Science.gov

Sample records for river basin management

  1. River basin management

    SciTech Connect

    Newsome, D.H.; Edwards, A.M.C.

    1984-01-01

    The quality of water is of paramount importance in the management of water resources - including marine waters. A quantitative knowledge of water quality and the factors governing it is required to formulate and implement strategies requiring an inter-disciplinary approach. The overall purpose of this conference was to bring together the latest work on water quality aspects of river basin management. These proceedings are structured on the basis of five themes: problems in international river basins; the contribution of river systems to estuarial and marine pollution; the setting of standards; monitoring; and practical water quality management including use of mathematical models. They are followed by papers from the workshop on advances in the application of mathematical modelling to water quality management, which represent some of the current thinking on the problems and concepts of river basin management.

  2. Ecological River Basin Management.

    ERIC Educational Resources Information Center

    Smith, Anthony Wayne

    Addressing the Seventh American Water Resources Conference, Washington, D. C., October, 1971, Anthony Wayne Smith, President, National Parks and Conservation Association, presents an expose on how rivers should be managed by methods which restores and preserve the natural life balances of the localities and regions through which they flow. The…

  3. Scaling issues in sustainable river basin management

    NASA Astrophysics Data System (ADS)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  4. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    NASA Astrophysics Data System (ADS)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  5. Integrated water resources management in the Ruhr River Basin, Germany.

    PubMed

    Bode, H; Evers, P; Albrecht, D R

    2003-01-01

    The Ruhr, with an average flow of 80.5 m3/s at its mouth, is a comparatively small tributary to the Rhine River that has to perform an important task: to secure the water supply of more than 5 million people and of the industry in the densely populated region north of the river. The complex water management system and network applied by the Ruhrverband in the natural Ruhr River Basin has been developed step by step, over decades since 1913. And from the beginning, its major goal has been to achieve optimal conditions for the people living in the region. For this purpose, a functional water supply and wastewater disposal infrastructure has been built up. The development of these structures required and still requires multi-dimensional planning and performance. Since the river serves as receiving water and at the same time as a source of drinking water, the above-standard efforts of Ruhrverband for cleaner water also help to conserve nature and wildlife. Ruhrverband has summed up its environmental awareness in the slogan: "For the people and for the environment". This basic water philosophy, successfully applied to the Ruhr for more than 80 years, will be continued in accordance with the new European Water Framework Directive, enacted in 2000, which demands integrated water resources management in natural river basins, by including the good ecological status of surface waterbodies as an additional goal.

  6. Part I: Integrated water quality management: river basin approach. Geochemical techniques on contaminated sediments--river basin view.

    PubMed

    Förstner, Ulrich

    2003-01-01

    The big flood in the upper Elbe River catchment area has revealed a wide spectrum of problems with contaminated sediments. So far, an effective strategy for managing contaminated sediments on a river basin scale is still missing and it seems that not much has been learned from the lessons received during the last decade. In the following overview, special emphasis is given to the utilization of geochemically-based techniques for sediment remediation, which can be applied in different parts of a river basin. The examples presented here are mostly from the Elbe River catchment area. In general, new technical problem solutions need a set of practical process knowledge that uses a wide range of simulation techniques, as well as models in different spatial and temporal scales. The evaluation of recent flood events clearly demonstrates the importance of chemical expertise in the decision-making process for the sustainable development in river basins.

  7. Sustainable Land Management in the Lim River Basin

    NASA Astrophysics Data System (ADS)

    Grujic, Gordana; Petkovic, Sava; Tatomir, Uros

    2017-04-01

    In the cross-border belt between Serbia and Montenegro are located more than one hundred torrential water flows that belong to the Lim River Basin. Under extreme climate events they turned into floods of destructive power and great energy causing enormous damage on the environment and socio-economic development in the wider region of the Western Balkans. In addition, anthropogenic factors influence the land instability, erosion of river beds and loss of topsoil. Consequently, this whole area is affected by pluvial and fluvial erosion of various types and intensity. Terrain on the slopes over 5% is affected by intensive degree of erosion, while strong to medium degree covers 70% of the area. Moreover, in the Lim River Basin were built several hydro-energetic systems and accumulations which may to a certain extent successfully regulate the water regime downstream and to reduce the negative impact on the processes of water erosion. However, siltation of accumulation reduces their useful volume and threatens the basic functions (water reservoirs), especially those ones for water supply, irrigation and energy production that have lost a significant part of the usable volume due to accumulated sediments. Facing the negative impacts of climate change and human activities on the process of land degradation in the Lim River basin imposes urgent need of adequate preventive and protective measures at the local and regional level, which can be effectively applied only through enhanced cross-border cooperation among affected communities in the region. The following set of activities were analyzed to improve the actual management of river catchment: Identifying priorities in the spatial planning, land use and water resources management while respecting the needs of local people and the communities in the cross border region; development of cooperation and partnership between the local population, owners and users of real estate (pastures, agricultural land, forests, fisheries

  8. Drought risk management in Mediterranean river basins.

    PubMed

    Iglesias, Ana; Garrote, Luis; Martín-Carrasco, Francisco

    2009-01-01

    The Mediterranean region has an extensive hydraulic infrastructure and complex socioeconomic interactions among water users. In this region, competition for water among urban, agricultural, industrial, and environmental demands is strongest in times of water scarcity. Allocation of scarce water in the face of multiple demands is a challenging task that requires careful analysis. Precipitation decreases may likely be translated into drought periods in most cases. Nevertheless water scarcity (the shortage of water resources to serve water demands) not only depends on drought or precipitation deficits but also on water management. Adaptation options depend on the strategic contingency planning and management decisions that affect water resources systems. The risk management of water scarcity and drought depends on the level of water scarcity. Therefore, an adequate diagnosis of the water scarcity level is essential to anticipate the possible solutions. This study proposes a methodology for drought risk management based on the evaluation of 4 indicators of water scarcity to be used to define the thresholds of risk management actions. Based on the definition of thresholds, the study proposes the implementation of risk management actions that may be used for responding to each water scarcity situation.

  9. Information technology and decision support tools for stakeholder-driven river basin salinity management

    SciTech Connect

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  10. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    PubMed

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  11. Characterization of Intensively Managed Landscapes: Illinois River Basin Case Study

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Andrews, E.; Bland, W.; Borah, D.; Braden, J.; Cooke, R.; Eheart, W.; Herricks, E.; Hollinger, S.; Holmes, R.; Johnson, T.; Keefer, D.; Keefer, L.; Krajewski, W.; Krug, E.; Kunkel, K.; Liang, X.; McIsaac, G.; Mehnert, E.; Over, T.; Packman, A.; Papanicolaou, T.; Rao, G.; Rhoads, B.; Ruddell, B.; Sivapalan, M.; Sparks, R.; Talley, J.; Weber, L.; Wehrmann, A.; Winstanley, D.; Wuebbles, D.

    2005-12-01

    With rapid growth of the world population, doubling to over 6 billion in the last 40 years, with an expected increase to 9 billion in another 40 years, our landscape and environment are being transformed in unprecedented ways across the globe with local, regional and continental scale impacts. Intensively managed landscapes (IMLs), such as the Midwestern US, are characterized by extensive modification of the land for agriculture and urban use. These include alteration of natural vegetation, modification of rivers for navigation, increased loading of fertilizers and chemicals in water bodies, decline of ground water levels, etc. They induce significant modification of the water cycle and as a result all the systems that are linked such as climate, biogeochemistry, and ecology. The adverse effects of these stressors are evident through the degradation of the water quality, erosion, loss of wetlands and biodiversity, deterioration of recreational opportunities, and ultimately the quality of human life. These effects are further exacerbated by the uncertainty of the changing climate. The Illinois River Basin, because of an extensive infrastructure of observing systems, offers an unprecedented opportunity to study the human impact on the alterations of the water cycle. The challenges associated with watershed characterization for addressing this problem are unique and span a range of space and time scales. The presentation will articulate the lessons learnt in watershed characterization by the Illinois River Basin Observatory team.

  12. Collaboration in River Basin Management: The Great Rivers Project

    NASA Astrophysics Data System (ADS)

    Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

    2008-12-01

    The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or

  13. Managing water resources for sustainable development: the case of integrated river basin management in China.

    PubMed

    Song, X; Ravesteijn, W; Frostell, B; Wennersten, R

    2010-01-01

    The emerging water crisis in China shows that the current institutional frameworks and policies with regard to water resources management are incapable of achieving an effective and satisfactory situation that includes Integrated River Basin Management (IRBM). This paper analyses this framework and related policies, examines their deficiencies in relation to all water stress problems and explores alternatives focusing on river basins. Water resources management reforms in modern China are reviewed and the main problems involved in transforming the current river management system into an IRBM-based system are analysed. The Huai River basin is used as an example of current river basin management, with quantitative data serving to show the scale and scope of the problems in the country as a whole. The institutional reforms required are discussed and a conceptual institutional framework is proposed to facilitate the implementation of IRBM in China. In particular, the roles, power and responsibilities of River Basin Commissions (RBCs) should be legally strengthened; the functions of supervising, decision-making and execution should be separated; and cross-sectoral legislation, institutional coordination and public participation at all levels should be promoted.

  14. A study on the role and importance of irrigation management in integrated river basin management.

    PubMed

    Koç, Cengiz

    2015-08-01

    The purpose of this paper is to identify the role and the importance of irrigation management in integrated river basin management during arid and semi-arid conditions. The study has been conducted at Büyük Menderes Basin which is located in southwest of Turkey and where different sectors (irrigation, drinking and using, industry, tourism, ecology) related to the use and distribution of water sources compete with each other and also where the water demands for important ecological considerations is evaluated and where the river pollution has reached important magnitudes. Since, approximately 73% of the water resources of the basin are utilized for irrigation; as a result, irrigation management becomes important for basin management. Irrigation operations have an effect on basin soil resources, water users, and environmental and ecological conditions. Thus, the determination of the role and importance of irrigation management require an integrated and interdisciplinary approach. In the studies conducted in Turkey, usually the environmental reactions have been analyzed in the basin studies and so the other topics related to integrated river basin management have not been taken into account. Therefore, this study also is to address these existing gaps in the literature and practice.

  15. [Ecological function evaluation and related management strategies of river ecosystem in Taizi River basin, North China].

    PubMed

    Liu, Hong-Yan; Zhang, Yuan; Ma, Shu-Qin; Meng, Wei

    2013-10-01

    By the method of index evaluation at reach scale, this paper evaluated the ecological functions of aquatic biodiversity maintenance, habitat maintenance, water quality sustainment, and hydrological support of the river system in Taizi River basin of North China. The dominant ecological functions and the total ecological function were determined after sorting and summing. All the reaches in the basin were divided into four hierarchies of ecological functions. Overall, the total ecological function showed a spatially degrading trend from the mountainous region to the plain. Based on the evaluation results of the total function and dominant functions, six ecosystem management strategies were proposed. For the reaches with the functions of aquatic biodiversity- and habitat maintenance, the primary ecological management strategies included ecological conservation, ecological maintenance, and ecological restoration; for the reaches with the functions of water quality sustainment and hydrological support, the primary strategies of ecological management included limited development, development optimization, and exploitation.

  16. River enhancement in the Upper Mississippi River basin: Approaches based on river uses, alterations, and management agencies

    USGS Publications Warehouse

    O'Donnell, T. K.; Galat, D.L.

    2007-01-01

    The Upper Mississippi River is characterized by a series of locks and dams, shallow impoundments, and thousands of river channelization structures that facilitate commercial navigation between Minneapolis, Minnesota, and Cairo, Illinois. Agriculture and urban development over the past 200 years have degraded water quality and increased the rate of sediment and nutrient delivery to surface waters. River enhancement has become an important management tool employed to address causes and effects of surface water degradation and river modification in the Upper Mississippi River Basin. We report information on individual river enhancement projects and contrast project densities, goals, activities, monitoring, and cost between commercially non-navigated and navigated rivers (Non-navigated and Navigated Rivers, respectively). The total number of river enhancement projects collected during this effort was 62,108. Cost of all projects reporting spending between 1972 and 2006 was about US$1.6 billion. Water quality management was the most cited project goal within the basin. Other important goals in Navigated Rivers included in-stream habitat improvement and flow modification. Most projects collected for Non-navigated Rivers and their watersheds originated from the U.S. Department of Agriculture (USDA). The U.S. Army Corps of Engineers and the USDA were important sources for projects in Navigated Rivers. Collaborative efforts between agencies that implement projects in Non-navigated and Navigated Rivers may be needed to more effectively address river impairment. However, the current state of data sources tracking river enhancement projects deters efficient and broad-scale integration. ?? Journal compilation ?? 2007 Society for Ecological Restoration International.

  17. A comparison of integrated river basin management strategies: A global perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  18. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    PubMed

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  19. Integrated river basin management, ICT and DSS: Challenges and needs

    NASA Astrophysics Data System (ADS)

    Gourbesville, Philippe

    River basin management is a complex task. Therefore, instruments that help to assess the present situation and assist in the development and evaluation of solutions may be important. Since several decades and after the implementation of the first compulsory legal environments and institutional organizations for IWRM and IRBM, the need for an efficient support in the different decision-making processes has emerged. After several experiences, the demonstration of the interest of ICT and DSS systems is obvious in the water resources management domain. However and until now, most of the efforts have been focused on the theoretical aspects with very few integrations into operational approaches. The implementation of the new European water framework directive (2000) represents today one key example from which some lessons can be learned in the way of definition and use of ICT and DSS systems for IWRM and IRBM. The paper presents the concepts available through ICT and DSS. The example of the WFD is used to underline the challenges and the difficulties for the elaboration of new tools - DSSs - which could be able to answer of the challenges of IWRM and IRBM.

  20. Agricultural Drainage Water Management in the Upper Mississippi River Basin: Potential Impact and Implementation Strategies

    USDA-ARS?s Scientific Manuscript database

    The unique soil and climate of the Upper Mississippi River Basin area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Drainage practices alter the ...

  1. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Inland River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Li, X.; Cheng, G.; Tian, W.; Zhang, Y.; Zhou, J.; Pan, X.; Ge, Y.; Hu, X.

    2013-12-01

    Inland river basins take about 11.4% of the land area of the world and most of them are distributed over arid regions. Understanding the hydrological cycle of inland river basin is important for water resource management in water scarcity regions. This paper illustrated hydrological cycle of a typical inland river basin in China, the Heihe River Basin (HRB). First, water balance in upper, middle and lower reaches of the HRB was conceptualized by analyzing dominant hydrological processes in different parts of the river basin. Then, we used a modeling approach to study the water cycle in the HRB. In the upper reaches, we used the GBHM-SHAW, a distributed hydrological model with a new frozen soil parameterization. In the middle and lower reaches, we used the GWSiB, a three-dimensionally coupled land surface-groundwater model. Modeling results were compared with water balance observations in different landscapes and cross-validated with other results to ensure the reliability. The results show that the hydrological cycle in HRB has some distinctive characteristics. Mountainous area generates almost all of the runoff for the whole river basin. High-elevation zones have much larger runoff/precipitation ratio. Cryospheric hydrology plays an important role. Although snow melting and glacier runoff take less than 25% of total runoff, these processes regulate inter-annual variation of runoff and thus provide stable water resource for oases downstream. Forest area contributes almost no runoff but it smoothes runoff and reduces floods by storing water in soil and releasing it out slowly. In the middle reaches, artificial hydrological cycle is much more dominated than natural one. River water and groundwater, recharged by runoff from mountainous area, is the water resource to support the agriculture and nurture the riparian ecosystem. Precipitation, approximately 150 mm in average, is only a supplement to agriculture use but sufficient to sustain desert vegetation. Water

  2. Managing Water Resource Challenges in the Congo River Basin

    NASA Astrophysics Data System (ADS)

    Aloysius, N. R.

    2015-12-01

    Water resources in the tropical regions are under pressure from human appropriation and climate change. Current understanding of interactions between hydrology and climate in the tropical regions is inadequate. This is particularly true for the Congo River Basin (CRB), which also lacks hydroclimate data. Global climate models (GCM) show limited skills in simulating CRB's climate, and their future projections vary widely. Yet, GCMs provide the most credible scenarios of future climate, based upon which changes in water resources can be predicted with coupled hydrological models. The objectives of my work are to i) elucidate the spatial and temporal variability of water resources by developing a spatially explicit hydrological model suitable for describing key processes and fluxes, ii) evaluate the performance of GCMs in simulating precipitation and temperature and iii) develop a set of climate change scenarios for the basin. In addition, I also quantify the risks and reliabilities in smallholder rain-fed agriculture and demonstrates how available water resources can be utilized to increase crop yields. Key processes and fluxes of CRB's hydrological cycle are amply characterized by the hydrology model. Climate change projections are evaluated using a multi-model ensemble approach under different greenhouse gas emission scenarios. The near-term projections of climate and hydrological fluxes are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. These increases present new opportunities and challenges for augmenting human appropriation of water resources. By evaluating agricultural water requirements, and timing and availability of precipitation, I challenge the conventional wisdom that low agriculture productivities in the CRB are primarily attributable to nutrient limitation. Results show that

  3. Post conflict water management: learning from the past for recovery planning in the Orontes River basin

    NASA Astrophysics Data System (ADS)

    Saadé-Sbeih, Myriam; Zwahlen, François; Haj Asaad, Ahmed; Gonzalez, Raoul; Jaubert, Ronald

    2016-10-01

    Water management is a fundamental issue in post-conflict planning in Syria. Based on historical water balance assessment, this study identifies the drivers of the profound changes that took place in the Lebanese and Syrian parts of the Orontes River basin since the 1930s. Both drastic effects of the conflict on the hydro-system and the strong uncontrolled anthropization of the river basin prior to the crisis have to be considered in the design of recovery interventions.

  4. Near real time water resources data for river basin management

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  5. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  6. Population subdivision in Siamese mud carp Henicorhynchus siamensis in the Mekong River basin: implications for management.

    PubMed

    Adamson, E A S; Hurwood, D A; Baker, A M; Mather, P B

    2009-10-01

    A molecular approach was employed to investigate stock structure in Siamese mud carp Henicorhynchus siamensis populations collected from 14 sites across mainland south-east Asia, with the major focus being the lower Mekong River basin. Spatial analysis of a mitochondrial DNA fragment (ATPase 6 and 8) identified four stocks in the Mekong River basin that were all significantly differentiated from a population in the nearby Khlong River, Thailand. In the Mekong River basin, populations in northern Lao People's Democratic Republic and northern Thailand represent two independent stocks, and samples from Thai tributaries group with those from adjacent Mekong sites above the Khone Falls to form a third stock. All sites below the Khone Falls constituted a single vast stock that includes Cambodia and the Mekong Delta in Vietnam. While H. siamensis is considered currently to undertake extensive annual migrations across the Mekong River basin, the data presented here suggest that natural gene flow may occur over much more restricted geographical scales within the basin, and hence populations may need to be managed at finer spatial scales than at the whole-of-drainage-basin level.

  7. Modeling and management of water in the Klamath River Basin: overcoming politics and conflicts

    USGS Publications Warehouse

    Flug, Marshall; Scott, John F.; Abt, Steven R.; Young-Pezeshk, Jayne; Watson, Chester C.

    1998-01-01

    The network flow model MODSIM, which was designed as a water quantity mass balance model for evaluating and selecting water management alternatives, has been applied to the Klamath River basin. A background of conflicting issues in the basin is presented. The complexity of water quantity model development, while satisfying the many stakeholders and involved special interest groups is discussed, as well as the efforts taken to have the technical model accepted and used, and overcome stakeholder criticism, skepticism, and mistrust of the government.

  8. Prospects for Learning in River Management: Exploring the Initial Implementation of the Water Framework Directive in a Swedish River Basin

    ERIC Educational Resources Information Center

    Lundmark, Carina; Jonsson, Gunnar

    2014-01-01

    This case study explores the initial implementation of the EU Water Framework Directive (WFD) in the Lule River basin, Sweden, examining how and to what extent administrative procedures enable learning through dialogue and stakeholder collaboration. Theorising on adaptive co-management and social learning is used to structure what is to be learnt,…

  9. Prospects for Learning in River Management: Exploring the Initial Implementation of the Water Framework Directive in a Swedish River Basin

    ERIC Educational Resources Information Center

    Lundmark, Carina; Jonsson, Gunnar

    2014-01-01

    This case study explores the initial implementation of the EU Water Framework Directive (WFD) in the Lule River basin, Sweden, examining how and to what extent administrative procedures enable learning through dialogue and stakeholder collaboration. Theorising on adaptive co-management and social learning is used to structure what is to be learnt,…

  10. Enhancing Floodplain Management in the Lower Mekong River Basin Using Vegetation and Water Cycle Satellite Observations

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Spruce, J.; Wilson, R.; Strauch, K.; Doyle, T.; Srinivan, R.; Lakshmi, V.; Gupta, M.

    2014-12-01

    The Lower Mekong River Basin shared by China, Burma, Laos, Thailand, Cambodia, and Vietnam, is considered the lifeblood of Southeast Asia. The Mekong Basin is subject to large hydrological fluctuations on a seasonal and inter-annual basis. The basin remains prone to severe annual floods that continue to cause widespread damage and endanger food security and the livelihood of the millions who dwell in the region. Also the placement of newly planned dams primarily for hydropower in the Lower Mekong Basin may cause damaging social, agriculture and fisheries impacts to the region where we may now likely be at a critical 'tipping point'. The primary goal of this project is to apply NASA and USGS products, tools, and information for improved flood and water management in the Lower Mekong River Basin to help characterize, understand, and predict future changes on the basin. Specifically, we are providing and helping transfer to the Mekong River Commission (MRC) and the member countries of Thailand, Cambodia, Lao, Vietnam, and Burma the enhanced Soil and Water Assessment Tool (SWAT) using remotely sensed surface, ground water, and root zone soil moisture along with improved Land Use and Land Cover (LULC) maps. In order to estimate the flood potential and constrain the SWAT Available Water Capacity model parameter over the region, we are assimilated GRACE Terrestrial Water Storage observations into the Catchment Land Surface Model. In addition, a Graphic Visualization Tool (GVT) as been developed to work in concert with the output of the SWAT model parameterized for the Mekong Basin as an adjunct tool of the MRC Decision Support Framework. The project requires a close coordination of the development and assessment of the enhanced MRC SWAT with the guidance of MRC resource managers and technical advisors. This presentation will evaluate the skill of the enhanced SWAT model using qualitative (i.e., MODIS change detection) and quantitative (e.g., streamflow) metrics over one

  11. MANAGEMENT OF DIFFUSE POLLUTION IN AGRICULTURAL WATERSHEDS: LESSONS FROM THE MINNESOTA RIVER BASIN. (R825290)

    EPA Science Inventory

    Abstract

    The Minnesota River (Minnesota, USA) receives large non-point source pollutant loads. Complex interactions between agricultural, state agency, environmental groups, and issues of scale make watershed management difficult. Subdividing the basin's 12 major water...

  12. Implementing Integrated Catchment Management in the upper Limpopo River basin: A situational assessment

    NASA Astrophysics Data System (ADS)

    Mwenge Kahinda, J.; Meissner, R.; Engelbrecht, F. A.

    2016-06-01

    A three-phase study was initiated as a way to promote Integrated Catchment Management approaches in the Limpopo River basin. This paper presents the situational assessment, which should enable De Beers to understand how their Venetia Mine operations are located within a broader and highly dynamic socio-economic and ecohydrological landscape as it pertains to water risks. The second phase, Risk assessment, aims to develop conservation interventions in the identified areas; the third phase will develop mechanisms for implementing water stewardship schemes to mitigate the shared water risks. Analysis of the social-ecological system (hydrological, climatic, ecological, socio-economic and governance systems) of the Limpopo River basin indicates that the institutional arrangement of the Limpopo River basin is neither simple nor effective. The basin is rapidly approaching closure in the sense that almost all of the available supplies of water have already been allocated to existing water users. If the proposed ecological flow requirements were to be met for all of the tributaries, the basin would be 'closed'. On-going and projected land use changes and water resources developments in the upper reaches of the basin, coupled with projected rainfall reductions and temperature increases, and allocation of the flows for the ecological reserve, are likely to further reduce downstream river flows. The coupled increase in temperature and decrease in rainfall is of great concern for everyone in the basin, especially the poorer communities, who rely on rain-fed agriculture for their livelihoods. Increased temperatures also lead to increased evaporation from reservoirs and therefore result in a decrease in water availability. This will lead to increased abstraction of groundwater, especially from alluvial aquifers, and consequently an increase in river transmission losses and a decrease in river flows.

  13. Water Demand Management Strategies and Challenges in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Kuhn, R. E.

    2016-12-01

    Under the 1922 Colorado River Compact, the Upper Basin (Colorado, New Mexico, Utah, and Wyoming) has flow obligations at Lee Ferry to downstream states and Mexico. The Colorado River Storage Project Act (CRSPA) of 1956 led to the construction of four large storage reservoirs. These provide river regulation to allow the Upper Basin to meet its obligations. Lake Powell, the largest and most important, and Lake Mead are now operated in a coordinated manner under the 2007 Interim Guidelines. Studies show that at current demand levels and if the hydrologic conditions the Basin has experienced since the mid-1980s continue or get drier, reservoir operations, alone, may not provide the necessary water to meet the Upper Basin's obligations. Therefore, the Upper Basin states are now studying demand management strategies that will reduce consumptive uses when total system reservoir storage reaches critically low levels. Demand management has its own economic, political and technical challenges and limitations and will provide new opportunities for applied research. This presentation will discuss some of those strategies, their challenges, and the kinds of information that research could provide to inform demand management.

  14. Development of a dynamic strategy planning theory and system for sustainable river basin land use management.

    PubMed

    Chen, Ching-Ho; Liu, Wei-Lin; Liaw, Shu-Liang; Yu, Chien-Hwa

    2005-06-15

    Land use management is central to government planning for sustainable development. The main purpose of this study is to develop a novel strategy planning theory and system to assist responsible authorities in obtaining alternatives of sustainable top river basin land use management. The concepts and theory of system analysis, driving force-state-response (DSR) framework, and system dynamics are used to establish the DSR dynamic strategy planning procedure in this work. The integrated management of the land, water, and air resources of a river basin system is considered in the procedure. Two modified land use management procedures combined with the DSR dynamic strategy planning procedure are developed in this work. Based on the DSR dynamic strategy planning procedure, the sustainable river basin land use management DSR dynamic decision support system (SRBLUM-DSRD-DSS) is developed by using the Vensim, MS Excel, ArcView, and Visual Basic software. The concepts of object-orientation are used to develop the system dynamic optimization and simulation models of SRBLUM-DSRD-DSS. Based on the modified land use management procedures, SRBLUM-DSRD-DSS is used to assist decision makers in generating the land use plans of the Nankan river basin in Taoyuan County of Taiwan. Since the decisions of land, water and air resources management are still made at different agencies, the land use management system should be modified based on the innovational procedure to implement the management strategy developed in this work. The results show that the modified land use management procedures can be a guidance for the governments in modifying the systems and regulation of urban and regional plans in Taiwan.

  15. Integrated water resources assessment and management in the Kharaa River Basin, Mongolia

    NASA Astrophysics Data System (ADS)

    Ibisch, Ralf; Karthe, Daniel; Hofmann, Jürgen; Borchardt, Dietrich

    2016-04-01

    A comprehensive study on hydrology, hydro-morphology, climatology, water physico-chemistry and ecology was conducted in the Kharaa River Basin (Mongolia) between 2006 and 2013. The assessment provided a detailed characterization of water resources for the first time and serves as a scientific basis to develop an integrated water resources management (IWRM) in the region. Following European water management approaches we identified "water bodies" as the smallest management sub-unit within the river basin, based on characteristic abiotic and biocenotic features. Four clearly identifiable water bodies in the Kharaa River main channel and seven water bodies in the tributaries were delineated. In order to achieve a good ecological status of the surface water bodies, type-specific undisturbed reference states of various aquatic ecosystems were identified and current deviations thereof were assessed. Based on the assessment a set of water management measures was developed. With regards to water quality and quantity, the upper reaches of the Kharaa River basin were classified as having a "good" ecological and chemical status. Compared to these natural reference conditions in the upper reaches, the initial risk assessment identified several "hot spot" regions with impacted water bodies in the middle and lower basin. Therefore, the affected water bodies are at risk of not achieving the good ecological and/or chemical status for surface waters. The use of natural references conditions offers a sound scientific base to assess the impact of anthropogenic activities across the Kharaa River basin. Based on the scientific results and practical experiences from a seven-year project in the region, the potentials and limitations of IWRM implementation will be discussed in the presentation.

  16. Performance evaluation of River Basin Organizations to implement integrated water resources management using composite indexes

    NASA Astrophysics Data System (ADS)

    Gallego-Ayala, Jordi; Juízo, Dinis

    In the Southern African Development Community region, Integrated Water Resources Management (IWRM) principles and tools are being implemented through the existing regional framework for water resources development and management. The IWRM approach is applied at river basin level seeking a balance between the economic efficiency, social equity and environmental sustainability in water resources management and development. This paper uses composite indexes to analyze the performance of River Basin Organizations (RBOs) as key implementing agents of the IWRM framework. The assessment focuses on three RBOs that fall under the Regional Water Administration for Southern Mozambique (ARA-Sul) jurisdiction, namely: Umbeluzi, Incomati and Limpopo River Basin Management Units. The analysis focus on the computation of a set of multidimensional key performance indicators developed by Hooper (2010) but adapted to the Mozambican context. This research used 24 out of 115 proposed universal key performance indicators. The indicators for this case study were selected based on their suitability to evaluate performance in line with the legal and institutional framework context that guides the operations of RBOs in Mozambique. Finally these indicators were integrated in a composite index, using an additive and multiplicative aggregation method coupled with the Analytic Hierarchy Process technique employed to differentiate the relative importance of the various indicators considered. The results demonstrate the potential usefulness of the methodology developed to analyze the RBOs performance and proved useful in identifying the main performance areas in need of improvement for better implementation of IWRM at river basin level in Mozambique. This information should support both the IWRM framework adaptation to local context and the implementation at river basin level in order to improve water governance.

  17. Seasonal predictions of precipitation in the Aksu-Tarim River basin for improved water resources management

    NASA Astrophysics Data System (ADS)

    Hartmann, Heike; Snow, Julie A.; Su, Buda; Jiang, Tong

    2016-12-01

    Since the 1950s, the population in the arid to hyperarid Tarim River basin has grown rapidly concurrent with an expansion of irrigated agriculture. This threatens the Tarim River basin's natural ecosystems and causes water shortages, even though increased discharges in the headwaters have been observed more recently. These increases have mainly been attributed to receding glaciers and are projected to cease when the glaciers are unable to provide sufficient amounts of meltwater. Under these circumstances water management will face a serious challenge in adapting its strategies to changes in river discharge, which to a greater extent will depend on changes in precipitation. In this paper, we aim to develop accurate seasonal predictions of precipitation to improve water resources management. Possible predictors of precipitation for the Tarim River basin were either downloaded directly or calculated using NCEP/NCAR Reanalysis 1 and NOAA Extended Reconstructed Sea Surface Temperature (SST) V3b data in monthly resolution. To evaluate the significance of the predictors, they were then correlated with the monthly precipitation dataset GPCCv6 extracted for the Tarim River basin for the period 1961 to 2010. Prior to the Spearman rank correlation analyses, the precipitation data were averaged over the subbasins of the Tarim River. The strongest correlations were mainly detected with lead times of four and five months. Finally, an artificial neural network model, namely a multilayer perceptron (MLP), and a multiple linear regression (LR) model were developed each in two different configurations for the Aksu River subbasin, predicting precipitation five months in advance. Overall, the MLP using all predictors shows the best performance. The performance of both models drops only slightly when restricting the model input to the SST of the Black Sea and the Siberian High Intensity (SHI) pointing towards their importance as predictors.

  18. Managing water quality under drought conditions in the Llobregat River Basin.

    PubMed

    Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín

    2015-01-15

    The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system.

  19. River Basin Scale Management and Governance: Competing Interests for Western Water

    NASA Astrophysics Data System (ADS)

    Lindquist, Eric

    2015-04-01

    One of the most significant issues in regard to how social scientists understand environmental and resource management is the question of scale: what is the appropriate scale at which to consider environmental problems, and associated stakeholders (including hydrologists) and their interests, in order to "govern" them? Issues of scale touch on the reality of political boundaries, from the international to the local, and their overlap and conflict across jurisdictions. This presentation will consider the questions of environmental management and governance at the river basin scale through the case of the Boise River Basin (BRB), in southwest Idaho. The river basin scale provides a viable, and generalizable, unit of analysis with which to consider theoretical and empirical questions associated with governance and the role of hydrological science in decision making. As a unit of analysis, the "river basin" is common among engineers and hydrologists. Indeed, hydrological data is often collected and assessed at the basin level, not at an institutional or jurisdictional level. In the case of the BRB much is known from the technical perspective, such as infrastructure and engineering factors, who manages the river and how, and economic perspectives, in regard to benefits in support of major agricultural interests in the region. The same level of knowledge cannot be said about the political and societal factors, and related concepts of institutions and power. Compounding the situation is the increasing probability of climate change impacts in the American West. The geographic focus on the Boise River Basin provides a compelling example of what the future might hold in the American West, and how resource managers and other vested interests make or influence river basin policy in the region. The BRB represents a complex and dynamic environment covering approximately 4,100 square miles of land. The BRB is a highly managed basin, with multiple dams and diversions, and is

  20. Optimally managing water resources in large river basins for an uncertain future

    USGS Publications Warehouse

    Edwin A. Roehl, Jr.; Conrads, Paul A.

    2014-01-01

    Managers of large river basins face conflicting needs for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting local economies for years. The Savannah River Basin’s coastal area contains municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent since the 1970s. There is a planned deepening of the harbor that includes flow-alteration features to minimize further migration of salinity. The effectiveness of the flow-alteration features will only be known after they are constructed. One of the challenges of basin management is the optimization of water use through ongoing development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to significantly reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the

  1. Water quality monitoring: the basis for watershed management in the Oldman River Basin, Canada.

    PubMed

    Koning, C W; Saffran, K A; Little, J L; Fent, L

    2006-01-01

    The Oldman River flows 440 km from its headwaters in south-western Alberta, through mountains, foothills and plains into the South Saskatchewan River. Peak flows occur in May and June. Three major reservoirs, together with more than a dozen other structures, supply water to nine irrigation districts and other water users in the Oldman basin. Human activity in the basin includes forestry, recreation, oil and gas development, and agriculture, including a large number of confined livestock feeding operations. Based on the perception of basin residents that water quality was declining and of human health concern, the Oldman River Basin Water Quality Initiative was formed in 1997 to address the concerns. There was limited factual information, and at the time there was a desire for finger pointing. Results (1998-2002) show that mainstem water quality remains good whereas tributary water quality is more of a challenge. Key variables of concern are nutrients, bacteria and pesticides. Point source discharges are better understood and better regulated, whereas non-point source runoff requires more attention. Recent data on Cryptosporidium and Giardia species are providing benefit for focusing watershed management activities. The water quality data collected is providing a foundation to implement community-supported urban and rural better management practices to improve water quality.

  2. Decentralized water resources management in Mozambique: Challenges of implementation at the river basin level

    NASA Astrophysics Data System (ADS)

    Inguane, Ronaldo; Gallego-Ayala, Jordi; Juízo, Dinis

    In the context of integrated water resources management implementation, the decentralization of water resources management (DWRM) at the river basin level is a crucial aspect for its success. However, decentralization requires the creation of new institutions on the ground, to stimulate an environment enabling stakeholder participation and integration into the water management decision-making process. In 1991, Mozambique began restructuring its water sector toward operational decentralized water resources management. Within this context of decentralization, new legal and institutional frameworks have been created, e.g., Regional Water Administrations (RWAs) and River Basin Committees. This paper identifies and analyzes the key institutional challenges and opportunities of DWRM implementation in Mozambique. The paper uses a critical social science research methodology for in-depth analysis of the roots of the constraining factors for the implementation of DWRM. The results obtained suggest that RWAs should be designed considering the specific geographic and infrastructural conditions of their jurisdictional areas and that priorities should be selected in their institutional capacity building strategies that match local realities. Furthermore, the results also indicate that RWAs have enjoyed limited support from basin stakeholders, mainly in basins with less hydraulic infrastructure, in securing water availability for their users and minimizing the effect of climate variability.

  3. Hydro-economic modeling with aquifer-river interactions to guide sustainable basin management

    NASA Astrophysics Data System (ADS)

    Kahil, Mohamed Taher; Ward, Frank A.; Albiac, Jose; Eggleston, Jack; Sanz, David

    2016-08-01

    Policymakers in arid and semiarid basins face hard choices on water policies needed for adaptation to climate change. Hydro-economic modeling is a state-of-the art approach that can be used to guide the design and implementation of these policies in basins. A major gap in developments of hydro-economic modeling to date has been the weak integration of physically-based representations of water sources and uses such as the interaction between ground and surface water resources, to inform complex basin scale policy choices. This paper presents an integrated hydro-economic modeling framework to address this gap with application to an important and complex river basin in Spain, the Jucar basin, for the assessment of a range of climate change scenarios and policy choices. Results indicate that in absence of adequate policies protecting water resources and natural ecosystems, water users will strategically deplete reservoirs, aquifers and river flows for short-term adaptation to climate change, disregarding the impacts on the environment and future human activities. These impacts can be addressed by implementing sustainable management policies. However, these policies could have disproportionate costs for some stakeholders groups, and their opposition may undermine attempts at sustainable policy. These tradeoffs among water policy choices are important guides to the design of policies aimed at basin-wide adaptation to climate change.

  4. Informed Decision Making Process for Managing Environmental Flows in Small River Basins

    NASA Astrophysics Data System (ADS)

    Padikkal, S.; Rema, K. P.

    2013-03-01

    Numerous examples exist worldwide of partial or complete alteration to the natural flow regime of river systems as a consequence of large scale water abstraction from upstream reaches. The effects may not be conspicuous in the case of very large rivers, but the ecosystems of smaller rivers or streams may be completely destroyed over a period of time. While restoration of the natural flow regime may not be possible, at present there is increased effort to implement restoration by regulating environmental flow. This study investigates the development of an environmental flow management model at an icon site in the small river basin of Bharathapuzha, west India. To determine optimal environmental flow regimes, a historic flow model based on data assimilated since 1978 indicated a satisfactory minimum flow depth for river ecosystem sustenance is 0.907 m (28.8 m3/s), a value also obtained from the hydraulic model; however, as three of the reservoirs were already operational at this time a flow depth of 0.922 m is considered a more viable estimate. Analysis of daily stream flow in 1997-2006, indicated adequate flow regimes during the monsoons in June-November, but that sections of the river dried out in December-May with alarming water quality conditions near the river mouth. Furthermore, the preferred minimum `dream' flow regime expressed by stakeholders of the region is a water depth of 1.548 m, which exceeds 50 % of the flood discharge in July. Water could potentially be conserved for environmental flow purposes by (1) the de-siltation of existing reservoirs or (2) reducing water spillage in the transfer between river basins. Ultimately environmental flow management of the region requires the establishment of a co-ordinated management body and the regular assimilation of water flow information from which science based decisions are made, to ensure both economic and environmental concerns are adequately addressed.

  5. How Widely Applicable is River Basin Management? An Analysis of Wastewater Management in an Arid Transboundary Case

    NASA Astrophysics Data System (ADS)

    Dombrowsky, Ines; Almog, Ram; Becker, Nir; Feitelson, Eran; Klawitter, Simone; Lindemann, Stefan; Mutlak, Natalie

    2010-05-01

    The basin scale has been promoted universally as the optimal management unit that allows for the internalization of all external effects caused by multiple water uses. However, the basin scale has been put forward largely on the basis of experience in temperate zones. Hence whether the basin scale is the best scale for management in other settings remains questionable. To address these questions this paper analyzes the economic viability and the political feasibility of alternative management options in the Kidron/Wadi Nar region. The Kidron/Wadi Nar is a small basin in which wastewater from eastern Jerusalem flows through the desert to the Dead Sea. Various options for managing these wastewater flows were analyzed ex ante on the basis of both a cost benefit and a multi-criteria analysis. The paper finds that due to economies of scale, a pure basin approach is not desirable from a physical and economic perspective. Furthermore, in terms of political feasibility, it seems that the option which prompts the fewest objections from influential stakeholder groups in the two entities under the current asymmetrical political setting is not a basin solution either, but a two plant solution based on an outsourcing arrangement. These findings imply that the river basin management approach can not be considered the best management approach for the arid transboundary case at hand, and hence is not unequivocally universally applicable.

  6. Kankakee River Basin: Evaluation of Sediment Management Strategies

    DTIC Science & Technology

    2013-09-01

    estimated bank erosion in the Yellow River reach Y1, a tributary source for Singleton Ditch for Kankakee River reach MK2, and incoming sediment loads for...Singleton Ditch TR 26,452 8,552 778 778 1,167 1,167 1 WS=watershed contribution, US=upstream load, BE=bank erosion , TR=tributary load Table 4.4...1.0 Yellow R. bank erosion 1.0 Singleton Ditch 1.0 The reach-average hydraulic values used to

  7. Sustainable or Adaptive Water Resources Management in the Indus River Basin, Pakistan under Uncertainties?

    NASA Astrophysics Data System (ADS)

    Dars, G. H.; Moradkhani, H.

    2012-12-01

    Pakistan has one of the largest contiguous irrigation systems in the world called as Indus River Irrigation System (IRIS). In 1951, soon after its independence, Pakistan was water abundant country but due to poor management practices the country has now become water scarce. This study will provide a detailed analysis of the water management issues and emerging challenges of the Indus River Basin in Pakistan. The research shows the importance of hydrometeorologic forecast under aleatory and epistemic uncertainties and that the Pakistan needs to focus on adaptive management to climate and land use changes and developing reservoirs to enhance water storage capacity keeping in view environmental degradation, and also adopting modern techniques of monitoring the flow of water to have equitable and justifiable shares from individual watercourse to all provinces so as interprovincial and transboundary water conflicts may not happen in the future. Subsequently, a paradigm shift is needed in water resources development and management for sustainable economic growth.

  8. Science applications in the Colorado River basin to improve drought management

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Werner, K.; Hobbins, M. T.; Clark, M. P.; Verdin, J. P.

    2011-12-01

    The recent multi-year drought in the upper Colorado R. basin brought storage levels in the major reservoirs of the basin (Mead and Powell) to alarmingly low levels that raised national media attention. The conditions of the early 2000s combined with increasing water demand have brought greater scrutiny of forecasting and water management practices in the basin, and spurred efforts to improve monitoring and prediction of water and drought. Information sources to support these efforts include gage-based analyses (e.g., for snow and accumulated precipitation), climate predictions, reservoir status reports and modeled surface water datasets - e.g., distributed soil moisture anomalies, snow analyses and river flows, past and future. The NIDIS Upper Colorado R. pilot integrates these analysis products into regular webinars to inform stakeholders, complementing regular CBRFC webinars, communicate watershed-scale drought and water outlook information to water users and allow stakeholder inquiries. Although these efforts are well received in stakeholder communities, major challenges remain. For example, ensemble streamflow predictions are a central component of water outlooks in the upper Colorado River basin, yet are still driven by climatological weather sequences. This talk reviews current basin activities related to drought and describes new efforts to advance drought prediction. These include the evaluation and incorporation of medium-range to seasonal climate predictions into operational flow forecasting, improvements in evaporative demand estimation, expanded collaborations with stakeholders, and the exploration of improved modeling approaches for snow.

  9. Linking local vulnerability to climatic hazard damage assessment for integrated river basin management

    NASA Astrophysics Data System (ADS)

    Hung, Hung-Chih; Liu, Yi-Chung; Chien, Sung-Ying

    2015-04-01

    1. Background Major portions of areas in Asia are expected to increase exposure and vulnerability to climate change and weather extremes due to rapid urbanization and overdevelopment in hazard-prone areas. To prepare and confront the potential impacts of climate change and related hazard risk, many countries have implemented programs of integrated river basin management. This has led to an impending challenge for the police-makers in many developing countries to build effective mechanism to assess how the vulnerability distributes over river basins, and to understand how the local vulnerability links to climatic (climate-related) hazard damages and risks. However, the related studies have received relatively little attention. This study aims to examine whether geographic localities characterized by high vulnerability experience significantly more damages owing to onset weather extreme events at the river basin level, and to explain what vulnerability factors influence these damages or losses. 2. Methods and data An indicator-based assessment framework is constructed with the goal of identifying composite indicators (including exposure, biophysical, socioeconomic, land-use and adaptive capacity factors) that could serve as proxies for attributes of local vulnerability. This framework is applied by combining geographical information system (GIS) techniques with multicriteria decision analysis (MCDA) to evaluate and map integrated vulnerability to climatic hazards across river basins. Furthermore, to explain the relationship between vulnerability factors and disaster damages, we develop a disaster damage model (DDM) based on existing disaster impact theory. We then synthesize a Zero-Inflated Poisson regression model with a Tobit regression analysis to identify and examine how the disaster impacts and vulnerability factors connect to typhoon disaster damages and losses. To illustrate the proposed methodology, the study collects data on the vulnerability attributes of

  10. Ecosystem based river basin management planning in critical water catchment in Mongolia

    NASA Astrophysics Data System (ADS)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  11. Contributions of watershed management research to ecosystem-based management in the Colorado River Basin

    Treesearch

    Malchus B. Baker; Peter F. Ffolliott

    2000-01-01

    The Rocky Mountains and Southwestern United States, essentially the Colorado River Basin, have been the focus of a wide range of research efforts to learn more about the effects of natural and human induced disturbances on the functioning, processes, and components of the regions’s ecosystems. Watershed research, spearheaded by the USDA Forest Service and its...

  12. Rights and conflicts in the management of fisheries in the Lower Songkhram River Basin, Northeast Thailand.

    PubMed

    Khumsri, Malasri; Ruddle, Kenneth; Shivakoti, Ganesh P

    2009-04-01

    A complex, pre-existing local property rights system, characterized by overlap and conflict, comprises the local basis for managing inland fisheries in communities of the Lower Songkhram River Basin (LSRB) of Northeastern Thailand. The components, conflicts and changes of the system are analyzed for fourteen communities, focusing on the auction system for barrages, an illegal and destructive, yet tolerated, fishery. These rights, adapted to gear type, seasonality, and habitat of the LSRB fisheries, are a critical social resource and proven management system that should be legitimized. Recommendations are made for both improving general inland fisheries policy and reforming the barrage fishery.

  13. Rights and Conflicts in the Management of Fisheries in the Lower Songkhram River Basin, Northeast Thailand

    NASA Astrophysics Data System (ADS)

    Khumsri, Malasri; Ruddle, Kenneth; Shivakoti, Ganesh P.

    2009-04-01

    A complex, pre-existing local property rights system, characterized by overlap and conflict, comprises the local basis for managing inland fisheries in communities of the Lower Songkhram River Basin (LSRB) of Northeastern Thailand. The components, conflicts and changes of the system are analyzed for fourteen communities, focusing on the auction system for barrages, an illegal and destructive, yet tolerated, fishery. These rights, adapted to gear type, seasonality, and habitat of the LSRB fisheries, are a critical social resource and proven management system that should be legitimized. Recommendations are made for both improving general inland fisheries policy and reforming the barrage fishery.

  14. Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s

    NASA Astrophysics Data System (ADS)

    Sauquet, Eric

    2015-04-01

    The Durance River is one of the major rivers located in the Southern part of France. Water resources are under high pressure due to significant water abstractions for human uses within and out of the natural boundaries of the river basin through an extended open channel network. Water demands are related to irrigation, hydropower, drinking water, industries and more recently water management has included water needs for recreational uses as well as for preserving ecological services. Water is crucial for all these activities and for the socio-economic development of South Eastern France. Both socio-economic development and population evolution will probably modify needs for water supply, irrigation, energy consumption, tourism, industry, etc. In addition the Durance river basin will have to face climate change and its impact on water availability that may question the sustainability of the current rules for water allocation. The research project R²D²-2050 "Risk, water Resources and sustainable Development within the Durance river basin in 2050" aims at assessing future water availability and risks of water shortage in the 2050s by taking into account changes in both climate and water management. R²D²-2050 is partially funded by the French Ministry in charge of Ecology and the Rhône-Méditerranée Water Agency. This multidisciplinary project (2010-2014) involves Irstea, Electricité de France (EDF), the University Pierre et Marie Curie (Paris), LTHE (CNRS), the Société du Canal de Provence (SCP) and the research and consultancy company ACTeon. A set of models have been developed to simulate climate at regional scale (given by 330 projections obtained by applying three downscaling methods), water resources (provided by seven rainfall-runoff models forced by a subset of 330 climate projections), water demand for agriculture and drinking water, for different sub basins of the Durance River basin upstream of Mallemort under present day and under future conditions

  15. DSS of Seversky Donets River Water Management developed in MikeBasin Package

    NASA Astrophysics Data System (ADS)

    Zeiliger, A.; Buber, A.; Ermolaeva, O.; Troshina, M.

    2009-04-01

    Nowadays a conventional decision making is based on the use of decision support system (DSS) on the base of hydroinformatics tool packages. This contribution is for the intention to describe a model of decision support system to be used for testing in real decision making for the water management of Seversky Donets transboundary River between Russia and Ukraine. This river is a tributary of the Don River is 650 miles (1,050 km) long and drains a basin of 100,000 square km). Rising in the Central Russian Upland, it flows south past Belgorod, Russia; enters Ukraine and passes to the east of Kharkiv; swings southeastward and eventually reenters Russia; and then turns south to join the Don below Konstantinovsk. The DSS is developed in the frame of the Tempus 23260 DNEPR academic project collaboration between Moscow State University of Environmental Engineering (Russia), The All Russian Research Institute Hydraulics and Land Reclamation named after A. N. Kostiakov and Seversky Donets Water Management Office (Ukraine). This DSS in intended to be used as an educational tool for water professional training in water using management. It is based on advanced software technology integrated in MikeBasin (DHI) package. This DSS allows for simulating integrated water management problems like water demand approval for water scarce years, flooding protection, water quality by dilution of used water removed into river by water stored in water reservoir etc. To meet some requirement of the target application the real monitored for several years data was used for model verification. Keywords: DSS, integrated water management, education

  16. The institutionalization of River Basin Management as politics of scale - Insights from Mongolia

    NASA Astrophysics Data System (ADS)

    Houdret, Annabelle; Dombrowsky, Ines; Horlemann, Lena

    2014-11-01

    River Basin Management (RBM) as an approach to sustainable water use has become the dominant model of water governance. Its introduction, however, entails a fundamental realignment and rescaling of water-sector institutions along hydrological boundaries. Creating such a new governance scale is inherently political, and is being described as politics of scale. This paper analyzes how the politics of scale play out in the institutionalization of RBM in Mongolia. It furthermore scrutinizes the role of the broader political decentralization process in the introduction of RBM, an issue that has so far received little attention. Finally, it assesses whether the river basin is an adequate water management scale in Mongolia. This article finds that institutionalizing RBM in Mongolia is indeed a highly political negotiation process that does not only concern the choice of the governance scale, but also its detailed institutional design. It furthermore reveals that Mongolia's incomplete political decentralization process has for a long time negatively impacted the decentralization of water-related tasks and the implementation of RBM. However, the 2011 Budget Law and the 2012 Water Law provide for a fiscal strengthening of local governments and clearer sharing of responsibilities among the various different institutions involved in water management. Nevertheless, only if the 2012 Water Law is complemented by adequate by-laws - and if the newly created river basin institutions are adequately equipped - can RBM be effectively put into practice. This article confirms the usefulness of a politics-of-scale approach to understand scalar practices and changes in water management. However, the article also argues for a broadening of the analytical perspective to take the interdependencies between changes in water governance and other political processes, such as decentralization, into account.

  17. Connecting science to managers in river restoration in the Upper Klamath Basin, Oregon and California

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.

    2009-12-01

    The semi-arid Upper Klamath Basin is a complex landscape of agricultural land, pasture and forests, drained by rivers, lakes, and wetlands. Unique characteristics of the river systems include high natural nutrient loadings, large springs, low gradients, high sinuosity, fine sediment, herbaceous-dominated riparian vegetation, and habitat for salmonid and sucker fish. Following listing of several fish species under the Endangered Species Act in the 1980s to 90s, the Upper Klamath Basin has become a focal point of river management and restoration. Drought conditions in 2001 resulted in a cutoff of irrigation water and a political crisis. The crisis engendered a distrust of scientists by many residents of the basin. Political conflict over allocation of water resources and ecosystem management has continued since 2001. In this environment, multiple groups, including federal and state agencies and NGOs, have developed restoration assessments and agendas, and they have also implemented numerous restoration projects. These restoration guidance documents are typically based on input from local residents and landowners as well as the published scientific literature. The documents from different groups are generally consistent but priorities vary somewhat. Gaps in scientific understanding of the river systems are recognized as a handicap in restoration planning. The science knowledge base has been growing since 2001 but generally lags behind on-the-ground restoration activities. Research can help in addressing two critical questions important in restoration implementation. What restoration strategies are best suited to the processes and dynamics of this system? Are the specific restoration designs being employed effective at meeting restoration goals? In addition to following scientific standards of practice, scientific research needs to be framed with an awareness of how formal and informal knowledge is used in restoration implementation.

  18. Remote detection of water management impacts on evapotranspiration in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Castle, Stephanie L.; Reager, John T.; Thomas, Brian F.; Purdy, Adam J.; Lo, Min-Hui; Famiglietti, James S.; Tang, Qiuhong

    2016-05-01

    The complexity involved in accurate estimation and numerical simulation of regional evapotranspiration (ET) can lead to inconsistency among techniques, usually attributed to methodological deficiencies. Here we hypothesize instead that discrepancies in ET estimates should be expected in some cases and can be applied to measure the effect of anthropogenic influences in developed river basins. We compare an ensemble of corrected ET estimates from land surface models with Gravity Recovery and Climate Experiment and Moderate Resolution Imaging Spectroradiometer satellite-based estimates in the intensively managed Colorado River Basin to contrast the roles of natural variability and human impacts. Satellite-based approaches yield larger annual amplitudes in ET estimates than land surface model simulations, primarily during the growing season. We find a total satellite-based ET flux of 142 ± 7 MAF yr-1 (175 ± 8.63 km3 yr-1), with 38% due to anthropogenic influences during summer months. We evaluate our estimates by comparison with reservoir storage and usage allotment components of the basin water management budget.

  19. Importance and necessity of integrated river basin management

    NASA Astrophysics Data System (ADS)

    Kojiri, Toshiharu

    It is obvious that water resources management has been an important issue in this century under the specified situation of climate change, regional development and population increase. Moreover, the modern life has become vulnerable to water environment effected with climate change. New water-related technologies may create the additional water consumption or drastic water saving. Freshwater withdrawals by human activities have increased dramatically over the years. Already, at the beginning of the 21st century, one-sixth of the world's population was without access to improved water supply while two-fifths lacked access to improved sanitation. Problems of water resources have also become much discussed issues in international conferences and multi-national organizations.

  20. Selecting quantitative water management measures at the river basin scale in a global change context

    NASA Astrophysics Data System (ADS)

    Girard, Corentin; Rinaudo, Jean-Daniel; Caballero, Yvan; Pulido-Velazquez, Manuel

    2013-04-01

    One of the main challenges in the implementation of the Water Framework Directive (WFD) in the European Union is the definition of programme of measures to reach the good status of the European water bodies. In areas where water scarcity is an issue, one of these challenges is the selection of water conservation and capacity expansion measures to ensure minimum environmental in-stream flow requirements. At the same time, the WFD calls for the use of economic analysis to identify the most cost-effective combination of measures at the river basin scale to achieve its objective. With this respect, hydro-economic river basin models, by integrating economics, environmental and hydrological aspects at the river basin scale in a consistent framework, represent a promising approach. This article presents a least-cost river basin optimization model (LCRBOM) that selects the combination of quantitative water management measures to meet environmental flows for future scenarios of agricultural and urban demand taken into account the impact of the climate change. The model has been implemented in a case study on a Mediterranean basin in the south of France, the Orb River basin. The water basin has been identified as in need for quantitative water management measures in order to reach the good status of its water bodies. The LCRBOM has been developed using GAMS, applying Mixed Integer Linear Programming. It is run to select the set of measures that minimizes the total annualized cost of the applied measures, while meeting the demands and minimum in-stream flow constraints. For the economic analysis, the programme of measures is composed of water conservation measures on agricultural and urban water demands. It compares them with measures mobilizing new water resources coming from groundwater, inter-basin transfers and improvement in reservoir operating rules. The total annual cost of each measure is calculated for each demand unit considering operation, maintenance and

  1. Expert knowledge based modeling for integrated water resources planning and management in the Zayandehrud River Basin

    NASA Astrophysics Data System (ADS)

    Safavi, Hamid R.; Golmohammadi, Mohammad H.; Sandoval-Solis, Samuel

    2015-09-01

    This study highlights the need for water resource planning and management using expert knowledge to model known extreme hydrologic variability in complex hydrologic systems with lack of data. The Zayandehrud River Basin in Iran is used as an example of complex water system; this study provides a comprehensive description of the basin, including its water demands (municipal, agricultural, industrial and environmental) and water supply resources (rivers, inter-basin water transfer and aquifers). The objective of this study is to evaluate near future conditions of the basin (from Oct./2015 to Sep./2019) considering the current water management policies and climate change conditions, referred as Baseline scenario. A planning model for the Zayandehrud basin was built to evaluate the Baseline scenario, the period of hydrologic analysis is 21 years, (from Oct./1991 to Sep./2011); it was calibrated for 17 years and validated for 4 years using a Historic scenario that considered historic water supply, infrastructure and hydrologic conditions. Because the Zayandehrud model is a planning model and not a hydrologic model (rainfall-runoff model), an Adaptive Network-based Fuzzy Inference System (ANFIS) is used to generate synthetic natural flows considering temperature and precipitation as inputs. This model is an expert knowledge and data based model which has the benefits of Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS). Outputs of the ANFIS model were compared to the Historic scenario results and are used in the Baseline scenario. Three metrics are used to evaluate the goodness of fit of the ANFIS model. Water supply results of the Baseline scenario are analyzed using five performance criteria: time-based and volumetric reliability, resilience, vulnerability and maximum deficit. One index, the Water Resources Sustainability Index is used to summarize the performance criteria results and to facilitate comparison among trade-offs. Results for the Baseline

  2. Reservoir Sediment Management Workshop for Tuttle Creek Lake and Perry Lake Reservoirs in the Kansas River Basin

    DTIC Science & Technology

    2015-03-01

    Sedimentation problems are severe in reservoirs on the Kansas River, where expanding water demand due to population increases must be satisfied by...ERDC/CHL CHETN-XIV-43 March 2015 Reservoir Sediment Management Workshop for Tuttle Creek Lake and Perry Lake Reservoirs in the Kansas River...USACE) reservoirs in the Kansas River basin in the state of Kansas within the U.S. Army Engineer District, Kansas City (NWK). The focus of the workshop

  3. [Optimizing management on degraded grassland in Xilin River Basin based on ecological risk assessment].

    PubMed

    Gu, Xiao-he; He, Chun-yang; Pan, Yao-zhong; Li, Xiao-bing; Zhu, Wen-quan; Zhu, Xiu-fang

    2007-05-01

    By the methods of remote sensing (RS) and geographic information system (GIS), and based on the estimations of degradation degree, risk degree and easy-restoration degree of degraded grasslands, an ecological management index (EMI) model of grassland was established to approach the practical ways of optimizing management of degraded grassland. A case study in the Xilin River Basin of Inner Mongolia showed that this model could quantitatively analyze the degradation degree, risk degree and easy-restoration degree of the grasslands under different optimizing management levels, which was of significance for applying rational measures with pertinence, and beneficial to the optimal allocation of resources during the management of degraded grassland. The EMI model could integrate most concerned information, which made it applicable widely.

  4. Capacity for watershed cumulative effects assessment and management: lessons from the Lower Fraser River Basin, Canada.

    PubMed

    Kristensen, Stephanie; Noble, Bram F; Patrick, Robert J

    2013-08-01

    This study examines the capacity to support the cumulative effects assessment and management for watersheds. The research is set in the Lower Fraser River Basin, a densely populated sub-watershed in British Columbia's lower mainland. Eight requirements or requisites for the watershed cumulative effects assessment and management are applied to evaluate current capacity for implementation in the Lower Fraser, and to identify the areas in need of capacity development. Results show that advancing watershed cumulative effects assessment and management requires not only good science but also leadership in the coordination of monitoring programs, and in ensuring the appropriate incentives and penalties for engagement and nonengagement. The lack of leadership in this regard is the result of existing governance structures arranged around the political boundaries, which have produced over time multiple agencies and jurisdictional fragmentation. Notwithstanding this, we argue that the watershed is the most appropriate scale for assessing and managing the cumulative effects to complex ecosystems.

  5. Technical knowledge and water resources management: A comparative study of river basin councils, Brazil

    NASA Astrophysics Data System (ADS)

    Lemos, Maria Carmen; Bell, Andrew R.; Engle, Nathan L.; Formiga-Johnsson, Rosa Maria; Nelson, Donald R.

    2010-06-01

    Better understanding of the factors that shape the use of technical knowledge in water management is important both to increase its relevance to decision-making and sustainable governance and to inform knowledge producers where needs lie. This is particularly critical in the context of the many stressors threatening water resources around the world. Recent scholarship focusing on innovative water management institutions emphasizes knowledge use as critical to water systems' adaptive capacity to respond to these stressors. For the past 15 years, water resources management in Brazil has undergone an encompassing reform that has created a set of participatory councils at the river basin level. Using data from a survey of 626 members of these councils across 18 river basins, this article examines the use of technical knowledge (e.g., climate and weather forecasts, reservoir streamflow models, environmental impact assessments, among others) within these councils. It finds that use of knowledge positively aligns with access, a more diverse and broader discussion agenda, and a higher sense of effectiveness. Yet, use of technical knowledge is also associated with skewed levels of power within the councils.

  6. Exploring the effectiveness of sustainable water management structures in the Upper Pungwe river basin

    NASA Astrophysics Data System (ADS)

    Nyikadzino, B.; Chibisa, P.; Makurira, H.

    The study endeavoured to assess the effectiveness of stakeholder structures and their participation in sustainable water resources management in the Upper Pungwe river basin shared by Zimbabwe and Mozambique. The study sought to assess the level and effectiveness of stakeholder, gender and the vulnerable groups representation in sustainable water resources management as well as the whole stakeholder participation process. The study employed both qualitative and quantitative methods for data collection and analysis. Sampling data was obtained from 15 stakeholder representatives (councillors) constituting Pungwe Subcatchment Council, 30 water users ranging from small scale to large scale users and professionals in water resources management. Two different questionnaires and three structured interviews were administered during the study. Water permit database, financial reports and other source documents were also analysed. The study established that the sustainability and effectiveness of stakeholder structures and their participation in water resources management is being compromised by lack of stakeholder awareness. Water utilisation is very high in the subcatchment (99%) while women participation is still low (20%). The study therefore recommends the use of quotas for the participation of women in stakeholder structures. Stakeholder structures are encouraged to intensify stakeholder awareness on issues of river protection, efficient water use and pollution control. Further research is recommended to be carried out on the effectiveness of stakeholder structures in combating water pollution and enhancing river protection.

  7. River basin management planning in the context of climate change adaptation and mitigation

    NASA Astrophysics Data System (ADS)

    Kaspersen, B. S.; Kjær, T.

    2012-12-01

    The EU Water Framework Directive (WFD) raises a number of challenges for river basin management planning in the EU Member States, one of which concerns the incorporation of climate change considerations in the development of action programmes. This includes adaptation to climate-related risks as well as mitigation of climate change through possible adverse effects of WFD implementation measures on greenhouse gas (GHG) emissions. Complying with proposed WFD water quality standards for 'good ecological status' in Denmark requires programmes of measures (PoMs) to reduce nutrient losses to surface waters from point and diffuse sources. The combined future impacts of climate change are projected to lead to a shifting baseline, resulting in a situation where loads of nutrients have to be reduced more than estimated under present climate conditions. In this study, a GIS-based decision support system is used to support the integration of climate change challenges into the development of PoMs in the Isefjord-Roskilde Fjord River Basin in Denmark. Alternative PoMs are evaluated in terms of effectiveness and cost-effectiveness under varying nutrient reduction targets related to climate change impacts and the potential for synergies between reduction of diffuse nutrient losses and mitigation of GHG emissions is assessed at catchment scale. There appears to be a substantial potential for reductions of GHG emissions through the implementation of WFD PoMs; including measures related to land use change, energy crops and manure based biogas systems. A targeted and differentiated approach to the development of PoMs is believed to be necessary in order to exploit this kind of win-win solutions in river basin management planning and to ensure appropriate and cost-effective climate change adaptation strategies.

  8. Real-time management of water quality in the San Joaquin River Basin, California.

    SciTech Connect

    Quinn, N.W.T.; Karkoski, J.

    1997-09-01

    In the San Joaquin River Basin, California, a realtime water quality forecasting model was developed to help improve the management of saline agricultural and wetland drainage to meet water quality objectives. Predicted salt loads from the water quality forecasting model, SJRIODAY, were consistently within +- 11 percent of actual, within +- 14 percent for seven-day forecasts, and with in +- 26 percent for 14-day forecasts for the 16-month trial period. When the 48 days dominated by rainfall/runoff events were eliminated from the data set, the error bar decreased to +- 9 percent for the model and +- 11 percent and +- 17 percent for the seven-day and 14-day forecasts, respectively. Constraints on the use of the model for salinity management on the San Joaquin River include the number of entities that control or influence water quality and the lack of a centralized authority to direct their activities. The lack of real-time monitoring sensors for other primary constituents of concern, such as selenium and boron, limits the application of the model to salinity at the present time. A case study describes wetland drainage releases scheduled to coincide with high river flows and significant river assimilative capacity for salt loads.

  9. Real-time management of water quality in the San Joaquin River Basin, California.

    SciTech Connect

    Quinn, N.W.T.; Karkoski, J.

    1997-09-01

    In the San Joaquin River Basin, California, a realtime water quality forecasting model was developed to help improve the management of saline agricultural and wetland drainage to meet water quality objectives. Predicted salt loads from the water quality forecasting model, SJRIODAY, were consistently within +- 11 percent of actual, within +- 14 percent for seven-day forecasts, and with in +- 26 percent for 14-day forecasts for the 16-month trial period. When the 48 days dominated by rainfall/runoff events were eliminated from the data set, the error bar decreased to +- 9 percent for the model and +- 11 percent and +- 17 percent for the seven-day and 14-day forecasts, respectively. Constraints on the use of the model for salinity management on the San Joaquin River include the number of entities that control or influence water quality and the lack of a centralized authority to direct their activities. The lack of real-time monitoring sensors for other primary constituents of concern, such as selenium and boron, limits the application of the model to salinity at the present time. A case study describes wetland drainage releases scheduled to coincide with high river flows and significant river assimilative capacity for salt loads.

  10. Assessing the potential of economic instruments for managing drought risk at river basin scale

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, M.; Lopez-Nicolas, A.; Macian-Sorribes, H.

    2015-12-01

    Economic instruments work as incentives to adapt individual decisions to collectively agreed goals. Different types of economic instruments have been applied to manage water resources, such as water-related taxes and charges (water pricing, environmental taxes, etc.), subsidies, markets or voluntary agreements. Hydroeconomic models (HEM) provide useful insight on optimal strategies for coping with droughts by simultaneously analysing engineering, hydrology and economics of water resources management. We use HEMs for evaluating the potential of economic instruments on managing drought risk at river basin scale, considering three criteria for assessing drought risk: reliability, resilience and vulnerability. HEMs allow to calculate water scarcity costs as the economic losses due to water deliveries below the target demands, which can be used as a vulnerability descriptor of drought risk. Two generic hydroeconomic DSS tools, SIMGAMS and OPTIGAMS ( both programmed in GAMS) have been developed to evaluate water scarcity cost at river basin scale based on simulation and optimization approaches. The simulation tool SIMGAMS allocates water according to the system priorities and operating rules, and evaluate the scarcity costs using economic demand functions. The optimization tool allocates water resources for maximizing net benefits (minimizing total water scarcity plus operating cost of water use). SIMGAS allows to simulate incentive water pricing policies based on water availability in the system (scarcity pricing), while OPTIGAMS is used to simulate the effect of ideal water markets by economic optimization. These tools have been applied to the Jucar river system (Spain), highly regulated and with high share of water use for crop irrigation (greater than 80%), where water scarcity, irregular hydrology and groundwater overdraft cause droughts to have significant economic, social and environmental consequences. An econometric model was first used to explain the variation

  11. Integrated water resources management : A case study in the Hehei river basin, China

    NASA Astrophysics Data System (ADS)

    Jia, Siqi; Deng, Xiangzheng

    2017-04-01

    The lack of water resources experienced in different parts of the world has now been recognized and analyzed by different international organizations such as WHO, the World Bank, etc. Add to this the growing urbanization and the fast socio-economic development, the water supply of many urban areas is already or will be severely threatened. Recently published documents from the UN Environmental Program confirms that severe water shortage affects 400 million people today and will affect 4 billion people by 2050. Water nowadays is getting scarce, and access to clean drinking water and water for agricultural usage is unequally distributed. The biggest opportunity and challenge for future water management is how to achieve water sustainability to reduce water consumption. Integrated Water Resources Management (IWRM) is a process which promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. We take the Heibe river basin where agriculture water there accounted for 90% of total water consumption as an example to study the impacts of IWRM on regional water resources. We calculated the elasticity of substitution values between labor and land, water by each irrigation areas to find the variable elastic value among irrigation areas, and the water-use efficiency based on NPP estimation with the C-fix model and WUE estimation with NPP and ET. The empirical analysis indicated that the moderate scale of farmland is 0.27-0.53hm2 under the condition of technical efficiency of irrigation water and production. Agricultural water use accounted for 94% of the social and economic water consumption in 2012, but water efficiency and water productivity were both at a low stage. In conclusion, land use forms at present in Heihe river basin have a detrimental impact on the availability of ecological water use. promoting water

  12. 75 FR 39612 - IJC Will Review Bi-National Management of the Lake of the Woods and Rainy River Basin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE IJC Will Review Bi-National Management of the Lake of the Woods and Rainy River Basin By letters dated June 17... examine and make recommendations regarding the bi-national management of the Lake of the Woods and...

  13. Managing water scarcity in the Magdalena river basin in Colombia.An economic assessment

    NASA Astrophysics Data System (ADS)

    Bolivar Lobato, Martha Isabel; Schneider, Uwe A.

    2014-05-01

    Key words: global change, water scarcity, river basin In Colombia, serious water conflicts began to emerge with the economic development in the 70ies and 80ies and the term "water scarcity" became a common word in this tropical country. Despite a mean annual runoff of 1840 mm, which classifies Colombia as a water rich country, shortfalls in fresh water availability have become a frequent event in the last two decades. One reason for the manifestation of water scarcity is the long-held perception of invulnerable water abundance, which has delayed technical and political developments to use water more efficiently. The Magdalena watershed is the most important and complex area in Colombia, because of its huge anthropogenic present, economic development and increasing environmental problems. This river basin has a total area of 273,459 km2, equivalent to 24% of the territory of the country. It is home to 79% of the country's population (32.5 million of inhabitants) and approximately 85% of Gross Domestic Product of Colombia is generated in this area. Since the economic development of the 1970s and 1980s, large changes in land cover and related environmental conditions have occurred in the Magdalena basin. These changes include deforestation, agricultural land expansion, soil degradation, lower groundwater and increased water pollution. To assess the consequences of geophysical alteration and economic development, we perform an integrated analysis of water demand, water supply, land use changes and possible water management strategies. The main objective of this study is to determine how global and local changes affect the balance between water supply and demand in the Magdalena river basin in Colombia, the consequences of different water pricing schemes, and the social benefits of public or private investments into various water management infrastructures. To achieve this goal, a constrained welfare maximization model has been developed. The General Algebraic Modeling

  14. Integrating river basin management and the coastal zone: the (blue) Danube and the (black) sea.

    PubMed

    Maksimović, C; Makropoulos, C K

    2002-01-01

    In order to effectively manage the wide variety of physical, chemical biological and ecological processes in a sensitive coastal environment such as the Black Sea, current environmental management objectives are no longer sufficient: a new management approach has to address the intimate functional linkage between the river basin and the costal environment. Current water quality legislation requires compliance to emission levels based on the chemical analysis of water samples taken at discharge points, such as treatment plants discharging into rivers. While such measures provide a relative indication of the water quality at the point of discharge, they fail to describe accurately and sufficiently the quality of the water received from the watershed or basin. As water flows through the catchment, rainfall run-off from urban and agricultural areas carries sediments, pesticides, and other chemicals into river systems, which lead to coastal waters. The impact of the Kosovo crisis on the Danube ecosystems provides a poignant example of the effects of such diffused pollution mechanisms and reveals a number of interesting pollution mechanisms. This paper discusses both the effects of diffused pollution on the Black Sea, drawing from state-of-the-art reports on the Danube, and proposes a framework for a decision support system based on distributed hydrological and pollution transport simulation models and GIS. The use of ecological health indicators and fuzzy inference supporting decisions on regional planning within this framework is also advocated. It is also argued that even the recently produced GEF document on Black Sea protection scenarios should benefit significantly if the concept of pollution reduction from both urban, industrial and rural areas should undergo a systematic conceptual update in the view of the recent recommendations of the UNEP IETC (2000) document.

  15. Scenario analysis for integrated water resources planning and management under uncertainty in the Zayandehrud river basin

    NASA Astrophysics Data System (ADS)

    Safavi, Hamid R.; Golmohammadi, Mohammad H.; Sandoval-Solis, Samuel

    2016-08-01

    The goal of this study is to develop and analyze three scenarios in the Zayandehrud river basin in Iran using a model already built and calibrated by Safavi et al. (2015) that has results for the baseline scenario. Results from the baseline scenario show that water demands will be supplied at the cost of depletion of surface and ground water resources, making this scenario undesirable and unsustainable. Supply Management, Demand Management, and Meta (supply and demand management) scenarios are the selected scenarios in this study. They are to be developed and declared into the Zayandehrud model to assess and evaluate the imminent status of the basin. Certain strategies will be employed for this purpose to improve and rectify the current management policies. The five performance criteria of time-based and volumetric reliability, resilience, vulnerability, and maximum deficit will be employed in the process of scenario analysis and evaluation. The results obtained from the performance criteria will be summed up into a so-called 'Water Resources Sustainability Index' to facilitate comparison among the likely trade-offs. Uncertainties arising from historical data, management policies, rainfall-runoff model, demand priorities, and performance criteria are considered in the proposed conceptual framework and modeled by appropriate approaches. Results show that the Supply Management scenario can be used to improve upon the demand supply but that it has no tangible effects on the improvement of the resources in the study region. In this regard, the Demand Management scenario is found to be more effective than the water supply one although it still remains unacceptable. Results of the Meta scenario indicate that both the supply and demand management scenarios must be applied if the water resources are to be safeguarded against degradation and depletion. In other words, the supply management scenario is necessary but not adequate; rather, it must be coupled to the demand

  16. Upper Illinois River basin

    USGS Publications Warehouse

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  17. Scaling issues in multi-criteria evaluation of combinations of measures for integrated river basin management

    NASA Astrophysics Data System (ADS)

    Dietrich, Jörg

    2016-05-01

    In integrated river basin management, measures for reaching the environmental objectives can be evaluated at different scales, and according to multiple criteria of different nature (e.g. ecological, economic, social). Decision makers, including responsible authorities and stakeholders, follow different interests regarding criteria and scales. With a bottom up approach, the multi criteria assessment could produce a different outcome than with a top down approach. The first assigns more power to the local community, which is a common principle of IWRM. On the other hand, the development of an overall catchment strategy could potentially make use of synergetic effects of the measures, which fulfils the cost efficiency requirement at the basin scale but compromises local interests. Within a joint research project for the 5500 km2 Werra river basin in central Germany, measures have been planned to reach environmental objectives of the European Water Framework directive (WFD) regarding ecological continuity and nutrient loads. The main criteria for the evaluation of the measures were costs of implementation, reduction of nutrients, ecological benefit and social acceptance. The multi-criteria evaluation of the catchment strategies showed compensation between positive and negative performance of criteria within the catchment, which in the end reduced the discriminative power of the different strategies. Furthermore, benefit criteria are partially computed for the whole basin only. Both ecological continuity and nutrient load show upstream-downstream effects in opposite direction. The principles of "polluter pays" and "overall cost efficiency" can be followed for the reduction of nutrient losses when financial compensations between upstream and downstream users are made, similar to concepts of emission trading.

  18. Climate change impact on the management of water resources in the Seine River basin, France

    NASA Astrophysics Data System (ADS)

    Dorchies, David; Thirel, Guillaume; Chauveau, Mathilde; Jay-Allemand, Maxime; Perrin, Charles; Dehay, Florine

    2013-04-01

    It is today commonly accepted that adaptation strategies will be needed to cope with the hydrological consequences of projected climate change. The main objective of the IWRM-Net Climaware project is to design adaptation strategies for various socio-economic sectors and evaluate their relevance at the European scale. Within the project, the Seine case study focuses on dam management. The Seine River basin at Paris (43800km²) shows major socio-economic stakes in France. Due to its important and growing demography, the number of industries depending on water resources or located on the river sides, and the developed agricultural sector, the consequences of droughts and floods may be dramatic. To mitigate the extreme hydrological events, a system of four large multi-purpose reservoirs was built in the upstream part of the basin between 1949 and 1990. The IPCC reports indicate modifications of the climate conditions in northern France in the future. An increase of mean temperature is very likely, and the rainfall patterns could be modified: the uncertainty on future trends is still high, but summer periods could experience lower quantities of rainfall. Anticipating these changes are crucial: will the present reservoirs system be adapted to these conditions? Here we propose to evaluate the capacity of the Seine River reservoirs to withstand future projected climate conditions using the current management rules. For this study a modeling chain was designed. We used two hydrological models: GR4J, a lumped model used as a benchmark, and TGR, a semi-distributed model. TGR was tuned to explicitly account for reservoir management rules. Seven climatic models forced by the moderate A1B IPCC scenario and downscaled using a weather-type method (DSCLIM, Pagé et al., 2009), were used. A quantile-quantile type method was applied to correct bias in climate simulations. A model to mimic the way reservoirs are managed was also developed. The evolution of low flows, high flows and

  19. Optimally managing water resources in large river basins for an uncertain future

    USGS Publications Warehouse

    Roehl, Edwin A.; Conrads, Paul A.

    2014-01-01

    One of the challenges of basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the flow-alteration features after the deepening also is demonstrated.

  20. SWOT Data Assimilation for Operational Reservoir Management on the Upper Niger River Basin

    NASA Astrophysics Data System (ADS)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2014-12-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of model states derived using corrupted meteorological forcings. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam at the entrance of the environmentally sensitive Niger Inner Delta. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence", which describes the duration of the assimilation effect, was clearly improved by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the assimilation of SWOT data resulted in substantial improvements in the performances of the Selingue Dam management with a greater ability to meet environmental requirements and a lower volume of water released from the dam.

  1. SWOT data assimilation for operational reservoir management on the upper Niger River Basin

    NASA Astrophysics Data System (ADS)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2015-01-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of corrupted model states. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence," which describes the duration of the assimilation effect, was clearly improved (greater than 21 days) by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the data assimilation resulted in substantial improvements in the performances of the Selingue dam management with a greater ability to meet environmental requirements (the number of days the target is missed falls to zero) and a minimum volume of water released from the dam.

  2. GIS environmental information analysis of the Darro River basin as the key for the management and hydrological forest restoration.

    PubMed

    Fernandez, Paz; Delgado, Expectación; Lopez-Alonso, Mónica; Poyatos, José Manuel

    2017-09-23

    This article presents analyses of soil and environmental information for the Darro River basin (Granada-Spain) preliminary to its hydrological and forestry restoration. These analyses were carried out using a geographical information system (GIS) and employing a new procedure that adapts hydrological forest-restoration methods. The complete analysis encompasses morphological conditions, soil and climate characteristics as well as vegetation and land use. The study investigates soil erosion in the basin by using Universal Soil Loss Equation (USLE) and by mapping erosion fragility units. The results are presented in a set of maps and their analysis, providing the starting point for river basin management and the hydrological and forestry-restoration project that was approved at the end of 2015. The presence of soft substrates (e.g. gravel and sand) indicates that the area is susceptible to erosion, particularly the areas that are dominated by human activity and have little soil protection. Finally, land use and vegetation cover were identified as key factors in the soil erosion in the basin. According to the results, river authorities have included several measures in the restoration project aimed at reducing the erosion and helping to recover the environmental value of this river basin and to include it in recreation possibilities for the community of Granada. The presented analytical approach, designed by the authors, would be useful as a tool for environmental restoration in other small Mediterranean river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Legacy phosphorus accumulation and management in the global context: insights from long-term analysis of major river basins

    NASA Astrophysics Data System (ADS)

    Powers, S. M.; Burt, T. P.; Chan, N. I.; Elser, J. J.; Haygarth, P. M.; Howden, N. J. K.; Jarvie, H. P.; Peterson, H. M.; Shen, J.; Worrall, F.; Sharpley, A. N.

    2014-12-01

    Phosphorus (P) is closely linked to major societal concerns including food security and water quality, and human activities strongly control the modern global P cycle. Current knowledge of the P cycle includes many insights about relatively short-term processes, but a long-term and landscape-level view may be needed to understand P status and optimize P management towards P sustainability. We reconstructed long-term (>40 years) P mass balances and rates of P accumulation in three major river basins where excess P pollution is demanding improvements in P management at local, national, and international levels. We focus on: Maumee River Basin, a major source of agricultural P to Lake Erie, the southernmost and shallowest of the Laurentian Great Lakes; Thames River Basin, where fluxes of effluent P from the London, England metropolitan area have declined following improvements in wastewater treatment; Yangtze (Changjiang) River Basin, the largest in China, which is undergoing rapid economic development. The Maumee and Thames are intensively monitored, and show long-term declines in basin P inputs that represent a step towards P sustainability. However, river P outputs have been slower to decline, consistent with the hypothesis that legacy P is mobilizing from soils or from within the river network. Published data on the Yangtze indicate the P flux from land to water has clearly increased with industrialization and population growth. Historical trajectories of P accumulation and depletion in major river basins are providing new understanding about the long-term impacts of P management, including watershed P legacies and response times, that may inform future policy towards local, national, and global P sustainability.

  4. Sustainable water quality management framework and a strategy planning system for a river basin.

    PubMed

    Chen, Ching-Ho; Liu, Wei-Lin; Leu, Horng-Guang

    2006-12-01

    In Taiwan, the authorities have spent years working on remedying polluted rivers. Generally, the remediation planning works are divided into two phases. During the first phase, the allowed pollution discharge quantity and abatement quantity of each drainage zone, including the assimilative capacity, are generated based on the total river basin. In the second phase, the abatement action plans for each pollution source in each drainage zone are respectively devised by the related organizations based on the strategies generated during the first phase. However, the effectiveness of linking the two phases is usually poor. Highly integrated performances are not always achieved because the separate two-phase method does not take system and management thinking into consideration in the planning stage. This study pioneers the use of the Managing for Results (MFR) method in planning strategies and action plans for river water quality management. A sustainable management framework is proposed based on the concept and method of MFR, Management Thinking, and System Analysis. The framework, consisting of planning, implementation, and controlling stages, systematically considers the relationships and interactions among four factors: environment, society, economy, and institution, based on the principles of sustainable development. Based on the framework, the Modified Bounded Implicit Enumeration algorithm, which is used as a solving method, is combined with Visual Basic software and MS Excel to develop a computer system for strategy planning. The Shetzu River, located in northern Taiwan, is applied as a case study. According to the theoretical, practical, and regulatory considerations, the result-oriented objectives are defined to first improve the pollution length of the Shetzu River in specific remediation periods to finally meet regulated water quality standards. The objectives are then addressed as some of the constraints for the strategy planning model. The model objective

  5. A system dynamics approach for integrated management of the Jucar River Basin

    NASA Astrophysics Data System (ADS)

    Rubio-Martin, Adria; Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2017-04-01

    System dynamics (SD) is a modelling approach that allows the analysis of complex systems through the mathematical definition of variables and their relationships. Based on systems thinking, SD is suitable for interdisciplinary studies of the management of complex systems. Over the past 50 years, SD tools have been applied to fields as diverse as economics, ecology, politics, sociology and resource management. Its application to the field of water resources has grown significantly over the last two decades, facilitating the enhancement of models by adding social, economic and ecological components. However, its application to the operation of complex multireservoir systems has been very limited so far. In this contribution, we have developed a SD model for the Jucar River Basin, one of the most vulnerable basins in the western Mediterranean region with regard to droughts. The system has three main reservoirs, which allows for a multiannual management of the storage that compensates the highly variable streamflow from upstream. Our SD model of the Jucar River Basin is able to capture the complexity of the water resource system. The model developed consists of five interlinked subsystems: a) Topology of the system network, including the 3 main reservoirs, water seepage and evaporation, inflows and catchments. b) Monthly operating rules of each reservoir. The rules were derived from the expert knowledge eluded from the operators of the reservoirs. c) Monthly urban, agricultural and environmental water demands. d) State index of the system and drought mitigation measures triggered depending on the state index. e) Mancha Oriental aquifer and stream-aquifer interaction with the Jucar River. The comparison between observed and simulated series showed that the model provides a good representation of the observed reservoir operation and total deficits. The interdisciplinary and open nature of the methodology allows to add new variables and dynamics to the model that are

  6. Sustainable water use and management options in a water-stressed river basin in Kenya

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera; Dadson, Simon; Dyer, Ellen; Barbour, Emily; Charles, Katrina; Hope, Robert

    2017-04-01

    Sustainable water resource is critical for maintaining healthy ecosystems and supporting socio-economic sectors. Hydro-climatic change and variability, population growth as well as new infrastructure developments create water security risks. Therefore, evidence-based management decisions are necessary to improve water security and meet the future water demands of multiple competing sectors. In this work we perform water resource modelling in order to investigate the impact of increasing water demand (expanding agriculture, booming industry, growing population) on the sustainable water use in Turkwel river basin, located in arid north-western Kenya. We test different management options to determine those that meet the water demands of the concerned sectors whilst minimising environmental impact. We perform scenario analysis using Water Evaluation And Planning (WEAP) model to explore different ranges of climate conditions, population growth rates, irrigation scale, reservoir operations, and economic development. The results can be used as a scientific guideline for the policy makers who decide the alternative management options that ensure the sustainable water use in the basin. The work is part of the REACH - improving water security for the poor program (http://reachwater.org.uk/), aiming to support a pathway to sustainable growth and poverty reduction

  7. Gila River Basin Native Fishes Conservation Program

    Treesearch

    Doug Duncan; Robert W. Clarkson

    2013-01-01

    The Gila River Basin Native Fishes Conservation Program was established to conserve native fishes and manage against nonnative fishes in response to several Endangered Species Act biological opinions between the Bureau of Reclamation and the U.S. Fish and Wildlife Service on Central Arizona Project (CAP) water transfers to the Gila River basin. Populations of some Gila...

  8. Delaware River Basin

    USGS Publications Warehouse

    Fischer, Jeffrey M.

    1999-01-01

    Assessing the quality of water in every location of the Nation would not be practical. Therefore, NAWQA investigations are conducted within 59 selected areas called study units (fig. 1). These study units encompass important river and aquifer systems in the United States and represent the diverse geographic, waterresource, land-use, and water-use characteristics of the Nation. The Delaware River Basin is one of 15 study units in which work began in 1996. Water-quality sampling in the study unit will begin in 1999. This fact sheet provides a brief overview of the NAWQA program, describes the Delaware River Basin study unit, identifies the major water-quality issues in the basin, and documents the plan of study that will be followed during the study-unit investigation.

  9. Water accounting for stressed river basins based on water resources management models.

    PubMed

    Pedro-Monzonís, María; Solera, Abel; Ferrer, Javier; Andreu, Joaquín; Estrela, Teodoro

    2016-09-15

    Water planning and the Integrated Water Resources Management (IWRM) represent the best way to help decision makers to identify and choose the most adequate alternatives among other possible ones. The System of Environmental-Economic Accounting for Water (SEEA-W) is displayed as a tool for the building of water balances in a river basin, providing a standard approach to achieve comparability of the results between different territories. The target of this paper is to present the building up of a tool that enables the combined use of hydrological models and water resources models to fill in the SEEA-W tables. At every step of the modelling chain, we are capable to build the asset accounts and the physical water supply and use tables according to SEEA-W approach along with an estimation of the water services costs. The case study is the Jucar River Basin District (RBD), located in the eastern part of the Iberian Peninsula in Spain which as in other many Mediterranean basins is currently water-stressed. To guide this work we have used PATRICAL model in combination with AQUATOOL Decision Support System (DSS). The results indicate that for the average year the total use of water in the district amounts to 15,143hm(3)/year, being the Total Water Renewable Water Resources 3909hm(3)/year. On the other hand, the water service costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-conventional resources, such as desalinated water, reused water and water transferred from other regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran

    USDA-ARS?s Scientific Manuscript database

    The paradigm of integrated water resources management requires coupled analysis of hydrology and water resources in a river basin. Population growth and uncertainties due to climate change make historic data not a reliable source of information for future planning of water resources, hence necessit...

  11. Proceedings of the Colorado River Basin Science and Resource Management Symposium, November 18-20, 2008, Scottsdale, Arizona

    USGS Publications Warehouse

    Melis, Theodore S.; Hamill, John F.; Bennett, Glenn E.; Coggins,, Lewis G.; Grams, Paul E.; Kennedy, Theodore A.; Kubly, Dennis M.; Ralston, Barbara E.

    2010-01-01

    Since the 1980s, four major science and restoration programs have been developed for the Colorado River Basin to address primarily the conservation of native fish and other wildlife pursuant to the Endangered Species Act (ESA): (1) Recovery Implementation Program for Endangered Fish Species in the Upper Colorado River Basin (commonly called the Upper Colorado River Endangered Fish Recovery Program) (1988); (2) San Juan River Basin Recovery Implementation Program (1992); (3) Glen Canyon Dam Adaptive Management Program (1997); and (4) Lower Colorado River Multi-Species Conservation Program (2005). Today, these four programs, the efforts of which span the length of the Colorado River, have an increasingly important influence on water management and resource conservation in the basin. The four efforts involve scores of State, Federal, and local agencies; Native American Tribes; and diverse stakeholder representatives. The programs have many commonalities, including similar and overlapping goals and objectives; comparable resources and threats to those resources; and common monitoring, research, and restoration strategies. In spite of their commonalities, until recently there had been no formal opportunity for information exchange among the programs. To address this situation, the U.S. Geological Survey (USGS) worked in coordination with the four programs and numerous Federal and State agencies to organize the first Colorado River Basin Science and Resource Management Symposium, which took place in Scottsdale, AZ, in November 2008. The symposium's primary purpose was to promote an exchange of information on research and management activities related to the restoration and conservation of the Colorado River and its major tributaries. A total of 283 managers, scientists, and stakeholders attended the 3-day symposium, which included 87 presentations and 27 posters. The symposium featured plenary talks by experts on a variety of topics, including overviews of the four

  12. Use of narrative scenarios for evaluating drought management responses in the Upper Colorado River Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.; Miller, K.; Yates, D. N.; Kaatz, L.

    2013-12-01

    Drought and water scarcity are already recurrent features of the Upper Colorado River Basin. Climate model projections (such as CMIP3 and CMIP5) show large uncertainty in future precipitation and river flow for the region. However, there is consensus amongst the models that air temperatures will rise, implying earlier and shorter melt seasons, increased risk of wildfire, outbreak of mountain pine beetle die back, and changing in-stream habitat over coming decades. Hence, future water supply and demand planning must be sufficiently flexible to accommodate multiple, uncertain, and interacting stressors on the water system. This paper describes a decision-centered approach for evaluating drought management options under changed climate conditions, taking into account other co-stressors. The framework comprises three main elements: 1) a model of the water collection and rights system; 2) adaptation options for maintaining overall water for supply; and 3) plausible narratives of future conditions for stress-testing the system/option set configuration. We demonstrate our approach using the Colorado River to Glenwood Springs as a case study. The Water Evaluation And Planning (WEAP) model was selected as a parsimonious tool for rapid appraisal of the Shoshone Call Relaxation Agreement (SCRA) under various narrative scenarios. The SCRA allows relaxation of a senior water right at Shoshone power plant when upstream reservoir storage is forecast to be below 80% and April-July flow in the Colorado is expected to be less than 85% of average. An extended call relaxation may be triggered when a domestic lawn water ban has been invoked by the Denver Board of Water Commissioners. These measures are designed to enable capture of more spring melt to maintain overall volumetric water entitlements regardless of climate variability and change. The SCRA was assessed in terms of frequency of trigger conditions, volume of water stored, and amount of water that is potentially harvested by

  13. 78 FR 17643 - Greater Mississippi River Basin Water Management Board; Engineer Regulation No. 15-2-13

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... Department of the Army, U.S. Army Corps of Engineers Greater Mississippi River Basin Water Management Board; Engineer Regulation No. 15-2-13 AGENCY: U.S. Army Corps of Engineers, DoD. ACTION: Notice. SUMMARY: The U.S. Army Corps of Engineers (Corps) is revising its Engineer Regulation No. 15-2-13 dated 10 May 1989....

  14. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin.

    PubMed

    Gao, Xin; Niu, Cuijuan; Chen, Yushun; Yin, Xuwang

    2014-04-01

    Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin.

  15. Comparison and evaluation of satellite- and reanalysis-based precipitation products for water resources management in the Brahmaputra River basin

    NASA Astrophysics Data System (ADS)

    Saleh Khan, Abu; Sohel Masud, Md.; Abdulla Hel Kafi, Md.; Sultana, Tashrifa; Lopez Lopez, Patricia

    2017-04-01

    The Brahmaputra River, with a transboundary basin area of approx. 554,500 km2, has its origin on the northern slope of the Himalayas in China, from where it flows through India, Bhutan and finally Bangladesh. Brahmaputra basin's climatology is heavily conditioned by precipitation during the monsoon months, concentrating about the 85 % of the rainfall in this period and originating severe and frequent floods that impact specially the Bangladeshi population in the delta region. Recent campaigns to increase the quality and to share ground-based hydro-meteorological data, in particular precipitation, within the basin have provided limited results. Global rainfall data from satellite and reanalysis may improve the temporal and spatial availability of in-situ observations for advanced water resources management. This study aims to evaluate the applicability of several global precipitation products from satellite and reanalysis in comparison with in-situ data to quantify their added value for hydrological modeling at a basin and sub-basin scale for the Brahmaputra River. Precipitation products from CMORPH, TRMM-3B42, GsMAP, WFDEI, MSWEP and various combinations with ground-based data were evaluated at basin and sub-basin level at a daily and monthly temporal resolution. The Brahmaputra was delineated into 54 sub-basins for a more detailed evaluation of the precipitation products. The data were analysed and inter-compared for the time period from 2002 to 2010. Precipitation performance assessment was conducted including several indicators, such as probability of detection (POD), false alarm ratio (FAR), Pearson's correlation coefficient (r), bias and root mean square error (RMSE). Preliminary results indicate high correlation and low bias and RMSE values between WFDEI, TRMM-3B42 and CMORPH precipitation and in-situ observations at a monthly time scale. Lower correlations and higher bias and RMSE values were found between GsMAP and MSWEP and ground-observed precipitation

  16. Towards an optimal integrated reservoir system management for the Awash River Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Müller, Ruben; Gebretsadik, Henok Y.; Schütze, Niels

    2016-05-01

    Recently, the Kessem-Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i) recent conditions and (ii) future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i) rule curves with a high degree of freedom - this allows for best performance, but may result in rules curves to variable for real word operation and (ii) smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.

  17. Effect of different river water quality model concepts used for river basin management decisions.

    PubMed

    Vandenberghe, V; van Griensven, A; Bauwens, W; Vanrolleghem, P A

    2006-01-01

    n this research the applicability of two different water quality concepts, a QUAL2E-based and a RWQM1-based water quality model is evaluated in terms of management decisions. The Dender river in Belgium serves as a case study for the application of the methodology. By using sensitivity analysis on both model concepts the important processes are revealed. Further, the differences between the predictions for a future scenario are analysed. The scenario chosen here is a reduction in fertiliser use of 90%, which reduces the diffuse pollution. This way, the advantages or disadvantages of using one concept against the other for this scenario are formulated. It was found that the QUAL-based models are more focussing on algae processes while the RWQM1 also takes into account processes in the sediment. Further the QUAL-based models are easier to calibrate, especially when only a small amount of data is available. Both concepts lead to more or less the same conclusions. However for some periods the differences become important and to reduce the uncertainty in those periods, more efforts should be spent in calibration and in better detection of parameters concerning sediment processes and diffusion.

  18. Geomorphological reference condition definition as a basis for river restoration and river management: the example of Oiartzun, Oria and Urumea River basins (Basque Country)

    NASA Astrophysics Data System (ADS)

    Ibisate, Askoa; Ollero, Alfredo; Sáenz de Olazagoitia, Ana; Acín, Vanesa; Granado, David; Herrero, Xabier; Horacio, Jesús

    2017-04-01

    The application of hydrogeomorphology as a tool for river management and decision making on reference condition definition for river restoration is presented. Water Framework Directive (2000/60/CE) requires the identification of reference conditions and attainable target images, to achieve the good ecological status, taking into account the direct and indirect changes in the basin and river course. Data collection was done through an exhaustive fieldwork and GIS tools. Based on geomorphological homogeneous river reaches identification (waterfall, bedrock, step-pool, cascade, coluvial, run, riffle-pool, heavily modified), the hydrogeomorphological assessment of all of them in relation to its "natural" condition allowed the identification of those with a good or very good hydrogeomorphological condition, considered as reference condition. The loss of hydrogeomorphological quality was closely linked to sociodemographical pressure, due to artificial elements in the river course, floodplain and land use changes on the basin. The assessment done based on pressures and impacts allowed the proposal of specific restoration objectives which facilitated the identification of the elements that degrade the hydrogeomorphological quality of the reaches, and helped the identification of specific restoration actions. In addition it was possible to set the reaches with the potentiality of being restored, those reversible and those that due to its high degradation were considered irreversible, and therefore not able to be restored, except for some rehabilitation or mitigation measures. The application in two basins, Oria and Oiartzun, concluded that 36% of the reaches could recover their geomorphological good status and a 40% could be considered as reference condition for other reaches. This geomorphological based reference condition definition could be linked and complete with ecological data.

  19. An evaluation of public participation in UK river basin management planning

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Benson, D.

    2012-04-01

    The EU Water Framework Directive is reshaping multi-level environmental governance structures in many Member States. One area where re-structuring should be highly visible is in regards to public participation in water management. The Directive legally mandates that implementing agencies should make information publicly available relating to river basin management planning, include the public in the planning process and encourage the active involvement of 'interested parties' both during and after the planning stage. Yet critical questions arise over the extent to which these requirements have actually been met in Member States and the outcomes of participatory processes on the ground. In this study, public participation was evaluated in England and Wales by conducting: a) a broad based quantitative survey of the implementation strategy undertaken across all 11 River Basin Districts (RBDs); and, b) an in-depth analysis of the Anglian RBD drawing on theoretical notions of social learning; a critical measure of participatory processes. Results from the survey showed all RBDs complied with the minimum regulatory requirements on public access to information and written consultation, and even went further with provisions for oral consultation and stakeholder engagement. But the focus was clearly on stakeholder groups with little public involvement beyond minimal legally mandated requirements. Analysis of case study data provided some evidence of social learning at every level (instrumental, communicative and transformative) and beyond the individual scale (wider community and organisational learning). Learning was however significantly limited by participant's high level of expertise and environmental awareness. Also apparent was the influence of other factors, operating at various institutional scales, in shaping learning. The paper then speculates on the implications of the findings for both future research and policy, particularly in light of the European Commission

  20. Integrated modelling for river basin management: the influence of temporal and spatial scale in economic models of water allocation.

    PubMed

    Cutlac, I M; He, L; Horbulyk, T M

    2006-01-01

    The increasing use of integrated optimization or simulation models to guide river basin management has placed greater attention on the roles that the temporal and spatial scale of each model play in determining a model's suitability and effectiveness. This is especially the case in "economic" models that incorporate monetary incentives and the optimizing behaviour of economic agents to address decisions about the sources and levels of consumptive and non-consumptive water usage within the basin. With respect to spatial scale, models that aggregate behaviour over entire river basins may prove useful for examining inter-sectoral allocations of water, but are unlikely to provide useful information about how these water allocations influence-and are influenced by-choices of crops or of technologies in irrigation, for example. With respect to temporal scale, very short-run models can illustrate options for water management within an irrigation season should unforeseen water surpluses or deficits arise. Conversely, long-run models can allow adjustment time for investments in machinery, infrastructure and changes in land uses and cropping patterns. The basin management alternatives and choices generated by models on each scale are likely to vary considerably. The paper provides specific illustrative examples from recent models of Alberta's Bow River Basin.

  1. The basin-level water demand management driven by dualistic water cycle and the development of Dualistic Model for Hai River Basin

    NASA Astrophysics Data System (ADS)

    Yang, Guiyu; Wang, Hao; Gan, Hong; Jia, Yangwen

    2010-05-01

    The basin water resources management (BWRM) is a coordinated project focused on the relationship between water supply and demand, which involves a united regulation and coordinated management process to maximize the benefits of available water resources, to improve the relationship between humans and water, and to develop economic systems and ecosystems. However, a water resources management system stresses different content depending on supply requirements, economic development and eco-environment protection policies in different social stages. At present, with high-intensity impact of human activities and natural precipitation reduction, contradiction between supply and demand water resources has become increasing prominent. Water shortage became a global problem. In limited supply condition water demand management becomes the focus of water resources management. However, since there is no need of technical support means, the present water demand management basically focuses on single linkages in the water cycle process, and falls short of investigation into the essence of water demand associated with the entire water cycle process. For the above reasons, selecting Haihe River basin as study area, the paper fully analyzes the "natural-artificial" dual water cycle, put forward the water demand management with "the water consumption (ET) management as the core, the seven total amount control target as the management objective. Addition, the paper achieves the quantitative for "ET management as the core, the seven total amount control indexes" by the development of Haihe River basin-level Dualsitic model

  2. Water management for development of water quality in the Ruhr River basin.

    PubMed

    Klopp, R

    2000-01-01

    On the Ruhr, a small river running through hilly country and with a mean flow of 76 m3/s, 27 water works use the method of artificial groundwater recharge to produce 350 million m3 of drinking water annually. On the basis of a special act, the Ruhr River Association is responsible for water quality and water quantity management in the Ruhr basin. The present 94 municipal sewage treatment plants ensure that the raw water is sufficiently good to be turned into drinking water. In the Ruhr's lower reaches, where dry weather results in a 20% share of the entire water flow being treated wastewater, comparatively high concentration of substances of domestic or industrial origin are likely, including substances which municipal wastewater treatment measures cannot entirely remove. These substances include ammonium, coliform bacteria or pathogens, boron and organic trace substances. Although water treatment measures have greatly contributed to the considerable improvement of the Ruhr's water quality in the last few decades, it is desirable to continue to aim at a high standard of drinking water production technologies since the Ruhr is a surface water body influenced by anthropogenic factors. However, in the case of substances infiltrating into drinking water, legislation is required if a reduction of pollution appears to be necessary.

  3. Managing Tradeoffs between Hydropower and the Environment in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Loucks, Daniel P.; Wild, Thomas B.

    2015-04-01

    Hydropower dams are being designed and constructed at a rapid pace in the Mekong/Lancang River basin in Southeast Asia. These reservoirs are expected to trap significant amounts sediment, decreasing much of the river's capability to transport nutrients and maintain its geomorphology and habitats. We apply a simulation model for identifying and evaluating alternative dam siting, design and operating policy (SDO) options that could help maintain more natural sediment regimes downstream of dams and for evaluating the effect of these sediment-focused SDO strategies on hydropower production and reliability. We apply this approach to the planned reservoirs that would prevent a significant source of sediment from reaching critical Mekong ecosystems such as Cambodia's Tonle Sap Lake and the Mekong delta in Vietnam. Model results suggest that various SDO modifications could increase sediment discharge from this site by 300-450% compared to current plans, but a 30-55% loss in short-term annual energy production depending on various configurations of upstream reservoirs. Simulation results also suggest that sediment management-focused reservoir operating policies could cause ecological damage if they are not properly implemented.

  4. Uncertainty in environmental risk assessment: implications for risk-based management of river basins.

    PubMed

    Ragas, Ad M J; Huijbregts, Mark A J; Henning-de Jong, Irmgard; Leuven, Rob S E W

    2009-01-01

    Environmental risk assessment is typically uncertain due to different perceptions of the risk problem and limited knowledge about the physical, chemical, and biological processes underlying the risk. The present paper provides a systematic overview of the implications of different types of uncertainty for risk management, with a focus on risk-based management of river basins. Three different types of uncertainty are distinguished: 1) problem definition uncertainty, 2) true uncertainty, and 3) variability. Methods to quantify and describe these types of uncertainty are discussed and illustrated in 4 case studies. The case studies demonstrate that explicit regulation of uncertainty can improve risk management (e.g., by identification of the most effective risk reduction measures, optimization of the use of resources, and improvement of the decision-making process). It is concluded that the involvement of nongovernmental actors as prescribed by the European Union Water Framework Directive (WFD) provides challenging opportunities to address problem definition uncertainty and those forms of true uncertainty that are difficult to quantify. However, the WFD guidelines for derivation and application of environmental quality standards could be improved by the introduction of a probabilistic approach to deal with true uncertainty and a better scientific basis for regulation of variability.

  5. Water resources: Delaware River Basin Commission's management of certain water activities

    SciTech Connect

    Not Available

    1987-01-01

    The Delaware River Basin serves the states of New York, New Jersey, Pennsylvania, and Delaware. Since 1975 the Commission has shifted its emphasis from constructing water resource projects to using water conservation techniques and strategies in order to meet water supply and streamflow needs. Its 1980 population growth projection for the basin was generally accurate, but data on water use are not always collected or reliable. The Commission's policies for approving permits for large users of water have become more restrictive within the past 6 years, but except for major projects, permits are approved without knowledge of their impact on streamflow in the basin.

  6. Establishing river basin organisations inVietnam: Red River, Dong Nai River and Lower Mekong Delta.

    PubMed

    Taylor, P; Wright, G

    2001-01-01

    River basin management is receiving considerable attention at present. Part of the debate, now occurring worldwide, concerns the nature of the organisations that are required to manage river basins successfully, and whether special-purpose river basin organisations (RBOs) are always necessary and in what circumstance they are likely to (i) add to the management of the water resources and (ii) be successful. The development of river basin management requires a number of important elements to be developed to a point where the river basin can be managed successfully. These include the relevant laws, the public and non-government institutions, the technical capabilities of the people, the understanding and motivation of people, and the technical capacity and systems, including information. A river basin organisation (or RBO) is taken to mean a special-purpose organisation charged with some part of the management of the water resources of a particular river basin. Generally speaking, such organisations are responsible for various functions related to the supply, distribution, protection and allocation of water, and their boundaries follow the watershed of the river in question. However, the same functions can be carried out by various organisations, which are not configured on the geographical boundaries of a river basin. This paper outlines recent work on river basin organisation in Vietnam, and makes some comparisons with the situation in Australia.

  7. Taunton River basin

    USGS Publications Warehouse

    Williams, John R.; Willey, Richard E.

    1970-01-01

    This report presents in tabular form selected records of wells, test wells, and borings collected during a study of the basin from 1966 to 1968 in cooperation with the Massachusetts Water Resources Commission, and during earlier studies. This report is released in order to make available to the public and to local, state, and federal agencies basic ground-water information that may aid in planning water-resources development. Basic records contained in this report will complement an interpretative report on the Taunton River basin to be released at a later date.

  8. Dynamic Management of Releases for the Delaware River Basin using NYC's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Weiss, W.; Wang, L.; Murphy, T.; Muralidhar, D.; Tarrier, B.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. Using an interim version of OST, DEP and the New York State Department of Environmental Conservation (DEC) have developed a provisional, one-year Delaware River Basin reservoir release program to succeed the existing Flexible Flow Management Program (FFMP) which expired on May 31, 2011. The FFMP grew out of the Good Faith Agreement of 1983 among the four Basin states (New York, New Jersey, Pennsylvania, and Delaware) that established modified diversions and flow targets during drought conditions. It provided a set of release schedules as a framework for managing diversions and releases from New York City's Delaware Basin reservoirs in order to support multiple objectives, including water supply, drought mitigation, flood mitigation, tailwaters fisheries, main stem habitat, recreation, and salinity repulsion. The provisional program (OST-FFMP) defines available water based on current Upper Delaware reservoir conditions and probabilistic forecasts of reservoir inflow. Releases are then set based on a set of release schedules keyed to the water availability. Additionally, OST-FFMP attempts to provide enhanced downstream flood protection by making spill mitigation releases to keep the Delaware System reservoirs at a seasonally varying conditional storage objective. The OST-FFMP approach represents a more robust way of managing downstream releases, accounting for predicted future hydrologic conditions by making more water available for release when conditions are forecasted to be wet and protecting water supply reliability when conditions are forecasted to be dry. Further, the dynamic nature of the program allows the release decision to be adjusted as hydrologic conditions change. OST simulations predict that this

  9. River basin management, development planning, and opportunities for debate around limits to growth

    NASA Astrophysics Data System (ADS)

    Smith, H. M.; Blackstock, K. L.; Wall, G.; Jeffrey, P.

    2014-11-01

    Some of the latest global paradigms in sustainable water governance revolve around ideas of promoting greater integration within policy implementation processes that impact on land and water. The EU Water Framework Directive (WFD), seen by many as a 'Sustainability Directive', reflects this trend, and places particular emphasis on building linkages between water management and land use planning. This paper presents the results of a research project that examined this integrative vision in a real world setting - the emerging relationship between the WFD's river basin management planning (RBMP) framework and the development planning (DP) system in Scotland. The project's approach draws from interpretive policy analysis, and the results are based on analyses of key policy documents, as well as in-depth interviews, primarily with land use planning staff from local authorities, as well as other relevant public agencies such as the Scottish Environment Protection Agency (SEPA). The results show how an overarching political objective of 'increasing sustainable economic growth' is significantly affecting stakeholders' understandings of the RBMP-DP relationship, as well as their own roles and responsibilities within that relationship. This has created barriers to the deliberation and potential operationalisation of environmental limits to growth in the built environment, which may be skewing decision-making processes in a way that undermines the RBMP framework and its objectives of protecting and improving the water environment.

  10. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... Department of Ecology (Ecology) will be a joint lead agency with Reclamation in the preparation of this... uncertainties have been addressed. In 2003, Reclamation and Ecology initiated the Yakima River Basin Water... Ecology to separate from the National Environmental Policy Act (NEPA) process. In mid-2008, Ecology...

  11. A Novel Approach to River Basin Management that Utilizes a Multi-Day Forum to Educate Stakeholders

    NASA Astrophysics Data System (ADS)

    Langston, M. A.

    2015-12-01

    Large scale river basin management has long been a challenging task. Stakeholder involvement has often been posited as a means to provide a broad base of input and support for management decisions. This has been successful in some situations and not in others. The Desert Landscape Conservation Cooperative (LCC) has proposed a novel approach to large scale watershed management for conservation purposes by stakeholders. This approach involves conducting a multi-day stakeholder forum to gather interested parties, provide them science-based information about the watershed, and solicit their input regarding the research and management needs within the basin. Included within this forum is a Water Tournament patterned after those being developed by the U.S. Army Corps of Engineers' Institute for Water Resources. These tournaments bring stakeholders (such as the various water users, agencies, conservation organizations, and others) in small teams that develop watershed management scenarios (within appropriate constraints) that are then judged based on their merit for addressing the various issues within the basin. These tournaments serve to educate participants and to sensitize them to the perspectives of other participants. Another goal of the forum is to recruit a representative group of stakeholders who will provide guidance for further research to meet the basins management needs. The South Central Climate Science Center (SC CSC) has partnered with the Desert, Southern Rockies, Gulf Coast Prairie, Great Plains, and Gulf Coastal Plains and Ozarks LCCs to implement this approach in the Rio Grande and the Red River Basins. The LCCs are well positioned to convene stakeholders from across political boundaries and throughout these basins. The SC CSC's roles will be providing leadership, funding climate science for the effort, and evaluating the effectiveness of the forum-centered approach.

  12. Assessing and managing water scarcity within the Nile River Transboundary Basin

    NASA Astrophysics Data System (ADS)

    Butts, M. B.; Wendi, D.; Jessen, O. Z.; Riegels, N. D.

    2012-04-01

    The Nile Basin is the main source of water in the North Eastern Region of Africa and is perhaps one of the most critical river basins in Africa as the riparian countries constitute 40% of the population on the continent but only 10% of the area. This resource is under considerable stress with rising levels of water scarcity, high population growth, watershed degradation, and loss of environmental services. The potential impacts of climate change may significantly exacerbate this situation as the water resources in the Nile Basin are critically sensitive to climate change (Conway, Hanson, Doherty, & Persechino, 2007). The motivation for this study is an assessment of climate change impacts and adaptation potential for floods and droughts within the UNEP project "Adapting to climate change induced water stress in the Nile River Basin", supported by SIDA. This project is being carried out as collaboration between DHI, the UK Met Office, and the Nile Basin Initiative (NBI). The Nile Basin exhibits highly diverse climatological and hydrological characteristics. Thus climate change impacts and adaptive capacity must be addressed at both regional and sub-basin scales. While the main focus of the project is the regional scale, sub-basin scale modelling is required to reflect variability within the basin. One of the major challenges in addressing this variability is the scarcity of data. This paper presents an initial screening modelling study of the water balance of the Nile Basin along with estimates of expected future impacts of climate change on the water balance. This initial study is focussed on the Ethiopian Highlands and the Lake Victoria regions, where the impact of climate change on rainfall is important. A robust sub-basin based monthly water balance model is developed and applied to selected sub-basins. The models were developed and calibrated using publicly available data. One of the major challenges in addressing this variability within the basin is the

  13. Decision support system for optimally managing water resources to meet multiple objectives in the Savannah River Basin

    USGS Publications Warehouse

    Roehl, Edwin A.; Conrads, Paul A.

    2015-01-01

    Managers of large river basins face conflicting demands for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin, for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting dependent economies for years. The Savannah River estuary contains two municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor to expand ship traffic since the 1970s have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent. A planned deepening of the harbor includes flow-alteration features to minimize further migration of salinity, whose effectiveness will only be known after all construction is completed.One of the challenges of large basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge, while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of

  14. Water-quality and algal conditions in the Clackamas River basin, Oregon, and their relations to land and water management

    USGS Publications Warehouse

    Carpenter, Kurt D.

    2003-01-01

    In 1998, the U.S. Geological Survey sampled the Clackamas River, its major tributaries, and reservoirs to characterize basic water quality (nutrients, dissolved oxygen, pH, temperature, and conductance), water quantity (water sources within the basin), and algal conditions (biomass and species composition). Sampling locations reflected the dominant land uses in the basin (forest management, agriculture, and urban development) as well as the influence of hydroelectric projects, to examine how these human influences might be affecting water quality and algal conditions. Nuisance algal growths, with accompanying negative effects on water quality, were observed at several locations in the basin during this study. Algal biomass in the lower Clackamas River reached a maximum of 300 mg/m2 chlorophyll a, producing nuisance algal conditions, including fouled stream channels and daily fluctuations in pH and dissolved oxygen concentrations to levels that did not meet water-quality standards. Algal biomass was highest at sites immediately downstream from the hydroelectric project's reservoirs and/or powerhouses. Nuisance algal conditions also were observed in some of the tributaries, including the North Fork of the Clackamas River, Clear Creek, Rock Creek, and Sieben Creek. High amounts of drifting algae increased turbidity levels in the Clackamas River during June, which coincided with a general increase in the concentration of disinfection by-products found in treated Clackamas River water used for drinking, presumably due to the greater amounts of organic matter in the river. The highest nutrient concentrations were found in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks), where most of the agriculture and urban development is concentrated. Of these, the greatest load of nutrients came from Deep Creek, which had both high nutrient concentrations and relatively high streamflow. Streams draining forestland in the upper basin (upper Clackamas River

  15. Development of a model-based flood emergency management system in Yujiang River Basin, South China

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu

    2014-06-01

    Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.

  16. Eliciting knowledge on soft flood-risk management strategies in the Ukrainian Tisza river basin

    NASA Astrophysics Data System (ADS)

    Haase, D.; Kuptsova, S.; Bharwani, S.; Fischer, M. E.; Downing, T. E.

    2009-04-01

    This paper focuses on a participatory knowledge elicitation process (KnETs) to explore decision-making criteria regarding ‘soft' techniques for flood risk management in the Ukrainian Tisza river basin. Communities in this region are faced with frequent floods and limited governmental budgets to cope with flood impacts. To identify the potential for soft flood protection measures as opposed to traditional technical solutions, we explored the decision-making heuristics of village council heads and the conditions under which they do or do not prepare for a flood event. Tacit knowledge, which is often unconscious and therefore difficult to describe, is complex to uncover through conventional interview techniques. To address this issue, a participatory process has been designed to reveal this knowledge without losing its connection to the context in which it is applied. That is, the KnETs process has been designed to understand context-relevant adaptive strategies and the reasons they are chosen in a natural resource management context. The process can be adapted to explore the contextual specificities of many situations ranging from flood and drought risk management to livelihood choices and the adaptation options considered in each set of circumstances. This interdisciplinary approach integrates ethnographic methods from the social sciences domain with classical computer science knowledge engineering techniques to address current bottlenecks (related to time and resource requirements) in both areas of research. This provides a participatory process, from knowledge elicitation to knowledge representation, verification and validation, providing a greater clarity of local data and thus possibly a greater understanding of social vulnerability and adaptive behaviour in flood situations.

  17. Managing flow, sediment, and hydropower regimes in the Sre Pok, Se San, and Se Kong Rivers of the Mekong basin

    NASA Astrophysics Data System (ADS)

    Wild, Thomas B.; Loucks, Daniel P.

    2014-06-01

    The Lancang/Mekong River Basin is presently undergoing a period of rapid hydropower development. In its natural undeveloped state, the river transports about 160 million metric tons of sediment per year, maintaining the geomorphologic features of the basin, sustaining habitats, and transporting the nutrients that support ecosystem productivity. Despite the importance of sediment in the river, currently little attention is being paid to reservoir sediment trapping. This study is devoted to assessing the potential for managing sediment and its impact on energy production in the Se San, Sre Pok, and Se Kong tributaries of the Mekong River. These tributaries drain a set of adjacent watersheds that are important with respect to biodiversity and ecological productivity, and serve as a significant source of flow and sediment to the mainstream Mekong River. A daily sediment transport model is used to assess tradeoffs among energy production and sediment and flow regime alteration in multiple reservoir systems. This study finds that eventually about 40%-80% of the annual suspended sediment load may be trapped in reservoirs. Clearly, these reservoirs will affect the rivers' sediment regimes. However, even after 100 years of simulated sedimentation, reservoir storage capacities and hydropower production at most reservoir sites are not significantly reduced. This suggests that the strongest motivation for implementing measures to reduce trapped sediment is their impact not on hydropower production but on fish migration and survival and on sediment-dependent ecosystems such as the Vietnam Delta and Cambodia's Tonle Sap Lake.

  18. Assessing the effectiveness of Multi-Sector Partnerships to manage droughts: The case of the Jucar river basin

    NASA Astrophysics Data System (ADS)

    Carmona, María.; Máñez Costa, María.; Andreu, Joaquín.; Pulido-Velazquez, Manuel; Haro-Monteagudo, David; Lopez-Nicolas, Antonio; Cremades, Roger

    2017-07-01

    South-east Spain is a drought prone area, characterized by climate variability and water scarcity. The Jucar River Basin, located in Eastern Spain, has suffered many historical droughts with significant socio-economic impacts. For nearly a hundred years, the institutional and non-institutional strategies to cope with droughts have been successful through the development of institutions and partnerships for drought management including multiple actors. In this paper, we show how the creation and institutionalisation of Multi-Sector Partnerships (MSPs) has supported the development of an efficient drought management. Furthermore, we analyze the performance of one of the suggested instruments by the partnership related to drought management in the basin. Two methodologies are used for these purposes. On one hand, the Capital Approach Framework to analyze the effectiveness of the governance processes in a particular partnership (Permanent Drought Commission), which aims to highlight the governance strength and weakness of the MSP for enhancing drought management in the Jucar River Basin. Through a dynamic analysis of the changes that the partnership has undergone over time to successfully deal with droughts, its effectiveness on drought management is demonstrated. On the other hand, an econometric approach is used to analyze the economic efficiency of the emergency drought wells as one of the key drought mitigation measures suggested by the Permanent Drought Commission and implemented. The results demonstrate the potential and efficiency of applying drought wells as mitigation measures (significant reduction of economic losses, around 50 M€ during the drought period, 2005-2008).

  19. Rivers Run Through It: Discovering the Interior Columbia River Basin.

    ERIC Educational Resources Information Center

    Davis, Shelley; Wojtanik, Brenda Lincoln; Rieben, Elizabeth

    1998-01-01

    Explores the Columbia River Basin, its ecosystems, and challenges faced by natural resource managers. By studying the basin's complexity, students can learn about common scientific concepts such as the power of water and effects of rain shadows. Students can also explore social-scientific issues such as conflicts between protecting salmon runs and…

  20. Rivers Run Through It: Discovering the Interior Columbia River Basin.

    ERIC Educational Resources Information Center

    Davis, Shelley; Wojtanik, Brenda Lincoln; Rieben, Elizabeth

    1998-01-01

    Explores the Columbia River Basin, its ecosystems, and challenges faced by natural resource managers. By studying the basin's complexity, students can learn about common scientific concepts such as the power of water and effects of rain shadows. Students can also explore social-scientific issues such as conflicts between protecting salmon runs and…

  1. Value of Adaptive Drought Forecasting and Management for the ACF River Basin in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Georgakakos, A. P.; Kistenmacher, M.

    2016-12-01

    In recent times, severe droughts in the southeast U.S. occur every 6 to 10 years and last for up to 4 years. During such drought episodes, the ACF River Basin supplies decline by up to 50 % of their normal levels, and water stresses increase rather markedly, exacerbating stakeholder anxiety and conflicts. As part of the ACF Stakeholder planning process, GWRI has developed new tools and carried out comprehensive assessments to provide quantitative answers to several important questions related to drought prediction and management: (i) Can dry and wet climatic periods be reliably anticipated with sufficiently long lead times? What drought indices can support reliable, skillful, and long-lead forecasts? (ii) What management objectives can seasonal climate forecasts benefit? How should benefits/impacts be shared? (iii) What operational adjustments are likely to mitigate stakeholder impacts or increase benefits consistent with stakeholder expectations? Regarding drought prediction, a large number of indices were defined and tested at different basin locations and lag times. These included local/cumulative unimpaired flows (UIFs) at 10 river nodes; Mean Areal Precipitation (MAP); Standard Precipitation Index (SPI); Palmer Drought Severity Index; Palmer Modified Drought Index; Palmer Z-Index; Palmer Hydrologic Drought Severity Index; and Soil Moisture—GWRI watershed model. Our findings show that all ACF sub-basins exhibit good forecast skill throughout the year and with sufficient lead time. Index variables with high explanatory value include: previous UIFs, soil moisture states (generated by the GWRI watershed model), and PDSI. Regarding drought management, assessments with coupled forecast-management schemes demonstrate that the use of adaptive forecast-management procedures improves reservoir operations and meets basin demands more reliably. Such improvements can support better management of lake levels, higher environmental and navigation flows, higher dependable

  2. The assessment of river basin and flood management from early twentieth century to the present on the lower Siret River (Romania)

    NASA Astrophysics Data System (ADS)

    Salit, F.; Beltrando, B.; Zaharia, L.

    2012-04-01

    The river basin management and flood depends on the politico-historical, economic and environmental context in which it is thought. There is a similar evolution in Romania, where political developments have had as much impact on flood management than hydro-climatic events. The aim of this work is to understand of management systems in a diachronic logic in Romania from the beginning of the 20th century to the Communist period and to accession to the European Union. This work focuses on the lower Siret River. The Siret catchment is one of the last major tributaries of the Danube River east of the Carpathians and the most important of Romania in terms of flow and drainage area. To study the assessment of river basin management, a GIS was constructed using a series of Romanian and Russian topographic maps extending over the period 1916-1990 and Google earth images from 2009 and 2010. The study of the current period was enhanced by field observations (records of existing dykes, testimonials ...) from 2010-2011. Finally, this study is based on the technical literature for the regularization of rivers and the various reports made over this period. Three periods were identified: the major floods of 1970 and 2005 marked a turning point in the logical management of river basin and especially in the fight against flood. From the beginning of the period to 1970, dyke protection was sporadic: they are intended primarily to protect the villages directly threatened by recurrent flood. In 1970 a major flood (3500 m3/s) occurred on the lower Siret and other minor floods in succession from 1970 to 1975. By 1976 a national plan was drawn up to fight against the harmful effects of water. The entire sector of the lower Siret River and its major tributaries is arranged, a network of levees protects not only the villages but also all economic assets in this sector, namely the agricultural land, the main wealth of the region. In 2005 an exceptionally large flood (4650 m3/s) affected the

  3. Environment, poverty and health linkages in the Wami River basin: A search for sustainable water resource management

    NASA Astrophysics Data System (ADS)

    Madulu, Ndalahwa F.

    The Wami Rivers basin is an important area due to its diversified use which benefits a multi-diversity of stakeholders. While large scale irrigated sugar production is the main issue of concern upstream, there are other equally important socio-economic activities which include biodiversity and environmental conservation, domestic water supply, livestock water needs, and fishing. A large water supply project has just been completed downstream of the Wami River to provide water for the Chalinze township and surrounding villages. Other important undertakings include irrigated rice farming in Dakawa area, livestock keeping activities, and the establishment of the Sadani National Park (SANAPA) and the Wami-Mbiki Wildlife Management Area (WMA). The Wami River basin forms significant parts of both the Wami-Mbiki WMA and the SANAPA wildlife conservation areas. Regardless of its importance, the basin is increasingly being degraded through deforestation for agricultural expansion, timber, and more important charcoal making. The basin is also being polluted through disposal of excess molasses from the sugar industry, and use of poisonous substances and herbs in fishing. The worsening environmental condition in the basin has become a health threat to both people in the surrounding villages and wildlife. To a large extent, such changes are intensifying poverty levels among the local population. These changes are raising concerns about the long-term environmental sustainability and health implications of the current water use competition and conflicts in the basin. The purpose of this paper is to examine the main water resource use conflicts and how they affect environmental sustainability in the long-run. It also intends to establish linkages between wildlife management, pastoralism, agricultural activities and how such linkages influence poverty alleviation efforts in the basin. An attempt has been made to examine the environmental and health implications of human activities

  4. An online water quality monitoring and management system developed for the Liming River basin in Daqing, China.

    PubMed

    Yang, Wei; Nan, Jun; Sun, Dezhi

    2008-07-01

    This paper describes an online water quality monitoring and management system that was developed by combining a chemical oxygen demand sensor with an artificial neural network technology and a virtual instrument technique. The system was used to model the hydrological environment of the Liming River basin in Daqing City, China, in an effort to maintain the water quality in this basin at a level compatible with the status of Daqing City as a scenic resort. Operation of the system during the past 2 years has shown that an optimal allocation of water (including water released from an environmental reservoir to mitigate pollution events) could be achieved for the basin using the information gathered by the system; using mathematic models established for this system, the quantity of water released from the reservoir is adequate to improve the overall water environment. The results demonstrate that the system provides an effective approach to water quality control for environmental protection.

  5. A new rule generation method to develop a decision support system for integrated management at river basin scale.

    PubMed

    Benedetti, Lorenzo; Prat, Pau; Nopens, Ingmar; Poch, Manel; Poch, Manel; Turon, Clàudia; De Baets, Bernard; Comas, Joaquim

    2009-01-01

    The Besòs River Basin authority is working towards the implementation of integrated river basin management, as required by the Water Framework Directive (WFD), to achieve a good ecological and chemical status of all water bodies by 2015. The studied system is constituted by two communities (La Garriga and Granollers), their corresponding draining catchments, sewer systems and two WWTPs, which discharge treated water at different locations of the same river. Within this context, the realisation of an integrated model of the river stretch and of the two WWTPs with their sewer systems and draining catchments was necessary. Such a model allows to efficiently simulate and analyse the behaviour of the integrated system and to optimize its performance holistically. In this article, a method is presented to generate rules to be implemented in a supervisory system for automatic management of the Integrated Urban Wastewater System (IUWS) in dry and storm weather. This is achieved by identifying, with the help of Monte Carlo simulations, the most performing operational parameters-according to environmental and economic criteria-for the two weather conditions.

  6. Demonstration of GIS Capabilities for Fisheries Management Decisions: Analysis of Acquisition Potential Within the Meramec River Basin.

    PubMed

    Hawks; Stanovick; Caldwell

    2000-07-01

    / Geographic information systems (GIS) allow users to explore possible spatial relations that may exist within their data. At the Missouri Department of Conservation (MDC), GIS data is being used to help make management decisions. Thirteen geographic data layers of the Meramec River Basin, Missouri, were used to help demonstrate the usefulness of GIS for making fisheries management decisions. The data were used to help identify potential acquisition areas within the Meramec River Basin. The basin was separated into 22 strata based on ecoregion boundaries, watershed boundaries, and stream order. Suitability for acquisition was determined for each stratum based on species richness, habitat characteristics, percent of public land, and number of human impacts, such as gravel and ore mining. Eleven strata scored high enough to be recommended as potential acquisition areas. After further evaluation of the 11 strata, three were chosen as areas where available land and willing sellers should be considered. Four strata needed more sampling before land within them should be considered for acquisition. The final four were considered low priority because there was already a considerable amount of public land present in the strata. The analysis was helpful in allowing managers to focus in on a smaller area for acquisition consideration; 91% of the area was eliminated from the analysis. Instead of having to survey every parcel of land that becomes available, parcels that don't fall within the recommended strata can be eliminated without further investigation.

  7. The river basin game as a tool for collective water management at community level in South Africa

    NASA Astrophysics Data System (ADS)

    Magombeyi, M. S.; Rollin, D.; Lankford, B.

    Water scarcity in semi-arid catchments presents challenges on achieving equitable sharing of available water resources and avoiding social tensions among small-holder farmers. This paper explores the implementation of a river basin game as a tool to facilitate negotiations and rules of equal access among upstream and downstream irrigation water users in Ga-Sekororo, Olifants river basin in South Africa. The various stages of the game playing methodology are presented in a progressive manner and the outcomes are discussed. Through the application of this game, farmers were able to better relate to their catchment and accepted the board’s schematic representation of their reality. They were able to understand top-tail inequities of water supply and to appreciate that solutions lie in the community. The coming together of the small-holder farmers to share knowledge and set agreements on equitable water sharing results in higher benefits such as community harmony, transparency, acceptance of operating rules and improved knowledge to the community as a whole. The collective negotiation exercise produces more acceptable water allocation rules, thereby improving the security of water supply to the irrigation schemes. The paper concludes that local level management of tensions and conflicts through participation as facilitated by the river basin games can be sustainable provided there is proactive support from higher level institutions such as water committees, government and research.

  8. A European initiative to define research needs and foster the adoption of Managed Aquifer Recharge into river basin management

    NASA Astrophysics Data System (ADS)

    Kneppers, Angeline; Grützmacher, Gesche; Kazner, Christian; Zojer, Hans

    2010-05-01

    The European Technology Platform for Water (WssTP) was initiated by the European Commission to federate a highly fragmented sector with the aim to foster competitive innovations and promote sustainable solutions. To achieve this, pilot programmes endorsing a bottom-up approach were launched in 2007 with a variety of stakeholders having representative water issues to solve. Integrated Water Resources Management (IWRM) was adopted as a balancing process for the safe and sustainable development, allocation and monitoring of water resource use in the context of current and future social, economic and environmental objectives. As a result key drivers were selected and a methodology was followed to identify and validate the needs with stakeholders and experts, and demonstrate solutions as an integrated part of the river basin management plans. Managed Aquifer Recharge (MAR) was identified as a key component of integrated water resources management, especially in water scarce regions and an area relevant for further research. The paper shall summarize the process followed by the WssTP, initiating a Task Force with 36 representatives from European research institutes and industry partners with participation of a few international experts. During a workshop conducted in Graz in June 2009 these experts developed the basis for a report that has now been submitted to the European Commission for consideration in future research calls. Implementing IWRM and MAR is made difficult by the number of different water bodies, but also by the large number of stakeholders, policies, legislations and conflicting interests. The results of the MAR Task Force initiative set the basis for further discussions with the international MAR community on the relevance of the identified research needs but also on the importance and process to associate the institutional and managerial entities for capacity building and the adoption of MAR into the overall management strategies.

  9. Using the Web Gis application for managing the abstraction and discharge water points in a river basin

    NASA Astrophysics Data System (ADS)

    Tabacaru, Alexandru; Grama, Vasile; Iacovlev, Andrei; Bujac, Victor; Turculet, Mihail

    2017-04-01

    Some contributions are considered of the application of information technology in solving problems of water resource management in the basin. It mentions the need to develop Geographic Information System specifically to the water area. It examined the methodology for collection, storage and visualization of spatial data points that characterize the abstraction and wastewater discharge sites. It describes the final product - an objective analysis and monitoring support that includes spatial composition with the possibility of adopting decisions in real time. With the aim of informing the people regarding the WEB GIS methodology by applying the following open source components: MapServer, OpenLayers, PostGIS for collecting, spatial data integration and operation. Keywords: river basin management plan, water abstraction and discharge points, geospatial technologies

  10. Dynamic reorganization of river basins.

    PubMed

    Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu

    2014-03-07

    River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.

  11. Population structure of Glossina palpalis gambiensis (Diptera: Glossinidae) between river basins in Burkina Faso: consequences for area-wide integrated pest management.

    PubMed

    Bouyer, Jérémy; Ravel, Sophie; Guerrini, Laure; Dujardin, Jean-Pierre; Sidibé, Issa; Vreysen, Marc J B; Solano, Philippe; De Meeûs, Thierry

    2010-03-01

    African animal trypanosomosis is a major obstacle to the development of more efficient and sustainable livestock production systems in West Africa. Riverine tsetse species such as Glossina palpalis gambiensis Vanderplank are their major vectors. A wide variety of control tactics is available to manage these vectors, but their elimination will only be sustainable if control is exercised following area-wide integrated pest management (AW-IPM) principles, i.e. the control effort is targeting an entire tsetse population within a circumscribed area. In the present study, genetic variation at microsatellite DNA loci was used to examine the population structure of G. p. gambiensis inhabiting two adjacent river basins, i.e. the Comoé and the Mouhoun River basins in Burkina Faso. A remote sensing analysis revealed that the woodland savannah habitats between the river basins have remained unchanged during the last two decades. In addition, genetic variation was studied in two populations that were separated by a man-made lake originating from a dam built in 1991 on the Comoé. Low genetic differentiation was observed between the samples from the Mouhoun and the Comoé River basins and no differentiation was found between the samples separated by the dam. The data presented indicate that the overall genetic differentiation of G. p. gambiensis populations inhabiting two adjacent river basins in Burkina Faso is low (F(ST)=0.016). The results of this study suggest that either G. p. gambiensis populations from the Mouhoun are not isolated from those of the Comoé, or that the isolation is too recent to be detected. If elimination of the G. p. gambiensis population from the Mouhoun River basin is the selected control strategy, re-invasion from adjacent river basins may need to be prevented by establishing a buffer zone between the Mouhoun and the other river basin(s).

  12. Participatory and decentralized water resources management: challenges and perspectives for the North Paraíba River Basin committee - Brazil.

    PubMed

    Ribeiro, M A F M; Vieira, Z M C L; Ribeiro, M M R

    2012-01-01

    The Brazilian Water Resources Policy (Law 9433/1997) establishes participatory and decentralized management, involving civil society, water users and governmental bodies, with the basin committees as the basis of this process. Fifteen years after its implementation, it is possible to perceive accomplishments, but, at the same time, there are some difficulties in regards to the operation of the basin committees in the country. Considering the North Paraíba River Basin - which is completely included in the State of Paraíba, Northeastern Brazil, and presents great social and economic importance for the state - this article analyzes the process of formation, installation and functioning of its Basin Committee (CBH-PB), focusing on its composition, the reasons for the mobilization and demobilization of its members, the intra-relations between segments, and the inter-relations between the CBH-PB and other entities of the State Water Management System (the Water Executive Agency and the State Water Resources Council). The level of decentralization and the quality of participatory management (as it is being performed at the CBH-PB) are discussed and guidelines are suggested in order to allow greater effectiveness to the committee.

  13. Evaluation of Managed Aquifer Recharge Scenarios using Treated Wastewater: a Case study of the Zarqa River Basin, Jordan

    NASA Astrophysics Data System (ADS)

    El-Rawy, Mustafa; Zlotnik, Vitaly; Al-Maktoumi, Ali; Al-Raggad, Marwan; Kacimov, Anvar; Abdalla, Osman

    2016-04-01

    Jordan is an arid country, facing great challenges due to limited water resources. The shortage of water resources constrains economy, especially agriculture that consumes the largest amount of available water (about 53 % of the total demand). According to the Jordan Water Strategy 2008 - 2022, groundwater is twice greater than the recharge rate. Therefore, the government charged the planners to consider treated wastewater (TWW) as a choice in the water resources management and development strategies. In Jordan, there are 31 TWW plants. Among them, As Samra plant serving the two major cities, Amman and Zarqa, is the largest, with projected maximum capacity of 135 Million m3/year. This plant is located upstream of the Zarqa River basin that accepts all TWW discharges. The Zarqa River is considered the most important source of surface water in Jordan and more than 78 % of its current is composed of TWW. The main objectives were to develop a conceptual model for a selected part of the Zarqa River basin, including the As Samrapant, and to provide insights to water resources management in the area using TWW. The groundwater flow model was developed using MODFLOW 2005 and used to assess changes in the aquifer and the Zarqa River under a set of different increments in discharge rates from the As Samra plant and different groundwater pumping rates. The results show that the water table in the study area underwent an average water table decline of 29 m prior to the As Samra plant construction, comparing with the current situation (with annual TWW discharge of 110 Million m3). The analysis of the TWW rate increase to 135 million m3/year (maximum capacity of the As Samra plant) shows that the average groundwater level will rise 0.55 m, compared to the current conditions. We found that the best practices require conjunctive use management of surface- and groundwater. The simulated scenarios highlight the significant role of TWW in augmenting the aquifer storage, improving

  14. Powder River Basin Coalbed Methane Development and Produced Water Management Study

    SciTech Connect

    Advanced Resources International

    2002-11-30

    Coalbed methane resources throughout the entire Powder River Basin were reviewed in this analysis. The study was conducted at the township level, and as with all assessments conducted at such a broad level, readers must recognize and understand the limitations and appropriate use of the results. Raw and derived data provided in this report will not generally apply to any specific location. The coal geology in the basin is complex, which makes correlation with individual seams difficult at times. Although more than 12,000 wells have been drilled to date, large areas of the Powder River Basin remain relatively undeveloped. The lack of data obviously introduces uncertainty and increases variability. Proxies and analogs were used in the analysis out of necessity, though these were always based on sound reasoning. Future development in the basin will make new data and interpretations available, which will lead to a more complete description of the coals and their fluid flow properties, and refined estimates of natural gas and water production rates and cumulative recoveries. Throughout the course of the study, critical data assumptions and relationships regarding gas content, methane adsorption isotherms, and reservoir pressure were the topics of much discussion with reviewers. A summary of these discussion topics is provided as an appendix. Water influx was not modeled although it is acknowledged that this phenomenon may occur in some settings. As with any resource assessment, technical and economic results are the product of the assumptions and methodology used. In this study, key assumptions as well as cost and price data, and economic parameters are presented to fully inform readers. Note that many quantities shown in various tables have been subject to rounding; therefore, aggregation of basic and intermediate quantities may differ from the values shown.

  15. Strengthen the collaboration between the River Basin Management Organization of China and International Environmental Specimen Bank Group.

    PubMed

    Tan, Lingzhi; Liu, Hui; Shu, Jinxiang; Xia, Fan

    2015-02-01

    Several types of emerging organic contaminants were investigated in many recent researches, such as persistent toxic substance (PTS), persistent organic pollutants (POPs), endocrine disrupters (EDs), and volatile organic compounds (VOCs). But the Chinese country standard detection methods of emerging organic pollutants were not developed with the dramatic increasing of the organic substances production. Hence, it is necessary to obtain the latest informations about the long-term storage of representative environmental specimens, which could provide scientific basis for environmental management and environmental decision-making of the water resources protection and management organization. As the significant water resource conservation organization, the Water Environment Monitoring Center of Yangtze River Basin is experienced in water environmental monitoring and records many useful water resources and environment informations. It is also our responsibility to monitor all the pollutants in water environment of the Yangtze River valley, especially the emerging organic contaminants. Meanwhile, the International Environmental Specimen Bank (IESB) accumulates lots environmental organic pollution specimens and plays a significant role in environmental monitoring. Thus, the collaboration between the two parties will be greatly helpful for each further researches and monitoring work of organic contaminants in Yangtze River Basin.

  16. An Integrated Hydrologic-Economic Modeling Tool for Evaluating Water Management Responses to Climate Change in the Boise River Basin

    NASA Astrophysics Data System (ADS)

    Schmidt, R. D.; Taylor, R. G.; Stodick, L. D.; Contor, B. A.

    2009-12-01

    A recent federal interagency report on climate change and water management (Brekke et. al., 2009) describes several possible management responses to the impacts of climate change on water supply and demand. Management alternatives include changes to water supply infrastructure, reservoir system operations, and water demand policies. Water users in the Bureau of Reclamation’s Boise Project (located in the Lower Boise River basin in southwestern Idaho) would be among those impacted both hydrologically and economically by climate change. Climate change and management responses to climate change are expected to cause shifts in water supply and demand. Supply shifts would result from changes in basin precipitation patterns, and demand shifts would result from higher evapotranspiration rates and a longer growing season. The impacts would also extend to non-Project water users in the basin, since most non-Project groundwater pumpers and drain water diverters rely on hydrologic externalities created by seepage losses from Boise Project water deliveries. An integrated hydrologic-economic model was developed for the Boise basin to aid Reclamation in evaluating the hydrologic and economic impacts of various management responses to climate change. A spatial, partial-equilibrium, economic optimization model calculates spatially-distinct equilibrium water prices and quantities, and maximizes a social welfare function (the sum of consumer and producers surpluses) for all agricultural and municipal water suppliers and demanders (both Project and non-Project) in the basin. Supply-price functions and demand-price functions are exogenous inputs to the economic optimization model. On the supply side, groundwater and river/reservoir models are used to generate hydrologic responses to various management alternatives. The response data is then used to develop water supply-price functions for Project and non-Project water users. On the demand side, crop production functions

  17. Simulated Response of Mercury and Nitrogen to Land Management and Land Use Change in a Large River Basin

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Knightes, C. D.

    2009-12-01

    Increases in nitrogen cascading from headwater systems to coastal waterways and bioaccumulation of mercury in aquatic ecosystems have become primary environmental concerns in recent decades. Studies assessing the effects of land use or climate change on water quality in large river basins, however, typically focus on one particular chemical constituent (e.g., inorganic nitrogen) or a group of similarly reacting chemicals (e.g., nutrients). Rarely have long-term studies or management decisions simultaneously focused on excess nitrogen, a nutrient linked to coastal eutrophication, and methyl mercury (MeHg), a neurotoxin linked to multiple human health effects. This is unfortunate, as strategies focusing exclusively on reducing nitrogen in surface waters might counteract efforts to attenuate mercury, and vice versa. For example, the presence of extensive riparian wetland areas within a watershed provides a sink for nitrogen by promoting denitrification, but these anoxic conditions may also enhance mercury methylation, thereby potentially increasing methyl mercury fluxes to surface waters. On the other hand, nutrient management strategies may simultaneously reduce mercury exposure. We simulate concurrent long-term changes in loadings of total mercury (THg), MeHg, and nitrate-nitrogen (NO3-N) using a spatially distributed grid-based watershed mercury model (GBMM) linked to a simple watershed nitrogen process model, both of which receive inputs from a regional atmospheric model (CMAQ). We assess change in the fluxes of each, in response to modifications in land use practices and land cover change, and discuss potential implications for targeting nitrogen and mercury reductions in large river basins. Our work focuses on linking regional watershed and atmospheric models in the Cape Fear River Basin, North Carolina. This large river basin is located in the Coastal Carolinas, one of the place-based research initiatives within the broader US Environmental Protection Agency

  18. Hydrological Controls of Riverine Ecosystems of the Napo River (Amazon Basin): Implications for the Management and Conservation of Biodiversity

    NASA Astrophysics Data System (ADS)

    Celi, J. E.; Hamilton, S. K.

    2013-12-01

    Scientific understanding of neotropical floodplains comes mainly from work on large rivers with predictable seasonal flooding regimes. Less studied rivers and floodplains on the Andean-Amazon interface are distinct in their hydrology, with more erratic flow regimes, and thus ecological roles of floodplain inundation differ in those ecosystems. Multiple and unpredictable flooding events control inundation of floodplains, with important implications for fish and wildlife, plant communities, and human activities. Wetlands along the river corridor exist across a continuum from strong river control to influence only by local waters, with the latter often lying on floodplain paleoterraces. The goal of this study was to understand the hydrological interactions and habitat diversity of the Napo River, a major Amazon tributary that originates in the Andes and drains exceptionally biodiverse Andean foreland plains. This river system is envisioned by developers as an industrial waterway that would require hydrological alterations and affect floodplain ecosystems. Water level regimes of the Napo River and its associated environments were assessed using networks of data loggers that recorded time under water across transects extending inland from the river across more than 100 sites and for up to 5 years. These networks also included rising stage samplers that collected flood water samples for determination of their origin (i.e., Andean rivers vs. local waters) based on hydrochemical composition. In addition, this work entails a classification of aquatic environments of the Napo Basin using an object-oriented remote sensing approach to simultaneously analyze optical and radar satellite imagery and digital elevation models to better assess the extent and diversity of flooded environments. We found out a continuum of hydrological regimes and aquatic habitats along the Napo River floodplains that are linked to the river hydrology in different degrees. Overall, environments that

  19. Simulation of ground-water flow and evaluation of water-management alternatives in the Assabet River Basin, Eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.

    2004-01-01

    Water-supply withdrawals and wastewater disposal in the Assabet River Basin in eastern Massachusetts alter the flow and water quality in the basin. Wastewater discharges and stream-flow depletion from ground-water withdrawals adversely affect water quality in the Assabet River, especially during low-flow months (late summer) and in headwater areas. Streamflow depletion also contributes to loss of aquatic habitat in tributaries to the river. In 19972001, water-supply withdrawals averaged 9.9 million gallons per day (Mgal/d). Wastewater discharges to the Assabet River averaged 11 Mgal/d and included about 5.4 Mgal/d that originated from sources outside of the basin. The effects of current (2004) and future withdrawals and discharges on water resources in the basin were investigated in this study. Steady-state and transient ground-water-flow models were developed, by using MODFLOW-2000, to simulate flow in the surficial glacial deposits and underlying crystalline bedrock in the basin. The transient model simulated the average annual cycle at dynamic equilibrium in monthly intervals. The models were calibrated to 19972001 conditions of water withdrawals, wastewater discharges, water levels, and nonstorm streamflow (base flow plus wastewater discharges). Total flow through the simulated hydrologic system averaged 195 Mgal/d annually. Recharge from precipitation and ground-water discharge to streams were the dominant inflow and outflow, respectively. Evapotranspiration of ground water from wetlands and non-wetland areas also were important losses from the hydrologic system. Water-supply withdrawals and infiltration to sewers averaged 5 and 1.3 percent, respectively, of total annual out-flows and were larger components (12 percent in September) of the hydrologic system during low-flow months. Water budgets for individual tributary and main stem subbasins identified areas, such as the Fort Meadow Brook and the Assabet Main Stem Upper subbasins, where flows resulting from

  20. Digital representation of the Washington state geologic map: a contribution to the Interior Columbia River Basin Ecosystem Management Project

    USGS Publications Warehouse

    Raines, Gary L.; Johnson, Bruce R.

    1996-01-01

    This report describes the digital representation of the Washington state geologic map (Hunting and others, 1961). This report contains an explantion of why the data were prepared, a description of the digital data, and information on obtaining the digital files. This report is one in a series of digital maps, data files, and reports generated by the U.S. Geological Survey to provide geologic process and mineral resource information to the Interior Columbia Basin Ecosystem Management Project (ICBEMP). The various digital maps and data files are being used in a geographic information system (GIS)-based ecosystem assessment including an analysis of diverse questions relating to past, present, and future conditions within the general area of the Columbia River Basin east of the Cascade Mountains.

  1. Procedures for ensuring community involvement in multijurisdictional river basins: a comparison of the Murray-Darling and Mekong river basins.

    PubMed

    Chenoweth, Jonathan L; Ewing, Sarah A; Bird, Juliet F

    2002-04-01

    Community involvement is fundamental to the management of multijurisdictional river basins but, in practice, is very difficult to achieve. The Murray-Darling basin, in Australia, and the Mekong River basin in Southeast Asia are both cooperatively managed multijurisdictional river basins where the management authorities have expressed an aim of community involvement. In the Murray-Darling basin vigorous efforts have promoted a culture of community consultation throughout each of the state jurisdictions involved, although true participation has not necessarily been achieved. In the Mekong basin the community is much more diverse and the successes so far have been largely at the local level, involving action in subsections of the basin. These case studies suggest that community involvement in the form of community consultation across large multijurisdictional river basins is achievable, but more comprehensive participation is not necessarily possible.

  2. Simulated Water-Management Alternatives Using the Modular Modeling System for the Methow River Basin, Washington

    USGS Publications Warehouse

    Konrad, Christopher P.

    2004-01-01

    A precipitation-runoff model for the Methow River Basin was used to simulate six alternatives: (1) baseline of current flow, (2) line irrigation canals to limit seepage losses, (3) increase surface-water diversions through unlined canals for aquifer recharge, (4) convert from surface-water to ground-water resources to supply water for irrigation, and (5) reduce tree density in forested headwater catchments, and (6) natural flow. Daily streamflow from October 1, 1959, to September 30, 2001 (water years 1960?2001) was simulated. Lining irrigation canals (alternative 2) increased flows in the Chewuch, Twisp, and the Methow (upstream and at Twisp) Rivers during September because of lower diversion rates, but not in the Methow River near Pateros. Increasing diversions for aquifer recharge (alternative 3) increased streamflow from September into January, but reduced streamflow earlier in the summer. Conversion of surface-water diversions to ground-water wells (alternative 4) resulted in the largest increase in September streamflow of any alternative, but also marginally lower January flows (at most -8 percent in the 90-percent exceedence value). Forest-cover reduction (alternative 5) produced large increases in streamflow during high-flow periods in May and June and earlier onset of high flows and small increases in January streamflows. September streamflows were largely unaffected by alternative 5. Natural streamflow (alternative 6) was higher in September and lower in January than the baseline alternative.

  3. South Fork Holston River basin 1988 biomonitoring

    SciTech Connect

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  4. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    ,

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  5. Integrating data-driven ecological models in an expert-based decision support system for water management in the Du river basin (Vietnam).

    PubMed

    Hoang, Thu Huong; Mouton, Ans; Lock, Koen; De Pauw, Niels; Goethals, Peter L M

    2013-01-01

    In this study, classification trees were combined with the Water Framework Directive (WFD)-Explorer, a modular toolbox that supports integrated water management in a river basin to evaluate the impact of different restoration measures on river ecology. First, the WFD-Explorer toolbox analysed the effect of different restoration options on the abiotic river characteristics based on the water and substance balance embedded in the simulation environment. Based on these abiotic characteristics, the biological index Biological Monitoring Working Party for Vietnam was then predicted by classification trees that were trained on biological and abiotic data collected in the Du river basin in northern Vietnam. The ecological status of streams in the basin ranged from nearly pristine headwaters to severely impacted river stretches. Elimination of point sources from ore extraction and decentralised domestic wastewater treatment proved to be the most effective measures to improve the ecological condition of the Du river basin. The combination of the WFD-Explorer results with data-driven models enabled model application in a situation where expert knowledge was lacking. Consequently, this approach appeared promising for decision support in the context of river restoration and conservation management.

  6. Expert initial review of Columbia River Basin salmonid management models: Summary report

    SciTech Connect

    Barnthouse, L.W.

    1993-10-01

    Over the past years, several fish passage models have been developed to examine the downstream survival of salmon during their annual migration through the Columbia River reservoir system to below Bonneville Dam. More recently, models have been created to simulate the survival of salmon throughout the entire life cycle. The models are used by various regional agencies and native American tribes to assess impacts of dam operation, harvesting, and predation on salmonid abundance. These models are now also being used to assess extinction probabilities and evaluate restoration alternatives for threatened and endangered salmonid stocks. Oak Ridge National Laboratory (ORNL) coordinated an initial evaluation of the principal models by a panel of outside, expert reviewers. None of the models were unequivocally endorsed by any reviewer. Significant strengths and weaknesses were noted for each with respect to reasonability of assumptions and equations, adequacy of documentation, adequacy of supporting data, and calibration procedures. Although the models reviewed differ in some important respects, all reflect a common conceptual basis in classical population dynamic theory and a common empirical basis consisting of the available time series of salmonid stock data, hydrographic records, experimental studies of dam passage parameters, and measurements of reservoir mortality. The results of this initial review are not to be construed as a comprehensive scientific peer review of existing Columbia River Basin (CRB) salmon population models and data. The peer review process can be enhanced further by a dynamic exchange regional modelers and scientific panel experts involving interaction and feedback.

  7. Problematising and conceptualising local participation in transboundary water resources management: The case of Limpopo river basin in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Fatch, Joanna J.; Manzungu, Emmanuel; Mabiza, Collin

    IWRM-led water reforms in southern Africa have emphasised the creation of new stakeholder institutions with little explanation of how they will operate at different levels, especially at the local level. A case in point is the subsidiarity principle, which advocates for water management to be undertaken at the lowest appropriate level. The main objective of the study was to investigate the conceptualisation and application of the subsidiarity principle in the Limpopo river basin in Zimbabwe. This was done by analysing how state-led frameworks at the regional, basin, national and local level provided for local participation. These frameworks were compared to a bottom-up approach based on action research in three second tier local government administrative units (wards) in Shashe subcatchment of Mzingwane catchment. The catchment represents the entirety of the Limpopo basin in Zimbabwe. Data collection was based on document reviews, key informants, focus group discussions and participatory observations. In general the top-down efforts were found to express intent but lacked appropriately conceptualised implementation guidelines. Views of local people regarding how they could meaningfully participate in transboundary water resource management were based on practical considerations rather than theoretical abstractions. This was shown by a different conceptualisation of stakeholder identification and representation, demarcation of boundaries, role of intermediate institutions, and direct participation of local people at the basin level. The paper concludes that a bottom-up institutional model can enhance the conceptualisation and application of the subsidiarity principle. It also provides evidence that prescriptive approaches may not be the best way to achieve participatory governance in transboundary water resource management.

  8. Environmental education for sustainable management of the basins of the rivers Pirapó, Paranapanema III and Parapanema IV.

    PubMed

    Obara, A T; Kovalski, M L; Regina, V B; Riva, P B; Hidalgo, M R; Galvão, C B; Takahashi, B T

    2015-12-01

    The growing concern about the quantity and quality of water has led managers and researchers from various countries to concentrate efforts in the study, planning and management of watersheds, considered appropriate units for the rational and sustainable management of water resources. This experience report presents results of the Program for Communication, Environmental Education and Social Mobilization, which is part of the project "Monitoring Network of the basins of the rivers Pirapó, Paranapanema III and Paranapanema IV - analysis and monitoring of the hydrological behavior", developed by a multidisciplinary team of researchers and graduate students of the State University of Maringá (Paraná, Brazil). The goals of the program were: a) To develop continuing education for teachers of basic education, active in state schools located in the basins studied; b) To raise awareness and to promote training of various local social actors; c) To produce educational and promotional materials for teachers and general community, respectively. The methodology was the action research, on the basis of collaborative work between university researchers and participants of the program. The results evidence that teachers and representatives of different social groups had a limited view of issues related to water resources of their region. Courses, workshops and itinerant exhibitions, beyond teaching aids and promotional material prepared by the group of researchers and graduate students contributed to broaden the view of social actors about watersheds to which they are part, from the perspective of an active, critical and responsible participation focused on sustainable use and management of water resources.

  9. Conservation in the Delaware River Basin

    SciTech Connect

    Featherstone, J.

    1996-01-01

    The Delaware River Basin Commission (DRBC) has embarked on an ambitious water conservation program to reduce the demand for water. Conservation has become an integral component of the commission`s strategy to manage water supplies in the four-state Delaware River Basin. The program includes both regulatory and educational initiatives. DRBC has adopted five conservation regulations, which pertain to source metering, service metering, leak detection and repair, water conservation performance standards for plumbing fixtures and fittings, and requirements for water conservation plans and rate structures. DRBC also sponsors information and education events, such as symposiums on selected topics and water conservation technology transfer sessions with major industrial and commercial groups.

  10. Mapping levees for river basin management using LiDAR data and multispectral aerial orthoimages

    NASA Astrophysics Data System (ADS)

    Choung, Yun Jae

    Mapping levees is important to assessing levee stability, identifying flood risks for the areas protected by levee systems, etc. Historically, mapping levees has been carried out using ground surveying methods or only one type of remote sensing data set. This dissertation aims at mapping the levees by using airborne topographic LiDAR data and multispectral orthoimages taken in the river basins of the Nakdong River. In this dissertation, three issues with mapping levees are illustrated. The first issue is developing new methods for mapping levee surfaces by using geometric and spectral information. Levee surfaces consist of multiple objects having different geometric and spectral patterns. This dissertation proposes multiple methods for identifying the major objects and eroded areas on the levee surfaces. Multiple geometric analysis approaches such as the slope difference analysis and the elevation and area analysis are used to identify the levee top, berm, slope plates and the eroded area having different geometric patterns. Next, the spectral analysis approach, such as clustering algorithms, is used to identify major objects having different spectral patterns on the plates identified. Finally, multiple components, including the major objects and eroded areas on the levee surfaces, are identified. The second issue is developing new methods for mapping levee lines by using the geometric and spectral information. In general, the levee lines are determined on levee surfaces by considering the geometric pattern, the types of major objects, etc. This dissertation proposes multiple methods for mapping the levee lines located on various levee surfaces. First, the three baselines (the edges extracted from the images, the cluster boundaries extracted from the identified clusters and the plate boundaries extracted from the LiDAR data) are extracted separately from different sources. Next, the judgment test is performed in order to select one baseline as the levee line

  11. Do incentives still matter for the reform of irrigation management in the Yellow River Basin in China?

    NASA Astrophysics Data System (ADS)

    Wang, Jinxia; Huang, Jikun; Zhang, Lijuan; Huang, Qiuqiong

    2014-09-01

    Under the pressure of increasing water shortages and the need to sustain the development of irrigated agriculture, since the middle of the 1990s, officials in the YRB have begun to push for the institutional reform of irrigation management. Based on a panel data set collected in 2001 and 2005 in the Yellow River Basin, the overall goal of this paper is to examine how the irrigation management reform has proceeded since the early 2000s and what the impacts are of the incentive mechanisms on water use and crop yields. The results show that after the early 2000s, irrigation management reform has accelerated. Different from contracting management, more Water User Associations (WUAs) chose not to establish incentive mechanisms. The econometric model results indicate that using incentive mechanisms to promote water savings is effective under the arrangement of contracting management and not effective under WUAs. However, if incentives are provided to the contracting managers, the wheat yield declines significantly. Our results imply that at the later stage of the reform, the cost of reducing water use by providing incentives to managers includes negative impacts on some crop yields. Therefore, how to design win-win supporting policies to ensure the healthy development of the irrigation management reform should be highly addressed by policy makers.

  12. Application of Water Evaluation and Planning Model for Integrated Water Resources Management: Case Study of Langat River Basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Leong, W. K.; Lai, S. H.

    2017-06-01

    Due to the effects of climate change and the increasing demand on water, sustainable development in term of water resources management has become a major challenge. In this context, the application of simulation models is useful to duel with the uncertainty and complexity of water system by providing stakeholders with the best solution. This paper outlines an integrated management planning network is developed based on Water Evaluation and Planning (WEAP) to evaluate current and future water management system of Langat River Basin, Malaysia under various scenarios. The WEAP model is known as an integrated decision support system investigate major stresses on demand and supply in terms of water availability in catchment scale. In fact, WEAP is applicable to simulate complex systems including various sectors within a single catchment or transboundary river system. To construct the model, by taking account of the Langat catchment and the corresponding demand points, we defined the hydrological model into 10 sub-hydrological catchments and 17 demand points included the export of treated water to the major cities outside the catchment. The model is calibrated and verified by several quantitative statistics (coefficient of determination, R2; Nash-Sutcliffe efficiency, NSE and Percent bias, PBIAS). The trend of supply and demand in the catchment is evaluated under three scenarios to 2050, 1: Population growth rate, 2: Demand side management (DSM) and 3: Combination of DSM and reduce non-revenue water (NRW). Results show that by reducing NRW and proper DSM, unmet demand able to reduce significantly.

  13. Land use/vegetation mapping in reservoir management. Merrimack River basin

    NASA Technical Reports Server (NTRS)

    Mckim, H. L.; Gatto, L. W.; Merry, C. J.; Anderson, D. M.; Marlar, T. L.

    1975-01-01

    This report consists of an analysis of: ERTS-1 Multispectral Scanner imagery obtained 10 August 1973; Skylab 3 S190A and S190B photography, track 29, taken 21 September 1973; and RB-57 high-altitude aircraft photography acquired 26 September 1973. These data products were acquired on three cloud-free days within a 47-day period. The objectives of this study were: (1) to make quantitative comparisons between high-altitude aircraft photography and satellite imagery, and (2) to demonstrate the extent to which high resolution (S190A and B) space-acquired data can be used for land use/vegetation mapping and management of drainage basins.

  14. Modeling of basin-wide water management for dry-season paddy irrigation with large reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Masumoto, T.; Horikawa, N.; Yoshida, T.

    2012-12-01

    Northeast Thailand, one of the regions in the Mekong River Basin, has less rainfall than adjacent countries and its rainfall is heavily concentrated in rainy seasons (almost 90% of annual rainfall). Therefore, this area is characterized as semi-arid region especially during dry seasons. In this region, rain-fed paddies account for about 90% and this leads to unstable rice production. Against these backgrounds, a number of large irrigation projects have been carried out since the 1970s to increase agricultural productivity. In these projects, a lot of irrigation facilities such as large/medium reservoirs, diversion weirs and irrigation canals were constructed for stable water supply in dry seasons. These projects enable farmers to pursue double rice cropping as rainy- and dry-season cropping in this region. Paddy field irrigation, however, exerts a great influence on water circulation of river basins in Monsoon Asia and modeling of these processes is crucial to understand the hydrological cycle especially in areas where irrigated agriculture is dominant. In this study, to quantify the hydrological cycle in irrigation-dominant basins, we applied a distributed hydrological model incorporating paddy irrigation schemes to the Mun River Basin, one of the tributaries of the Mekong River, in Northeast Thailand, and analyzed water circulation considering complex water use by agricultural activities. The model used in this study consists of four sub-models, such as referential evapotranspiration, cropping pattern/area, agricultural water use, and runoff model in order to estimate various information on agricultural water use. Additionally, water allocation and reservoir operation models were integrated into the hydrological model to account for the water circulation in large irrigation areas. For the analysis, the basin is divided into 10km-mesh and each mesh contains the ratio of 5 land-use category as forest, rain-fed paddy, irrigated paddy, upland field and water area

  15. Science-society collaboration for robust adaptation planning in water management - The Maipo River Basin in Chile

    NASA Astrophysics Data System (ADS)

    Ocampo Melgar, Anahí; Vicuña, Sebastián; Gironás, Jorge

    2015-04-01

    The Metropolitan Region (M.R.) in Chile is populated by over 6 million people and supplied by the Maipo River and its large number of irrigation channels. Potential environmental alterations caused by global change will extremely affect managers and users of water resources in this semi-arid basin. These hydro-climatological impacts combined with demographic and economic changes will be particularly complex in the city of Santiago, due to the diverse, counterpoised and equally important existing activities and demands. These challenges and complexities request the implementation of flexible plans and actions to adapt policies, institutions, infrastructure and behaviors to a new future with climate change. Due to the inherent uncertainties in the future, a recent research project entitled MAPA (Maipo Adaptation Plan for its initials in Spanish) has formed a collaborative science-society platform to generate insights into the vulnerabilities, challenges and possible mitigation measures that would be necessary to deal with the potential changes in the M.R. This large stakeholder platform conformed by around 30 public, private and civil society organizations, both at the local and regional level and guided by a Robust Decision Making Framework (RDMF) has identified vulnerabilities, future scenarios, performance indicators and mitigation measures for the Maipo River basin. The RDMF used in this project is the XLRM framework (Lempert et al. 2006) that incorporates policy levers (L), exogenous uncertainties (X), measures of performance standards (M) and relationships (R) in an interlinked process. Both stakeholders' expertise and computational capabilities have been used to create hydrological models for the urban, rural and highland sectors supported also by the Water Evaluation and Planning system software (WEAP). The identification of uncertainties and land use transition trends was used to develop future development scenarios to explore possible water management

  16. Managing stakeholders' conflicts for water reallocation from agriculture to industry in the Heihe River Basin in Northwest China.

    PubMed

    Wang, Xiaojun; Yang, Hong; Shi, Minjun; Zhou, Dingyang; Zhang, Zhuoying

    2015-02-01

    Along with the accelerating process of industrialization and urbanization, water reallocation from agriculture to industry will be an inevitable trend in most developing countries. In the inland river basin, inter-sectoral water transfer is likely to result in reallocation of water resources between upstream and downstream regions, and further triggers frictions and conflicts between regions. Designing effective policy measures to coordinate these conflicts among stakeholders is crucial for the successful implementation of water reallocation. This study established a participatory multi-attribute decision support model to seek a widely acceptable water allocation alternative in the Heihe River Basin, an arid region in Northwest China. The results indicate that: (1) intense conflicts arise not only among stakeholder groups but also between upstream and downstream regions in the process of water reallocation from agriculture to industry; (2) among the options which respectively emphasize on equity, efficiency, and sustainability, the combination of equity and efficiency is the least controversial alternative for the majority of stakeholder groups, although it is not the most desirable one in the performance of all sub-objectives; (3) the multi-attribute value theory (MAVT) approach is a useful technique to elicit stakeholder values and to evaluate water reallocation options. The technique can improve the transparency and credibility of decision making in the water management process.

  17. Strengthening river basin institutions: The Global Environment Facility and the Danube River Basin

    NASA Astrophysics Data System (ADS)

    Gerlak, Andrea K.

    2004-08-01

    Increased international attention to water resource management has resulted in the creation of new institutional arrangements and funding mechanisms as well as international initiatives designed to strengthen river basin institutions. The Global Environment Facility's (GEF) International Waters Program is at the heart of such novel collaborative regional approaches to the management of transboundary water resources. This paper assesses GEF-led efforts in the Danube River Basin, GEF's most mature and ambitious projects to date. It finds that GEF has been quite successful in building scientific knowledge and strengthening regional governance bodies. However, challenges of coordinating across expanding participants and demonstrating clear ecological improvements remain. GEF-led collaborative activities in the Danube River Basin reveal three critical lessons that can inform future river basin institution building and decision making, including the importance of appropriately creating and disseminating scientific data pertaining to the river system, the need for regional governance bodies for integrated river basin management, and the necessity to address coordination issues throughout project planning and implementation.

  18. Hotspots within the Transboundary Selenga River Basin

    NASA Astrophysics Data System (ADS)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  19. Water Accounting Plus for sustainable water management in the Volta river basin, West Africa

    NASA Astrophysics Data System (ADS)

    Dembélé, Moctar; Schaefli, Bettina; Mariéthoz, Grégroire; Ceperley, Natalie; Zwart, Sander J.

    2017-04-01

    Water Accounting Plus (WA+) is a standard framework that provides estimates of manageable and unmanageable water flows, stocks, consumption among users, and interactions with land use. The water balance terms are estimated based on remotely sensed data from online open access databases. The main difference with other methods is the use of spatiotemporal data, limiting the errors due to the use of static data. So far, no studies have incorporated climate change scenarios in the WA+ framework to assess future water resources, which would be desirable for developing mitigation and adaptation policies. Moreover WA+ has been implemented using remote sensing data while hydrological models data can also be used as inputs for projections on the future water accounts. This study aims to address the above challenges by providing quantified information on the current and projected state of the Volta basin water resources through the WA+ framework. The transboundary Volta basin in West Africa is vulnerable to floods and droughts that damage properties and take lives. Residents are dependent on subsistence agriculture, mainly rainfed, which is sensitive to changes and variation in the climate. Spatially, rainfall shows high spatiotemporal variability with a south-north gradient of increasing aridity. As in many basins in semi-arid environments, most of the rainfall in the Volta basin returns to the atmosphere. The competition for scarce water resources will increase in the near future due to the combined effects of urbanization, economic development, and rapid population growth. Moreover, upstream and downstream countries do not agree on their national priorities regarding the use of water and this brings tensions among them. Burkina Faso increasingly builds small and medium reservoirs for small-scale irrigation, while Ghana seeks to increase electricity production. Information on current and future water resources and uses is thus fundamental for water actors. The adopted

  20. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    PubMed

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources. Copyright © 2016 Elsevier B.V. All

  1. Linking River Basin Modifications and Rural Soil and Water Management Practices in Tropical Deltas to Sea Level Rise Vulnerability

    NASA Astrophysics Data System (ADS)

    Rogers, K. G.; Brondizio, E.; Roy, K.; Syvitski, J. P.

    2015-12-01

    The increased vulnerability of deltaic communities to coastal flooding as a result of upstream engineering has been acknowledged for decades. What has received less attention is the sensitivity of deltas to the interactions between river basin modifications and local scale cultivation and irrigation. Combined with reduced river and sediment discharge, soil and water management practices in coastal areas may exacerbate the risk of tidal flooding, erosion of arable land, and salinization of soils and groundwater associated with sea level rise. This represents a cruel irony to smallholder subsistence farmers whose priorities are food, water and economic security, rather than sustainability of the environment. Such issues challenge disciplinary approaches and require integrated social-biophysical models able to understand and diagnose these complex relationships. This study applies a new conceptual framework to define the relevant social and physical units operating on the common pool resources of climate, water and sediment in the Bengal Delta (Bangladesh). The new framework will inform development of a nested geospatial analysis and a coupled model to identify multi-scale social-biophysical feedbacks associated with smallholder soil and water management practices, coastal dynamics, basin modification, and climate vulnerability in tropical deltas. The framework was used to create household surveys for collecting data on climate perceptions, land and water management, and governance. Test surveys were administered to rural farmers in 14 villages during a reconnaissance visit to coastal Bangladesh. Initial results demonstrate complexity and heterogeneity at the local scale in both biophysical conditions and decision-making. More importantly, the results illuminate how national and geopolitical-level policies scale down to impact local-level environmental and social stability in communities already vulnerable to coastal flooding. Here, we will discuss components of the

  2. Whole Watershed Management to Maximize Total Water Storage: Case Study of the American-Cosumnes River Basin

    NASA Astrophysics Data System (ADS)

    Goharian, E.; Gailey, R.; Medellin-Azuara, J.; Maples, S.; Adams, L. E.; Sandoval Solis, S.; Fogg, G. E.; Dahlke, H. E.; Harter, T.; Lund, J. R.

    2016-12-01

    Drought and unrelenting water demands by urban, agricultural and ecological entities present a need to manage and perhaps maximize all the major stores of water, including mountain snowpack and soil moisture, surface reservoirs, and groundwater reservoirs for the future. During drought, the over-exploitations of groundwater, which supplies up to 60% of California's agricultural water demand, has caused serious overdraft in many areas. Moreover, owing to climate change, faster and earlier snowmelt in Mediterranean climate systems such as California dictates that less water can be stored in reservoirs. If we are to substantially compensate for this loss of stored water without drastically cutting back water supply, a new era of radically increased groundwater recharge will be needed. Managed aquifer recharge (MAR) has become a common and fast-growing management option, especially in areas with high water availability variation intra- and inter-annually. Enhancing the recharge by the use of peak runoff requires integrated river basin management to improve prospects to downstream users and ecology. This study implements a quantitative approach to assess the physical and economic feasibility of MAR for American-Cosumnes River basin, CA. For this purpose, two scenarios are considered, the pre-development condition which is represented by unimpaired flows, and the other one in which available peak flow releases from Folsom reservoir derived from the CalSim II hydrologic simulation model will be employed to estimated available water for recharge. Preliminary results show peak flows during winter (Dec-Feb) and extended winter (Nov-Mar) from the American River flow can be captured within a range of 64,000 to 198,000 af/month through the Folsom South Canal for recharge. Changes in groundwater storage are estimated by using California Central Valley Groundwater-Surface Water Simulation Model (C2VSim). Results show increasing groundwater recharge benefits not only the regional

  3. Evaluation of potential effects of federal land management alternatives on trends of salmonids and their habitats in the interior Columbia River basin.

    Treesearch

    Bruce Rieman; James T. Peterson; James Clayton; Philip Howell; Russell Thurow; William Thompson; Danny Lee

    2001-01-01

    Aquatic species throughout the interior Columbia River basin are at risk. Evaluation of the potential effects of federal land management on aquatic ecosystems across this region is an important but challenging task. Issues include the size and complexity of the systems, uncertainty in important processes and existing states, flexibility and consistency in the...

  4. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Conservation Advisory Group; Yakima River Basin Water Enhancement Project, Yakima, WA AGENCY: Bureau of... Committee Act, the Yakima River Basin Conservation Advisory Group, Yakima River Basin Water Enhancement... River Basin Water Conservation Program. DATES: The meeting will be held on Tuesday, August 21,...

  5. Influences of historical and projected changes in climate and land management practices on nutrient fluxes in the Mississippi River Basin, 1948-2100

    NASA Astrophysics Data System (ADS)

    Spak, S.; Ward, A. S.; Li, Y.; Dalrymple, K. E.

    2016-12-01

    Nitrogen fertilization is central to contemporary row crop production in the U.S., but resultant nitrate transport leads to eutrophication, hypoxia, and algal blooms throughout the Mississippi River Basin and in coastal waters of the Gulf of Mexico. Effective basin-scale nutrient management requires a comprehensive understanding of the dynamics of nitrate transport in this large river catchment and the roles of individual management practices, that must then be operationalized to optimize management for both local geophysical and agricultural conditions and in response to decadal and inter-annual variations in local and regional climate. Here, we apply ensemble simulations with Agro-IBIS and THMB using spatially and temporally specific land cover, soil, agricultural, topographic, and climate data to simulate the individual and combined effects of land management and climate on historical (1948-2007) nitrate concentrations and transport in the Mississippi River Basin. We further identify sensitivities of in-stream nitrate dynamics to local and regional applications of Best Management Practices. The ensemble resolves the effects of techniques recommended in the Iowa Nutrient Reduction Strategy, including crop rotations, fertilizer management, tillage and residue management, and cover crops. Analysis of the nitrate transport response surfaces identifies non-linear effects of combined nutrient management tactics, and quantifies the stationarity of the relative and absolute influences of land management and climate during the 60-year study period.

  6. Identifying and Evaluating Options for Improving Sediment Management and Fish Passage at Hydropower Dams in the Lower Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Wild, T. B.; Reed, P. M.; Loucks, D. P.

    2015-12-01

    The Mekong River basin in Southeast Asia is undergoing intensive and pervasive hydropower development to satisfy demand for increased energy and income to support its growing population of 60 million people. Just 20 years ago this river flowed freely. Today some 30 large dams exist in the basin, and over 100 more are being planned for construction. These dams will alter the river's natural water, sediment and nutrient flows, thereby impacting river morphology and ecosystems, and will fragment fish migration pathways. In doing so, they will degrade one of the world's most valuable and productive freshwater fish habitats. For those dams that have not yet been constructed, there still exist opportunities to modify their siting, design and operation (SDO) to potentially achieve a more balanced set of tradeoffs among hydropower production, sediment/nutrient passage and fish passage. We introduce examples of such alternative SDO opportunities for Sambor Dam in Cambodia, planned to be constructed on the main stem of the Mekong River. To evaluate the performance of such alternatives, we developed a Python-based simulation tool called PySedSim. PySedSim is a daily time step mass balance model that identifies the relative tradeoffs among hydropower production, and flow and sediment regime alteration, associated with reservoir sediment management techniques such as flushing, sluicing, bypassing, density current venting and dredging. To date, there has been a very limited acknowledgement or evaluation of the significant uncertainties that impact the evaluation of SDO alternatives. This research is formalizing a model diagnostic assessment of the key assumptions and parametric uncertainties that strongly influence PySedSim SDO evaluations. Using stochastic hydrology and sediment load data, our diagnostic assessment evaluates and compares several Sambor Dam alternatives using several performance measures related to energy production, sediment trapping and regime alteration, and

  7. Land Use/Cover Change in the Middle Reaches of the Heihe River Basin over 2000-2011 and Its Implications for Sustainable Water Resource Management

    PubMed Central

    Hu, Xiaoli; Lu, Ling; Li, Xin; Wang, Jianhua; Guo, Ming

    2015-01-01

    The Heihe River Basin (HRB) is a typical arid inland river basin in northwestern China. From the 1960s to the 1990s, the downstream flow in the HRB declined as a result of large, artificial changes in the distribution of water and land and a lack of effective water resource management. Consequently, the ecosystems of the lower reaches of the basin substantially deteriorated. To restore these degraded ecosystems, the Ecological Water Diversion Project (EWDP) was initiated by the Chinese government in 2000. The project led to agricultural and ecological changes in the middle reaches of the basin. In this study, we present three datasets of land use/cover in the middle reaches of the HRB derived from Landsat TM/ETM+ images in 2000, 2007 and 2011. We used these data to investigate changes in land use/cover between 2000 and 2011 and the implications for sustainable water resource management. The results show that the most significant land use/cover change in the middle reaches of the HRB was the continuous expansion of farmland for economic interests. From 2000 to 2011, the farmland area increased by 12.01%. The farmland expansion increased the water resource stress; thus, groundwater was over-extracted and the ecosystem was degraded in particular areas. Both consequences are negative and potentially threaten the sustainability of the middle reaches of the HRB and the entire river basin. Local governments should therefore improve the management of water resources, particularly groundwater management, and should strictly control farmland reclamation. Then, water resources could be ecologically and socioeconomically sustained, and the balance between upstream and downstream water demands could be ensured. The results of this study can also serve as a reference for the sustainable management of water resources in other arid inland river basins. PMID:26115484

  8. Land Use/Cover Change in the Middle Reaches of the Heihe River Basin over 2000-2011 and Its Implications for Sustainable Water Resource Management.

    PubMed

    Hu, Xiaoli; Lu, Ling; Li, Xin; Wang, Jianhua; Guo, Ming

    2015-01-01

    The Heihe River Basin (HRB) is a typical arid inland river basin in northwestern China. From the 1960s to the 1990s, the downstream flow in the HRB declined as a result of large, artificial changes in the distribution of water and land and a lack of effective water resource management. Consequently, the ecosystems of the lower reaches of the basin substantially deteriorated. To restore these degraded ecosystems, the Ecological Water Diversion Project (EWDP) was initiated by the Chinese government in 2000. The project led to agricultural and ecological changes in the middle reaches of the basin. In this study, we present three datasets of land use/cover in the middle reaches of the HRB derived from Landsat TM/ETM+ images in 2000, 2007 and 2011. We used these data to investigate changes in land use/cover between 2000 and 2011 and the implications for sustainable water resource management. The results show that the most significant land use/cover change in the middle reaches of the HRB was the continuous expansion of farmland for economic interests. From 2000 to 2011, the farmland area increased by 12.01%. The farmland expansion increased the water resource stress; thus, groundwater was over-extracted and the ecosystem was degraded in particular areas. Both consequences are negative and potentially threaten the sustainability of the middle reaches of the HRB and the entire river basin. Local governments should therefore improve the management of water resources, particularly groundwater management, and should strictly control farmland reclamation. Then, water resources could be ecologically and socioeconomically sustained, and the balance between upstream and downstream water demands could be ensured. The results of this study can also serve as a reference for the sustainable management of water resources in other arid inland river basins.

  9. Protected areas and freshwater conservation: a survey of protected area managers in the Tennessee and Cumberland River Basins, USA.

    PubMed

    Thieme, M L; Rudulph, J; Higgins, J; Takats, J A

    2012-10-30

    As the scientific community has highlighted the plight of freshwater species, there have been increasing calls for protected area (PA) designation and management specific to the conservation of aquatic species and ecosystems. In this study we examined PA management in one relatively well-resourced (high levels of financial and technical resources) part of the world: the Tennessee and Cumberland River Basins, USA. We asked managers their perceptions about the current status of freshwater ecosystems within PAs, the sources of stress that are degrading freshwater ecosystem integrity, the degree to which PAs address these stressors, and the availability of technical, human, and financial resources for management activities that benefit freshwater ecosystems and the species they support. Managers generally perceive that freshwater ecosystems within PAs are under low levels of stress, with less than half reporting any alteration to ecosystem integrity, and very few reporting alterations at medium or high levels. Most PAs have fewer resources dedicated to freshwater conservation and management than to other activities, and some PAs completely lack resources for freshwater management. We recommend a review of every PA's goals and objectives and any needed updates to include the conservation of freshwater ecosystems. We also recommend an analysis to determine the most pressing stressors to aquatic life within each PA, stemming from sources both from within and outside of a PA's boundaries, and that this information be used to guide future management. Finally, we suggest that management resources be prioritized for PAs that include large portions of the catchments of their freshwater systems; that can address the dominant sources of stress within the PA; or that contain representative ecosystems, species assemblages or populations of rare, endemic, and threatened species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Using multi-objective robust decision making to support seasonal water management in the Chao Phraya River basin, Thailand

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Jessen, Oluf; Madsen, Henrik

    2016-04-01

    A multi-objective robust decision making approach is demonstrated that supports seasonal water management in the Chao Phraya River basin in Thailand. The approach uses multi-objective optimization to identify a Pareto-optimal set of management alternatives. Ensemble simulation is used to evaluate how each member of the Pareto set performs under a range of uncertain future conditions, and a robustness criterion is used to select a preferred alternative. Data mining tools are then used to identify ranges of uncertain factor values that lead to unacceptable performance for the preferred alternative. The approach is compared to a multi-criteria scenario analysis approach to estimate whether the introduction of additional complexity has the potential to improve decision making. Dry season irrigation in Thailand is managed through non-binding recommendations about the maximum extent of rice cultivation along with incentives for less water-intensive crops. Management authorities lack authority to prevent river withdrawals for irrigation when rice cultivation exceeds recommendations. In practice, this means that water must be provided to irrigate the actual planted area because of downstream municipal water supply requirements and water quality constraints. This results in dry season reservoir withdrawals that exceed planned withdrawals, reducing carryover storage to hedge against insufficient wet season runoff. The dry season planning problem in Thailand can therefore be framed in terms of decisions, objectives, constraints, and uncertainties. Decisions include recommendations about the maximum extent of rice cultivation and incentives for growing less water-intensive crops. Objectives are to maximize benefits to farmers, minimize the risk of inadequate carryover storage, and minimize incentives. Constraints include downstream municipal demands and water quality requirements. Uncertainties include the actual extent of rice cultivation, dry season precipitation, and

  11. Methods for Improvement of the Ecosystem Services of Soil by Sustainable Land Management in the Myjava River Basin

    NASA Astrophysics Data System (ADS)

    Korbeľová, Lenka; Kohnová, Silvia

    2017-03-01

    The main aim of this study is the development of methods for the assessment of the ecosystem services (ESS) of soils within the RECARE project and the participatory identification of measures to combat soil threats caused by floods in the Myjava River basin. The Myjava Hills highlands are known for their rapid runoff response and related muddy floods, which are determined by both the natural and socio-economic conditions. Within the frame of the mentioned project, the ESS framework with detailed relationships between the ecology, societal response, driving forces and also human well-being was identified. Next, to assess the SLM practices in the pilot basin, the stakeholders, who showed an interest in solving the flood protection problems in their areas, took an active part in the process of evaluating, scoring and selecting the best sustainable land management practices (SLM) for the flood protection of soil. From the results which were proposed, the technology of vegetative strips was top rated within the total results among all the SLM measures in all the categories, followed by water-retaining ditches and small wooden dams. Building a polder least meets the proposed SLM criteria.

  12. River Basin Standards Interoperability Pilot

    NASA Astrophysics Data System (ADS)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  13. Sediment fluxes in transboundary Selenga river basin

    NASA Astrophysics Data System (ADS)

    Belozerova, Ekaterina

    2013-04-01

    Gathering reliable information on transboundary river systems remains a crucial task for international water management and environmental pollution control. Countries located in the lower parts of the river basins depend on water use and management strategies in adjacent upstream countries. One important issue in this context is sediment transport and associated contaminant fluxes across the state borders. The mass flows of dissolved ions, biogens, heavy metal concentrations, as far as suspended sediment concentration (SSC, mg/l) along upper Selenga river and its tributaries based on the literature review and results of field campaigns 2011-2012 were estimated. Based on the water discharges measurements Q, suspended load WR (t/day) and dissolved loads WL were calculated. In the Selenga basin the minimal WR (1,34-3,74 t/day) were found at small rivers. Maximal sediment loads (WR = 15 000 t/day) were found at the upper Orkhon river during flood event. The downstream point (Mongolia-Russia border) was characterized 2 220 t/day in 2011. Generally the prevalence of the accumulation is found through calculating sediment budget for all rivers (ΔW = WR (downstream) - WR (upstream) < 0). Downstream of Orkhon river (below confluence with Tuul) ΔW = - 1145 t/day. Below Selenga-Orkhon confluence sediment yield reached 2515 t/day, which is corresponded to transboundary sediment flux. Silt sediments (0,001 - 0,05 mm) form the main portion of the transported material. The maximal value of sand flux (302 t/day) was reported for middle stream station of Selenga river (upstream from confluence with Orkhon). The increase of human activities (mining and pastures) increases the portion of clay particles in total sediment load (e.g. at the downstream point of most polluted Orkhon river it reached 207,8 t/day). The existed estimates are compared with distribution of the main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of

  14. Managing the water-energy-food nexus: Gains and losses from new water development in Amu Darya River Basin

    NASA Astrophysics Data System (ADS)

    Jalilov, Shokhrukh-Mirzo; Keskinen, Marko; Varis, Olli; Amer, Saud; Ward, Frank A.

    2016-08-01

    According to the UN, the population of Central Asia will increase from its current approximately 65 million people to a well over 90 million by the end of this century. Taking this increasing population into consideration, it is impossible to project development strategies without considering three key factors in meeting the demands of a growing population: water, food and energy. Societies will have to choose, for instance, between using land and fertilizer for food production or for bio-based or renewable energy production, and between using fresh water for energy production or for irrigating crops. Thus water, food and energy are inextricably linked and must be considered together as a system. Recently, tensions among the Central Asian countries over the use of water for energy and energy production have increased with the building of Rogun Dam on the Vakhsh River, a tributary of the Amu Darya River. The dam will provide upstream Tajikistan with hydropower, while downstream countries fear it could negatively impact their irrigated agriculture. Despite recent peer reviewed literature on water resources management in Amu Darya Basin, none to date have addressed the interconnection and mutual impacts within water-energy-food systems in face of constructing the Rogun Dam. We examine two potential operation modes of the dam: Energy Mode (ensuring Tajikistan's hydropower needs) and Irrigation Mode (ensuring water for agriculture downstream). Results show that the Energy Mode could ensure more than double Tajikistan's energy capacity, but would reduce water availability during the growing season, resulting in an average 37% decline in agricultural benefits in downstream countries. The Irrigation Mode could bring a surplus in agricultural benefits to Tajikistan and Uzbekistan in addition an increasing energy benefits in Tajikistan by two fold. However, energy production in the Irrigation Mode would be non-optimally distributed over the seasons resulting in the most of

  15. Twinning European and South Asian river basins to enhance capacity and implement adaptive integrated water resources management approaches - results from the EC-project BRAHMATWINN

    NASA Astrophysics Data System (ADS)

    Flügel, W.-A.

    2011-04-01

    The EC-project BRAHMATWINN was carrying out a harmonised integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs of the twinning Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basins (UBRB) in Europe and Southeast Asia respectively. Social and natural scientists in cooperation with water law experts and local stakeholders produced the project outcomes presented in Chapter 2 till Chapter 10 of this publication. BRAHMATWINN applied a holistic approach towards IWRM comprising climate modelling, socio-economic and governance analysis and concepts together with methods and integrated tools of applied Geoinformatics. A detailed description of the deliverables produced by the BRAHMATWINN project is published on the project homepage http://www.brahmatwinn.uni-jena.de.

  16. Institutional and legal arrangements in the Nile river basin: suggestions to improve the current situation toward adaptive integrated water resources management.

    PubMed

    Abdalla, Khalid Mohamed El Hassan

    2008-01-01

    A comparative study was conducted in this work in order to investigate the current situation in the Nile river basin (NRB) regarding the institutional and legal arrangements needed to support the adaptive integrated water resources management (AIWRM) strategy. Two similar river basins were selected to achieve this comparison and to introduce suggestions to reform the current situation in the basin. Before that, the ideal situation is investigated to be as a yardstick for the desired situation. The study indicated that the necessary AIWRM criteria may include regulatory as well as implementation organizations that support shared-vision reaching with its all necessary features (cooperation, stakeholders' participation, subsidiarity, and information and knowledge exchange). Thus the main features of the desired situations regarding AIWRM in river basins are stakeholders' participation, learning-driven ability, quick response to risks and uncertainties, and finally a legal framework that could support these criteria. Although the AIWRM criteria seem to be satisfied in NRB, the basin lacks the necessary regulatory institutions as well as the legal framework. According to this, this study recommends to reform the current situation in NRB by creating regulator institutions (policy and decision making level) as well a legal framework to legitimate them.

  17. Effects of Water-Management Strategies on Water Resources in the Pawcatuck River Basin, Southwestern Rhode Island and Southeastern Connecticut

    USGS Publications Warehouse

    Breault, Robert F.; Zarriello, Phillip J.; Bent, Gardner C.; Masterson, John P.; Granato, Gregory E.; Scherer, J. Eric; Crawley, Kathleen M.

    2009-01-01

    The Pawcatuck River Basin in southwestern Rhode Island and southeastern Connecticut is an important high-quality water resource for domestic and public supplies, irrigation, recreation, and the aquatic ecosystem. Concerns about the effects of water withdrawals on aquatic habitat in the basin have prompted local, State, and Federal agencies to explore water-management strategies that minimize the effects of withdrawals on the aquatic habitat. As part of this process, the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture Natural Resources Conservation Service and the Rhode Island Water Resources Board completed a study to assess the effects of current (2000-04) and potential water withdrawals on streamflows and groundwater levels using hydrologic simulation models developed for the basin. The major findings of the model simulations are: *Moving highly variable seasonal irrigation withdrawals from streams to groundwater wells away from streams reduces short-term fluctuations in streamflow and increases streamflow in the summer when flows are lowest. This occurs because of the inherent time lag between when water is withdrawn from the aquifer and when it affects streamflow. *A pumped well in the vicinity of small streams indicates that if withdrawals exceed available streamflow, groundwater levels drop substantially as a consequence of water lost from aquifer storage, which may reduce the time wetlands and vernal pools are saturated, affecting the animal and plant life that depend on these habitats. *The effects of pumping on water resources such as ponds, streams, and wetlands can be minimized by relocating pumping wells, implementing seasonal pumping schemes that utilize different wells and pumping rates, or both. *The effects of projected land-use change, mostly from forest to low- and medium density housing, indicate only minor changes in streamflow at the subbasin scale examined; however, at a local scale, high flows could increase, and

  18. Recovery and management options for spring/summer chinook salmon in the Columbia River basin.

    PubMed

    Kareiva, P; Marvier, M; McClure, M

    2000-11-03

    Construction of four dams on the lower Snake River (in northwestern United States) between 1961 and 1975 altered salmon spawning habitat, elevated smolt and adult migration mortality, and contributed to severe declines of Snake River salmon populations. By applying a matrix model to long-term population data, we found that (i) dam passage improvements have dramatically mitigated direct mortality associated with dams; (ii) even if main stem survival were elevated to 100%, Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) would probably continue to decline toward extinction; and (iii) modest reductions in first-year mortality or estuarine mortality would reverse current population declines.

  19. Yazoo River Basin (Lower Mississippi River) Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Davidson, G.; Altinakar, M.; Holt, R.

    2004-12-01

    The proposed Yazoo River Basin Hydrologic Observatory consists of the 34,000 square km Yazoo River watershed in northwestern Mississippi and a 320 km segment of the Mississippi River separated from the watershed by a manmade levee. Discharge from the basin flows from the Yazoo River into the Mississippi River north of Vicksburg, MS. Major streams within the basin include the Yazoo, Tallahatchie, Yalobusha, Coldwater, Yocona, and Big Sunflower Rivers. Four large flood control reservoirs (Arkabutla, Enid, Sardis, and Grenada) and two national forests (Delta and Holly Springs) are also located within the basin. The watershed is divided between upland forested hills and intensively cultivated lowlands. The lowland area, locally known as the "Delta", lies on the ancestral floodplain of the Mississippi River. Flooding by the Mississippi River was once a common event, but is now limited by the levee system. Abundant wetlands occupy abandoned stream channels throughout the Delta. The Yazoo River Basin has many unique features that make it an attractive site for an Hydrologic Observatory. Example features and issues of scientific interest include: 1) Extensive system of levees which have altered recharge to the regional aquifer, shifted population centers, and created backwater flooding areas. 2) Abundant wetlands with a century-long history of response to agricultural sediment and chemical fluxes. 3) Erosion of upland streams, and stream sediment loads that are the highest in the nation. 4) Groundwater mining in spite of abundant precipitation due to a regional surface clay layer that limits infiltration. 5) A history of agricultural Best Management Practices enabling evaluation of the effectiveness of such measures. 6) Large scale catfish farming with heavy reliance on groundwater. 7) Near enough to the Gulf coast to be impacted by hurricane events. 8) Already existing network of monitoring stations for stream flow, sediment-load, and weather, including complete coverage

  20. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    NASA Astrophysics Data System (ADS)

    Stillwell, Ashlynn S.; Clayton, Mary E.; Webber, Michael E.

    2011-07-01

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights—a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions—a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m3—enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  1. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  2. Appraisal of shallow ground-water resources and management alternatives in the Upper Peace and Eastern Alafia River Basins, Florida

    USGS Publications Warehouse

    Hutchinson, C.B.

    1978-01-01

    In southwest Florida, the shallow aquifer system underlying the 1,250-square-mile upper Peace and eastern Alafia River basins is a relatively untapped source of supply. The aquifer system ranges between 50 and 300 feet thick and is composed of a surficial sand unit underlain by a limestone unit. Sand and clay confining beds separate the shallow aquifer system from the highly productive, extensively developed deep aquifer system. The hydrologic budget of the area indicates that annual leakage of water from the shallow to the deep aquifer system is 2.6 inches while annual pumpage from the deep aquifer system averages 5.5 inches. Management alternatives to be considered for efficient use of the shallow ground-water resources include development by withdrawal wells or connector wells for recharge. One solution for a gridded network of wells consists of 540 wells spaced 7,000 feet apart, each producing 453 gallons per minute. The network would derive water to meet demand by capturing water that would normally have run off evapotranspired. (Woodard-USGS)

  3. Representing Geospatial Environment Observation Capability Information: A Case Study of Managing Flood Monitoring Sensors in the Jinsha River Basin

    PubMed Central

    Hu, Chuli; Guan, Qingfeng; Li, Jie; Wang, Ke; Chen, Nengcheng

    2016-01-01

    Sensor inquirers cannot understand comprehensive or accurate observation capability information because current observation capability modeling does not consider the union of multiple sensors nor the effect of geospatial environmental features on the observation capability of sensors. These limitations result in a failure to discover credible sensors or plan for their collaboration for environmental monitoring. The Geospatial Environmental Observation Capability (GEOC) is proposed in this study and can be used as an information basis for the reliable discovery and collaborative planning of multiple environmental sensors. A field-based GEOC (GEOCF) information representation model is built. Quintuple GEOCF feature components and two GEOCF operations are formulated based on the geospatial field conceptual framework. The proposed GEOCF markup language is used to formalize the proposed GEOCF. A prototype system called GEOCapabilityManager is developed, and a case study is conducted for flood observation in the lower reaches of the Jinsha River Basin. The applicability of the GEOCF is verified through the reliable discovery of flood monitoring sensors and planning for the collaboration of these sensors. PMID:27999247

  4. Representing Geospatial Environment Observation Capability Information: A Case Study of Managing Flood Monitoring Sensors in the Jinsha River Basin.

    PubMed

    Hu, Chuli; Guan, Qingfeng; Li, Jie; Wang, Ke; Chen, Nengcheng

    2016-12-16

    Sensor inquirers cannot understand comprehensive or accurate observation capability information because current observation capability modeling does not consider the union of multiple sensors nor the effect of geospatial environmental features on the observation capability of sensors. These limitations result in a failure to discover credible sensors or plan for their collaboration for environmental monitoring. The Geospatial Environmental Observation Capability (GEOC) is proposed in this study and can be used as an information basis for the reliable discovery and collaborative planning of multiple environmental sensors. A field-based GEOC (GEOCF) information representation model is built. Quintuple GEOCF feature components and two GEOCF operations are formulated based on the geospatial field conceptual framework. The proposed GEOCF markup language is used to formalize the proposed GEOCF. A prototype system called GEOCapabilityManager is developed, and a case study is conducted for flood observation in the lower reaches of the Jinsha River Basin. The applicability of the GEOCF is verified through the reliable discovery of flood monitoring sensors and planning for the collaboration of these sensors.

  5. Water resources of Wisconsin, Pecatonica-Sugar River basin

    USGS Publications Warehouse

    Hindall, S.M.; Skinner, Earl L.

    1973-01-01

    The purpose of this report is to describe the physical environment, availability, characteristics, distribution, movement, and quailty of water in the Pecatonica-Sugar River basin.  In addition, water use and water problems are summarized to give an understanding of man's management of water within the basin.

  6. Elements of an environmental decision support system for seasonal wetland salt management in a river basin subjected to water quality regulation

    SciTech Connect

    Quinn, N.W.T.

    2009-06-01

    Seasonally managed wetlands in the Grasslands Basin on the west-side of California's San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the San Joaquin River and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality management has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the San Joaquin River. Past attempts to build environmental monitoring and decision support systems (EDSS's) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the San Joaquin River Basin.

  7. [Health assessment of river ecosystem in Haihe River Basin, China].

    PubMed

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  8. Managing drought risk with a computer model of the Raritan River Basin water-supply system in central New Jersey

    USGS Publications Warehouse

    Dunne, Paul; Tasker, Gary

    1996-01-01

    The reservoirs and pumping stations that comprise the Raritan River Basin water-supply system and its interconnections to the Delaware-Raritan Canal water-supply system, operated by the New Jersey Water Supply Authority (NJWSA), provide potable water to central New Jersey communities. The water reserve of this combined system can easily be depleted by an extended period of below-normal precipitation. Efficient operation of the combined system is vital to meeting the water-supply needs of central New Jersey. In an effort to improve the efficiency of the system operation, the U.S. Geological Survey (USGS), in cooperation with the NJWSA, has developed a computer model that provides a technical basis for evaluating the effects of alternative patterns of operation of the Raritan River Basin water-supply system. This fact sheet describes the model, its technical basis, and its operation.

  9. Identifying mismatches between institutional perceptions of water-related risk drivers and water management strategies in three river basin areas

    NASA Astrophysics Data System (ADS)

    Räsänen, Aleksi; Juhola, Sirkku; Monge Monge, Adrián; Käkönen, Mira; Kanninen, Markku; Nygren, Anja

    2017-07-01

    Water-related risks and vulnerabilities are driven by variety of stressors, including climate and land use change, as well as changes in socio-economic positions and political landscapes. Hence, water governance, which addresses risks and vulnerabilities, should target multiple stressors. We analyze the institutional perceptions of the drivers and strategies for managing water-related risks and vulnerabilities in three regionally important river basin areas located in Finland, Mexico, and Laos. Our analysis is based on data gathered through participatory workshops and complemented by qualitative content analysis of relevant policy documents. The identified drivers and proposed risk reduction strategies showed the multidimensionality and context-specificity of water-related risks and vulnerabilities across study areas. Most of the identified drivers were seen to increase risks, but some of the drivers were positive trends, and drivers also included also policy instruments that can both increase or decrease risks. Nevertheless, all perceived drivers were not addressed with suggested risk reduction strategies. In particular, most of the risk reduction strategies were incremental adjustments, although many of the drivers classified as most important were large-scale trends, such as climate change, land use changes and increase in foreign investments. We argue that there is a scale mismatch between the identified drivers and suggested strategies, which questions the opportunity to manage the drivers by single-scale incremental adjustments. Our study suggests that for more sustainable risk and vulnerability reduction, the root causes of water-related risks and vulnerabilities should be addressed through adaptive multi-scale governance that carefully considers the context-specificity and the multidimensionality of the associated drivers and stressors.

  10. Valuing investments in sustainable land management in the Upper Tana River basin, Kenya.

    PubMed

    Vogl, Adrian L; Bryant, Benjamin P; Hunink, Johannes E; Wolny, Stacie; Apse, Colin; Droogers, Peter

    2016-11-01

    We analyze the impacts of investments in sustainable land use practices on ecosystem services in the Upper Tana basin, Kenya. This work supports implementation of the Upper Tana-Nairobi Water Fund, a public-private partnership to safeguard ecosystem service provision and food security. We apply an integrated modelling framework, building on local knowledge and previous field- and model-based studies, to link biophysical landscape changes at high temporal and spatial resolution to economic benefits for key actors in the basin. The primary contribution of this study is that it a) presents a comprehensive analysis for targeting interventions that takes into account stakeholder preferences, local environmental and socio-economic conditions, b) relies on detailed, process-based, biophysical models to demonstrate the biophysical return on those investments for a practical, decision-driven case, and c) in close collaboration with downstream water users, links those biophysical outputs to monetary metrics, including: reduced water treatment costs, increased hydropower production, and crop yield benefits for agricultural producers in the conservation area. This study highlights the benefits and trade-offs that come with conducting participatory research as part of a stakeholder engagement process: while results are more likely to be decision-relevant within the local context, navigating stakeholder expectations and data limitations present ongoing challenges.

  11. Environmental sensor networks and continuous data quality assurance to manage salinity within a highly regulated river basin

    SciTech Connect

    Quinn, N.W.T.; Ortega, R.; Holm, L.

    2010-01-05

    This paper describes a new approach to environmental decision support for salinity management in the San Joaquin Basin of California that focuses on web-based data sharing using YSI Econet technology and continuous data quality management using a novel software tool, Aquarius.

  12. From Management to Negotiation: Technical and Institutional Innovations for Integrated Water Resource Management in the Upper Comoé River Basin, Burkina Faso

    NASA Astrophysics Data System (ADS)

    Roncoli, Carla; Kirshen, Paul; Etkin, Derek; Sanon, Moussa; Somé, Léopold; Dembélé, Youssouf; Sanfo, Bienvenue J.; Zoungrana, Jacqueline; Hoogenboom, Gerrit

    2009-10-01

    This study focuses on the potential role of technical and institutional innovations for improving water management in a multi-user context in Burkina Faso. We focus on a system centered on three reservoirs that capture the waters of the Upper Comoé River Basin and servicing a diversity of users, including a sugar manufacturing company, a urban water supply utility, a farmer cooperative, and other downstream users. Due to variable and declining rainfall and expanding users’ needs, drastic fluctuations in water supply and demand occur during each dry season. A decision support tool was developed through participatory research to enable users to assess the impact of alternative release and diversion schedules on deficits faced by each user. The tool is meant to be applied in the context of consultative planning by a local user committee that has been created by a new national integrated water management policy. We contend that both solid science and good governance are instrumental in realizing efficient and equitable water management and adaptation to climate variability and change. But, while modeling tools and negotiation platforms may assist users in managing climate risk, they also introduce additional uncertainties into the deliberative process. It is therefore imperative to understand how these technological and institutional innovations frame water use issues and decisions to ensure that such framing is consistent with the goals of integrated water resource management.

  13. Estimating Recreation Visitation Response to Forest Management Alternatives in the Columbia River Basin

    Treesearch

    Donald B.K. English; Amy Horne

    1996-01-01

    To evaluate how forest management alternatives affect recreation visitation, managers need to know both the changes in demand for the sites being altered and the general changes in regional recreation trip production. This paper shows one way to obtain that information. Trip-generation models developed for the United States Forest Service's national assessments of...

  14. "Climate change impact on water resources - a challenge for IWRM". BRAHMATWINN - Twinning European and South Asian River Basins to enhance capacity and implement adaptive management approaches

    NASA Astrophysics Data System (ADS)

    Bartosch, A.; Pechstädt, J.; Müller Schmied, H.; Flügel, W.-A.

    2009-04-01

    BRAHMATWINN addresses climate change impact of the hydrology of two macro-scale river basins having headwaters in alpine mountain massifs. The project will elaborate on the consequential vulnerability of present IWRM and river basin management that have been persistent in these basins during the past decades and will develop tested approaches and technologies for adaptive IWRM and resilience. The overall objective of BRAHMATWINN is to enhance and improve capacity to carry out a harmonized integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs in respect to impacts from likely climate change, and to transfer professional IWRM expertise, approaches and tools based on case studies carried out in twinning European and Asian river basins, the Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB). Sustainable IWRM in river basins of such kind face common problems: (i) floods e.g. during spring melt or heavy storms and droughts during summer; (ii) competing water demands for agriculture, hydropower, rural, urban and industrial development, and the environment; (iii) pollution from point as well as diffuse sources; and (iv) socio-economic and legal issues related to water allocation. Besides those common topics both basins also differ in other issues requiring the adaptation of the IWRM tools; these are for example climate conditions, the density of monitoring network, political framework and trans-boundary conflicts. An IWRM has to consider all water-related issues like the securing of water supply for the population in sufficient quantity and quality, the protection of the ecological function of water bodies and it has to consider the probability of natural hazards like floods and droughts. Furthermore the resource water should be threatened in a way that the needs of future generations can be satisfied. Sustainable development is one of the

  15. Cost-Effective Mitigation of Diffuse Pollution: Setting Criteria for River Basin Management at Multiple Locations

    NASA Astrophysics Data System (ADS)

    Hutchins, Mike; Fezzi, Carlo; Bateman, Ian; Posen, Paulette; Deflandre-Vlandas, Amelie

    2009-08-01

    A case study of the Yorkshire Derwent (UK) catchment is used to illustrate an integrated approach for assessing the viability of policy options for reducing diffuse nitrate losses to waterbodies. For a range of options, modeling methods for simulating river nitrate levels are combined with techniques for estimating the economic costs to agriculture of modifying those levels. By incorporating spatially explicit data and information on catchment residence times (which may span many decades particularly in areas of groundwater discharge) a method is developed for efficient spatial targeting of measures, for example, to the most at-risk freshwater environments. Combining hydrological and economic findings, the analysis reveals that, in terms of cost-effectiveness, the ranking of options is highly sensitive to both (i) whether or not specific stretches of river within a catchment are regarded as a priority for protection, and (ii) the criterion of nitrate concentration deemed most appropriate as an indicator of the health of the environment. Therefore, given the focus under European legislation upon ecological status of freshwaters, these conclusions highlight the need to improve understanding of mechanistic linkages between the chemical and biological dynamics of aquatic systems.

  16. Future Water Management in the South Platte River Basin: Impacts of Hydraulic Fracturing, Population, Agriculture, and Climate Change in a Semi-Arid Region.

    NASA Astrophysics Data System (ADS)

    Walker, E. L.; Hogue, T. S.; Anderson, A. M.; Read, L.

    2015-12-01

    In semi-arid basins across the world, the gap between water supply and demand is growing due to climate change, population growth, and shifts in agriculture and unconventional energy development. Water conservation efforts among residential and industrial water users, recycling and reuse techniques and innovative regulatory frameworks for water management strive to mitigate this gap, however, the extent of these strategies are often difficult to quantify and not included in modeling water allocations. Decision support systems (DSS) are purposeful for supporting water managers in making informed decisions when competing demands create the need to optimize water allocation between sectors. One region of particular interest is the semi-arid region of the South Platte River basin in northeastern Colorado, where anthropogenic and climatic effects are expected to increase the gap between water supply and demand in the near future. Specifically, water use in the South Platte is impacted by several high-intensity activities, including unconventional energy development, i.e. hydraulic fracturing, and large withdrawals for agriculture; these demands are in addition to a projected population increase of 100% by 2050. The current work describes the development of a DSS for the South Platte River basin, using the Water Evaluation and Planning system software (WEAP) to explore scenarios of how variation in future water use in the energy, agriculture, and municipal sectors will impact water allocation decisions. Detailed data collected on oil and gas water use in the Niobrara shale play will be utilized to predict future sector use. We also employ downscaled climate projections for the region to quantify the potential range of water availability in the basin under each scenario, and observe whether or not, and to what extent, climate may impact management decisions at the basin level.

  17. Do agents' characteristics affect their valuation of 'common pool' resources? A full-preference ranking analysis for the value of sustainable river basin management.

    PubMed

    González Dávila, Osiel; Koundouri, Phoebe; Pantelidis, Theologos; Papandreou, Andreas

    2017-01-01

    In this paper we develop a full-preference ranking Choice Experiment (CE) designed to investigate how respondents evaluate a set of proposed improvements towards sustainable river basin management, as per the prescriptions of the European Union-Water Framework Directive (2000). The CE is applied in the Asopos River Basin (ARB) in Greece. Our interest is to test whether residency in the river basin, or otherwise, affects the preferences of the relevant agents. We first estimate a rank-ordered logistic regression based on a full set of choices in order to calculate the willingness to pay (WTP) of respondents for each one of the three attributes considered in the CE (i.e., environmental conditions, impact on the local economy and changes in the potential uses of water). The model is initially estimated for the full sample and then re-estimated twice for two sub-samples: the first one only includes the residents of Athens and the second only includes the residents of Asopos. Afterwards, we examine the effect of various demographic and socio-economic factors (such as income, gender, age, employment and education) on the estimates of our model in order to reveal any differences among respondents with different characteristics, mainly focusing on whether they reside or have personal experience of the RB under valuation. Thus, our analysis simultaneously provides a robustness check on previous findings in the literature and additional information about how various demographic and socio-economic characteristics affect the evaluation of the selected attributes.

  18. Upper Colorado River Basin Climate Effects Network

    USGS Publications Warehouse

    Belnap, Jayne; Campbell, Donald; Kershner, Jeff

    2011-01-01

    The Upper Colorado River Basin (UCRB) Climate Effects Network (CEN) is a science team established to provide information to assist land managers in future decision making processes by providing a better understanding of how future climate change, land use, invasive species, altered fire cycles, human systems, and the interactions among these factors will affect ecosystems and the services they provide to human communities. The goals of this group are to (1) identify science needs and provide tools to assist land managers in addressing these needs, (2) provide a Web site where users can access information pertinent to this region, and (3) provide managers technical assistance when needed. Answers to the team's working science questions are intended to address how interactions among climate change, land use, and management practices may affect key aspects of water availability, ecosystem changes, and societal needs within the UCRB.

  19. Conceptual and numerical models for sustainable groundwater management in the Thaphra area, Chi River Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Nettasana, Tussanee; Craig, James; Tolson, Bryan

    2012-11-01

    Sustainable management of groundwater resources is vital for development of areas at risk from water-resource over-exploitation. In northeast Thailand, the Phu Thok aquifer is an important water source, particularly in the Thaphra area, where increased groundwater withdrawals may result in water-level decline and saline-water upconing. Three-dimensional finite-difference flow models were developed with MODFLOW to predict the impacts of future pumping on hydraulic heads. Four scenarios of pumping and recharge were defined to evaluate the system response to future usage and climate conditions. Primary model simulations show that groundwater heads will continue to decrease by 4-12 m by the year 2040 at the center of the highly exploited area, under conditions of both increasing pumping and drought. To quantify predictive uncertainty in these estimates, in addition to the primary conceptual model, three alternative conceptual models were used in the simulation of sustainable yields. These alternative models show that, for this case study, a reasonable degree of uncertainty in hydrostratigraphic interpretation is more impactful than uncertainty in recharge distribution or boundary conditions. The uncertainty-analysis results strongly support addressing conceptual-model uncertainty in the practice of groundwater-management modeling. Doing so will better assist decision makers in selecting and implementing robust sustainable strategies.

  20. Research on the water resources regulation ability model of dams in the Huai He River Basin considering ecological and management factors

    NASA Astrophysics Data System (ADS)

    Shui, Y.; Liu, H. C.; Li, L. H.; Yu, G. G.; Liu, J.

    2016-08-01

    Research that assesses the scheduling ability of dams gamers a great deal of attention due to the global water resource crisis. These studies can provide useful and practical suggestions for scheduling the water resources of dams to solve problems, such as addressing ecological water needs and so on. Recent studies have primarily evaluated the schedule ability of dams according to their quantifiable attributes, such as water quantity, flow velocity, etc. However, the ecological and management status can directly determine the possibility and efficiency of a dam's water resource scheduling. This paper presents an evaluation model to assess the scheduling capacity of dams that takes into consideration ecological and management factors. In the experiment stage, this paper takes the Sha Ying river of the Huai He River Basin as an example to evaluate the scheduling ability of its dams. The results indicate that the proposed evaluation model can provide more precise and practical suggestions.

  1. Establishment of a non-governmental regional approach to La Plata River Basin integrated watershed management promoted throughout three international workshops supported by UN and Japanese agencies, led by ILEC

    NASA Astrophysics Data System (ADS)

    Calcagno, Alberto; Yamashiki, Yosuke; Mugetti, Ana

    2002-08-01

    The La Plata River Basin is one of the largest international river basins in the world, with an area of about 3 million km2. It spreads across five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), and its water resources are essential for their economic development. Together with reservoir development, extensive deforestation, intensive agriculture practices and large urban developments took place in the Paraná, Paraguay and Uruguay basins, affecting environmental conditions and raising important issues concerning water resources use and conservation. Therefore, the need to promote participatory and cooperative efforts among water resources stakeholders, as well as the systematic exchange of information and experiences on common regional problems among organizations and experts from throughout the basin who are devoted to water resources use and management, was reported by researchers and managers gathered at the First and Second International Workshops on Regional Approaches for Reservoir Development and Management in the La Plata River Basin (held in 1991 and 1994). As a concrete response to this need, the efforts of a number of organizations from various countries within the basin, with the support of international and national governmental organizations, resulted in the foundation of La Plata River Basin Environmental Research and Management Network (RIGA) in March 2001. This was within the framework of the Third International Workshop, which was precisely one of the short-term activities included in the RIGA Action Plan. During the preparatory processes for the RIGA Network, the presence of Japanese cooperation supporting the La Plata River Basin Workshops through a non-governmental international organization (ILEC) played an important role in stimulating such an organization-based joint approach in the basin. This outcome, although not originally planned, constituted a welcomed byproduct of its main specific interest in the region, which was the

  2. Assessing the impacts of climate change on agricultural production in the Columbia River basin: incorporating water management

    NASA Astrophysics Data System (ADS)

    Adam, J. C.; Rajagopalan, K.; Stockle, C. O.; Yorgey, G.; Kruger, C. E.; Chinnayakanahalli, K.; Nelson, R.

    2014-12-01

    Changes in global population, food consumption and climate lead to a food security challenge for the future. Water resources, agricultural productivity and the relationships between them will to a large extent dictate how we address this challenge. Although food security is a global issue, impacts of climate change on water resources and agricultural productivity, as well as viability of adaptation strategies, are location specific; e.g., it is important to consider the regional regulatory environment. Our work focuses on the Columbia River basin (CRB) of the Pacific Northwest US. The water resources of the CRB are heavily managed to meet competing demands. There also exists a legal system for individuals/groups to obtain rights to use the publicly owned water resources, and the possibility of curtailing (i.e., restricting) some of these water rights in times of shortage. It is important to include an approximation of this water resource regulation and water rights curtailment process in modeling water availability and impacts of water shortages on agricultural production. The overarching objective of this work is to apply an integrated hydrologic-crop-water management modeling framework over the CRB to characterize the impacts of climate change on irrigation water demands, irrigation water availability, water shortages, and associated impacts in the 2030s. Results indicate that climate change has both positive and negative effects on agricultural production in the CRB and this varies by region and crop type. Certain watersheds that are already water stressed are projected to experience increasing stress in the future. Although, climate change results in increased water shortages and water rights curtailment in the region, this does not necessarily translate into an increased negative effect on yields; some crops are projected to increase in yield despite curtailment. This could be attributed to higher water use efficiency under elevated CO2 levels as well crops

  3. 2014 annual summary of the lower Gunnison River Basin Selenium Management Program water-quality monitoring, Colorado

    USGS Publications Warehouse

    Henneberg, Mark F.

    2016-08-10

    Dissolved-selenium loading analyses of data collected at 18 water-quality sites in the lower Gunnison River Basin in Colorado were completed through water year (WY) 2014. A WY is defined as October 1–September 30. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents information on the dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for WYs 2011–2014. Annual dissolved-selenium loads were calculated at 5 sites with continuous U.S. Geological Survey (USGS) streamflow gages, whereas instantaneous dissolved-selenium loads were calculated for the remaining 13 sites using water-quality samples that had been collected periodically during WYs 2011–2014. Annual dissolved-selenium loads for WY 2014 ranged from 336 pounds (lb) at Uncompahgre River at Colona to 13,300 lb at Gunnison River near Grand Junction (Whitewater). Most sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb per day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream.The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved selenium at selected water-quality sites. Annual 85th percentiles for dissolved selenium were calculated for the five core USGS sites having streamflow gages using estimated dissolved-selenium concentrations from linear regression models. These annual 85th percentiles in WY 2014 ranged from 0.97 µg/L at Uncompahgre River at Colona to 16.7 µg/L at Uncompahgre River at Delta. Uncompahgre River at Delta and Whitewater were the only core sites where water samples exceeded the State of Colorado water-quality standard for dissolved selenium of 4.6 µg/L.Instantaneous 85th percentiles for dissolved selenium were calculated for sites with sufficient data

  4. Effects of land use and water management on water quality in the western South New River Canal basin : southeast Florida, 1974-75

    USGS Publications Warehouse

    Waller, B.G.

    1978-01-01

    The South New River Canal (C-11) basin between water-control structures S-9 and S-13 is an area that is primarily undeveloped and the system of waterways within the basin is highly controlled for water-management purposes. Most of the recharge to the canals is by induced ground-water inflow and seepage. The chemical character of the surface and ground waters in inundated areas is mixed calcium-bicarbonate and sodium-chloride type. Inorganic nitrogen concentrations in surface waters are slightly higher in developed areas than in undeveloped areas. Concentrations of inorganic nitrogen in ground water in drained areas are 2-4 times greater than in undeveloped inundated areas. Average orthophosphate concentrations are uniformly low (0.01 to 0.03 milligrams per liter) throughout the basin. Total residue concentrations are fairly uniform throughout the basin and fluctuate primarily in response to hydrologic conditions. Runoff and load-discharge indices indicated that the loads of inorganic nitrogen, total residue, and phosphorus, and the discharge per unit of land drained were uniform throughout most of the basin. (Woodard-USGS)

  5. Bedrock geology and chemistry of rivers basins

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, B.; Miller, M. W.

    2003-04-01

    The lack of modern quantitative estimates of the Earth’s surface geology, one of the key parameters influencing river and ocean chemistry, is striking. While some attempts have been made to quantify the lithologic composition of bedrock in individual river basins (e.g., Reeder et al., 1972; Amiotte-Suchet et al., 2002), the geologic age distribution of bedrock in river basins has not been investigated. We have therefore initiated a project aimed at generating a worldwide dataset on the bedrock lithology and age distribution of river basins, using the latest digital geologic maps and modern geographic information system technology. To date we have completed analysis of the digital geologic maps North America. These data have been used in conjunction with digital river basin polygons (Revenga et al., 1998, World Resources Institute) to compute the lithologic composition and geologic age structure of major river basins in North America. The lithologic composition of 14 large river basins range from predominantly igneous rocks dominated (Frazer, Columbia), to those dominated by sedimentary rocks (Brazos, Susquehanna, Mississippi), to basins with an equal mix of igneous, metamorphic and sedimentary bedrock (Thelon). Subdividing sedimentary rocks into marine and continental rocks reveals that continental sediments account for no more than 25% of sedimentary rocks in these river basins (e.g., Nelson, Colorado, Mississippi). A further subdivision of igneous rocks into intrusive and volcanic rocks reveals the entire range of igneous composition, from basins dominated by intrusive rocks (Hudson, Mackenzie, Nelson) to those dominated by volcanic rocks (Susquehanna, Colorado, Frazer, Columbia). We are currently analyzing the age distribution of major lithologic units in each river basin. In cases where detailed hydrochemical data is available for major tributaries we will expand the analysis to sub-basins (e.g., Frazer, Mississippi). Basins smaller than about 40,000 km^2

  6. International river basins of the world

    USGS Publications Warehouse

    Wolf, Aaron T.; Natharius, Jeffrey A.; Danielson, Jeffrey J.; Ward, Brian S.; Pender, Jan K.

    1999-01-01

    It is becoming acknowledged that water is likely to be the most pressing environmental concern of the next century. Difficulties in river basin management are only exacerbated when the resource crosses international boundaries. One critical aid in the assessment of international waters has been the Register of International Rivers a compendium which listed 214 international waterways that cover 47% of the earth's continental land surface. The Register, though, was last updated in 1978 by the now defunct United Nations Department of Economic and Social Affairs. The purpose of this paper is to update the Register in order to reflect the quantum changes that have taken place over the last 22 years, both in global geopolitics and in map coverage and technology. By accessing digital elevation models at spatial resolutions of 30 arc seconds, corroborating at a unified global map coverage of at least 1:1 000 000, and superimposing the results over complete coverage of current political boundaries, we are able to provide a new register which lists 261 international rivers, covering 45.3% of the land surface of the earth (excluding Antarctica). This paper lists all international rivers with their watershed areas, the nations which share each watershed,their respective territorial percentages, and notes on changes in or disputes over international boundaries since 1978.

  7. Study on river regulation measures of dried-up rivers of Haihe River basin, China.

    PubMed

    Peng, Jing; Li, Shaoming; Qi, Lan

    2013-01-01

    In recent years, the ecological environment of plain rivers within Haihe River basin is questionable because of severe water shortages. Most of the rivers dry up regularly and it is therefore necessary to take measures to improve the river ecological environment. Meanwhile, flood control is the principal function for most of the dried-up rivers, so river regulation works for flood control also should be undertaken. In this paper, some measures of river regulation were selected applied to the Haihe River basin, taking these measures not only ensure the river security but also realize its ecological benefit. Examples of the application of selected measures for the representative rivers, Yongding River and Hutuo River, both located within the Haihe River basin, are also assessed. These measures provide practical solutions to ecological and flood control problems of dried-up rivers, are generic in nature, and could therefore be applied to other same type rivers.

  8. Are calanco landforms similar to river basins?

    PubMed

    Caraballo-Arias, N A; Ferro, V

    2017-12-15

    In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Wu, Feng; Zhang, Qian

    Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers' decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers' response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.

  10. Integrating spatial land use analysis and mathematical material flow analysis for nutrient management: a case study of the Bang Pakong River Basin in Thailand.

    PubMed

    Kupkanchanakul, Wallapa; Kwonpongsagoon, Suphaphat; Bader, Hans-Peter; Scheidegger, Ruth

    2015-05-01

    Rivers in developing and emerging countries often lack good water quality. Tools to assess the water quality in rivers, including identification of possible sources of pollution, are therefore of increasing importance. The aim of this study is to apply mathematical material flow and spatial land use analyses to identify and geographically locate the main nitrogen and phosphorus sources and processes in Bang Pakong Basin (BPB). Potential measures to mitigate the nitrogen and phosphorus loads to the water system can then be efficiently evaluated. The combination of these two methods reveals the overall nutrient load as well as local "hot spots." This allows possible mitigation measures to be discussed with regard to their spatial location. This approach goes beyond previous work in which mathematical material flow analysis was shown to be a useful tool to investigate sources of nutrients regardless of their location. The results show that the main sources contributing nutrients to waterways are aquaculture, such as shrimp, tilapia, catfish, and sea bass farming, as well as rice paddies along the main river. Additional sources contributing nutrients to this basin are field crops, livestock, aquaculture, households, and industry. High levels of nutrient inflows come from feeds and fertilizers through aquaculture and rice cultivation. The excess nutrients run into the waterways by direct discharge from aquaculture and runoff processes from rice paddies. Scenario analysis shows that management practices for aquaculture, rice, pig, and poultry farming are key drivers for reducing nutrients in the BPB.

  11. Integrating Spatial Land Use Analysis and Mathematical Material Flow Analysis for Nutrient Management: A Case Study of the Bang Pakong River Basin in Thailand

    NASA Astrophysics Data System (ADS)

    Kupkanchanakul, Wallapa; Kwonpongsagoon, Suphaphat; Bader, Hans-Peter; Scheidegger, Ruth

    2015-05-01

    Rivers in developing and emerging countries often lack good water quality. Tools to assess the water quality in rivers, including identification of possible sources of pollution, are therefore of increasing importance. The aim of this study is to apply mathematical material flow and spatial land use analyses to identify and geographically locate the main nitrogen and phosphorus sources and processes in Bang Pakong Basin (BPB). Potential measures to mitigate the nitrogen and phosphorus loads to the water system can then be efficiently evaluated. The combination of these two methods reveals the overall nutrient load as well as local "hot spots." This allows possible mitigation measures to be discussed with regard to their spatial location. This approach goes beyond previous work in which mathematical material flow analysis was shown to be a useful tool to investigate sources of nutrients regardless of their location. The results show that the main sources contributing nutrients to waterways are aquaculture, such as shrimp, tilapia, catfish, and sea bass farming, as well as rice paddies along the main river. Additional sources contributing nutrients to this basin are field crops, livestock, aquaculture, households, and industry. High levels of nutrient inflows come from feeds and fertilizers through aquaculture and rice cultivation. The excess nutrients run into the waterways by direct discharge from aquaculture and runoff processes from rice paddies. Scenario analysis shows that management practices for aquaculture, rice, pig, and poultry farming are key drivers for reducing nutrients in the BPB.

  12. Snow Water Equivalent for Tuolumne River Basin

    NASA Image and Video Library

    2013-05-02

    NASA Airborne Snow Observatory measurements of snow water equivalent top image and snow albedo, or reflectivity bottom image for the Tuolumne River Basin in California Sierra Nevada on April 21, 2013.

  13. Program Updates - San Antonio River Basin

    EPA Pesticide Factsheets

    This page will house updates for this urban waters partnership location. As projects progress, status updates can be posted here to reflect the ongoing work by partners in San Antonio working on the San Antonio River Basin.

  14. Potential contribution of ecosystem services associated with altered management activities in the Wabash River watershed to sustainable water management in the Ohio River Basin

    EPA Science Inventory

    The Ohio River (OR) is an important river in North America. It has many different functions for use by humans and wildlife. Water quality of the OR main stem is 50% impaired. The impairment originates from point sources located on the shores of the OR, from non-point sources and ...

  15. Potential contribution of ecosystem services associated with altered management activities in the Wabash River watershed to sustainable water management in the Ohio River Basin

    EPA Science Inventory

    The Ohio River (OR) is an important river in North America. It has many different functions for use by humans and wildlife. Water quality of the OR main stem is 50% impaired. The impairment originates from point sources located on the shores of the OR, from non-point sources and ...

  16. Effects of livestock wastes on small illinois streams: Lower Kaskaskia river basin and upper little wabash river basins, summer 1991

    SciTech Connect

    Hite, R.L.; Bickers, C.A.; King, M.M.; Brockamp, D.W.

    1992-07-01

    In early 1991, the Illinois Environmental Protection Agency (IEPA) initiated an investigation to evaluate livestock waste runoff in southern Illinois. The primary objectives of this survey were to document stream quality impairments caused by livestock waste runoff, and ultimately, the need for better waste management practices, waste management systems, and funding for such systems. Information provided by Soil Conservation Service (SCS) and IEPA Agricultural staff identified an area in Clinton and Bond Counties in the Kaskaskia River basin and several upper Little Wabash River basin tributaries in Effingham and Cumberland Counties as candidate project areas.

  17. Combining Remote Sensing and Multi-Agent Simulation to Assess Alternative Water Management Policies in Conflict-Prone Areas - The Case of the Yarmouk River Basin

    NASA Astrophysics Data System (ADS)

    Avisse, N.; Tilmant, A.; Zhang, H.; Talozi, S.; Muller, M. F.; Rajsekhar, D.; Yoon, J.; Gorelick, S.

    2016-12-01

    The Yarmouk River, the main tributary to the Jordan River, is shared but not jointly managed by three countries: Syria, Jordan and Israel. Political distrust and conflicts mean that the equitable sharing of its waters has never materialized despite the signature of bilateral agreements. This state of affairs culminated in the 90ies and led to a rapid change in the flow regime of the Yarmouk River, where both peak and base flows almost disappeared at the turn of the millennium. Jordan blames Syria for building more dams than agreed on in 1987, while Syria blames Israel for doing the same in the Golan Heights. Even though less water is available for downstream Jordan and Israel, these two countries keep exchanging water, following updated rules since the 1994 Peace Treaty. While both literature and stakeholders in the region concur that most freshwater resources are consumed in Syria, there is actually no study that tracks agricultural and storage changes, both legal and illegal, in the Yarmouk basin in relation to the flow regime. This exercise is compounded by unavailability of information on water uses due to the long-standing lack of cooperation in the region, an issue exacerbated more recently by the ongoing civil war in Syria. Using a modeling framework based on remote sensing and a multi-agent simulation model, changes in the Yarmouk River flow regime are explained for three different development stages corresponding to the years 1984, 1998 and 2014. Landsat images, coupled with the analysis of land surface temperature, made possible the distinction of rainfed and irrigated crops, as well as the estimation of reservoirs' storage. For each stage, the impact on downstream riparian countries is assessed using a simulation model of the Israel-Jordan Peace Treaty. Other scenarios are also analyzed to assess the effectiveness of alternative policy and cooperation scenarios including water demand management measures in Syria, the reoperation of illegal reservoirs and

  18. Discharge forecasting using MODIS and radar altimetry: potential application for transboundary flood risk management in Niger-Benue River basin

    NASA Astrophysics Data System (ADS)

    Tarpanelli, Angelica; Amarnath, Giriraj; Brocca, Luca; Moramarco, Tommaso

    2016-04-01

    Flooding is one of most widespread natural disasters in the world. Its impact is particularly severe and destructive in Asia and Africa, because the living conditions of some settlements are inadequate to cope with this type of natural hazard. In this context, the estimation of discharge is extremely important to address water management and flood risk assessment. However, the inadequate monitoring network hampers any control and prediction activity that could improve these disastrous situations. In the last few years, remote sensing sensors have demonstrated their effectiveness in retrieving river discharge, especially in supporting discharge nowcasting and forecasting activities. Recently, the potential of radar altimetry was apparent when used for estimating water levels in an ungauged river site with good accuracy. It has also become a very useful tool for estimation and prediction of river discharge. However, the low temporal resolution of radar altimeter observations (10 or 35 days, depending on the satellite mission) may be not suitable for day-by-day hydrological forecasting. Differently, MODerate resolution Imaging Spectroradiometer (MODIS), considering its proven potential for quantifying the variations in discharge of the rivers at daily time resolution may be more suited to this end. For these reasons, MODIS and radar altimetry data were used in this study to predicting and forecasting the river discharge along the Niger-Benue River, where severe flooding with extensive damage to property and loss of lives occurred. Therefore, an effective method to forecast flooding can support efforts towards creating an early warning system. In order to estimate river discharge, four MODIS products (daily, 8-day, and from AQUA and TERRA satellites) connected at three sites (two gauged and one ungauged) were used. The capability of remote sensing sensors to forecast discharge a few days in advance at a downstream section using MODIS and ENVISAT radar altimetry data

  19. Tritium hydrology of the Mississippi River basin

    USGS Publications Warehouse

    Michel, R.L.

    2004-01-01

    In the early 1960s, the US Geological Survey began routinely analysing river water samples for tritium concentrations at locations within the Mississippi River basin. The sites included the main stem of the Mississippi River (at Luling Ferry, Louisiana), and three of its major tributaries, the Ohio River (at Markland Dam, Kentucky), the upper Missouri River (at Nebraska City, Nebraska) and the Arkansas River (near Van Buren, Arkansas). The measurements cover the period during the peak of the bomb-produced tritium transient when tritium concentrations in precipitation rose above natural levels by two to three orders of magnitude. Using measurements of tritium concentrations in precipitation, a tritium input function was established for the river basins above the Ohio River, Missouri River and Arkansas River sampling locations. Owing to the extent of the basin above the Luling Ferry site, no input function was developed for that location. The input functions for the Ohio and Missouri Rivers were then used in a two-component mixing model to estimate residence times of water within these two basins. (The Arkansas River was not modelled because of extremely large yearly variations in flow during the peak of the tritium transient.) The two components used were: (i) recent precipitation (prompt outflow) and (ii) waters derived from the long-term groundwater reservoir of the basin. The tritium concentration of the second component is a function of the atmospheric input and the residence times of the groundwaters within the basin. Using yearly time periods, the parameters of the model were varied until a best fit was obtained between modelled and measured tritium data. The results from the model indicate that about 40% of the flow in the Ohio River was from prompt outflow, as compared with 10% for the Missouri River. Mean residence times of 10 years were calculated for the groundwater component of the Ohio River versus 4 years for the Missouri River. The mass flux of

  20. Tritium hydrology of the Mississippi River basin

    NASA Astrophysics Data System (ADS)

    Michel, Robert L.

    2004-05-01

    In the early 1960s, the US Geological Survey began routinely analysing river water samples for tritium concentrations at locations within the Mississippi River basin. The sites included the main stem of the Mississippi River (at Luling Ferry, Louisiana), and three of its major tributaries, the Ohio River (at Markland Dam, Kentucky), the upper Missouri River (at Nebraska City, Nebraska) and the Arkansas River (near Van Buren, Arkansas). The measurements cover the period during the peak of the bomb-produced tritium transient when tritium concentrations in precipitation rose above natural levels by two to three orders of magnitude. Using measurements of tritium concentrations in precipitation, a tritium input function was established for the river basins above the Ohio River, Missouri River and Arkansas River sampling locations. Owing to the extent of the basin above the Luling Ferry site, no input function was developed for that location. The input functions for the Ohio and Missouri Rivers were then used in a two-component mixing model to estimate residence times of water within these two basins. (The Arkansas River was not modelled because of extremely large yearly variations in flow during the peak of the tritium transient.) The two components used were: (i) recent precipitation (prompt outflow) and (ii) waters derived from the long-term groundwater reservoir of the basin. The tritium concentration of the second component is a function of the atmospheric input and the residence times of the groundwaters within the basin. Using yearly time periods, the parameters of the model were varied until a best fit was obtained between modelled and measured tritium data. The results from the model indicate that about 40% of the flow in the Ohio River was from prompt outflow, as compared with 10% for the Missouri River. Mean residence times of 10 years were calculated for the groundwater component of the Ohio River versus 4 years for the Missouri River. The mass flux of

  1. Modelling the changing cumulative vulnerability to climate-related hazards for river basin management using a GIS-based multicriteria decision approach

    NASA Astrophysics Data System (ADS)

    Hung, Hung-Chih; Wu, Ju-Yu; Hung, Chih-Hsuan

    2017-04-01

    1. Background Asia-Pacific region is one of the most vulnerable areas of the world to climate-related hazards and extremes due to rapid urbanization and over-development in hazard-prone areas. It is thus increasingly recognized that the management of land use and reduction of hazard risk are inextricably linked. This is especially critical from the perspective of integrated river basin management. A range of studies has targeted existing vulnerability assessments. However, limited attention has been paid to the cumulative effects of multiple vulnerable factors and their dynamics faced by local communities. This study proposes a novel methodology to access the changing cumulative vulnerability to climate-related hazards, and to examine the relationship between the attraction factors relevant to the general process of urbanization and vulnerability variability with a focus on a river basin management unit. 2. Methods and data The methods applied in this study include three steps. First, using Intergovernmental Panel on Climate Change's (IPCC) approach, a Cumulative Vulnerability Assessment Framework (CVAF) is built with a goal to characterize and compare the vulnerability to climate-related hazards within river basin regions based on a composition of multiple indicators. We organize these indicator metrics into three categories: (1) hazard exposure; (2) socioeconomic sensitivity, and (3) adaptive capacity. Second, the CVAF is applied by combining a geographical information system (GIS)-based spatial statistics technique with a multicriteria decision analysis (MCDA) to assess and map the changing cumulative vulnerability, comparing conditions in 1996 and 2006 in Danshui River Basin, Taiwan. Third, to examine the affecting factors of vulnerability changing, we develop a Vulnerability Changing Model (VCM) using four attraction factors to reflect how the process of urban developments leads to vulnerability changing. The factors are transport networks, land uses

  2. Metabolic principles of river basin organization.

    PubMed

    Rodriguez-Iturbe, Ignacio; Caylor, Kelly K; Rinaldo, Andrea

    2011-07-19

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics.

  3. Application of an integrative hydro-ecological model to study water resources management in the upper and middle parts of the Yellow River basin

    NASA Astrophysics Data System (ADS)

    Li, Xianglian; Gao, Qiong; Lei, Tingwu; Yang, Xiusheng

    2011-03-01

    This study presents an application of a well-calibrated integrative hydro-ecological model to examine water resources management in the upper and middle parts of the Yellow River basin, an arid and semiarid area in northwestern China. The hydro-ecological model was developed to simulate dynamic and accumulative hydrologic, ecologic, and economic variables at different spatial units. Four water management scenarios based on water use priorities, a business-as-usual scenario, an ecological scenario, an irrigation use efficiency scenario and water use scenario were designed and modeled over the period of 2011-2020 to reflect alternative water management pathways to the future. Water resource conditions were assessed in terms streamflow, actual evapotranspiration, soil water, groundwater yield, overall water yield, and derived indicator of drought index. Unit crop yield was to assess ecological production, and monetary values of crop productivity and water productivity were used to assess economic output. Scenario analysis results suggested that water stress would continue in the study region under both current water use patterns and ecological scenarios of river flow being fully satisfied.Water use scenarios would result in decreased water availability and ecosystem degradation in the long run. Improving irrigation use efficiency would be the most efficient approach in securing long-term water and food supply. The simulation results from this study provided useful information for evaluating long-term water resources management strategies, and will contribute to the knowledge of interdisciplinary modeling for water resources management in the study region.

  4. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin.

    PubMed

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-12-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  5. Water and Benefit Sharing in Transboundary River Basins

    NASA Astrophysics Data System (ADS)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  6. Monitoring micropollutants in the Swist river basin.

    PubMed

    Christoffels, Ekkehard; Brunsch, Andrea; Wunderlich-Pfeiffer, Jens; Mertens, Franz Michael

    2016-11-01

    Micropollutant pathways were studied for the Swist river basin (Western Germany). The aim was to verify the effectiveness of a monitoring approach to detect micropollutants entering the river. In a separate sewer system, water was frequently found to be contaminated with micropollutants. Improper connections of sewage canals to the stormwater network seemed to be the cause of pollution. Wastewater treatment plants (WWTPs) exerted the largest influence on micropollutants for the receiving river. During a flu outbreak, antibiotics in the Swist stemming from WWTPs increased remarkably. Elevated levels of pharmaceuticals were measured in discharges from a combined sewer overflow (CSO). The study showed that the pharmaceutical load of a CSO was significantly reduced by advanced treatment with a retention soil filter. Painkillers, an anticonvulsant and beta blockers were the most often detected pharmaceuticals in the sewage of urban areas. Herbicides, flame retardants and industrial compounds were also observed frequently. On cropland, Chloridazon and Terbuthylazine compounds were often found in landscape runoff. Fungicides and insecticides were the most frequent positive findings in runoff from orchards. The paper shows that a coherent approach to collecting valid information regarding micropollutants and to addressing relevant pathways as a basis for appropriate management strategies could be established.

  7. Dynamic river basin water quality model

    SciTech Connect

    Yearsley, J.

    1991-09-01

    RBM10 is a river basin model for simulating the dynamics of an aquatic ecosystem which has freely-flowing river reaches, river-run reservoirs, and vertically stratified reservoirs. An Eulerian viewpoint is adopted for solving the conservation equations for temperature, dissolved oxygen, nutrients, phytoplankton, bacteria and conservative constituents. The report describes the model development and the computer program which implements the mathematical model.

  8. Modeling groundwater-surface water interactions in an operational setting by linking object- oriented river basin management model (RiverWare) with 3-D finite-difference groundwater model (MODFLOW).

    NASA Astrophysics Data System (ADS)

    Valerio, A.; Rajaram, H.; Zagona, E.

    2007-12-01

    Accurate representation of groundwater-surface water interactions is critical to modeling low river flow periods in riparian environments in the semi-arid southwestern United States. As an example, over-appropriation of human water use in the Middle Rio Grande region adversely impacts the habitat of the endangered Rio Grande silvery minnow. Improved management practices during low flow conditions could prevent channel desiccation and habitat destruction. We present a modeling tool with significant potential for improved decision-making in stream reaches influenced by significant surface-groundwater interactions. While river basin management models typically represent operational complexities such as human elements of water demand and consumption with a high degree of sophistication, they often represent groundwater-surface water interactions semi-empirically or at coarse resolution. In contrast, distributed groundwater models, with an adequately fine grid represent groundwater-surface water interactions accurately, but seldom incorporate complex details of water rights and user demands. To best exploit the strengths of both classes of models, we have developed a link between the object-oriented river management software package RiverWare and the USGS groundwater modeling program MODFLOW. An interactive time stepping approach is used in the linked model. RiverWare and MODFLOW run in parallel exchanging data after each time-step. This linked framework incorporates several features critical to modeling groundwater-surface interactions in riparian zones, including riparian ET, localized variations in seepage rates and rule-based water allocations to users and/or environmental flows, and is expected to be an improved tool for modeling groundwater-surface water interaction in regions where groundwater storage repose to changing river conditions is rapid. The performance of the linked model is illustrated through applications on the Rio Grande in the vicinity of

  9. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  10. Fishes of the White River basin, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  11. Participatory modelling to support decision making in water management under uncertainty: two comparative case studies in the Guadiana river basin, Spain.

    PubMed

    Carmona, Gema; Varela-Ortega, Consuelo; Bromley, John

    2013-10-15

    A participatory modelling process has been conducted in two areas of the Guadiana river (the upper and the middle sub-basins), in Spain, with the aim of providing support for decision making in the water management field. The area has a semi-arid climate where irrigated agriculture plays a key role in the economic development of the region and accounts for around 90% of water use. Following the guidelines of the European Water Framework Directive, we promote stakeholder involvement in water management with the aim to achieve an improved understanding of the water system and to encourage the exchange of knowledge and views between stakeholders in order to help building a shared vision of the system. At the same time, the resulting models, which integrate the different sectors and views, provide some insight of the impacts that different management options and possible future scenarios could have. The methodology is based on a Bayesian network combined with an economic model and, in the middle Guadiana sub-basin, with a crop model. The resulting integrated modelling framework is used to simulate possible water policy, market and climate scenarios to find out the impacts of those scenarios on farm income and on the environment. At the end of the modelling process, an evaluation questionnaire was filled by participants in both sub-basins. Results show that this type of processes are found very helpful by stakeholders to improve the system understanding, to understand each other's views and to reduce conflict when it exists. In addition, they found the model an extremely useful tool to support management. The graphical interface, the quantitative output and the explicit representation of uncertainty helped stakeholders to better understand the implications of the scenario tested. Finally, the combination of different types of models was also found very useful, as it allowed exploring in detail specific aspects of the water management problems. Copyright © 2013 Elsevier

  12. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Regional or river basin planning. 725.7 Section 725.7 Conservation of Power and Water Resources WATER RESOURCES COUNCIL IMPLEMENTATION OF EXECUTIVE ORDERS 11988, FLOODPLAIN MANAGEMENT AND 11990, PROTECTION OF WETLANDS...

  13. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Regional or river basin planning. 725.7 Section 725.7 Conservation of Power and Water Resources WATER RESOURCES COUNCIL IMPLEMENTATION OF EXECUTIVE ORDERS 11988, FLOODPLAIN MANAGEMENT AND 11990, PROTECTION OF WETLANDS...

  14. The Delaware River Basin Landsat-Data Collection System Experiment

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. This experiment successfully demonstrated that standard U.S. Geological Survey field instrumentation could be easily interfaced with the LANDSAT-DCS and the data made to flow smoothly to water resources management agencies. The experiment was conducted in the Delaware River basin. A truly operational system could not be deployed.

  15. A groundwater perspective on the river basin management plan for central Portugal - developing a methodology to assess the potential impact of N fertilizers on groundwater bodies.

    PubMed

    Mendes, M P; Ribeiro, L; Nascimento, J; Condesso de Melo, T; Stigter, T Y; Buxo, A

    2012-01-01

    The Water Framework Directive establishes that the river basin management plans must have a summary of the pressures and impacts of human activities, such as agriculture, on the chemical and quantitative status of groundwater bodies. In order to identify those areas where a potential impact from agricultural activities on groundwater bodies exists, but currently lacking groundwater monitoring data, a methodology was developed that combines the use of gross nitrogen balance values with the results of a specific vulnerability assessment index. A farm management efficiency parameter is added, to identify the factors that contribute to nitrogen use efficiency and to assess the near-future scenarios. This methodology allows the identification of significant pressures that may be responsible for a groundwater body failing good status where there is no representative monitoring network.

  16. Irrigation drainage: Green River basin, Utah

    USGS Publications Warehouse

    Stephens, Doyle W.; Waddell, Bruce; Miller, Jerry B.

    1988-01-01

    A reconnaissance of wildlife areas in the middle Green River basin of Utah during 1986-87 determined that concentrations of selenium in water and biological tissues were potentially harmful to wildlife at the Stewart Lake Waterfowl Management Area and in the Ouray National Wildlife Refuge. Concentations of selenium in irrigation drainage entering Stewart Lake ranged from 14 to 140 micrograms per liter; liver tissue from coots collected from the lake contained selenium concentrations of as much as 26 micrograms per gram and samples of tissue from carp contained as much as 31 micrograms per gram. Concentrations of selenium in a pond at the Ouray National Wildlife Refuge, which receives irrigation water and shallow ground water, were as much as 93 micrograms per liter. Liver tissue from coots collected from this pond contained selenium concentrations of as much as 43 micrograms per gram; eggs of water birds contained as much as 120 micrograms per gram.

  17. Paraguay river basin response to seasonal rainfall

    NASA Astrophysics Data System (ADS)

    Krepper, Carlos M.; García, Norberto O.; Jones, Phil D.

    2006-07-01

    The use of river flow as a surrogate to study climatic variability implies the assumption that changes in rainfall are mirrored and likely amplified in streamflow. This is probably not completely true in large basins, particularly those that encompass different climatic regions, like the Paraguay river basin. Not all the signals present in precipitation are reflected in river flow and vice versa. The complex relationship between precipitation and streamflow could filter some signals and introduce new oscillatory modes in the discharge series. In this study the whole basin (1 095 000 km2) was divided into two sub-basins. The upper basin is upstream of the confluence with the River Apa and the lower basin is between the Apa river confluence and the Puerto Bermejo measuring station. The rainfall contribution shows a clear wet season from October to March and a dry season from April to September. A singular spectrum analysis (SSA) shows that there are trends in rainfall contributions over the upper and lower basins. Meanwhile, the lower basin only presents a near-decadal cycle (T 10 years). To determine the flow response to seasonal rainfall contributions, an SSA was applied to seasonal flow discharges at Puerto Bermejo. The seasonal flows, Q(t)O-M and Q(t)A-S, present high significant modes in the low-frequency band, like positive trends. In addition, Q(t)O-M presents a near-decadal mode, but only significant at the 77% level for short window lengths (M ≤ 15 years). Really, the Paraguay river flow is not a good surrogate to study precipitation variation. The low-frequency signals play an important role in the flow behaviour, especially during extreme events from the second half of the last century onwards.

  18. Evaluating the evolution of the Heihe River basin using the ecological network analysis: Efficiency, resilience, and implications for water resource management policy.

    PubMed

    Kharrazi, Ali; Akiyama, Tomohiro; Yu, Yadong; Li, Jia

    2016-12-01

    One of the most critical challenges in the anthropocentric age is the sustainable management of the planet's increasingly strained water resources. In this avenue, there is a need to advance holistic approaches and objective tools which allow policy makers to better evaluate system-level properties and trade-offs of water resources. This research contributes to the expanding literature in this area by examining the changes to system-level network configurations of the middle reaches of the Heihe River basin from 2000 to 2009. Specifically, through the ecological network analysis (ENA) approach, this research examines changes to the system-level properties of efficiency, redundancy, and evaluates the trade-offs to the resiliency of ecosystem water services of the middle reaches of the Heihe River basin. Our results indicate that while the efficiency of the middle reaches has increased from 2000 to 2009 by 6% and 78% more water is released to the lower reaches, the redundancy of the system has also decreased by 6%. The lower level of redundancy, particularly due to the changes in the groundwater body levels, has critical long-term consequences for the resilience of the water ecosystem services of the middle reaches. In consideration of these holistic trade-offs, two hypothetical alternative scenarios, based on water recycling and saving strategies, are developed to improve the long-term health and resilience of the water system.

  19. Multidisciplinary work on barium contamination of the karstic upper Kupa River drainage basin (Croatia and Slovenia); calling for watershed management.

    PubMed

    Francisković-Bilinski, S; Bilinski, H; Grbac, R; Zunić, J; Necemer, M; Hanzel, D

    2007-02-01

    The present work was designed as an extension of a previous study of a barium anomaly observed in stream sediments of the Kupa River. In its upper part the Kupa River drains a region underlain by a trans-boundary aquifer. The river is a significant water resource in a region of tourism, sport, and fishing in both Croatia and Slovenia. The contamination source is situated in Homer (Lokve), Croatia, where barite was mined until 10 years ago. The barium processing waste material (<3-mm fraction) was carelessly deposited in gardens, forests, and into a sinkhole, which has an underground link with the Kupica River, a tributary of the Kupa River. Barium waste and stream sediments were analyzed using comparative techniques: X-ray diffraction (XRD), X-ray fluorescence (XRF), Mössbauer spectroscopy, and grain size analysis. XRD of the waste material identified the major minerals quartz, barite, and dolomite and the Fe-containing minor minerals muscovite and goethite. Barite was identified as a minor or trace mineral in the Kupica River sediments. XRF analysis of the waste material has shown Ba and Fe to be the predominant elements, Ca and K to be minor elements, and Mn, Zn, Sr, Pb, Co, Cu, As, Zr, Rb, Y, and Mo to be trace elements. Mössbauer spectroscopy performed at room temperature (RT) was used to study iron minerals, particularly to obtain information on the valence status of Fe ions. Grain size analysis of the waste material (<63-microm fraction) has shown that it contains 23.5% clay-size material in comparison with 7-8% clay-size material in stream sediments. It is our aim to combine geochemical and medical methods to investigate the possible impact of waste disposal on human health in Lokve. At this stage of the work, concentrations of Ba and other toxic elements in the water compartment of the Kupica River (a source of drinking water) have not been monitored by Croatian Waters (name of the Croatian water authorities). The necessity of such measurements in future

  20. Dynamic water accounting in heavily committed river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  1. Simulating long-term past changes in the balance between water demand and availability and assessing their main drivers at the river basin management scale

    NASA Astrophysics Data System (ADS)

    Fabre, J.; Ruelland, D.; Dezetter, A.; Grouillet, B.

    2014-11-01

    The aim of this study was to assess the balance between water demand and availability and its spatial and temporal variability from 1971 to 2009 in the Herault (2500 km2, France) and the Ebro (85 000 km2, Spain) catchments. Natural streamflow was evaluated using a conceptual hydrological model. The regulation of river flow was accounted for through a widely applicable demand-driven reservoir management model applied to the largest dam in the Herault basin and to 11 major dams in the Ebro basin. Urban water demand was estimated from population and monthly unit water consumption data. Water demand for irrigation was computed from irrigated area, crop and soil data, and climatic forcing. Finally, a series of indicators comparing water supply and water demand at strategic resource and demand nodes were computed at a 10 day time step. Variations in water stress in each catchment over the past 40 years were successfully modeled, taking into account climatic and anthropogenic pressures and changes in water management strategies over time. Observed changes in discharge were explained by separating human and hydro-climatic pressures on water resources: respectively 20 and 3% of the decrease in the Ebro and the Herault discharges were linked to human-induced changes. Although key areas of the Herault basin were shown to be highly sensitive to hydro-climatic variability, the balance between water uses and availability in the Ebro basin appears to be more critical, owing to high agricultural pressure on water resources. The proposed modeling framework is currently being used to assess water stress under climatic and socio-economic prospective scenarios. Further research will investigate the effectiveness of adaptation policies aimed at maintaining the balance between water use and availability.

  2. New England reservoir management: Land use/vegetation mapping in reservoir management (Merrimack River Basin). [Massachusetts and New Hamshire

    NASA Technical Reports Server (NTRS)

    Cooper, S. (Principal Investigator); Mckim, H. L.; Gatto, L. W.; Merry, C. J.; Anderson, D. M.; Marlar, T. L.

    1974-01-01

    The author has identified the following significant results. It is evident from this comparison that for land use/vegetation mapping the S190B Skylab photography compares favorably with the RB-57 photography and is much superior to the ERTS-1 and Skylab 190A imagery. For most purposes the 12.5 meter resolution of the S190B imagery is sufficient to permit extraction of the information required for rapid land use and vegetation surveys necessary in the management of reservoir or watershed. The ERTS-1 and S190A data products are not considered adequate for this purpose, although they are useful for rapid regional surveys at the level 1 category of the land use/vegetation classification system.

  3. Long-term integrated river basin planning and management of water quantity and water quality in mining impacted catchments

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Zimmermann, Kai; Claus, Thomas; Koch, Hagen; Gädeke, Anne; Uhlmann, Wilfried; Kaltofen, Michael; Müller, Fabian; Redetzky, Michael; Schramm, Martina; Schoenheinz, Dagmar; Grünewald, Uwe

    2015-04-01

    During the last decades, socioeconomic change in the catchment of the Spree River, a tributary of the Elbe, has been to a large extent associated with lignite mining activities and the rapid decrease of these activities in the 1990s. There are multiple interconnections between lignite mining and water management both in terms of water quantity and quality. During the active mining period a large-scale groundwater depression cone has been formed while river discharges have been artificially increased. Now, the decommissioned opencast mines are being transformed into Europe's largest man-made lake district. However, acid mine drainage causes low pH in post mining lakes and high concentrations of iron and sulphate in post mining lakes and the river system. Next to potential changes in mining activities, also the potential impacts of climate change (increasing temperature and decreasing precipitation) on water resources of the region are of major interest. The fundamental question is to what extent problems in terms of water quantity and water quality are exacerbated and whether they can be mitigated by adaptation measures. In consequence, long term water resource planning in the region has to formulate adaptation measures to climate change and socioeconomic change in terms of mining activities which consider both, water quantity and water quality aspects. To assess potential impacts of climate and socioeconomic change on water quantity and water quality of the Spree River catchment up to the Spremberg reservoir in the scenario period up to 2052, we used a model chain which consists of (i) the regional climate model STAR (scenarios with a further increase in temperature of 0 and 2 K), (ii) mining scenarios (mining discharges, cooling water consumption of thermal power plants), (iii) the ecohydrological model SWIM (natural water balance), (iv) the long term water management model WBalMo (managed discharges, withdrawal of water users, reservoir operation) and (v) the

  4. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    SciTech Connect

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  5. How can we make progress with decision support systems in landscape and river basin management? Lessons learned from a comparative analysis of four different decision support systems.

    PubMed

    Volk, Martin; Lautenbach, Sven; van Delden, Hedwig; Newham, Lachlan T H; Seppelt, Ralf

    2010-12-01

    This article analyses the benefits and shortcomings of the recently developed decision support systems (DSS) FLUMAGIS, Elbe-DSS, CatchMODS, and MedAction. The analysis elaborates on the following aspects: (i) application area/decision problem, (ii) stakeholder interaction/users involved, (iii) structure of DSS/model structure, (iv) usage of the DSS, and finally (v) most important shortcomings. On the basis of this analysis, we formulate four criteria that we consider essential for the successful use of DSS in landscape and river basin management. The criteria relate to (i) system quality, (ii) user support and user training, (iii) perceived usefulness and (iv) user satisfaction. We can show that the availability of tools and technologies for DSS in landscape and river basin management is good to excellent. However, our investigations indicate that several problems have to be tackled. First of all, data availability and homogenisation, uncertainty analysis and uncertainty propagation and problems with model integration require further attention. Furthermore, the appropriate and methodological stakeholder interaction and the definition of 'what end-users really need and want' have been documented as general shortcomings of all four examples of DSS. Thus, we propose an iterative development process that enables social learning of the different groups involved in the development process, because it is easier to design a DSS for a group of stakeholders who actively participate in an iterative process. We also identify two important lines of further development in DSS: the use of interactive visualization tools and the methodology of optimization to inform scenario elaboration and evaluate trade-offs among environmental measures and management alternatives.

  6. A century scale human-induced hydrological and ecological changes of wetlands of two large river basins in Australia (Murray) and China (Yangtze): development of an adaptive water resource management framework

    NASA Astrophysics Data System (ADS)

    Kattel, G. R.; Dong, X.; Yang, X.

    2015-08-01

    Recently, the provision of food and water resources of two of the world's large river basins, the Murray and the Yangtze, has been significantly altered through widespread landscape modification. Long-term sedimentary archives, dating back to past centuries, from wetlands of these river basins reveal that rapid, basin-wide development has reduced resilience of biological communities, resulting in considerable decline in ecosystem services, including water quality. In particular, large-scale human disturbance to river systems, due to river regulation during the mid-20th century, has transformed the hydrology of rivers and wetlands, causing widespread disturbance to aquatic biological communities. Historical changes of cladoceran zooplankton (water fleas) were used to assess the hydrology and ecology of three Murray and Yangtze River wetlands over the past century. Subfossil assemblages of cladocerans retrieved from sediment cores (94, 45 and 65 cm) of three wetlands: Kings Billabong (Murray), Zhangdu and Liangzi Lakes (Yangtze) strongly responded to hydrological changes of the river after the mid-20th century. River regulation caused by construction of dams and weirs, and river channel modifications has led to hydrological alterations. The hydrological disturbances were either: (1) a prolonged inundation of wetlands, or (2) reduced river flow, which caused variability in wetland depth. These phenomena subsequently transformed the natural wetland habitats, leading to a switch in cladoceran assemblages preferring poor water quality and eutrophication. An adaptive water resource management framework for both of these river basins has been proposed to restore or optimize the conditions of wetland ecosystems impacted by 20th century human disturbance and climate change.

  7. Simulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.

    2002-01-01

    Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were

  8. Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-10-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of the socio-economy and the sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between the unsaturated vadose zone and groundwater reservoir is a critical link to understanding regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In the Tarim River basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux between the unsaturated vadose zone and groundwater reservoir is influenced strongly by irrigation. Recently, mulched drip irrigation, a sophisticated water-saving irrigation method, was widely applied in the Tarim River basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gaining a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2012 and 2013 in a typical oasis within the Tarim River basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux at the groundwater table is mostly downward (310.5 mm year-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (16.1 mm year-1) due to the moderate

  9. Groundwater Dynamics under Water Saving Irrigation and Implications for Sustainable Water Management in an Oasis: Tarim River Basin of Western China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-02-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of socio-economy and sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between unsaturated vadose zone and groundwater reservoir is a critical link to understand regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In Tarim River Basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux is influenced strongly by irrigation. Recently, mulched drip irrigation, a very advanced water-saving irrigation method, has been widely applied in the Tarim River Basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gain a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2011 and 2012 in a typical oasis within Tarim River Basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux is mostly downward (310.5 mm yr-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (-16.1 mm yr-1) due to the moderate groundwater table depth (annual average depth 2.9 m). Traditional secondary salinization caused by intense phreatic

  10. Making climate change projections relevant to water management: opportunities and challenges in the Colorado River basin (Invited)

    NASA Astrophysics Data System (ADS)

    Vano, J. A.

    2013-12-01

    By 2007, motivated by the ongoing drought and release of new climate model projections associated with the IPCC AR4 report, multiple independent studies had made estimates of future Colorado River streamflow. Each study had a unique approach, and unique estimate for the magnitude for mid-21st century streamflow change ranging from declines of only 6% to declines of as much as 45%. The differences among studies provided for interesting scientific debates, but to many practitioners this appeared to be just a tangle of conflicting predictions, leading to the question 'why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted?' In response, a group of scientists from academic and federal agencies, brought together through a NOAA cross-RISA project, set forth to identify the major sources of disparities and provide actionable science and guidance for water managers and decision makers. Through this project, four major sources of disparities among modeling studies were identified that arise from both methodological and model differences. These differences, in order of importance, are: (1) the Global Climate Models (GCMs) and emission scenarios used; (2) the ability of land surface hydrology and atmospheric models to simulate properly the high elevation runoff source areas; (3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and (4) the methods used to statistically downscale GCM scenarios. Additionally, reconstructions of pre-instrumental streamflows provided further insights about the greatest risk to Colorado River streamflow of a multi-decadal drought, like those observed in paleo reconstructions, exacerbated by a steady reduction in flows due to climate change. Within this talk I will provide an overview of these findings and insights into the opportunities and challenges encountered in the process of striving to make

  11. Sensitivity analysis of a sediment dynamics model applied in a Mediterranean river basin: global change and management implications.

    PubMed

    Sánchez-Canales, M; López-Benito, A; Acuña, V; Ziv, G; Hamel, P; Chaplin-Kramer, R; Elorza, F J

    2015-01-01

    Climate change and land-use change are major factors influencing sediment dynamics. Models can be used to better understand sediment production and retention by the landscape, although their interpretation is limited by large uncertainties, including model parameter uncertainties. The uncertainties related to parameter selection may be significant and need to be quantified to improve model interpretation for watershed management. In this study, we performed a sensitivity analysis of the InVEST (Integrated Valuation of Environmental Services and Tradeoffs) sediment retention model in order to determine which model parameters had the greatest influence on model outputs, and therefore require special attention during calibration. The estimation of the sediment loads in this model is based on the Universal Soil Loss Equation (USLE). The sensitivity analysis was performed in the Llobregat basin (NE Iberian Peninsula) for exported and retained sediment, which support two different ecosystem service benefits (avoided reservoir sedimentation and improved water quality). Our analysis identified the model parameters related to the natural environment as the most influential for sediment export and retention. Accordingly, small changes in variables such as the magnitude and frequency of extreme rainfall events could cause major changes in sediment dynamics, demonstrating the sensitivity of these dynamics to climate change in Mediterranean basins. Parameters directly related to human activities and decisions (such as cover management factor, C) were also influential, especially for sediment exported. The importance of these human-related parameters in the sediment export process suggests that mitigation measures have the potential to at least partially ameliorate climate-change driven changes in sediment exportation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Probabilistic Evaluation of Ecological and Economic Objectives of River Basin Management Reveals a Potential Flaw in the Goal Setting of the EU Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Hjerppe, Turo; Taskinen, Antti; Kotamäki, Niina; Malve, Olli; Kettunen, Juhani

    2017-04-01

    The biological status of European lakes has not improved as expected despite up-to-date legislation and ecological standards. As a result, the realism of objectives and the attainment of related ecological standards are under doubt. This paper gets to the bottom of a river basin management plan of a eutrophic lake in Finland and presents the ecological and economic impacts of environmental and societal drivers and planned management measures. For these purposes, we performed a Monte Carlo simulation of a diffuse nutrient load, lake water quality and cost-benefit models. Simulations were integrated into a Bayesian influence diagram that revealed the basic uncertainties. It turned out that the attainment of good ecological status as qualified in the Water Framework Directive of the European Union is unlikely within given socio-economic constraints. Therefore, management objectives and ecological and economic standards need to be reassessed and reset to provide a realistic goal setting for management. More effort should be put into the evaluation of the total monetary benefits and on the monitoring of lake phosphorus balances to reduce the uncertainties, and the resulting margin of safety and costs and risks of planned management measures.

  13. Probabilistic Evaluation of Ecological and Economic Objectives of River Basin Management Reveals a Potential Flaw in the Goal Setting of the EU Water Framework Directive.

    PubMed

    Hjerppe, Turo; Taskinen, Antti; Kotamäki, Niina; Malve, Olli; Kettunen, Juhani

    2017-04-01

    The biological status of European lakes has not improved as expected despite up-to-date legislation and ecological standards. As a result, the realism of objectives and the attainment of related ecological standards are under doubt. This paper gets to the bottom of a river basin management plan of a eutrophic lake in Finland and presents the ecological and economic impacts of environmental and societal drivers and planned management measures. For these purposes, we performed a Monte Carlo simulation of a diffuse nutrient load, lake water quality and cost-benefit models. Simulations were integrated into a Bayesian influence diagram that revealed the basic uncertainties. It turned out that the attainment of good ecological status as qualified in the Water Framework Directive of the European Union is unlikely within given socio-economic constraints. Therefore, management objectives and ecological and economic standards need to be reassessed and reset to provide a realistic goal setting for management. More effort should be put into the evaluation of the total monetary benefits and on the monitoring of lake phosphorus balances to reduce the uncertainties, and the resulting margin of safety and costs and risks of planned management measures.

  14. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    SciTech Connect

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to

  15. Water Quality in the Yukon River Basin

    USGS Publications Warehouse

    Brabets, Timothy P.; Hooper, Rick; Landa, Ed

    2001-01-01

    The Yukon River Basin, which encompasses 330,000 square miles in northwestern Canada and central Alaska (Fig. 1), is one of the largest and most diverse ecosystems in North America. The Yukon River is also fundamental to the ecosystems of the eastern Bering Sea and Chukchi Sea, providing most of the freshwater runoff, sediments, and dissolved solutes. Despite its remoteness and perceived invulnerability, the Yukon River Basin is changing. For example, records of air temperature during 1961-1990 indicate a warming trend of about 0.75 deg C per decade at latitudes where the Yukon River is located. Increases in temperature will have wide-ranging effects on permafrost distribution, glacial runoff and the movement of carbon and nutrients within and from the basin. In addition, Alaska has many natural resources such as timber, minerals, gas, and oil that may be developed in future years. As a consequence of these changes, several issues of scientific and cultural concern have come to the forefront. At present, water quality data for the Yukon River Basin are very limited. This fact sheet describes a program to provide the data that are needed to address these issues.

  16. Adaptation strategies for water supply management in a drought prone Mediterranean river basin: Application of outranking method.

    PubMed

    Kumar, Vikas; Del Vasto-Terrientes, Luis; Valls, Aida; Schuhmacher, Marta

    2016-01-01

    The regional water allocation planning is one of those complex decision problems where holistic approach to water supply management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. Objective of this paper is to develop scenarios for the future imbalances in water supply and demand for a water stressed Mediterranean area of Northern Spain (Tarragona) and to test the applicability and suitability of an outranking method ELECTRE-III-H for evaluating sectoral water allocation policies. This study is focused on the use of alternative water supply scenarios to fulfil the demand of water from three major sectors: domestic, industrial and agricultural. A detail scenario planning for regional water demand and supply has been discussed. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, water stress and environmental impact). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. We compare several adaptation measures including alternative water sources (reclaimed water and desalination); inter basin water transfer and sectoral demand management coming from industry, agriculture and domestic sectors and tested the sustainability of management actions for different climate change scenarios. Results have shown use of alternative water resources as the most reliable alternative with medium reclaimed water reuse in industry and agriculture and low to medium use of desalination water in domestic and industrial sectors as the best alternative. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial

  17. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    USGS Publications Warehouse

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  18. Damming the rivers of the Amazon basin.

    PubMed

    Latrubesse, Edgardo M; Arima, Eugenio Y; Dunne, Thomas; Park, Edward; Baker, Victor R; d'Horta, Fernando M; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A; Ribas, Camila C; Norgaard, Richard B; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C

    2017-06-14

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin's floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  19. Morphometric Characters of a Himalayan River Basin-Pindari river of Pindari Glacier

    NASA Astrophysics Data System (ADS)

    Patel, L. K.; Pillai, J.

    2011-12-01

    mature topography with high homogenous erosion. Hydrological system of the study region is complex. Analysis of the Morphometric parameter provides adequate information of both terrain characteristics and hydrological behavior of the catchment and also it is observed that the drainage density of the river is very low which indicates the basin is highly permeable subsoil with dense vegetation cover. Analysis based on circularity ratio, form factor and elongation ratio showed that basin shape of the river is close to circular. The study have significant role to understand landform processes and erosional characteristics of a high altitudinal landform. Present study infers that the integration of morphometrical analysis along with the conventional watershed assessment methods would have a beneficial effect on judicious watershed management of the river Basin. It also included the decrease land resources, soil erosion, and shift runoff of the river basin. Attempt had been made to understand the impact of the river ecosystem of the Nanda Devi Biosphere Reserve especially the upper region of river.

  20. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control ] Act of 1974 (Pub...

  1. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of... Committee Act, the Bureau of Reclamation announces that the Colorado River Basin Salinity Control Advisory...) 524-3826; e-mail at: kjacobson@usbr.gov . SUPPLEMENTARY INFORMATION: The Colorado River Basin Salinity...

  2. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. ] SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L...

  3. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L...

  4. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Public...

  5. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ....20350010.REG0000, RR04084000] Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L...

  6. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L...

  7. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L...

  8. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L...

  9. Kanawha River Basin Sediment Data

    EPA Pesticide Factsheets

    This data set contains sediment size data collected at research sites using a Wolman Pebble Count method.This dataset is associated with the following publication:Collins , S., M. Thoms, and J. Flotemersch. Hydrogeomorphic zones characterize riverbed sediment patterns within a river network. River Systems. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, GERMANY, 21(4): 203-213, (2015).

  10. The "normal" elongation of river basins

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  11. An integrated modelling framework to aid smallholder farming system management in the Olifants River Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Magombeyi, M. S.; Taigbenu, A. E.

    Computerised integrated models from science contribute to better informed and holistic assessments of multifaceted policies and technologies than individual models. This view has led to considerable effort being devoted to developing integrated models to support decision-making under integrated water resources management (IWRM). Nevertheless, an appraisal of previous and ongoing efforts to develop such decision support systems shows considerable deficiencies in attempts to address the hydro-socio-economic effects on livelihoods. To date, no universal standard integration method or framework is in use. For the existing integrated models, their application failures have pointed to the lack of stakeholder participation. In an endeavour to close this gap, development and application of a seasonal time-step integrated model with prediction capability is presented in this paper. This model couples existing hydrology, agronomy and socio-economic models with feedbacks to link livelihoods of resource-constrained smallholder farmers to water resources at catchment level in the semi-arid Olifants subbasin in South Africa. These three models, prior to coupling, were calibrated and validated using observed data and participation of local stakeholders. All the models gave good representation of the study conditions, as indicated by the statistical indicators. The integrated model is of general applicability, hence can be extended to other catchments. The impacts of untied ridges, planting basins and supplemental irrigation were compared to conventional rainfed tillage under maize crop production and for different farm typologies. Over the 20 years of simulation, the predicted benefit of untied ridges and planting basins versus conventional rainfed tillage on surface runoff (Mm 3/year) reduction was 14.3% and 19.8%, respectively, and about 41-46% sediment yield (t/year) reduction in the catchment. Under supplemental irrigation, maize yield improved by up to 500% from the long

  12. Vulnerability of freshwater resources in large and medium Nepalese river basins to environmental change.

    PubMed

    Pandey, V P; Babel, M S; Shrestha, S; Kazama, F

    2010-01-01

    This paper discusses vulnerability of freshwater resources in large and medium Nepalese river basins to environmental change based on evaluation of water resource availability and variation, resource development and use, ecological health and management capacity; and compares the situation with selected sub-basins of the Ganges and the Mekong basins in Asia. Results suggest that water resources in the medium river basins are more vulnerable than in the large basins; and Nepalese basins, in general, are more vulnerable than other selected basins in the Asian region. The vulnerability in the Nepalese basins is more related to poor management capacity followed by resources variation and the least to development pressure. The poor management capacity is mainly related to low productivity of water use and the resources stress is related mainly to variation of the resource.

  13. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    SciTech Connect

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  14. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    SciTech Connect

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  15. Water-quality and algal conditions in the North Umpqua River basin, Oregon, 1992-95, and indications for resource management

    USGS Publications Warehouse

    Anderson, Chauncey W.; Carpenter, Kurt D.

    1998-01-01

    Water quality in the Wild and Scenic reach is dominated by water released from the hydroelectric project area during summer. Effects of the hydroelectric project include seasonal control of streamflow, water temperature, and phosphorus concentrations, and the possible release of low but ecologically important concentrations of organic nitrogen. A review of available data and literature suggests that the reservoirs can increase the interception of sediments and large organic debris, and promote their conversion into fine-grained particulate and dissolved organic matter for downstream transport. These effects could be compounded by the effects of forestry in the basin, including alteration of hydrologic cycles, changes in sediment and nutrient runoff, reductions of the transport of large woody debris, and degradation of habitat quality. It is hypothesized that, in the North Umpqua River, these processes have induced a fundamental shift in the river’s food web, from a detritus-based system to a system with a 2 higher emphasis on algal production. Confirmation of these changes and their effects on higher trophic levels are needed to properly manage the aquatic resources for all designated beneficial uses in the basin.

  16. Central Mississippi River Basin LTAR site overview

    USDA-ARS?s Scientific Manuscript database

    The Central Mississippi River Basin (CMRB) member of the Long-Term Agro-ecosystem Research (LTAR) network is representative of the southern Corn Belt, where subsoil clay content makes tile drainage challenging and make surface runoff and associated erosion problematic. Substantial research infrastru...

  17. Climatology of the interior Columbia River basin.

    Treesearch

    Sue A. Ferguson

    1999-01-01

    This work describes climate means and trends in each of three major ecological zones and 13 ecological reporting units in the interior Columbia River basin. Widely differing climates help define each major zone and reporting unit, the pattern of which is controlled by three competing air masses: marine, continental, and arctic. Paleoclimatic evidence and historical...

  18. Nutrient levels in the Yazoo River Basin

    USDA-ARS?s Scientific Manuscript database

    High nitrogen (N) and phosphorus (P) loadings to aquatic ecosystems are linked to environmental problems including harmful algal blooms and hypoxia. Presented is an assessment of accessible data on nutrient sources, sinks and inputs to streams within the Yazoo River Basin of northern Mississippi. Ac...

  19. Can the Gila River reduce risk in the Colorado River Basin?

    NASA Astrophysics Data System (ADS)

    Wade, L. C.; Rajagopalan, B.; Lukas, J.; Kanzer, D.

    2012-12-01

    The Colorado River is the most important source of water in the southwest United States and Northern Mexico, providing water to approximately 35 million people and 4-5 million acres of irrigated lands. To manage the water resources of the basin, estimated to be about 17 million acre-feet (MAF) of undepleted supplies per year, managers use reservoir facilities that can store more than 60 MAF. As the demands on the water resources of the basin approach or exceed the average annual supply, and with average flow projected to decrease due to climate change, smart water management is vital for its sustainability. To quantify the future risk of depleting reservoir storage, Rajagopalan et al. (2009) developed a water-balance model and ran it under scenarios based on historical, paleo-reconstructed and future projections of flows, and different management alternatives. That study did not consider the impact of the Gila River, which enters the Colorado River below all major reservoirs and U.S. diversions. Due to intensive use in Central Arizona, the Gila only has significant inflows to the Colorado in wet years. However, these irregular inflows could beneficially influence system reliability in the US by helping to meet a portion of the 1.5 MAF delivery obligations to Mexico. To help quantify the potential system reliability benefit of the Gila River, we modify the Rajagopalan et al (2009) model to incorporate simulated Gila River inflows. These new data inputs to the water balance model are based on historical flows and tree-ring reconstructions of flow in the Upper Colorado River Basin (at Lee's Ferry), the Lower Colorado River Basin (tributary inflows), and the intermittent flows from the Gila River which are generated using extreme value analysis methods. Incorporating Gila River inflows, although they are highly variable and intermittent, reduces the modeled cumulative risk of reservoir depletion by 4 to 11% by 2057, depending on the demand schedule, reservoir operation

  20. Work plan for the Sangamon River basin, Illinois

    USGS Publications Warehouse

    Stamer, J.K.; Mades, Dean M.

    1983-01-01

    The U.S. Geological Survey, in cooperation with the Division of Water Resources of the Illinois Department of Transportation and other State agencies, recognizes the need for basin-type assessments in Illinois. This report describes a plan of study for a water-resource assessment of the Sangamon River basin in central Illinois. The purpose of the study would be to provide information to basin planners and regulators on the quantity, quality, and use of water to guide management decisions regarding basin development. Water quality and quantity problems in the Sangamon River basin are associated primarily with agricultural and urban activities, which have contributed high concentrations of suspended sediment, nitrogen, phosphorus, and organic matter to the streams. The impact has resulted in eutrophic lakes, diminished capacity of lakes to store water, low concentrations of dissolved oxygen, and turbid stream and lake waters. The four elements of the plan of study include: (1) determining suspended sediment and nutrient transport, (2) determining the distribution of selected inorganic and organic residues in streambed sediments, (3) determining the waste-load assimilative capacity of the Sangamon River, and (4) applying a hydraulic model to high streamflows. (USGS)

  1. Further development and implementation of the DIWA distributed hydrological model-based integrated hydroinformatics system in the Danube River Basin for supporting decision making in water management

    NASA Astrophysics Data System (ADS)

    Szabó, J. A.; Réti, G. Z.; Tóth, T.

    2012-04-01

    developed integrated model has two basic pillars: the DIWA (DIstributed WAtershed) hydrologic, and the well-known HEC-RAS hydraulic models. The DIWA is a dynamic water-balance model that distributed both in space and its parameters, and which was developed along combined principles but its mostly based on physical foundations. According to the philosophy of the distributed model approach the catchment is divided into basic elements, cells where the basin characteristics, parameters, physical properties, and the boundary conditions are applied in the centre of the cell, and the cell is supposed to be homogenous between the block boundaries. The neighbouring cells are connected to each other according to runoff hierarchy (local drain direction). Applying the hydrological mass balance and the adequate dynamic equations to these cells, the result is a distributed hydrological model on a continuous, 3D gridded domain. For calculating the water level as well the HEC-RASS hydraulic model has been embedded into DIWA model. In this integration the DIWA model provides the upper boundary conditions for HEC-RAS, and then HEC-RAS provides the water levels along the lowland parts of the river-network. In this presentation, our recently developed integrated hydroinformatics system and its implementation for the middle-upper part of the Danube River Basin will be reported. Following an outline of the backgrounds, an overview on the DIWA and the integrated model-system will be given. The implementation of this integrated hydroinformatics system in the Danube River Basin will also be presented, including a summary of the developed 1km resolution geo-dataset for the modelling. Then some demonstrative results of the use of the pre-calibrated system will be discussed. Finally, an outline of the future steps of the development will be discussed.

  2. Detecting Ecosystem Performance Anomalies for Land Management in the Upper Colorado River Basin Using Satellite Observations, Climate Data, and Ecosystem Models

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.

    2010-01-01

    This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005–2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using “percentage of bare soil” ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005–2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions.

  3. Detecting ecosystem performance anomalies for land management in the upper colorado river basin using satellite observations, climate data, and ecosystem models

    USGS Publications Warehouse

    Gu, Y.; Wylie, B.K.

    2010-01-01

    This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005-2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using "percentage of bare soil" ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005-2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions. ?? 2010 by the authors.

  4. Drainage areas in the Big Sioux River basin in eastern South Dakota

    USGS Publications Warehouse

    Amundson, Frank D.; Koch, Neil C.

    1985-01-01

    The Big Sioux River basin of eastern South Dakota contains an important surface water supply and a sizeable aquifer system of major importance to the economy of South Dakota. The aquifers are complex, consisting of many small aquifers that are hydrologically associated with several large aquifers and the Big Sioux River. The complexity and interrelation of the surface water/groundwater systems has already created management problems. As development continues and increases, the problems will increase in number and complexity. To aid in planning for future development, an accurate determination of drainage areas for all basins, sub-basins, and noncontributing areas in the Big Sioux River basin is needed. All named stream basins, and all unnamed basins > 10 sq mi within the Big Sioux River basin in South Dakota are shown and are listed by stream name. Stream drainage basins in South Dakota were delineated by visual interpretation of contour information shown on U.S. Geological Survey 77-1/2 minute topographic maps. One table lists the drainage areas of major drainage basins in the Big Sioux River basin that do not have a total drainage area value > 10 sq mi. Another shows the drainage area above stream gaging stations in the Big Sioux River basin. (Lantz-PTT)

  5. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  6. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  7. Quantifying water requirements of riparian river red gum (Eucalyptus camaldulensis) in the Murray-Darling Basin, Australia: Implications for the management of environmental flows

    USGS Publications Warehouse

    Doody, Tanya M.; Colloff, Matthew J.; Davies, Micah; Koul, Vijay; Benyon, Richard G.; Nagler, Pamela L.

    2015-01-01

    Water resource development and drought have altered river flow regimes, increasing average flood return intervals across floodplains in the Murray-Darling Basin, Australia, causing health declines in riparian river red gum (Eucalyptus camaldulensis) forests and woodlands. Environmental flow allocations helped to alleviate water stress during the recent Millennium Drought (1997–2010), however, quantification of the flood frequency required to support healthy E. camaldulensis communities is still needed. We quantified water requirements of E. camaldulensis for two years across a flood gradient (trees inundated at frequencies of 1:2, 1:5 and 1:10 years) at Yanga National Park, New South Wales to help inform management decision-making and design of environmental flows. Sap flow, evaporative losses and soil moisture measurements were used to determine transpiration, evapotranspiration and plant-available soil water before and after flooding. A formula was developed using plant-available soil water post-flooding and average annual rainfall, to estimate maintenance time of soil water reserves in each flood frequency zone. Results indicated that soil water reserves could sustain 1:2 and 1:5 trees for 15 months and six years, respectively. Trees regulated their transpiration rates, allowing them to persist within their flood frequency zone, and showed reduction in active sapwood area and transpiration rates when flood frequencies exceeded 1:2 years. A leaf area index of 0.5 was identified as a potential threshold indicator of severe drought stress. Our results suggest environmental water managers may have greater flexibility to adaptively manage floodplains in order to sustain E. camaldulensis forests and woodlands than has been appreciated hitherto.

  8. Integrated Watershed Assessment: The Northern River Basins Study

    NASA Astrophysics Data System (ADS)

    Wrona, F. J.; Gummer, W. D.

    2001-05-01

    Begun in 1991 and completed in 1996, the Northern River Basins Study (NRBS) was a \\$12 M initiative established by the governments of Canada, Alberta, and the Northwest Territories to assess the cumulative impacts of development, particularly pulp mill related effluent discharges, on the health of the Peace, Athabasca and Slave river basins. The NRBS was launched in response to concerns expressed by northern residents following the 1991 approval of the Alberta Pacific Pulp Mill in Athabasca. Although initiated by governments, the NRBS was set-up to be `arms-length' and was managed by a 25 member Study Board that represented the many interests in the basins, including industry, environmental groups, aboriginal peoples, health, agriculture, education, municipalities, and the federal, territorial and provincial governments. Overseen by an independent Science Advisory Committee, an integrated research program was designed covering eight scientific components: fate and distribution of contaminants, food chain impacts, nutrients, hydrology/hydraulics and sediment transport, uses of the water resources, drinking water quality, traditional knowledge, and synthesis/modeling. Using a 'weight of evidence' approach with a range of ecological and sociological indicators, cumulative impacts from pulp and paper-related discharges and other point and non-point sources of pollution were determined in relation to the health and contaminant levels of aquatic biota, nutrient and dissolved oxygen-related stress, hydrology and climate related changes, and human health and use of the river basins. Based on this assessment and Study Board deliberations, site-specific and basin-wide scientific and management-related recommendations were made to Ministers regarding regulatory and policy changes, basin management and monitoring options, and future research. The Study reinforces the importance of conducting ecosystem-based , interdisciplinary science and the need for public involvement in

  9. Report on the Predation Index, Predator Control Fisheries, and Program Evaluation for the Columbia River Basin Experimental Northern Pikeminnow Management Program, 2008 Annual Report.

    SciTech Connect

    Porter, Russell .

    2009-09-10

    This report presents results for year seventeen in the basin-wide Experimental Northern Pikeminnow Management Program to harvest northern pikeminnow1 (Ptychocheilus oregonensis) in the Columbia and Snake Rivers. This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991 - a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and dam-angling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional

  10. Numerical representation of rainfall field in the Yarmouk River Basin

    NASA Astrophysics Data System (ADS)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    , geomorphologic and climatic division of the basin. Difference between regional curves is comparable with amplitude of rainfall variance within the regions. In general, rainfall increases with altitude and decreases from west to east (south-east). It should be emphasized that (i) Lake Kinneret Basin (2,490 sq. km) was earlier divided into seven "orographic regions" and (ii) the Lake Kinneret Basin and the Yarmouk River Basin are presented by the system of regional curves X = f (Z) as one whole rainfall field in the Upper Jordan River Basin, where the mean annual rain (X) increases with altitude (Z) and decreases from west to east and from north to south. In the Yarmouk Basin there is much less rainfall (344 mm) than in the Lake Kinneret Basin (749 mm), wherein mean annual rain (2,352 MCM versus 1,865 MCM) is shared between Syria, Jordan and Israel as 80%, 15% and 5%, respectively. The provided rainfall data allow more precise estimations of surface water balances and of recharge to the regional aquifers in the Upper Jordan River Basin. The derived rates serve as fundamental input data for numerical modeling of groundwater flow. This method can be applied to other areas at different temporal and spatial scales. The general applicability makes it a very useful tool in several hydrological problems connected with assessment, management and policy-making of water resources, as well as their changes due to climate and anthropogenic factors. Reference: I. Shentsis (1990). Mathematical models for long-term prediction of mountainous river runoff: methods, information and results, Hydrological Sciences Journal, 35:5, 487-500, DOI: 10.1080/02626669009492453

  11. Development of river flood model in lower reach of urbanized river basin

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  12. Sharing water and benefits in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  13. Hydroclimatic and water quality trends across three Mediterranean river basins.

    PubMed

    Lutz, Stefanie R; Mallucci, Stefano; Diamantini, Elena; Majone, Bruno; Bellin, Alberto; Merz, Ralf

    2016-11-15

    Water resources are under pressure from multiple anthropogenic stressors such as changing climate, agriculture and water abstraction. This holds, in particular, for the Mediterranean region, where substantial changes in climate are expected throughout the 21st century. Nonetheless, little attention has been paid to linkages between long-term trends in climate, streamflow and water quality in Mediterranean river basins. In the present study, we perform a comparative analysis of recent trends in hydroclimatic parameters and nitrate pollution in three climatologically different Mediterranean watersheds (i.e., the Adige, Ebro and Sava River Basins). Mann-Kendall trend analyses of annual mean temperature, precipitation and streamflow (period 1971 to 2010) and monthly nitrate concentrations, mass fluxes and flow-adjusted concentrations (period 1996 to 2012) were performed in these river basins. Temperature is shown to have increased the most in the Ebro followed by the Sava, whereas minor increases are observed in the Adige. Precipitation presents, overall, a negative trend in the Ebro and a positive trend in both the Adige and Sava. These climatic trends thus suggest the highest risk of increasing water scarcity for the Ebro and the lowest risk for the Adige. This is confirmed by trend analyses of streamflow time series, which indicate a severe decline in streamflow for the Ebro and a substantial decline in the Sava, as opposed to the Adige showing no prevailing trend. Concerning surface water quality, nitrate pollution appears to have decreased in all study basins. Overall, these findings emphasize progressive reduction of water resources availability in river basins characterized by continental climate (i.e., Ebro and Sava). This study thus underlines the need for adapted river management in the Mediterranean region, particularly considering strong feedbacks between hydroclimatic trends, freshwater ecosystem services and water resources availability for agriculture

  14. Hydrologic and land-cover features of the Loxahatchee River Basin, Florida

    USGS Publications Warehouse

    McPherson, Benjamin F.; Sabanska, Maryann

    1980-01-01

    Historically the Loxahatchee River basin covered about 270 square miles in southeast Florida. Today the basin covers about 210 square miles and is defined by both topography, manmade features, and water-management policies. About 50% of the basin is wetlands. Urban and agricultural lands cover 17 and 18% of the basin, respectively. Soils are predominantly sandy and poorly drained. Water drains into the estuary, a shallow water body of about 2 square miles. (USGS)

  15. Response of River Discharge to Changing Climate Over the Past Millennium in the Upper Mackenzie Basin: Implications for Water Resource Management

    NASA Astrophysics Data System (ADS)

    Wolfe, B. B.; Hall, R. I.; Edwards, T. W.; Jarvis, S. R.; Sinnatamby, R. N.; Yi, Y.; Johnston, J. W.

    2009-05-01

    Runoff generated from high elevations is the primary source of freshwater for western North America, yet this critical resource is managed on the basis of short instrumental records that encompass an insufficient range of climatic conditions. Like other streams that drain this part of the continent and flow across the northern Great Plains, where seasonal and extended intervals of water deficit are a natural element of the landscape, the Peace and Athabasca rivers provide water that is crucial for societal needs. Climate variability and rapidly increasing industrial development are, however, raising concerns over the future availability of water resources for continued economic growth in these watersheds and to maintain the integrity of aquatic ecosystems, including the Peace-Athabasca Delta (PAD). This is particularly acute for the Athabasca River because the Alberta oil sands industry remains dependent on its water for bitumen extraction. Here we report the effects of climate change over the past 1000 years on river discharge in the upper Mackenzie River system based on paleoenvironmental information from the PAD and Lake Athabasca. The delta landscape responds to hydroclimatic changes with marked variability, capturing systematic changes in ice-jam flood frequency and perched basin water balance. Lake Athabasca level appears to directly monitor overall water availability with the highest levels occurring in concert with maximum glacier extent during the Little Ice Age, and the lowest during the 11th century prior to medieval glacier expansion. Recent climate-driven hydrological change appears to be on a trajectory to even lower levels as high-elevation snow and glacier meltwater contributions both continue to decline. The temporal perspective offered by these paleohydrological reconstructions indicates that climatic changes over the past millennium have led to characteristic responses in the quantity and seasonality of streamflow generated from the hydrographic

  16. Flood tracking chart, Amite River Basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence E.; McCallum, Brian E.; Brazelton, Sebastian R.; Anderson, Mary L.; Ensminger, Paul A.

    1998-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  17. Flood tracking chart, Amite River basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence; McCallum, Brian E.; Brazelton, Sebastian R.

    1996-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  18. Damming the rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Arima, Eugenio Y.; Dunne, Thomas; Park, Edward; Baker, Victor R.; D'Horta, Fernando M.; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A.; Ribas, Camila C.; Norgaard, Richard B.; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C.

    2017-06-01

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin’s floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  19. Understanding Socio-Hydrology System in the Kissimmee River Basin

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards

  20. Alternative futures of dissolved inorganic nitrogen export from the Mississippi River Basin: influence of crop management, atmospheric deposition, and population growth

    EPA Science Inventory

    Nitrogen (N) export from the Mississippi River Basin contributes to seasonal hypoxia in the Gulf of Mexico (GOM). We explored monthly dissolved inorganic N (DIN) export to the GOM for a historical year (2002) and two future scenarios (year 2022) by linking macroeonomic energy, ag...

  1. Environmental Impact of Eu Policies On Acheloos River Basin, Greece

    NASA Astrophysics Data System (ADS)

    Skoulikidis, N.; Nikolaidis, N. P.; Oikonomopoulou, A.; Batzias, F.

    The environmental impact of EU policies aiming at protecting surface and ground wa- ters are being assessed in the Acheloos River Basin, Greece as part of a Joint Research Centre (JRC) / DG Environment (DG Env) funded project. The basin offers the possi- bility of studying the impact of EU policies on a multitude of aquatic ecosystems: four artificial and four natural lakes and a large estuary with important hydrotops (lagoons, coastal salt lacustrine and freshwater marshes, etc.) that belong to the NATURA 2000 sites or are protected by the RAMSAR Convention. A database has been developed that includes all available information on sources, fluxes, and concentration levels of nutrients and selected heavy metals from prior and current research programs at the Acheloos River Basin and coastal environment. This information has been used to identify the environmental pressures and develop nutrient budgets for each sub-basin of the watershed to assess the relative contributions of nutrients from various land uses. The mathematical model HSPF is being used to model the hydrology and nitro- gen fate and transport in the watershed. Management scenarios will be developed and modelling exercises will be carried out to assess the impacts of the scenarios. Eco- nomic analysis of the nutrient management scenarios will be conducted to evaluate the costs associated with management practices for reaching acceptable water quality status.

  2. Beyond Lees Ferry: Assessing the Long-term Hydrologic Variability of the Lower Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Wade, L. C.; Rajagopalan, B.; Lukas, J. J.; Kanzer, D.

    2011-12-01

    The future reliability of Colorado River Basin water supplies depends on natural hydrologic variability, climate change impacts and other human factors. Natural variability is the dominant component at annual to decadal time scales and thus, capturing and understanding the full range of such variability is critical to assessing risks to near- and mid-term water supplies. Paleohydrologic reconstructions of annual flow using tree rings provide much longer (400+ years) records of annual flow than do historical gage records, and thus a more complete representation of potential flow sequences. While the long-term natural variability of the Upper Colorado River Basin has been well-captured by high-quality multi-century reconstructions of the annual flow of the Colorado River at Lees Ferry, AZ, there has been no equivalent effort for the whole of the Lower Colorado River Basin, including the Gila River. The contribution of the Lower Basin to overall basin flows is estimated to be 15% on average, but this percentage varies significantly from year to year, potentially impacting water supply risk and management for the entire basin. We present preliminary results from an ongoing effort to assess the hydroclimatic variability of the Lower Basin and to develop reconstructions of annual streamflows for the Gila River and Lower Colorado River near Yuma, AZ, commensurate with the existing Lees Ferry reconstructions. We model the flow of the Gila at the confluence with the Colorado River using Generalized Pareto Distribution (GPD) and a generalized linear model (GLM) using Lower Basin tributaries, including the upper Gila River and its tributaries (e.g., Salt, Tonto, and Verde Rivers). We also present preliminary reconstructions of Lower Basin streamflows from tree-ring data using different modeling approaches, including GLM and non-parametric k-nearest-neighbor (KNN). These reconstructions of the Lower Basin flows should facilitate more robust estimation of water supply risk to

  3. The watershed and river systems management program

    USGS Publications Warehouse

    Markstrom, S.L.; Frevert, D.; Leavesley, G.H.; ,

    2005-01-01

    The Watershed and River System Management Program (WaRSMP), a joint effort between the U.S. Geological Survey (USGS) and the U.S. Bureau of Reclamation (Reclamation), is focused on research and development of decision support systems and their application to achieve an equitable balance among diverse water resource management demands. Considerations include: (1) legal and political constraints; (2) stake holder and consensus-building; (3) sound technical knowledge; (4) flood control, consumptive use, and hydropower; (5) water transfers; (6) irrigation return flows and water quality; (7) recreation; (8) habitat for endangered species; (9) water supply and proration; (10) near-surface groundwater; and (11) water ownership, accounting, and rights. To address the interdisciplinary and multi-stake holder needs of real-time watershed management, WaRSMP has developed a decision support system toolbox. The USGS Object User Interface facilitates the coupling of Reclamation's RiverWare reservoir operations model with the USGS Modular Modeling and Precipitation Runoff Modeling Systems through a central database. This integration is accomplished through the use of Model and Data Management Interfaces. WaRSMP applications include Colorado River Main stem and Gunnison Basin, the Yakima Basin, the Middle Rio Grande Basin, the Truckee-Carson Basin, and the Umatilla Basin.

  4. Mississippi River, Yazoo Basin, Memphis, TN

    NASA Image and Video Library

    1973-06-22

    SL2-05-422 (22 June 1973) --- This section of the lower Mississippi River (34.0N, 90.0W) known as the Yazoo Basin, is characterized by a wide expanse of rich river bottomland with many oxbow lakes, the remains of the many changes in the riverbed over the course of many thousands of years. This soil is very fertile and productive but the region is prone to flooding. In this view, some of the back areas around the Delta National Forest show the effects of heavy spring rains. Photo credit: NASA

  5. Nutrient mitigation in a temporary river basin.

    PubMed

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Cooper, David; Kassotaki, Elissavet

    2014-04-01

    We estimate the nutrient budget in a temporary Mediterranean river basin. We use field monitoring and modelling tools to estimate nutrient sources and transfer in both high and low flow conditions. Inverse modelling by the help of PHREEQC model validated the hypothesis of a losing stream during the dry period. Soil and Water Assessment Tool model captured the water quality of the basin. The 'total daily maximum load' approach is used to estimate the nutrient flux status by flow class, indicating that almost 60% of the river network fails to meet nitrogen criteria and 50% phosphate criteria. We recommend that existing well-documented remediation measures such as reforestation of the riparian area or composting of food process biosolids should be implemented to achieve load reduction in close conjunction with social needs.

  6. Effective monitoring of small river basins.

    PubMed

    Symader, W; Bierl, R; Gasparini, F; Krein, A

    2002-04-13

    As the transport of many pollutants occurs during high floods monitoring programs must focus on these intermittent events. In small rivers the pollutants start their travel as short pulses often associated with fine particles, but disperse on their way downstreams. Therefore the chemical data of a flood event are only representative of a small part of the basin adjacent to the monitoring station. This is usually not taken into account by evaluating water quality data.

  7. Water utilization in the Snake River Basin

    USGS Publications Warehouse

    Hoyt, William Glenn; Stabler, Herman

    1935-01-01

    The purpose of this report is to describe the present utilization of the water in the Snake River Basin with special reference to irrigation and power and to present essential facts concerning possible future utilization. No detailed plan of development is suggested. An attempt has been made, however, to discuss features that should be taken into account in the formulation of a definite plan of development. On account of the size of the area involved, which is practically as large as the New England States and New York combined, and the magnitude of present development and future possibilities, considerable details have of necessity been omitted. The records of stream flow in the basin are contained in the reports on surface water supply published annually by the Geological Survey. These records are of the greatest value in connection with the present and future regulation and utilization of the basin's largest asset water.

  8. Beryllium isotope geochemistry in tropical river basins

    SciTech Connect

    Brown, E.T.; Edmond, J.M. ); Raisbeck, G.M.; Bourles, D.L.; Yiou, F. ); Measures, C.I. )

    1992-04-01

    The distributions of beryllium-9 and beryllium-10 in rivers within the Orinoco and Amazon basins have been examined to extend the understanding of their geochemical cycles and to develop their use both in geochronometry, and in studying erosional processes. Analyses of {sup 9}Be in dissolved and suspended material from rivers with a wide range of chemical compositions indicate that its geochemistry is primarily controlled by two major factors: (1) its abundance in the rocks of the watershed and (2) the extent of its adsorption onto particle surfaces. The relative importance of these parameters in individual rivers is determined by the extent of interaction with flood-plain sediments and the riverine pH. This understanding of {sup 9}Be geochemistry forms a basis for examination of the geochemical cycling of {sup 10}Be. In rivers which are dominated by interaction with sediments, the riverine concentration of dissolved {sup 10}Be is far lower than that in the incoming rainwater, indicating that a substantial proportion of it is retained within the soils of the basin or is adsorbed onto riverine particles. However, in acidic rivers in which the stable dissolved Be concentration is determined by the Be level in the rocks of the drainage basin, dissolved {sup 10}Be has essentially the same concentration as in precipitation. These observations imply that the soil column in such regions must be saturated with respect to {sup 10}Be, and that the ratio of the inventory to the flux does not represent an age, as may be the case in temperate latitudes, but rather a residence time.

  9. Geohydrologic summary of the Pearl River basin, Mississippi and Louisiana

    USGS Publications Warehouse

    Lang, Joseph W.

    1972-01-01

    little or no treatment for most uses. The water is a soft, sodium bicarbonate type and therefore has a low to moderate dissolved-solids content. Mineral content increases generally downdip in an aquifer. Excessive iron, common in shallow aquifers, is objectionable for some water uses. Water from the streams, except in salty tidal reaches, is less mineralized than ground water; in 10 sites the median dissolved-solids content in streamflow was 50 milligrams per liter or less. Moderately intensive ground-water development has been made in the Bogalusa area, Louisiana; at the Mississippi Test Facility, Hancock County, Miss. ; and in the Jackson area, Mississippi. Wells with pumping rates of 500 to 1,000 gallons per minute each are common throughout the Pearl River basin, and some deep wells flow more than 3,000 gallons per minute in the coastal lowland areas. Probably 20 million gallons per day of artesian water flows uncontrolled from wells in the southern part of the basin. Ground-water levels, except in the higher altitudes, are within 60 feet of the surface, and flowing wells are common in the valleys and in the coastal Pine Meadows. Decline of water level is a problem in only a few small areas. Saline water as a resource is available for development from aquifers and streams near the coast and from aquifers at considerable depth in most of the Pearl River basin. Pollution is a problem in oil fields and in reaches of some streams below sewage and other waste-disposal points. The basin estuary contains water of variable quality but has potential for certain water-use developments that will require special planning and management.

  10. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  11. An integrated multiscale river basin observing system in the Heihe River Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.

    2015-12-01

    Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.

  12. Sustainability Within the Great Monsoon River Basins

    NASA Astrophysics Data System (ADS)

    Webster, P. J.

    2014-12-01

    For over five millenia, the great monsoon river basins of the Ganges, Brahmaputra and Indus have provided for great and flourishing agrarian civilizations. However, rapid population growth and urbanization have placed stress on the rural sector causing the use of land that is more prone for flood and drought. In addition, increased population and farming have stressed the availability of fresh water both from rivers and aquifers. Additionally, rapid urbanization has severely reduced water quality within the great rivers. Added to these problems is delta subsidence from water withdrawal that, at the moment far surpasses sea level rise from both natural and anthropogenic effects. Finally, there appear to be great plans for river diversion that may reduce fresh water inflow into the Brahmaputra delta. All of these factors fall against a background of climate change, both anthropogenic and natural, of which there is great uncertainty. We an attempt a frank assessment assessment of the sustainability of society in the great basins and make some suggestions of factors that require attention in the short term.

  13. Susquehanna River Basin Hydrologic Observing System (SRBHOS)

    NASA Astrophysics Data System (ADS)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.

    2004-12-01

    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested

  14. Current and future water resources of the Congo River basin

    NASA Astrophysics Data System (ADS)

    Sonessa, M.; Beyene, T.; Lettenmaier, D. P.; Kabat, P.; Fulco, L.; Franssen, W.

    2011-12-01

    The water resources of the Congo Basin are under enormous pressure due to decreases in the Oubangui River discharge for the last three decades and the shrinking of Lake Chad. We report on a systematic analysis of the hydrology and water resources of the entire Congo Basin, and that part of the basin within the geographical boundaries of each of the countries across which it flows. We used hydrological models, data from global data bases, and future climate scenarios. We address both historical and future state of water resources management (availability, flood and drought occurrence, dams/reservoirs, and water infrastructure) using the on-going development of a basin scale climate change impact assessment within the Wageningen Universiy -Congo Basin project frame work. Detailed analysis of potential impacts of climate change on the basin's water availability are assessed using two hydrological and water resources models (VIC, Variable Infiltration Capacity and LPJ, Lund-Potsdam-Jena). We use EU-WATCH historical data, three global climate models with two emissions scenarios downscaled and bias corrected using the statistical bias correction procedure described in EU-WATCH project.

  15. Water balance of the Drini i Bardh River Basin, Kosova

    NASA Astrophysics Data System (ADS)

    Avdullahi, Sabri; Fejza, Isalm

    2010-05-01

    Republic of Kosova lines on the highlands (500-600 m above sea level) surrounded by the mountains reaching the altitude of more than 2000m. Lower mountains divide the highland plain into four watershed areas, from where waters flow to there different seas, namely to the Adriatic Sea, the Aegean Sea and the Black Sea. In the present day world, the problems of too much, too little or too polluted water are increasing at a rapid rate. These problems have become particularly severe for the developing countries, adversely affecting their agriculture, drinking water supply and sanitation. Water recourse management is no more just a challenger it is a declared crises. Water resources in Kosova are relatively small, total amount of water in our country is small around 1600 m3/inhabitant /year Drini i Bardhë river basin is in the western part of Kosova, it is the biggest river basin with surface of 4.289 km2. Drini i Bardhë discharges its water to Albania and finally to the Adriatic Sea. The area consist of several small stream from the mountains, water flows into tributaries and Drini i Bardhë River. In this river basin are based 12 hydrometric stations, 27 manual and 5 automatic rainfall measurements Drini i Bardhe River main basin contain a big number of sub basins from which the most important are: Lumëbardhi i Pejës (503.5km2), Lumëbardhi i Deçanit (278.3km2), Erenikut (515.5km2), Burimi (446.7km2), Klinës (439.0km2), Mirushes (334.5km2), Toplluges (498.2km2), Bistrica e Prizrenit (266.0 km2) and Plava (309 km2) fig 2. For evapotranspiration measurement we have applied four methods: the method of BLANEY - CRIDDLE, radiation, SCHENDELE and Turk. Protecting from pollution is a very important issue having in consideration that this river discharges its water and outside the territory. Hydrometeorology Institute of Kosova is in charge for monitoring of water quality. Key works: rainfall, flow, evaporation, river, evaporation coefficient (Ke) and feeding coefficient

  16. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  17. Simulated effects of the 2003 permitted withdrawals and water-management alternatives on reservoir storage and firm yields of three surface-water supplies, Ipswich River Basin, Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.

    2004-01-01

    The Hydrologic Simulation ProgramFORTRAN (HSPF) model of the Ipswich River Basin previously developed by the U.S. Geological Survey was modified to evaluate the effects of the 2003 withdrawal permits and water-management alternatives on reservoir storage and yields of the Lynn, Peabody, and SalemBeverly water-supply systems. These systems obtain all or part of their water from the Ipswich River Basin. The HSPF model simulated the complex water budgets to the three supply systems, including effects of regulations that restrict withdrawals by the time of year, minimum streamflow thresholds, and the capacity of each system to pump water from the river. The 2003 permits restrict withdrawals from the Ipswich River between November 1 and May 31 to streamflows above a 1.0 cubic foot per second per square mile (ft3/s/mi2) threshold, to high flows between June 1 and October 31, and to a maximum annual volume. Yields and changes in reservoir storage over the 35-year simulation period (196195) were also evaluated for each system with a hypothetical low-capacity pump, alternative seasonal streamflow thresholds, and withdrawals that result in successive failures (depleted storage). The firm yields, the maximum yields that can be met during a severe drought, calculated for each water-supply system, under the 2003 permitted withdrawals, were 7.31 million gallons per day (Mgal/d) for the Lynn, 3.01 Mgal/d for the Peabody, and 7.98 Mgal/d for the SalemBeverly systems; these yields are 31, 49, and 21 percent less than their average 19982000 demands, respectively. The simulations with the same permit restrictions and a hypothetical low-capacity pump for each system resulted in slightly increased yields for the Lynn and SalemBeverly systems, but a slightly decreased yield for the Peabody system. Simulations to evaluate the effects of alternative streamflow thresholds on water supply indicated that firm yields were generally about twice as sensitive to decreases in the November

  18. Scenarios of long-term river runoff changes within Russian large river basins

    NASA Astrophysics Data System (ADS)

    Georgiadi, A. G.; Koronkevich, N. I.; Milyukova, I. P.; Kislov, A. V.; Barabanova, E. A.

    2010-12-01

    The approach for long-term scenario projection of river runoff changes for Russian large river basins in XXI century includes method for scenario estimations for range of probable climatic changes, based on generalization of results of the calculations executed on ensemble of global climatic models and physical-statistical downscaling of their results are developed for mountain regions; hydrological model; method of alternative scenario estimations for water management complex transformation and GIS technologies. The suggested methodology allows to develop long-term scenario projection for: (1) changes of river runoff in large river basins as a result of climate changes and (2) transformations of the water management complex caused by social-economic changes, occurring in the country and their influence on river runoff. As one of the bases of methodology is used model of monthly water balance of RAS Institute of Geography (Georgiadi, Milyukova, 2000, 2002, 2006, 2009). As the climatic scenario the range of probable climatic changes which is estimated by results of calculations for deviations of climatic elements from their recent values which have been carried out on ensemble of global climatic models based on the two most contrasting scenario globally averaged air temperature changes is used. As ensemble of climatic scenarios results of the calculations executed on 10 global climatic models, included in the program of last experiment 20C3M-20th Century Climate in Coupled Models (Meehl et al., 2007), is used. The method for long-term scenario projection for transformation of water management complex characteristics and water consumption was developed. The method includes several blocks (Koronkevich, 1990, Koronkevich et al., 2009): growth of the population and development of an economy; different ways of use and protection of waters, in view of different technologies of prevention and decreasing of pollution of water resources. Development of scenarios assumes pre

  19. Large-scale conservation assessment for Neotropical migratory land birds in the interior Columbia River basin.

    Treesearch

    Victoria A. Saab; Terrell D. Rich

    1997-01-01

    The status and habitats of Neotropical migratory land birds (NTMB) are evaluated within the interior Columbia River basin (interior basin). Objectives are to examine population trends, estimate NTMB responses to alternative management activities, and provide recommendations by habitat and species for the long-term persistence of NTMB populations. Among 132 NTMBs that...

  20. An Ecologic Characterization and Landscape Assessment of the Humboldt River Basin

    EPA Science Inventory

    The Humboldt River Basin covers a large part of northern Nevada. Very little is known about the water quality of the entire Basin. The people living in this area depend on clean water. Not knowing about water quality is a concern because people will need to manage the negative...

  1. An Ecologic Characterization and Landscape Assessment of the Humboldt River Basin

    EPA Science Inventory

    The Humboldt River Basin covers a large part of northern Nevada. Very little is known about the water quality of the entire Basin. The people living in this area depend on clean water. Not knowing about water quality is a concern because people will need to manage the negative...

  2. Frost risks in the Mantaro river basin

    NASA Astrophysics Data System (ADS)

    Trasmonte, G.; Chavez, R.; Segura, B.; Rosales, J. L.

    2008-04-01

    As part of the study on the Mantaro river basin's (central Andes of Perú) current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems) tools, using minimum temperature - 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April), when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence) were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l.), while the low (or null) probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.). Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke) in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l.), moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  3. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    NASA Astrophysics Data System (ADS)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  4. Water toxicity assessment and spatial pollution patterns identification in a Mediterranean River Basin District. Tools for water management and risk analysis.

    PubMed

    Carafa, Roberta; Faggiano, Leslie; Real, Montserrat; Munné, Antoni; Ginebreda, Antoni; Guasch, Helena; Flo, Monica; Tirapu, Luís; von der Ohe, Peter Carsten

    2011-09-15

    In compliance with the requirements of the EU Water Framework Directive, monitoring of the ecological and chemical status of Catalan river basins (NE Spain) is carried out by the Catalan Water Agency. The large amount of data collected and the complex relationships among the environmental variables monitored often mislead data interpretation in terms of toxic impact, especially considering that even pollutants at very low concentrations might contribute to the total toxicity. The total dataset of chemical monitoring carried out between 2007 and 2008 (232 sampling stations and 60 pollutants) has been analyzed using sequential advanced modeling techniques. Data on concentrations of contaminants in water were pre-treated in order to calculate the bioavailable fraction, depending on substance properties and local environmental conditions. The resulting values were used to predict the potential impact of toxic substances in complex mixtures on aquatic biota and to identify hot spots. Exposure assessment with Species Sensitivity Distribution (SSD) and mixture toxicity rules were used to compute the multi-substances Potentially Affected Fraction (msPAF). The combined toxicity of the pollutants analyzed in the Catalan surface waters might potentially impact more than 50% of the species in 10% of the sites. In order to understand and visualize the spatial distribution of the toxic risk, Self Organising Map (SOM), based on the Kohonen's Artificial Neural Network (ANN) algorithm, was applied on the output data of these models. Principal Component Analysis (PCA) was performed on top of Neural Network results in order to identify main influential variables which account for the pollution trends. Finally, predicted toxic impacts on biota have been linked and correlated to field data on biological quality indexes using macroinvertebrate and diatom communities (IBMWP and IPS). The methodology presented could represent a suitable tool for water managers in environmental risk

  5. Upstream water resource management to address downstream pollution concerns: A policy framework with application to the Nakdong River basin in South Korea

    NASA Astrophysics Data System (ADS)

    Yoon, Taeyeon; Rhodes, Charles; Shah, Farhed A.

    2015-02-01

    An empirical framework for assisting with water quality management is proposed that relies on open-source hydrologic data. Such data are measured periodically at fixed water stations and commonly available in time-series form. To fully exploit the data, we suggest that observations from multiple stations should be combined into a single long-panel data set, and an econometric model developed to estimate upstream management effects on downstream water quality. Selection of the model's functional form and explanatory variables would be informed by rating curves, and idiosyncrasies across and within stations handled in an error term by testing contemporary correlation, serial correlation, and heteroskedasticity. Our proposed approach is illustrated with an application to the Nakdong River basin in South Korea. Three alternative policies to achieve downstream BOD level targets are evaluated: upstream water treatment, greater dam discharge, and development of a new water source. Upstream water treatment directly cuts off incoming pollutants, thereby presenting the smallest variation in its downstream effects on BOD levels. Treatment is advantageous when reliability of water quality is a primary concern. Dam discharge is a flexible tool, and may be used strategically during a low-flow season. We consider development of a new water corridor from an extant dam as our third policy option. This turns out to be the most cost-effective way for securing lower BOD levels in the downstream target city. Even though we consider a relatively simple watershed to illustrate the usefulness of our approach, it can be adapted easily to analyze more complex upstream-downstream issues.

  6. Headwater streams in the EU Water Framework Directive: Evidence-based decision support to select streams for river basin management plans.

    PubMed

    Baattrup-Pedersen, Annette; Larsen, Søren E; Andersen, Dagmar K; Jepsen, Niels; Nielsen, Jan; Rasmussen, Jes J

    2017-09-22

    Headwater streams are important contributors to aquatic biodiversity and may counteract negative impacts of anthropogenic stress on downstream reaches. In Denmark, the first river basin management plan (RBMP) included streams of all size categories, most being <2.5m wide (headwater streams). Currently, however, it is intensely debated whether the small size and low slopes, typical of Danish streams, in combination with degraded habitat conditions obstruct their ability to fulfill the ecological quality objectives required by the EU Water Framework Directive (WFD). The purpose of this study was to provide an analytically based framework for guiding the selection of headwater streams for RBMP. Specifically, the following hypotheses were addressed: i) stream slope, width, planform, and general physical habitat quality can act as criteria for selecting streams for the next generation of RBMPs, and ii) probability-based thresholds for reaching good ecological status can be established for some or all of these criteria, thus creating a sound, scientifically based, and clear selection process. The hypotheses were tested using monitoring data on Danish streams from the period 2004-2015. Significant linear relationships were obtained between the ecological quality ratio assessed by applying the Danish Stream Fauna Index (DSFIEQR) and stream slope, width, sinuosity, and DHI. The obtained models were used to produce pressure-response curves describing the probability of achieving good ecological status along gradients in these parameters. Next, threshold values for slope, width, sinuosity, and DHI were identified for selected probabilities of achieving minimum good ecological status. The obtained results can support managers and policy makers in prioritizing headwater streams for the 3rd RBMP. The approach applied is broadly applicable and can, for instance, help prioritization of restoration and conservation efforts in different types of ecosystems where the biota can be

  7. Quality of water, Quillayute River basin, Washington

    USGS Publications Warehouse

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  8. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  9. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  10. Quantifying Changes in Accessible Water in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  11. Status and risk of extinction for westslope cutthroat trout in the Upper River Basin, Montana

    Treesearch

    Bradley B. Shepard; Brian Sanborn; Linda Ulmer; Danny C. Lee

    1997-01-01

    Westslope cutthroat trout Oncorhynchus clarki lewisi now occupy less than 5% of the subspecies' historical range within the upper Missouri River drainage in Montana. We assessed the risk of extinction for 144 known populations inhabiting streams within federally managed lands in the upper Missouri River basin using a Bayesian...

  12. Morphometric analysis of Suketi river basin, Himachal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Pophare, Anil M.; Balpande, Umesh S.

    2014-10-01

    Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order sub-basins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km 2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the sub-surface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the

  13. Regional scale groundwater modelling study for Ganga River basin

    NASA Astrophysics Data System (ADS)

    Maheswaran, R.; Khosa, R.; Gosain, A. K.; Lahari, S.; Sinha, S. K.; Chahar, B. R.; Dhanya, C. T.

    2016-10-01

    Subsurface movement of water within the alluvial formations of Ganga Basin System of North and East India, extending over an area of 1 million km2, was simulated using Visual MODFLOW based transient numerical model. The study incorporates historical groundwater developments as recorded by various concerned agencies and also accommodates the role of some of the major tributaries of River Ganga as geo-hydrological boundaries. Geo-stratigraphic structures, along with corresponding hydrological parameters,were obtained from Central Groundwater Board, India,and used in the study which was carried out over a time horizon of 4.5 years. The model parameters were fine tuned for calibration using Parameter Estimation (PEST) simulations. Analyses of the stream aquifer interaction using Zone Budget has allowed demarcation of the losing and gaining stretches along the main stem of River Ganga as well as some of its principal tributaries. From a management perspective,and entirely consistent with general understanding, it is seen that unabated long term groundwater extraction within the study basin has induced a sharp decrease in critical dry weather base flow contributions. In view of a surge in demand for dry season irrigation water for agriculture in the area, numerical models can be a useful tool to generate not only an understanding of the underlying groundwater system but also facilitate development of basin-wide detailed impact scenarios as inputs for management and policy action.

  14. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  15. Water balance of the Lepenci river basin, Kosova

    NASA Astrophysics Data System (ADS)

    Osmanaj, L.; Avdullahi, S.

    2009-04-01

    Republic of Kosova lines on the highlands (500-600 m above sea level) surrounded by the mountains reaching the altitude of more than 2000m. Lower mountains divide the highland plain into four watershed areas, from where waters flow to there different seas, namely to the Adriatic Sea, the Aegean Sea and the Black Sea. Kosova has four water basins, such as the Basin of river Drini i Bardhe, Ibri, Morava e Binqes and Lepenci. The Basin of river Lepenci is located in South-eastern part of Kosova with surface of 650 km2, belongs to Axios river basin discharging into Aegean Sea. The annual rainfall is 670-1.000 mm and specific runoff 8 - 20 l/s/km2. There are also steep mountains in this area. In this case study we have calculate the water balance of the river Lepenc Basin. The Basin of river Lepenc we have divided in to 3 catchments: of Nerodima river, and upper and lower part of river Lepenci. This basin is covered by three municipalities such as municipality of Ferizaj, Kaçanik and Shterpc. The data on precipitation are obtained from three metering stations, such as the metering station of Ferizaj, Kaçanik and Jazhnice. The obtained records are elaborated. For evapotranspiration measurement we have applied four methods: the method of BLANEY - CRIDDLE, radiation, SCHENDELE and Turk. In a basin of river Lepenci we have four stations for measuring the discharges and levels: in Ferizaj, and Kaçanik - Nerodime river and in Hani i Elezit - Lepenc river. The river basin Lepenc has two inflowing points, where are Lepenci river in the border with the FYR of Macedonia and Sazli village near Ferizaj. Key works: precipitation, evaporation, flow, river, discharges,

  16. Water Footprint Assessment to support water resources management in the regulatory context: a case study in the Thames River Basin, UK

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Mathews, R. E.; Frapporti, G.; Mekonnen, M. M.; Hoekstra, A. Y. Y.

    2014-12-01

    The economy and environment of the Hertfordshire and North London Area (H&NL Area) within Thames River Basin rely on the limited water resources in the region, especially groundwater. The water resources in the area are managed, amongst other mechanisms, through water abstraction licences and discharge permits. Current management practice is not responsive or flexible enough to address future pressures. To support improving current water management in the area, a Water Footprint Assessment (WFA) study was conducted. This is a pioneering work in the field of WFA applied in a regulatory context. The study deals with a high level of complexity in a number of aspects: 1) high spatial and temporal resolution (sub-catchment level and monthly time scale); 2) multiple water use sectors (industry, domestic and agriculture); 3) different sources of water for human use (surface and groundwater); 4) different types of human pressure on water resources (consumption and pollution); 5) integrated assessment of water use sustainability (water scarcity and water pollution level); and 6) projected water footprint (WF) with water demand and climate change scenarios. The green, blue and grey WF on surface water, the blue and grey WF on groundwater of the 35 sub-catchments within the H&NL Area have been estimated for the domestic, industrial and agricultural sectors on a monthly basis. Blue water scarcity (BWS) and water pollution level (WPL) were evaluated to assess the sustainability of the blue and grey WF respectively, distinguishing between ground and surface water. A "wet" and "dry" climate change scenario for 2060 was used to project the WF components and BWS. This study identifies sub-catchments in the area facing moderate to severe BWS and/or WPLs and illustrates the relation between the two. The results demonstrate that WFA and in particular BWS and WPLs can and should form a basis for regulatory reform for water resources management. Levels of BWS in sub-catchments can

  17. Studying strategic interaction under environmental and economic uncertainties among water users in the Zambezi River Basin - From descriptive analysis to institutional design for better transboundary management

    NASA Astrophysics Data System (ADS)

    Beck, L.; Siegfried, T. U.; Bernauer, T.

    2009-12-01

    The Zambezi River Basin (ZRB) is one of the largest freshwater catchments in Africa and worldwide. Consumptive water use in the ZRB is currently estimated at 15 - 20 percent of total runoff. This suggests many development possibilities, particularly for irrigated agriculture and hydropower production. The key drivers in the basin are population development on the demand side as well as uncertain impacts from climate change for supply. Development plans of the riparian countries suggest that consumptive water use might increase up to 40 percent of total runoff by 2025. This suggests that expanding water use in the Zambezi basin could become a source of disputes among the eight riparian countries. We study the surface water allocation in the basin by means of a couple hydrological-economic modeling approach. A conceptual lumped-parameter rainfall-runoff model for the ZRB was constructed and calibrated on the best available runoff data for the basin. Water users are modeled based on an agent-based framework and implemented as distributed sequential decision makers that act in an uncertain environment. Given the current non-cooperative status quo, we use the stochastic optimization technique of reinforcement learning to model the individual agents’ behavior. Their goals include the maximization of a) their long-term reward as conditioned on the state of the multi-agent system and b) the immediate reward obtained from operational decisions of reservoirs and water diversions under their control. We feed a wide range of water demand drivers as well as climate change predictions into the model and assess agents’ responses and the resulting implications for runoff at key points in the water catchment, including Victoria Falls, Kariba reservoir, Kafue Gorge, and Cahora Bassa reservoir in the downstream. It will be shown that considerable benefits exist if the current non-cooperative regime is replaced by a basin-wide, coordinated allocation strategy that regulates water

  18. Bibliography of selected water-resources information for the Arkansas River basin in Colorado through 1985

    USGS Publications Warehouse

    Kuzmiak, John M.; Strickland, Hyla H.

    1994-01-01

    The Arkansas River basin composes most of southeastern Colorado, and the numerous population centers and vast areas of agricultural development are located primarily in the semiarid part of the basin east of the Continental Divide. Because effective management and development of water resources in this semiarid area are essential to the viability of the basin, many hydrologic data- collection programs and investigations have been done. This report contains a bibliography of selected water-resources information about the basin, including regularly published information and special investigations, from Federal, State, and other organizations. To aid the reader, the infor- mation is indexed by author, subject, county, and hydrologic unit (drainage basin).

  19. Perceptions, data, and river management: Lessons from the Mekong River

    NASA Astrophysics Data System (ADS)

    Campbell, Ian C.

    2007-02-01

    Workshops to identify transboundary and basin-wide environmental issues and a diagnostic study by consultants identified priority environmental concerns of resource managers in the lower Mekong River basin. The issues identified, in priority order, were water quality, reduction in dry season flows, sedimentation, fisheries decline, wetland degradation, and flooding. An analysis of the available data found no evidence that water quality was poor except in the delta, where nutrient levels were high and increasing. Dry season flows have not decreased, and in the immediate future they are more likely to increase. Suspended sediment levels in the river are not high, and there is no indication that sediment loads are substantially increasing. Fish catch per unit effort has declined over the past decades, as have catches of large fish, but total fish catch has increased. Flooding does not appear to have increased in frequency or extent. There is no reliable quantitative information available on changes in wetland extent or condition, although it is reasonable to assume that both have declined. Reasons for the mismatch between perceptions and the data may include a failure by management agencies to analyze and publish data and provide adequate responses to issues raised in the popular press. This results from a lack of capacity in many government agencies and the Mekong River Commission, where there are high staff turnover rates and a dependence on short-term experts with limited experience in the basin.

  20. Greater Platte River Basins - Science to Sustain Ecosystems and Communities

    USGS Publications Warehouse

    Thormodsgard, June M.

    2009-01-01

    The Greater Platte River Basins (GPRB), located in the heartland of the United States, provides a collaborative opportunity for the U.S. Geological Survey (USGS) and its partners to understand the sustainability of natural and managed ecosystems under changing climate and resource requirements.The Greater Platte River Basins, an area of about 140,000 square miles, sustains thousands of acres of lakes and wetlands, which provide a staging and resting area for the North American Central Flyway. Part of the GPRB is within the U.S. Corn Belt, one of the most productive agricultural ecosystems on Earth. Changes in water and land use, changing patterns of snowmelt in the Rocky Mountains, drought, and increasing demands for irrigation have reduced flows in the Platte River. These changes raise questions about the sustainability of the region for both wildlife and agriculture.The USGS and partners are developing a science strategy that will help natural-resource managers address and balance the needs of this region.

  1. Role playing games: a methodology to acquire knowledge for integrated wastewater infrastructures management in a river basin scale.

    PubMed

    Prat, P; Aulinas, M; Turon, C; Comas, J; Poch, M

    2009-01-01

    Current management of sanitation infrastructures (sewer systems, wastewater treatment plant, receiving water, bypasses, deposits, etc) is not fulfilling the objectives of up to date legislation, to achieve a good ecological and chemical status of water bodies through integrated management. These made it necessary to develop new methodologies that help decision makers to improve the management in order to achieve that status. Decision Support Systems (DSS) based on Multi-Agent System (MAS) paradigm are promising tools to improve the integrated management. When all the different agents involved interact, new important knowledge emerges. This knowledge can be used to build better DSS and improve wastewater infrastructures management achieving the objectives planned by legislation. The paper describes a methodology to acquire this knowledge through a Role Playing Game (RPG). First of all there is an introduction about the wastewater problems, a definition of RPG, and the relation between RPG and MAS. Then it is explained how the RPG was built with two examples of game sessions and results. The paper finishes with a discussion about the uses of this methodology and future work.

  2. Long-term monitoring of UK river basins: the disconnections between the timescales of hydrological processes and watershed management planning

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T.; Worrall, F.

    2016-12-01

    The UK has a wealth of hydrological monitoring data that has both good coverage in space since the early 1970s, and also a few locations where records have been kept continuously for almost 150 years. Such datasets offer unique opportunities for the hydrologist to consider how the concepts of stationarity, change, and definitions of "baseline" resources should be used to shape how we build models of these systems, and how we devise appropriate and sustainable watershed management strategies. In this paper we consider some of the UK's longest hydrological and biogeochemical records, to explore how long records can be used to shape such understanding and, in some cases, how they can be used to identify new modes of behaviour that need to be incorporated into management planning, from the scale of individual watersheds right up to the national scale. We also consider how key timescales of hydrological responses that are evident within the data may pose major problems for watershed management unless appropriate attention is paid to the potential impacts of processes that work over decadal timescales - much longer than sub-decadal water industry investment cycles or short-term projects for watershed management planning. We use our long-term records to show how key processes can be identified, and to illustrate how careful interpretation of shorter term records will improve decision-making for water resource management.

  3. Evaluation of pressures in European river basins reported under the Water Framework Directive: potentials for collaborative improvement of assessments in transnational water management.

    NASA Astrophysics Data System (ADS)

    Pistocchi, A.; Aloe, A.; Bizzi, S.; Buoraoui, F.; Burek, P.; de Roo, A.; Grizzetti, B.; Liquete, C.; Pastori, M.; Salas, F.; Stips, A. K.; van de Bund, W.; Weissteiner, C.; Bidoglio, G.

    2014-12-01

    The Water Framework Directive 60/2000/EC requires European Union member states to ensure good status of water bodies. To this end, it requires to identify relevant pressures (e.g. diffuse pollution) on waters, to address them through appropriate measures (e.g. enforce good agricultural practices), and to report both pressures and measures to the European Commission (EC). In spite of existing assessment guidance, member states report about pressures in a rather heterogeneous way. This has stimulated the EC to undertake a comparison between the pressures reported by the member states with those depicted by Europe-wide model-based indicators. This alone has required turning model results to communicable maps to be used in a decision making context with minimal risk of interpretive distortion. The comparison suggests that the identification of relevant pressures at the continental scale is not always the same as at the national and regional scale, causing difficulties in the prioritization of investments and doubts about the effectiveness of envisaged measures. A simple rank-based classification has been used to map the level of agreement between pressures reported by the member states and the corresponding European indicators, highlighting regions where a more detailed insight is required in order to come to a shared judgment on pressures hampering the achievement of good water body status. Reported pressures may suffer from incompleteness and semantic uncertainty, while European indicators suffer from model uncertainties and errors. A discussion of differences between European indicators and river basin assessments in the light of agreed-upon reporting and model limitations may help to collaboratively improve the assessment from both sides, and consequently to design more effectively the measures to be implemented at the respective levels. We present and discuss the case study, highlighting how the approach may be useful in contexts of transnational water management.

  4. Ecology and restoration of the Delaware River basin

    SciTech Connect

    Majumdar, S.K. ); Miller, E.W. . Dept. of Geography); Sage, L.E. )

    1988-01-01

    This book describes and analyzes the physical, biological and human problems that have evolved over time in the utilizations of water in the Delaware River Basin. It discusses the environmental problems of a major river basin, and provides solutions to these problems.

  5. The cost of noncooperation in international river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Kinzelbach, W.

    2012-01-01

    In recent years there has been a renewed interest for water supply enhancement strategies in order to deal with the exploding demand for water in some regions, particularly in Asia and Africa. Within such strategies, reservoirs, especially multipurpose ones, are expected to play a key role in enhancing water security. This renewed impetus for the traditional supply-side approach to water management may indeed contribute to socioeconomic development and poverty reduction if the planning process considers the lessons learned from the past, which led to the recommendations by the World Commission on Dams and other relevant policy initiatives. More specifically, the issues dealing with benefit sharing within an efficient and equitable utilization of water resources are key elements toward the successful development of those river basins. Hence, there is a need for improved coordination and cooperation among water users, sectors, and riparian countries. However, few studies have explicitly tried to quantify, in monetary terms, the economic costs of noncooperation, which we believe to be important information for water managers and policy makers, especially at a time when major developments are planned. In this paper we propose a methodology to assess the economic costs of noncooperation when managing large-scale water resources systems involving multiple reservoirs, and where the dominant uses are hydropower generation and irrigated agriculture. An analysis of the Zambezi River basin, one of the largest river basins in Africa that is likely to see major developments in the coming decades, is carried out. This valuation exercise reveals that the yearly average cost of noncooperation would reach 350 million US$/a, which is 10% of the annual benefits derived from the system.

  6. Hydrologic and Geomorphic Studies of the Platte River Basin

    USGS Publications Warehouse

    ,

    1983-01-01

    The channels of the Platte River and its major tributaries, the South Platte and North Platte Rivers in Colorado, Wyoming, and Nebraska, have undergone major changes in hydrologic regime and morphology since about 1860, when the water resources of the basin began to be developed for agricultural, municipal, and industrial uses. These water uses have continued to increase with growth in population and land development. Diversion of flow from channels, storage of water in reservoirs, and increased use of ground water have affected the distribution and timing of streamflows and the transport of fluvial sediments. All these factors have contributed to changes in channel geometry and the riverine environment. In 1979, the U.S. Geological Survey began investigations in the Platte River basin to determine the effects of water use on the hydrology and morphology of the Platte River and its major tributaries. These investigations also considered the relationship of hydrologic regime to factors that control or affect the habitat of migratory waterfowl in the Platte River valley. This volume brings together the results of several research studies on historical changes in channel morphology, surface-water hydrology, hydraulic geometry, sediment-transport and bedform processes, ground-water and surface-water relations, stochastic models of streamflow and precipitation, and methods for estimating discharge required to maintain channel width. In each of the studies, data on some segment of the Platte River hydrologic system were collected and interpreted. All the studies are interrelated; together they provide some degree of understanding of regime changes that are occurring. The hydrologic research described in the following chapters will be useful in decision-making pertaining to the management of water resources and migratory waterfowl habitats.

  7. New vitrinite reflectance data for the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.

  8. The use of remote sensing and geographic information systems for the evaluation of river basins: a case study for Turkey, Marmara River Basin and Istanbul.

    PubMed

    Ulugtekin, Necla; Balcik, Filiz Bektas; Dogru, Ahmet O; Goksel, Cigdem; Alaton, Idil Arslan; Orhon, Derin

    2009-03-01

    The aim of this study was to determine sensitive river basins and specific areas that urgently need planning activities for sustainable resource and environmental management. In this context, a combination of remote sensing (RS) and geographic information systems (GIS) were employed. For that purpose, a comprehensive overview of the current situation of Turkish river basins in terms of existing spatial data was provided and all tabular data gathered from the national authorities on regional basis was assessed in combination with the geometric data of Turkish river basins in a GIS environment. Considering the GIS studies that covered all 26 Turkish basins, the Marmara River Basin was selected as the model sensitive region and was studied in more detail by using 2000 dated Landsat 7 ETM mosaic satellite image. Results of this comprehensive study indicated that Istanbul, which is located in the basin under study and the largest metropolitan of Turkey, was determined as the most populated and urbanized area of the region. Istanbul was further examined to determine the expansion of urban areas over a time period of 16 years using Landsat images dated 1984, 1992 and 2000. Finally, interpretations were done by combining the demographic and statistical data on urban wastewater treatment plants to present the prevailing situation of the water treatment facilities in Istanbul. Our study not only delineated the importance of applying environmental policies correctly for the efficient installation and operation of urban wastewater treatment plants in Istanbul but also demonstrated that effective urban wastewater management is a nationwide problem in Turkey.

  9. Mapping Water Vulnerability of the Yangtze River Basin: 1994-2013.

    PubMed

    Sun, Fengyun; Kuang, Wenhui; Xiang, Weining; Che, Yue

    2016-11-01

    A holistic understanding of the magnitude and long-term trend of water vulnerability is essential for making management decisions in a given river basin. Existing procedures to assess the spatiotemporal dynamic of water vulnerability in complex mega-scale river basins are inadequate; a new method named ensemble hydrologic assessment was proposed in this study, which allows collection of data and knowledge about many aspects of water resources to be synthesized in a useful way for vulnerability assessment. The objective of this study is to illustrate the practical utility of such an integrated approach in examining water vulnerability in the Yangtze River Basin. Overall, the results demonstrated that the ensemble hydrologic assessment model could largely explain the spatiotemporal evolution of water vulnerability. This paper improves understanding of the status and trends of water resources in the Yangtze River Basin.

  10. Mapping Water Vulnerability of the Yangtze River Basin: 1994-2013

    NASA Astrophysics Data System (ADS)

    Sun, Fengyun; Kuang, Wenhui; Xiang, Weining; Che, Yue

    2016-11-01

    A holistic understanding of the magnitude and long-term trend of water vulnerability is essential for making management decisions in a given river basin. Existing procedures to assess the spatiotemporal dynamic of water vulnerability in complex mega-scale river basins are inadequate; a new method named ensemble hydrologic assessment was proposed in this study, which allows collection of data and knowledge about many aspects of water resources to be synthesized in a useful way for vulnerability assessment. The objective of this study is to illustrate the practical utility of such an integrated approach in examining water vulnerability in the Yangtze River Basin. Overall, the results demonstrated that the ensemble hydrologic assessment model could largely explain the spatiotemporal evolution of water vulnerability. This paper improves understanding of the status and trends of water resources in the Yangtze River Basin.

  11. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    NASA Astrophysics Data System (ADS)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  12. Controlling erosion in the Missouri River Basin

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    The most pervasive conservation concern in the vast 510,000 square mile Missouri River basin in the western United States is excessive rates of wind erosion during dry periods, though conservation efforts can help control erosion, according to a 30 August report by the U.S. Department of Agriculture's (USDA) Conservation Effects Assessment Project. During some dry years, rates of wind erosion—which include nitrogen and phosphorus losses—can be higher than 4 tons per acre on 12% and higher than 2 tons per acre on 20% of the approximately 148,000 square miles of cultivated cropland, notes the report Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Missouri River Basin. Between 2003 and 2006, conservation practices, including reducing tillage and building terraces, yielded about a 75% reduction in sediment runoff and phosphorus loss and a 68% reduction in nitrogen loss, according to the report. About 15 million acres in the region—18% of cultivated cropland—are considered to have either a high or moderate level of need for conservation treatment, and efforts in those areas in particular could result in additional reductions in sediment, phosphorus, and nitrogen loss, the report states.

  13. Recent Advances in Modeling Phosphorus and Nitrogen Delivery to the Gulf of Mexico and Implications for Managing Nutrients n the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Smith, R. A.; Schwarz, G. E.; Boyer, E. W.; Nolan, J. V.; Brakebill, J. W.

    2008-12-01

    Although the increased availability of reactive nutrients in past decades has benefited society via food and energy production, the corresponding rise in nutrient loadings to aquatic ecosystems is of particular concern, especially in many estuaries globally where increased nutrient loads have contributed to eutrophic conditions. In the United States, elevated riverine nutrients have contributed to stressed trophic conditions in a majority of estuaries, including the shallow coastal waters of the Louisiana shelf in the northern Gulf of Mexico, where both nitrogen and phosphorus loadings are recognized as contributing to seasonal hypoxic conditions. Advances in geospatial modeling of nitrogen and phosphorus sources and transport in the Mississippi and Atchafalaya River Basins (MARB), as reported in a recent U.S. Geological Survey (USGS) study, provide important information to support improved assessments and management of nutrient loadings to the northern Gulf of Mexico. We summarize the findings of this study and discuss the implications for managing nutrient sources in the MARB. The study reveals important differences in the sources and aquatic transport of nitrogen and phosphorus that affect delivery to the Gulf. Although agricultural sources contribute a majority of the delivered nutrients to the Gulf, corn and soybean cultivation is the largest contributor of nitrogen whereas phosphorus originates primarily from animal manure on pasture and rangelands. Atmospheric deposition is the second leading source of nitrogen, with urban sources contributing relatively small quantities of both nutrients. Furthermore, we find that both nitrogen and phosphorus delivery to the Gulf is controlled by hydrological and biogeochemical processes (e.g., water travel time, denitrification, storage) that scale with stream size, although phosphorus also displays large local- and regional-scale differences in delivery caused by reservoir trapping. The importance of these processes

  14. Flooding in the Mississippi River Basin in Minnesota, spring 2001

    USGS Publications Warehouse

    Mitton, Gregory B.

    2001-01-01

    During spring 2001 there was much flooding in the Mississippi River Basin in Minnesota. Greater than normal precipitation starting with late fall rains in 2000, greater than normal snowfalls, a delayed snowmelt, and record rains in April, all contributed to the flooding. Parts of the southern one-half of Minnesota had streamflows of magnitudes not seen in more than 30 years. Approximately 50 counties were declared disaster areas with greater than 34 million dollars in total reported flood damage (S. Neudahl, Department of Public Safety, Division of Emergency Management, oral commun. July 9, 2001).

  15. Long lasting dynamic disequilibrium in river basins

    NASA Astrophysics Data System (ADS)

    Goren, Liran; Willett, Sean D.; McCoy, Scott W.; Perron, J. Taylor; Chen, Chia-Yu

    2014-05-01

    The river basins of ancient landscapes such as the southeastern United States exhibit disequilibrium in the form of migrating divides and stream capture. This observation is surprising in light of the relatively short theoretical fluvial response time, which is controlled by the celerity of the erosional wave that propagates upstream the fluvial channels. The response time is believed to determine the time required for fluvial landscapes to adjust to tectonic, climatic, and base-level perturbations, and its global estimations range between 0.1 Myr and 10s Myr. To address this discrepancy, we develop a framework for mapping continuous dynamic reorganization of natural river basins, and demonstrate the longevity of disequilibrium along the river basins in the southeastern United States that are reorganizing in response to escarpment retreat and coastal advance. The mapping of disequilibrium is based on a proxy for steady-state elevation, Ξ, that can be easily calculated from digital elevation models. Disequilibrium is inferred from differences in the value of Ξ across water divides. These differences indicate that with the present day drainage area distribution and river topology the steady-state channels elevation across the divides differs, and therefore divides are expected to migrate in the direction of the higher Ξ value. We further use the landscape evolution model DAC to explore the source of the longevity of disequilibrium in fluvial landscapes. DAC solves accurately for the location of water divides, using a combination of an analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC simulations demonstrate topological, geometrical, and topographical adjustments that persist much longer than the theoretical response time, and consequently, extend the time needed to diminish disequilibrium in the landscape and to reach topological and topographical steady-state. This behavior is interpreted

  16. Diagnosis of ecosystem impairment in a multiple-stress context--how to formulate effective river basin management plans.

    PubMed

    de Zwart, Dick; Posthuma, Leo; Gevrey, Muriel; von der Ohe, Peter C; de Deckere, Eric

    2009-01-01

    The Water Framework Directive (WFD) of the European Union requires member states to attain a good ecological status for all water bodies by the year 2015. This implies that the bioecological protection endpoint itself is upfront, next to abiotic chemical quality standards, as tools to protect those endpoints. Within the requirements of the Directive, ecological status and abiotic conditions will be monitored extensively. Based on the analysis of the monitoring data, authorities are required to derive Programs of Measures (PoMs) for impacted sites. Optimization of these programs requires diagnosis, to provide site-specific or catchment-specific information on the causes of observed deviations from a good ecological status. This article shows one pilot analysis of monitoring data (Scheldt River, Belgium) compiled in the scope of the EU MODELKEY project. Ecological, ecotoxicological, and statistical models are combined to quantify local ecological impact magnitudes and to identify site-specific factors that are associated with those impacts. Results show significant ecological effects in terms of taxa loss at study sites, which are highly variable among sites, with variable combinations of environmental factors associated with those effects. The results of the diagnostic approach are discussed, which appear to be complementary to the assessment of chemical status required by the Directive. Both types of assessment are useful to assist in the derivation of optimized PoMs. In addition, it could be concluded that the acute toxic pressure parameter relates to reduced taxon abundance for more than half of the studied taxa and that this parameter relates to the fraction of taxa lost under field conditions. Finally, various lessons for the execution of monitoring programs are derived because the Scheldt (bio)monitoring data set has its weaknesses, although it can be seen as typical for current monitoring programs.

  17. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  18. Quality of water, Quillayute River basin, Washington

    SciTech Connect

    Fretwell, M.O.

    1984-01-01

    Ground water in the Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses, with the exception of water in two wells which had iron concentrations that potentially could be tasted in beverages and could cause staining of laundry and porcelain fixtures. A comparison of the chemical compositions of ground and surface waters showed a strong similarity over a wide geographic area. Proportions of the major chemical constituents in the rivers of the basin were nearly constant despite concentration fluctuations in response to dilution from precipitation and snowmelt. River-water quality was generally excellent, as evaluated against Washington State water use and water-quality criteria. Fecal-coliform bacteria counts generally were much lower than the total-coliform bacteria counts, indicating that most of the coliform bacteria were of nonfecal origin and probably originated in soils. Fecal coliform concentrations in all the major tributaries met State water-quality criteria. Water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow; dissolved-oxygen concentrations were occasionally less than criteria minimum because of increased water temperature. Both conditions occurred naturally. Nutrient concentrations were generally low to very low and about the same as in streams from virgin forestland in the Olympic National Park. However, some slight increases in nutrient concentrations were observed, particularly in the vicinity of Mill Creek and the town of Forks; due to dilution and biological assimilation, these slightly elevated concentrations decreased as the water moved downstream. 35 refs., 24 figs., 16 tabs.

  19. Influences of hydrogeomorphology and chemical water quality on fish assemblages in the Nevėžis River, Lithuania: implications for river basin management plans in the Baltics.

    PubMed

    Čivas, Laurynas; Kesminas, Vytautas; Sullivan, S Mažeika P

    2016-02-01

    Further resolving physicochemical-fish associations would be of considerable benefit to advancing both scientific research and monitoring programs in the Baltic states. We collected 3 years of coordinated hydrogeomorphic, water-chemistry, and fish assemblage data at 11 study reaches along the Nevėžis River of central Lithuania and assessed their relative influence on fish assemblages. Of the 23 fish species surveyed in the Nevėžis River, omnivorous and tolerant species were most common. Both water chemistry and physical, hydrogeomorphic characteristics emerged as predictors of fish assemblage descriptors. The strength of evidence for biological oyxgen demand as a strong environmental driver was compelling for both the Lithuanian Fish Index (LFI) and percentage of simple lithophils. Channel substrate emerged in multiple models as a strong predictor variable (LFI, % intolerant species, % simple lithophils, % omnivores). Measures of channel size (drainage area, mean depth) contributed to models for multiple fish metrics including percentage of lithophils, percentage of omnivores, and percentage of intolerant species. This research represents novel work in the region, and our results are an important step in supporting the development of a comprehensive physicochemical research and monitoring program in Lithuania.

  20. Anacostia River Basin: Large, Medium, and Small Lumps

    NASA Astrophysics Data System (ADS)

    Feldman, A. D.; Dufour, A.; Dotson, H. W.

    2001-05-01

    constructed using the U.S. Army Corps of Engineers' Hydrologic Modeling System, HEC-HMS. HMS can simulate any-sized river basin with unlimited subbasins and routing reaches. It can also simulate subbasin runoff on a gridded, semi-distributed basis. The Anacostia Basin was analyzed in three levels of detail at each gauge: one subbasin, five-to-ten subbasins, and 20-to-30 subbasins. Those levels of detail serve three analysis purposes, respectively: flow-frequency at the gauge, flow frequencies at flood-damage centers in other locations, and flow frequencies throughout the basin for local floodplain management. In addition to comparing simulation results for these different-sized lumps, a 4-km gridded representation of the basin is compared to the large, single-subbasin approach.

  1. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    PubMed Central

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-01-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  2. Assessment of River Habitat Quality in the Hai River Basin, Northern China.

    PubMed

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-09-17

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 10⁴ km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 10⁴ km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m³); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08-16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  3. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect

    Not Available

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  4. Lake Murray, Fly and Strickland River Basins, Papua, New Guinea

    NASA Image and Video Library

    1991-12-01

    Lake Murray, a manmade reservoir, lies between the Fly and Strickland River Basins, Papua, New Guinea (7.0S, 141.5E). The region, photographed in sunglint, shows the water level in the reservoir and the full extent of the drainage basins of both river systems as the rivers meander through wide alluvial floodplains. Some forest clearing can be seen in places throughout the region, but most of the area remains in closed canopy forest.

  5. Lake Murray, Fly and Strickland River Basins, Papua, New Guinea

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lake Murray, a manmade reservoir, lies between the Fly and Strickland River Basins, Papua, New Guinea (7.0S, 141.5E). The region, photographed in sunglint, shows the water level in the reservoir and the full extent of the drainage basins of both river systems as the rivers meander through wide alluvial floodplains. Some forest clearing can be seen in places throughout the region, but most of the area remains in closed canopy forest.

  6. Lake Murray, Fly and Strickland River Basins, Papua, New Guinea

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lake Murray, a manmade reservoir, lies between the Fly and Strickland River Basins, Papua, New Guinea (7.0S, 141.5E). The region, photographed in sunglint, shows the water level in the reservoir and the full extent of the drainage basins of both river systems as the rivers meander through wide alluvial floodplains. Some forest clearing can be seen in places throughout the region, but most of the area remains in closed canopy forest.

  7. Hydrologic Drought in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Timilsena, J.; Piechota, T.; Hidalgo, H.; Tootle, G.

    2004-12-01

    This paper focuses on drought scenarios of the Upper Colorado River Basin (UCRB) for the last five hundred years and evaluates the magnitude, severity and frequency of the current five-year drought. Hydrologic drought characteristics have been developed using the historical streamflow data and tree ring chronologies in the UCRB. Historical data include the Colorado River at Cisco and Lees Ferry, Green River, Palmer Hydrologic Drought Index (PHDI), and the Z index. Three ring chronologies were used from 17 spatially representative sites in the UCRB from NOAA's International Tree Ring Data. A PCA based regression model procedures was used to reconstruct drought indices and streamflow in the UCRB. Hydrologic drought is characterized by its duration (duration in year in which cumulative deficit is continuously below thresholds), deficit magnitude (the cumulative deficit below the thresholds for consecutive years), severity (magnitude divided by the duration) and frequency. Results indicate that the current drought ranks anywhere from the 5th to 20th worst drought during the period 1493-2004, depending on the drought indicator and magnitude. From a short term perspective (using annual data), the current drought is more severe than if longer term average (i.e., 5 or 10 year averages) are used to define the drought.

  8. Basin Management under the Global Climate Change (Take North-East Asia Heilongjiang -Amur Basin and Taihu Basin For Example)

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhou, Z.; Zhong, G.; Zhang, X.

    2015-12-01

    The impact of global climate change on environment and society causes increasingly concern in different countries around the world. The main climate characteristic values, such as precipitation and temperature, have been changed, which leads to the variation of water resources, especially in large basins. Heilongjiang-Amur Basin and Taihu Basin are two large and important basins in China with large area and population. As global climate change and human activities have siganificant impacts on hydrology and water resources in two basins, the analysis of climate change are of great value. In this study, in Heilongjiang-Amur Basin, precipitation and temperature are investigated and their variation are predicted. And in Taihu Basin, precipitation including plum rain and typhoon, are studied and the variation trend of precipitation is predicted. Hence, the impacts of global climate change are assessed. From the result, it shows that the average temperature will continue to increase, and the precipitation will reduce first and then turn to increase in these two basins. It demonstrates that the water resources have been affected a lot by climate change as well as human activities. And these conclusions are provided as reference for policy makers and basin authorities in water resources management and natural hazards mitigation. Meanwhile, according to basins' particualr characters, the suggestions to future water resources management in two basins are given, and more scientific, comprehensive and sustained managements are required. Especially, in Heilongjiang-Amur River, which is a boundary river between China and Russia, it is very essential to enhance the cooperation between two countries.

  9. Climate sensitivity of major river basins in Africa

    NASA Astrophysics Data System (ADS)

    Beyene, T.; Lettenmaier, D. P.; Kabat, P.; Ludwig, F.

    2011-12-01

    We simulate the land surface water balance of five major African river basins using the Variable Infiltration Capacity (VIC) land surface hydrologic model forced by gridded climate data of precipitation and temperature for the period 1979-1999. The seasonality and inter-annual variability of the water balance terms vary across the continent and at each river basin. The long-term mean vapor flux convergence P-E agrees well with observed runoff for the eastern and north western basins, whereas there is a relatively large imbalance (28%) for the Oranje River basin possibly because of its small size. The Zambezi and Oranje River basins act as a net source of moisture in dry seasons (strong negative P-E). Both the Nile and Zambezi basins have a low runoff efficiency and a high dryness index, indicating a high sensitivity to climate change in the case of the Nile, and moderate sensitivity in the case of the Zambezi. Although the severity of climate change impacts depends primarily on the magnitude of change, the different hydrological sensitivities of the basins are also important. Precipitation elasticities range from 2.2 to 3.1 for 10% increase and -2.1 to -2.7 for 10% decrease in precipitation respectively over the five river basins, whereas the sensitivity of runoff to temperature ranges (absolute value) from a high of -5%/degC for the Niger basin to a low of -1% for the Orange basin.

  10. Comparison of Lumped and Distributed Hydrologic Models Used for Planning and Water Resources Management at the Combeima River Basin, Colombia.

    NASA Astrophysics Data System (ADS)

    Salgado, F., II; Vélez, J.

    2014-12-01

    The catchment area is considered as the planning unit of natural resources where multiple factors as biotic, abiotic and human interact in a web of relationships making this unit a complex system. It is also considered by several authors as the most suitable unit for studying the water movement in nature and a tool for the understanding of natural processes. This research implements several hydrological models commonly used in water resources management and planning. It is the case of Témez, abcd, T, P, ARMA (1,1), and the lumped conceptual model TETIS. This latest model has been implemented in its distributed version for comparison purposes and it has been the basis for obtaining information, either through the reconstruction of natural flow series, filling missing data, forecasting or simulation. Hydrological models make use of lumped data of precipitation and potential evapotranspiration, as well as the following parameters for each one of the models which are related to soil properties as capillary storage capacity; the hydraulic saturated conductivity of the upper and lower layers of the soil, and residence times in the flow surface, subsurface layers and base flow. The calibration and the validation process of the models were performed making adjustments to the parameters listed above, taking into account the consistency in the efficiency indexes and the adjustment between the observed and simulated flows using the flow duration curve. The Nash index gave good results for the TETIS model and acceptable values were obtained to the other models. The calibration of the distributed model was complex and its results were similar to those obtained with the aggregated model. This comparison allows planners to use the hydrological multimodel techniques to reduce the uncertainty associated with planning processes in developing countries. Moreover, taking into account the information limitations required to implement a hydrological models, this application can be a

  11. Integrated resource assessment of the Drina River Basin

    NASA Astrophysics Data System (ADS)

    Almulla, Youssef; Ramos, Eunice; Gardumi, Francesco; Howells, Mark

    2017-04-01

    The integrated assessment and management of resources: water, energy, food and environment is of fundamental importance, yet it is a very challenging task especially when it is carried out on the transboundary level. This study focuses on the Drina River Basin (DRB) which is a transboundary basin in South East Europe spreading across Bosnia and Herzegovina, Serbia and Montenegro with a total surface area of 19,982 km2. Water resources from the Drina River Basin are shared among many activities in the basin: domestic water supply, electricity generation, fishery, tourism and, to a lesser extent, irrigation, industry and mining. The region has recently experienced repeated events of floods and droughts causing significant damage to the economy, showing a high vulnerability of the area to the effects of climate change. The assessment of the Drina River Basin is carried out in the framework of the project "Water food energy ecosystems nexus in transboundary river basins" under the UNECE Water Convention. This study aims to: 1) Improve the cooperation in the operation of dams and hydropower plants in the DRB for optimized production; 2) Explore the opportunities generated by electricity trade between the DRB countries as a mechanism to enhance cooperation and as an enabler for the synchronised operation of hydropower plants; 3) Motivate the implementation of energy efficiency measures to reduce the electricity production requirement from hydro and thermal power. In order to achieve that, a multi-country electricity system model was developed for the three countries of Drina river basin using the Open Source energy MOdelling SYStem (OSeMOSYS). The model represents the whole electricity system of each country, with special cascade representation of hydropower plants along Drina river and its tributaries. The results show that, in a scenario of synchronised operation of all power plants along Drina and its tributaries, those downstream can significantly increase their

  12. Framework for Assessing Water Resource Sustainability in River Basins

    NASA Astrophysics Data System (ADS)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  13. Estimating flows in ungauged river basins in northern Mozambique

    NASA Astrophysics Data System (ADS)

    Minihane, M.

    2011-12-01

    In many regions across the globe, there are limited streamflow observations and therefore limited knowledge of availability of surface water resources. In many cases, these rivers lie in countries that would benefit from economic development and improved access to water and sanitation services, both of which are linked to water resources. Additional information about streamflow in these watersheds is critical to water resources planning and economic development strategies. In southeastern Africa, the remote Rovuma River lies on the border between Mozambique and Tanzania. There are limited historic measurements in the main tributary and no recent observations. Improved knowledge of the water resource availability and inter-annual variability of the Rovuma River will enhance transboundary river basin management discussions for this river basin. While major rivers farther south in the country are more closely monitored, those in the north have gauging stations with only scattered observations and have not been active since the early 1980's. Reliable estimates of historic conditions are fundamental to water resources planning. This work aims to provide estimates in these rivers and to quantify uncertainty and bounds on those estimates. A combination of methods is used to estimate historic flows: simple index gauge methods such as the drainage area ratio method and mean flow ratio method, a statistical regression method, a combination of an index gauge method and global gridded runoff data, and a hydrological model. These results are compared to in-situ streamflow estimates based on stage measurements and rating curves for the basins and time frames for which data is available. The evaluation of the methods is based on an efficiency ratio, bias, and representation of seasonality and inter-annual variability. Use of gridded global datasets, either with the mean flow ratio method or a hydrological model, appears to provide improved estimates over use of local observations

  14. Hazardous materials in aquatic environments of the Mississippi River Basin Project management. Technical quarterly progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    McLachlan, J.; Ide, C.F.; O`Connor, S.

    1996-08-01

    This quarterly report summarizes accomplishments for the Project examining hazardous materials in aquatic environments of the Mississippi River Basin. Among the many research areas summarized are the following: assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure; hazardous wastes in aquatic environment;ecological sentinels of aquatic contamination in the lower Mississippi River System; remediation of selected contaminants; rapid on-site immunassay for heavy metal contamination; molecular mechanisms of developmental toxicity induced by retinoids and retinoid-like molecules; resuseable synthetic membranes for the removal of aromatic and halogenated organic pollutants from waste water; Effects of steroid receptor activation in neurendocrine cell of the mammalian hypothalamus; modeling and assessment of environmental quality of louisiana bayous and swamps; enhancement of environmental education. The report also contains a summary of publications resulting from this project and an appendix with analytical core protocals and target compounds and metals.

  15. 75 FR 38833 - Walker River Basin Acquisition Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ...: 2010-16300] DEPARTMENT OF THE INTERIOR Bureau of Reclamation Walker River Basin Acquisition Program... Reclamation (Reclamation) is canceling work on the Environmental Impact Statement (EIS) for the Walker River... Walker River, primarily for irrigated agriculture, have resulted in a steadily declining surface...

  16. Environmental information document: Savannah River Laboratory Seepage Basins

    SciTech Connect

    Fowler, B.F.; Looney, B.B.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    This document provides environmental information on postulated closure options for the Savannah River Laboratory Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations.

  17. Quality of dredged material in the river Seine basin (France). II. Micropollutants.

    PubMed

    Carpentier, S; Moilleron, R; Beltran, C; Hervé, D; Thévenot, D

    2002-11-01

    Dredging rivers is needed to ensure safe navigable waters, rivers and waterways. To anticipate the management of dredged materials in the case of the river Seine basin, the quality of the sediments in the river is checked every 3 years before dredging operations. The river Seine Basin is heavily submitted to pollution pressure from nearby industrial activities and urban expansion of Paris and its region. Here, the micropollutant content of the sediment sampled in 1996, 1999 and 2000 before dredging is discussed compared to regulatory standards. The results indicate that most of the sediment samples from the river Seine basin are lightly to moderately contaminated with organic and inorganic micropollutants (heavy metals, PAH, PCB), which makes the management after dredging easier. This pollution is strongly correlated with the organic matter content and to the fine fraction (<50 microm) of the sediment. These results can lead to other management options than the ones already used in the river Seine basin: (1) dumping of lightly to moderately polluted sediments in quarries; and (2) physical treatment (sieving, hydrocycloning) of contaminated sediments issued from 'hot spots'.

  18. Selenium contamination and remediation at Stewart Lake Waterfowl Management Area and Ashley Creek, middle Green River basin, Utah

    USGS Publications Warehouse

    Rowland, Ryan C.; Stephens, Doyle W.; Waddell, Bruce; Naftz, David L.

    2003-01-01

    Selenium is an element required in trace amounts for human and animal health, but it can cause health problems for livestock, wildlife, and humans when ingested in higher-than-required concentrations. Incidences of mortality, birth defects, and reproductive failure in waterfowl were discovered at Kesterson National Wildlife Refuge, San Joaquin Valley, California, by the U.S. Fish and Wildlife Service (USFWS) in 1983 (Presser, 1994). These problems were attributed to elevated concentrations of selenium in irrigation drainage that discharged to the refuge. Because of concern about possible adverse effects from irrigation drainage on Department of the Interior (DOI) projects elsewhere in the United States, the DOI organized scientists from the U.S. Geological Survey (USGS), USFWS, Bureau of Reclamation (BOR), and Bureau of Indian Affairs (BIA) to form the National Irrigation Water-Quality Program (NIWQP). The objectives of the program are to investigate DOI-managed lands for potential contamination related to irrigation drainage, conduct studies to identify the problems, investigate methodologies to remediate those problems, and implement remediation plans (U.S. Department of the Interior, 2002).

  19. Detroit River group in the Michigan basin

    USGS Publications Warehouse

    Landes, Kenneth K.

    1951-01-01

    This report attempts to correlate the outcropping rocks in the type locality of the Detroit River group with the thick sequence of rocks that has been explored by many drilled wells in the Michigan Basin during the last twenty years. The surface nomenclature as recently revised (Ehlers, 1950) is suggested for the subsurface section in place of the heterogeneous collection of names now used. The present work revises earlier reports by the writer (1945, a, b, c).During the preparation of this report the samples have been examined from more than 300 wells and cores from 9 wells. The writer has also drawn upon the work of Enyert (1949) who wrote a Doctoral thesis on the sandstones of the Detroit River group, and upon Master's theses on various phases of Detroit River stratigraphy written by Cooley (1947), Saunders .(1948), and Tharp (1944). Finally the writer has had the advantage of many consultations in office and field with George V. Cohee of the U. S. Geological Survey, Professors G. M. Ehlers and E. C. Stumm of the University of Michigan, and with other geologists of Michigan and Ontario, especially George D. Lindberg (Sun Oil Company, Toledo), E. J. Baltrusaitis and K. A. Gravelle (Gulf Refining Company, Saginaw), Willard A. Sanger (Pure Oil Company, Clare), Joseph Lindsay and George WinSton (Carter Oil Co. , Grand Rapids), and Charles S. Evans (Union Gas Co. , Chatham, Ontario). It is a pleasure to acknowledge the help received from these geologists and to thank them for it.The surface and subsurface sections through the Detroit River group in Canada are not included in this report.

  20. Zinc and Its Isotopes in the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  1. Floods in the Skagit River basin, Washington

    USGS Publications Warehouse

    Stewart, James E.; Bodhaine, George Lawrence

    1961-01-01

    According to Indian tradition, floods of unusually great magnitude harassed the Skagit River basin about 1815 and 1856. The heights of these floods were not recorded at the time; so they are called historical floods. Since the arrival of white men about 1863, a number of large and damaging floods have been witnessed and recorded. Data concerning and verifying the early floods, including those of 1815 and 1856, were collected prior to 1923 by James E. Stewart. He talked with many of the early settlers in the valley who had listened to Indians tell about the terrible floods. Some of these settlers had referenced the maximum stages of floods they had witnessed by cutting notches at or measuring to high-water marks on trees. In order to verify flood stages Stewart spent many weeks finding and levelling to high-water marks such as drift deposits, sand layers in coves, and silt in the bark of certain types of trees. Gaging stations have been in operation at various locations on the Skagit River and its tributaries since 1909, so recorded peak stages are available at certain sites for floods occurring since that date. All peak discharge data available for both historical and recorded floods have been listed in this report. The types of floods as to winter and summer, the duration of peaks, and the effect of reservoirs are discussed. In 1899 Sterling Dam was constructed at the head of Gages Slough near Sedro Woolley. This was the beginning of major diking in the lower reaches of the Skagit River. Maps included in the report show the location of most of the dike failures that have occurred during the last 73 years and the area probably inundated by major floods. The damage resulting from certain floods is briefly discussed. The report is concluded with a brief discussion of the U.S. Geological Survey method of computing flood-frequency curves as applied to the Skagit River basin. The treatment of single-station records and a means of combining these records for expressing

  2. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  3. An approach for assessing cumulative effects in a model river, the Athabasca River basin.

    PubMed

    Squires, Allison J; Westbrook, Cherie J; Dubé, Monique G

    2010-01-01

    Novel approaches addressing aquatic cumulative effects over broad temporal and spatial scales are required to track changes and assist with sustainable watershed management. Cumulative effects assessment (CEA) requires the assessment of changes due to multiple stressors both spatially and temporally. The province of Alberta, Canada, is currently experiencing significant economic growth as well as increasing awareness of water dependencies. There has been an increasing level of industrial, urban, and other land-use related development (pulp and paper mills, oil sands developments, agriculture, and urban development) within the Athabasca River basin. Much of the historical water quantity and quality data for this basin have not been integrated or analyzed from headwaters to mouth, which affects development of a holistic, watershed-scale CEA. The main objectives of this study were 1) to quantify spatial and temporal changes in water quantity and quality over the entire Athabasca River mainstem across historical (1966–1976) and current day (1996–2006) time periods and 2) to evaluate the significance of any changes relative to existing benchmarks (e.g., water quality guidelines). Data were collected from several federal, provincial, and nongovernment sources. A 14% to 30% decrease in discharge was observed during the low flow period in the second time period in the lower 3 river reaches with the greatest decrease occurring at the mouth of the river. Dissolved Na, sulfate, chloride, and total P concentrations in the second time period were greater than, and in some cases double, the 90th percentiles calculated from the first time period in the lower part of the river. Our results show that significant changes have occurred in both water quantity and quality between the historical and current day Athabasca River basin. It is known that, in addition to climatic changes, rivers which undergo increased agricultural, urban, and industrial development can experience

  4. Resistivity sections, upper Arkansas River basin, Colorado

    USGS Publications Warehouse

    Zohdy, Adel A.R.; Hershey, Lloyd A.; Emery, Philip A.; Stanley, William D.

    1971-01-01

    A reconnaissance investigation of ground-water resources in the upper Arkansas River basin from Pueblo to Leadville is being made by the U.S. Geological Survey in cooperation with the Southeastern Colorado Water Conservancy District, and the Colorado Division of Water Resources, Colorado State Engineer. As part of the investigation, surface geophysical electrical resistivity surveys were made during the summer and fall of 1970 near Buena Vista and Westcliffe, Colo. (p1.1). The resistivity surveys were made to verify a previous gravity survey and to help locate areas where ground-water supplies might be developed. This report presents the results of the surveys in the form of two resistivity sections.

  5. Managing hydroclimatic risks in federal rivers: a diagnostic assessment.

    PubMed

    Garrick, Dustin; De Stefano, Lucia; Fung, Fai; Pittock, Jamie; Schlager, Edella; New, Mark; Connell, Daniel

    2013-11-13

    Hydroclimatic risks and adaptive capacity are not distributed evenly in large river basins of federal countries, where authority is divided across national and territorial governments. Transboundary river basins are a major test of federal systems of governance because key management roles exist at all levels. This paper examines the evolution and design of interstate water allocation institutions in semi-arid federal rivers prone to drought extremes, climatic variability and intensified competition for scarce water. We conceptualize, categorize and compare federal rivers as social-ecological systems to analyse the relationship between governance arrangements and hydroclimatic risks. A diagnostic approach is used to map over 300 federal rivers and classify the hydroclimatic risks of three semi-arid federal rivers with a long history of interstate allocation tensions: the Colorado River (USA/Mexico), Ebro River (Spain) and Murray-Darling River (Australia). Case studies review the evolution and design of water allocation institutions. Three institutional design trends have emerged: adoption of proportional interstate allocation rules; emergence of multi-layered river basin governance arrangements for planning, conflict resolution and joint monitoring; and new flexibility to adjust historic allocation patterns. Proportional allocation rules apportion water between states based on a share of available water, not a fixed volume or priority. Interstate allocation reform efforts in the Colorado and Murray-Darling rivers indicate that proportional allocation rules are prevalent for upstream states, while downstream states seek reliable deliveries of fixed volumes to increase water security. River basin governance arrangements establish new venues for multilayered planning, monitoring and conflict resolution to balance self governance by users and states with basin-wide coordination. Flexibility to adjust historic allocation agreements, without risk of defection or costly

  6. Causes of variations in water quality and aquatic ecology in rivers of the Upper Mississippi River Basin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Stark, James R.

    1996-01-01

    Physical and aquatic biological conditions differ among the Mississippi River and its major tributaries (the St. Croix and Minnesota Rivers) in Minnesota and Wisconsin. The quality of surface water and the ecological condition of rivers affect the ways in which we use them. The St. Croix River is used for recreation; the Mississippi River is used for recreation and is a corridor for commerce; and the Minnesota River primarily drains agricultural lands. Analysis of the environmental framework of the basins and water-quality and ecological information by the National Water-Quality Assessment (NAWQA) Program shows that the conditions of the rivers are a product of a combination of factors including climate, hydrology, geology, soils, land use, land cover, water management, and water use.

  7. Paleogeography of Paleocene Wind River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.

    1986-08-01

    The Paleocene Fort Union Formation in the Wind River basin was deposited in response to Laramide deformation between south-verging faults to the north (Owl Creek and Casper thrusts) and south (Wind River and Granite thrusts). Exposures in this asymmetric basin include a lower fluvial member overlain by the Waltman (lacustrine) and time-equivalent Shotgun (fluvial) members in the northeast and a single fluvial unit in the southeast. In the northeast, low sinuosity, ribbon channel sandstones (northwest paleoflow, about 40 m thick) are overlain by sheet-sand deposits interspersed with channel sandstones (southwest paleoflow, about 700 m thick), which are in turn overlain by the Waltman Member. The basal channel sands are wide (about 100 m perpendicular to flow), thick (5 to 10 m), and trough cross-bedded. The sheet-sand deposits consist of upward-fixing cycles 1 to 10 m thick. These facies are interpreted to be the product of longitudinal drainage flowing parallel to the Casper thrust, overlain by fan-delta sediments prograding perpendicular to the thrust. Palynology suggests a nearly complete Paleocene record for this sequence. To the south along the Rattlesnake Hills, trough cross-bedded sheet sandstones and gravel channel deposits (northward, 140 m thick) are overlain by layered mudstones and siltstones (180 m thick). The top of these high-energy braided-stream deposits and overlying low-energy delta-plain sediments are equivalent in age to the Waltman Member. A topographic low paralleled the Casper arch thrust during the earliest Paleocene. Prograding alluvial-fan sedimentation gradually shifted this topographic low away from the Casper thrust. Southern exposures record drainage toward, and ponding in, the topographic low.

  8. Optional water development strategies for the Yellow River Basin: Balancing agricultural and ecological water demands

    NASA Astrophysics Data System (ADS)

    Cai, Ximing; Rosegrant, Mark W.

    2004-08-01

    The Yellow River Basin is of the utmost importance for China in terms of food production, natural resources management, and socioeconomic development. Water withdrawals for agriculture, industry, and households in the past decade have seriously depleted environmental and ecological water requirements in the basin. This study presents a modeling scenario analysis of some water development strategies to harmonize water withdrawal demand and ecological water demand in the Yellow River Basin through water savings and interbasin water transfers. A global water and food analysis model including the Yellow River Basin as one of the modeling units is applied for the analysis. The model demonstrates that there is little hope of resolving the conflict between agriculture water demand and ecological water demand in the basin if the current water use practices continue. Trade-offs exist between irrigation water use and ecological water use, and these trade-offs will become more intense in future years with population growth, urbanization, and industrial development as well as growing food demand. Scenario analysis in this study concludes that increasing basin water use efficiency to 0.67 first and then supplementary water availability by interbasin water transfer through the South-North Water Transfer Project may provide a solution to water management of the Yellow River Basin in the next 25 years.

  9. The Interior Columbia River Basin: patterns of population, employment, and income change.

    Treesearch

    Wendy J. McGinnis; Harriet H. Christensen

    1996-01-01

    Public expectations for management of public resources are changing, and public agencies are moving toward sustainable ecosystem management that incorporates information on ecological, economic, and social systems. A broad assessment of these systems is being undertaken for the interior Columbia River basin. This paper describes some basic population characteristics of...

  10. Atrazine in Surface Water and Relation to Hydrologic Conditions Within the Delaware River Basin Pesticide Management Area, Northeast Kansas, July 1992 Through December 1994

    USGS Publications Warehouse

    Pope, Larry M.

    1995-01-01

    Since about 1960, atrazine has been used as an effective pre- and postemergent herbicide in the production of corn and grain sorghum. Atrazine is a triazine-class herbicide and was the most frequently detected herbicide in surface water of the lower Kansas River Basin of southeast Nebraska and northeast Kansas (Stamer and Zelt, 1994). Approximately 95 percent of the atrazine applied in the United States is used in corn and grain-sorghum production, predominately in the Mississippi River Basin where about 82 percent of the Nation's corn acreage is planted (CIBA-GEIGY Corp., 1992). Until recent changes in product labeling, atrazine commonly was applied at relatively high rates to control weeds around commercial and industrial areas and along railroad right-of-ways. Crop yields have increased during the last 40 years due in part to the use of herbicides in reducing weed growth and competition for moisture and nutrients. However, concern on the part of water suppliers, health officials, and the public also has increased regarding the safe and responsible use of herbicides. One issue is whether the widespread use of atrazine may pose a potential threat to public-water supplies in areas where the herbicide is used because of its ability to easily dissolve in water and its possible effects on the health of humans and aquatic life.

  11. Slope control on the aspect ratio of river basins

    NASA Astrophysics Data System (ADS)

    Castelltort, S.; Simpson, G.; Darrioulat, A.

    2009-04-01

    River networks and their drainage basins have attracted a large attention due to their remarkable statistical properties (1-5). For example, although fluvial networks patterns seem to be influenced by diverse geological and climatic processes, the river basins that enclose them appear to mirror each other faithfully. Basin area A and length L of rivers from around the world consistently scale following L=cAexp(h) (2) with h often close to 0.5 (and c a constant) suggesting that river basins are self-similar (1, 6). Likewise, the main river basins that drain linear mountain ranges consistently manifest similar length-width aspect ratios between 1 and 5 (7). These observations question how the interplay between climate and tectonics is reflected in landscapes, and they highlight the challenge of inverting modern landscape records to reveal previous climates and tectonics. The invariance of river basins aspect-ratio is puzzling when compared against observations at smaller spatial scales (<10 km). In analogue experiments, numerical simulations and outcrops, the form of stream networks is influenced by surface slope (8-11). Steep surfaces develop narrow elongate basins with near-parallel rills, whereas flatter surfaces produce wider basins. Initial surface geometry is also important in setting rivers paths and certain landscape properties such as the slope-area relationship (12). Here we thus investigate the form of river basins developed on surfaces longer than 10 kilometres showing limited dissection such that the initial surface slopes can be measured. We find that, as for small scale basins, the form of large scale river basins is controlled by surface slope, with steep slopes developing narrower basins. This observation is interpreted to originate from the nature of water flow over rough surfaces, with steeper slopes causing less flow convergence and longer-narrower basins. We derive an empirical relationship that can be used to infer the slope of a surface on

  12. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  13. Hydro-meteorological risk reduction and climate change adaptation in the Sava River Basin

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Šraj, Mojca; Kryžanowski, Andrej

    2017-04-01

    The Sava River Basin covered the teritory of several countries. There were, in past thirty years, several flood hazard events with almost hundred years return period. Parts of the basin suffer by severe droughts also. In the presentation we covered questions of: • Flood hazard in complex hydrology structure • Landslide and flush flood in mountainous regions • Floods on karst polje • Flood risk management in the complex international and hydrological condition. • Impact of man made structures: hydropower storages, inundation ponds, river regulation, alternate streams, levees system, pumping stations, Natura 2000 areas etc. • How to manage droughts in the international river basin The basin is well covered by information and managed by international the SRB Commission (http://savacommission.org/) that could help. We develop study for climate change impact on floods on entire river basin financing by UNECE. There is also study provide climate change impact on the water management provide by World Bank and on which we take part. Recently is out call by world bank for study »Flood risk management plan for the SRB«.

  14. Flexural analysis of two broken foreland basins; Late Cenozoic Bermejo basin and Early Cenozoic Green River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.; Reynolds, S.

    1986-05-01

    Lithospheric flexure that generates basin in a broke foreland setting (e.g., the Laramide foreland of Wyoming) is a three-dimensional system related to shortening along basin-bounding faults. The authors modeled the elastic flexure in three dimensions for two broken foreland basins: the early Cenozoic Green River basin and the analogous late Cenozoic Bermejo basin of Argentina. Each basin is located between a thrust belt and a reverse-fault-bounded basement uplift. Both basins are asymmetric toward the basement uplifts and have a central basement high: the Rock Springs uplift and the Pie de Palo uplift, respectively. The model applies loads generated by crustal thickening to an elastic lithosphere overlying a fluid mantle. Using the loading conditions of the Bermejo basin based on topography, limited drilling, and reflection and earthquake seismology, the model predicts the current Bermejo basin geometry. Similarly, flexure under the loading conditions in the Green River basin, which are constrained by stratigraphy, well logs, and seismic profiling and summed for Late Cretaceous (Lance Formation) through Eocene (Wasatch Formation), successfully models the observed geometry of the pre-Lance surface. Basin depocenters (> 4 km for the Green River basin; > 7 km for the Bermejo basin) and central uplifts are predicted to result from constructive interference of the nonparallel applied loads. Their Bermejo model implies that instantaneous basin geometry is successfully modeled by crustal loading, whereas the Green River basin analysis suggests that basin evolution can be modeled over large time steps (e.g., 20 Ma). This result links instantaneous basin geometry to overall basin evolution and is a first step in predicting stratigraphic development.

  15. Anthropogenic impacts on hydrology of Karkheh River Basin

    NASA Astrophysics Data System (ADS)

    Ashraf, B.; Aghakouchak, A.; Alizadeh, A.; Mousavi Baygi, M.

    2015-12-01

    The Karkheh River Basin (KRB) in southwest Iran is a key region for agriculture and energy production. KRB has high human-induced water demand and suffers from low water productivity. The future of the KRB and its growth clearly relies on sustainable water resources and hence, requires a holistic, basin-wide management and monitoring of natural resources (water, soil, vegetation, livestock, etc.). The KRB has dry regions in which water scarcity is a major challenge. In this study, we investigate changes in the hydrology of the basin during the past three decades including human-induced alterations of the system. We evaluate climatic variability, agricultural water use, land cover change and agriculture production. In this reaserch, we have developed a simple indicator for quantifying human influence on the hydrologic cycle. The results show that KRB's hydrology is significantly dominated by human activities. The anthropogenic water demand has increased substantially caused by growth in agriculture industry. In fact, the main reason for water scarcity in the region appears to be due to the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades. Our results show that continued growth in the region is not sustainable without considering major changes in water use efficiency, land cover management and water productivity.

  16. Suwannee river basin and estuary integrated science workshop: September 22-24, 2004 Cedar Key, Florida

    USGS Publications Warehouse

    Katz, Brian; Raabe, Ellen

    2004-01-01

    In response to the growing number of environmental concerns in the mostly pristine Suwannee River Basin and the Suwannee River Estuary system, the States of Florida and Georgia, the Federal government, and other local organizations have identified the Suwannee River as an ecosystem in need of protection because of its unique biota and important water resources. Organizations with vested interests in the region formed a coalition, the Suwannee Basin Interagency Alliance (SBIA), whose goals are to promote coordination in the identification, management, and scientific knowledge of the natural resources in the basin and estuary. To date, an integrated assessment of the physical, biological, and water resources has not been completed. A holistic, multi-disciplinary approach is being pursued to address the research needs in the basin and estuary and to provide supportive data for meeting management objectives of the entire ecosystem. The USGS is well situated to focus on the larger concerns of the basin and estuary by addressing specific research questions linking water supply and quality to ecosystem function and health across county and state boundaries. A strategic plan is being prepared in cooperation with Federal, State, and local agencies to identify and implement studies to address the most compelling research issues and management questions, and to conduct fundamental environmental monitoring studies. The USGS, Suwannee River Water Management District and the Florida Marine Research Institute are co-sponsoring this scientific workshop on the Suwannee River Basin and Estuary to: Discuss current and past research findings, Identify information gaps and research priorities, and Develop an action plan for coordinated and relevant research activities in the future. This workshop builds on the highly successful basin-wide conference sponsored by the Suwannee Basin Interagency Alliance that was held three years ago in Live Oak, Florida. This years workshop will focus on

  17. GREAT-ER: a new tool for management and risk assessment of chemicals in river basins. Contribution to GREAT-ER #10.

    PubMed

    Schowanek, D; Fox, K; Holt, M; Schroeder, F R; Koch, V; Cassani, G; Matthies, M; Boeije, G; Vanrolleghem, P; Young, A; Morris, G; Gandolfi, C; Feijtel, T C

    2001-01-01

    The GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) project team has developed and validated an accurate aquatic chemical exposure prediction tool for use within environmental risk assessment schemes. The software system GREAT-ER 1.0 calculates the distribution of predicted environmental concentrations (PECs) of consumer chemicals in surface waters, for individual river stretches as well as for entire catchments. The system uses an ARC/INFO-ArcView (ESRI) based Geographical Information System (GIS) for data storage and visualization, combined with simple mathematical models for prediction of chemical fate. At present, the system contains information for four catchments in Yorkshire, one catchment in Italy, and two in Germany, while other river basins are being added. Great-ER 1.0 has been validated by comparing simulations with the results of an extensive monitoring campaign for two 'down-the-drain' chemicals, i.e. the detergent ingredients boron and Linear Alkylbenzene Sulphonate (LAS). GREAT-ER 1.0 is currently being expanded with models for the terrestrial (diffuse input), air and estaurine compartments.

  18. Seismicity in the Triassic Deep River Basin, North Carolina

    NASA Astrophysics Data System (ADS)

    Portner, D. E.; Wagner, L. S.; Fouch, M. J.; James, D. E.; Roman, D. C.; Golden, S.

    2013-12-01

    The Deep River Basin in central North Carolina is one of a series of Triassic rift basins along the east coast called the Newark Supergroup. Although the east coast lies on a passive plate margin, there is recorded seismicity within all of the coastal states, much of which is attributed to boundary faults of the Newark Supergroup basins. However, this seismicity is conspicuously absent around the Deep River Basin and most of North Carolina east of the Appalachian Mountains. In March 2012 we installed a 12 station broadband seismic network surrounding the Sanford Sub-Basin of the Deep River Basin to measure unrecorded seismicity. Through fifteen months of data collection, we have confidently detected and located more than 160 low magnitude seismic events within the array. However, the event locations cluster in four locations - three of which are near local rock quarries and one is near an unidentified anthropic feature. Further, these events consistently occur between the hours of 9am and 6pm local time, Monday through Friday indicating that they are anthropogenic. The Deep River Basin is one of the most likely places east of the Appalachian Mountains in North Carolina to be seismically active, yet we have measured no natural seismicity. Using receiver functions and known origins of the local seismic events we will be examining the crustal structure beneath the Deep River Basin to explain the conspicuous lack of local seismic activity.

  19. Watershed Models for Decision Support in the Yakima River Basin, Washington

    DTIC Science & Technology

    2002-01-01

    River below Tieton Dam in the Yakima River Basin, Washington...daily streamflow for water years 1956-65 for Tieton River below Tieton Dam , the American River near Nile, and the South Fork Ahtanum Creek at Conrad...years 1976 and 1977 for the American River near Nile and the Tieton River at Tieton Dam , Naches River Basin, in the Yakima River Basin, Washington

  20. Reddies River Lake, Yadkin River Basin, Reddies River, North Carolina. General Design Memorandum. Phase I. Plan Formulation.

    DTIC Science & Technology

    1975-03-01

    project is located in northern North Carolina, approximately 50 siles west of Winston- Salem , and about 70 miles north of Charlotte (See Plate 1). The...and the t ity (of Winston- Salem have needs for storage of surface water for future water supply. 4. Des(ription of keddles River Basin. Reddies River...Dee River Basin Study at Winston- Salem on 21 January 1965. the Mayor of North Wilkesboro u-ged the construction of Reddies River Lake. A public hearing

  1. Hydrologic sensitivity of Indian sub-continental river basins to climate change

    NASA Astrophysics Data System (ADS)

    Mishra, Vimal; Lilhare, Rajtantra

    2016-04-01

    of the sub-continental river basins, water availability is projected to increase, spatial and temporal (interannual) variability in the monsoon season precipitation under the projected future climate may play a significant role. Changes in the hydrologic processes under the projected future climate indicate that substantial efforts may be required to develop water management strategies in the Indian sub-continental river basins in the future.

  2. Pascagoula River Comprehensive Basin Study. Volume VI. Appendix G, H, I, J, K, L.

    DTIC Science & Technology

    1967-02-01

    Contents: Municipal and Industrial Water Supply and Water Quality Control Study, Mississippi and Alabama; Recreation Aspects of the Pascagoula River Basin, Mississippi and Alabama; Fish and Wildlife Aspects of the Pascagoula River Basin, Mississippi and Alabama; Appraisal of Archeological and Historical Resources of the Pascagoula River Basin; Geology and Groundwater Resources of the Pascagoula River Basin; and Mineral Resources and Industry of the Pascagoula River Basin, Mississippi and Alabama.

  3. Spatial design principles for sustainable hydropower development in river basins

    DOE PAGES

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; ...

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatialmore » decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.« less

  4. Spatial design principles for sustainable hydropower development in river basins

    SciTech Connect

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; Kelly, Michael R.

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatial decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.

  5. Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins

    NASA Astrophysics Data System (ADS)

    Vink, Rona; Behrendt, Horst

    2002-11-01

    Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

  6. LANDSCAPE ECOLOGY ASSESSMENT OF THE TENSAS RIVER BASIN, MISSISSIPPI RIVER DELTA REGION, AND GULF OF MEXICO

    EPA Science Inventory

    A group of landscape ecological indicators were applied to biophysical data masked to the Tensas River Basin. The indicators were use to identify and prioritize sources of nutrients in a
    Mississippi River System sub-basin. Remotely sensed data were used for change detection a...

  7. Poyang Lake basin: a successful, large-scale integrated basin management model for developing countries.

    PubMed

    Chen, Meiqiu; Wei, Xiaohua; Huang, Hongsheng; Lü, Tiangui

    2011-01-01

    Protection of water environment while developing socio-economy is a challenging task for lake regions of many developing countries. Poyang Lake is the largest fresh water lake in China, with its total drainage area of 160,000 km2. In spite of rapid development of socio-economy in Poyang Lake region in the past several decades, water in Poyang Lake is of good quality and is known as the "last pot of clear water" of the Yangtze River Basin in China. In this paper, the reasons of "last pot of clear water" of Poyang Lake were analysed to demonstrate how economic development and environmental protection can be coordinated. There are three main reasons for contributing to this coordinated development: 1) the unique geomorphologic features of Poyang Lake and the short water residence time; 2) the matching of the basin physical boundary with the administrative boundary; and 3) the implementation of "Mountain-River-Lake Program" (MRL), with the ecosystem concept of "mountain as source, river as connection flow, and lake as storage". In addition, a series of actions have been taken to coordinate development, utilisation, management and protection in the Poyang Lake basin. Our key experiences are: considering all basin components when focusing on lake environment protection is a guiding principle; raising the living standard of people through implementation of various eco-economic projects or models in the basin is the most important strategy; preventing soil and water erosion is critical for protecting water sources; and establishing an effective governance mechanism for basin management is essential. This successful, large-scale basin management model can be extended to any basin or lake regions of developing countries where both environmental protection and economic development are needed and coordinated.

  8. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    NASA Astrophysics Data System (ADS)

    Kabir, M. A.; Dutta, D.; Hironaka, S.

    2011-04-01

    Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition) with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM), land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS)" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R-squared value) indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the model including descriptions

  9. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    NASA Astrophysics Data System (ADS)

    Kabir, M. A.; Dutta, D.; Hironaka, S.

    2010-08-01

    Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition) with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different surface grids and river nodes are modeled using one-dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM), land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS)" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R-squared value) indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the model including

  10. Atmospheric circulation and snowpack in the Gunnison River Basin

    USGS Publications Warehouse

    McCabe, Gregory J.

    1994-01-01

    Winter mean 700-millibar height anomalies over the eastern North Pacific Ocean and the western United States are related to variability in snowpack accumulations measured on or about April 1 in the Gunnison River Basin in Colorado. Higher-than-average snowpack accumulations are associated with negative 700-millibar height anomalies (anomalous cyclonic circulation) over the western United States and over most of the eastern North Pacific Ocean. The anomalous cyclonic circulation enhances the movement of moisture from the eastern North Pacific Ocean into the southwestern United States. Variability in winter mean 700-millibar height anomalies explain over 50 percent of the variability in snowpack accumulations in the Gunnison River Basin. The statistically significant linear relations between 700-millibar height anomalies and snowpack accumulations in the Gunnison River Basin can be used with general-circulation-model simulations of future 700-millibar height anomalies to estimate changes in snowpack accumulations in the Gunnison River Basin for future climatic conditions.

  11. 16. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. MECHANICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. MECHANICAL AND HYDRAULIC ENGINEERS EXAMINING MODEL PUMPS. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  12. 19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ENGINEER AT DATA COLLECTION COMPUTER ROOM. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  13. San Antonio River Basin within Bexar County (Texas)

    EPA Pesticide Factsheets

    The San Antonio River Basin of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  14. 15. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN (MODEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN (MODEL SCALE: 1' = 26'). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  15. ALTERNATIVE FUTURES FOR THE WILLAMETTE RIVER BASIN, OREGON

    EPA Science Inventory

    Alternative futures analysis is an assessment approach designed to inform community decisions regarding land and water use. We conducted an alternative futures analysis in the Willamette River Basin in western Oregon. Based on detailed input from local stakeholders, three alter...

  16. Organic Acid Concentrations in Rivers Within the Amazon River Drainage Basin

    NASA Astrophysics Data System (ADS)

    Skoog, A.

    2007-12-01

    The composition of the dissolved organic matter pool in both fresh and marine waters is largely unknown. Concentrations of low-molecular-weight organic acids (oxalate, citrate, glycolate, formate, acetate, succinate) have been determined in Brasilian (18 rivers sampled) and Peruvian (19 rivers sampled) rivers within the Amazon River drainage basin. Succinate concentrations were below the detection limit in all rivers. The dominant acid varied among the sampled rivers, indicating that organic acid concentrations depend on river basin characteristics. Organic-acid carbon comprised a highly significant, but variable, fraction of total dissolved carbon, with a range of 3-90%, indicating that organic-acid-derived carbon may be an important source of biologically labile carbon within the Amazon River drainage basin.

  17. Impacts of Changing Climate and Environment on the Stormwater Runoff in the Kissimmee River Basin, Florida

    NASA Astrophysics Data System (ADS)

    Islam, M. S.; Abdul-Aziz, O. I.

    2015-12-01

    Changes in climate and land use/cover can cause great impacts on the hydrologic processes, especially on stormwater runoff generation. Considering the Kissimmee River Basin of Florida as an example of complex inland urban-natural basins, we quantified reference sensitivities of stormwater runoff to plausible scenarios of climatic and land use/cover changes by developing a large-scale, dynamic rainfall runoff model with EPA Storm Water Management Model (SWMM 5.1). Reference changes in basin rainfall, evapotranspiration, imperviousness, roughness and land use types resulted in substantial changes of total stormwater budget. Potential storm runoff in the coupled urban-natural basin exhibited high and notably different seasonal sensitivities to rainfall. The total basin runoff was highly sensitive to the basin imperviousness and roughness, while showing moderate sensitivities to the water storage capacity of pervious areas and soil hydraulic conductivity. The changes in runoff under simultaneous hydro-climatic or climate-land use perturbations were notably different than the summations of their individual contributions. The developed model was used to estimate the potential stormwater budget of the Kissimmee River Basin in 2050s using downscaled GCM-RCM climate projections and anticipated land use/cover scenarios. A significant change in basin runoff was noted by 2050s due to changing rainfall regimes and continuing urbanization. Our findings can be useful in managing stormwater runoff in the Kissimmee and similar complex urban-natural basins around the world.

  18. National Water-Quality Assessment Program: The Sacramento River Basin

    USGS Publications Warehouse

    Domagalski, Joseph L.; Brown, Larry R.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status of and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to identify the major natural and human factors that affect the quality of those resources. In addressing these goals, the program will provide a wealth of water- quality information that will be useful to policy makers and managers at the national, State, and local levels. A major asset of the NAWQA program is that it will allow for the integration of water-quality information collected at several scales. A major component of the program is the study-unit investigation-the foundation of national- level assessment. The 60 study units of the NAWQA program are hydrologic systems that include parts of most major river basins and aquifer systems of the conterminous United States. These study units cover areas of 1,000 to more than 60,000 square miles and represent 60 to 70 percent of the Nation's water use and population served by public water supplies. Investigations of the first 20 study units began in 1991. In 1994, the Sacramento River Basin was among the second set of 20 NAWQA study units selected for investigation.

  19. National Water-Quality Assessment program: The Trinity River Basin

    USGS Publications Warehouse

    Land, Larry F.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at the national, State, and local levels. A major design feature of the NAWQA program will enable water-quality information at different areal scales to be integrated. A major component of the program is study-unit investigations, which comprise the principal building blocks of the program on which national-level assessment activities will be based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Trinity River basin study was among the first 20 NAWQA study units selected for study under the full-scale implementation plan.

  20. An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon

    NASA Astrophysics Data System (ADS)

    Venticinque, Eduardo; Forsberg, Bruce; Barthem, Ronaldo; Petry, Paulo; Hess, Laura; Mercado, Armando; Cañas, Carlos; Montoya, Mariana; Durigan, Carlos; Goulding, Michael

    2016-11-01

    Despite large-scale infrastructure development, deforestation, mining and petroleum exploration in the Amazon Basin, relatively little attention has been paid to the management scale required for the protection of wetlands, fisheries and other aspects of aquatic ecosystems. This is due, in part, to the enormous size, multinational composition and interconnected nature of the Amazon River system, as well as to the absence of an adequate spatial model for integrating data across the entire Amazon Basin. In this data article we present a spatially uniform multi-scale GIS framework that was developed especially for the analysis, management and monitoring of various aspects of aquatic systems in the Amazon Basin. The Amazon GIS-Based River Basin Framework is accessible as an ESRI geodatabase at doi:10.5063/F1BG2KX8.

  1. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...

  2. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...

  3. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...

  4. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...

  5. Hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.

    2011-01-01

    The Chehalis River has the largest drainage basin of any river entirely contained within the State of Washington with a watershed of approximately 2,700 mi2 and has correspondingly diverse geology and land use. Demands for water resources have prompted the local citizens and governments of the Chehalis River basin to coordinate with Federal, State and Tribal agencies through the Chehalis Basin Partnership to develop a long-term watershed management plan. The recognition of the interdependence of groundwater and surface-water resources of the Chehalis River basin became the impetus for this study, the purpose of which is to describe the hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin. Surficial geologic maps and 372 drillers' lithostratigraphic logs were used to generalize the basin-wide hydrogeologic framework. Five hydrogeologic units that include aquifers within unconsolidated glacial and alluvial sediments separated by discontinuous confining units were identified. These five units are bounded by a low permeability unit comprised of Tertiary bedrock. A water table map, and generalized groundwater-flow directions in the surficial aquifers, were delineated from water levels measured in wells between July and September 2009. Groundwater generally follows landsurface-topography from the uplands to the alluvial valley of the Chehalis River. Groundwater gradients are highest in tributary valleys such as the Newaukum River valley (approximately 23 cubic feet per mile), relatively flat in the central Chehalis River valley (approximately 6 cubic feet per mile), and become tidally influenced near the outlet of the Chehalis River to Grays Harbor. The dynamic interaction between groundwater and surface-water was observed through the synoptic streamflow measurements, termed a seepage run, made during August 2010, and monitoring of water levels in wells during the 2010 Water Year. The seepage run revealed an overall gain of 56

  6. Towards a digital watershed, with a case study in the Heihe River Basin of northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.; Cheng, G.-D.; Ma, M.-G.; Lu, L.; Ge, Y.-C.

    2003-04-01

    Integrated watershed study and river basin management needs integrated database and integrated hydrological and water resource models. We define digital watershed as a web-based information system that integrates data from different sources and in different scales through both information technology and hydrological modeling. In the last two years, a “digital basin” of the Heihe River Basin, which is a well-studied in-land catchment in China’s arid region was established. More than 6 Gb of in situ observation data, GIS maps, and remotely sensed data have been uploaded to the Heihe web site. Various database and dynamic web techniques such as PHP, ASP, XML, VRML are being used for data service. In addition, the DIAL (Data and Information Access Link), IMS (Internet Map Server) and other Web-GISs are used to make GIS and remote sensing datasets of the Heihe River Basin available and accessible on the Internet. We also have developed models for estimating the evapotranspiration, bio-physical parameters, and snow runoff. These methods can be considered as the elements to build up the integrated watershed model that can be used for integrated management of the Heihe River Basin. The official domain name of the digital Heihe River Basin is heihe.westgis.ac.cn

  7. Operational Hydrologic Forecasts in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Shrestha, K. Y.; Curry, J. A.; Webster, P. J.; Toma, V. E.; Jelinek, M.

    2013-12-01

    The Columbia River Basin (CRB) covers an area of ~670,000 km2 and stretches across parts of seven U.S. states and one Canadian province. The basin is subject to a variable climate, and moisture stored in snowpack during the winter is typically released in spring and early summer. These releases contribute to rapid increases in flow. A number of impoundments have been constructed on the Columbia River main stem and its tributaries for the purposes of flood control, navigation, irrigation, recreation, and hydropower. Storage reservoirs allow water managers to adjust natural flow patterns to benefit water and energy demands. In the past decade, the complexity of water resource management issues in the basin has amplified the importance of streamflow forecasting. Medium-range (1-10 day) numerical weather forecasts of precipitation and temperature can be used to drive hydrological models. In this work, probabilistic meteorological variables from the European Center for Medium Range Weather Forecasting (ECMWF) are used to force the Variable Infiltration Capacity (VIC) model. Soil textures were obtained from FAO data; vegetation types / land cover information from UMD land cover data; stream networks from USGS HYDRO1k; and elevations from CGIAR version 4 SRTM data. The surface energy balance in 0.25° (~25 km) cells is closed through an iterative process operating at a 6 hour timestep. Output fluxes from a number of cells in the basin are combined through one-dimensional flow routing predicated on assumptions of linearity and time invariance. These combinations lead to daily mean streamflow estimates at key locations throughout the basin. This framework is suitable for ingesting daily numerical weather prediction data, and was calibrated using USGS mean daily streamflow data at the Dalles Dam (TDA). Operational streamflow forecasts in the CRB have been active since October 2012. These are 'naturalized' or unregulated forecasts. In 2013, increases of ~2600 m3/s (~48% of

  8. Historical changes in pool habitats in the Columbia River basin

    Treesearch

    Bruce A. McIntosh; James R. Sedell; Russell F. Thurow; Sharon E. Clarke; Gwynn L. Chandler

    1995-01-01

    Knowledge of how stream habitats change over time in natural and human-influenced ecosystems at large, regional scales is currently limited. A historical stream survey (1934-1945) was compared to current surveys to assess changes in pool habitats in the Columbia River basin. Streams from across the basin, representing a wide range of geologies, stream sizes and land-...

  9. Historical changes in pool habitats in the Columbia River basin

    Treesearch

    Bruce A. McIntosh; James R. Sedell; Russell F. Thurow; Sharon E. Clarke; Gwynn L. Chandler

    2000-01-01

    An historical stream survey (1934-1945) was compared with current surveys (1987-1997) to assess changes in pool frequencies in the Columbia River Basin. We surveyed 2267 km of 122 streams across the basin, representing a wide range of lithologies, stream sizes, land use histories, ownerships, and ecoregions. Based on pool classes inherited from the historical surveys,...

  10. Earthworms (Annelida: Oligochaeta) of the Columbia River basin assessment area.

    Treesearch

    Sam. James

    2000-01-01

    Earthworms are key components of many terrestrial ecosystems; however, little is known of their ecology, distribution, and taxonomy in the eastern interior Columbia River basin assessment area (hereafter referred to as the basin assessment area). This report summarizes the main issues about the ecology of earthworms and their impact on the physical and chemical status...

  11. COLUMBIA RIVER BASIN SALMON AND STEELHEAD: Federal Agencies’ Recovery Responsibilities, Expenditures and Actions

    DTIC Science & Technology

    2002-07-01

    coastal areas. Columbia Basin Project Act Authorizes mitigation for fish and wildlife resources affected by the construction of Grand Coulee Dam . Columbia...the storage capacity of Grand Coulee Dam ). • Worked with the Corps and BOR to increase fish passage survival at dams, on average, by 5 percent or...Wallowa and John Day River basins in Oregon. • Conducted studies on dissolved gas abatement and management at Grand Coulee Dam . • Designed and

  12. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    SciTech Connect

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  13. Drainage basin security of hazardous chemical fluxe in the Yodo River basin.

    PubMed

    Matsui, S

    2004-01-01

    The Yodo River basin consists of three major tributary basins (and other small river basins) namely Uji, Katsura and Kizu, which overlap respectively Shiga, Kvoto and Nara prefectures' administrative areas. Lake Biwa, the largest lake in Japan, drains water through the Uji river. The water quality of the lake, in terms of BOD, continuously improved over the last decade. However, the quality in terms of COD did not show any improvement in spite of a large amount of infrastructure finance being introduced. Eutrophication of the lake still continues, showing no improvement in the nitrogen concentration level. Non-point as well as point source control is not strong enough. There is a gap between BOD and COD evaluations of the lake water quality. Hazardous chemical fluxes are estimated based upon PRTR reports of Japan (2001). PCBs are still discharged into the lake, although the report of Shiga Prefecture showed zero discharge. Dace fish monitoring clearly showed that PCB contamination of the fish had not changed since the 1980s in spite of a ban on use and production of PCBs in the 1970s. There is still leakage of PCBs into the lake. The major exposure of dioxins to Japanese is fish rather than meat and eggs. The risk of water contamination must take into consideration not only drinking water safety but also ecological magnification of food chains in water. The ecological health aspect of hazardous chemicals is also important, such as organotins with imposex of sea snails. Finally, public participation in hazardous chemical management is very important using the method of risk communication based upon the annual report of PRTR in Japan.

  14. Planning and design of studies for river-quality assessment in the Truckee and Carson River basins, California and Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.; Brown, W.M.; Smith, L.H.; Hoffman, R.J.

    1980-01-01

    The objectives of the Geological Survey 's river-quality assessment in the Truckee and Carson River basins in California and Nevada are to identify the significant resource management problems; to develop techniques to assess the problems; and to effectively communicate results to responsible managers. Six major elements of the assessment to be completed by October 1981 are (1) a detailing of the legal, institutional, and structural development of water resources in the basins and the current problems and conflicts; (2) a compilation and synthesis of the physical hydrology of the basins; (3) development of a special workshop approach to involve local management in the direction and results of the study; (4) development of a comprehensive streamflow model emcompassing both basins to provide a quantitative hydrologic framework for water-quality analysis; (5) development of a water-quality transport model for selected constituents and characteristics on selected reaches of the Truckee River; and (6) a detailed examination of selected fish habitats for specified reaches of the Truckee River. Progress will be periodically reported in reports, maps, computer data files, mathematical models, a bibliography, and public presentations. In building a basic framework to develop techniques, the basins were viewed as a single hydrologic unit because of interconnecting diversion structures. The framework comprises 13 hydrographic subunits to facilitate modeling and sampling. Several significant issues beyond the scope of the assessment were considered as supplementary proposals; water-quality loadings in Truckee and Carson Rivers, urban runoff in Reno and management alternatives, and a model of limnological processes in Lahontan Reservoir. (USGS)

  15. Probabilistic forecasting of seasonal drought behaviors in the Huai River basin, China

    NASA Astrophysics Data System (ADS)

    Xiao, Mingzhong; Zhang, Qiang; Singh, Vijay P.; Chen, Xiaohong

    2017-05-01

    The Huai River basin is one of the major supplier of agricultural products in China, and droughts have critical impacts on agricultural development. Good knowledge of drought behaviors is of great importance in the planning and management of agricultural activities in the Huai River basin. With the copula functions to model the persistence property of drought, the probabilistic seasonal drought forecasting models have been built in the Huai River basin. In this study, droughts were monitored by the Standardized Precipitation Evapotranspiration Index (SPEI) with the time scales of 3, 6, and 9 months, and their composite occurrence probability has been used to forecast the seasonal drought. Results indicated that the uncertainty related to the predicted seasonal drought is larger when more severe droughts occurred in the previous seasons, and the severe drought which occurs in summer and autumn will be more likely to be persistent in the next season while the severe drought in winter and spring will be more likely to be recovered in the subsequent season. Furthermore, given the different drought statuses in the previous season, spatial patterns of the predicted drought events with the largest occurrence probability have also been investigated, and results indicate that the Huai River basin is vulnerable to the extreme drought in most parts of the basin, e.g., the severe drought in winter will be more likely to be persistent in spring in the central part of the southern Huai River basin. Such persistent drought events pose serious challenges for planning and management of agricultural irrigation, then results of the study will be valuable for the planning of crop cultivation or mitigation of the losses caused by drought in the Huai River basin, China.