to appraise the behavior of heavy metals with surrounding environments and their inter-elemental relationships. Parameters like pH and organic carbon are having a minimal role in heavy metal distribution while some elements like Fe and Cu showed great affinity for organic matter based on linear regression analysis (LRA). Ficklin diagram justified that river basin is not contaminated through acidic pollutants. The river basin is highly enriched with Cu, Cd, Pb, and Ni which were much higher than world average values, average shale standard, effect range low (ERL), and threshold effect level (TEL). PCA and LRA verified that Cu, Cd, Pb, and Ni were mainly derived from anthropogenic inputs, and others like Fe, Mn, Zn, and Co came from geogenic sources. Pollution indices revealed that river basin is moderately to highly contaminated by Cu, Cd, and Ni. Furthermore, Ajay River basin is under strong potential ecological risk based on the obtained value of risk index and probable effect level/effect range median quotient index. However, river basin is strongly influenced by lithological properties, diversified hydrogeological settings, mineralization and mobilization of subsurface materials, and urban and industrial effluents which are controlling the heavy metals.

  20. Quality of water, Quillayute River basin, Washington

    USGS Publications Warehouse

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)