Science.gov

Sample records for river california usa

  1. Evidence of pesticide impacts in the Santa Maria River watershed, California, USA.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Hunt, John W; Worcester, Karen; Adams, Mary; Kapellas, Nancy; Tjeerdema, Ron S

    2006-04-01

    The Santa Maria River provides significant freshwater and coastal habitat in a semiarid region of central California, USA. We conducted a water and sediment quality assessment consisting of chemical analyses, toxicity tests, toxicity identification evaluations, and macroinvertebrate bioassessments of samples from six stations collected during four surveys conducted between July 2002 and May 2003. Santa Maria River water samples collected downstream of Orcutt Creek (Santa Maria, Santa Barbara County, CA, USA), which conveys agriculture drain water, were acutely toxic to cladocera (Ceriodaphnia dubia), as were samples from Orcutt Creek. Toxicity identification evaluations (TIEs) suggested that toxicity to C. dubia in Orcutt Creek and the Santa Maria River was due to chlorpyrifos. Sediments from these two stations also were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. The TIEs conducted on sediment suggested that toxicity to amphipods, in part, was due to organophosphate pesticides. Concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d median lethal concentration for H. azteca. Additional TIE and chemical evidence suggested sediment toxicity also partly could be due to pyrethroid pesticides. Relative to an upstream reference station, macroinvertebrate community structure was impacted in Orcutt Creek and in the Santa Maria River downstream of the Creek input. This study suggests that pesticide pollution likely is the cause of ecological damage in the Santa Maria River.

  2. Increasing summer river discharge in southern California, USA, linked to urbanization

    NASA Astrophysics Data System (ADS)

    Townsend-Small, Amy; Pataki, Diane E.; Liu, Hongxing; Li, Zhaofu; Wu, Qiusheng; Thomas, Benjamin

    2013-09-01

    southern California relies heavily on imported water for domestic use. A synthesis of river discharge data in this region reveals that summer (June, July, and August) river discharge in watersheds that have at least 50% urban, suburban, and/or commercial land cover has increased by 250% or more over the past half-century, without any substantial precipitation during these months. Total annual discharge in the Los Angeles River has also increased at levels up to several hundred percent. Three factors likely contribute to our observations: (1) increased groundwater recharge rates from leaking water pipelines, (2) inputs of treated wastewater into streams and rivers, and (3) increased runoff or recharge due to over-irrigation of ornamental landscaping. In the southwestern United States, water importation consumes large amounts of energy and contributes to decline of river flows in source regions. Here we show that water importation also increases river flows in urban areas.

  3. Influences of the unsaturated, saturated, and riparian zones on the transport of nitrate near the Merced River, California, USA

    USGS Publications Warehouse

    Domagalski, J.L.; Phillips, S.P.; Bayless, E.R.; Zamora, C.; Kendall, C.; Wildman, R.A.; Hering, J.G.

    2008-01-01

    Transport and transformation of nitrate was evaluated along a 1-km groundwater transect from an almond orchard to the Merced River, California, USA, within an irrigated agricultural setting. As indicated by measurements of pore-water nitrate and modeling using the root zone water quality model, about 63% of the applied nitrogen was transported through a 6.5-m unsaturated zone. Transport times from recharge locations to the edge of a riparian zone ranged from approximately 6 months to greater than 100 years. This allowed for partial denitrification in horizons having mildly reducing conditions, and essentially no denitrification in horizons with oxidizing conditions. Transport times across a 50-100-m-wide riparian zone of less than a year to over 6 years and more strongly reducing conditions resulted in greater rates of denitrification. Isotopic measurements and concentrations of excess N2 in water were indicative of denitrification with the highest rates below the Merced River. Discharge of water and nitrate into the river was dependent on gradients driven by irrigation or river stage. The results suggest that the assimilative capacity for nitrate of the groundwater system, and particularly the riverbed, is limiting the nitrate load to the Merced River in the study area. ?? Springer-Verlag 2007.

  4. Influences of the unsaturated, saturated, and riparian zones on the transport of nitrate near the Merced River, California, USA

    NASA Astrophysics Data System (ADS)

    Domagalski, Joseph L.; Phillips, Steven P.; Bayless, E. Randall; Zamora, Celia; Kendall, Carol; Wildman, Richard A.; Hering, Janet G.

    2008-06-01

    Transport and transformation of nitrate was evaluated along a 1-km groundwater transect from an almond orchard to the Merced River, California, USA, within an irrigated agricultural setting. As indicated by measurements of pore-water nitrate and modeling using the root zone water quality model, about 63% of the applied nitrogen was transported through a 6.5-m unsaturated zone. Transport times from recharge locations to the edge of a riparian zone ranged from approximately 6 months to greater than 100 years. This allowed for partial denitrification in horizons having mildly reducing conditions, and essentially no denitrification in horizons with oxidizing conditions. Transport times across a 50-100-m-wide riparian zone of less than a year to over 6 years and more strongly reducing conditions resulted in greater rates of denitrification. Isotopic measurements and concentrations of excess N2 in water were indicative of denitrification with the highest rates below the Merced River. Discharge of water and nitrate into the river was dependent on gradients driven by irrigation or river stage. The results suggest that the assimilative capacity for nitrate of the groundwater system, and particularly the riverbed, is limiting the nitrate load to the Merced River in the study area.

  5. Mercury concentrations and loads in a large river system tributary to San Francisco Bay, California, USA

    USGS Publications Warehouse

    David, N.; McKee, L.J.; Black, F.J.; Flegal, A.R.; Conaway, C.H.; Schoellhamer, D.H.; Ganju, N.K.

    2009-01-01

    In order to estimate total mercury (HgT) loads entering San Francisco Bay, USA, via the Sacramento-San Joaquin River system, unfiltered water samples were collected between January 2002 and January 2006 during high flow events and analyzed for HgT. Unfiltered HgT concentrations ranged from 3.2 to 75 ng/L and showed a strong correlation (r2 = 0.8, p < 0.001, n = 78) to suspended sediment concentrations (SSC). During infrequent large floods, HgT concentrations relative to SSC were approximately twice as high as observed during smaller floods. This difference indicates the transport of more Hg-contaminated particles during high discharge events. Daily HgT loads in the Sacramento-San Joaquin River at Mallard Island ranged from below the limit of detection to 35 kg. Annual HgT loads varied from 61 ?? 22 kg (n = 5) in water year (WY) 2002 to 470 ?? 170 kg (n = 25) in WY 2006. The data collected will assist in understanding the long-term recovery of San Francisco Bay from Hg contamination and in implementing the Hg total maximum daily load, the long-term cleanup plan for Hg in the Bay. ?? 2009 SETAC.

  6. Behaviour of wintering Tundra Swans Cygnus columbianus columbianus at the Eel River delta and Humboldt Bay, California, USA

    USGS Publications Warehouse

    Black, Jeffrey M.; Gress, Carol; Byers, Jacob W.; Jennings, Emily; Ely, Craig

    2010-01-01

    Tundra Swan Cygnus columbianus columbinanus phenology and behaviour at the Eel River delta and southern Humboldt Bay in northern California, USA, is described. Counts made each January from 1963 onwards peaked at 1,502 swans in 1988. Monthly counts recorded during the 2006/07 and 2008/09 winters peaked in February, at 1,033 and 772 swans respectively. Swans roosted on ephemeral ponds at the Humboldt Bay National Wildlife Refuge, on ephemeral ponds within grassland pastures in the vicinity of the Refuge, and perhaps also used the Eel River as a roost. Flights between Refuge roosts and the pastures and ponds occurred in the two hours after sunrise and before dark. In winters 2008/09 and 2009/10, the percentage of cygnets in the flocks was 10.6% and 21.4% respectively, and increased to =31% cygnets each year after most swans had departed from the area in March. Average brood size in 2009/10 was 2.1 cygnets. Daily activities consisted of foraging (44.9% of activities recorded), comfort behaviour (22.1%), locomotion (16.2%) and vigilance (15.5%). Eight neck-collared swans identified in the wintering flock were marked at four locations in different parts of Alaska, up to 1,300 km apart.

  7. The western pond turtle (Clemmys marmorata) in the Mojave River, California, USA: Highly adapted survivor or tenuous relict?

    USGS Publications Warehouse

    Lovich, J.; Meyer, K.

    2002-01-01

    Aspects of the ecology of populations of the western pond turtle Clemmys marmorata were investigated in the Mojave River of the central Mojave Desert, California, U.S.A. One population occupied man-made ponds and the other occurred in natural ponds in the flood plain of the Mojave River. Both habitats are severely degraded as a result of ground water depletion from human activities along the river and one is infested with the exotic shrub saltcedar Tamarix ramosissima. Mean female carapace length (CL) was significantly greater (14.4 cm) than that of males (13.7 cm). Live juveniles were not detected during the period of study. Shelled eggs were visible in X-radiographs from 26 May to 14 July. Mean clutch size was 4.46 and ranged from 3 to 6 eggs. Clutch size did not vary between 1998 and 1999 but was significantly correlated with CL for both years combined, increasing at the rate of 0.548 eggs/cm CL. Gravid female CL ranged from 13.3-16.0 cm. Some females nested in both years. Mean X-ray egg width (21.8 mm) was not significantly correlated with CL or clutch size. X-ray egg width differed more among clutches than within, whether including CL as a co-variate or not. Nesting migrations occurred from 6 June to 8 July with minimum round trip distances ranging from 17.5-585 m with a mean of 195 m. Mean estimated time of departure as measured at the drift fence was 18:13. Most females returned to the ponds in the early morning. Nesting migrations required females to be out of the water for estimated periods of 0.83 to 86 h. The destination of nesting females was typically fluvial sand bars in the channel of the dry riverbed. Overall, the ecology of C. marmorata in the Mojave River is very similar to that reported for populations in less severe habitats along the west coast of the United States. Notable exceptions include long nesting migrations to sandbars in the dry river channel, a possible result of human modifications to the environment, and an apparent lack of

  8. Summer water use by mixed-age and young forest stands, Mattole River, northern California, U.S.A

    Treesearch

    Andrew Stubblefield; Max Kaufman; Greg Blomstrom; John Rogers

    2012-01-01

    Resource managers have noted a decline in summer flow levels in the last decade in the Mattole River watershed, Humboldt County, California. Reduced river flows pose a threat to endangered coho and chinook salmon in the watershed, as stream heating is inversely proportional to discharge. While the cause of the reduced flow is unclear, several factors have been cited:...

  9. Evaluation of a floating fish guidance structure at a hydrodynamically complex river junction in the Sacramento–San Joaquin River Delta, California, USA

    USGS Publications Warehouse

    Romine, Jason G.; Perry, Russell W.; Pope, Adam C.; Stumpner, Paul; Liedtke, Theresa L.; Kumagai, Kevin K; Reeves, Ryan L

    2016-01-01

    Survival of out-migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento–San Joaquin River delta, California, USA, varies by migration route. Survival of salmonids that enter the interior and southern Delta can be as low as half that of salmonids that remain in the main-stem Sacramento River. Reducing entrainment into the higher-mortality routes, such as Georgiana Slough, should increase overall survival. In spring 2014, a floating fish-guidance structure (FFGS) designed to reduce entrainment into Georgiana Slough was deployed just upstream of the Georgiana Slough divergence. We used acoustic telemetry to evaluate the effect of the FFGS on Chinook entrainment to Georgiana Slough. At intermediate discharge (200–400 m3 s–1), entrainment into Georgiana Slough was five percentage points lower when the FFGS was in the on state (19.1% on; 23.9% off). At higher discharge (>400 m3 s–1), entrainment was higher when the FFGS was in the on state (19.3% on; 9.7% off), and at lower discharge (0–200 m3 s–1) entrainment was lower when the FFGS was in the on state (43.7% on; 47.3% off). We found that discharge, cross-stream fish position, time of day, and proportion of flow remaining in the Sacramento River contributed to the probability of being entrained to Georgiana Slough.

  10. Reach-scale channel sensitivity to multiple human activities and natural events: Lower Santa Clara River, California, USA

    NASA Astrophysics Data System (ADS)

    Downs, Peter W.; Dusterhoff, Scott R.; Sears, William A.

    2013-05-01

    Understanding the cumulative impact of natural and human influences on the sensitivity of channel morphodynamics, a relative measure between the drivers for change and the magnitude of channel response, requires an approach that accommodates spatial and temporal variability in the suite of primary stressors. Multiple historical data sources were assembled to provide a reach-scale analysis of the lower Santa Clara River (LSCR) in Ventura County, California, USA. Sediment supply is naturally high due to tectonic activity, earthquake-generated landslides, wildfires, and high magnitude flow events during El Niño years. Somewhat typically for the region, the catchment has been subject to four reasonably distinct land use and resource management combinations since European-American settlement. When combined with analysis of channel morphological response (quantifiable since ca. 1930), reach-scale and temporal differences in channel sensitivity become apparent. Downstream reaches have incised on average 2.4 m and become narrower by almost 50% with changes focused in a period of highly sensitive response after about 1950 followed by forced insensitivity caused by structural flood embankments and a significant grade control structure. In contrast, the middle reaches have been responsive but are morphologically resilient, and the upstream reaches show a mildly sensitive aggradational trend. Superimposing the natural and human drivers for change reveals that large scale stressors (related to ranching and irrigation) have been replaced over time by a suite of stressors operating at multiple spatial scales. Lower reaches have been sensitive primarily to 'local' scale impacts (urban growth, flood control, and aggregate mining) whereas, upstream, catchment-scale influences still prevail (including flow regulation and climate-driven sediment supply factors). These factors illustrate the complexity inherent to cumulative impact assessment in fluvial systems, provide evidence for a

  11. A legacy of change: The lower Colorado River, Arizona-California-Nevada, USA, and Sonora-Baja California Norte, Mexico

    USGS Publications Warehouse

    Mueller, G.A.; Marsh, P.C.; Minckley, W.L.

    2005-01-01

    The lower Colorado is among the most regulated rivers in the world. It ranks as the fifth largest river in volume in the coterminous United States, but its flow is fully allocated and no longer reaches the sea. Lower basin reservoirs flood nearly one third of the river channel and store 2 years of annual flow. Diverted water irrigates 1.5 million ha of cropland and provides water for industry and domestic use by 22 million people in the southwestern United States and northern Mexico. The native fish community of the lower Colorado River was among the most unique in the world, and the main stem was home to nine freshwater species, all of which were endemic to the basin. Today, five are extirpated, seven are federally endangered, and three are being reintroduced through stocking. Decline of the native fauna is attributed to predation by nonnative fishes and physical habitat degradation. Nearly 80 alien species have been introduced, and more than 20 now are common. These nonnative species thrived in modified habitats, where they largely eliminated the native kinds. As a result, the lower Colorado River has the dubious distinction of being among the few major rivers of the world with an entirely introduced fish fauna. ?? 2005 by the American Fisheries Society.

  12. Impact of seasonality and anthropogenic impoundments on dissolved organic matter dynamics in the Klamath River (Oregon/California, USA)

    NASA Astrophysics Data System (ADS)

    Oliver, Allison A.; Spencer, Robert G. M.; Deas, Michael L.; Dahlgren, Randy A.

    2016-07-01

    Rivers play a major role in the transport and processing of dissolved organic matter (DOM). Disturbances that impact DOM dynamics, such as river impoundments and flow regulation, have consequences for biogeochemical cycling and aquatic ecosystems. In this study we examined how river impoundments and hydrologic regulation impact DOM quantity and quality by tracking spatial and seasonal patterns of DOM in a large, regulated river (Klamath River, USA). Dissolved organic carbon (DOC) concentrations decreased downstream and longitudinal patterns in DOC load varied by season. Export of DOM (as DOC) was largely driven by river flow, while DOM composition was strongly influenced by impoundments. Seasonal algal blooms in upstream lentic reaches provided a steady source of algal DOM that was processed in downstream reaches. DOM at upstream sites had an average spectral slope ratio (SR) > 1, indicating algal-derived material, but decreased downstream to an average SR < 1, more indicative of terrestrial-derived material. The increasingly terrestrial nature of DOM exported from reservoirs likely reflects degraded algal material that becomes increasingly more recalcitrant with distance from upstream source and additional processing. As a result, DOM delivered to free-flowing river reaches below impoundments was less variable in composition. Downstream of impoundments, tributary influences resulted in increasing contributions of terrestrial DOM from the surrounding watershed. Removal of the four lower dams on the Klamath River is scheduled to proceed in the next decade. These results suggest that management should consider the role of impoundments on altering DOM dynamics, particularly in the context of dam removal.

  13. Reactive iron and manganese distributions in seabed sediments near small mountainous rivers off Oregon and California (USA)

    NASA Astrophysics Data System (ADS)

    Roy, Moutusi; McManus, James; Goñi, Miguel A.; Chase, Zanna; Borgeld, Jeffry C.; Wheatcroft, Robert A.; Muratli, Jesse M.; Megowan, Meghan R.; Mix, Alan

    2013-02-01

    We examined the spatial distribution of sedimentary reactive iron (FeR) and manganese (MnR) along the continental shelf near the mouth of the Umpqua River, Oregon (USA). A well-defined muddy (silt+clay) depocenter of fluvial origin characterizes this part of the Oregon margin. Reactive Fe and Mn contents are elevated within the silt-rich landward edge of the depocenter. Away from this depocenter, sediments are predominantly sandy both along the inner-shelf (<˜100 m depth) and mid-shelf (˜100-150 m depth) and have lower concentrations of reactive metals compared to the depocenter. Sediments are also muddy along the slope (>˜150 m depth) and have elevated FeR and MnR. Based on their correlation with sediment grain size, it appears that FeR and to a lesser extent MnR, are associated with mud size sediments. Reactive metal concentration is also positively correlated with organic carbon (OC) content, indicating a potentially common source. Seabed sediments from five other small, mountainous river systems (Klamath, Eel, Navarro, Russian, and Salinas) located south of Umpqua show the same general relationship between FeR and OC. Although both FeR and MnR exhibit similar relationships to grain size and OC, the relationships with MnR exhibit considerable scatter. Comparison of Umpqua River suspended sediment data with the seabed data suggests that MnR is more prone to loss from sediment particles during transit to the seabed as compared to FeR, and this difference explains why FeR maintains a reasonably tight relationship with organic carbon and particle size along the seafloor relative to MnR.

  14. Source, movement and age of groundwater in the upper part of the Mojave River Basin, California, USA

    USGS Publications Warehouse

    Izbicki, J.A.; Martin, P.; Michel, R.L.

    1995-01-01

    Water samples from wells were collected and analysed for oxygen-18, deuterium, tritium, carbon-14, and carbon-13 to determine the source, movement and age of groundwater in the upper part of the Mojave River basin. Water in the alluvial aquifer has a median deuterium composition of -66??? and contains tritium, and was recently recharged by water from the Mojave River. Water in the regional aquifer near the Mojave River, near Summit Valley, and underlying several small washes has deuterium compositions heavier than -60???. Although some water in the regional aquifer near the Mojave River contains tritium, most of this water does not contain tritium. Carbon-14 data indicate that this water was recharged less than 2400 years ago. Water in the remainder of the regional aquifer has a median deuterium composition of -84???, which is as much as 20??? lighter than the volume-weighted deuterium composition of present-day precipitation. These data show that this water was recharged under climatic conditions different from average conditions today. Carbon-14 data indicate that some water in the regional aquifer was recharged more than 20 000 years ago.Water samples from wells were collected and analyzed for oxygen-18, deuterium, tritium, carbon-14, and carbon-13 to determine the source, movement and age of groundwater in the upper part of the Mojave River basin. Water in the alluvial aquifer has a median deuterium composition of -66qq and contains tritium, and was recently recharged by water from the Mojave River. Water in the regional aquifer near the Mojave River, near Summit Valley, and underlying several small washes has deuterium compositions heavier than -60qq. Although some water in the regional aquifer near the Mojave River contains tritium, most of this water does not contain tritium. Carbon-14 data indicate that this water was recharged less than 2400 years ago. Water in the remainder of the regional aquifer has a median deuterium composition of -84qq, which is as

  15. Water Quality Assessment of the Los Angeles River Watershed, California, USA in Wet and Dry Weather Periods

    NASA Astrophysics Data System (ADS)

    Rezaie Boroon, M. H.; Von L Coo, C.

    2015-12-01

    The purpose of this study is to identify sources of potential pollutants and characterize urban water quality along the Los Angeles River from its head to the mouth during dry and wet weather periods. Los Angeles (LA) River flows through heavily populated urbanized area in the Los Angeles downtown. The LA River is an effluent-dominated water body during the dry season. The three waste water treatment plants (WWTP) including the Tillman, Burbank, and Glendale discharge the majority of the volume flowing in the LA River during the dry and wet period. The concentration values (ppm) for anions in the dry season ranging 5.5-16,027 (Cl), 0-1.0 (F), 0-21(NO3), 0-1.6 (PO4), and 13.3-2,312 (SO4); whereas the values (ppm) for anions in the wet season ranging 3.4-5,860 (Cl), 0-0.66 (F), 0-17 (NO3), 0-0.67 (PO4), 7.9- 745 (SO4). Dry season concentrations values for trace metals were obtained with values (ppb) ranging 0.9-10 (Ni), 0.8-62 (Zn), 1-4 (As), 0-1 (Pb) and 0-3 (Se). As for wet season trace metals (ppb) ranging 0.001-0.008 (Ni), 0.000001-0.038 (Zn), 0.0016-0.016 (As), 0.00099-0.0058 (Pb), 0.000001-0.0093 (Se). Higher concentrations values during the dry period in the LA River watershed may be attributed to the three WWTPs discharge (75% of the volume of water flowing in the LA River). In water-limited areas such as the Los Angeles basin, urban runoff is a water resource that could enhance restricted water supplies and to enhance localized renewable groundwater resources, thus an assessment of this precious water resource is important for local city and regulatory organizations. In water-limited areas such as the LA basin, urban runoff is a water resource that could enhance restricted water supplies and groundwater resources, thus an assessment of this precious water resource is important for local regulatory organizations.

  16. Using 10Be erosion rates and fluvial channel morphology to constrain fault throw rates in the southwestern Sacramento River Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Cyr, A. J.

    2013-12-01

    The Sacramento - San Joaquin River Delta, California, USA, is a critical region for California water resources, agriculture, and threatened or endangered species. This landscape is affected by an extensive set of levees that enclose artificial islands created for agricultural use. In addition to their importance for sustaining agriculture, this levee system also supports extensive transport and power transmission infrastructure and urban/suburban development. These levees are susceptible to damage from even moderate ground shaking by either a large earthquake on one of the high-activity faults in the nearby San Francisco Bay region, or even a moderate earthquake on one of the low-activity faults in the Delta region itself. However, despite this danger the earthquake hazards in this region are poorly constrained due to our lack of understanding of faults in and near the Delta region. As part of an effort to better constrain the seismic hazard associated with known, but poorly constrained, faults in the region, a geomorphic analysis of the Dunnigan Hills, northwest of Woodland, CA, is being combined with cosmogenic 10Be catchment-averaged erosion rates. The Dunnigan Hills are a low-relief (maximum elevation 87 m) landscape generated by fault-bend folding above the west-vergent Sweitzer reverse fault that soles into a blind east-vergent reverse fault. These faults have been imaged by seismic reflection data, and local microseismicity indicates that this system is actively propagating to the east. However, the throw rates on the faults in this system remain unconstrained, despite the potential for significant shaking such as that experienced in the nearby April, 1892 earthquake sequence between Winters and Vacaville, Ca, ~25 km to the south, which has been estimated at magnitude 6.0 or greater. Geomorphic and cosmogenic 10Be analyses from 12 catchments draining the eastern flank of the Dunnigan Hills will be used to infer vertical rock uplift rates to better constrain

  17. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    USGS Publications Warehouse

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are <5 pCi/l. Four ground water samples were analyzed for 210Po and one sample contained a high concentration of 21 pCi/l. Seven samples were analyzed for 210Pb; six contained <3 pCi/l and one contained 12 pCi/l. Thorium-230 was detected at concentrations of 0.15 and 0.20 pCi/l in two of four samples. Alpha-emitting radionuclides in the ground water originated from the dissolution of U-rich granitic rocks in the Sierra Nevada by CO2, oxygenated water. Dissolution of primary minerals, mainly titanite (sphene) in the granitic rocks, releases U to the water. Dissolved U is probably removed from the water by adsorption on Fe- and Mn-oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial

  18. Erosion Characteristics and Horizontal Variability for Small Erosion Depths in the Sacramento - San Joaquin River Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Schoellhamer, D. H.; Manning, A. J.; Work, P. A.

    2015-12-01

    Cohesive sediment in the Sacramento-San Joaquin River Delta affects pelagic fish habitat, contaminant transport, and marsh accretion. Observations of suspended-sediment concentration in the delta indicate that about 0.05 to 0.20 kg/m2 are eroded from the bed during a tidal cycle. If erosion is horizontally uniform, the erosion depth is about 30 to 150 microns, the typical range in diameter of suspended flocs. Application of an erosion microcosm produces similarly small erosion depths. In addition, core erodibility in the microcosm calculated with a horizontally homogeneous model increases with depth, contrary to expectations for a consolidating bed, possibly because the eroding surface area increases as applied shear stress increases. Thus, field observations and microcosm experiments, combined with visual observation of horizontally varying biota and texture at the surface of sediment cores, indicate that a conceptual model of erosion that includes horizontally varying properties may be more appropriate than assuming horizontally homogeneous erosive properties. To test this hypothesis, we collected five cores and measured the horizontal variability of shear strength within each core in the top 5.08 cm with a shear vane. Small tubes built by a freshwater worm and macroalgae were observed on the surface of all cores. The shear vane was inserted into the sediment until the top of the vane was at the top of the sediment, torque was applied to the vane until the sediment failed and the vane rotated, and the corresponding dial reading in Nm was recorded. The dial reading was assumed to be proportional to the surface strength. The horizontal standard deviation of the critical shear stress was about 30% of the mean. Results of the shear vane test provide empirical evidence that surface strength of the bed varies horizontally. A numerical simulation of erosion with an areally heterogeneous bed reproduced erosion characteristics observed in the microcosm.

  19. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    USGS Publications Warehouse

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul

    2017-01-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear

  20. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.

    2017-06-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear

  1. Comparison of ground-water flow model particle-tracking results and isotopic data in the Mojave River ground-water basin, southern California, USA

    USGS Publications Warehouse

    Izbicki, J.A.; Stamos, C.L.; Nishikawa, T.; Martin, P.

    2004-01-01

    Flow-path and time-of-travel results for the Mojave River ground-water basin, southern California, calculated using the ground-water flow model MODFLOW and particle-tracking model MODPATH were similar to flow path and time-of-travel interpretations derived from delta-deuterium and carbon-14 data. Model and isotopic data both show short flow paths and young ground-water ages throughout the floodplain aquifer along most the Mojave River. Longer flow paths and older ground-water ages as great as 10,000 years before present were measured and simulated in the floodplain aquifer near the Mojave Valley. Model and isotopic data also show movement of water between the floodplain and regional aquifer and subsequent discharge of water from the river to dry lakes in some areas. It was not possible to simulate the isotopic composition of ground-water in the regional aquifer away from the front of the San Gabriel and San Bernardino Mountains - because recharge in these areas does not occur under the present-day climatic conditions used for calibration of the model.

  2. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA)

    USGS Publications Warehouse

    Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.

    2007-01-01

    Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( < 1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short

  3. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, U.S.A.

    USGS Publications Warehouse

    Ericksen, G.E.; Hosterman, J.W.; St., Amand

    1988-01-01

    The clay-hill nitrate deposits of the Amargosa River valley, California, are caliche-type accumulations of water-soluble saline minerals in clay-rich soils on saline lake beds of Miocene, Pliocene(?) and Pleistocene age. The soils have a maximum thickness of ??? 50 cm, and commonly consist of three layers: (1) an upper 5-10 cm of saline-free soil; (2) an underlying 15-20 cm of rubbly saline soil; and (3) a hard nitrate-rich caliche, 10-20 cm thick, at the bottom of the soil profile. The saline constituents, which make up as much as 50% of the caliche, are chiefly Cl-, NO-3, SO2-4 and Na+. In addition are minor amounts of K+, Mg2+ and Ca2+, varying, though generally minor, amounts of B2O3 and CO2-3, and trace amounts of I (probably as IO-3), NO-2, CrO2-4 and Mo (probably as MoO2-4). The water-soluble saline materials have an I/Br ratio of ??? 1, which is much higher than nearly all other saline depostis. The principal saline minerals of the caliche are halite (NaCl), nitratite (NaNO3), darapskite (Na3(SO4)(NO3)??H2O), glauberite (Na2Ca(SO4)2), gypsum (CaSO4??2H2O) and anhydrite (CaSO4). Borax (Na2B4O5(OH)4??8H2O), tincalconite (Na2B4O5(OH)4??3H2O) and trona (Na3(CO3)(HCO3)??2H2O) are abundant locally. The clay-hill nitrate deposits are analogous to the well-known Chilean nitrate deposits, and probably are of similar origin. Whereas the Chilean deposits are in permeable soils of the nearly rainless Atacama Desert, the clay-hill deposits are in relatively impervious clay-rich soils that inhibited leaching by rain water. The annual rainfall in the Death Valley region of ??? 5 cm is sufficient to leach water-soluble minerals from the more permeable soils. The clay-hill deposits contain saline materials from the lake beds beneath the nitrate deposits are well as wind-transported materials from nearby clay-hill soils, playas and salt marshes. The nitrate is probably of organic origin, consisting of atmospheric nitrogen fixed as protein by photoautotrophic blue-green algae

  4. Distribution and abundance of the salmonid parasite Parvicapsula minibicornis (Myxozoa) in the Klamath River basin (Oregon-California, U.S.A.).

    PubMed

    Bartholomew, Jerri L; Atkinson, Stephen D; Hallett, Sascha L; Zielinski, Christopher M; Foott, J Scott

    2007-12-13

    The distribution and abundance of the myxosporean parasite Parvicapsula minibicornis in the Klamath River mirrored that of Ceratomyxa shasta, with which it shares both its vertebrate and invertebrate host. Assay of fish held at sentinel sites and water samples collected from those sites showed that parasite prevalence was highest below Iron Gate dam, which is the barrier to anadromous salmon passage. Above this barrier parasite levels fluctuated, with the parasite detected in the free-flowing river reaches between reservoirs. This was consistent with infection prevalence in the polychaete host, Manayunkia speciosa, which was greater than 1% only in populations tested below Iron Gate dam. Although a low prevalence of infection was detected in juvenile out-migrant fish in the Trinity River, the tributaries tested did not appear to be a significant source of the parasite to the mainstem despite the presence of large numbers of infected adult salmon that migrate and spawn there. Rainbow trout became infected during sentinel exposure, which expands the host range for P. minibicornis and suggests that wild rainbow trout populations are a reservoir for infection, especially above Iron Gate dam. High parasite prevalence in the lower Klamath River is likely a combined effect of high spore input from heavily infected, spawned adult salmon and the proximity to dense populations of polychaetes.

  5. Sediment Dynamics Affecting the Threatened Santa Ana Sucker in the Highly-modified Santa Ana River and Inset Channel, Southern California, USA

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Wright, S. A.

    2015-12-01

    In this study, we investigate the sediment dynamics of the low-flow channel of the Santa Ana River that is formed by wastewater discharges and contains some of the last remaining habitat of the Santa Ana Sucker (Catostomus santaanae). The Santa Ana River is a highly-modified river draining the San Bernardino Mountains and Inland Empire metropolitan area east of Los Angeles. Home to over 4 million people, the watershed provides habitat for the federally-threatened Santa Ana Sucker, which presently reside within the mainstem Santa Ana River in a reach supported by year-round constant discharges from water treatment plants. The nearly constant low-flow wastewater discharges and infrequent runoff events create a small, approximately 8 m wide, inset channel within the approximately 300 m wide mainstem channel that is typically dry except for large flood flows. The sediment dynamics within the inset channel are characterized by constantly evolving bed substrate and sediment transport rates, and occasional channel avulsions. The sediment dynamics have large influence on the Sucker, which rely on coarse-substrate (gravel and cobble) for their food production. In WY 2013 through the present, we investigated the sediment dynamics of the inset channel using repeat bathymetric and substrate surveys, bedload sampling, and discharge measurements. We found two distinct phases of the inset channel behavior: 1. 'Reset' flows, where sediment-laden mainstem discharges from upstream runoff events result in sand deposition in the inset channel or avulse the inset channel onto previously dry riverbed; and 2. 'Winnowing' flows, whereby the sand within the inset channel is removed by clear-water low flows from the wastewater treatment plant discharges. Thus, in contrast to many regulated rivers where high flows are required to flush fine sediments from the bed (for example, downstream from dams), in the Santa Ana River the low flows from wastewater treatment plants serve as the flushing

  6. Can genomics clarify the origins of Boreioglycaspis melaleucae in California, USA?

    USDA-ARS?s Scientific Manuscript database

    The Australian psyllid Boreioglycaspis melaleucae is a biological control agent of Melaleuca quinquenervia in Florida (USA) but was observed attacking M. quinquenervia trees in southern California (USA). Genotyping revealed the California population matched three of eight Australian haplotypes and ...

  7. Increasing summer river discharge in urbanized watersheds in southern California

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Nash, D.; Finan, K.; Liu, H.; Thomas, B.; Li, Z.; Wu, Q.

    2012-12-01

    Urban areas alter hydrologic flowpaths through increased impermeable surface area, which leads to a greater proportion of runoff versus infiltration during rain events. In semi-arid regions, however, there may be an additional impact of urbanization on stream flow rates via increased dry-season runoff due to landscaping irrigation and sewage treatment plant effluent. In this presentation, we will show that summer river discharge is increasing in urban and suburban southern California, USA, despite a lack of summer precipitation. The data were collected online from the USGS stream gauge network. The Los Angeles area megacity relies heavily on imported water from northern and western parts of California and the other parts of the southwestern USA. This water transportation network is a large drain on water resources in source regions and is one of the largest electricity consumers in the state. A close analysis of the streamflow data along with satellite-derived land cover data indicate that summer river discharge is low to nonexistent in most undeveloped watersheds, with no temporal trend, while urban and suburban river discharge has been increasing throughout the past 50 or 60 years. This has important implications for water policy in California, as water resources are expected to become more scarce with decreasing snowpack in the Sierra Nevada mountains. There are also potential health impacts for this research, as urban runoff can cause high bacterial counts and beach closures in this region. Potential causes for increasing summer river discharge will be discussed as well as suggestions for remediation and conservation.

  8. Burkholderia pseudomallei isolates in 2 pet iguanas, California, USA.

    PubMed

    Zehnder, Ashley M; Hawkins, Michelle G; Koski, Marilyn A; Lifland, Barry; Byrne, Barbara A; Swanson, Alexandra A; Rood, Michael P; Gee, Jay E; Elrod, Mindy Glass; Beesley, Cari A; Blaney, David D; Ventura, Jean; Hoffmaster, Alex R; Beeler, Emily S

    2014-02-01

    Burkholderia pseudomallei, the causative agent of melioidosis, was isolated from abscesses of 2 pet green iguanas in California, USA. The international trade in iguanas may contribute to importation of this pathogen into countries where it is not endemic and put persons exposed to these animals at risk for infection.

  9. "Hydrologic effects of forest harvest in northwestern California, USA"

    Treesearch

    Robert Ziemer

    2000-01-01

    Streamflow, suspended sediment, and bedload have been monitored since 1962 in the 473-ha North Fork and 424-ha South Fork of Caspar Creek. These watersheds are about 7 km from the Pacific Ocean, on the Jackson Demonstation State Forest, 10 km south of Fort Bragg, California, USA

  10. "Streamflow and sediment response to logging, California, USA"

    Treesearch

    Robert R. Ziemer; Jack Lewis; Elizabeth T. Keppeler

    1998-01-01

    Streamflow, suspended sediment, and bedload have been monitored since 1962 in the 473-ha North Fork and the 424-ha South Fork of Caspar Creek. These watersheds are about 7 km from the Pacific Ocean, on the Jackson Demonstration State Forest, 10 km south of Fort Bragg, California, USA (Ziemer et al. 1996)

  11. Burkholderia pseudomallei Isolates in 2 Pet Iguanas, California, USA

    PubMed Central

    Zehnder, Ashley M.; Hawkins, Michelle G.; Koski, Marilyn A.; Lifland, Barry; Byrne, Barbara A.; Swanson, Alexandra A.; Rood, Michael P.; Elrod, Mindy Glass; Beesley, Cari A.; Blaney, David D.; Ventura, Jean; Hoffmaster, Alex R.; Beeler, Emily S.

    2014-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, was isolated from abscesses of 2 pet green iguanas in California, USA. The international trade in iguanas may contribute to importation of this pathogen into countries where it is not endemic and put persons exposed to these animals at risk for infection. PMID:24447394

  12. Knemidocoptic Mange in Wild Golden Eagles, California, USA

    PubMed Central

    Stephenson, Nicole; Rogers, Krysta; Hawkins, Michelle G.; Sadar, Miranda; Guzman, David Sanchez-Migallon; Bell, Douglas A.; Smallwood, Kenneth S.; Wells, Amy; Shipman, Jessica; Foley, Janet

    2014-01-01

    During 2012–2013 in California, USA, 3 wild golden eagles were found with severe skin disease; 2 died. The cause was a rare mite, most closely related to Knemidocoptes derooi mites. Cautionary monitoring of eagle populations, habitats, and diseases is warranted. PMID:25271842

  13. Determination of pesticides associated with suspended sediments in the San Joaquin River, California, USA, using gas chromatography-ion trap mass spectrometry

    USGS Publications Warehouse

    Bergamaschi, B.A.; Baston, D.S.; Crepeau, K.L.; Kuivila, K.M.

    1999-01-01

    An analytical method useful for the quantification of a range of pesticides and pesticide degradation products associated with suspended sediments was developed by testing a variety of extraction and cleanup schemes. The final extraction and cleanup methods chosen for use are suitable for the quantification of the listed pesticides using gas chromatography-ion trap mass spectrometry and the removal of interfering coextractable organic material found in suspended sediments. Methylene chloride extraction followed by Florisil cleanup proved most effective for separation of coextractives from the pesticide analytes. Removal of elemental sulfur was accomplished with tetrabutylammonium hydrogen sulfite. The suitability of the method for the analysis of a variety of pesticides was evaluated, and the method detection limits (MDLs) were determined (0.1-6.0 ng/g dry weight of sediment) for 21 compounds. Recovery of pesticides dried onto natural sediments averaged 63%. Analysis of duplicate San Joaquin River suspended-sediment samples demonstrated the utility of the method for environmental samples with variability between replicate analyses lower than between environmental samples. Eight of 21 pesticides measured were observed at concentrations ranging from the MDL to more than 80 ng/g dry weight of sediment and exhibited significant temporal variability. Sediment-associated pesticides, therefore, may contribute to the transport of pesticides through aquatic systems and should be studied separately from dissolved pesticides.

  14. Using remote sensing to monitor past changes and assess future scenarios for the Sacramento-San Joaquin River Delta waterways, California USA

    NASA Astrophysics Data System (ADS)

    Santos, Maria J.; Hestir, Erin; Khanna, Shruti; Ustin, Susan L.

    2017-04-01

    Historically, deltas have been extensively affected both by natural processes and human intervention. Thus, understanding drivers, predicting impacts and optimizing solutions to delta problems requires a holistic approach spanning many sectors, disciplines and fields of expertise. Deltas are ideal model systems to understand the effects of the interaction between social and ecological domains, as they face unprecedented disturbances and threats to their biological and ecological sustainability. The challenge for deltas is to meet the goals of supporting biodiversity and ecosystem processes while also provisioning fresh water resources for human use. We provide an overview of the last 150 years of the Sacramento-San Joaquin River delta, where we illustrate the parallel process of an increase in disturbances, by particularly zooming in on the current cascading effects of invasive species on geophysical and biological processes. Using remote sensing data coupled with in situ measurements of water quality, turbidity, and species presence we show how the spread and persistence of aquatic invasive species affects sedimentation processes and ecosystem functioning. Our results show that the interactions between the biological and physical conditions in the Delta affect the trajectory of dominance by native and invasive aquatic plant species. Trends in growth and community characteristics associated with predicted impacts of climate change (sea level rise, warmer temperatures, changes in the hydrograph with high winter and low summer outflows) do not provide simple predictions. Individually, the impact of specific environmental changes on the biological components can be predicted, however it is the complex interactions of biological communities with the suite of physical changes that make predictions uncertain. Systematic monitoring is critical to provide the data needed to document and understand change of these delta systems, and to identify successful adaptation

  15. Marine protected area networks in California, USA.

    PubMed

    Botsford, Louis W; White, J Wilson; Carr, Mark H; Caselle, Jennifer E

    2014-01-01

    California responded to concerns about overfishing in the 1990s by implementing a network of marine protected areas (MPAs) through two science-based decision-making processes. The first process focused on the Channel Islands, and the second addressed California's entire coastline, pursuant to the state's Marine Life Protection Act (MLPA). We review the interaction between science and policy in both processes, and lessons learned. For the Channel Islands, scientists controversially recommended setting aside 30-50% of coastline to protect marine ecosystems. For the MLPA, MPAs were intended to be ecologically connected in a network, so design guidelines included minimum size and maximum spacing of MPAs (based roughly on fish movement rates), an approach that also implicitly specified a minimum fraction of the coastline to be protected. As MPA science developed during the California processes, spatial population models were constructed to quantify how MPAs were affected by adult fish movement and larval dispersal, i.e., how population persistence within MPA networks depended on fishing outside the MPAs, and how fishery yields could either increase or decrease with MPA implementation, depending on fishery management. These newer quantitative methods added to, but did not supplant, the initial rule-of-thumb guidelines. In the future, similar spatial population models will allow more comprehensive evaluation of the integrated effects of MPAs and conventional fisheries management. By 2011, California had implemented 132 MPAs covering more than 15% of its coastline, and now stands on the threshold of the most challenging step in this effort: monitoring and adaptive management to ensure ecosystem sustainability.

  16. Wind energy development in California, USA

    USGS Publications Warehouse

    Wilshire, H.; Prose, D.

    1987-01-01

    Windfarms have been developed rapidly in California in the last few years. The impetus has been a legislated goal to generate 10% of California's electricity by windpower by the year 2000, and generous state and federal tax incentives. Windpower is promoted as environmentally benign, which it is in traditional uses. The California program, however, is not traditional: it calls for centralized development of a magnitude sufficient to offset significant amounts of fossil fuels now used to generate electricity. Centralized windfarm development, as exemplified by the Altamont Pass, Tehachapi Mountains, and San Gorgonio Pass developments, involves major road building projects in erosion-sensitive terrain, effective closure of public lands, and other detrimental effects. A windfarm consisting of 200 turbines with 17-m rotors located in steep terrain 16 km from an existing corridor might occupy 235 ha and physically disturb 86 ha. With average annual wind speeds of 22.5 km/h, the farm would generate about 10??106 kWh/year at present levels of capacity. This annual production would offset 1% of one day's consumption of oil in California. To supply 10% of the state's electricity (at 1984 production rates) would require about 600,000 turbines of the type in common use today and would occupy more than 685,000 ha. It is likely that indirect effects would be felt in much larger areas and would include increased air and water pollution resulting from accelerated erosion, degradation of habitat of domestic and wild animals, damage to archaeological sites, and reduction of scenic quality of now-remote areas of the state. ?? 1987 Springer-Verlag New York Inc.

  17. Granite Exfoliation, Cosumnes River Watershed, Somerset, California

    NASA Astrophysics Data System (ADS)

    Crockett, I. Q.; Neiss-Cortez, M.

    2015-12-01

    In the Sierra Nevada foothills of California there are many exposed granite plutons within the greater Sierra Nevada batholith. As with most exposed parts of the batholith, these granite slabs exfoliate. It is important to understand exfoliation for issues of public safety as it can cause rock slides near homes, roads, and recreation areas. Through observation, measuring, and mapping we characterize exfoliation in our Cosumnes River watershed community.

  18. Measurement of radon gas on major faults in California, USA

    USGS Publications Warehouse

    Zhang, W.; King, C.-Y.

    1994-01-01

    Abundant data have been gathered through measurements of radon gas emission in the soil on several major active faults, such as San Andreas and Calaveras, in California, U.S.A.. They show radon emissions and their spatial variations at the unlocked, locked, and creeping sections of faults with different tectonic movements. The characteristics of these variations and the role of fault gases in the research on earthquake prediction are discussed in this paper. ?? 1994 Acta Seismologica Sinica.

  19. Flooding on California's Russian River: Role of atmospheric rivers

    USGS Publications Warehouse

    Ralph, F.M.; Neiman, P.J.; Wick, G.A.; Gutman, S.I.; Dettinger, M.D.; Cayan, D.R.; White, A.B.

    2006-01-01

    Experimental observations collected during meteorological field studies conducted by the National Oceanic and Atmospheric Administration near the Russian River of coastal northern California are combined with SSM/I satellite observations offshore to examine the role of landfalling atmospheric rivers in the creation of flooding. While recent studies have documented the characteristics and importance of narrow regions of strong meridional water vapor transport over the eastern Pacific Ocean (recently referred to as atmospheric rivers), this study describes their impact when they strike the U.S. West Coast. A detailed case study is presented, along with an assessment of all 7 floods on the Russian River since the experimental data were first available in October 1997. In all 7 floods, atmospheric river conditions were present and caused heavy rainfall through orographic precipitation. Not only do atmospheric rivers play a crucial role in the global water budget, they can also lead to heavy coastal rainfall and flooding, and thus represent a key phenomenon linkingweather and climate. Copyright 2006 by the American Geophysical Union.

  20. Water-quality investigation, Salinas River, California

    USGS Publications Warehouse

    Irwin, G.A.

    1976-01-01

    Concentrations of dissolved solids in the Salinas River, California, are variable and range from 164 to 494 milligrams per liter near Bradley and from 170 to 1,090 milligrams per liter near Spreckels. Higher concentrations near Spreckels are caused mainly by sewage inflow about 150 feet (50 meters) upstream. Concentrations of nitrogen, phosphorus, total organic carbon, selected trace elements, and pesticides also generally increase downstream from Pozo to Spreckels and are related to sewage effluent; however, high concentrations occur elsewhere in the river. Specific conductance and water discharge regression results indicate that relations were all significant at the 1-percent probability level at Paso Robles, Bradley, and Spreckels with the explained variance ranging from 66 to 74 percent. Concentations of nitrogen, phosphorus, total organic carbon, and trace elements are only infrequently related to water discharge. (Woodard-USGS)

  1. Stonefly (Plecoptera) Feeding Modes: Variation Along a California River Continuum

    Treesearch

    Richard L. Bottorff; Allen W. Knight

    1989-01-01

    The distribution of Plecoptera along a California river was used to test several predictions of the River Continuum Concept about how functional feeding groups should change along a stream's length. Stoneflies were collected from stream orders 1-6 (123 km) of the Cosumnes River continuum in the central Sierra Nevada. The 69 stonefly species collected were...

  2. Microplastic contamination in the San Francisco Bay, California, USA.

    PubMed

    Sutton, Rebecca; Mason, Sherri A; Stanek, Shavonne K; Willis-Norton, Ellen; Wren, Ian F; Box, Carolynn

    2016-08-15

    Despite widespread detection of microplastic pollution in marine environments, data describing microplastic abundance in urban estuaries and microplastic discharge via treated municipal wastewater are limited. This study presents information on abundance, distribution, and composition of microplastic at nine sites in San Francisco Bay, California, USA. Also presented are characterizations of microplastic in final effluent from eight wastewater treatment plants, employing varying treatment technologies, that discharge to the Bay. With an average microplastic abundance of 700,000particles/km(2), Bay surface water appears to have higher microplastic levels than other urban waterbodies sampled in North America. Moreover, treated wastewater from facilities that discharge into the Bay contains considerable microplastic contamination. Facilities employing tertiary filtration did not show lower levels of contamination than those using secondary treatment. As textile-derived fibers were more abundant in wastewater, higher levels of fragments in surface water suggest additional pathways of microplastic pollution, such as stormwater runoff.

  3. RELATIONSHIPS BETWEEN ENVIRONMENTAL VARIABLES AND BENTHIC DIATOM ASSEMBLAGES IN CALIFORNIA CENTRAL VALLEY STREAMS (USA)

    EPA Science Inventory

    Streams and rivers in the California Central Valley Ecoregion have been substantially modified by human activities. This study examines distributional patterns of benthic diatom assemblages in relation to environmental characteristics in streams and rivers of this region. Benthic...

  4. New York City, Hudson River, NY, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This color infrared photo of New York City, Hudson River, NY, (41.0N, 74.0W) shows a unique view of the dense urban development of the New York City metropolitan area in downstate New York, Long Island and New Jersey. The heavily populated city areas appear as white or gray while vegetated areas appear as shades of red. Central park clearly shows up on Manhattan Island as an illustration of the delineation between cultural and natural features.

  5. First report of the biological control agent Boreioglycaspis melaleucae (Hemiptera: Psyllidae) in California, USA.

    USDA-ARS?s Scientific Manuscript database

    The Australian psyllid Boreioglycaspis melaleucae is a specialized herbivore of Melaleuca quinquenervia and other closely related congeners. Boreioglycaspis melaleucae was discovered in Los Angeles County (California, USA) in late 2009, feeding on ornamentally planted M. quinquenervia trees. The ps...

  6. Cumberland River and Nashville, TN, USA

    NASA Image and Video Library

    1973-06-22

    SL2-81-198 (22 June 1973) --- Making its way through the rugged Cumberland Plateau, the Cumberland River winds through the city of Nashville in north central Tennessee (36.0N, 87.0W) where the heavily forested upland terrain produces a landscape of rolling hills with elevations up to 1,100 ft. and narrow valleys. Before the advent of modern communications and transportation in this region, widely scattered and isolated communities had little contact with the outside world. Photo credit: NASA

  7. Residential Mobility and Breast Cancer in Marin County, California, USA

    PubMed Central

    Jacquez, Geoffrey M.; Barlow, Janice; Rommel, Robert; Kaufmann, Andy; Rienti, Michael; AvRuskin, Gillian; Rasul, Jawaid

    2013-01-01

    Marin County (California, USA) has among the highest incidences of breast cancer in the U.S. A previously conducted case-control study found eight significant risk factors in participants enrolled from 1997–1999. These included being premenopausal, never using birth control pills, lower highest lifetime body mass index, having four or more mammograms from 1990–1994, beginning drinking alcohol after age 21, drinking an average two or more alcoholic drinks per day, being in the highest quartile of pack-years of cigarette smoking, and being raised in an organized religion. Previously conducted surveys provided residential histories; while Ǫ statistic accounted for participants’ residential mobility, and assessed clustering of breast cancer cases relative to controls based on the known risk factors. These identified specific cases, places, and times of excess breast cancer risk. Analysis found significant global clustering of cases localized to specific residential histories and times. Much of the observed clustering occurred among participants who immigrated to Marin County. However, persistent case-clustering of greater than fifteen years duration was also detected. Significant case-clustering among long-term residents may indicate geographically localized risk factors not accounted for in the study design, as well as uncertainty and incompleteness in the acquired addresses. Other plausible explanations include environmental risk factors and cases tending to settle in specific areas. A biologically plausible exposure or risk factor has yet to be identified. PMID:24366047

  8. Novel Picornavirus in Turkey Poults with Hepatitis, California, USA

    PubMed Central

    Honkavuori, Kirsi S.; Shivaprasad, H. L.; Street, Craig; Hirschberg, David L.; Hutchison, Stephen K.; Lipkin, W. Ian

    2011-01-01

    To identify a candidate etiologic agent for turkey viral hepatitis, we analyzed samples from diseased turkey poults from 8 commercial flocks in California, USA, that were collected during 2008–2010. High-throughput pyrosequencing of RNA from livers of poults with turkey viral hepatitis (TVH) revealed picornavirus sequences. Subsequent cloning of the ≈9-kb genome showed an organization similar to that of picornaviruses with conservation of motifs within the P1, P2, and P3 genome regions, but also unique features, including a 1.2-kb sequence of unknown function at the junction of P1 and P2 regions. Real-time PCR confirmed viral RNA in liver, bile, intestine, serum, and cloacal swab specimens from diseased poults. Analysis of liver by in situ hybridization with viral probes and immunohistochemical testing of serum demonstrated viral nucleic acid and protein in livers of diseased poults. Molecular, anatomic, and immunologic evidence suggests that TVH is caused by a novel picornavirus, tentatively named turkey hepatitis virus. PMID:21392440

  9. Oklahoma City, Canadian River, OK, USA

    NASA Image and Video Library

    1991-05-06

    STS039-85-029 (28 April-6 May 1991) --- This 70mm frame is one of the best pictures of the Oklahoma City area from the manned space program, according to NASA photo experts studying STS-39 onboard photography. The central business district is near the center. Several municipalities are visible, along with thousands of acres of farmland. The towns of Norman and Moore and the South Canadian River are in the bottom (south). El Reno and Wiley Post Field off I-40W are just below center in lower left quadrant. Edmond is seen at the top (north). Tinker Field can be seen north of I-40E at right center. Lake Overholser shows recent spring rainfall northwest of the central business district.

  10. New York City, Hudson River, NY, USA

    NASA Image and Video Library

    1991-05-06

    STS039-88-054 (28 April-6 May 1991) --- The dense urban development of the New York City metropolitan area in downstate New York, Long Island and New Jersey shows up as gray and white on this color Infrared photograph. The scene was taken on a remarkably clear spring day. Almost all the major man-made structures of the area are obvious, including ship traffic in and out of New York Harbor, the piers, all of the bridges spanning the area rivers and connecting Manhattan Island with New Jersey, the Bronx, Brooklyn and Queens, the three major airports (Newark, La Guardia and JFK), the New York State thruway, as well as Shea Stadium and Yankee Stadium. The reds and pinks are vegetated areas. Central Park clearly shows up on Manhattan, as do the string of parks along the cliffs (formed by the Palisades sill) along the west side of the Hudson north of the George Washington Bridge.

  11. 78 FR 25740 - Meridian Energy USA, Inc. v. California Independent System Operator Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Meridian Energy USA, Inc. v. California Independent System Operator Corporation; Notice of Filing Take notice that on April 24, 2013, Meridian Energy USA, Inc....

  12. Characteristics of southern California atmospheric rivers

    NASA Astrophysics Data System (ADS)

    Harris, Sarah M.; Carvalho, Leila M. V.

    2017-05-01

    Atmospheric rivers (ARs) are channels of high water vapor flux that transport moisture from low to higher latitudes on synoptic timescales. In areas of topographical variability, ARs may lead to high-intensity precipitation due to orographic forcing. ARs landfalling along North America's west coast are linked to extreme events including those leading to flooding and landslides. In southern California (SCA), proper AR forecasting is important for regional water resources as well as hazard mitigation and as the area's annual precipitation totals occur from relatively few storms per season, any changes to storm frequency and/or intensity may have dramatic consequences. Yet, as most regional AR studies focus on the Pacific Northwest, there is little information about SCA ARs. We develop an algorithm to identify ARs landfalling on North America's west coast between 1979 and 2013 within total precipitable water reanalysis fields. ARs are then categorized according to landfall region. To determine and differentiate the characteristics and spatial distributions of ARs affecting these areas, we examine lag composites of various atmospheric variables for each landfall region. SCA ARs differ from ARs landfalling farther north in the days prior to landfall with the position and amplitude of a trough offshore from the Asian continent and ridge over Alaska, as well as the displacement and eastward extension of the jet core that potentially guides AR moisture southwards. The relationships between AR landfalls and the El Niño/Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and the Pacific/North American Teleconnection Pattern (PNA) are also investigated.

  13. Seasonal Streamflow Reconstructions of the Choctawhatchee River (AL-USA)

    NASA Astrophysics Data System (ADS)

    Tootle, G. A.; Therrell, M.; Moat, T.; Meko, M.

    2015-12-01

    Tree ring samples were collected from Bald Cypress (Taxodium distichum) species in watersheds adjacent to the Choctawhatchee River (Alabama and Florida - USA). These samples were collected to update an existing tree ring proxy that was developed in the late 1980's and early 1990's (Stahle and Cleaveland, 1992, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution # FL001, Choctawhatchee River. NOAA/NCDC Paleoclimatology Program, Boulder, Colorado, USA). The motivation for updating the tree ring proxy was to determine if recent droughts identified in historic unimpaired Choctawhatchee River streamflow records were reflected in Bald Cypress tree ring growth. Historic streamflow from 1934 to 2013 was obtained for the USGS station at Newton, Alabama and one, five and ten-year droughts were identified and ranked. Many of the most severe droughts were identified in recent (~2000 to present) records (see Figure). Combining the new tree ring proxy with other regional proxies, seasonal streamflow was reconstructed for the Choctawhatchee River Newton, Alabama gage. The reconstructed streamflow allows water managers and planners to observe past wet and dry periods that may exceed magnitude, duration and/or severity of wet and dry periods in observed records.

  14. Multimedia screening of contaminants of emerging concern (CECS) in coastal urban watersheds in southern California (USA).

    PubMed

    Maruya, Keith A; Dodder, Nathan G; Sengupta, Ashmita; Smith, Deborah J; Lyons, J Michael; Heil, Ann T; Drewes, Jörg E

    2016-08-01

    To examine the occurrence and fate of contaminants of emerging concern (CECs) and inform future monitoring of CECs in coastal urban waterways, water, sediment, and fish tissue samples were collected and analyzed for a broad suite of pharmaceuticals and personal care products (PPCPs), commercial and/or household chemicals, current use pesticides, and hormones in an effluent-dominated river and multiple embayments in southern California (USA). In the Santa Clara River, which receives treated wastewater from several facilities, aqueous phase CECs were detectable at stations nearest discharges from municipal wastewater treatment plants but were attenuated downstream. Sucralose and the chlorinated phosphate flame retardants tris(1-chloro-2-propyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCPP), and tris(2-chloroethyl) phosphate (TCEP) were most abundant in water, with maximum concentrations of 35 μg/L, 3.3 μg/L, 1.4 μg/L, and 0.81 μg/L, respectively. Triclocarban, an antimicrobial agent in use for decades, was more prevalent in water than triclosan or nonylphenol. Maximum concentrations of bifenthrin, permethrin, polybrominated diphenyl ethers (PBDEs), and degradates of fipronil exceeded CEC-specific monitoring trigger levels recently established for freshwater and estuarine sediments by factors of 10 to 1000, respectively. Maximum fish tissue concentrations of PBDEs varied widely (370 ng/g and 7.0 ng/g for the Santa Clara River and coastal embayments, respectively), with most species exhibiting concentrations at the lower end of this range. These results suggest that continued monitoring of pyrethroids, PBDEs, and degradates of fipronil in sediment is warranted in these systems. In contrast, aqueous pharmaceutical concentrations in the Santa Clara River were not close to exceeding current monitoring trigger levels, suggesting a lower priority for targeted monitoring in this medium. Environ Toxicol Chem 2016;35:1986-1994. © 2016 SETAC.

  15. Pyrethroid and organophosphate pesticide-associated toxicity in two coastal watersheds (California, USA).

    PubMed

    Phillips, Bryn M; Anderson, Brian S; Hunt, John W; Siegler, Katie; Voorhees, Jennifer P; Tjeerdema, Ron S; McNeill, Katie

    2012-07-01

    Portions of the Santa Maria River and Oso Flaco Creek watersheds in central California, USA, are listed as impaired under section 303(d) of the Clean Water Act and require development of total maximum daily load (TMDL) allocations. These listings are for general pesticide contamination, but are largely based on historic monitoring of sediment and fish tissue samples that showed contamination by organochlorine pesticides. Recent studies have shown that toxicity in these watersheds is caused by organophosphate pesticides (water and sediment) and pyrethroid pesticides (sediment). The present study was designed to provide information on the temporal and spatial variability of toxicity associated with these pesticides to better inform the TMDL process. Ten stations were sampled in four study areas, one with urban influences, and the remaining in agriculture production areas. Water toxicity was assessed with the water flea Ceriodaphnia dubia, and sediment toxicity was assessed with the amphipod Hyalella azteca. Stations in the lower Santa Maria River had the highest incidence of toxicity, followed by stations influenced by urban inputs. Toxicity identification evaluations and chemical analysis demonstrated that the majority of the observed water toxicity was attributed to organophosphate pesticides, particularly chlorpyrifos, and that sediment toxicity was caused by mixtures of pyrethroid pesticides. The results demonstrate that both agriculture and urban land uses are contributing toxic concentrations of these pesticides to adjacent watersheds, and regional water quality regulators are now using this information to develop management objectives.

  16. Mollusk Survey in the Snake River, Hells Canyon, USA

    NASA Astrophysics Data System (ADS)

    Lester, G. T.; Falter, C. M.; Myers, R.; Richards, D. C.

    2005-05-01

    We conducted surveys and several experiments on mollusks, focusing on listed, rare, or sensitive species, in reservoirs, tributaries and main stem of the Snake River in Hells Canyon Idaho and Oregon, USA. The most important result of this study was documentation of the undescribed Taylorconcha sp. throughout the Snake River in Hells Canyon, although we did not find Taylorconcha sp. within 12 miles downstream of HCD, most likely due to river armoring. Additional results include: 1) the mollusk community was similar throughout the Snake River, except where the Salmon River entered the Snake River; 2) Taylorconcha sp. abundance was directly related to the abundance of Potamopyrgus antipodarum, a highly invasive snail, and with moderate abundance of detritus; 3) hand picking cobbles was more efficient than suction dredging for snails and limpets but not for bivalves, 4) the most abundant mollusks were two invasive species, P. antipodarum and Corbicula fluminea and; 5) only one live small colony of native Gonidea angulata (Unionidae) and no live Anodonta californiensis (Unionidae) were found in the survey.

  17. Integrated Science Investigations of the Salton Sea, California, USA

    NASA Astrophysics Data System (ADS)

    Barnum, D.

    2006-12-01

    The Salton Sea is the latest waterbody to be formed by Colorado River floodwaters within the Salton Trough. Over the past 100 years, floodwaters have been replaced by agricultural drainage water and municipal discharges so that today, most of the water reaching the Salton Sea is agricultural drainwater flowing down the New, Alamo and Whitewater Rivers. An evaporation of about 6 feet per year and inputs of more than 4 million tons of salt per year have increased salinity of the waters of the Salton Sea. The current salinity level of approximately 46 parts per thousand is about 25% more saline than ocean water. Diverting water from the Imperial Valley agricultural lands to urban Southern California, and anticipated loss of inflows from Mexico and increasing water conservation activities will result in less water flowing into the Salton Sea. A Restoration Program is being conducted to evaluate the effects of diminished inflows on the Salton Sea Ecosystem and recommend alternatives to avoid or minimize those effects. The Salton Sea has become increasingly important as habitat for migratory birds because of wetland losses. California has lost approximately 91% of interior wetland acreage from pre-settlement until the mid-1980's. The Salton Sea provides critical habitat linking distant wetlands of Pacific and Central Flyways to wintering habitats in Mexico and Central and South America. More than 400 species of birds have been observed in the Salton Sea Ecosystem. Large percentages of the populations for several bird species such as the endangered Yuma Clapper Rail, the Eared Grebe, Snowy Plover and American White Pelican utilize the Salton Sea. Approximately 20 species of conservation concern utilize the Salton Sea ecosystem. Fish-eating birds such as Great Blue Herons, California Brown Pelicans, Double-crested Cormorants and several species of egrets are highly dependent upon the fishery of the Salton Sea. The Salton Sea fishery is now primarily comprised of tilapia

  18. Mouth of the Colorado River, Gulf of California, Mexico

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The rugged peninsula and eastern coastal plain of northern Baja California are separated from the rest of Mexico by the Gulf of California (32.0N, 115.0W) where the Colorado River is building a delta. Most of the surface features seen here, including the sinuous salt bottomed tidal channel on the delta, have remained unchanged since the first orbital photos in 1961. Irrigated agricultural fields can be seen along the U. S. and Mexico border.

  19. Dispersal of river sediment in the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; Farnsworth, K.L.

    2009-01-01

    The rivers of Southern California deliver episodic pulses of water, sediment, nutrients, and pollutants to the region's coastal waters. Although river-sediment dispersal is observed in positively buoyant (hypopycnal) turbid plumes extending tens of kilometers from river mouths, very little of the river sediment is found in these plumes. Rather, river sediment settles quickly from hypopycnal plumes to the seabed, where transport is controlled by bottom-boundary layer processes, presumably including fluid-mud (hyperpycnal) gravity currents. Here we investigate the geographical patterns of river-sediment dispersal processes by examining suspended-sediment concentrations and loads and the continental shelf morphology offshore river mouths. Throughout Southern California, river sediment is discharged at concentrations adequately high to induce enhanced sediment settling, including negative buoyancy. The rivers draining the Western Transverse Range produce suspended-sediment concentrations that are orders of magnitude greater than those in the urbanized region and Peninsular Range to the south, largely due to differences in sediment yield. The majority of sediment discharge from the Santa Clara River and Calleguas Creek occurs above the theoretical negative buoyancy concentration (>40 g/l). These rivers also produce event sediment loading as great as the Eel River, where fluid-mud gravity currents are observed. The continental shelf of Southern California has variable morphology, which influences the ability to transport via gravity currents. Over half of the rivers examined are adjacent to shelf slopes greater than 0.01, which are adequately steep to sustain auto-suspending gravity currents across the shelf, and have little (<10 m) Holocene sediment accumulation. Shelf settings of the Ventura, Santa Clara, and Tijuana Rivers are very broad and low sloped (less than 0.004), which suggests that fluid-mud gravity currents could transport across these shelves, albeit slowly

  20. Atmospheric modeling of the July 1991 metam sodium spill into California`s Upper Sacramento River

    SciTech Connect

    Baskett, R.L.; Nasstrom, J.S.; Watkins, J.J. Jr.; Ellis, J.S.; Sullivan, T.J.

    1992-03-05

    The California Office of Emergency Services asked the Department of Energy`s Atmosphere Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory to determine the maximum credible air concentrations from a spill of metam sodium into California`s Upper Sacramento River. About 19,000 gallons of metam sodium herbicide were spilled into the river approximately 3 miles north of Dunsmuir, California, due to a tank-car derailment on the night of July 14, 1991. The herbicide moved in the river toward the northernmost finger of California`s largest reservoir, Lake Shasta, 45 miles to the south. As it flowed down the deep canyon, the water-soluble metam sodium decomposed into hydrogen sulfide and methylamine gases. Residents along the river were advised to evacuate the area, and a 50-mile stretch of Interstate 5 was temporarily closed. Response officials were also concerned that sunlight would readily evaporate the enlarged slick once it arrived into the still water of Lake Shasta on July 16. On July 15, ARAC used its three-dimensional emergency response modeling system to determine the highest instantaneous and 8-hour average air concentrations of toxic gas by- products over upper Lake Shasta. A quick response was possible using on-line topographic and geographic data bases in combination with forecasted southwestern surface winds. The worst-case calculation showed that the gases would be well below any health hazard.

  1. Freshwater mussel assemblage structure in a regulated river in the Lower Mississippi river Alluvial Basin, USA

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    2007-01-01

    1. This paper documents a diverse, reproducing freshwater mussel community (20 species) in Lower Lake } an impounded, regulated portion of the Little Tallahatchie River below Sardis Dam in Panola Co., Mississippi, USA. 2. Despite being regulated and impounded, the lake has a heterogeneous array of habitats that differ markedly in mussel community attributes...

  2. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    USGS Publications Warehouse

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  3. A Hydrological Model of the Mobile River Watershed, Southeastern USA

    NASA Astrophysics Data System (ADS)

    Alarcon, Vladimir J.; McAnally, William; Diaz-Ramirez, Jairo; Martin, James; Cartwright, John

    2009-08-01

    A hydrological model of the Mobile Bay watershed located in the northern Gulf of Mexico, (Alabama, USA) is presented. The modeling of hydrological processes is performed using the Hydrological Simulation Program Fortran (HSPF). The project region was divided into two sectors for simplifying the modeling task: an upland watershed (that included streams not draining directly to the Mobile Estuary), and several watersheds of selected streams that drain directly to the Mobile estuary (namely: Fish River, Magnolia River, and Chickasaw Creek). The Better Assessment Science Integrating Point & Nonpoint Sources (BASINS) GIS system was used to perform most of the geospatial operations, although ArcGis and ArcInfo were also used to complement geospatial processing that was not available in BASINS.

  4. Effects of Bank Revetment on Sacramento River, California

    Treesearch

    Michael D. Harvey; Chester C. Watson

    1989-01-01

    Twelve low radius of curvature bends, half of which were rivetted, were studied in the Butte Basin reach of Sacramento River, California, to determine whether bank revetment deleteriously affected salmonid habitat. At low discharge (128.6 cubic meters/s) it was demonstrated that revetment does not cause channel narrowing or deepening, nor does it prevent re-entrainment...

  5. DETECTING FOREST STRESS AND DECLINE IN RESPONSE TO INCREASING RIVER FLOW IN SOUTHWEST FLORIDA, USA

    EPA Science Inventory

    Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...

  6. DETECTING FOREST STRESS AND DECLINE IN RESPONSE TO INCREASING RIVER FLOW IN SOUTHWEST FLORIDA, USA

    EPA Science Inventory

    Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...

  7. Floodplain methylmercury biomagnification factor higher than that of the contiguous river (South River, Virginia USA).

    PubMed

    Newman, Michael C; Xu, Xiaoyu; Condon, Anne; Liang, Lian

    2011-10-01

    Mercury biomagnification on the South River floodplain (Virginia, USA) was modeled at two locations along a river reach previously modeled for methylmercury movement through the aquatic trophic web. This provided an opportunity to compare biomagnification in adjoining trophic webs. Like the aquatic modeling results, methylmercury-based models provided better prediction than those for total mercury. Total mercury Food Web Magnification Factors (FWMF, fold per trophic level) for the two locations were 4.9 and 9.5. Methylmercury FWMF for the floodplain locations were higher (9.3 and 25.1) than that of the adjacent river (4.6). Previous speculation was not resolved regarding whether the high mercury concentrations observed in floodplain birds was materially influenced by river prey consumption by riparian spiders and subsequent spider movement into the trophic web of the adjacent floodplains. Results were consistent with a gradual methylmercury concentration increase from contaminated floodplain soil, to arthropod prey, and finally, to avian predators.

  8. Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA

    USGS Publications Warehouse

    Domagalski, J.L.; Weston, D.P.; Zhang, M.; Hladik, M.

    2010-01-01

    Pyrethroid insecticide use in California, USA, is growing, and there is a need to understand the fate of these compounds in the environment. Concentrations and toxicity were assessed in streambed sediment of the San Joaquin Valley of California, one of the most productive agricultural regions of the United States. Concentrations were also measured in the suspended sediment associated with irrigation or storm-water runoff, and mass loads during storms were calculated. Western valley streambed sediments were frequently toxic to the amphipod, Hyalella azteca, with most of the toxicity attributable to bifenthrin and cyhalothrin. Up to 100% mortality was observed in some locations with concentrations of some pyrethroids up to 20 ng/g. The western San Joaquin Valley streams are mostly small watersheds with clay soils, and sediment-laden irrigation runoff transports pyrethroid insecticides throughout the growing season. In contrast, eastern tributaries and the San Joaquin River had low bed sediment concentrations (<1 ng/g) and little or no toxicity because of the preponderance of sandy soils and sediments. Bifenthrin, cyhalothrin, and permethrin were the most frequently detected pyrethroids in irrigation and storm water runoff. Esfenvalerate, fenpropathrin, and resmethrin were also detected. All sampled streams contributed to the insecticide load of the San Joaquin River during storms, but some compounds detected in the smaller creeks were not detected in the San Joaquin River. The two smallest streams, Ingram and Hospital Creeks, which had high sediment toxicity during the irrigation season, accounted for less than 5% of the total discharge of the San Joaquin River during storm conditions, and as a result their contribution to the pyrethroid mass load of the larger river was minimal. ?? 2010 SETAC.

  9. Modeling mercury biomagnification (South River, Virginia, USA) to inform river management decision making.

    PubMed

    Tom, Kyle R; Newman, Michael C; Schmerfeld, John

    2010-04-01

    Mercury trophic transfer in the South River (VA, USA) was modeled to guide river remediation decision making. Sixteen different biota types were collected at six sites within 23 river miles. Mercury biomagnification was modeled using a general biomagnification model based on delta(15)N and distance from the historic mercury release. Methylmercury trophic transfer was clearer than that for total Hg and, therefore, was used to build the predictive model (r(2) (prediction) = 0.76). The methylmercury biomagnification factors were similar among sites, but model intercept did increase with distance down river. Minimum Akaike's Information Criterion Estimation (MAICE) justified the incorporation of distance in the model. A model with a very similar biomagnification factor to the South River (95% confidence intervals [CI] = 0.38-0.52) was produced for a second contaminated Virginia river, the North Fork Holston River (95% CI = 0.41-0.55). Percent of total Hg that was methylmercury increased monotonically with trophic position. Trophic models based on delta(15)N were adequate for predicting changes in mercury concentrations in edible fish under different remediation scenarios.

  10. Meanderbelt Dynamics of the Sacramento River, California

    Treesearch

    Michael D. Harvey

    1989-01-01

    A 160 km-long reach of Sacramento River was studied with the objective of predicting future changes in channel planform and their effects on water-surface elevations. Planform data were used to develop regression relationships between bend radius of curvature (Rc) and both short-term (5 years) and long term (90 years) lateral migration rates (MR) and migration...

  11. Seroprevalence of Baylisascaris procyonis infection among humans, Santa Barbara County, California, USA, 2014–2016

    USGS Publications Warehouse

    Weinstein, Sara B.; Lake, Camille M.; Chastain, Holly M.; Fisk, David; Handali, Sukwan; Kahn, Philip L.; Montgomery, Susan P.; Wilkins, Patricia P.; Kuris, Armand M.; Lafferty, Kevin D.

    2017-01-01

    Baylisascaris procyonis (raccoon roundworm) infection is common in raccoons and can cause devastating pathology in other animals, including humans. Limited information is available on the frequency of asymptomatic human infection. We tested 150 adults from California, USA, for B. procyonis antibodies; 11 were seropositive, suggesting that subclinical infection does occur.

  12. Habitat Effects on Population Density and Movement of Insect Vectors of Xylella fastidiosa in California, USA

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a xylem-limited bacterium that causes disease in grapevines, almonds, citrus, pear, alfalfa, and many other economically important plants. In California, USA, the bacteria are transmitted by several species of leafhoppers including the cicadellids Draeculacephala minerva Ball a...

  13. Emissions calculated from particulate matter and gaseous ammonia measurements from a commercial dairy in California, USA

    USDA-ARS?s Scientific Manuscript database

    Emission rates and factors for particulate matter (PM) and gaseous ammonia (NH3) were estimated from measurements taken at a dairy in California, USA in June 2008. Concentration measurements were made using both point and remote sensors. Filter-based PM samplers and OPCs characterized aerodynamic an...

  14. A draft genome sequence of “Candidatus Liberibacter asiaticus” from California, USA

    USDA-ARS?s Scientific Manuscript database

    The draft genome sequence of “Candidatus Liberibacter asiaticus” strain HHCA, collected from a lemon tree in California, USA, is reported. The HHCA strain has a genome size of 1,118,244 bp, with G+C content of 36.6%. The HHCA genome encodes 1,191 predicted open reading frames and 51 RNA genes....

  15. Seroprevalence of Baylisascaris procyonis Infection among Humans, Santa Barbara County, California, USA, 2014-2016.

    PubMed

    Weinstein, Sara B; Lake, Camille M; Chastain, Holly M; Fisk, David; Handali, Sukwan; Kahn, Philip L; Montgomery, Susan P; Wilkins, Patricia P; Kuris, Armand M; Lafferty, Kevin D

    2017-08-01

    Baylisascaris procyonis (raccoon roundworm) infection is common in raccoons and can cause devastating pathology in other animals, including humans. Limited information is available on the frequency of asymptomatic human infection. We tested 150 adults from California, USA, for B. procyonis antibodies; 11 were seropositive, suggesting that subclinical infection does occur.

  16. Seroprevalence of Baylisascaris procyonis Infection among Humans, Santa Barbara County, California, USA, 2014–2016

    PubMed Central

    Lake, Camille M.; Chastain, Holly M.; Fisk, David; Handali, Sukwan; Kahn, Philip L.; Montgomery, Susan P.; Wilkins, Patricia P.; Kuris, Armand M.; Lafferty, Kevin D.

    2017-01-01

    Baylisascaris procyonis (raccoon roundworm) infection is common in raccoons and can cause devastating pathology in other animals, including humans. Limited information is available on the frequency of asymptomatic human infection. We tested 150 adults from California, USA, for B. procyonis antibodies; 11 were seropositive, suggesting that subclinical infection does occur. PMID:28726612

  17. Effect of logging on subsurface pipeflow and erosion: coastal northern California, USA

    Treesearch

    R. R. Ziemer

    1992-01-01

    Abstract - Three zero-order swales, each with a contributing drainage area of about 1 ha, were instrumented to measure pipeflows within the Caspar Creek Experimental Watershed in northwestern California, USA. After two winters of data collection, the second-growth forest on two of the swales was clearcut logged. The third swale remained as an uncut control. After...

  18. Description of the larvae of Nothotrichia shasta Harris and Armitage (Trichoptera: Hydroptilidae) from California, USA

    USDA-ARS?s Scientific Manuscript database

    Nothotrichia Flint is a small genus of infrequently collected microcaddisflies that are amphitropical in distribution. Previously only known from adult specimens, the first description and illustration of larvae in the genus, N. shasta from California, USA is presented. We provide characters to sepa...

  19. Holocene forest development and maintenance on different substrates in the Klamath mountains, northern California, USA

    Treesearch

    Christy E. Briles; Cathy Whitlock; Carl N. Skinner; Jerry Mohr

    2011-01-01

    The influence of substrate on long-term vegetation dynamics has received little attention, and yet nutrient-limited ecosystems have some of the highest levels of endemism in the world. The diverse geology of the Klamath Mountains of northern California (USA) allows examination of the long-term influence of edaphic constraints in subalpine forests through a comparison...

  20. Native fish population and habitat study, Santa Ana River, California

    USGS Publications Warehouse

    Wulff, Marissa L.; Brown, Larry R.; May, Jason

    2017-01-01

    Collection of additional data on the Santa Ana Sucker (Catostomus santaanae) and the Arroyo Chub (Gila orcutti) has been identified as a needed task to support development of the upper Santa Ana River Habitat Conservation Plan (HCP; http://www.uppersarhcp.com/). The ability to monitor population abundance and understanding the habitats used by species are important when developing such plans. The Santa Ana Sucker (Catostomus santaanae) is listed as a threatened species under federal legislation and is considered a species of special concern in California by the California Department of Fish and Wildlife (Moyle 2002). The Arroyo Chub (Gila orcutti) is considered a species of special concern in California by the California Department of Fish and Wildlife (Moyle 2002). Both species are present in the Santa Ana River watershed in the area being evaluated for establishment of the upper Santa Ana River Habitat Conservation Plan (HCP; http://www.uppersarhcp.com/). The HCP is a collaborative effort involving the water resource agencies of the Santa Ana River Watershed, the US Fish and Wildlife Service, California Department of Fish and Wildlife, and other government agencies and stakeholder organizations. The goals of the HCP are to: 1) enable the water resource agencies to provide a reliable water supply for human uses; 2) conserve and maintain natural rivers and streams that provide habitat for a diversity of unique and rare species; and 3) maintain recreational opportunities for activities such as hiking, fishing, and wildlife viewing, provided by the protection of these habitats and the river systems they depend on. The HCP will specify how species and their habitats will be protected and managed in the future and will provide the incidental take permits needed by the water resource agencies under the federal and State endangered species acts to maintain, operate, and improve their water resource infrastructure. Although the Santa Ana Sucker has been the subject of

  1. KINGS RIVER, RANCHERIA, AGNEW, AND OAT MOUNTAIN ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Nokleberg, Warren J.; Longwell, Warren D.

    1984-01-01

    On the basis of a mineral survey the Kings River, Rancheria, Agnew, and Oat Mountain Roadless Areas, California were found to have several areas with probable mineral-resource potential for tungsten in tactite, and one area with probable mineral-resource potential for lode gold in quartz veins. The extreme relief and inaccessibility in most of the roadless areas make exploration and mining very difficult. The geologic terrane precludes the occurrence of energy resources.

  2. Interpreting temporal variations in river response functions: an example from the Arkansas River, Kansas, USA

    NASA Astrophysics Data System (ADS)

    Brookfield, A. E.; Stotler, R. L.; Reboulet, E. C.

    2017-02-01

    Groundwater/surface-water interactions can play an important role in management of water quality and quantity, but the temporal and spatial variability of these interactions makes them difficult to incorporate into conceptual models. There are simple methods for identifying the presence of groundwater/surface-water interactions; however, identifying flow mechanisms and pathways can be challenging. More complex methods are available to better identify these mechanisms and pathways but are often too time consuming or costly. In this work, a simple method for interpreting and identifying flow mechanisms and sources using temporal variations of river response functions is presented. This approach is demonstrated using observations from two sites along the Arkansas River in Kansas, USA. A change in flow mechanisms between the rising and falling limbs of river hydrographs was identified, along with a second surface-water source to the aquifer, a finding that was validated with stable isotope analyses.

  3. Interpreting temporal variations in river response functions: an example from the Arkansas River, Kansas, USA

    NASA Astrophysics Data System (ADS)

    Brookfield, A. E.; Stotler, R. L.; Reboulet, E. C.

    2017-08-01

    Groundwater/surface-water interactions can play an important role in management of water quality and quantity, but the temporal and spatial variability of these interactions makes them difficult to incorporate into conceptual models. There are simple methods for identifying the presence of groundwater/surface-water interactions; however, identifying flow mechanisms and pathways can be challenging. More complex methods are available to better identify these mechanisms and pathways but are often too time consuming or costly. In this work, a simple method for interpreting and identifying flow mechanisms and sources using temporal variations of river response functions is presented. This approach is demonstrated using observations from two sites along the Arkansas River in Kansas, USA. A change in flow mechanisms between the rising and falling limbs of river hydrographs was identified, along with a second surface-water source to the aquifer, a finding that was validated with stable isotope analyses.

  4. River plume patterns and dynamics within the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; DiGiacomo, P.M.; Weisberg, S.B.; Nezlin, N.P.; Mengel, M.; Jones, B.H.; Ohlmann, J.C.; Washburn, L.; Terrill, E.J.; Farnsworth, K.L.

    2007-01-01

    Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.

  5. Postglacial vegetation and fire history, eastern Klamath Mountains, California, USA

    Treesearch

    Jerry A. Mohr; Cathy Whitlock; Carl N. Skinner

    2000-01-01

    Pollen and high-resolution charcoal data from Bluff Lake and Crater Lake, California, indicate simi lar changes in climate, vegetation and fire history during the last 15 500 years. Pollen data at Bluff Lake suggest that the vegetation betweenc. 15 500 and 13 100 cal. BP consisted of subalpine parkland with scattered Pinus...

  6. Linking hyporheic flow and nitrogen cycling near the Willamette River - A large river in Oregon, USA

    USGS Publications Warehouse

    Hinkle, S.R.; Duff, J.H.; Triska, F.J.; Laenen, A.; Gates, E.B.; Bencala, K.E.; Wentz, D.A.; Silva, S.R.

    2001-01-01

    Several approaches were used to characterize ground water/surface water interactions near the Willamette River - A large (ninth order) river in Oregon, USA. A series of potentiometric surface maps demonstrated the presence of highly dynamic hydraulic gradients between rivers and the adjacent aquifer. Hyporheic zone gradients extended on the order of hundreds of meters. River gains and losses at the river stretch scale (tens of kilometers) were consistent with fluxes implied by the potentiometric surface maps, and apparently reflect regional ground water/surface water interactions. Gains and losses of up to 5-10% of streamflow were observed at this scale. On the river reach scale (1-2 km), gains and losses on the order of 5% of streamflow were interpreted as representing primarily local hyporheic exchange. Isotopic and chemical data collected from shallow hyporheic zone wells demonstrated interaction between regional ground water and river water. The origin of sampled hyporheic zone water ranged from a mixture dominated by regional ground water to water containing 100% river water. The common assumption that ground and river water mix primarily in the river channel is not applicable in this system. Isotopic and chemical data also indicated that significant (nearly complete) vegetative nitrate uptake and/or nitrate reduction occurred in water from 4 of 12 hyporheic zone sites. In these cases, it was primarily nitrate transported to the hyporheic zone in regional ground water that was removed from solution. Isotopes of water and nitrate indicated that hyporheic zone water sampled at two sites was composed of water originating as river water and demonstrated that significant vegetative nitrate uptake and nitrate reduction occurred along these hyporheic zone flowpaths. Thus, the hyporheic zone may, in some instances, serve to remove nitrate from river water. Additional investigations with chemical tools and microbial enzyme assays were conducted at one hyporheic site. A

  7. Accelerating slip rates on the puente hills blind thrust fault system beneath metropolitan Los Angeles, California, USA

    USGS Publications Warehouse

    Bergen, Kristian J; Shaw, John H.; Leon, Lorraine A; Dolan, James F; Pratt, Thomas L.; Ponti, Daniel J.; Morrow, Eric; Barrera, Wendy; Rhodes, Edward J.; Murari, Madhav K.; Owen, Lewis

    2017-01-01

    Slip rates represent the average displacement across a fault over time and are essential to estimating earthquake recurrence for proba-bilistic seismic hazard assessments. We demonstrate that the slip rate on the western segment of the Puente Hills blind thrust fault system, which is beneath downtown Los Angeles, California (USA), has accel-erated from ~0.22 mm/yr in the late Pleistocene to ~1.33 mm/yr in the Holocene. Our analysis is based on syntectonic strata derived from the Los Angeles River, which has continuously buried a fold scarp above the blind thrust. Slip on the fault beneath our field site began during the late-middle Pleistocene and progressively increased into the Holocene. This increase in rate implies that the magnitudes and/or the frequency of earthquakes on this fault segment have increased over time. This challenges the characteristic earthquake model and presents an evolving and potentially increasing seismic hazard to metropolitan Los Angeles.

  8. Dynamic floodplain vegetation model development for the Kootenai River, USA.

    PubMed

    Benjankar, Rohan; Egger, Gregory; Jorde, Klaus; Goodwin, Peter; Glenn, Nancy F

    2011-12-01

    The Kootenai River floodplain in Idaho, USA, is nearly disconnected from its main channel due to levee construction and the operation of Libby Dam since 1972. The decreases in flood frequency and magnitude combined with the river modification have changed the physical processes and the dynamics of floodplain vegetation. This research describes the concept, methodologies and simulated results of the rule-based dynamic floodplain vegetation model "CASiMiR-vegetation" that is used to simulate the effect of hydrological alteration on vegetation dynamics. The vegetation dynamics are simulated based on existing theory but adapted to observed field data on the Kootenai River. The model simulates the changing vegetation patterns on an annual basis from an initial condition based on spatially distributed physical parameters such as shear stress, flood duration and height-over-base flow level. The model was calibrated and the robustness of the model was analyzed. The hydrodynamic (HD) models were used to simulate relevant physical processes representing historic, pre-dam, and post-dam conditions from different representative hydrographs. The general concept of the vegetation model is that a vegetation community will be recycled if the magnitude of a relevant physical parameter is greater than the threshold value for specific vegetation; otherwise, succession will take place toward maturation stage. The overall accuracy and agreement Kappa between simulated and field observed maps were low considering individual vegetation types in both calibration and validation areas. Overall accuracy (42% and 58%) and agreement between maps (0.18 and 0.27) increased notably when individual vegetation types were merged into vegetation phases in both calibration and validation areas, respectively. The area balance approach was used to analyze the proportion of area occupied by different vegetation phases in the simulated and observed map. The result showed the impact of the river

  9. Groundwater quality in the Colorado River basins, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  10. Water Control Manual Appendix 3 to Master Water Control Manual, San Joaquin River Basin, California

    DTIC Science & Technology

    1983-06-01

    95814, JUN 1983, or higher DoD authority. COE/CA/SD ltr dtd 22 Oct 2008 b ’ 87 NEW HOGAN DAM AND LAKE CALAVERAS RIVER, CALIFORNIA WATER...controlled technical data in accordance with DoDD 5230.25. NEW HOGAN DAM AND LAKE CALAVERAS RIVER, CALIFORNIA WATER CONTROL MANUAL APPENDIX III...HOGAN LAKE CALAVERAS RIVER, CALIFORNIA PERTINENT DATA General Main dam (rock & earth till) Drainage areas Mormon Slough at Bellota 470 sq mi

  11. Modeling potential tsunami river surge in Redwood Creek, California

    NASA Astrophysics Data System (ADS)

    Courtney, J. E.; Admire, A. R.; Nicolini, T.; Dengler, L. A.

    2013-12-01

    Significant destruction can be caused by tsunami penetration in estuaries and up river channels. In the 1964 tsunami on the west coast of North America, much of the resulting damage was caused by tsunami river bores penetrating miles inland. A HEC-RAS model is used in this study to look at the likely extent of inundation from both distant and near-field tsunamis in Redwood Creek on the north coast of California. The Redwood Creek drainage basin has been analyzed extensively for riverine flooding, levee stability and sediment transport. The unsteady flow model in HEC-RAS uses an implicit finite difference scheme to approximate solutions to the continuity and momentum equations. Two different scenarios are evaluated in this analysis: 1. tsunami propagation up a dry river channel; 2. tsunami propagation up a partially full river channel. Scenario 1 provides the baseline for propagation behavior without river flow influence. Scenario 2 uses the HEC-RAS model to determine steady state conditions in the channel for different flow rates to establish initial boundary conditions. The tsunami magnitude and flow conditions are altered to determine the effect on tsunami surge propagation. This is achieved by altering the downstream boundary conditions to simulate the influence of a tsunami surge propagation event. A sensitivity analysis is conducted on the model parameters. The study will assist in tsunami hazard modeling and mitigation in areas where tsunami surge propagation is a concern to communities located along rivers.

  12. Effects of groundwater development on uranium: Central Valley, California, USA.

    PubMed

    Jurgens, Bryant C; Fram, Miranda S; Belitz, Kenneth; Burow, Karen R; Landon, Matthew K

    2010-01-01

    Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco(2) concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world.

  13. Range and Frequency of Africanized Honey Bees in California (USA).

    PubMed

    Kono, Yoshiaki; Kohn, Joshua R

    2015-01-01

    Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California's central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee.

  14. Effects of Groundwater Development on Uranium: Central Valley, California, USA

    USGS Publications Warehouse

    Jurgens, Bryant C.; Fram, Miranda S.; Belitz, Kenneth; Burow, Karen R.; Landon, Matthew K.

    2009-01-01

    Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential longterm effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world.

  15. Coccidioidomycosis-associated hospitalizations, California, USA, 2000-2011.

    PubMed

    Sondermeyer, Gail; Lee, Lauren; Gilliss, Debra; Tabnak, Farzaneh; Vugia, Duc

    2013-10-01

    In the past decade, state-specific increases in the number of reported cases of coccidioidomycosis have been observed in areas of California and Arizona where the disease is endemic. Although most coccidioidomycosis is asymptomatic or mild, infection can lead to severe pulmonary or disseminated disease requiring hospitalization and costly disease management. To determine the epidemiology of cases and toll of coccidioidomycosis-associated hospitalizations in California, we reviewed hospital discharge data for 2000-2011. During this period, there were 25,217 coccidioidomycosis-associated hospitalizations for 15,747 patients and >$2 billion US in total hospital charges. Annual initial hospitalization rates increased from 2.3 initial hospitalizations/100,000 population in 2000 to 5.0 initial hospitalizations/100,000 population in 2011. During this period, initial hospitalization rates were higher for men than women, African Americans and Hispanics than Whites, and older persons than younger persons. In California, the increasing health- and cost-related effects of coccidioidomycosis-associated hospitalizations are a major public health challenge.

  16. Rates and risk factors for Coccidioidomycosis among prison inmates, California, USA, 2011.

    PubMed

    Wheeler, Charlotte; Lucas, Kimberley D; Mohle-Boetani, Janet C

    2015-01-01

    In California, coccidioidomycosis is a disease acquired by inhaling spores of Coccidioides immitis, a fungus found in certain arid regions, including the San Joaquin Valley, California, USA, where 8 state prisons are located. During 2011, we reviewed coccidioidomycosis rates at 2 of the prisons that consistently report >80% of California's inmate cases and determined inmate risk factors for primary, severe (defined as pulmonary coccidioidomycosis requiring >10 hospital days), and disseminated coccidioidomycosis (defined by hospital discharge International Classification of Disease, Ninth Revision code). Inmates of African American ethnicity who were >40 years of age were at significantly higher risk for primary coccidioidomycosis than their white counterparts (odds ratio = 2.0, 95% CI 1.5-2.8). Diabetes was a risk factor for severe pulmonary coccidioidomycosis, and black race a risk factor for disseminated disease. These findings contributed to a court decision mandating exclusion of black inmates and inmates with diabetes from the 2 California prisons with the highest rates of coccidioidomycosis.

  17. Effects of Groundwater Development on Uranium: Central Valley, California, USA

    USGS Publications Warehouse

    Jurgens, B.C.; Fram, M.S.; Belitz, K.; Burow, K.R.; Landon, M.K.

    2010-01-01

    Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world. Journal compilation ?? 2009 National Ground Water Association. No claim to original US government works.

  18. Analysis of chlorpyrifos agricultural use in regions of frequent surface water detections in California, USA.

    PubMed

    Zhang, Xuyang; Starner, Keith; Spurlock, Frank

    2012-11-01

    Chlorpyrifos is a common surface water contaminant in California, USA. We evaluated five years of chlorpyrifos use and surface water monitoring data in California's principal agricultural regions. Imperial County and three central coastal regions accounted for only 10% of chlorpyrifos statewide use, but displayed consistently high aquatic benchmark exceedances (13.2%-57.1%). In contrast, 90% of use occurred in Central Valley regions where only 0.6%-6.5% of samples exceeded aquatic benchmarks. Differences among regions are attributable to crop type, use intensity, irrigation practices and monthly application patterns. Application method did not appear to be a factor.

  19. Staphylococcal infections in children, California, USA, 1985-2009.

    PubMed

    Gutierrez, Kathleen; Halpern, Meira S; Sarnquist, Clea; Soni, Shila; Arroyo, Anna Chen; Maldonado, Yvonne

    2013-01-01

    We conducted a retrospective, observational, population-based study to investigate the effect of staphylococcal infections on the hospitalization of children in California during 1985-2009. Hospitalized children with staphylococcal infections were identified through the California Office of Statewide Health Planning and Development discharge database. Infections were categorized as community onset, community onset health care-associated, or hospital onset. Infection incidence was calculated relative to all children and to those hospitalized in acute-care facilities. A total of 140,265 records were analyzed. Overall incidence increased from 49/100,000 population in 1985 to a peak of 83/100,000 in 2006 and dropped to 73/100,000 in 2009. Staphylococcal infections were associated with longer hospital stays and higher risk for death relative to all-cause hospitalizations of children. The number of methicillin-resistant Staphylococcus aureus infections increased, and the number of methicillin-susceptible S. aureus infections remained unchanged. Children <3 years of age, Blacks, and those without private insurance were at higher risk for hospitalization.

  20. Range and Frequency of Africanized Honey Bees in California (USA)

    PubMed Central

    Kono, Yoshiaki; Kohn, Joshua R.

    2015-01-01

    Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California’s central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee. PMID:26361047

  1. Temporal and Spatial Variation of Atmospherically Deposited Organic Contaminants at High Elevation in Yosemite National Park, California, USA

    EPA Science Inventory

    Atmospherically deposited organic contaminants in the Sierra Nevada mountains of California, USA, have exceeded some thresholds of concern, but the spatial and temporal distributions of contaminants in the mountains are not well known. The present study evaluated (1) whether the...

  2. Temporal and Spatial Variation of Atmospherically Deposited Organic Contaminants at High Elevation in Yosemite National Park, California, USA

    EPA Science Inventory

    Atmospherically deposited organic contaminants in the Sierra Nevada mountains of California, USA, have exceeded some thresholds of concern, but the spatial and temporal distributions of contaminants in the mountains are not well known. The present study evaluated (1) whether the...

  3. Groundwater quality in the Santa Clara River Valley, California

    USGS Publications Warehouse

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  4. Bouse Formation in the Bristol basin near Amboy, California, USA

    USGS Publications Warehouse

    Miller, David M.; Reynolds, Robert E.; Bright, Jordan E.; Starratt, Scott W.

    2014-01-01

    Limestone beds underlain and overlain by alluvial fan conglomerate near Amboy, California, are very similar in many respects to parts of the Bouse Formation, suggesting that an arm of the Pliocene Bouse water body extended across a wide part of the southern Mojave Desert. The deposits are north of the town of Amboy at and below an elevation of 290 m, along the northern piedmont of the Bristol “dry” Lake basin. The Amboy outcrops contain the Lawlor Tuff (4.83 Ma), which is also found in an outcrop of the Bouse Formation in the Blythe basin near Buzzards Peak in the Chocolate Mountains, 180 km southeast of Amboy. Bouse exposures near Amboy are ∼3.4 m thick, white, distinctly bedded, with limestone and calcareous sandstone as well as stromatolite mounds; we interpret these as nearshore deposits. The Bouse at Amboy contains ostracodes, diatoms, and mollusks that indicate saline lake or estuarine environments with an admixture of fresh-water forms. Along with wading bird tracks and a spine from a marine fish, these fossils suggest that the deposits formed in saline waters near a fresh-water source such as a perennial stream. Beds of the outcrop dip southward and are 113 m above the surface of Bristol Playa, where similar age sediments are buried 270+ m deep, indicating significant faulting and vertical tectonics in this part of the Eastern California Shear Zone during the past 5 m.y. Confirmation of the Bouse Formation at Amboy strengthens previous assignments to the Bouse Formation for mudstones in driller logs at Danby “dry” Lake, California, and suggests that areally extensive arms of the Bouse water body were west of the Blythe basin. The Bristol basin arm of the lower Bouse basin probably was restricted from the main water body by narrow passages, but Bouse sediment there is similar to that in the Blythe basin, suggesting generally similar water chemistry and environmental conditions. Examining the degree to which Bouse deposits in the western arms

  5. Pesticides in amphibian habitats of Central and Northern California, USA

    USGS Publications Warehouse

    Fellers, Gary M.; Sparling, W; McConnell, Laura; Kleeman, Patrick M.; Drakeford, Leticia

    2013-01-01

    Previous studies have indicated that toxicity from pesticide exposure may be contributing to amphibian declines in California and that atmospheric deposition could be a primary pathway for pesticides to enter amphibian habitats. We report on a survey of California wetlands sampled along transects associated with Lassen Volcanic National Park, Lake Tahoe, Yosemite National Park, and Sequoia National Park. Each transect ran from the Pacific coast to the Cascades or Sierra Nevada mountains. Pacific chorus frogs (Pseudacris regilla), water, and sediment were collected from wetlands in 2001 and 2002. Twenty-three pesticides were found in frog, water, or sediment samples. Six contaminants including trifluralin, α-endosulfan, chlordanes, and trans-nonachlor were found in adult P. regilla. Seventeen contaminants were found in sediments, including endosulfan sulfate, chlordanes, 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene (4,4′-DDE), and chlorpyrifos. The mean number of chemicals detected per pond in sediments was 2.4 (2.5, standard deviation). In water, 17 chemicals were detected, with β-endosulfan being present in almost all samples. Trifluralin, chlordanes, and chlorpyrifos were the next most common. The mean number of chemicals in water per pond was 7.8 (2.9). With the possible exception of chlorpyrifos oxon in sediments and total endosulfans, none of the contaminants exceeded known lethal or sublethal concentrations in P. regilla tissue. Endosulfans, chlorpyrifos, and trifluralin were associated with historic and present day population status of amphibians. Cholinesterase, an essential neurological enzyme that can be depressed by certain pesticides, was reduced in tadpoles from areas with the greatest population declines.

  6. Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA

    USGS Publications Warehouse

    Hoover, Daniel J.; Odigie, Kingsley; Swarzenski, Peter W.; Barnard, Patrick

    2017-01-01

    Study regionThe study region spans coastal California, USA, and focuses on three primary sites: Arcata, Stinson Beach, and Malibu Lagoon.Study focus1 m and 2 m sea-level rise (SLR) projections were used to assess vulnerability to SLR-driven groundwater emergence and shoaling at select low-lying, coastal sites in California. Separate and combined inundation scenarios for SLR and groundwater emergence were developed using digital elevation models of study site topography and groundwater surfaces constructed from well data or published groundwater level contours.New hydrological insights for the regionSLR impacts are a serious concern in coastal California which has a long (∼1800 km) and populous coastline. Information on the possible importance of SLR-driven groundwater inundation in California is limited. In this study, the potential for SLR-driven groundwater inundation at three sites (Arcata, Stinson Beach, and Malibu Lagoon) was investigated under 1 m and 2 m SLR scenarios. These sites provide insight into the vulnerability of Northern California coastal plains, coastal developments built on beach sand or sand spits, and developed areas around coastal lagoons associated with seasonal streams and berms. Northern California coastal plains with abundant shallow groundwater likely will see significant and widespread groundwater emergence, while impacts along the much drier central and southern California coast may be less severe due to the absence of shallow groundwater in many areas. Vulnerability analysis is hampered by the lack of data on shallow coastal aquifers, which commonly are not studied because they are not suitable for domestic or agricultural use. Shallow saline aquifers may be present in many areas along coastal California, which would dramatically increase vulnerability to SLR-driven groundwater emergence and shoaling. Improved understanding of the extent and response of California coastal aquifers to SLR will help in preparing for mitigation

  7. Status and habitat use of the California black rail in the Southwestern USA

    USGS Publications Warehouse

    Conway, C.J.; Sulzman, C.

    2007-01-01

    California black rails (Laterallus jamaicensis coturniculus) occur in two disjunct regions: the southwestern USA (western Arizona and southern California) and northern California (Sacramento Valley and the San Francisco Bay area). We examined current status of black rails in the southwestern USA by repeating survey efforts first conducted in 1973-1974 and again in 1989, and also examined wetland plant species associated with black rail distribution and abundance. We detected 136 black rails in Arizona and southern California. Black rail numbers detected during past survey efforts were much higher than the numbers detected during our more intensive survey effort, and hence, populations have obviously declined. Plants that were more common at points with black rails included common threesquare (Schoenoplectus pungens), arrowweed (Pluchea sericea), Fremont cottonwood (Populus fremontii), seepwillow (Baccharis salicifolia), and mixed shrubs, with common threesquare showing the strongest association with black rail presence. Plant species and non-vegetative communities that were less common at points with black rails included California bulrush (Schoenoplectus californicus), southern cattail (Typha domingensis), upland vegetation, and open water. Black rails were often present at sites that had some saltcedar (Tamarix ramosissima), but were rarely detected in areas dominated by saltcedar. We recommend that a standardized black rail survey effort be repeated annually to obtain estimates of black rail population trends. Management of existing emergent marshes with black rails is needed to maintain stands of common threesquare in early successional stages. Moreover, wetland restoration efforts that produce diverse wetland vegetation including common threesquare should be implemented to ensure that black rail populations persist in the southwestern USA. ?? 2007, The Society of Wetland Scientists.

  8. UHF RiverSonde observations of water surface velocity at Threemile Slough, California

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Ruhl, C.A.

    2005-01-01

    A UHF RiverSonde system, operating near 350 MHz, has been in operation at Threemile Slough in central California, USA since September 2004. The water in the slough is dominated by tidal effects, with flow reversals four times a day and a peak velocity of about 0.8 m/s in each direction. Water level and water velocity are continually measured by the U. S. Geological Survey at the experiment site. The velocity is measured every 15 minutes by an ultrasonic velocity meter (UVM) which determines the water velocity from two-way acoustic propagation time-difference measurements made across the channel. The RiverSonde also measures surface velocity every 15 minutes using radar resonant backscatter techniques. Velocity and water level data are retrieved through a radio data link and a wideband internet connection. Over a period of several months, the radar-derived mean surface velocity has been very highly correlated with the UVM index velocity several meters below the surface, with a coefficient of determination R2 of 0.976 and an RMS difference of less than 10 cm/s. The wind has a small but measurable effect on the velocities measured by both instruments. In addition to the mean surface velocity across the channel, the RiverSonde system provides an estimate of the cross-channel variation of the surface velocity. ?? 2005 IEEE.

  9. Water-quality assessment of the American River, California

    USGS Publications Warehouse

    Shulters, M.V.

    1982-01-01

    Based on an analysis of water-quality data from more than 168 sites, the American River was found to be of overall good quality and suitable for all beneficial uses specified by the State of California, even though its natural condition has been altered by man 's activities in the basin. Time trend analyses indicate an increase in specific conductance (dissolved solids), hardness, and alkalinity over the past 20 years in the lower American River near Sacramento downstream from treated effluent and urban runoff sources. Most violations of specific water quality objectives for the basin have occurred in this segment. Water-quality conditions in the segment are expected to improve in 1982 when sewage treatment facility discharges will be discontinued. Potential water-quality problems in the upper American River basin could result from recreational overuse, improper land-use or poorly managed mining operations. Recreational overuse and increased urban runoff are the principal threats to water quality in the lower American River. Proposed monitoring activities include low-flow investigations on the lower American to measure diurnal variations in water-quality characteristics and studies in the uppper basin to determine the impact of increasing recreation and development as well as the effects of mine discharge. (USGS)

  10. Pesticides and amphibian population declines in California, USA

    USGS Publications Warehouse

    Sparling, Donald W.; Fellers, Gary M.; McConnell, Laura L.

    2001-01-01

    Several species of anuran amphibians have undergone drastic population declines in the western United States over the last 10 to 15 years. In California, the most severe declines are in the Sierra Mountains east of the Central Valley and downwind of the intensely agricultural San Joaquin Valley. In contrast, coastal and more northern populations across from the less agrarian Sacramento Valley are stable or declining less precipitously. In this article, we provide evidence that pesticides are instrumental in declines of these species. Using Hyla regilla as a sentinel species, we found that cholinesterase (ChE) activity in tadpoles was depressed in mountainous areas east of the Central Valley compared with sites along the coast or north of the Valley. Cholinesterase was also lower in areas where ranid population status was poor or moderate compared with areas with good ranid status. Up to 50% of the sampled population in areas with reduced ChE had detectable organophosphorus residues, with concentrations as high as 190 ppb wet weight. In addition, up to 86% of some populations had measurable endosulfan concentrations and 40% had detectable 4,4'- dichlorodiphenyldichloroethylene, 4,4'-DDT, and 2,4'-DDT residues.

  11. Spatial Distribution of Lead in Sacramento, California, USA

    PubMed Central

    Solt, Michael J.; Deocampo, Daniel M.; Norris, Michelle

    2015-01-01

    Chronic exposure to lead remains a health concern in many urban areas; Sacramento, California is one example, with state surveillance data showing nearly 3% of screened children reported with blood lead levels over 4.5 μg/dL in 2009. To investigate the environmental exposure, 91 soil samples were collected and analyzed by ICP-AES and ICP-MS for 14 elements. An additional 28 samples were collected from areas of focus and analyzed by hand-held X-ray fluorescence spectrometry for Pb and Zn. Analysis of the metals data revealed non-normal distributions and positive skewness, consistent with anthropogenic input. In addition, high correlation coefficients (≥0.75) of metal concentrations in Cd-Pb, Cd-Zn, Pb-Zn, and Sb-Sn pairs suggest similarities in the input mechanisms. Semivariograms generated from Pb and associated metals reveal these metals to exhibit spatial correlation. A prediction map of lead concentrations in soil was generated by ordinary kriging, showing elevated concentrations in soil located in the central, older area of Sacramento where historic traffic density and industrial activity have been historically concentrated. XRF analysis of Pb and Zn from additional samples verifies elevated concentrations in the central areas of Sacramento as predicted. PMID:25789455

  12. Random forest models for the probable biological condition of streams and rivers in the USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a probability based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...

  13. Spatial prediction models for the probable biological condition of streams and rivers in the USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a probability-based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...

  14. Random forest models for the probable biological condition of streams and rivers in the USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a probability based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...

  15. Spatial prediction models for the probable biological condition of streams and rivers in the USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a probability-based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...

  16. Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California

    USGS Publications Warehouse

    Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.

    2017-09-27

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies. 

  17. Flood Deposition Analysis of Northern California's Eel River (Flood- DANCER)

    NASA Astrophysics Data System (ADS)

    Ahlgren, S.; Bauman, P. D.; Dillon, R. J.; Gallagher, N.; Jamison, M. E.; King, A.; Lee, J.; Siwicke, K. A.; Harris, C. K.; Wheatcroft, R. A.; Borgeld, J. C.; Goldthwait, S. A.

    2006-12-01

    Characterizing and quantifying the fate of river born sediment is critical to our understanding of sediment supply and erosion in impacted coastal areas. Strata deposited in coastal zones provide an invaluable record of recent and historical environmental events. The Eel River in northern California has one of the highest sediment yields of any North American river and has preserved evidence of the impact of recent flood events. Previous research has documented sediment deposits associated with Eel River flood events in January 1995, March 1995, and January 1997. These deposits were found north of the river mouth on the mid shelf in water depths from 50-100 m. Sediment strata were up to 5-10 cm thick and were composed of fine to very fine grained silts and clays. Until recently, no model had been able to correctly reproduce the sediment deposits associated with these floods. In 2005, Harris et al. developed a model that accurately represents the volume and location of the flood deposit associated with the January 1997 event. However, rigorous assessment of the predictive capability of this model requires that a new flood of the Eel River be used as a test case. During the winter of 2005-06 the Eel River rose above flood stage reaching discharge similar to the flood of January 1995 which resulted in flood sedimentation on the Eel River shelf. A flood-related deposit 1-5 cm thick was found in water depths of 60-90 m approximately 20-35 km north of the river mouth. Flood deposits were recognized in box cores collected in the months following the flood. As in previously studied events, flood- related strata near the sediment surface were recognized in core x-radiographs, resistivity and porosity profiles, and were composed of fine to very fine grained silts and clays. In addition, surface flood sediments were associated with lower concentrations of benthic foraminifera compared with deeper sediments. The January 2006 flood deposit was similar in thickness to the

  18. Establishment Failure in Biological Invasions: A Case History of Littorina littorea in California, USA

    PubMed Central

    Chang, Andrew L.; Blakeslee, April M. H.; Miller, A. Whitman; Ruiz, Gregory M.

    2011-01-01

    Background The early stages of biological invasions are rarely observed, but can provide significant insight into the invasion process as well as the influence vectors have on invasion success or failure. Methodology/Principal Findings We characterized three newly discovered populations of an introduced gastropod, Littorina littorea (Linné, 1758), in California, USA, comparing them to potential source populations in native Europe and the North American East Coast, where the snail is also introduced. Demographic surveys were used to assess spatial distribution and sizes of the snail in San Francisco and Anaheim Bays, California. Mitochondrial DNA was sequenced and compared among these nascent populations, and various populations from the North American East Coast and Europe, to characterize the California populations and ascertain their likely source. Demographic and genetic data were considered together to deduce likely vectors for the California populations. We found that the three large California L. littorea populations contained only adult snails and had unexpectedly high genetic diversity rather than showing an extreme bottleneck as typically expected in recent introductions. Haplotype diversity in Californian populations was significantly reduced compared to European populations, but not compared to East Coast populations. Genetic analyses clearly suggested the East Coast as the source region for the California introductions. Conclusions and Significance The California L. littorea populations were at an early, non-established phase of invasion with no evidence of recruitment. The live seafood trade is the most likely invasion vector for these populations, as it preferentially transports large numbers of adult L. littorea, matching the demographic structure of the introduced California L. littorea populations. Our results highlight continued operation of live seafood trade vectors and the influence of vectors on the demographic and genetic structure of the

  19. Establishment failure in biological invasions: a case history of Littorina littorea in California, USA.

    PubMed

    Chang, Andrew L; Blakeslee, April M H; Miller, A Whitman; Ruiz, Gregory M

    2011-01-10

    The early stages of biological invasions are rarely observed, but can provide significant insight into the invasion process as well as the influence vectors have on invasion success or failure. We characterized three newly discovered populations of an introduced gastropod, Littorina littorea (Linné, 1758), in California, USA, comparing them to potential source populations in native Europe and the North American East Coast, where the snail is also introduced. Demographic surveys were used to assess spatial distribution and sizes of the snail in San Francisco and Anaheim Bays, California. Mitochondrial DNA was sequenced and compared among these nascent populations, and various populations from the North American East Coast and Europe, to characterize the California populations and ascertain their likely source. Demographic and genetic data were considered together to deduce likely vectors for the California populations. We found that the three large California L. littorea populations contained only adult snails and had unexpectedly high genetic diversity rather than showing an extreme bottleneck as typically expected in recent introductions. Haplotype diversity in Californian populations was significantly reduced compared to European populations, but not compared to East Coast populations. Genetic analyses clearly suggested the East Coast as the source region for the California introductions. The California L. littorea populations were at an early, non-established phase of invasion with no evidence of recruitment. The live seafood trade is the most likely invasion vector for these populations, as it preferentially transports large numbers of adult L. littorea, matching the demographic structure of the introduced California L. littorea populations. Our results highlight continued operation of live seafood trade vectors and the influence of vectors on the demographic and genetic structure of the resulting populations, especially early stages of the invasion process.

  20. Ecosystem Services of Rivers: The Don River (Russian Federation) and the Roanoke River (USA)

    EPA Science Inventory

    The concept of ecosystem services recognizes the services, and benefits, provided to people by ecosystems. River systems provide many services to people, including freshwater provisioning, carbon storage, fisheries, recreation, transportation, and biodiversity. Here, we review th...

  1. Ecosystem Services of Rivers: The Don River (Russian Federation) and the Roanoke River (USA)

    EPA Science Inventory

    The concept of ecosystem services recognizes the services, and benefits, provided to people by ecosystems. River systems provide many services to people, including freshwater provisioning, carbon storage, fisheries, recreation, transportation, and biodiversity. Here, we review th...

  2. Diatoms in Historical Tsunami Deposits, Northern California, USA

    NASA Astrophysics Data System (ADS)

    Hemphill-Haley, E.; Loofbourrow, C.

    2013-12-01

    A fundamental challenge in using microfossils to differentiate paleotsunami deposits from those of other sources (storms, floods) is to identify characteristics that favor one mode of deposition over the other. The silt- to sand-size siliceous hard parts (valves) of diatoms are commonly found as transported particles in tsunami deposits, but logically, may also be found in other types of coastal deposits of the same grain size. To date, observations on diatom preservation and provenance have been invoked as supporting evidence for paleotsunami deposits. These observations can be tested and refined by detailed observations of diatom assemblages in recent, well-documented tsunami deposits. As a component of the U.S. Geological Survey Science Application for Risk Reduction (SAFRR) project, diatoms were examined in two historical tsunami deposits on the central and northern California coast: the 1946 deposit on the north end of Half Moon Bay (37.5°N) and the 1964 deposit about 10 km south of Crescent City (41.7°N). Both tsunamis were the result of distant-source events across the Pacific Ocean from California: the M 8.1 Eastern Aleutians Islands earthquake (1946) and the M 9.2 Alaska earthquake (1964). At both localities tsunami inundation was documented by eyewitness accounts. The deposits are now preserved in the shallow subsurface as ~1-10 cm thick layers of silt and sand intercalated in peaty marsh or clay-rich lagoon deposits. These historical tsunami deposits are particularly useful for documenting characteristics of entrained diatom assemblages for comparison to paleotsunami deposits. First, the deposits consist of mostly fine sand and silt, and therefore are an appropriate particle size for containing diatoms. Second, although they are recent enough to have been documented by eyewitness accounts, they are also old enough to have been altered by natural geological processes (e.g., burial, compaction, taphonomic affects on diatom valves) as would be found in

  3. Processed meats and risk of childhood leukemia (California, USA).

    PubMed

    Peters, J M; Preston-Martin, S; London, S J; Bowman, J D; Buckley, J D; Thomas, D C

    1994-03-01

    The relation between the intake of certain food items thought to be precursors or inhibitors of N-nitroso compounds (NOC) and risk of leukemia was investigated in a case-control study among children from birth to age 10 years in Los Angeles County, California (United States). Cases were ascertained through a population-based tumor registry from 1980 to 1987. Controls were drawn from friends and by random-digit dialing. Interviews were obtained from 232 cases and 232 controls. Food items of principal interest were: breakfast meats (bacon, sausage, ham); luncheon meats (salami, pastrami, lunch meat, corned beef, bologna); hot dogs; oranges and orange juice; and grapefruit and grapefruit juice. We also asked about intake of apples and apple juice, regular and charcoal broiled meats, milk, coffee, and coke or cola drinks. Usual consumption frequencies were determined for both parents and the child. When the risks were adjusted for each other and other risk factors, the only persistent significant associations were for children's intake of hot dogs (odds ratio [OR] = 9.5, 95 percent confidence interval [CI] = 1.6-57.6 for 12 or more hot dogs per month, trend P = 0.01), and fathers' intake of hot dogs (OR = 11.0, CI = 1.2-98.7 for highest intake category, trend P = 0.01). There was no evidence that fruit intake provided protection. While these results are compatible with the experimental animal literature and the hypothesis that human NOC intake is associated with leukemia risk, given potential biases in the data, further study of this hypothesis with more focused and comprehensive epidemiologic studies is warranted.

  4. Chlorinated hydrocarbons in flatfishes from the Southern California, USA, Bight

    SciTech Connect

    Schiff, K.; Allen, M.J.

    2000-06-01

    Although inputs of chlorinated hydrocarbon compounds to the Southern California Bight (SCB) are presently low, historical deposits represent a source of bioaccumulation potential to sediment-associated fauna. To assess this bioaccumulation potential, 14 chlorinated hydrocarbon classes were measured in livers of three species of flatfish collected from 63 randomly selected sites on the coastal shelf between Point Conception and the United States-Mexico international border. Tissue contamination was widespread throughout the SCB, but was limited to just two chlorinated hydrocarbon classes. Virtually 100% of Pacific sanddab (Citharichthys sordidus) and longfin sanddab (Citharichthys xanthostigma) populations were estimated to be contaminated with dichlorodiphenyltrichloroethane (total DDT = sum of o.p{prime} and p,p{prime} isomers of DDT + dichlorodiphenyldichloroethylene [DDE] + dichlorodiphenyldichloroethane [DDD]) and/or polychlorinated biphenyls (total PCBs). Total DDT also contaminated the majority (64%) of the Dover sole (Microstomus pacificus) population in the SCB. Total PCB measurements in tissues of SCB flatfish were dominated by 12 congeners (52, 66, 87, 101, 105, 118, 128, 138, 153, 170, 180, and 187), which averaged 95% of the combined mass of the 27 congeners analyzed. Sediment concentrations accounted for most of the variability observed in tissue concentrations for 8 of these 12 congeners and total PCBs. Normalized sediment concentrations were also significantly correlated to normalized tissue concentrations for total DDT and p,p{prime}-DDE. Tissue concentrations measured in this study from reference areas of the SCB were compared to tissue concentrations measured form reference areas in studies conducted in 1977 and 1985. Total DDT and total PCB liver concentrations were found to have decreased one to two orders of magnitude in pacific and longfin sanddabs between 1985 and 1994. Total DDT and total PCB liver concentrations decreased 5- to 35-fold in

  5. Broadband seismological observations at The Geysers geothermal area, California, USA

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Gritto, Roland; Haberland, Christian; Hartline, Craig

    2013-04-01

    The understanding of structure and dynamics of geothermal reservoirs for geothermal exploration and sustainable use of the resource requires an assessment using a multidisciplinary approach. The Geysers geothermal reservoir in northern California is the largest producing geothermal field in the world and has been exploited for over 50 years. Among other geophysical surveys, numerous seismic studies have been conducted based on data acquired by the LBNL seismic monitoring network over the past 20 years. However, thus far, no continuous seismic data have been recorded at the Geysers, which prevents detailed continuous monitoring in relation to reservoir operation. In February 2012, we deployed a temporary network of 33 broadband seismic stations, including Guralp and Trillium sensors (0.008 - 100 Hz). At present the network is still in operation. Twenty-six stations are located within the perimeter of the geothermal reservoir, while 7 are located on a perimeter around the reservoir at greater distances. While the recordings of larger magnitude events (M>3.5) may be saturated on the local stations, the outer stations are intended to record these events without interruption. We present analyses of a larger magnitude event (M~3.5) as well as correlations of continuous observations to geothermal operations. Thanks to the high density of instrumentation and the high dynamic range of the broadband sensors, smaller events (microseismicity) can be detected more easily, allowing for better precision in locations and more accuracy in the determination of magnitudes. The increased dynamic range offers an important improvement in the analysis of seismicity as the majority of events at The Geysers have magnitudes of M<2.0.

  6. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    NASA Astrophysics Data System (ADS)

    Draut, Amy E.

    2012-06-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble-Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial-aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  7. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    USGS Publications Warehouse

    Draut, Amy E.

    2012-01-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble–Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial–aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  8. California sea lions (Zalophus californianus californianus) have lower chlorinated hydrocarbon contents in northern Baja California, México, than in California, USA.

    PubMed

    Del Toro, Ligeia; Heckel, Gisela; Camacho-Ibar, Víctor F; Schramm, Yolanda

    2006-07-01

    Chlorinated hydrocarbons (CHs) were determined in blubber samples of 18 California sea lions (Zalophus californianus californianus) that stranded dead along Todos Santos Bay, Ensenada, Baja California, México, January 2000-November 2001. Summation operatorDDTs were the dominant group (geometric mean 3.8 microg/g lipid weight), followed by polychlorinated biphenyls ( summation operatorPCBs, 2.96 microg/g), chlordanes (0.12 microg/g) and hexachlorocyclohexanes (0.06 microg/g). The summation operatorDDTs/ summation operatorPCBs ratio was 1.3. We found CH levels more than one order of magnitude lower than those reported for California sea lion samples collected along the California coast, USA, during the same period as our study. This sharp north-south gradient suggests that Z. californianus stranded in Ensenada (most of them males) would probably have foraged during the summer near rookeries 500-1000 km south of Ensenada and the rest of the year migrate northwards, foraging along the Baja California peninsula, including Ensenada, and probably farther north.

  9. Earthquakes, Tsunamis, and Storms Recorded at Crescent City, California, USA

    NASA Astrophysics Data System (ADS)

    Kelsey, H. M.; Hemphill-Haley, E.; Loofbourrow, C.; Caldwell, D. J.; Graehl, N. A.; Robinson, M.

    2015-12-01

    Stratigraphic evidence for coseismic land-level change, tsunamis, and storms is found beneath freshwater marshes in coastal northern California at Crescent City (CC). Previous studies at CC have focused on tsunamis, including the 1964 farfield tsunami from the Alaska earthquake, and nearfield tsunamis from earthquakes in the Cascadia subduction zone (CSZ). In addition to new data on tsunami inundation and coseismic land-level change, evidence for deposition by large storms shows another significant coastal hazard for the area. Our results are from three freshwater wetland sites at CC: Marhoffer Creek, Elk Creek, and Sand Mine. Marhoffer Creek marsh is adjacent to the coast about 5 km north of CC, and at an elevation of > 3.4 m above NAVD88 (>1 m above highest tides). C-14 and diatom data show it has been a freshwater wetland for at least the past 1,800 yr. We identify tsunami deposits associated with two CSZ earthquakes (1700 C.E. and 1,650 yr BP) at Marhoffer Creek. Diatom data show that coseismic subsidence accompanied the 1700 C.E. earthquake; the tsunami deposit from that event extends 550 m inland from the beach. Cs-137 data show that thin sand layers about 70 m from the beach and 20 cm below the marsh surface were deposited by the farfield tsunami in 1964. Intercalated between the 1964 and 1700 tsunami deposits, and extending as far inland as the 1964 deposit, are storm deposits consisting of discontinuous layers of sand and detrital peat. The deposits are found in an interval about 0.5 m thick, and are perched at elevations above the highest winter tides. We surmise that at least some of these deposits record the catastrophic ARkStorm of 1861-1862. At Elk Creek wetland, diatom data confirm coseismic subsidence in 1700 in addition to tsunami deposition. The 1964 tsunami deposit is thin and found only proximal to the Elk Creek channel. At Sand Mine marsh, association with coseismic subsidence is used to differentiate CSZ tsunamis in a complex ~100 m wide

  10. Hydro-economic analysis of groundwater pumping for irrigated agriculture in California's Central Valley, USA

    NASA Astrophysics Data System (ADS)

    Medellín-Azuara, Josué; MacEwan, Duncan; Howitt, Richard E.; Koruakos, George; Dogrul, Emin C.; Brush, Charles F.; Kadir, Tariq N.; Harter, Thomas; Melton, Forrest; Lund, Jay R.

    2015-09-01

    As in many places, groundwater in California (USA) is the major alternative water source for agriculture during drought, so groundwater's availability will drive some inevitable changes in the state's water management. Currently, agricultural, environmental, and urban uses compete for groundwater, resulting in substantial overdraft in dry years with lowering of water tables, which in turn increases pumping costs and reduces groundwater pumping capacity. In this study, SWAP (an economic model of agricultural production and water use in California) and C2VISim (the California Department of Water Resources groundwater model for California's Central Valley) are connected. This paper examines the economic costs of pumping replacement groundwater during drought and the potential loss of pumping capacity as groundwater levels drop. A scenario of three additional drought years continuing from 2014 show lower water tables in California's Central Valley and loss of pumping capacity. Places without access to groundwater and with uncertain surface-water deliveries during drought are the most economically vulnerable in terms of crop revenues, employment and household income. This is particularly true for Tulare Lake Basin, which relies heavily on water imported from the Sacramento-San Joaquin Delta. Remote-sensing estimates of idle agricultural land between 2012 and 2014 confirm this finding. Results also point to the potential of a portfolio approach for agriculture, in which crop mixing and conservation practices have substantial roles.

  11. Longitudinal heterogeneity of flow and heat fluxes in a large lowland river: A study of the San Joaquin River, CA, USA during a large-scale flow experiment

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Dunne, T.; Dozier, J.

    2011-12-01

    Systematic downstream variation of channel characteristics, scaled by flow affects the transport and distribution of heat throughout a large river. As water moves through a river channel, streamflow and velocity may fluctuate by orders of magnitude primarily due to channel geometry, slope and resistance to flow, and the time scales of those fluctuations range from days to decades (Constantz et al., 1994; Lundquist and Cayan, 2002; McKerchar and Henderson, 2003). It is well understood that the heat budget of a river is primarily governed by surface exchanges, with the most significant surface flux coming from net shortwave radiation. The absorption of radiation at a given point in a river is determined by the wavelength-dependent index of refraction, expressed by the angle of refraction and the optical depth as a function of physical depth and the absorption coefficient (Dozier, 1980). Few studies consider the influence of hydrologic alteration to the optical properties governing net radiative heat transfer in a large lowland river, yet it is the most significant component of the heat budget and definitive to a river's thermal regime. We seek a physically based model without calibration to incorporate scale-dependent physical processes governing heat and flow dynamics in large rivers, how they change across the longitudinal profile, and how they change under different flow regimes. Longitudinal flow and heat flux analyses require synoptic flow time series from multiple sites along rivers, and few hydrometric networks meet this requirement (Larned et al, 2011). We model the energy budget in a regulated 240-km mainstem reach of the San Joaquin River California, USA equipped with multiple gaging stations from Friant Dam to its confluence with the Merced River during a large-scale flow experiment. We use detailed hydroclimatic observations distributed across the longitudinal gradient creating a non-replicable field experiment of heat fluxes across a range of flow regime

  12. Environmental Setting of the Lower Merced River Basin, California

    USGS Publications Warehouse

    Gronberg, Jo Ann M.; Kratzer, Charles R.

    2006-01-01

    In 1991, the U.S. Geological Survey began to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology as part of the National Water-Quality Assessment (NAWQA) Program. As part of this program, the San Joaquin-Tulare Basins study unit is assessing parts of the lower Merced River Basin, California. This report provides descriptions of natural and anthropogenic features of this basin as background information to assess the influence of these and other factors on water quality. The lower Merced River Basin, which encompasses the Mustang Creek Subbasin, gently slopes from the northeast to the southwest toward the San Joaquin River. The arid to semiarid climate is characterized by hot summers (highs of mid 90 degrees Fahrenheit) and mild winters (lows of mid 30 degrees Fahrenheit). Annual precipitation is highly variable, with long periods of drought and above normal precipitation. Population is estimated at about 39,230 for 2000. The watershed is predominately agricultural on the valley floor. Approximately 2.2 million pounds active ingredient of pesticides and an estimated 17.6 million pounds active ingredient of nitrogen and phosphorus fertilizer is applied annually to the agricultural land.

  13. Genotypes and phylogeographical relationships of infectious hematopoietic necrosis virus in California, USA.

    PubMed

    Kelley, Garry O; Bendorf, Christin M; Yun, Susan C; Kurath, Gael; Hedrick, Ronald P

    2007-08-13

    Infectious hematopoietic necrosis virus (IHNV) contains 3 major genogroups in North America with discreet geographic ranges designated as upper (U), middle (M), and lower (L). A comprehensive genotyping of 237 IHNV isolates from hatchery and wild salmonids in California revealed 25 different sequence types (a to y) all in the L genogroup; specifically, the genogroup contained 14 sequence types that were unique to individual isolates as well as 11 sequence types representing 2 or more identical isolates. The most evident trend was the phylogenetic and geographical division of the L genogroup into 2 distinct subgroups designated as LI and LII. Isolates within Subgroup LI were primarily found within waterways linked to southern Oregon and northern California coastal rivers. Isolates in Subgroup LII were concentrated within inland valley watersheds that included the Sacramento River, San Joaquin River, and their tributaries. The temporal and spatial patterns of virus occurrence suggested that infections among adult Chinook salmon in the hatchery or that spawn in the river are a major source of virus potentially infecting other migrating or resident salmonids in California. Serum neutralization results of the California isolates of IHNV corroborated a temporal trend of sequence divergence; specifically, 2 progressive shifts in which more recent virus isolates represent new serotypes. A comparison of the estimates of divergence rates for Subgroup LI (1 x 10(-5) mutations per nucleotide site per year) indicated stasis similar to that observed in the U genogroup, while the Subgroup LII rate (1 x 10(-3) mutations per nucleotide site per year) suggested a more active evolution similar to that of the M genogroup.

  14. Genotypes and phylogeographical relationships of infectious hematopoietic necrosis virus in California, USA

    USGS Publications Warehouse

    Kelley, G.O.; Bendorf, C.M.; Yun, S.C.; Kurath, G.; Hedrick, R.P.

    2007-01-01

    Infectious hematopoietic necrosis virus (IHNV) contains 3 major genogroups in North America with discreet geographic ranges designated as upper (U), middle (M), and lower (L). A comprehensive genotyping of 237 IHNV isolates from hatchery and wild salmonids in California revealed 25 different sequence types (a to y) all in the L genogroup; specifically, the genogroup contained 14 sequence types that were unique to individual isolates as well as 11 sequence types representing 2 or more identical isolates. The most evident trend was the phylogenetic and geographical division of the L genogroup into 2 distinct subgroups designated as LI and LII. Isolates within Subgroup LI were primarily found within waterways linked to southern Oregon and northern California coastal rivers. Isolates in Subgroup LII were concentrated within inland valley watersheds that included the Sacramento River, San Joaquin River, and their tributaries. The temporal and spatial patterns of virus occurrence suggested that infections among adult Chinook salmon in the hatchery or that spawn in the river are a major source of virus potentially infecting other migrating or resident salmonids in California. Serum neutralization results of the California isolates of IHNV corroborated a temporal trend of sequence divergence; specifically, 2 progressive shifts in which more recent virus isolates represent new serotypes. A comparison of the estimates of divergence rates for Subgroup LI (1 ?? ICT5 mutations per nucleotide site per year) indicated stasis similar to that observed in the U genogroup, while the Subgroup LII rate (1 ?? 10 3 mutations per nucleotide site per year) suggested a more active evolution similar to that of the M genogroup. ?? Inter-Research 2007.

  15. ALTERED DEVELOPMENT AND REPRODUCTION IN MOSQUITOFISH EXPOSED TO PULP AND PAPER MILL EFFLUENT IN THE FENHOLLOW RIVER, FLORIDA USA

    EPA Science Inventory

    Female mosquitofish exposed to pulp and paper mill effluent (PME) in the Fenholloway River, Florida, USA have masculinized secondary sex characteristics and altered aromatase enzyme activity. We and others have shown that the Fenholloway River PME contains androgenic and progesto...

  16. ALTERED DEVELOPMENT AND REPRODUCTION IN MOSQUITOFISH EXPOSED TO PULP AND PAPER MILL EFFLUENT IN THE FENHOLLOW RIVER, FLORIDA USA

    EPA Science Inventory

    Female mosquitofish exposed to pulp and paper mill effluent (PME) in the Fenholloway River, Florida, USA have masculinized secondary sex characteristics and altered aromatase enzyme activity. We and others have shown that the Fenholloway River PME contains androgenic and progesto...

  17. Mercury contamination from historic mining in water and sediment, Guadalupe River and San Francisco Bay, California

    USGS Publications Warehouse

    Thomas, M.A.; Conaway, C.H.; Steding, D.J.; Marvin-DiPasquale, M.; Abu-Saba, K. E.; Flegal, A.R.

    2002-01-01

    The New Almaden mercury mines in California (USA), which collectively represent the largest historic producers of mercury in North America, are a persistent source of mercury contamination to the San Francisco Bay estuary. An estimate based on total mercury concentration (HgTOT) and provisional stream flow data measured at a gauging station in the Guadalupe River during base flow conditions yields a base flow flux of 30 g of mercury for the month of October 2000. In contrast to this base flow estimate, one 2-day rain event in October 2000 resulted in a flux of 22 g of mercury past this site. An estimate of mercury transport from the entire Guadalupe River watershed based on a sediment transport model and our measured suspended particulate HgTOT (0.5-4 ??g g-1) results in a total of 4-30 kg year-1 transported to the southern reach of the estuary. Sediments in the southern reach have lower HgTOT (most ??? 0.4 ??g g-1 dry wt) and monomethyl-mercury (MMHg, c. 1 ng g-1 dry wt) concentrations than those in the Guadalupe River (HgTOT, 0.41-33 ??g g-1 dry wt; MMHg, 1-10 ng g-1 dry wt). Because the most elevated methylmercury concentrations (8-12 ng g-1 dry wt) were found in sediments deposited immediately upstream of hydraulic structures (e.g. diversion dams and weirs) within the river, it is proposed that such physical structures may represent important zones of MMHg production and fluxes to San Francisco Bay.

  18. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  19. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  20. Bartonella quintana in body lice and head lice from homeless persons, San Francisco, California, USA.

    PubMed

    Bonilla, Denise L; Kabeya, Hidenori; Henn, Jennifer; Kramer, Vicki L; Kosoy, Michael Y

    2009-06-01

    Bartonella quintana is a bacterium that causes trench fever in humans. Past reports have shown Bartonella spp. infections in homeless populations in San Francisco, California, USA. The California Department of Public Health in collaboration with San Francisco Project Homeless Connect initiated a program in 2007 to collect lice from the homeless to test for B. quintana and to educate the homeless and their caregivers on prevention and control of louse-borne disease. During 2007-2008, 33.3% of body lice-infested persons and 25% of head lice-infested persons had lice pools infected with B. quintana strain Fuller. Further work is needed to examine how homeless persons acquire lice and determine the risk for illness to persons infested with B. quintana-infected lice.

  1. Characterization of extreme precipitation within atmospheric river events over California

    DOE PAGES

    Jeon, S.; Prabhat,; Byna, S.; ...

    2015-11-17

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  2. Characterization of extreme precipitation within atmospheric river events over California

    NASA Astrophysics Data System (ADS)

    Jeon, S.; Prabhat; Byna, S.; Gu, J.; Collins, W. D.; Wehner, M. F.

    2015-11-01

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States - and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climate Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076-2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981-2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.

  3. Wave Modeling for Jetty Rehabilitation at the Mouth of the Columbia River, Washington/Oregon, USA

    DTIC Science & Technology

    2008-03-01

    Washington/ Oregon , USA Zeki Demirbilek, Lihwa Lin, and Okey G. Nwogu March 2008 Co as ta l a nd H yd ra ul ic s La bo ra to ry Approved for...the Mouth of the Columbia River, Washington/ Oregon , USA Zeki Demirbilek and Lihwa Lin Coastal and Hydraulics Laboratory U.S. Army Engineer...9440569. Strong winds along the Washington and Oregon coasts often dominate water level response in the shallow areas of the MCR estuary and in the

  4. Water-quality investigation, Upper Santa Clara River Basin, California

    USGS Publications Warehouse

    Bowers, James C.; Irwin, G.A.

    1978-01-01

    Water-quality data are summarized for the upper Santa Clara River basin, California from studies beginning August 1974 through June 1976 and during past monitoring programs. Data were collected for nitrogen, phosphorus, total organic carbon, trace elements, detergents, and pesticide compounds. Because of the limited number of samples, the data are only an estimate of conditions that existed in the basin. Sampling was designed so that samples from each site would represent seasonal variations in discharge. Most constituents were fairly low in concentration near the headwaters at Ravenna and higher below the urban and agricultural area near Saugus. Mean specific conductance in the river ranged from 745 micromhos per centimeter at 25 deg C below the headwaters near Lang to 2,640 micromhos at the Los Angeles-Ventura County line. Results also indicate that discharge was not the single factor controlling the concentration variance for most constituents. Regression analyses indicated a high correlation between specific conductance and most major inorganic chemical constituents, and between specific conductance and discharge. (Woodard-USGS)

  5. Geochemistry of the Mattole River in Northern California

    USGS Publications Warehouse

    Kennedy, Vance C.; Malcolm, Ronald L.

    1977-01-01

    The chemical composition of streams can vary greatly with changing discharge during storm runoff. These chemical changes are related to the pathways of various water parcels from the time they fall as rain until they enter the stream, and to the interactions between water and sediment during transport downstream. In order to understand better the chemical variations during storms, an extensive investigation was made of the Mattole River, a chemically clean coastal stream in Mendocino County, California. The Mattole drains a topographically mature basin of 620 sw km which has relief of about 1200 m, a long summer dry season, and mean annual rainfall of about 2300 mm. The stream flow is composed of seasonally varying proportions of four flow components, namely, surface runoff, quick-return flow (rainfall having brief and intimate contact with the soil before entering the surface drainage), delayed-return flow, and base runoff. Each component is identified by its characteristic chemistry and by the time delay between rainfall and entrance into the stream. Information is also presented on rain chemistry, adsorption reactions of suspended sediments in the fresh and brackish environments, and compositional variation of river sediments with particle size. (Woodard-USGS)

  6. Effects of river discharge on abundance and instantaneous growth of age-0 carpsuckers in the Oconee River, Georgia, USA

    USGS Publications Warehouse

    Peterson, Ronald C.; Jennings, C.A.

    2007-01-01

    The Oconee River in middle Georgia, U.S.A., has been regulated by the Sinclair Dam since 1953. Since then, the habitat of the lower Oconee River has been altered and the river has become more incised. The altered environmental conditions of the Oconee River may limit the success of various fish populations. Some obligate riverine fishes may be good indicator species for assessing river system integrity because they are intolerant to unfavourable conditions. For example, many sucker species require clean gravel for feeding and reproduction. Further, age-0 fishes are more vulnerable than adults to flow alterations because of their limited ability to react to such conditions. In this study, we investigated the relationship between abundance and growth of age-0 carpsuckers to river discharge in the Oconee River. A beach seine was used to collect age-0 carpsuckers (Carpiodes spp.) from littoral zones of the lower Oconee River from May through July of 1995 to 2001. Regression models were used to assess whether 12 river discharge categories (e.g. peak, low, seasonal flows) influenced age-0 carpsucker abundance or instantaneous growth. Our analysis indicated that abundance of age-0 carpsuckers was significantly negatively related to number of days river discharge was >85 m3 s-1(r2=0.61, p=0.04). Estimates of instantaneous growth ranged from 0.10 to 0.90. Instantaneous growth rates were significantly positively related to summer river discharge (r2=0.95, p<0.01). These results suggest that (1) moderate flows during spawning and rearing are important for producing strong-year classes of carpsuckers, and (2) river discharge is variable among years, with suitable flows for strong year-classes of carpsuckers occurring every few years. River management should attempt to regulate river discharge to simulate historic flows typical for the region when possible. Such an approach is best achieved when regional climatic conditions are considered.

  7. Multimetric Fish Indices for Midcontinent (USA) Great Rivers

    EPA Science Inventory

    As part of the Environmental Monitoring and Assessment Program for Great River Ecosystems we developed a fish-assemblage based multimetric index (Great River Fish Index,GRFIn) as an indicator of ecological conditions in the Lower Missouri, impounded Upper Mississippi, unimpounded...

  8. Sediment toxicity in mid-continent great rivers (USA)

    EPA Science Inventory

    In this study, 530 sediment samples were collected from 447 sites between 2004 and 2006 at randomly selected shoreline sites along the main channel of the Ohio, Missouri and Upper Mississippi Rivers as part of the Environmental Monitoring and Assessment Program for Great Rivers E...

  9. Sediment toxicity in mid-continent great rivers (USA)

    EPA Science Inventory

    In this study, 530 sediment samples were collected from 447 sites between 2004 and 2006 at randomly selected shoreline sites along the main channel of the Ohio, Missouri and Upper Mississippi Rivers as part of the Environmental Monitoring and Assessment Program for Great Rivers E...

  10. Canine demodicosis: a retrospective study of a veterinary hospital population in California, USA (2000-2016).

    PubMed

    Bowden, Daniel G; Outerbridge, Catherine A; Kissel, Marguerite B; Baron, Jerome N; White, Stephen D

    2017-09-03

    Demodex spp. are cutaneous mites that cause clinical disease when present in increased numbers. There is an association in some dogs with underlying systemic disease or immunosuppressive medications. Retrospective study to document breed predisposition, identify any concurrent diseases or underlying immunosuppressive conditions, and to determine the frequency of demodicosis recurrence after treatment completion. There were 431 dogs with demodicosis presented to a veterinary teaching hospital in California, USA, from 2000 to 2016. Inclusion in this study required a diagnosis of demodicosis based on direct demonstration of the mite. Records were reviewed for signalment, disease history, potential underlying aetiologies, diagnosed concurrent diseases, medications and demodicosis treatment. Analyses were performed to evaluate for potential breed predispositions and because of the large number of dogs with allergic dermatoses, analyses for this diagnosis as a disease associated with demodicosis was also performed. E-mailed surveys and follow-up telephone calls were used to assess for information about disease recurrence. The pit bull terrier group and West Highland white terrier, based on calculated odds ratio, were breeds predisposed to developing demodicosis. For dogs with demodicosis, allergic dermatoses was an associated disease. Relapse or recurrence of disease after treatment was uncommon, affecting 11% of the dogs with long-term follow-up. This study identified, in dogs attending the institution based in California, USA, breed predilections for canine demodicosis and associated concomitant diseases. It also revealed a low occurrence of disease relapse, recurrence or persistence. © 2017 ESVD and ACVD.

  11. Channel evolution on the dammed Elwha River, Washington, USA

    USGS Publications Warehouse

    Draut, A.E.; Logan, J.B.; Mastin, M.C.

    2011-01-01

    Like many rivers in the western U.S., the Elwha River, Washington, has changed substantially over the past century in response to natural and human forcing. The lower river is affected by two upstream dams that are slated for removal as part of a major river restoration effort. In preparation for studying the effects of dam removal, we present a comprehensive field and aerial photographic analysis of dam influence on an anabranching, gravel-bed river. Over the past century with the dams in place, loss of the upstream sediment supply has caused spatial variations in the sedimentary and geomorphic character of the lower Elwha River channel. Bed sediment is armored and better sorted than on the naturally evolving bed upstream of the dams. On time scales of flood seasons, the channel immediately below the lower dam is fairly stable, but progresses toward greater mobility downstream such that the lowermost portion of the river responded to a recent 40-year flood with bank erosion and bed-elevation changes on a scale approaching that of the natural channel above the dams. In general, channel mobility in the lowest 4 km of the Elwha River has not decreased substantially with time. Enough fine sediment remains in the floodplain that – given sufficient flood forcing – the channel position, sinuosity, and braiding index change substantially. The processes by which this river accesses new fine sediment below the dams (rapid migration into noncohesive banks and avulsion of new channels) allow it to compensate for loss of upstream sediment supply more readily than would a dammed river with cohesive banks or a more limited supply of alluvium. The planned dam removal will provide a valuable opportunity to evaluate channel response to the future restoration of natural upstream sediment supply.

  12. Using GIS and logistic regression to estimate agricultural chemical concentrations in rivers of the midwestern USA

    USGS Publications Warehouse

    Battaglin, W.A.

    1996-01-01

    Agricultural chemicals (herbicides, insecticides, other pesticides and fertilizers) in surface water may constitute a human health risk. Recent research on unregulated rivers in the midwestern USA documents that elevated concentrations of herbicides occur for 1-4 months following application in spring and early summer. In contrast, nitrate concentrations in unregulated rivers are elevated during the fall, winter and spring. Natural and anthropogenic variables of river drainage basins, such as soil permeability, the amount of agricultural chemicals applied or percentage of land planted in corn, affect agricultural chemical concentrations in rivers. Logistic regression (LGR) models are used to investigate relations between various drainage basin variables and the concentration of selected agricultural chemicals in rivers. The method is successful in contributing to the understanding of agricultural chemical concentration in rivers. Overall accuracies of the best LGR models, defined as the number of correct classifications divided by the number of attempted classifications, averaged about 66%.

  13. Riparian valley oak (Quercus lobata) forest restoration on the middle Sacramento River, California

    Treesearch

    F. Thomas Griggs; Gregory H. Golet

    2002-01-01

    In 1989 The Nature Conservancy initiated a riparian horticultural restoration program on the floodplain of the middle Sacramento River, California. At nearly all restoration sites Valley oak (Quercus lobata Nee) comprised a major component of the planting design. Valley oaks are a keystone tree species of lowland floodplain habitats in California...

  14. Organochlorines and mercury in eggs of coastal terns and herons in California, USA

    USGS Publications Warehouse

    Ohlendorf, H.M.; Custer, T.W.; Lowe, Roy W.; Rigney, M.; Cromartie, E.

    1988-01-01

    In San Franciso Bay, California, USA, concentrations of DDE and mercury in eggs differed among Caspian Tern, Forster's Tern, Black-crowned Night-Heron, and Snowy Egret in 1982. Geometric mean DDE concentrations were higher (P < 0.05) in Caspian Tern eggs (6.93 ppm, wet weight) than in eggs of other species (1.92-2.84 ppm). Mean mercury concentrations were significantly greater in Caspian Tern (1.25 ppm) and forster's Tern (0.90 ppm) eggs than in night-herons (0.41 ppm), but night-heron eggs contained higher concentrations of mercury than did the eggs of Snowy Egrets (0.21 ppm). There were no significant differences among species for mean concentrations of trans-nonachlor or PCBs; other organochlorines occurred in fewer than half of the samples, so means were not compared. Caspian Tern eggs from San Francisco Bay had higher PCB concentrations (4.85 ppm) than did eggs of this species from San Diego Bay, California (1.70 ppm) or Elkhorn Slough, California (1.83 ppm), but we detected no significant differences in mean concentrations of other organochlorines. DDE concentrations in 5 of 47 (10.6%) night-heron eggs from San Francisco Bay exceeded 8 ppm, a level associated with impaired reproduction in this species. DDE concentrations were negatively correlated with eggshell thickness in night-herons and egrets.

  15. Rates and Risk Factors for Coccidioidomycosis among Prison Inmates, California, USA, 2011

    PubMed Central

    Lucas, Kimberley D.; Mohle-Boetani, Janet C.

    2015-01-01

    In California, coccidioidomycosis is a disease acquired by inhaling spores of Coccidioides immitis, a fungus found in certain arid regions, including the San Joaquin Valley, California, USA, where 8 state prisons are located. During 2011, we reviewed coccidioidomycosis rates at 2 of the prisons that consistently report >80% of California’s inmate cases and determined inmate risk factors for primary, severe (defined as pulmonary coccidioidomycosis requiring >10 hospital days), and disseminated coccidioidomycosis (defined by hospital discharge International Classification of Disease, Ninth Revision code). Inmates of African American ethnicity who were >40 years of age were at significantly higher risk for primary coccidioidomycosis than their white counterparts (odds ratio = 2.0, 95% CI 1.5–2.8). Diabetes was a risk factor for severe pulmonary coccidioidomycosis, and black race a risk factor for disseminated disease. These findings contributed to a court decision mandating exclusion of black inmates and inmates with diabetes from the 2 California prisons with the highest rates of coccidioidomycosis. PMID:25533149

  16. Mapping the biological condition of USA rivers and streams

    EPA Science Inventory

    We predicted the probable (pr) biological condition (BC) of ~5.4 million km of stream within the conterminous USA (CONUS). National maps of prBC could provide an important tool for prioritizing monitoring and restoration of streams. The USEPA uses a spatially balanced survey desi...

  17. Mapping the biological condition of USA rivers and streams

    EPA Science Inventory

    We predicted the probable (pr) biological condition (BC) of ~5.4 million km of stream within the conterminous USA (CONUS). National maps of prBC could provide an important tool for prioritizing monitoring and restoration of streams. The USEPA uses a spatially balanced survey desi...

  18. ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA

    EPA Science Inventory

    We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...

  19. PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA

    EPA Science Inventory

    A sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA is described. The application is meant to characterize and forecast sediment and arsenic (As) distributions before and after proposed dredging activit...

  20. Recovery of thermophilic Campylobacter by three sampling methods from classified river sites in Northeast Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    It is not clear how best to sample streams for the detection of Campylobacter which may be introduced from agricultural or community land use. Fifteen sites in the watershed of the South Fork of the Broad River (SFBR) in Northeastern Georgia, USA, were sampled in three seasons. Seven sites were cl...

  1. Modeled summer background concentration nutrients and suspended sediment in the mid-continent (USA) great rivers

    EPA Science Inventory

    We used regression models to predict background concentration of four water quality indictors: total nitrogen (N), total phosphorus (P), chloride, and total suspended solids (TSS), in the mid-continent (USA) great rivers, the Upper Mississippi, the Lower Missouri, and the Ohio. F...

  2. DISTRIBUTION OF AQUATIC OFF-CHANNEL HABITATS AND ASSOCIATED RIPARIAN VEGETATION, WILLAMETTE RIVER, OREGON, USA

    EPA Science Inventory

    The extent of aquatic off-channel habitats such as secondary and side channels, sloughs, and alcoves, have been reduced more than 50% since the 1850s along the upper main stem of the Willamette River, Oregon, USA. Concurrently, the hydrogeomorphic potential, and associated flood...

  3. Anthropic signatures in alluvium of the Upper Little Tennessee River valley, Southern Blue Ridge Mountains, USA

    Treesearch

    Lixin Wang; David S. Leigh

    2015-01-01

    Human activities have become important influences on the fluvial systems of eastern North America since post-colonial settlement. This research identifies post-settlement anthropic signatures in alluvial sediments in the Upper Little Tennessee River, USA. Agricultural and mining activities were scattered and discontinuous in this relatively remote region of...

  4. A new libelluloid family from the Eocene Green River Formation (Colorado, USA) (Odonata, Anisoptera).

    PubMed

    Zeiri, Asma; Nel, Andre; Garrouste, Romain

    2015-10-16

    The new family Urolibellulidae is proposed for the new genus and species Urolibellula eocenica, based on a fossil dragonfly from the Eocene Green River Formation (USA). This new taxon is considered as the sister group of the extant Libellulidae. As the oldest libellulid dragonfly is dated from the Turonian, the Urolibellulidae should also be at least Late Cretaceous.

  5. DISTRIBUTION OF AQUATIC OFF-CHANNEL HABITATS AND ASSOCIATED RIPARIAN VEGETATION, WILLAMETTE RIVER, OREGON, USA

    EPA Science Inventory

    The extent of aquatic off-channel habitats such as secondary and side channels, sloughs, and alcoves, have been reduced more than 50% since the 1850s along the upper main stem of the Willamette River, Oregon, USA. Concurrently, the hydrogeomorphic potential, and associated flood...

  6. PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA

    EPA Science Inventory

    A sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA is described. The application is meant to characterize and forecast sediment and arsenic (As) distributions before and after proposed dredging activit...

  7. PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA

    EPA Science Inventory

    This paper describes a sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA for the purpose of characterizing and forecasting sediment and arsenic distributions before and after proposed dredging activitie...

  8. ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA

    EPA Science Inventory

    We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...

  9. Gender differences in haemogregarine infections in American alligators (Alligator mississippiensis) at Savannah River, South Carolina, USA.

    PubMed

    Davis, Andrew K; Horan, Robert V; Grosse, Andrew M; Harris, Bess B; Metts, Brian S; Scott, David E; Tuberville, Tracey D

    2011-10-01

    We report a host gender bias in haemogregarine infection characteristics in the American alligator (Alligator mississippiensis) at the Savannah River Site, South Carolina, USA. Prevalence and severity in female alligators was higher than it was in males. The reason for this pattern is not clear.

  10. Characterization of Landfalling Atmospheric Rivers and their Impacts over California

    NASA Astrophysics Data System (ADS)

    Hecht, Chad William

    Characterization of Landfalling Atmospheric Rivers and their Impacts Over California By Chad William Hecht Plymouth State University, May 2016 Atmospheric Rivers (ARs) are responsible for a majority of global poleward moisture transport and can result in extreme precipitation events and flooding along the U.S. West Coast. ARs are long (>2000 km) and narrow (500-1000 km) corridors of enhanced vertically integrated water vapor (IWV) and integrated water vapor transport (IVT) that may be found within a variety of synoptic-scale flow patterns. Observational evidence suggests that ARs within different flow patterns may contain different water vapor source regions, different orientations, different IVT magnitudes, and may result in different precipitation distributions. This study uses a K-means clustering technique to objectively identify different flow patterns that contain landfalling ARs along the U.S. West Coast. The K-means clustering algorithm used NCEP-CFSR and NCEP-GFSderived IVT to cluster the different types of ARs that may make landfall over north- central California. For example, the clustering technique identified five different types of ARs: northwesterly, westerly, south/southwesterly, or southwesterly with moderate IVT magnitudes >200 kg m-1 s-1 or strong southwesterly with IVT values >400 kg m -1 s-1. Composite analyses of the synoptic-scale features present in conjunction with each AR type highlight the variety of conditions that influence the orientation and magnitude of xiv each landfalling AR. The differences in synoptic-scale flow regimes between the AR types results in differences in quasi-geostrophic forcing for ascent/descent co-located over the terminus of the ARs at landfall. This thesis will discuss and present the roles that both upslope IVT magnitude and quasi-geostrophic forcing for ascent play on precipitation accumulations and distributions associated with each AR type. The second portion of this thesis objectively quantifies the impacts

  11. Late Pleistocene braided rivers of the Atlantic Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Leigh, David S.; Srivastava, Pradeep; Brook, George A.

    2004-01-01

    Infrared Landsat imagery (band 4) clearly reveals braided river patterns on late Pleistocene terraces of unglaciated rivers in the Atlantic Coastal Plain of the southeastern United States, a region that presently exhibits meandering patterns that have existed throughout the Holocene. These Pleistocene braided patterns provide a unique global example of river responses to late Quaternary climate changes in an unglaciated humid subtropical region at 30-35° north latitude. Detailed morphological and chronological results are given for the Oconee-Altamaha River valley in Georgia and for the Pee Dee River valley in South Carolina, including 15 optically stimulated luminescence (OSL) dates and four radiocarbon dates. Correlative examples are drawn from additional small to large rivers in South- and North Carolina. OSL and radiocarbon ( 14C) dates indicate distinct braiding at 17-30 ka, within oxygen isotope stage 2 (OIS 2), and braiding probably existed at least during parts of OIS 3 and possibly OIS 4 back to ca 70 ka. The chronology suggests that braiding is the more common pattern for the late Quaternary in the southeastern United States. Braided terraces appear to have been graded to lower sea-levels and are onlapped by Holocene floodplain deposits up to 10-60 km from the coast. The braiding probably reflects the response of discharge and sediment yield to generally cooler and drier paleoclimates, which may have had a pronounced runoff season. Sedimentation of eolian dunes on the braid plains is coeval with braiding and supports the conclusion of dry soils and thin vegetation cover during the late Pleistocene. Our chronological data contribute to a body of literature indicating that reliable OSL age estimates can be obtained from quartz-rich bed load sand from braided rivers, based on good correlations with both radiocarbon dates from braided fluvial sediment and OSL dates from stratigraphically correlative eolian sand.

  12. Changes in population attitudes about where smoking should not be allowed: California versus the rest of the USA.

    PubMed

    Gilpin, E A; Lee, L; Pierce, J P

    2004-03-01

    The decade long California Tobacco Control Program is unique to the nation in its duration, emphasis, and level of funding. Programme emphasis is on changing social norms about smoking as a means to discourage smoking and thus reduce the harmful health effects of tobacco to the population. Data from the 1992-93, 1995-96, and 1998-99 Tobacco Use Supplements to the national Current Population Survey (n > 175 000 each period) were used to examine changes in norms regarding where smoking should "not be allowed at all" in both California and in the rest of the USA. Venues queried were restaurants, hospitals, work areas, bars, indoor sports venues, and indoor shopping malls. There were substantial increases in the percentages of the adult population (18+ years) stating that smoking should not be allowed in the venues queried in California by 1998-99 compared to 1992-93; only modest increases were observed in the rest of the USA. In fact, for most venues, the percentages for the rest of the USA were lower in 1998-99 than in California in 1992-93. Further, the percentage increase over this period in respondents stating that smoking should not be allowed in four or more of the six venues was 30% in California and 23% in the rest of the USA. The most dramatic percentage increase in California occurred among current smokers (93%). A strong, comprehensive tobacco control programme such as California's can influence population norms, including those of smokers, with respect to where smoking should not be allowed.

  13. Wildfires alter rodent community structure across four vegetation types in southern California, USA

    USGS Publications Warehouse

    Brehme, Cheryl S.; Clark, Denise R.; Rochester, Carlton J.; Fisher, Robert N.

    2011-01-01

    We surveyed burned and unburned plots across four habitat reserves in San Diego County, California, USA, in 2005 and 2006, to assess the effects of the 2003 wildfires on the community structure and relative abundance of rodent species. The reserves each contained multiple vegetation types (coastal sage scrub, chaparral, woodland, and grassland) and spanned from 250 m to 1078 m in elevation. Multivariate analyses revealed a more simplified rodent community structure in all burned habitats in comparison to unburned habitats. Reduction in shrub and tree cover was highly predictive of changes in post-fire rodent community structure in the burned coastal sage scrub and chaparral habitats. Reduction in cover was not predictive for the less substantially burned woodlands and grasslands, for which we hypothesized that interspecific competition played a greater role in post-fire community structure. Across vegetation types, generalists and open habitat specialists typically increased in relative abundance, whereas closed habitat specialists decreased. We documented significant increases in relative abundance of the deer mouse (Peromyscus maniculatus Wagner) and Dulzura kangaroo rat (Dipodomys simulans Merriam). In contrast, we found significant decreases in relative abundance for the California mouse (Peromyscus californicus Gambel), San Diego pocket mouse (Chaetodipus fallax Merriam), desert woodrat (Neotoma lepida Thomas), and brush mouse (Peromyscus boylii Baird). Currently, our research program involves assessment of whether habitat conservation plans (HCPs) in southern California provide long-term protection to HCP covered species, as well as preserve ecosystem function. The scenario of increased wildfires needs to be incorporated into this assessment. We discuss our results in relation to management and conservation planning under a future scenario of larger and more frequent wildfires in southern California.

  14. Geochronology and paleoenvironment of pluvial Harper Lake, Mojave Desert, California, USA

    USGS Publications Warehouse

    Garcia, Anna L.; Knott, Jeffrey R.; Mahan, Shannon; Bright, Jordan

    2014-01-01

    Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.

  15. Geochronology and paleoenvironment of pluvial Harper Lake, Mojave Desert, California, USA

    NASA Astrophysics Data System (ADS)

    Garcia, Anna L.; Knott, Jeffrey R.; Mahan, Shannon A.; Bright, Jordon

    2014-03-01

    Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17-14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45-40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45-40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45-40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.

  16. Dispersal forcing of a southern California river plumes, based on field and remote sensing observations

    USGS Publications Warehouse

    Warrick, Jonathan A.; Mertes, Leal A.K.; Washburn, Libe; Siegel, David A.

    2004-01-01

    River plumes are important pathways of terrestrial materials entering the sea. In southern California, rivers are known to be the dominant source of littoral, shelf and basin sediment and coastal pollution, although a basic understanding of the dynamics of these river inputs does not exist. Here we evaluate forcing parameters of a southern California river plume using ship-based hydrographic surveys and satellite remote sensing measurements to provide the first insights of river dispersal dynamics in southern California. Our results suggest that plumes of the Santa Clara River are strongly influenced by river inertia, producing jet-like structures ~10 km offshore during annual recurrence (~two-year) flood events and ~30 km during exceptional (~10-year recurrence) floods. Upwelling-favorable winds may be strong following stormwater events and can alter dispersal pathways of thse plumes. Due to similar runoff relationships and other reported satellite observations, we hypothesize that interia-dominated dispersal may be an important characteristic of the small, mountainous rivers throughout southern California.

  17. Predicting Eurasian watermilfoil's (Myriophylum spicatum L.) distribution and response to biological control in Fall River, California

    USDA-ARS?s Scientific Manuscript database

    Eurasian watermilfoil (Myriophyllum spicatum L.), was first observed in Fall River, California in approximately 2001. Its presence has had impacts on the river. During 2009 and 2010 we determined Eurasian watermilfoil abundance and distribution. We also determined water temperature and total P conce...

  18. Declining sediment loads from Redwood Creek and the Klamath River, north coastal California

    Treesearch

    Randy D. Klein; Jeffrey K. Anderson

    2012-01-01

    River basin sediment loads are affected by several factors, with flood magnitude and watershed erosional stability playing dominant and dynamic roles. Long-term average sediment loads for northern California river basins have been computed by several researchers by several methods. However, characterizing the dynamic nature of climate and watershed stability requires...

  19. Population Trends and Management of the Bank Swallow (Riparia riparia) on the Sacramento River, California

    Treesearch

    Barrett A. Garrison; Ronald W. Schlorff; Joan M. Humphrey; Stephen A. Laymon; Frank J. Michny

    1989-01-01

    Annual monitoring of Bank Swallows (Riparia riparia) along the Sacramento River, California has been conducted since 1986 to determine population trends, evaluate impacts from bank protection and flood control projects, and implement and monitor mitigation efforts. The population of Bank Swallows in a 50-mile river reach remained static over 3...

  20. The Eel River, northwestern California; high sediment yields from a dynamic landscape

    Treesearch

    Thomas E. Lisle

    1990-01-01

    The Eel River draining the Coast Range of northwestern California has the highest recorded average suspended sediment yield per drainage area of any river of its size or larger unaffected by volcanic eruptions or active glaciers in the conterminous United States (1,720 t/km 2 yr from 9,390 km 2 ; Brown and Ritter, 1971).

  1. Climate, rain shadow, and human-use influences on fire regimes in the eastern Sierra Nevada, California, USA

    Treesearch

    M.P. North; K.M. van de Water; S.L. Stephens; B.M. Collins

    2009-01-01

    There have been few fire history studies of eastern Sierra Nevada forests in California, USA, where a steep elevation gradient, rain shadow conditions, and forest stand isolation may produce different fire regimes than those found on the range’s western slope. We investigated historic fire regimes and potential climate influences on four forest types ranging in...

  2. Temporal and spatial variation of atmospherically deposited organic contaminants at high elevation in Yosemite National Park, California, USA

    USDA-ARS?s Scientific Manuscript database

    Atmospherically deposited organic contaminants in the Sierra Nevada Mountains of California, USA, have exceeded some thresholds of concern, yet the distributions of contaminants in the mountains are not well known and there is little knowledge of temporal variation. The present study, (1) evaluated...

  3. A multifaceted approach to prioritize and design bank stabilization measures along the Big Sioux River, South Dakota, USA

    USDA-ARS?s Scientific Manuscript database

    A multifaceted approach was used to manage fine-grained sediment loadings from river bank erosion along the Big Sioux River between Dell Rapids and Sioux Falls, South Dakota, USA. Simulations with the RVR Meander and CONCEPTS river-morphodynamics computer models were conducted to identify stream-ban...

  4. Particle-bound metal transport after removal of a small dam in the Pawtuxet River, Rhode Island, USA

    EPA Science Inventory

    The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head ...

  5. Watershed characterization for precipitation-runoff modeling system, north fork, American River and east fork, Carson River watersheds, California

    USGS Publications Warehouse

    Smith, J. LaRue; Reece, Brian D.

    1995-01-01

    As part of its Global Change Hydrology Program, the U.S. Geological Survey (USGS) is investigating the potential effects of climate change on the water resources of several river basins in the United States. The American River Basin in California represents the windward slope of the north-central Sierra Nevada, and the California part of the Carson River Basin, most of which is in Nevada, represents the leeward slope. Parts of the American River and Carson River Basins—the North Fork American River and East Fork Carson River watersheds, both in California—were studied to determine the sensitivity of water resources to potential climate change. The water resources of both basins are derived primarily from snowmelt. A geographic information system (GIS) data base has been created to facilitate paired-basin analysis. The GIS data base incorporates (1) land-surface data, which include elevation, land use and land cover, soil type, and geology; (2) hydrologic data, such as stream networks and streamflow-gaging stations; and (3) climatic data, such as snow-course, snow-telemetry, radiosonde, and meteorological data. Precipitation-runoff models were developed and calibrated for the North Fork watershed within the American River Basin and for the East Fork watershed within the Carson River Basin. (These watersheds were selected to represent the climatic and physiographic variability of the two larger basins.) Synthesized climate scenarios then were used in the model to predict potential effects of climate change.

  6. Hydrochemical data for the Truckee River drainage system, California and Nevada

    SciTech Connect

    Benson, L.V.

    1984-01-01

    Surface-water samples were collected from the Truckee River drainage system during 1975, 1976, and 1981. Data resulting from chemical analyses of these samples, as well as certain other previously unpublished data, are tabulated in this report. The report contains the following hydrochemical data: (1) chemical composition of 21 tributaries to Lake Tahoe and the Truckee River upstream from Farad, California (May and October 1971, and June 1972); (2) chemical composition of the Truckee River at Tahoe City (January 1968 to January 1975) and at Farad, California (January 1968 to June 1980), and of the Little Truckee River upstream from Stampede Reservoir, California (January 1968 to April 1980); (3) chemical composition of the Truckee River at 11 sites from Tahoe City, California, to Nixon, Nevada (June 4 and September 3, 1975); (4) historical chemical analyses of water from Pyramid Lake, Nevada (1882 to 1973); (5) chemical composition (November 1975 to December 1976), water temperature (January 1976 to November 1977), and dissolved oxygen (January 1976 to November 1977) at various depths in Pyramid Lake, Nevada; (6) chemical composition of pore fluids from and carbonate mineralogy of sediment greater than 2 micrometers in five cores, Pyramid Lake, Nevada; (7) chemical composition of the Truckee River at Farad, California (January to July 1981); and (8) chemical composition of tufa from the Pyramid Lake basin. 9 references, 3 figures, 14 tables.

  7. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    NASA Astrophysics Data System (ADS)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  8. Hantavirus Infections among Overnight Visitors to Yosemite National Park, California, USA, 2012

    PubMed Central

    Núñez, Jonathan J.; Fritz, Curtis L.; Knust, Barbara; Buttke, Danielle; Enge, Barryett; Novak, Mark G.; Kramer, Vicki; Osadebe, Lynda; Messenger, Sharon; Albariño, César G.; Ströher, Ute; Niemela, Michael; Amman, Brian R.; Wong, David; Manning, Craig R.; Nichol, Stuart T.; Rollin, Pierre E.; Xia, Dongxiang; Watt, James P.

    2014-01-01

    In summer 2012, an outbreak of hantavirus infections occurred among overnight visitors to Yosemite National Park in California, USA. An investigation encompassing clinical, epidemiologic, laboratory, and environmental factors identified 10 cases among residents of 3 states. Eight case-patients experienced hantavirus pulmonary syndrome, of whom 5 required intensive care with ventilatory support and 3 died. Staying overnight in a signature tent cabin (9 case-patients) was significantly associated with becoming infected with hantavirus (p<0.001). Rodent nests and tunnels were observed in the foam insulation of the cabin walls. Rodent trapping in the implicated area resulted in high trap success rate (51%), and antibodies reactive to Sin Nombre virus were detected in 10 (14%) of 73 captured deer mice. All signature tent cabins were closed and subsequently dismantled. Continuous public awareness and rodent control and exclusion are key measures in minimizing the risk for hantavirus infection in areas inhabited by deer mice. PMID:24565589

  9. Investigation of and Response to 2 Plague Cases, Yosemite National Park, California, USA, 2015

    PubMed Central

    Danforth, Mary; Novak, Mark; Petersen, Jeannine; Mead, Paul; Kingry, Luke; Weinburke, Matthew; Buttke, Danielle; Hacker, Gregory; Tucker, James; Niemela, Michael; Jackson, Bryan; Padgett, Kerry; Liebman, Kelly; Vugia, Duc

    2016-01-01

    In August 2015, plague was diagnosed for 2 persons who had visited Yosemite National Park in California, USA. One case was septicemic and the other bubonic. Subsequent environmental investigation identified probable locations of exposure for each patient and evidence of epizootic plague in other areas of the park. Transmission of Yersinia pestis was detected by testing rodent serum, fleas, and rodent carcasses. The environmental investigation and whole-genome multilocus sequence typing of Y. pestis isolates from the patients and environmental samples indicated that the patients had been exposed in different locations and that at least 2 distinct strains of Y. pestis were circulating among vector–host populations in the area. Public education efforts and insecticide applications in select areas to control rodent fleas probably reduced the risk for plague transmission to park visitors and staff. PMID:27870634

  10. Hantavirus infections among overnight visitors to Yosemite National Park, California, USA, 2012.

    PubMed

    Núñez, Jonathan J; Fritz, Curtis L; Knust, Barbara; Buttke, Danielle; Enge, Barryett; Novak, Mark G; Kramer, Vicki; Osadebe, Lynda; Messenger, Sharon; Albariño, César G; Ströher, Ute; Niemela, Michael; Amman, Brian R; Wong, David; Manning, Craig R; Nichol, Stuart T; Rollin, Pierre E; Xia, Dongxiang; Watt, James P; Vugia, Duc J

    2014-03-01

    In summer 2012, an outbreak of hantavirus infections occurred among overnight visitors to Yosemite National Park in California, USA. An investigation encompassing clinical, epidemiologic, laboratory, and environmental factors identified 10 cases among residents of 3 states. Eight case-patients experienced hantavirus pulmonary syndrome, of whom 5 required intensive care with ventilatory support and 3 died. Staying overnight in a signature tent cabin (9 case-patients) was significantly associated with becoming infected with hantavirus (p<0.001). Rodent nests and tunnels were observed in the foam insulation of the cabin walls. Rodent trapping in the implicated area resulted in high trap success rate (51%), and antibodies reactive to Sin Nombre virus were detected in 10 (14%) of 73 captured deer mice. All signature tent cabins were closed and subsequently dismantled. Continuous public awareness and rodent control and exclusion are key measures in minimizing the risk for hantavirus infection in areas inhabited by deer mice.

  11. Liquefaction caused by the 2009 Olancha, California (USA), M5.2 earthquake

    USGS Publications Warehouse

    Holzer, T.L.; Jayko, A.S.; Hauksson, E.; Fletcher, J.P.B.; Noce, T.E.; Bennett, M.J.; Dietel, C.M.; Hudnut, K.W.

    2010-01-01

    The October 3, 2009 (01:16:00 UTC), Olancha M5.2 earthquake caused extensive liquefaction as well as permanent horizontal ground deformation within a 1.2 km2area earthquake in Owens Valley in eastern California (USA). Such liquefaction is rarely observed during earthquakes of M ≤ 5.2. We conclude that subsurface conditions, not unusual ground motion, were the primary factors contributing to the liquefaction. The liquefaction occurred in very liquefiable sands at shallow depth (< 2 m) in an area where the water table was near the land surface. Our investigation is relevant to both geotechnical engineering and geology. The standard engineering method for assessing liquefaction potential, the Seed–Idriss simplified procedure, successfully predicted the liquefaction despite the small earthquake magnitude. The field observations of liquefaction effects highlight a need for caution by earthquake geologists when inferring prehistoric earthquake magnitudes from paleoliquefaction features because small magnitude events may cause such features.

  12. Tick-borne Relapsing Fever and Borrelia hermsii, Los Angeles County, California, USA

    PubMed Central

    Raffel, Sandra J.; Schrumpf, Merry E.; Webster, Larry S.; Marques, Adriana R.; Spano, Robyn; Rood, Michael; Burns, Joe; Hu, Renjie

    2009-01-01

    The primary cause of tick-borne relapsing fever in western North America is Borrelia hermsii, a rodent-associated spirochete transmitted by the fast-feeding soft tick Ornithodoros hermsi. We describe a patient who had an illness consistent with relapsing fever after exposure in the mountains near Los Angeles, California, USA. The patient’s convalescent-phase serum was seropositive for B. hermsii but negative for several other vector-borne bacterial pathogens. Investigations at the exposure site showed the presence of O. hermsi ticks infected with B. hermsii and the presence of rodents that were seropositive for the spirochete. We determined that this tick-borne disease is endemic to the San Gabriel Mountains near the greater Los Angeles metropolitan area. PMID:19624916

  13. Earliest record of the invasive Foraminifera Trochammina hadai in San Francisco Bay, California, USA

    USGS Publications Warehouse

    McGann, Mary

    2014-01-01

    In 1995, Trochammina hadai, a benthic Foraminifera prevalent in Japanese estuaries, was found in San Francisco Bay, California, USA. Subsequent field investigations determined that the species was also present in nearly all of the major ports and estuaries along the western United States. Because of its widespread colonization, it is of interest to determine when T. hadai first appeared as an invasive in the coastal regions of the North Pacific. In San Francisco Bay, the species was not found in 404 surface samples collected between 1930 and 1981. In 1983, however, a grab sediment sample from one of four sites in the southern portion of the bay contained T. hadai. This site was the most northern of the four and contained 12 specimens of the invasive, comprising 1.5% of the assemblage. This is the earliest appearance on record of T. hadai in San Francisco Bay.

  14. Investigation of and Response to 2 Plague Cases, Yosemite National Park, California, USA, 2015.

    PubMed

    Danforth, Mary; Novak, Mark; Petersen, Jeannine; Mead, Paul; Kingry, Luke; Weinburke, Matthew; Buttke, Danielle; Hacker, Gregory; Tucker, James; Niemela, Michael; Jackson, Bryan; Padgett, Kerry; Liebman, Kelly; Vugia, Duc; Kramer, Vicki

    2016-12-01

    In August 2015, plague was diagnosed for 2 persons who had visited Yosemite National Park in California, USA. One case was septicemic and the other bubonic. Subsequent environmental investigation identified probable locations of exposure for each patient and evidence of epizootic plague in other areas of the park. Transmission of Yersinia pestis was detected by testing rodent serum, fleas, and rodent carcasses. The environmental investigation and whole-genome multilocus sequence typing of Y. pestis isolates from the patients and environmental samples indicated that the patients had been exposed in different locations and that at least 2 distinct strains of Y. pestis were circulating among vector-host populations in the area. Public education efforts and insecticide applications in select areas to control rodent fleas probably reduced the risk for plague transmission to park visitors and staff.

  15. Burn severity and non-native species in Yosemite National Park, California, USA

    USGS Publications Warehouse

    Kaczynski, Kristen M.; Beatty, Susan W.; van Wagtendonk, Jan W.; Marshall, Kristin N.

    2011-01-01

    We examined non-native species density three years after the Tuolumne Fire, which burned 1540 ha in upper montane forest in California, USA. We sampled 60 plots, stratified by burn severity (low, moderate, or high severity) and landscape position (lowland or upland). We detected non-native species in 8 of 11 (73 %) of high severity lowland sites and in 5 of 10 (50 %) of moderate severity lowland sites but, overall, richness and abundance was low. We detected only five non-native species, of which bull thistle (Cirsium vulgare [Savi] Ten.) was the most common. Although non-native abundance is currently low, we recommend continued low intensity monitoring, especially on high severity burned lowland sites.

  16. Eremidrilus n. gen. (Annelida, Clitellata, Lumbriculidae) and new species from California, U.S.A.

    USGS Publications Warehouse

    Fend, S.V.; Rodriguez, P.

    2003-01-01

    A new Nearctic lumbriculid genus, Eremidrilus, includes four new California species (E. elegans, E. coyote, E. ritocsi, and E. felini) plus the new combination of Trichodrilus allegheniensis Cook, 1971 from the eastern U.S.A. Eremidrilus has the Trichodrilus arrangement of reproductive organs, but is distinguished by a filiform proboscis and male pores on folded porophores. A combination of other characters distinguishes most Eremidrilus species from most Trichodrilus species: (i) elongate-tubular thin-walled atria, (ii) posterior vasa deferentia forming a loop in XI, (iii) no posterior blood vessels, (iv) nephridia not present in VII. Spermathecae restricted to the first postatrial segment and laterally displaced spermathecal pores differentiate the western Eremidrilus species from the single eastern species. ?? 2003 NRC.

  17. Precision of Tidal Datums in the Sacramento River, California.

    DTIC Science & Technology

    1980-06-01

    P ’L I LaJW ______ MTLL VAGo ab. ao 4b. oo 6b. oa 90.00 100.00 120o.00 NAUTICAL MILES FROM PRESIDIO Figure 7. 19-YEAR TIDAL DATUMS AT LOW WATER ALONG...California 95814 22. Mr. Jan Stevens , Assistant Attorney General 1 California Department of Justice 555 Capitol Mall Sacramento, California 95814 23

  18. An Assessment of Climate Change Impacts on Los Angeles (California USA) Hospitals, Wildfires Highest Priority.

    PubMed

    Adelaine, Sabrina A; Sato, Mizuki; Jin, Yufang; Godwin, Hilary

    2017-10-01

    Introduction Although many studies have delineated the variety and magnitude of impacts that climate change is likely to have on health, very little is known about how well hospitals are poised to respond to these impacts. Hypothesis/Problem The hypothesis is that most modern hospitals in urban areas in the United States need to augment their current disaster planning to include climate-related impacts. Using Los Angeles County (California USA) as a case study, historical data for emergency department (ED) visits and projections for extreme-heat events were used to determine how much climate change is likely to increase ED visits by mid-century for each hospital. In addition, historical data about the location of wildfires in Los Angeles County and projections for increased frequency of both wildfires and flooding related to sea-level rise were used to identify which area hospitals will have an increased risk of climate-related wildfires or flooding at mid-century. Only a small fraction of the total number of predicted ED visits at mid-century would likely to be due to climate change. By contrast, a significant portion of hospitals in Los Angeles County are in close proximity to very high fire hazard severity zones (VHFHSZs) and would be at greater risk to wildfire impacts as a result of climate change by mid-century. One hospital in Los Angeles County was anticipated to be at greater risk due to flooding by mid-century as a result of climate-related sea-level rise. This analysis suggests that several Los Angeles County hospitals should focus their climate-change-related planning on building resiliency to wildfires. Adelaine SA , Sato M , Jin Y , Godwin H . An assessment of climate change impacts on Los Angeles (California USA) hospitals, wildfires highest priority. Prehosp Disaster Med. 2017;32(5):556-562.

  19. Intertidal benthic resources of the Copper River Delta, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Powers, Sean P.; Bishop, Mary Anne; Grabowski, Jonathan H.; Peterson, Charles H.

    2002-02-01

    The Copper River Delta, Alaska is the largest contiguous coastal wetland system along the West Coast of North America. Vast expanses of tidal mud flats formed by sediments carried by the suspended load of the Copper River serve as a connection between the Gulf of Alaska and the extensive network of wetlands, rivers and sloughs of the delta system. In addition to providing habitat for resident fish, shrimp and crabs, these tidal flats serve as critical feeding grounds for up to 5 million migratory shorebirds as well as an entry and exit corridor for three species of commercially fished salmonids. Here we report the first description of the benthic community of these intertidal flats. Between April and September 2000, we conducted three samplings on the Copper River Delta in which we quantified benthic macro-invertebrates inhabiting silt-clay sediments, the dominant substrate in the system, over a range of tidal inundation. Specifically, sampling was performed in two areas on the delta: near the outflows of the Eyak River and Pete Dahl Slough. Pore-water salinity of surficial sediment ranged from 4 psu during peak summer flow of the Copper River to 14 psu in April prior to increased riverine input. Sediment temperatures corresponded to ambient air temperatures with lowest temperatures during the April-September observation period recorded in April (4°C) and warmest in August (16°C). The benthic community of the delta's tidal flats was characterised by low species diversity and was dominated by the tellinid bivalve Macoma balthica, which reached densities greater than 4000 m -2. Age-length relationship of M. balthica indicated slow growth and longevity of up to 8 years. Polychaete densities, primarily the phyllodocid Eteone longa, were low throughout the study period, reaching a maximum of only 700 m -2 in August. Amphipod densities, primarily the corophid amphipod Corophium salmonis, were high (up to 7000 m -2) only during the August sampling. Spatial patterns of

  20. Coccidioidomycosis among Workers Constructing Solar Power Farms, California, USA, 2011-2014.

    PubMed

    Wilken, Jason A; Sondermeyer, Gail; Shusterman, Dennis; McNary, Jennifer; Vugia, Duc J; McDowell, Ann; Borenstein, Penny; Gilliss, Debra; Ancock, Benedict; Prudhomme, Janice; Gold, Deborah; Windham, Gayle C; Lee, Lauren; Materna, Barbara L

    2015-11-01

    Coccidioidomycosis is associated with soil-disruptive work in Coccidioides-endemic areas of the southwestern United States. Among 3,572 workers constructing 2 solar power-generating facilities in San Luis Obispo County, California, USA, we identified 44 patients with symptom onset during October 2011-April 2014 (attack rate 1.2 cases/100 workers). Of these 44 patients, 20 resided in California outside San Luis Obispo County and 10 resided in another state; 9 were hospitalized (median 3 days), 34 missed work (median 22 days), and 2 had disseminated disease. Of the 25 patients who frequently performed soil-disruptive work, 6 reported frequent use of respiratory protection. As solar farm construction in Coccidioides-endemic areas increases, additional workers will probably be exposed and infected unless awareness is emphasized and effective exposure reduction measures implemented, including limiting dust generation and providing respiratory protection. Medical providers, including those in non-Coccidioides-endemic areas, should suspect coccidioidomycosis in workers with compatible illness and report cases to their local health department.

  1. Community ecology and disease risk: lizards, squirrels, and the Lyme disease spirochete in California, USA.

    PubMed

    Salkeld, Daniel J; Lane, Robert S

    2010-01-01

    Vector-borne zoonotic diseases are often maintained in complex transmission cycles involving multiple vertebrate hosts and their arthropod vectors. In the state of California, U.S.A., the spirochete Borrelia burgdorferi, which causes Lyme disease, is transmitted between vertebrate hosts by the western black-legged tick, Ixodes pacificus. Several mammalian species serve as reservoir hosts of the spirochete, but levels of tick infestation, reservoir competence, and Borrelia-infection prevalence vary widely among such hosts. Here, we model the host (lizards, Peromyscus mice, Californian meadow voles, dusky-footed wood rats, and western gray squirrels), vector, and pathogen community of oak woodlands in northwestern California to determine the relative importance of different tick hosts. Observed infection prevalence of B. burgdorferi in host-seeking I. pacificus nymphs was 1.8-5.3%, and our host-community model estimated an infection prevalence of 1.6-2.2%. The western gray squirrel (Sciurus griseus) was the only source of infected nymphs. Lizards, which are refractory to Borrelia infection, are important in feeding subadult ticks but reduce disease risk (nymphal infection prevalence). Species identity is therefore critical in understanding and determining the local disease ecology.

  2. Quantification of pollutants emitted from very large wildland fires in Southern California, USA

    NASA Astrophysics Data System (ADS)

    Clinton, Nicholas E.; Gong, Peng; Scott, Klaus

    This study investigates the efficacy of the first order fire effects model (FOFEM) implemented in a geographic information system for wildland fire emissions estimation. The objective of the study was to quantify the source and composition of smoke and emissions from wildland fires that burned 235,267 ha in Southern California, USA, in October 2003. From inputs of vegetation, fuel model data, weather condition data, and fire perimeters, the model produces estimates of ten pollutant species (10 and 2.5 μm particulates, carbon dioxide, carbon monoxide, methane, non-methane hydrocarbons, ammonia, nitrous oxide, oxides of nitrogen, sulfur dioxide) from ten fuel categories (duff, litter, woody debris in three size classes, herbs, shrubs, tree regeneration, live branch-wood and live foliage). From the Southern California fires, the model estimated over 5 million metric tons (megagrams) of total pollutant emissions over several days. These emissions include over 457,000 tons of carbon monoxide, over 6 million tons (approximately 6 Tg) of carbon dioxide, and over 46,000 tons of particulates. Fuels that contributed the most mass to the fire emissions were predominantly shrubs and duff.

  3. Quantifying the fire regime distributions for severity in Yosemite National Park, California, USA

    USGS Publications Warehouse

    Thode, Andrea E.; van Wagtendonk, Jan W.; Miller, Jay D.; Quinn, James F.

    2011-01-01

    This paper quantifies current fire severity distributions for 19 different fire-regime types in Yosemite National Park, California, USA. Landsat Thematic Mapper remote sensing data are used to map burn severity for 99 fires (cumulatively over 97 000 ha) that burned in Yosemite over a 20-year period. These maps are used to quantify the frequency distributions of fire severity by fire-regime type. A classification is created for the resultant distributions and they are discussed within the context of four vegetation zones: the foothill shrub and woodland zone; the lower montane forest zone; the upper montane forest zone and the subalpine forest zone. The severity distributions can form a building block from which to discuss current fire regimes across the Sierra Nevada in California. This work establishes a framework for comparing the effects of current fires on our landscapes with our notions of how fires historically burned, and how current fire severity distributions differ from our desired future conditions. As this process is refined, a new set of information will be available to researchers and land managers to help understand how fire regimes have changed from the past and how we might attempt to manage them in the future.

  4. Application of environmental groundwater tracers at the Sulphur Bank Mercury Mine, California, USA

    USGS Publications Warehouse

    Engle, M.A.; Goff, F.; Jewett, D.G.; Reller, G.J.; Bauman, J.B.

    2008-01-01

    Boron, chloride, sulfate, ??D, ??18O, and 3H concentrations in surface water and groundwater samples from the Sulphur Bank Mercury Mine (SBMM), California, USA were used to examine geochemical processes and provide constraints on evaporation and groundwater flow. SBMM is an abandoned sulfur and mercury mine with an underlying hydrothermal system, adjacent to Clear Lake, California. Results for non-3H tracers (i.e., boron, chloride, sulfate, ??D, and ??18O) identify contributions from six water types at SBMM. Processes including evaporation, mixing, hydrothermal water input and possible isotopic exchange with hydrothermal gases are also discerned. Tritium data indicate that hydrothermal waters and other deep groundwaters are likely pre-bomb (before ???1952) in age while most other waters were recharged after ???1990. A boron-based steady-state reservoir model of the Herman Impoundment pit lake indicates that 71-79% of its input is from meteoric water with the remainder from hydrothermal contributions. Results for groundwater samples from six shallow wells over a 6-month period for ??D and ??18O suggests that water from Herman Impoundment is diluted another 3% to more than 40% by infiltrating meteoric water, as it leaves the site. Results for this investigation show that environmental tracers are an effective tool to understand the SBMM hydrogeologic regime. ?? Springer-Verlag 2007.

  5. Coccidioidomycosis among Workers Constructing Solar Power Farms, California, USA, 2011–2014

    PubMed Central

    Sondermeyer, Gail; Shusterman, Dennis; McNary, Jennifer; Vugia, Duc J.; McDowell, Ann; Borenstein, Penny; Gilliss, Debra; Ancock, Benedict; Prudhomme, Janice; Gold, Deborah; Windham, Gayle C.; Lee, Lauren; Materna, Barbara L.

    2015-01-01

    Coccidioidomycosis is associated with soil-disruptive work in Coccidioides-endemic areas of the southwestern United States. Among 3,572 workers constructing 2 solar power–generating facilities in San Luis Obispo County, California, USA, we identified 44 patients with symptom onset during October 2011–April 2014 (attack rate 1.2 cases/100 workers). Of these 44 patients, 20 resided in California outside San Luis Obispo County and 10 resided in another state; 9 were hospitalized (median 3 days), 34 missed work (median 22 days), and 2 had disseminated disease. Of the 25 patients who frequently performed soil-disruptive work, 6 reported frequent use of respiratory protection. As solar farm construction in Coccidioides-endemic areas increases, additional workers will probably be exposed and infected unless awareness is emphasized and effective exposure reduction measures implemented, including limiting dust generation and providing respiratory protection. Medical providers, including those in non–Coccidioides-endemic areas, should suspect coccidioidomycosis in workers with compatible illness and report cases to their local health department. PMID:26484688

  6. Factors influencing the variation in capture rates of shrews in southern California, USA

    USGS Publications Warehouse

    Laakkonen, Juha; Fisher, Robert N.; Case, Ted J.

    2003-01-01

    We examined the temporal variation in capture rates of shrewsNotiosorex crawfordi (Coues, 1877) and Sorex ornatus (Merriam, 1895) in 20 sites representing fragmented and continuous habitats in southern California, USA. InN. crawfordi, the temporal variation was significantly correlated with the mean capture rates. Of the 6 landscape variables analyzed (size of the landscape, size of the sample area, altitude, edge, longitude and latitude), sample area was positively correlated with variation in capture rates ofN. crawfordi. InS. ornatus, longitude was negatively correlated with variation in capture rates. Analysis of the effect of precipitation on the short- and long-term capture rates at 2 of the sites showed no correlation between rainfall and capture rates of shrews even though peak number of shrews at both sites were reached during the year of highest amount of rainfall. A key problem confounding capture rates of shrews in southern California is the low overall abundance of both shrew species in all habitats and seasons.

  7. Toxicity of two insecticides to California, USA, anurans and its relevance to declining amphibian populations

    USGS Publications Warehouse

    Sparling, D.W.; Fellers, G.M.

    2009-01-01

    Contaminants have been associated with population declines of several amphibian species in California (USA). Pesticides from the Central Valley of California are transported by winds into the Sierra Nevada Mountains and precipitate into wet meadows where amphibians breed. The present study examined the chronic toxicity of two of the insecticides most commonly used in the Central Valley and found in the mountains, chlorpyrifos and endosulfan, to larval Pacific treefrogs (Pseudacris regilla) and foothill yellow-legged frogs (Rana boylii) and discusses the implications of this toxicity to declining amphibian populations. Larvae were exposed to the pesticides from Gosner stages 25 to 26 through metamorphosis. The estimated median lethal concentration (LC50) for chlorpyrifos was 365 ??g/L in P. regilla and 66.5 ??g/L for R. boylii. Time to metamorphosis increased with concentration of chlorpyrifos in both species, and cholinesterase activity declined with exposure concentration in metamorphs of both species at Gosner stages 42 to 46. For endosulfan, the estimated LC50 was 15.6 ??g/L for P. regilla and 0.55 ??g/L for R. boylii. All R. boylii exposed to concentrations of greater than 0.8 ??g/L died before they entered metamorphosis. Pseudacris regilla remains relatively abundant and is broadly distributed throughout California. In contrast, R. boylii is among the species experiencing severe population declines. The present study adds to the increasing evidence that pesticides are very harmful to amphibians living in areas that are miles from sources of pesticide application. ?? 2009 SETAC.

  8. Landscape-level connectivity in coastal southern California, USA, as assessed through carnivore habitat suitability

    USGS Publications Warehouse

    Hunter, Richard D.; Fisher, Robert N.; Crooks, Kevin R.

    2003-01-01

    Although the fragmentation of the natural landscape of coastal southern California, USA, is accelerating, large-scale assessments of regional connectivity are lacking. Because of their large area requirements and long dispersal movements, mammalian carnivores can be effective focal species to use when evaluating landscape-level connectivity. Our goal was to make an initial assessment of the extent of landscape-level connectivity in coastal southern California using mountain lions (Felis concolor [Linnaeus]) and bobcats (Felis rufus [Shreber]) as focal species. We first characterized habitat preferences for mountain lions and bobcats from previously derived habitat relationship models for these species; the resulting maps provided a coarse view of habitat preferences for use at regional scales. We then constructed GIS models to evaluate the disturbance impact of roadways and development, major determinants of carnivore distribution and abundance in the south coast region. Finally, we combined the habitat relationship models with the disturbance impact models to characterize habitat connectivity for mountain lions and bobcats in the ecoregion. Habitat connectivity in the ecoregion appeared higher for bobcats than for mountain lions due in part to higher habitat suitability for bobcats in coastal lowland areas. Our models suggest that much of the key carnivore habitat in the coastal southern California is at risk; over 80% of high suitability habitat and over 90% of medium suitability habitat for carnivores is found in the least protected land management classes. Overall, these models allow for (1) identification of core habitat blocks for carnivores and key landscape connections between core areas, (2) evaluation of the level of protection of these areas, and (3) a regional framework within which to develop and coordinate local management and conservation plans.

  9. Landscape-level Connectivity in Coastal Southern California, USA, as Assessed through Carnivore Habitat Suitability

    USGS Publications Warehouse

    Hunter, R.D.; Fisher, R.N.; Crooks, K.R.

    2003-01-01

    Although the fragmentation of the natural landscape of coastal southern California, USA, is accelerating, large-scale assessments of regional connectivity are lacking. Because of their large area requirements and long dispersal movements, mammalian carnivores can be effective focal species to use when evaluating landscape-level connectivity. Our goal was to make an initial assessment of the extent of landscape-level connectivity in coastal southern California using mountain lions (Felis concolor [Linnaeusl) and bobcats (Felis rufus [Shreber]) as focal species. We first characterized habitat preferences for mountain lions and bobcats from previously derived habitat relationship models for these species; the resulting maps provided a coarse view of habitat preferences for use at regional scales. We then constructed GIS models to evaluate the disturbance impact of roadways and development, major determinants of carnivore distribution and abundance in the south coast region. Finally, we combined the habitat relationship models with the disturbance impact models to characterize habitat connectivity for mountain lions and bobcats in the ecoregion. Habitat connectivity in the ecoregion appeared higher for bobcats than for mountain lions due in part to higher habitat suitability for bobcats in coastal lowland areas. Our models suggest that much of the key carnivore habitat in the coastal southern California is at risk; over 80% of high suitability habitat and over 90% of medium suitability habitat for carnivores is found in the least protected land management classes. Overall, these models allow for (1) identification of core habitat blocks for carnivores and key landscape connections between core areas, (2) evaluation of the level of protection of these areas, and (3) a regional framework within which to develop and coordinate local management and conservation plans.

  10. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    USGS Publications Warehouse

    Crandall, C.A.; Katz, B.G.; Hirten, J.J.

    1999-01-01

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). ?? Springer-Verlag.

  11. Identifying and Characterizing Atmospheric Rivers Impacting Southern California

    NASA Astrophysics Data System (ADS)

    Harris, S. M.; Carvalho, L. V.

    2015-12-01

    Atmospheric rivers (ARs) are channels of high water vapor flux within the low atmosphere that transport moisture towards midlatitudes on synoptic timescales. For areas with coastal mountainous terrain such as North America's west coast, ARs often produce high intensity precipitation due to orographic forcing. Regional AR studies focus on the Pacific Northwest as this is where ARs landfall most frequently. For Southern California (SCA) there are relatively few AR landfalls per year, however, ARs that do landfall in SCA provide a majority of the area's annual total precipitation as well as some of the region's highest intensity rainfall. As SCA is prone to both drought as well as precipitation-induced hazards, and because the area is dependent on relatively few precipitation events to provide the bulk of annual rainfall totals, any changes to storm frequency or intensity may dramatically impact the region. It imperative to understand the characteristics and mechanisms behind high-impact ARs events that landfall in SCA in order to properly forecast and prepare for future occurrences, particularly as these events are important for water management and hazard mitigation. We develop an algorithm that uses daily total precipitable water fields from reanalysis to identify AR activity impacting North America's western coast from 1979 to 2013 and categorizes identified AR events according to landfall region. Additional reanalysis fields are used to create composites of atmospheric variables prior to, on the day of, and after AR landfall in order to determine and differentiate the defining characteristics for ARs impacting these varying regions. This allows us to characterize the atmospheric makeup behind ARs impacting SCA, including possible indications as to the mechanisms behind their initiation as well as trajectory.

  12. Regional Sediment Budget of the Columbia River Littoral Cell, USA

    USGS Publications Warehouse

    Buijsman, Maarten C.; Sherwood, C.R.; Gibbs, A.E.; Gelfenbaum, G.; Kaminsky, G.M.; Ruggiero, P.; Franklin, J.

    2002-01-01

    Summary -- In this Open-File Report we present calculations of changes in bathymetric and topographic volumes for the Grays Harbor, Willapa Bay, and Columbia River entrances and the adjacent coasts of North Beach, Grayland Plains, Long Beach, and Clatsop Plains for four intervals: pre-jetty - 1920s (Interval 1), 1920s - 1950s (Interval 2), 1950s - 1990s (Interval 3), and 1920s 1990s (Interval 4). This analysis is part of the Southwest Washington Coastal Erosion Study (SWCES), the goals of which are to understand and predict the morphologic behavior of the Columbia River littoral cell on a management scale of tens of kilometers and decades. We obtain topographic Light Detection and Ranging (LIDAR) data from a joint project by the U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), National Aeronautic and Space Administration (NASA), and the Washington State Department of Ecology (DOE) and bathymetric data from the U.S. Coast and Geodetic Survey (USC&GS), U.S. Army Corps of Engineers (USACE), USGS, and the DOE. Shoreline data are digitized from T-Sheets and aerial photographs from the USC&GS and National Ocean Service (NOS). Instead of uncritically adjusting each survey to NAVD88, a common vertical land-based datum, we adjust some surveys to produce optimal results according to the following criteria. First, we minimize offsets in overlapping surveys within the same era, and second, we minimize bathymetric changes (relative to the 1990s) in deep water, where we assume minimal change has taken place. We grid bathymetric and topographic datasets using kriging and triangulation algorithms, calculate bathymetric-change surfaces for each interval, and calculate volume changes within polygons that are overlaid on the bathymetric-change surfaces. We find similar morphologic changes near the entrances to Grays Harbor and the Columbia River following jetty construction between 1898 and 1916 at the Grays Harbor entrance and between 1885 and

  13. Predicting River Discharge Rates in California Watersheds of the Russian River and Other North Coast River Basins

    NASA Astrophysics Data System (ADS)

    Shupe, J.; Potter, C. S.; Gross, P. M.; Genovese, V. B.; Klooster, S. A.

    2010-12-01

    This study describes applications of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model coupled with a surface hydrologic routing scheme previously called the Hydrological Routing Algorithm (HYDRA) to model river discharge rates across selected California watersheds in the North Coast region of the state. For mountainous areas, CASA-HYDRA snowmelt algorithms have been modified with equations from the USDA Snowmelt Runoff Model (SRM), which has been refined to predict daily stream flow in mountain basins where snowmelt is a notable runoff factor. Results show that, based on CASA-HYDRA model predictions of monthly flow rates across the ten complete stream gauges in the Russian River basin from 2000 to 2007, the typical model-to-measurement correlation between monthly river flow rates was R squared = 0.76 (with E = 0.61). Similar validation results for seasonal and annual flow predictions have been developed for numerous coastal redwood forest watersheds where streams support critical wild fisheries habitat. Future model applications for land cover and climate change in northern California’s coastal watersheds are outlined, with emphasis on impacts of municipal and agricultural water demands.

  14. Large-scale dam removal on the Elwha River, Washington, USA: Coastal geomorphic change

    NASA Astrophysics Data System (ADS)

    Gelfenbaum, Guy; Stevens, Andrew W.; Miller, Ian; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily

    2015-10-01

    Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that 70% of the sand and gravel and 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological responses.

  15. Groundwater flood of a river terrace in southwest Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Gotkowitz, Madeline B.; Attig, John W.; McDermott, Thomas

    2014-09-01

    Intense rainstorms in 2008 resulted in wide-spread flooding across the Midwestern United States. In Wisconsin, floodwater inundated a 17.7-km2 area on an outwash terrace, 7.5 m above the mapped floodplain of the Wisconsin River. Surface-water runoff initiated the flooding, but results of field investigation and modeling indicate that rapid water-table rise and groundwater inundation caused the long-lasting flood far from the riparian floodplain. Local geologic and geomorphic features of the landscape lead to spatial variability in runoff and recharge to the unconfined sand and gravel aquifer, and regional hydrogeologic conditions increased groundwater discharge from the deep bedrock aquifer to the river valley. Although reports of extreme cases of groundwater flooding are uncommon, this occurrence had significant economic and social costs. Local, state and federal officials required hydrologic analysis to support emergency management and long-term flood mitigation strategies. Rapid, sustained water-table rise and the resultant flooding of this high-permeability aquifer illustrate a significant aspect of groundwater system response to an extreme precipitation event. Comprehensive land-use planning should encompass the potential for water-table rise and groundwater flooding in a variety of hydrogeologic settings, as future changes in climate may impact recharge and the water-table elevation.

  16. Dissolved and Particulate Amino Acids in the Lower Mississippi and Pearl Rivers (USA)

    NASA Astrophysics Data System (ADS)

    Duan, S.; Bianchi, T. S.

    2006-12-01

    Seasonal changes (monthly samples) in abundance and composition of dissolved and particulate amino acids were observed at one station in the lower Mississippi and Pearl Rivers (MS, USA) from September 2001 to August 2003. Spatial variability was also observed during a 4 day transmit from river-mile 225 to river mouth (Head of Passes, LA) in the Mississippi River, and a two-day downstream sampling from Jackson (MS) to Stennis Space Center (MS). Temporal data in the lower Mississippi River showed significantly lower concentrations of dissolved combined amino acids (DCAA, 0.45-1.4 μ M) and dissolved amino acids in high molecular weight fraction (HMW DAA, 0.13-0.27 μ M) than in the Pearl River (DCAA, 0.91-2.8 μ M; HMW DAA, 0.25-0.95 μ M). DCAA and HMW DAA in both rivers were generally higher during high-flow periods. DFAA was significantly lower than DCAA in both rivers (0.05-0.08 μ M), and displayed minimal seasonal variability. Total particulate amino acids (PAA) in both rivers were in the same range (0.7-1.4 μ M). A C- normalized yield of PAA (PAA-C/POC) was negatively correlated with suspended particulate matter and positively with chl-a in both rivers. No significant difference in PAA composition was observed in the two rivers. However, PAA in both rivers was relatively enriched in arginine, alanine, methionine and leucine, and depleted in aspartic acid, serine, and non-protein amino acids, compared to DCAA. While DCAA spatial variability in the lower Mississippi River was minimal, decreases in PAA (from 1.06 to 0.43 μ M) were consistent with particulate organic carbon (POC) and particulate nitrogen (PN). Frequent variations in the PAA-C/POC ratio were inversely correlated with suspended particulate matter and PAA (R = -0.7, n = 48), suggesting short- scale sedimentation and resuspension events. A gradual increase in % non-protein AA along with a loss of phytoplankton biomass along the river, suggested was indicative of bacterial utilization of labile

  17. Turbidity and suspended-sediment transport in the Russian River Basin, California

    USGS Publications Warehouse

    Ritter, John R.; Brown, William M.

    1971-01-01

    The Russian River in north coastal California has a persistent turbidness, which has reportedly caused a decline in the success of the sports fishermen. As a consequence, the number of sports fishermen angling in the river has declined, and industries dependent on their business have suffered. To determine the source of the turbidity and the rate of sediment transport in the basin, a network of sampling station was established in February 1964 along the river, on some of its tributaries, and near Lake Pillsbury in the upper Eel River basin.

  18. Reprint of: Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change

    NASA Astrophysics Data System (ADS)

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua B.; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-10-01

    A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years. As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of 1 m (greater where pools filled), changed the river from pool-riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, 1.2 million t of new sediment ( 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the

  19. Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change

    NASA Astrophysics Data System (ADS)

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua B.; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years. As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool-riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along

  20. Large-Scale Dam Removal on the Elwha River, Washington, USA: River Channel and Floodplain Geomorphic Change

    NASA Astrophysics Data System (ADS)

    East, A. E.; Pess, G. R.; Bountry, J.; Magirl, C. S.; Ritchie, A. C.; Logan, J. B.; Randle, T. J.; Mastin, M. C.; Duda, J.; Liermann, M. C.; McHenry, M. L.; Beechie, T. J.; Shafroth, P. B.

    2014-12-01

    A substantial increase in fluvial sediment supply causes complex, large-magnitude changes in river and floodplain morphology. Although sedimentary and geomorphic responses to sediment influx are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated downstream effects of sediment released during the largest dam removal in history, on the Elwha River, WA, USA, by measuring changes in riverbed elevation and topography, bed-sediment grain size, and channel planform as two dams were removed in stages over two years. As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~1 m (greater where pools filled), changed the river from pool-riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to ten-fold greater geomorphic response to dam removal (bed-elevation change) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through the new deposits, approximately 1.2 million t of new sediment (~10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed-sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat

  1. Extensive geographic and ontogenetic variation characterizes the trophic ecology of a temperate reef fish on southern California (USA) rocky reefs

    PubMed Central

    Hamilton, Scott L.; Caselle, Jennifer E.; Lantz, Coulson A.; Egloff, Tiana L.; Kondo, Emi; Newsome, Seth D.; Loke-Smith, Kerri; Pondella, Daniel J.; Young, Kelly A.; Lowe, Christopher G.

    2015-01-01

    Interactions between predator and prey act to shape the structure of ecological communities, and these interactions can differ across space. California sheephead Semicossyphus pulcher are common predators of benthic invertebrates in kelp beds and rocky reefs in southern California, USA. Through gut content and stable isotope (δ13C and †15N) analyses, we investigated geographic and ontogenetic variation in trophic ecology across 9 populations located at island and mainland sites throughout southern California. We found extensive geographic variation in California sheephead diet composition over small spatial scales. Populations differed in the proportion of sessile filter/suspension feeders or mobile invertebrates in the diet. Spatial variation in diet was highly correlated with other life history and demographic traits (e.g. growth, survivorship, reproductive condition, and energy storage), in addition to proxies of prey availability from community surveys. Multivariate descriptions of the diet from gut contents roughly agreed with the spatial groupings of sites based on stable isotope analysis of both California sheephead and their prey. Ontogenetic changes in diet occurred consistently across populations, despite spatial differences in size structure. As California sheephead increase in size, diets shift from small filter feeders, like bivalves, to larger mobile invertebrates, such as sea urchins. Our results indicate that locations with large California sheephead present, such as many marine reserves, may experience increased predation pressure on sea urchins, which could ultimately affect kelp persistence. PMID:26246648

  2. Extensive geographic and ontogenetic variation characterizes the trophic ecology of a temperate reef fish on southern California (USA) rocky reefs.

    PubMed

    Hamilton, Scott L; Caselle, Jennifer E; Lantz, Coulson A; Egloff, Tiana L; Kondo, Emi; Newsome, Seth D; Loke-Smith, Kerri; Pondella, Daniel J; Young, Kelly A; Lowe, Christopher G

    Interactions between predator and prey act to shape the structure of ecological communities, and these interactions can differ across space. California sheephead Semicossyphus pulcher are common predators of benthic invertebrates in kelp beds and rocky reefs in southern California, USA. Through gut content and stable isotope (δ(13)C and †(15)N) analyses, we investigated geographic and ontogenetic variation in trophic ecology across 9 populations located at island and mainland sites throughout southern California. We found extensive geographic variation in California sheephead diet composition over small spatial scales. Populations differed in the proportion of sessile filter/suspension feeders or mobile invertebrates in the diet. Spatial variation in diet was highly correlated with other life history and demographic traits (e.g. growth, survivorship, reproductive condition, and energy storage), in addition to proxies of prey availability from community surveys. Multivariate descriptions of the diet from gut contents roughly agreed with the spatial groupings of sites based on stable isotope analysis of both California sheephead and their prey. Ontogenetic changes in diet occurred consistently across populations, despite spatial differences in size structure. As California sheephead increase in size, diets shift from small filter feeders, like bivalves, to larger mobile invertebrates, such as sea urchins. Our results indicate that locations with large California sheephead present, such as many marine reserves, may experience increased predation pressure on sea urchins, which could ultimately affect kelp persistence.

  3. Mercury correlations among six tissues for four waterbird species breeding in San Francisco Bay, California, USA

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; Adelsbach, T.L.; Takekawa, John Y.; Miles, A.K.; Keister, R.A.

    2008-01-01

    Despite a large body of research concerning mercury (Hg) in birds, no single tissue has been used consistently to assess Hg exposure, and this has hampered comparisons across studies. We evaluated the relationships of Hg concentrations among tissues in four species of waterbirds (American avocets [Recurvirostra americana], black-necked stilts [Himantopus mexicanus], Caspian terns [Hydroprogne caspia; formerly Sterna caspia], and Forster's terns [Sterna forsteri]) and across three life stages (prebreeding adults, breeding adults, and chicks) in San Francisco Bay, California, USA. Across species and life stages, Hg concentrations (least square mean ?? standard error) were highest in head feathers (6.45 ?? 0.31 ??g/g dry wt) and breast feathers (5.76 ?? 0.28 ??g/g dry wt), followed by kidney (4.54 ?? 0.22 ??g/g dry wt), liver (4.43 ?? 0.21 ??g/g dry wt), blood (3.10 ?? 0.15 ??g/g dry wt), and muscle (1.67 ?? 0.08 ??g/g dry wt). Relative Hg distribution among tissues, however, differed by species and life stage. Mercury concentrations were highly correlated among internal tissues (r 2 ??? 0.89). Conversely, the relationships between Hg in feathers and internal tissues were substantially weaker (r2 ??? 0.42). Regression slopes sometimes differed among species and life stages, indicating that care must be used when predicting Hg concentrations in one tissue based on those in another. However, we found good agreement between predictions made using a general tissue-prediction equation and more specific equations developed for each species and life stage. Finally, our results suggest that blood is an excellent, nonlethal predictor of Hg concentrations in internal tissues but that feathers are relatively poor indicators of Hg concentrations in internal tissues. ?? 2008 SETAC Printed in the USA.

  4. A regional mass balance of methylmercury in San Francisco Bay, California, USA.

    PubMed

    Yee, Donald; McKee, Lester J; Oram, John J

    2011-01-01

    The San Francisco Bay (California, USA) is a water body listed as impaired because of Hg contamination in sport fish for human consumption, as well as possible effects on resident wildlife. A legacy of Hg mining in local watersheds and Hg used in Au mining in the Sierra Nevada (USA) has contributed to contamination seen in the bay, with additional more recent and ongoing inputs from various sources. Methylmercury is the species of Hg most directly responsible for contamination in biota, so better understanding of its sources, loads, and processes was sought to identify the best means to reduce impacts. A regional scale model of San Francisco Bay was developed to characterize major methylmercury inputs and processes. The model was used to evaluate the potential impact of uncertainties in estimates for methylmercury loading pathways and environmental processes, identify major data gaps, and explore management prospects for reducing methylmercury contamination. External loading pathways considered in the mass balance include methylmercury loads entering via atmospheric deposition to the bay surface, and discharges from the Sacramento/San Joaquin Delta, local watersheds, municipal wastewater, and fringing wetlands. Internal processes considered include exchange between bed and suspended sediments and the water column, in situ production and demethylation, biological uptake, and losses via hydrologic transport to the ocean through the Golden Gate. In situ sediment methylation and demethylation were dominant sources and losses determining ambient steady-state concentrations in the model, with changes in external loads and export causing smaller changes. Better information on methylation and demethylation is thus most critical to improving understanding of methylmercury balances and management. © 2010 SETAC.

  5. Accumulation of current-use and organochlorine pesticides in crab embryos from Northern California, USA

    USGS Publications Warehouse

    Smalling, Kelly L.; Morgan, Steven; Kuivila, Kathryn K.

    2010-01-01

    Invertebrates have long been used as resident sentinels for assessing ecosystem health and productivity. The shore crabs, Hemigrapsus oregonensis and Pachygrapsus crassipes, are abundant in estuaries and beaches throughout northern California, USA and have been used as indicators of habitat conditions in several salt marshes. The overall objectives of the present study were to conduct a lab-based study to test the accumulation of current-use pesticides, validate the analytical method and to analyze field-collected crabs for a suite of 74 current-use and legacy pesticides. A simple laboratory uptake study was designed to determine if embryos could bioconcentrate the herbicide molinate over a 7-d period. At the end of the experiment, embryos were removed from the crabs and analyzed by gas chromatography/mass spectrometry. Although relatively hydrophilic (log KOW of 2.9), molinate did accumulate with an estimated bioconcentration factor (log BCF) of approximately 2.5. Following method validation, embryos were collected from two different Northern California salt marshes and analyzed. In field-collected embryos 18 current-use and eight organochlorine pesticides were detected including synthetic pyrethroids and organophosphate insecticides, as well as DDT and its degradates. Lipid-normalized concentrations of the pesticides detected in the field-collected crab embryos ranged from 0.1 to 4 ppm. Pesticide concentrations and profiles in crab embryos were site specific and could be correlated to differences in land-use practices. These preliminary results indicate that embryos are an effective sink for organic contaminants in the environment and have the potential to be good indicators of ecosystem health, especially when contaminant body burden analyses are paired with reproductive impairment assays.

  6. Bat Response to Differing Fire Severity in Mixed-Conifer Forest California, USA

    PubMed Central

    Heady, Paul A.; Hayes, John P.; Frick, Winifred F.

    2013-01-01

    Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts. PMID:23483936

  7. Urban sources and emissions of nitrous oxide and methane in southern California, USA

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Pataki, D.; Tyler, S. C.; Czimczik, C. I.; Xu, X.; Christensen, L. E.

    2012-12-01

    Anthropogenic activities have resulted in increasing levels of greenhouse gases, including carbon dioxide, methane, and nitrous oxide. While global and regional emissions sources of carbon dioxide are relatively well understood, methane and nitrous oxide are less constrained, particularly at regional scales. Here we present the results of an investigation of sources and emissions of methane and nitrous oxide in Los Angeles, California, USA, one of Earth's largest urban areas. The original goal of the project was to determine whether isotopes are useful tracers of agricultural versus urban nitrous oxide and methane sources. For methane, we found that stable isotopes (carbon-13 and deuterium) and radiocarbon are good tracers of biogenic versus fossil fuel sources. High altitude observations of methane concentration, measured continuously using tunable laser spectroscopy, and isotope ratios, measured on discrete flask samples using mass spectrometry, indicate that the predominant methane source in Los Angeles is from fossil fuels, likely from "fugitive" emissions from geologic formations, natural gas pipelines, oil refining, or power plants. We also measured nitrous oxide emissions and isotope ratios from urban (landscaping and wastewater treatment) and agricultural sources (corn and vegetable fields). There was no difference in nitrous oxide isotope ratios between the different types of sources, although stable isotopes did differ between nitrous oxide produced in oxic and anoxic wastewater treatment tanks. Our nitrous oxide flux data indicate that landscaped turfgrass emits nitrous oxide at rates equivalent to agricultural systems, indicating that ornamental soils should not be disregarded in regional nitrous oxide budgets. However, we also showed that wastewater treatment is a much greater source of nitrous oxide than soils regionally. This work shows that global nitrous oxide and methane budgets are not easily downscaled to regional, urban settings, which has

  8. Bat response to differing fire severity in mixed-conifer forest California, USA.

    PubMed

    Buchalski, Michael R; Fontaine, Joseph B; Heady, Paul A; Hayes, John P; Frick, Winifred F

    2013-01-01

    Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts.

  9. New challenges: residential pesticide exposure assessment in the California Department of Pesticide Regulation, USA.

    PubMed

    Powell, S

    2001-04-01

    Residential exposure assessment is in an early stage of development within many of the regulatory agencies responsible for pesticides. Some of the impetus for residential assessment comes from the Food Quality Protection Act (FQPA), a federal law adopted in 1996 in the USA. The FQPA mandates that the aggregate and cumulative risks from all nonoccupational sources of exposure to similarly acting pesticides be assessed. The development of methods for residential exposure assessment is therefore proceeding in tandem with methods for aggregate risk assessment. The California Department of Pesticide Regulation (Cal DPR) regulates pesticides in the state of California much as the US EPA does at the national level. While Cal DPR is not explicitly bound by the federal law, it recognizes the importance of residential exposure and of cumulative risk, and tries to harmonize its methods with those of US EPA. Accordingly, Cal DPR is developing guidance for residential exposure assessment. Some factors to consider are the following: (1) although the end goal may be total exposure from all sources, in order to regulate the use of products it is necessary to have separate estimates of exposure from individual sources and routes; (2) probabilistic approaches will be used increasingly, and they must separate variability and uncertainty; (3) there is a critical need for data on residential use of pesticides, including the frequency of mishaps and improper handling; (4) data are needed on long-term activity patterns of individuals, including residential and occupational history; (5) regulatory agencies need a way to identify and screen potential exposure scenarios, in order to streamline the risk assessment process.

  10. Characterization of benthic communities and physical habitat in the Stanislaus, Tuolumne, and Merced Rivers, California.

    PubMed

    Hall, Lenwood W; Killen, William D; Anderson, Ronald D

    2006-04-01

    The primary goal of this study was to characterize physical habitat and benthic communities (macroinvertebrates) in the Stanislaus, Tuolumne and Merced Rivers in California's San Joaquin Valley in 2003. These rivers have been listed as impaired water bodies (303 (d) list) by the State of California due to the presence of organophosphate (OP) insecticides chlorpyrifos and diazinon, Group A pesticides (i.e., organochlorine pesticides), mercury, or unknown toxicity. Based on 10 instream and riparian physical habitat metrics, total physical habitat scores in the Stanislaus River ranged from 124 to 188 (maximum possible total score is 200). The highest total habitat score was reported at the upstream site. Tuolumne River physical habitat scores ranged from 86 to 167. Various Tuolumne River physical habitat metrics, including total habitat score, increased from downstream to upstream in this river. Merced River physical habitat scores ranged from 121 to 170 with a significant increase in various physical habitat metrics, including total habitat score, reported from downstream to upstream. Channel flow (an instream metric) and bank stability (a riparian metric) were the most important physical habitat metrics influencing the various benthic metrics for all three rivers. Abundance measures of benthic macroinvertebrates (5,100 to 5,400 individuals) were similar among the three rivers in the San Joaquin watershed. Benthic communities in all three rivers were generally dominated by: (1) Baetidae species (mayflies) which are a component of EPT taxa generally considered sensitive to environmental degradation; (2) Chironomidae (midges) which can be either tolerant or sensitive to environmental stressors depending on the species; (3) Ephemerellidae (mayflies) which are considered sensitive to pollution stress; and (4) Naididae (aquatic worms) which are generally considered tolerant to environmental stressors. The presence of 117 taxa in the Stanislaus River, 114 taxa in the

  11. Methylmercury bioaccumulation in an urban estuary: Delaware River USA.

    PubMed

    Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia

    2017-09-01

    Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.

  12. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  13. Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA

    EPA Science Inventory

    Current bioassessment efforts are focused on small wadeable streams, at least partly because assessing ecological conditions in non-wadeable large rivers poses many additional challenges. In this study, we sampled 20 sites in each of seven large rivers in the Pacific Northwest, U...

  14. Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA

    EPA Science Inventory

    Current bioassessment efforts are focused on small wadeable streams, at least partly because assessing ecological conditions in non-wadeable large rivers poses many additional challenges. In this study, we sampled 20 sites in each of seven large rivers in the Pacific Northwest, U...

  15. Responses of turtle assemblage to environmental gradients in the St. Croix River in Minnesota and Wisconsin, U.S.A.

    Treesearch

    Deahn DonnerWright; Michael A. Bozek; John R. Probst; Eric M. Anderson

    1999-01-01

    We investigated how environmental gradients measured along the St. Croix River in Minnesota and Wisconsin, U.S.A., influenced the turtle assemblage. Among seven species, the five most common species were generalists and had wide distributions throughout the study area. However, patterns in assemblage structure were related to environmental gradients along the river....

  16. Spatio-temporal patterns of the decline of fresh water mussels in the Little South Fork Cumberland River,USA

    Treesearch

    Melvin L. Warren; Wendell R. Haag

    2005-01-01

    The Little South Fork Cumberland River, Kentucky and Tennessee, USA, was a globally important conservation refugium for freshwater mussels (Mollusca:Unionidae) because it supported an intact example (26 species) of the unique Cumberland River mussel fauna including imperiled species. We used previous surveys and our 1997–1998 survey to reconstruct the historical fauna...

  17. Anthropogenic impacts on mercury concentrations and nitrogen and carbon isotope ratios in fish muscle tissue of the Truckee River watershed, Nevada, USA.

    PubMed

    Sexauer Gustin, Mae; Saito, Laurel; Peacock, Mary

    2005-07-15

    The lower Truckee River originates at Lake Tahoe, California/Nevada (NV), USA and ends in the terminal water body, Pyramid Lake, NV. The river has minimal anthropogenic inputs of contaminants until it encounters the cities of Reno and Sparks, NV, and receives inflows from Steamboat Creek (SBC). SBC originates at Washoe Lake, NV, where there were approximately six mills that used mercury for gold and silver amalgamation in the late 1800s. Since then, mercury has been distributed down the creek to the Truckee River. In addition, SBC receives agricultural and urban nonpoint source pollution, and treated effluent from the Reno-Sparks water reclamation facility. Fish muscle tissue was collected from different species in SBC and the Truckee River and analyzed for mercury and stable isotopes. Nitrogen (delta(15)N) and carbon (delta(13)C) isotopic values in these tissues provide insight as to fish food resources and help to explain their relative Hg concentrations. Mercury concentrations, and delta(15)N and delta(13)C values in fish muscle from the Truckee River, collected below the SBC confluence, were significantly different than that found in fish collected upstream. Mercury concentrations in fish tissue collected below the confluence for all but three fish sampled were significantly greater (0.1 to 0.65 microg/g wet wt.) than that measured in the tissue collected above the confluence (0.02 to 0.1 microg/g). Delta(15)N and delta(13)C isotopic values of fish muscle collected from the river below the confluence were higher and lower, respectively, than that measured in fish collected up river, most likely reflecting wastewater inputs. The impact of SBC inputs on muscle tissue isotope values declined down river whereas the impact due to Hg inputs showed the opposite trend.

  18. Transport of diazinon in the San Joaquin River basin, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1997-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  19. Eolian deposits in the Neoproterozoic Big Bear Group, San Bernardino Mountains, California, USA

    USGS Publications Warehouse

    Stewart, John H.

    2005-01-01

    Strata interpreted to be eolian are recognized in the Neoproterozoic Big Bear Group in the San Bernardino Mountains of southern California, USA. The strata consist of medium- to large-scale (30 cm to > 6 m) cross-stratified quartzite considered to be eolian dune deposits and interstratified thinly laminated quartzite that are problematically interpreted as either eolian translatent climbing ripple laminae, or as tidal-flat deposits. High index ripples and adhesion structures considered to be eolian are associated with the thinly laminated and cross-stratified strata. The eolian strata are in a succession that is characterized by flaser bedding, aqueous ripple marks, mudcracks, and interstratified small-scale cross-strata that are suggestive of a tidal environment containing local fluvial deposits. The eolian strata may have formed in a near-shore environment inland of a tidal flat. The Neoproterozoic Big Bear Group is unusual in the western United States and may represent a remnant of strata that were originally more widespread and part of the hypothetical Neoproterozoic supercontinent of Rodinia. The Big Bear Group perhaps is preserved only in blocks that were downdropped along Neoproterozoic extensional faults. The eolian deposits of the Big Bear Group may have been deposited during arid conditions that preceded worldwide glacial events in the late Neoproterozoic. Possibly similar pre-glacial arid events are recognized in northern Mexico, northeast Washington, Australia, and northwest Canada.

  20. Hydrogen peroxide measurements in recreational marine bathing waters in Southern California, USA.

    PubMed

    Clark, Catherine D; De Bruyn, Warren J; Hirsch, Charlotte M; Jakubowski, Scott D

    2010-04-01

    Hydrogen peroxide (H(2)O(2)) was measured in the surf zone at 13 bathing beaches in Southern California, USA. Summer dry season concentrations averaged 122 +/- 38 nM with beaches with tide pools having lower levels (50-90 nM). No significant differences were observed for ebb waters at a salt marsh outlet vs. a beach (179 +/- 20 vs. 163 +/- 26 nM), and between ebb and flood tides at one site (171 +/- 24 vs. 146 +/- 42 nM). H(2)O(2) levels showed little annual variation. Diel cycling was followed over short (30 min; 24 h study) and long (d) time scales, with maximum afternoon concentration = 370 nM and estimated photochemical production rate of 44 nM h(-1). There was no correlation between the absorbance coefficient at 300 nm (used as a measure of chromophoric dissolved organic matter (CDOM) levels) and H(2)O(2). H(2)O(2) concentrations measured in this study are likely sufficient to inhibit fecal indicator bacteria in marine recreational waters through indirect photoinactivation.

  1. Risk Factors for Human Lice and Bartonellosis among the Homeless, San Francisco, California, USA

    PubMed Central

    Cole-Porse, Charsey; Kjemtrup, Anne; Osikowicz, Lynn; Kosoy, Michael

    2014-01-01

    Homeless persons in San Francisco, California, USA, have been shown to have head and body lice infestations and Bartonella quintana infections. We surveyed a self-selected population of homeless persons in San Francisco to assess infestations of head and body lice, risks of having body lice, and presence of B. quintana in lice. A total of 203 persons who reported itching were surveyed during 2008–2010 and 2012: 60 (30%) had body lice, 10 (4.9%) had head lice, and 6 (3.0%) had both. B. quintana was detected in 10 (15.9%) of 63 body lice pools and in 6 (37.5%) of 16 head lice pools. Variables significantly associated (p<0.05) with having body lice in this homeless population included male sex, African–American ethnicity, and sleeping outdoors. Our study findings suggest that specific segments of the homeless population would benefit from information on preventing body lice infestations and louseborne diseases. PMID:25280380

  2. Fine scale mapping of the structure and composition of the Elkhorn Slough (California, USA) tidal plume

    NASA Astrophysics Data System (ADS)

    Fischer, Andrew M.; Ryan, John P.; Rienecker, Erich V.

    2017-01-01

    Fine scale mapping of the structure and composition of a tidal ebb plume from a highly modified coastal lagoon (Elkhorn Slough, California, USA) was conducted by combining in situ, observational data sets from surface underway mapping, autonomous underwater vehicle (AUV) profiles, drifter tracking and the analysis of plume structure indices. The results reveal a 6-m-deep, jet-like, sediment laden plume extending one km offshore at low tide, which becomes entrained in the prevailing nearshore circulation. The plume that exits the slough is significantly different from the water that enters the slough. The rapidly evolving discharge plume is associated with elevated and highly correlated (r = 0.93) concentrations of dissolved organic matter and nitrate. While dissolved constituents remain in the shallow plume and are transported northward with the prevailing current, sediment may settle quickly through the water column and can be transported southwestward with the littoral currents. This study illustrates the applications of AUVs, when coupled with additional datasets, for generating higher resolution observational snapshots of dynamic and ephemeral tidal plumes. The results provide unique perspective on small-scale dynamics of an estuarine plume and its influence on coastal ecology.

  3. Feline infectious peritonitis in a mountain lion (Puma concolor), California, USA.

    PubMed

    Stephenson, Nicole; Swift, Pamela; Moeller, Robert B; Worth, S Joy; Foley, Janet

    2013-04-01

    Feline infectious peritonitis (FIP) is a fatal immune-mediated vasculitis of felids caused by a mutant form of a common feline enteric virus, feline enteric coronavirus. The virus can attack many organ systems and causes a broad range of signs, commonly including weight loss and fever. Regardless of presentation, FIP is ultimately fatal and often presents a diagnostic challenge. In May 2010, a malnourished young adult male mountain lion (Puma concolor) from Kern County, California, USA was euthanized because of concern for public safety, and a postmortem examination was performed. Gross necropsy and histopathologic examination revealed necrotizing, multifocal myocarditis; necrotizing, neutrophilic, and histiocytic myositis and vasculitis of the tunica muscularis layer of the small and large intestines; and embolic, multifocal, interstitial pneumonia. Feline coronavirus antigen was detected in both the heart and intestinal tissue by immunohistochemistry. A PCR for coronavirus performed on kidney tissue was positive, confirming a diagnosis of FIP. Although coronavirus infection has been documented in mountain lions by serology, this is the first confirmed report of FIP.

  4. Chemical preservation of insect cuticle from the Pleistocene asphalt deposits of California, USA

    NASA Astrophysics Data System (ADS)

    Stankiewicz, B. Artur; Briggs, Derek E. G.; Evershed, Richard P.; Duncan, Ian J.

    1997-06-01

    Cuticles of Coleoptera (beetles) and Orthoptera (crickets) from the Pleistocene asphalt deposits of Rancho La Brea and McKittrick in California, USA were studied by means of flash pyrolysis-gas chromatography /mass spectrometry (py-GC/MS). Commercial chitin, amino acid standards, and fresh and decayed cuticles of modern beetle and cricket were likewise investigated to allow the state of preservation of the fossil specimens to be interpreted. Insect cuticles are composed of chitin and proteins covalently cross-linked via catecholamine moieties. Pyrolysis of the fossil insects yielded all the products normally obtained from the pyrolysis of the chitin biopolymer, indicating that it has survived in a highly intact state. Proteins, on the other hand, are poorly preserved. Only phenols, indoles, and nitrobenzenes were present among the pyrolysis products, providing evidence for the preservation of tyrosine, tryptophan, and phenylalanine moieties. This demonstrates the preferential preservation of chitin in comparison with proteins, a result confirmed by scanning electron microscopy of the structure.

  5. Tidal salt marsh sediment in California, USA. Part 2: occurrence and anthropogenic input of trace metals.

    PubMed

    Hwang, Hyun-Min; Green, Peter G; Higashi, Richard M; Young, Thomas M

    2006-09-01

    Surface sediment samples (0-5 cm) from 5 tidal salt marshes along the coast in California, USA were analyzed to investigate the occurrence and anthropogenic input of trace metals. Among study areas, Stege Marsh located in the central San Francisco Bay was the most contaminated marsh. Concentrations of metals in Stege Marsh sediments were higher than San Francisco Bay ambient levels. Zinc (55.3-744 microg g(-1)) was the most abundant trace metal and was followed by lead (26.6-273 microg g(-1)). Aluminum normalized enrichment factors revealed that lead was the most anthropogenically impacted metal in all marshes. Enrichment factors of lead in Stege Marsh ranged from 8 to 49 (median=16). Sediments from reference marshes also had high enrichment factors (2-8) for lead, indicating that lead contamination is ubiquitous, possibly due to continuous input from atmospherically transported lead that was previously used as a gasoline additive. Copper, silver, and zinc in Stege Marsh were also enriched by anthropogenic input. Though nickel concentrations in Stege Marsh and reference marshes exceeded sediment quality guidelines, enrichment factors indicated nickel from anthropogenic input was negligible. Presence of nickel-rich source rock such as serpentinite in the San Francisco Bay watershed can explain high levels of nickel in this area. Coefficients of variation were significantly different between anthropogenically impacted and non-impacted metals and might be used as a less conservative indicator for anthropogenic input of metals when enrichment factors are not available.

  6. Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA).

    PubMed

    Carini, Stephen; Bano, Nasreen; LeCleir, Gary; Joye, Samantha B

    2005-08-01

    Patterns of aerobic methane (CH4) oxidation and associated methanotroph community composition were investigated during the development of seasonal stratification in Mono Lake, California (USA). CH4 oxidation rates were measured using a tritiated CH4 radiotracer technique. Fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequence analysis were used to characterize methanotroph community composition. A temporally shifting zone of elevated CH4 oxidation (59-123 nM day(-1)) was consistently associated with a suboxycline, microaerophilic zone that migrated upwards in the water column as stratification progressed. FISH analysis revealed stable numbers of type I (4.1-9.3 x 10(5) cells ml(-1)) and type II (1.4-3.4 x 10(5) cells ml(-1)) methanotrophs over depth and over time. Denaturing gradient gel electrophoresis and sequence analysis indicated slight shifts in methanotroph community composition despite stable absolute cell numbers. Variable CH4 oxidation rates in the presence of a relatively stable methanotroph population suggested that zones of high CH4 oxidation resulted from an increase in activity of a subset of the existing methanotroph population. These results challenge existing paradigms suggesting that zones of elevated CH4 oxidation activity result from the accumulation of methanotrophic biomass and illustrate that type II methanotrophs may be an important component of the methanotroph population in saline and/or alkaline pelagic environments.

  7. Risk factors for human lice and bartonellosis among the homeless, San Francisco, California, USA.

    PubMed

    Bonilla, Denise L; Cole-Porse, Charsey; Kjemtrup, Anne; Osikowicz, Lynn; Kosoy, Michael

    2014-10-01

    Homeless persons in San Francisco, California, USA,have been shown to have head and body lice infestations and Bartonella quintana infections. We surveyed a self selected population of homeless persons in San Francisco to assess infestations of head and body lice, risks of having body lice, and presence of B. quintana in lice. A total of 203 persons who reported itching were surveyed during 2008-2010 and 2012: 60 (30%) had body lice, 10 (4.9%)had head lice, and 6 (3.0%) had both. B. quintana was detected in 10 (15.9%) of 63 body lice pools and in 6 (37.5%)of 16 head lice pools. Variables significantly associated(p<0.05) with having body lice in this homeless population included male sex, African-American ethnicity, and sleeping outdoors. Our study findings suggest that specific segments of the homeless population would benefit from information on preventing body lice infestations and louse borne diseases.

  8. Dietary and other lifestyle factors of women with brain gliomas in Los Angeles County (California, USA)

    PubMed

    Blowers, L; Preston-Martin, S; Mack, W J

    1997-01-01

    A population-based interview study in Los Angeles County (California, USA) of 94 women with intracranial gliomas and 94 individually matched neighborhood controls investigated the relationship to various sources of exposure to N-nitroso compounds and their precursors and to vitamins which inhibit the endogenous formation of these compounds. The study offers some support for the hypothesis that dietary sources of nitroso exposure relate to risk. Risk increased with increasing consumption of cured meats, most notably of bacon (odds ratio [OR] for the third tertile of intake = 6.6, 95 percent confidence interval [CI] = 1.9-22.5, P trend < 0.001). Risk was reduced with increasing intake of vegetables such as bell peppers (OR for third tertile = 0.2, CI = 0.1-0.7, P trend < 0.01). In addition, use of vitamin supplements appeared protective, and there was some suggestion that eating cured meats in combination with foods which inhibit endogenous nitrosation mitigates risk. Other potential sources of nitroso exposure such as smoking, cosmetics, and drinking water did not relate to risk. Despite the limitations of data on usual adult diet, it appears that dietary sources of nitroso compounds may be important in the development of gliomas.

  9. Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Springs, California, USA.

    PubMed

    Simbahan, Jessica; Drijber, Rhae; Blum, Paul

    2004-09-01

    A thermo-acidophilic Gram-positive bacterium, strain CsHg2T, which grows aerobically at 35-65 degrees C (optimum 55 degrees C) and at pH 2.0-6.0 (optimum 4.0), was isolated from a geothermal pool located in Coso Hot Springs in the Mojave Desert, California, USA. Phylogenetic analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to the type strains of Alicyclobacillus acidocaldarius (97.8 % identity) and Alicyclobacillus sendaiensis (96.9 %), three Japanese strains denoted as UZ-1, KHA-31 and MIH 332 (96.1-96.5 %) and Alicyclobacillus genomic species FR-6 (96.3 %). Phenotypic characteristics including temperature and pH optima, G+C composition, acid production from a variety of carbon sources and sensitivity to different metal salts distinguished CsHg2T from A. acidocaldarius, A. sendaiensis and FR-6. The cell lipid membrane was composed mainly of omega-cyclohexyl fatty acid, consistent with membranes from other Alicyclobacillus species. Very low DNA-DNA hybridization values between CsHg2T and the type strains of Alicyclobacillus indicate that CsHg2T represents a distinct species. On the basis of these results, the name Alicyclobacillus vulcanalis sp. nov. is proposed for this organism. The type strain is CsHg2T (ATCC BAA-915T = DSM 16176T).

  10. Groundwater movement, recharge, and perchlorate occurrence in a faulted alluvial aquifer in California (USA)

    USGS Publications Warehouse

    Izbicki, John A.; Teague, Nicholas F.; Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.

    2015-01-01

    Perchlorate from military, industrial, and legacy agricultural sources is present within an alluvial aquifer in the Rialto-Colton groundwater subbasin, 80 km east of Los Angeles, California (USA). The area is extensively faulted, with water-level differences exceeding 60 m across parts of the Rialto-Colton Fault separating the Rialto-Colton and Chino groundwater subbasins. Coupled well-bore flow and depth-dependent water-quality data show decreases in well yield and changes in water chemistry and isotopic composition, reflecting changing aquifer properties and groundwater recharge sources with depth. Perchlorate movement through some wells under unpumped conditions from shallower to deeper layers underlying mapped plumes was as high as 13 kg/year. Water-level maps suggest potential groundwater movement across the Rialto-Colton Fault through an overlying perched aquifer. Upward flow through a well in the Chino subbasin near the Rialto-Colton Fault suggests potential groundwater movement across the fault through permeable layers within partly consolidated deposits at depth. Although potentially important locally, movement of groundwater from the Rialto-Colton subbasin has not resulted in widespread occurrence of perchlorate within the Chino subbasin. Nitrate and perchlorate concentrations at the water table, associated with legacy agricultural fertilizer use, may be underestimated by data from long-screened wells that mix water from different depths within the aquifer.

  11. Temporal and spatial patterns of phytoplankton production in Tomales Bay, California, U.S.A.

    USGS Publications Warehouse

    Cole, B.E.

    1989-01-01

    Primary productivity in the water column was measured 14 times between April 1985 and April 1986 at three sites in Tomales Bay, California, USA The conditions at these three stations encompassed the range of hydrographic conditions, phytoplankton biomass, phytoplankton community composition, and turbidity typical of this coastal embayment. Linear regression of the measured daily carbon uptake against the composite parameter B Zp Io (where B is the average phytoplankton biomass in the photic zone; Zp is the photic depth; and Io is the daily surface insolation) indicates that 90% of the variability in primary productivity is explained by variations in phytoplankton biomass and light availability. The linear function derived using Tomales Bay data is essentially the same as that which explains more than 80% of the variation in productivity in four other estuarine systems. Using the linear function and measured values for B, Zp, and Io, the daily photic-zone productivity was estimated for 10 sites at monthly intervals over the annual period. The average daily photic-zone productivity for the 10 sites ranged from 0??2 to 2??2 g C m-2. The bay-wide average annual primary productivity in the water column was 400 g C m-2, with most of the uptake occuring in spring and early summer. Spatial and temporal variations in primary productivity were similar to variations in phytoplankton biomass. Productivity was highest in the seaward and central regions of the bay and lowest in the shallow landward region. ?? 1989.

  12. Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California, USA.

    PubMed

    Hayden, Curtis J; Beman, J Michael

    2016-06-01

    Microbial communities are key components of lake ecosystems and play central roles in lake biogeochemical cycles. Freshwater lakes, in turn, have a disproportionate influence on global carbon and nitrogen cycling, while also acting as 'sentinels' of environmental change. Determining what factors regulate microbial community dynamics and their relationship to lake biogeochemistry is therefore essential to understanding global change feedbacks. We used Illumina sequencing of >2 million 16S rRNA genes to examine microbial community structure and diversity in relation to spatial, temporal and biogeochemical variation, within and across lakes located along a 871 m elevation gradient in Yosemite National Park, California, USA. We captured a rich microbial community that included many rare operational taxonomic units (OTUs), but was dominated by a few bacterial classes and OTUs frequently detected in other freshwater ecosystems. Neither richness, evenness nor overall diversity was directly related to elevation. However, redundancy analysis showed that changes in microbial community structure were significantly related to elevation. Along with sampling period and dissolved nutrient concentrations, 29% of the variation in community structure could be explained by measured variables - in congruence with studies in other lakes using different techniques. We also found a distance-decay relationship in microbial community structure across lakes, suggesting that both local environmental factors and dispersal play a role in structuring communities. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Prevalence of selected pathogens in western pond turtles and sympatric introduced red-eared sliders in California, USA.

    PubMed

    Silbernagel, C; Clifford, D L; Bettaso, J; Worth, S; Foley, J

    2013-11-25

    Pathogen introduction by invasive species has been speculated to be a cause of declining western pond turtle Emys marmorata populations in California, USA. This study determined the prevalence of Ranavirus spp., Herpesvirus spp., Mycoplasma spp. (via polymerase chain reaction of blood and nasal flush contents), and Salmonella spp. infection (via fecal culture) in native E. marmorata and invasive red-eared sliders Trachemys scripta elegans and compared infection prevalence in E. marmorata populations sympatric with T. scripta elegans to E. marmorata populations that were not sympatric by sampling 145 E. marmorata and 33 T. scripta elegans at 10 study sites throughout California. Mycoplasma spp. were detected in both species: prevalence in E. marmorata was 7.8% in the northern, 9.8% in the central, and 23.3% in the southern California regions. In T. scripta elegans, Mycoplasma spp. were not detected in the northern California region but were detected at 4.5 and 14.3% in the central and southern regions, respectively. All turtles tested negative for Herpesvirus spp. and Ranavirus spp. Enteric bacteria but not Salmonella spp. were isolated from feces. E. marmorata populations that were sympatric with T. scripta elegans did not have increased risk of Mycoplasma spp. infection. For E. marmorata, there was a significant association between Mycoplasma spp. infection and lower body weight and being located in the southern California region. This study is the first of its kind to document pathogen prevalence in native E. marmorata habitats and those sympatric with T. scripta elegans in California.

  14. [Experiences of undocumented Mexican migrant women when accessing sexual and reproductive health services in California, USA: a case study].

    PubMed

    Deeb-Sossa, Natalia; Díaz Olavarrieta, Claudia; Juárez-Ramírez, Clara; García, Sandra G; Villalobos, Aremis

    2013-05-01

    This study focuses on the experience of Mexican women migrants in California, USA, with the use of formal health services for sexual and reproductive health issues. The authors used a qualitative interpretative approach with life histories, interviewing eight female users of healthcare services in California and seven key informants in Mexico and California. There were three main types of barriers to healthcare: immigration status, language, and gender. Participants reported long waiting times, discriminatory attitudes, and high cost of services. A combination of formal and informal healthcare services was common. The assessment of quality of care was closely related to undocumented immigration status. Social support networks are crucial to help solve healthcare issues. Quality of care should take intercultural health issues into account.

  15. Geochemical evidence for a complex origin for the Kelso dunes, Mojave National Preserve, California USA

    USGS Publications Warehouse

    Muhs, Daniel; Lancaster, Nicholas; Skipp, Gary L.

    2017-01-01

    The Kelso Dune field in southern California is intriguing because although it is of limited areal extent (~ 100 km2), it has a wide variety of dune forms and contains many active dunes (~ 40 km2), which is unusual in the Mojave Desert. Studies over the past eight decades have concluded that the dunes are derived primarily from a single source, Mojave River alluvium, under a dominant, westerly-to-northwesterly wind regime. The majority of these studies did not, however, present data to support the Mojave River as the only source. We conducted mineralogical and geochemical studies of most of the 14 geomorphically defined dune groups of the Kelso Dune field as well as potential sand sources, alluvial sediments from the surrounding mountain ranges. Results indicate that sands in the nine western dune groups have K/Rb and K/Ba (primarily from K-feldspar) compositions that are indistinguishable from Mojave River alluvium (westerly/northwesterly winds) and Budweiser Wash alluvium (southwesterly winds), permitting an interpretation of two sources. In contrast, sands from the five eastern dune groups have K/Rb and K/Ba values that indicate significant inputs from alluvial fan deposits of the Providence Mountains. This requires either rare winds from the east or southeast or, more likely, aeolian reworking of distal Providence Mountain fan sediments by winds from the west, at a rate greater than input from the Mojave River or other western sources. The results indicate that even a small dune field can have a complex origin, either from seasonally varying winds or complex alluvial-fan-dune interaction. Application of K/Rb and K/Ba in K-feldspar as a provenance indicator could be used in many of the world's ergs or sand seas, where dune origins are still not well understood or are controversial. Four examples are given from Africa and the Middle East where such an approach could yield useful new information about dune sand provenance.

  16. Riparian and upland vegetation on the Kings River Experimental Watershed, Sierra Nevada, California

    Treesearch

    Christopher R. Dolanc; Carolyn T. Hunsaker

    2007-01-01

    The Kings River Experimental Watershed (KREW) is a watershed-level study on headwater streams in the Sierra Nevada, California. Eight perennial streams, from 1500 m (4920 ft) to 2490 m (8170 ft) elevation, have been instrumented and collecting data since 2002. Component research areas of the study include stream flow, water chemistry, sediment, soil chemistry, stream...

  17. Diel and seasonal movements by adult Sacramento pikeminnow (Ptychocheilus grandis) in the Eel River, northwestern California

    Treesearch

    Bret C. Harvey; Rodney J. Nakamoto

    1999-01-01

    Abstract - In late summer and fall, radio-tagged adult Sacramento pike-minnow (Ptychocheilus grandis) at three sites in the Eel River of northwestern California moved more at night than during the day. Fish moved up to 535 m at night and returned to their original positions the following morning. Adult Sacramento pikeminnow at all sites occupied only pools during the...

  18. Response surfaces of vulnerability to climate change: The Colorado River Basin, the High Plains, and California

    Treesearch

    Romano Foti; Jorge A. Ramirez; Thomas C. Brown

    2014-01-01

    We quantify the vulnerability of water supply to shortage for the Colorado River Basin and basins of the High Plains and California and assess the sensitivity of their water supply system to future changes in the statistical variability of supply and demand. We do so for current conditions and future socio-economic scenarios within a probabilistic framework that...

  19. Atmospheric modeling of the July 1991 metam sodium spill into California's Upper Sacramento River

    SciTech Connect

    Baskett, R.L.; Nasstrom, J.S. ); Watkins, J.J. Jr. ); Ellis, J.S.; Sullivan, T.J. )

    1992-03-05

    The California Office of Emergency Services asked the Department of Energy's Atmosphere Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory to determine the maximum credible air concentrations from a spill of metam sodium into California's Upper Sacramento River. About 19,000 gallons of metam sodium herbicide were spilled into the river approximately 3 miles north of Dunsmuir, California, due to a tank-car derailment on the night of July 14, 1991. The herbicide moved in the river toward the northernmost finger of California's largest reservoir, Lake Shasta, 45 miles to the south. As it flowed down the deep canyon, the water-soluble metam sodium decomposed into hydrogen sulfide and methylamine gases. Residents along the river were advised to evacuate the area, and a 50-mile stretch of Interstate 5 was temporarily closed. Response officials were also concerned that sunlight would readily evaporate the enlarged slick once it arrived into the still water of Lake Shasta on July 16. On July 15, ARAC used its three-dimensional emergency response modeling system to determine the highest instantaneous and 8-hour average air concentrations of toxic gas by- products over upper Lake Shasta. A quick response was possible using on-line topographic and geographic data bases in combination with forecasted southwestern surface winds. The worst-case calculation showed that the gases would be well below any health hazard.

  20. Physical and chemical data for the Sacramento River at Rio Vista, California, January through May, 1983

    USGS Publications Warehouse

    Harmon, Dana D.; Schemel, Laurence E.; Hager, Stephen W.; Ota, Allan Y.

    1986-01-01

    Physical and chemical data for the Sacramento River at Rio Vista , California, for the period of January to May, 1983 are presented in this report. Measurements include specific conductance, alkalinity, suspended particulate matter, and the dissolved inorganic nutrients; nitrite, nitrate plus nitrite, ammonium, dissolved silica, and ortho-phosphate. Numerical results are tabulated and details of the methods are described. 

  1. Riparian Plant Water Relations Along the North Fork Kings River, California

    Treesearch

    Janet L. Nachlinger; Stanley D. Smith; Roland J. Risser

    1989-01-01

    Plant water relations of five obligate riparian species were studied along California's North Fork Kings River. Diurnal stomatal conductance, transpiration, and xylem pressure potentials were measured throughout the 1986 growing season and in mid-season in 1987. Patterns were similar for all species although absolute values varied considerably. Maximum stomatal...

  2. Characteristics of pools used by adult summer steelhead oversummering in the New River, California

    Treesearch

    Rodney J. Nakamoto

    1994-01-01

    Abstract - I assessed characteristics of pools used by oversummering adults of summer steelhead Oncorhynchus mykiss between July and October 1991 in the New River, northwestern California. Most fish occupied channel confluence pools and other pools of moderate size (200-1,200 m 2); these pools had less than 35% substrate embeddedness and mean water depths of about 1.0...

  3. Carbon and nutrient contents in soils from the Kings River Experimental Watersheds, Sierra Nevada Mountains, California

    Treesearch

    D.W. Johnson; C.T. Hunsaker; D.W. Glass; B.M. Rau; B.A. Roath

    2011-01-01

    Soil C and nutrient contents were estimated for eight watersheds in two sites (one high elevation, Bull, and one low elevation, Providence) in the Kings River Experimental Watersheds in the western Sierra Nevada Mountains of California. Eighty-seven quantitative pits were dug to measure soil bulk density and total rock content, while three replicate surface samples...

  4. Delta Morphodynamics from River Sediment Input: Dam Removal, Elwha River, Washington, USA.

    NASA Astrophysics Data System (ADS)

    Warrick, J. A.; Gelfenbaum, G. R.; Stevens, A. W.; Miller, I. M.; Kaminsky, G. M.; Ritchie, A.

    2015-12-01

    Sediment supply plays an important role in river delta morphodynamics and sustainability, and it is important to evaluate how deltas respond to the restoration or enhancement of sediment supplies. Here we report on the morphodynamic responses of the Elwha River delta to large increases in river sediment loads from the removal of two large dams beginning in 2011. The dam removal project exposed ~30 million tonnes of sediment stored within the former reservoirs to natural erosion by the river, and roughly half of this reservoir sediment was eroded during the first four years of the project. Coastal surveys with GPS-based mapping systems, sonar, and aerial photography have revealed that the Elwha River mouth has expanded seaward by ~500 m with the introduction of new supplies of sediment. Approximately 3.5 million cubic meters (or ~5 million tonnes) of sediment were deposited at the river mouth delta between 2011 and 2015. This newly deposited sediment has been shaped by waves and currents into a series of dynamic bars that have greatly expanded the estuarine habitats of the delta.

  5. Trends in the suspended-sediment yields of coastal rivers of northern California, 1955–2010

    USGS Publications Warehouse

    Warrick, J.A.; Madej, M.A.; Goñi, M. A.; Wheatcroft, R.A.

    2013-01-01

    Time-dependencies of suspended-sediment discharge from six coastal watersheds of northern California – Smith River, Klamath River, Trinity River, Redwood Creek, Mad River, and Eel River – were evaluated using monitoring data from 1955 to 2010. Suspended-sediment concentrations revealed time-dependent hysteresis and multi-year trends. The multi-year trends had two primary patterns relative to river discharge: (i) increases in concentration resulting from both land clearing from logging and the flood of record during December 1964 (water year 1965), and (ii) continual decreases in concentration during the decades following this flood. Data from the Eel River revealed that changes in suspended-sediment concentrations occurred for all grain-size fractions, but were most pronounced for the sand fraction. Because of these changes, the use of bulk discharge-concentration relationships (i.e., “sediment rating curves”) without time-dependencies in these relationships resulted in substantial errors in sediment load estimates, including 2.5-fold over-prediction of Eel River sediment loads since 1979. We conclude that sediment discharge and sediment discharge relationships (such as sediment rating curves) from these coastal rivers have varied substantially with time in response to land use and climate. Thus, the use of historical river sediment data and sediment rating curves without considerations for time-dependent trends may result in significant errors in sediment yield estimates from the globally-important steep, small watersheds.

  6. Concentrations of organic contaminants detected during managed flow conditions, San Joaquin River and Old River, California, 2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn

    2005-01-01

    Concentrations of organic contaminants were determined in water samples collected at six surface-water sites located along the San Joaquin and Old Rivers during April through June 2001. Water samples were collected, coincident with salmon smolt caging studies conducted by researchers from the Bodega Marine Laboratory at the University of California at Davis to characterize exposure of the salmon smolt to organic contaminants. Sampling occurred prior to, during, and following the implementation of managed streamflow conditions on the San Joaquin and Old Rivers as part of the Vernalis Adaptive Management Plan. Thirteen pesticides were detected in water samples collected during this study, and at least five pesticides were detected in each sample. The total number of pesticide detections varied little between river systems and between sites, but the maximum concentrations of most pesticides occurred in San Joaquin River samples. The total number of pesticides detected varied little over the three time periods. However, during the period of managed streamflow, the fewest number of pesticides were detected at their absolute maximum concentration. Nine wastewater compounds were detected during this study. Suspended-sediment concentrations were similar for the San Joaquin and Old Rivers except during the period of managed streamflow conditions, when suspended-sediment concentration was higher at sites on the San Joaquin River than at sites on the Old River. Values for water parameters (pH, specific conductance, and hardness) were lowest during the period of managed flows.

  7. Large-scale dam removal on the Elwha River, Washington, USA: coastal geomorphic change

    USGS Publications Warehouse

    Gelfenbaum, Guy R.; Stevens, Andrew W.; Miller, Ian M.; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily

    2015-01-01

    Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that ~ 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is ~ 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that ~ 70% of the sand and gravel and ~ 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological

  8. Dermatitis among workers cleaning the Sacramento River after a chemical spill--California, 1991

    SciTech Connect

    Not Available

    1991-12-06

    On July 14, 1991, a train tanker car derailed in northern California, spilling 19,000 gallons of the soil fumigant metam sodium (sodium methyldithiocarbamate) into the Sacramento River north of Redding. The major breakdown product of metam sodium, methylisothiocyanate (MITC), is a known skin irritant at high concentrations (greater than 1%). By July 21, the concentration of MITC in the river, at multiple test sites, measured 20-40 parts per billion (0.01%). On August 6, Shasta County health officials notified the California Department of Health Services (CDHS) of an outbreak of dermatitis among Shasta County jail inmates and crew leaders who had assisted in removing dead fish from the river on July 21-22 in greater than 100 F (greater than 38 C) ambient temperature.

  9. Water quality assessment of the Sacramento River Basin, California; environmental setting and study design

    USGS Publications Warehouse

    Domagalski, Joseph L.; Knifong, Donna L.; MacCoy, Dorene E.; Dileanis, Peter D.; Dawson, Barbara J.; Majewski, Michael S.

    1998-01-01

    This report describes the environmental setting and investigative activities of the Sacramento River Basin study unit of the National Water-Quality Assessment Program. The Sacramento River Basin is one of 60 study units located throughout the United States that has been scheduled for study as part of the National Water-Quality Assessment Program. The Sacramento River Basin is the most important source of freshwater in California. Water quality studies in the Sacramento River Basin study unit focus on the Sacramento Valley because it is here that the principal uses of water and potential impacts on water quality occur. Investigative activities include a network of surface water sites, where water chemistry and aquatic biological sampling are done, and a variety of ground water studies. In addition, investigations of the cycling and distribution of volatile organic compounds in the urban environment and the distribution of total and methyl mercury in the Sacramento River and tributaries will be completed.

  10. Quantifying habitat benefits of channel reconfigurations on a highly regulated river system, Lower Missouri River, USA

    USGS Publications Warehouse

    Erwin, Susannah O.; Jacobson, Robert B.; Elliott, Caroline M.

    2017-01-01

    We present a quantitative analysis of habitat availability in a highly regulated lowland river, comparing a restored reach with two reference reaches: an un-restored, channelized reach, and a least-altered reach. We evaluate the effects of channel modifications in terms of distributions of depth and velocity as well as distributions and availability of habitats thought to be supportive of an endangered fish, the pallid sturgeon (Scaphirhynchus albus). It has been hypothesized that hydraulic conditions that support food production and foraging may limit growth and survival of juvenile pallid sturgeon. To evaluate conditions that support these habitats, we constructed two-dimensional hydrodynamic models for the three study reaches, two located in the Lower Missouri River (channelized and restored reaches) and one in the Yellowstone River (least-altered reach). Comparability among the reaches was improved by scaling by bankfull discharge and bankfull channel area. The analysis shows that construction of side-channel chutes and increased floodplain connectivity increase the availability of foraging habitat, resulting in a system that is more similar to the reference reach on the Yellowstone River. The availability of food-producing habitat is low in all reaches at flows less than bankfull, but the two reaches in the Lower Missouri River – channelized and restored – display a threshold-like response as flows overtop channel banks, reflecting the persistent effects of channelization on hydraulics in the main channel. These high lateral gradients result in punctuated ecological events corresponding to flows in excess of bankfull discharge. This threshold effect in the restored reach remains distinct from that of the least-altered reference reach, where hydraulic changes are less abrupt and overbank flows more gradually inundate the adjacent floodplain. The habitat curves observed in the reference reach on the Yellowstone River may not be attainable within the

  11. Photo Gallery from the Los Angeles River Watershed (California)

    EPA Pesticide Factsheets

    Photo gallery of the Los Angeles River Watershed area of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  12. Observations and Impacts from the 2010 Chilean and 2011 Japanese Tsunamis in California (USA)

    NASA Astrophysics Data System (ADS)

    Wilson, Rick I.; Admire, Amanda R.; Borrero, Jose C.; Dengler, Lori A.; Legg, Mark R.; Lynett, Patrick; McCrink, Timothy P.; Miller, Kevin M.; Ritchie, Andy; Sterling, Kara; Whitmore, Paul M.

    2013-06-01

    The coast of California was significantly impacted by two recent teletsunami events, one originating off the coast of Chile on February 27, 2010 and the other off Japan on March 11, 2011. These tsunamis caused extensive inundation and damage along the coast of their respective source regions. For the 2010 tsunami, the NOAA West Coast/Alaska Tsunami Warning Center issued a state-wide Tsunami Advisory based on forecasted tsunami amplitudes ranging from 0.18 to 1.43 m with the highest amplitudes predicted for central and southern California. For the 2011 tsunami, a Tsunami Warning was issued north of Point Conception and a Tsunami Advisory south of that location, with forecasted amplitudes ranging from 0.3 to 2.5 m, the highest expected for Crescent City. Because both teletsunamis arrived during low tide, the potential for significant inundation of dry land was greatly reduced during both events. However, both events created rapid water-level fluctuations and strong currents within harbors and along beaches, causing extensive damage in a number of harbors and challenging emergency managers in coastal jurisdictions. Field personnel were deployed prior to each tsunami to observe and measure physical effects at the coast. Post-event survey teams and questionnaires were used to gather information from both a physical effects and emergency response perspective. During the 2010 tsunami, a maximum tsunami amplitude of 1.2 m was observed at Pismo Beach, and over 3-million worth of damage to boats and docks occurred in nearly a dozen harbors, most significantly in Santa Cruz, Ventura, Mission Bay, and northern Shelter Island in San Diego Bay. During the 2011 tsunami, the maximum amplitude was measured at 2.47 m in Crescent City Harbor with over 50-million in damage to two dozen harbors. Those most significantly affected were Crescent City, Noyo River, Santa Cruz, Moss Landing, and southern Shelter Island. During both events, people on docks and near the ocean became at risk to

  13. Fluvial Landforms and Landscape Transformations on a Large River Floodplain: Willamette River, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Wallick, R.

    2015-12-01

    Recent detailed mapping of the Willamette River floodplain in northwestern Oregon reveals insights into the floodplain landforms, their formative processes, and historical landscape transformations. Hierarchical mapping classification based mainly upon lidar topography, supplemented by aerial photographs, historical channel and soil maps, and targeted coring of floodplain soils, was carried out for 200 km of the mainstem Willamette River floodplain above Willamette Falls where floodplain landforms mainly reflect fluvial and anthropogenic influences. Stark differences in the character and distribution of floodplain landforms and their underlying stratigraphy give rise to three distinct process regimes along the fluvial portion of the Willamette River. Floodplain surfaces along 60 km of the Upper Willamette River floodplain generally rise 1-2 m above the low-flow water surface and are bisected by complex assemblage of overflow channels and large-amplitude abandoned bends formed by avulsions along this historically multi-thread anastomosing reach. Downstream, the 90 km-long Middle Willamette River between Corvallis and Newburg Pool becomes increasingly entrenched within its floodplain, with floodplains gradually rising up to 8 m above the low flow water surface. These floodplain surfaces are dominated by ridge and swale topography with occasional floodbasins reflecting gradual meander migration and floodplain aggradation. The 50 km-long Newberg Pool is entrenched and confined by Pleistocene Missoula flood deposits and bedrock valley walls. This low-gradient reach extends to the lip of the15-m high Willamette Falls. Historical declines in flood magnitude, bed-material supply, large wood, and bank erodibility result in a more stable modern-day floodplain with narrower active-channel corridor flanked by relict landforms formed by historical flow and sediment regime. Landscape transformations vary across the three process regimes but are greatest along Upper Willamette

  14. Simulation and control of morphological changes due to dam removal in the Sandy River, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Altinakar, M. S.

    2015-03-01

    A one-dimensional channel evolution simulation model (CCHE1D) is applied to assess morphological changes in a reach of the Sandy River, Oregon, USA, due to the Marmot Dam removal in 2007. Sediment transport model parameters (e.g. sediment transport capacity, bed roughness coefficient) were calibrated using observed bed changes after the dam removal. The validated model is then applied to assess long-term morphological changes in response to a 10-year hydrograph selected from historical storm water records. The long-term assessment of sedimentation gives a reasonable prediction of morphological changes, expanding erosion in reservoir and growing deposition immediately downstream of the dam site. This prediction result can be used for managing and planning river sedimentation after dam removal. A simulation-based optimization model is also applied to determine the optimal sediment release rates during dam-removal that will minimize the morphological changes in the downstream reaches.

  15. Distribution of free-living amoebae in James River, Virginia, USA.

    PubMed

    Ettinger, Matthew R; Webb, Stanley R; Harris, Shelley A; McIninch, Stephen P; C Garman, Gregory; Brown, Bonnie L

    2003-01-01

    A comprehensive survey to document the presence of free-living amoebae was conducted along 58 km of James River, near Richmond, Virginia, USA. Sites included tidal and non-tidal freshwater areas, near 40 combined sewer outflows, three municipal wastewater treatment plant release sites, and thermal discharge from a coal-fired power plant. Amoebae were present on all collection dates, spring through autumn, and at all sites ( n=330). Five genera, Naegleria, Vannella, Acanthamoeba, Vahlkampfia, and Hartmannella were present in both the water column and sediment. The most common isolates from the water column were Naegleria and Vannella. Water conditions conducive to the presence of large quantities of fecal coliform bacteria were correlated with the prevalence of free-living amoebae. Some of the amoebae in this complex ecosystem can act as opportunistic pathogens, may play a role in diseases of aquatic organisms in this heavily urbanized river, and may present a risk to human health.

  16. Water availability and land subsidence in the Central Valley, California, USA

    USGS Publications Warehouse

    Faunt, Claudia; Sneed, Michelle; Traum, Jonathan A.; Brandt, Justin

    2016-01-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  17. Water availability and land subsidence in the Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Faunt, Claudia C.; Sneed, Michelle; Traum, Jon; Brandt, Justin T.

    2016-05-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  18. Selenium bioaccumulation and body condition in shorebirds and terns breeding in San Francisco Bay, California, USA

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2009-01-01

    The present study evaluated Se bioaccumulation in four waterbird species (n = 206 birds) that breed within San Francisco Bay, California, USA: American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster's terns (Sterna forsteri), and Caspian terns (Hydroprogne caspia). Selenium concentrations were variable and influenced by several factors, including species, region, reproductive stage, age, and sex. Adult Se concentrations (μg/g dry wt) in livers ranged from 3.07 to 48.70 in avocets (geometric mean ± standard error, 7.92 ± 0.64), 2.28 to 41.10 in stilts (5.29 ± 0.38), 3.73 to 14.50 in Forster's terns (7.13 ± 0.38), and 4.77 to 14.40 in Caspian terns (6.73 ± 0.78). Avocets had higher Se concentrations in the North Bay compared to the South Bay, whereas stilt Se concentrations were similar between these regions and Forster's terns had lower Se concentrations in the North Bay compared to the South Bay. Female avocets had higher Se concentrations than male avocets, but this was not the case for stilts and Forster's terns. Of the factors assessed, reproductive stage had the most consistent effect among species. Prebreeding birds tended to have higher liver Se concentrations than breeding birds, but this trend was statistically significant only for Forster's terns. Forster's tern chicks had lower Se concentrations than Forster's tern adults, whereas avocet and stilt adults and chicks were similar. Additionally, body condition was negatively related to liver Se concentrations in Forster's tern adults but not in avocet, stilt, or Caspian tern adults and chicks. These variable results illustrate the complexity of Se bioaccumulation and highlight the need to sample multiple species and examine several factors to assess the impact of Se on wildlife.

  19. Selenium bioaccumulation and body condition in shorebirds and terns breeding in San Francisco Bay, California, USA.

    PubMed

    Ackerman, Joshua T; Eagles-Smith, Collin A

    2009-10-01

    The present study evaluated Se bioaccumulation in four waterbird species (n=206 birds) that breed within San Francisco Bay, California, U.S.A.: American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster's terns (Sterna forsteri), and Caspian terns (Hydroprogne caspia). Selenium concentrations were variable and influenced by several factors, including species, region, reproductive stage, age, and sex. Adult Se concentrations (microg/g dry wt) in livers ranged from 3.07 to 48.70 in avocets (geometric mean +/- standard error, 7.92 +/- 0.64), 2.28 to 41.10 in stilts (5.29 +/- 0.38), 3.73 to 14.50 in Forster's terns (7.13 _ 0.38), and 4.77 to 14.40 in Caspian terns (6.73 +/- 0.78). Avocets had higher Se concentrations in the North Bay compared to the South Bay, whereas stilt Se concentrations were similar between these regions and Forster's terns had lower Se concentrations in the North Bay compared to the South Bay. Female avocets had higher Se concentrations than male avocets, but this was not the case for stilts and Forster's terns. Of the factors assessed, reproductive stage had the most consistent effect among species. Prebreeding birds tended to have higher liver Se concentrations than breeding birds, but this trend was statistically significant only for Forster's terns. Forster's tern chicks had lower Se concentrations than Forster's tern adults, whereas avocet and stilt adults and chicks were similar. Additionally, body condition was negatively related to liver Se concentrations in Forster's tern adults but not in avocet, stilt, or Caspian tern adults and chicks. These variable results illustrate the complexity of Se bioaccumulation and highlight the need to sample multiple species and examine several factors to assess the impact of Se on wildlife.

  20. Tidal salt marsh sediment in California, USA. Part 1: occurrence and sources of organic contaminants.

    PubMed

    Hwang, Hyun-Min; Green, Peter G; Young, Thomas M

    2006-08-01

    Surface sediment samples (0-5 cm) from five tidal marshes along the coast of California, USA were analyzed for organic pollutants to investigate their relationship to land use, current distribution within marshes, and possible sources. Among the study areas, Stege Marsh, located in San Francisco Bay, was the most contaminated. Compared to San Francisco Bay, Stege Marsh had much higher levels of organic contaminants such as PCBs (polychlorinated biphenyls), DDTs, and chlordanes. At reference marshes (Tom's Point and Walker Creek in Tomales Bay), organic contaminants in sediments were very low. While PAHs (polycyclic aromatic hydrocarbons) were found at all of the study areas (22-13,600 ng g(-1)), measurable concentrations of PCBs were found only in the sediments from Stege Marsh (80-9,940 ng g(-1)). Combustion related (pyrogenic) high molecular weight PAHs were dominant in sediments from Stege and Carpinteria Marshes, while in sediments from Tom's Point and Walker Creek petroleum related (petrogenic) low molecular weight PAHs and alkyl-substituted PAHs were much more abundant than pyrogenic PAHs. PCB congener patterns in all of the Stege Marsh samples were the same and revealed that Aroclor 1248 was a predominant source. In all marshes, the sum of DDE and DDD accounted for more than 90% of total DDTs, indicating that DDT has degraded significantly. The ratios of p,p'-DDE to p,p'-DDD in sediments from Stege Marsh provide evidence of possible previous use of technical DDD. Chlordane ratios indicated that chlordanes have degraded slightly. Bis(2-ethylhexyl)phthalate (280-32,000 ng g(-1)) was the most abundant phthalate. The data indicates that Stege Marsh may be a source of contaminants that continue to be discharged into San Francisco Bay.

  1. Bed composition generation for morphodynamic modeling: Case study of San Pablo Bay in California, USA

    USGS Publications Warehouse

    van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D.

    2011-01-01

    Applications of process-based morphodynamic models are often constrained by limited availability of data on bed composition, which may have a considerable impact on the modeled morphodynamic development. One may even distinguish a period of "morphodynamic spin-up" in which the model generates the bed level according to some ill-defined initial bed composition rather than describing the realistic behavior of the system. The present paper proposes a methodology to generate bed composition of multiple sand and/or mud fractions that can act as the initial condition for the process-based numerical model Delft3D. The bed composition generation (BCG) run does not include bed level changes, but does permit the redistribution of multiple sediment fractions over the modeled domain. The model applies the concept of an active layer that may differ in sediment composition above an underlayer with fixed composition. In the case of a BCG run, the bed level is kept constant, whereas the bed composition can change. The approach is applied to San Pablo Bay in California, USA. Model results show that the BCG run reallocates sand and mud fractions over the model domain. Initially, a major sediment reallocation takes place, but development rates decrease in the longer term. Runs that take the outcome of a BCG run as a starting point lead to more gradual morphodynamic development. Sensitivity analysis shows the impact of variations in the morphological factor, the active layer thickness, and wind waves. An important but difficult to characterize criterion for a successful application of a BCG run is that it should not lead to a bed composition that fixes the bed so that it dominates the "natural" morphodynamic development of the system. Future research will focus on a decadal morphodynamic hindcast and comparison with measured bathymetries in San Pablo Bay so that the proposed methodology can be tested and optimized. ?? 2010 The Author(s).

  2. Detection of the oyster herpesvirus in commercial bivalve in northern California, USA: conventional and quantitative PCR.

    PubMed

    Burge, Colleen A; Strenge, Robyn E; Friedman, Carolyn S

    2011-04-06

    The ostreid herpesvirus (OsHV-1) and related oyster herpesviruses (OsHV) are associated with world-wide mortalities of larval and juvenile bivalves. To quantify OsHV viral loads in mollusc tissues, we developed a SYBR Green quantitative PCR (qPCR) based on the A-region of the OsHV-1 genome. Reaction efficiency and precision were demonstrated using a plasmid standard curve. The analytical sensitivity is 1 copy per reaction. We collected Crassostrea gigas, C. sikamea, C. virginica, Ostrea edulis, O. lurida, Mytilus galloprovincialis, and Venerupis phillipinarum from Tomales Bay (TB), and C. gigas from Drakes Estero (DE), California, U.S.A., and initially used conventional PCR (cPCR) to test for presence of OsHV DNA. Subsequently, viral loads were quantified in selected samples of all tested bivalves except O. lurida. Copy numbers were low in each species tested but were significantly greater in C. gigas (p < 0.0001) compared to all other species, suggesting a higher level of infection. OsHV DNA was detected with cPCR and/or qPCR and confirmed by sequencing in C. gigas, C. sikamea, C. virginica, O. edulis, M. galloprovincialis, and V phillipinarum from TB and C. gigas from DE. These data indicate that multiple bivalve species may act as reservoirs for OsHV in TB. A lack of histological abnormalities in potential reservoirs requires alternative methods for their identification. Further investigation is needed to determine the host-parasite relationship for each potential reservoir, including characterization of viral loads and their relationship with infection (via in situ hybridization), assessments of mortality, and host responses.

  3. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi

    PubMed Central

    Chandler, James Angus; Liu, Rachel M.; Bennett, Shannon N.

    2015-01-01

    Mosquitoes, most often recognized for the microbial agents of disease they may carry, harbor diverse microbial communities that include viruses, bacteria, and fungi, collectively called the microbiota. The composition of the microbiota can directly and indirectly affect disease transmission through microbial interactions that could be revealed by its characterization in natural populations of mosquitoes. Furthermore, the use of shotgun metagenomic sequencing (SMS) approaches could allow the discovery of unknown members of the microbiota. In this study, we use RNA SMS to characterize the microbiota of seven individual mosquitoes (species include Culex pipiens, Culiseta incidens, and Ochlerotatus sierrensis) collected from a variety of habitats in California, USA. Sequencing was performed on the Illumina HiSeq platform and the resulting sequences were quality-checked and assembled into contigs using the A5 pipeline. Sequences related to single stranded RNA viruses of the Bunyaviridae and Rhabdoviridae were uncovered, along with an unclassified genus of double-stranded RNA viruses. Phylogenetic analysis finds that in all three cases, the closest relatives of the identified viral sequences are other mosquito-associated viruses, suggesting widespread host-group specificity among disparate viral taxa. Interestingly, we identified a Narnavirus of fungi, also reported elsewhere in mosquitoes, that potentially demonstrates a nested host-parasite association between virus, fungi, and mosquito. Sequences related to 8 bacterial families and 13 fungal families were found across the seven samples. Bacillus and Escherichia/Shigella were identified in all samples and Wolbachia was identified in all Cx. pipiens samples, while no single fungal genus was found in more than two samples. This study exemplifies the utility of RNA SMS in the characterization of the natural microbiota of mosquitoes and, in particular, the value of identifying all microbes associated with a specific host

  4. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi.

    PubMed

    Chandler, James Angus; Liu, Rachel M; Bennett, Shannon N

    2015-01-01

    Mosquitoes, most often recognized for the microbial agents of disease they may carry, harbor diverse microbial communities that include viruses, bacteria, and fungi, collectively called the microbiota. The composition of the microbiota can directly and indirectly affect disease transmission through microbial interactions that could be revealed by its characterization in natural populations of mosquitoes. Furthermore, the use of shotgun metagenomic sequencing (SMS) approaches could allow the discovery of unknown members of the microbiota. In this study, we use RNA SMS to characterize the microbiota of seven individual mosquitoes (species include Culex pipiens, Culiseta incidens, and Ochlerotatus sierrensis) collected from a variety of habitats in California, USA. Sequencing was performed on the Illumina HiSeq platform and the resulting sequences were quality-checked and assembled into contigs using the A5 pipeline. Sequences related to single stranded RNA viruses of the Bunyaviridae and Rhabdoviridae were uncovered, along with an unclassified genus of double-stranded RNA viruses. Phylogenetic analysis finds that in all three cases, the closest relatives of the identified viral sequences are other mosquito-associated viruses, suggesting widespread host-group specificity among disparate viral taxa. Interestingly, we identified a Narnavirus of fungi, also reported elsewhere in mosquitoes, that potentially demonstrates a nested host-parasite association between virus, fungi, and mosquito. Sequences related to 8 bacterial families and 13 fungal families were found across the seven samples. Bacillus and Escherichia/Shigella were identified in all samples and Wolbachia was identified in all Cx. pipiens samples, while no single fungal genus was found in more than two samples. This study exemplifies the utility of RNA SMS in the characterization of the natural microbiota of mosquitoes and, in particular, the value of identifying all microbes associated with a specific host.

  5. Toxicity of metal-contaminated sediments from Keswick Reservoir, California, USA

    SciTech Connect

    Finlayson, B.; Fujimura, R.; Huang, Z.Z.

    2000-02-01

    Keswick Reservoir, California, USA, receives metal-laden acid-mine drainage (AMD) from the abandoned Iron Mountain Mine. Mixing of the AMD with reservoir water causes precipitation and deposition of metal-rich sludge in the reservoir. Hydroelectric generation activities can scour the sediments and mobilize trace metals cadmium, copper, and zinc into the water column, thus creating potentially toxic conditions to fish and aquatic invertebrates. Sediment samples collected from Keswick Reservoir in 1993 and 1994 were analyzed for acid-volatile sulfides and for simultaneously extractable metals (SEM), and whole sediments and sediment elutriates were tested for toxicity to rainbow trout (Oncorhynchus mykiss), amphipods (Hyalella azteca), and cladocerans (Ceriodaphnia dubia). Acid-volatile sulfide concentrations in the sediments were low (<10 {micro}mol/g H{sub 2}S), indicating that dissolved metals in the sediment pore water were not limited by sulfide. The SEM concentrations were generally high (up to 11 {micro}g/g Cd, 4,800 {micro}g/g Cu, and 1,600 {micro}g/g Zn, dry weight) in the sediments. Whole sediments and 20% w/w sediment elutriates from 16 sites were tested for toxicity. Low survival (as low as 0{degree}) in whole sediments was generally associated with copper and zinc, and to a lesser extent cadmium, concentrations that exceeded probable effect level values for freshwater sediments; survival also may have been influenced by low pH and alkalinity conditions. Low survival (as low as 0%) in sediment elutriates was also generally associated with higher concentrations of dissolved zinc. Further study is required to formulate sediment cleanup levels that are protective of fish and wildlife. Source control in the Iron Mountain Mine drainage will eventually significantly lessen the production of sediments.

  6. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA

    USGS Publications Warehouse

    Bertolo, P.; Wieczorek, G.F.

    2005-01-01

    This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004). To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content. We applied the one dimensional DAN (Dynamic ANalysis) model (Hungr, 1995) and the two-dimensional FLO2D model (O'Brien et al., 1993) to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris- flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities. After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening. European Geosciences Union ?? 2005 Author(s). This work is licensed under a Creative Commons License.

  7. Effects of hydrologic infrastructure on flow regimes of California's Central Valley rivers: Implications for fish populations

    USGS Publications Warehouse

    Brown, Larry R.; Bauer, Marissa L.

    2010-01-01

    Alteration of natural flow regimes is generally acknowledged to have negative effects on native biota; however, methods for defining ecologically appropriate flow regimes in managed river systems are only beginning to be developed. Understanding how past and present water management has affected rivers is an important part of developing such tools. In this paper, we evaluate how existing hydrologic infrastructure and management affect streamflow characteristics of rivers in the Central Valley, California and discuss those characteristics in the context of habitat requirements of native and alien fishes. We evaluated the effects of water management by comparing observed discharges with estimated discharges assuming no water management ("full natural runoff"). Rivers in the Sacramento River drainage were characterized by reduced winter–spring discharges and augmented discharges in other months. Rivers in the San Joaquin River drainage were characterized by reduced discharges in all months but particularly in winter and spring. Two largely unaltered streams had hydrographs similar to those based on full natural runoff of the regulated rivers. The reduced discharges in the San Joaquin River drainage streams are favourable for spawning of many alien species, which is consistent with observed patterns of fish distribution and abundance in the Central Valley. However, other factors, such as water temperature, are also important to the relative success of native and alien resident fishes. As water management changes in response to climate change and societal demands, interdisciplinary programs of research and monitoring will be essential for anticipating effects on fishes and to avoid unanticipated ecological outcomes.

  8. Discovery of South American suckermouth armored catfishes (Loricariidae, Pterygoplichthys spp.) in the Santa Fe River drainage, Suwannee River basin, USA

    USGS Publications Warehouse

    Nico, Leo G.; Butt, Peter L.; Johnston, Gerald R.; Jelks, Howard L.; Kail, Matthew; Walsh, Stephen J.

    2012-01-01

    We report on the occurrence of South American suckermouth armored catfishes (Loricariidae) in the Suwannee River basin, southeastern USA. Over the past few years (2009-2012), loricariid catfishes have been observed at various sites in the Santa Fe River drainage, a major tributary of the Suwannee in the state of Florida. Similar to other introduced populations of Pterygoplichthys, there is high likelihood of hybridization. To date, we have captured nine specimens (270-585 mm, standard length) in the Santa Fe River drainage. One specimen taken from Poe Spring best agrees with Pterygoplichthys gibbiceps (Kner, 1854) or may be a hybrid with either P. pardalis or P. disjunctivus. The other specimens were taken from several sites in the drainage and include seven that best agree with Pterygoplichthys disjunctivus (Weber, 1991); and one a possible P. disjunctivus x P. pardalis hybrid. We observed additional individuals, either these or similar appearing loricariids, in Hornsby and Poe springs and at various sites upstream and downstream of the long (> 4 km) subterranean portion of the Santa Fe River. These specimens represent the first confirmed records of Pterygoplichthys in the Suwannee River basin. The P. gibbiceps specimen represents the first documented record of an adult or near adult of this species in open waters of North America. Pterygoplichthys disjunctivus or its hybrids (perhaps hybrid swarms) are already abundant and widespread in other parts of peninsular Florida, but the Santa Fe River represents a northern extension of the catfish in the state. Pterygoplichthys are still relatively uncommon in the Santa Fe drainage and successful reproduction not yet documented. However, in May 2012 we captured five adult catfish (two mature or maturing males and three gravid females) from a single riverine swallet pool. One male was stationed at a nest burrow (no eggs present). To survive the occasional harsh Florida winters, these South American catfish apparently use

  9. Occurrence and transport of total mercury and methyl mercury in the Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, J.

    1999-01-01

    Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland

  10. Tradeoffs of strategically reconnecting rivers to their floodplains: The case of the Lower Illinois River (USA).

    PubMed

    Guida, Ross J; Remo, Jonathan W F; Secchi, Silvia

    2016-12-01

    During the latter half of the 19th Century and first half of the 20th Century, the Illinois River was heavily altered through leveeing off large portions of its floodplain, draining wetlands, and the construction of dams and river-training structures that facilitated navigation. As a result of these alterations, flood stages continue to rise, increasing flood risk and threatening to overtop levees along the La Grange Segment (LGS) of the Illinois River. Over the last two decades, more emphasis has been placed on reconnecting portions of floodplains to rivers in order to solve the long-term problem of rising flood heights attributed to continual heightening of levees to provide flood protection. Multiple studies have suggested that strategically reconnecting larger portions of the LGS could result in more sustainable floodplain management. However, the true costs and benefits of reconnecting the floodplain are not known. We use a novel hydrodynamic, geospatial, economic, and habitat suitability framework to assess the tradeoffs of strategically reconnecting the Illinois River to its floodplain in order to decrease flood risk, improve floodplain habitats, and limit the costs of reconnection. Costs include building-associated losses, lost agricultural profits, and levee removal and construction costs. Tested scenarios demonstrate that while flood heights and environmental benefits are maximized through the most aggressive levee setbacks and removals, these scenarios also have the highest costs. However, the tradeoff of implementing lower-cost scenarios is that there is less flood-height reduction and less floodplain habitat available. Several individual levee districts have high potential for reconnection based on limiting potential damages as well as providing floodplain habitat. To implement large-scale strategic floodplain reconnection, costs range from $1.2-$4.3 billion. As such, payments for ecosystem services will likely be necessary to compensate landowners for

  11. Mercury Transport During Snowmelt in the Upper Provo River, Utah, USA

    NASA Astrophysics Data System (ADS)

    Packer, B. N.; Carling, G. T.; Aanderud, Z.; Nelson, S.

    2016-12-01

    Transport of mercury (Hg) during snowmelt is widely recognized as a significant source of Hg to high elevation lakes and streams. However, it is not well understood to what extent Hg transport is associated with suspended sediment versus dissolved organic matter (DOM) during snowmelt runoff. To address this question, we sampled the upper Provo River (Utah, USA) during 2015 and 2016 at high frequency during the snowmelt season. The Provo River feeds into Jordanelle Reservoir, which has fish consumption advisories due elevated Hg concentrations. Throughout the snowmelt season we sampled snow, soil, soil water, and overland flow samples in the upper Provo River watershed. Samples were analyzed for total Hg (THg), methylmercury (MeHg), DOC, and DOM. Preliminary results show THg concentrations exceeding 7 ng/L at maximum stream discharge with the "dissolved" (calculated as filtered/unfiltered concentration) fraction averaging 75%. The dissolved Hg fraction is highly correlated with DOC (R2>0.9), suggesting that Hg transport is dominated by complexation with organic matter. Over 70% of the THg load in the upper Provo River occurred during the snowmelt season (May through June) during 2015 and 2016. Fluorescence spectroscopy analyses are underway to determine the type and quality of DOM present and its role in Hg complexation and mobilization. Together these measurements will provide insight into Hg mobilization, bioavailability, and fate during the snowmelt season.

  12. Changes in productivity and contaminants in bald eagles nesting along the lower Columbia River, USA

    USGS Publications Warehouse

    Buck, J.A.; Anthony, R.G.; Schuler, C.A.; Isaacs, F.B.; Tillitt, D.E.

    2005-01-01

    Previous studies documented poor productivity of bald eagles (Haliaeetus leucocephalus) in the lower Columbia River (LCR), USA, and elevated p,p???-dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCBs), dioxins, and furans in eagle eggs. From 1994 to 1995, we collected partially incubated eggs at 19 of 43 occupied territories along the LCR and compared productivity and egg contaminants to values obtained in the mid-1980s. We found higher productivity at new nesting sites along the river, yet productivity at 23 older breeding territories remained low and was not different (p = 0.713) between studies. Eggshell thickness at older territories had not improved (p = 0.404), and eggshells averaged 11% thinner than shells measured before dichlorodiphenyltrichloroethane use. Decreases in DDE (p = 0.022) and total PCBs (p = 0.0004) in eggs from older breeding areas occurred between study periods. Productivity was not correlated to contaminants, but DDE, PCBs, and dioxin-like chemicals exceeded estimated no-effect values. Some dioxin-like contaminants in eggs were correlated to nest location, with highest concentrations occurring toward the river's mouth where productivity was lowest. Although total productivity increased due to the success of new nesting pairs in the region, egg contaminants remain high enough to impair reproduction at older territories and, over time, may alter productivity of new pairs nesting near the river's mouth. ?? 2005 SETAC.

  13. Changes in productivity and contaminants in bald eagles nesting along the lower Columbia River, USA.

    PubMed

    Buck, Jeremy A; Anthony, Robert G; Schuler, Carol A; Isaacs, Frank B; Tillitt, Donald E

    2005-07-01

    Previous studies documented poor productivity of bald eagles (Haliaeetus leucocephalus) in the lower Columbia River (LCR), USA, and elevated p,p'-dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCBs), dioxins, and furans in eagle eggs. From 1994 to 1995, we collected partially incubated eggs at 19 of 43 occupied territories along the LCR and compared productivity and egg contaminants to values obtained in the mid-1980s. We found higher productivity at new nesting sites along the river, yet productivity at 23 older breeding territories remained low and was not different (p = 0.713) between studies. Eggshell thickness at older territories had not improved (p = 0.404), and eggshells averaged 11% thinner than shells measured before dichlorodiphenyltrichloroethane use. Decreases in DDE (p = 0.022) and total PCBs (p = 0.0004) in eggs from older breeding areas occurred between study periods. Productivity was not correlated to contaminants, but DDE, PCBs, and dioxin-like chemicals exceeded estimated no-effect values. Some dioxin-like contaminants in eggs were correlated to nest location, with highest concentrations occurring toward the river's mouth where productivity was lowest. Although total productivity increased due to the success of new nesting pairs in the region, egg contaminants remain high enough to impair reproduction at older territories and, over time, may alter productivity of new pairs nesting near the river's mouth.

  14. Influence of hydrologic modifications on Fraxinus pennsylvanica in the Mississippi River Alluvial Valley, USA

    USGS Publications Warehouse

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2015-01-01

    We used tree-ring analysis to examine radial growth response of a common, moderately flood-tolerant species (Fraxinus pennsylvanica Marshall) to hydrologic and climatic variability for > 40 years before and after hydrologic modifications affecting two forest stands in the Mississippi River Alluvial Valley (USA): a stand without levees below dams and a stand within a ring levee. At the stand without levees below dams, spring flood stages decreased and overall growth increased after dam construction, which we attribute to a reduction in flood stress. At the stand within a ring levee, growth responded to the elimination of overbank flooding by shifting from being positively correlated with river stage to not being correlated with river stage. In general, growth in swales was positively correlated with river stage and Palmer Drought Severity Index (an index of soil moisture) for longer periods than flats. Growth decreased after levee construction, but swales were less impacted than flats likely because of differences in elevation and soils provide higher soil moisture. Results of this study indicate that broad-scale hydrologic processes differ in their effects on the flood regime, and the effects on growth of moderately flood-tolerant species such as F. pennsylvanica can be mediated by local-scale factors such as topographic position, which affects soil moisture.

  15. Persistent River Basin Disequilibrium in a Cratonic Landscape: Ozark Dome, USA

    NASA Astrophysics Data System (ADS)

    Beeson, H. W.; McCoy, S. W.; Keen-Zebert, A.

    2015-12-01

    Quantitative research on landscape evolution has focused on tectonically active landscapes, leaving the pace and primary drivers of topographic change in tectonically quiescent environments, which make up the majority of Earth's surface, poorly understood. We use topographic analysis and a characteristic metric of river basin geometry, χ, to test the hypothesis that river basin dynamics, including divide migration and stream capture, can cause transient pulses of incision and large gradients in erosion rate, which in turn influence the morphology of cratonic landscapes. In testing this hypothesis, we describe and interpret the disequilibrium observed in river networks draining a typical low-elevation cratonic landscape, the Ozark dome, USA and propose alternative mechanisms to climate and tectonics that generate and sustain large-scale landscape disequilibrium. The Ozark dome was uplifted in the fore-bulge of the Ouachita orogeny and lies south of the extent of glaciation and primarily north of eustatic sea-level changes. The Ozarks have not experienced significant tectonic activity since the late Paleozoic. Landscape response times predicted by stream-power river incision models would suggest that landscapes subjected to consistent, low rates of isostatic uplift should be close to steady state. Yet, rivers draining the Ozark dome appear to be in disequilibrium. Anomalous stream network topology, variable relief across the dome, cross-divide topographic asymmetry that corresponds with large cross-divide gradients in χ, and the prevalence of multiple flights of strath terraces suggest transient and non-uniform bedrock incision rates. Our results suggest that erosional competition between river basins drive much of the observed topographic asymmetry and the in-situ formation of high-elevation, low-relief surfaces on the Ozark dome. This implies that basin dynamics, rather than tectonics, lithology, or climate, may set the large-scale morphology of some cratonic

  16. Long-term UHF RiverSonde river velocity observations at Castle Rock, Washington and Threemile Slough, California

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Ruhl, C.A.

    2005-01-01

    Long-term, non-contact river velocity measurements have been made using a UHF RiverSonde system for several months at each of two locations having quite different flow characteristics. Observations were made on the Cowlitz River at Castle Rock, Washington from October 2003 to June 2004, where the unidirectional flow of the river ranged from about 1.0 to 3.5 m/s. The radar velocity was highly correlated with the stage height which was continually measured by the U. S. Geological Survey. The profile of the along-channel velocity across the water channel also compared favorably with in-situ measurements performed by the Survey. The RiverSonde was moved to Threemile Slough, in central California, in September 2004 and has been operating there for several months. At Threemile Slough, which connects the Sacramento and San Joaquin Rivers, the flow is dominated by tidal effects and reverses direction four times per day, with a maximum speed of about 0.8 m/s in each direction. Water level and water velocity are continually measured by the Survey at the Threemile Slough site, with velocity recorded every 15 minutes from measurements made by an ultrasonic velocity meter (UVM). Over a period of several months, the radar and UVM velocity measurements have been highly correlated, with a coefficient of determination R2 of 0.976. ??2005 IEEE.

  17. Fuerte River floods, an overlooked source of terrigenous sediment to the Gulf of California

    NASA Astrophysics Data System (ADS)

    Barbara, Loïc; Schmidt, Sabine; Urrutia-Fucugauchi, Jaime; Pérez-Cruz, Ligia

    2016-10-01

    Sediments deposited on the southeastern continental shelf of the Gulf of California, near the Fuerte River mouth, have been investigated using sediment XRF elemental composition, magnetic parameter and radiogenic element activities, and imply lithogenic elements as a promising proxy for terrigenous input and river discharge. Clastic mud beds are observed in the sediment core DIPALV-C33. These layers are massively bedded and characterized by coarser terrigenous sediment than typically observed in the Gulf of California. Based on this distinct lithology observed recurrently in the Fuerte River mouth region, we suggest these beds form during flooding events of the river. Comparing our results with instrumental data, we associate these unusual beds with Hurricane Lidia in October 1981 and a strong winter storm in January 1944. Elemental ratios Zr/Rb and K/Ti in the sediment core are strongly correlated with the lithologic changes, supporting their use as flood event proxies. Finally, we show that the three events observed account for 15% of the cumulative sediment deposited in DIPALV-C33 locations during the last two centuries, suggesting that in addition of seasonal eolian supply, floods events may contribute significantly to terrigenous delivery to the Gulf of California.

  18. Detailed Project Report on Kern River-California Aqueduct Intertie

    DTIC Science & Technology

    1974-02-01

    not prevent pollutants such as chemicals or oil spills from entering the California Aqueduct during Intertie operation. In this connection, should it...7- substances such as oil or floating debris, 8. " Emergency Operations (a) General. The Intertie will be operated on an emergency basis when any...include cotton, barley, hay and safflower . Kings and Tulare Counties’ general plans indicate over 90 percent of Tulare Lake is included in agricultural

  19. American River Watershed Investigation, California. Volume 1. Appendixes A - E

    DTIC Science & Technology

    1991-12-01

    8217 that t emporary inundation and rloodiinq of old mining sites and d-redge spoils may result in sulf~uric acid formation and leaching of hazardous/toxic...California State Highway 49 Relocation B-69 d. Outlet Sluices B-74 e. Aggregate Borrow Sources B-77 f. Spoils B-80 g. Natomas Area Protection B-80 h... Spoils . - Spoils are waste materials generated during excavation for various project features. When excavations are required to construct project

  20. Diazinon and chlorpyrifos loads in the San Joaquin River basin, California, January and February 2000

    USGS Publications Warehouse

    Kratzer, Charles R.; Zamora, Celia; Knifong, Donna L.

    2002-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2000 in the San Joaquin River Basin was less than 21 percent of application in 1993 and 1994. A total of 13 sites were sampled weekly during nonstorm periods and more frequently during two storm periods. The sites included five major river and eight minor tributary sites. The highest concentrations of diazinon and chlorpyrifos occurred during the storm periods. Four samples from major river sites (Tuolumne River and two San Joaquin River sites) had diazinon concentrations greater than 0.08 microgram per liter, the concentration being considered by the state of California as its criterion maximum concentration for the protection of aquatic habitat. One sample from a major river site (San Joaquin River) exceeded the equivalent State guideline of 0.02 microgram per liter for chlorpyrifos. At the eight minor tributary sites, 24 samples exceeded the diazinon guideline and four samples exceeded the chlorpyrifos guideline. The total diazinon load in the San Joaquin River near Vernalis during January and February 2000 was 19.6 pounds active ingredient; of this, 8.17 pounds active ingredient was transported during two storms. In 1994, 27.4 pounds active ingredient was transported during two storms. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2000 was 5.68 pounds active ingredient; of this, 2.17 pounds active ingredient was transported during the two storms. During the frequently sampled February 2000 storm, the main sources of diazinon in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (25 percent), Tuolumne River Basin (14 percent), and the Stanislaus River Basin (10 percent). The main sources of chlorpyrifos in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (17 percent), Tuolumne River Basin (13 percent), and the Merced River Basin (11 percent). The total January and February diazinon load in the

  1. Accounting for Consumptive Use of Lower Colorado River Water in Arizona, California, Nevada, and Utah

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.

    1994-01-01

    In the Colorado River valley between the east end of Lake Mead and the international boundary with Mexico (see figure), the river is the principal source of water for agricultural, domestic, municipal, industrial, hydroelectric-power generation, and recreational purposes. Water is stored in surface reservoirs and in the river aquifer---permeable sediments and sedimentary rocks that fill the lower Colorado River valley and adjacent tributary valleys. The hydraulic connection between the river and the river aquifer, overbank flow prior to building of the dams, and infiltration as the reservoirs filled allowed the sediments and sedimentary rocks to become saturated with water from the river. Ratios of isotopes of hydrogen and oxygen in water from wells indicate that most of the water in the river aquifer beneath the flood plain and in many places beneath the adjacent alluvial slopes originated from the river. The water table in the river aquifer extends from the river, beneath the flood plain, and under the alluvial slopes until it intersects bedrock. Precipitation in the surrounding mountains and inflow from tributary valleys also contribute small quantities of water to the river aquifer. Consumptive use of river water in the valley results from evapotranspiration by vegetation (crops and phreatophytes) on the flood plain, pumpage from wells to meet domestic and municipal needs, and pumpage from the river for export to areas in California, Arizona, and Nevada outside of the river valley. Most crops are grown on the flood plain; in a few areas, land on the adjacent terraces has been cultivated. Crops were grown on about 70 percent of the total vegetated area in 1984. Phreatophytes---natural vegetation that obtains water from the river aquifer---covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped directly from the river and reservoirs. Most of the water used for domestic and municipal

  2. Effects of flow regimes altered by dams on survival, population declines, and range-wide losses of California river-breeding frogs.

    PubMed

    Kupferberg, Sarah J; Palen, Wendy J; Lind, Amy J; Bobzien, Steve; Catenazzi, Alessandro; Drennan, Joe; Power, Mary E

    2012-06-01

    Widespread alteration of natural hydrologic patterns by large dams combined with peak demands for power and water delivery during summer months have resulted in frequent aseasonal flow pulses in rivers of western North America. Native species in these ecosystems have evolved with predictable annual flood-drought cycles; thus, their likelihood of persistence may decrease in response to disruption of the seasonal synchrony between stable low-flow conditions and reproduction. We evaluated whether altered flow regimes affected 2 native frogs in California and Oregon (U.S.A.) at 4 spatial and temporal extents. We examined changes in species distribution over approximately 50 years, current population density in 11 regulated and 16 unregulated rivers, temporal trends in abundance among populations occupying rivers with different hydrologic histories, and within-year patterns of survival relative to seasonal hydrology. The foothill yellow-legged frog (Rana boylii), which breeds only in flowing water, is more likely to be absent downstream of large dams than in free-flowing rivers, and breeding populations are on average 5 times smaller in regulated rivers than in unregulated rivers. Time series data (range = 8 - 19 years) from 5 populations of yellow-legged frogs and 2 populations of California red-legged frogs (R. draytonii) across a gradient of natural to highly artificial timing and magnitude of flooding indicate that variability of flows in spring and summer is strongly correlated with high mortality of early life stages and subsequent decreases in densities of adult females. Flow management that better mimics natural flow timing is likely to promote persistence of these species and others with similar phenology.

  3. Seasonal Variability of Salt Marsh Foraminifera at the Narrow River, Rhode Island, USA

    NASA Astrophysics Data System (ADS)

    Amelse, C. M.; Engelhart, S. E.; Halavik, B.; Kemp, A.

    2016-12-01

    Salt-marsh foraminifera are commonly used as proxies for producing high-resolution relative sea-level reconstructions over the Holocene. These reconstructions are based on the analogy between modern and fossil assemblages of foraminifera, in which modern assemblages were characterized using surface sediment samples collected on a single day. This approach implicitly assumes that instantaneous sampling of modern salt-marsh foraminifera is adequate to characterize the relationship between foraminiferal assemblages and tidal elevation. However, foraminiferal populations may vary during a year in response to seasonal changes, which may affect the reliability of relative sea-level reconstructions. The effect of seasonality on salt marsh foraminiferal populations has been studied in the United Kingdom as well as on the Pacific coast of the USA, but is absent on the Atlantic coast of the USA. To address this, we investigated the role of seasonality on foraminiferal distributions from a salt marsh environment at the Narrow River (Rhode Island, USA). We analyzed living and dead foraminiferal species from 48 samples through a full year during all four seasons. Common species included Trochammina inflata, Jadammina macrescens, Tiphotrocha comprimata, Miliammina fusca, Reophax spp., and Haplophragmoides spp. Other species included Siphotrochammina lobata, Arenoparella mexicana, Textularia spp., Ammobaculites spp., and Eggerella advena. Low marsh samples were dominated by Miliammina fusca and Reophax spp., while high marsh samples are identified by high abundances of Haplophragmoides spp. Statistical analyses of these samples enables us to identify the influence of seasonality on modern foraminiferal distributions.

  4. Organic matter sources and rehabilitation of the Sacramento-San Joaquin Delta (California, USA)

    USGS Publications Warehouse

    Jassby, A.D.; Cloern, J.E.

    2000-01-01

    1. The Sacramento San Joaquin River Delta, a complex mosaic of tidal freshwater habitats in California, is the focus of a major ecosystem rehabilitation effort because of significant long-term changes in critical ecosystem functions. One of these functions is the production, transport and transformation of organic matter that constitutes the primary food supply, which may be sub-optimal at trophic levels supporting fish recruitment. A long historical data set is used to define the most important organic matter sources, the factors underlying their variability, and the implications of ecosystem rehabilitation actions for these sources. 2. Tributary-borne loading is the largest organic carbon source on an average annual Delta-wide basis; phytoplankton production and agricultural drainage are secondary; wastewater treatment plant discharge, tidal marsh drainage and possibly aquatic macrophyte production are tertiary; and benthic microalgal production, urban run-off and other sources are negligible. 3. Allochthonous dissolved organic carbon must be converted to particulate form - with losses due to hydraulic flushing and to heterotroph growth inefficiency - before it becomes available to the metazoan food web. When these losses are accounted for, phytoplankton production plays a much larger role than is evident from a simple accounting of bulk organic carbon sources, especially in seasons critical for larval development and recruitment success. Phytoplankton-derived organic matter is also an important component of particulate loading to the Delta. 4. The Delta is a net producer of organic matter in critically dry years but, because of water diversion from the Delta, transport of organic matter from the Delta to important, downstream nursery areas in San Francisco Bay is always less than transport into the Delta from upstream sources. 5. Of proposed rehabilitation measures, increased use of floodplains probably offers the biggest increase in organic matter sources. 6

  5. Salmon origin in California's Sacramento San Joaquin river system as determined by otolith strontium isotopic composition

    NASA Astrophysics Data System (ADS)

    Ingram, B. Lynn; Weber, Peter K.

    1999-09-01

    Geochemical methods for distinguishing salmon of different runs would improve management practices designed to mitigate for declines in salmon populations in California's Sacramento San Joaquin river system. Strontium isotopic measurements show a strong relationship between the 87Sr/86Sr ratio in hatchery water and the 87Sr/86Sr ratio in the otoliths (aragonitic ear bones) of juvenile chinook salmon (Oncorhynchus tshawytscha) raised in those waters. As a result of differences in basin geology from north to south along the western slope of the Sierra Nevada, important salmon spawning rivers within the Sacramento San Joaquin river system have distinct 87Sr/86Sr ratios. Of the 10 rivers in this study, those in the Sacramento River drainage have lower 87Sr/86Sr ratios (0.7039 0.7063) than those in the San Joaquin River basin (0.7068 0.7092), with the exception of the American River, which has the highest 87Sr/86Sr ratios in this study (average 0.7100). The combination of distinct river 87Sr/86Sr ratios and the relationship between water and otolith Sr isotope ratios indicates that this geochemical method can be used to identify the origin (and potentially the migration history) of juvenile, out-migrating salmon in the Sacramento San Joaquin system.

  6. Lateral migration of the Middle Sacramento River, California

    USGS Publications Warehouse

    Brice, James Coble

    1977-01-01

    Rates and processes of lateral erosion were studied for the middle Sacramento River between Chico Landing and Colusa, Calif. , a river distance of about 50 miles which is bordered by valuable agricultural land. The study is based on comparison of maps made during 1867-1949 and on aerial photographs made during 1924-74. Meander loops migrate by downstream translation in a direction nearly perpendicular to the loop axis. Loops are cut off by straight or diagonal chutes across the meander neck. The sinuosity of the river has gradually decreased from a value of 1.56 in 1896 to 1.35 in 1974. The morphology and curvature of meander loops cut off before white settlers came to the area indicate that the river was more stable, as well as more sinuous , then than now; subsequent morphologic changes are attributed mainly to the clearing of riparian vegetation and the effects of levees in reducing the area of overflow. The bank-erosion is 1.82 acres per year per stream mile or about 15 feet per year per stream foot for the period 1896-1974. (Woodard-USGS)

  7. Meteorological, water-temperature, and discharge data for the Mattole River basin, Humboldt County, California

    USGS Publications Warehouse

    Noble, R.D.; Jackman, Alan P.

    1983-01-01

    To overcome a major difficulty in the testing of the validity of river-temperature models - the lack of adequate precise synoptic data for an entire river basin - synoptic meteorologic, water-temperature, and discharge data were obtained in the Mattole River Basin in northern California during the period June 10 through August 31, 1975. The variables monitored were water temperature in the main channel and major tributaries, wind velocity, wet-bulb and dry-bulb air temperature, total hemispherical incoming radiation, total incoming shortwave radiation, discharge in the main channel and major tributaries, and average velocity and axial dispersion coefficients in the main channel. This report describes the experimental design and the instrumentation and procedures followed to insure the best possible information, and it presents a detailed set of data which can be used in testing river-temperature models. (USGS)

  8. Prevalences of zoonotic bacteria among seabirds in rehabilitation centers along the Pacific Coast of California and Washington, USA.

    PubMed

    Steele, Christine M; Brown, Richard N; Botzler, Richard G

    2005-10-01

    Many seabirds are rehabilitated annually by wildlife rehabilitation centers along the Pacific Coast, USA. Although various strains of zoonotic bacteria have been isolated from seabirds, risks to rehabilitators at these centers have not been well documented. From November 2001 through January 2003, we determined the prevalence of detectable enteric fauna by isolation and characterization of Gram-negative bacteria from cloacal swabs taken from 26 common murres (Uria aalge), 49 gulls (Larus spp.), and 14 other seabirds treated by rehabilitators in California and Washington (USA). At least 25 bacterial species were identified, including multiple strains of Escherichia coli, as well as Enterobacter cloacae, Citrobacter freundii, and Klebsiella pneumoniae. Antibiotic resistance was found in 13 of 19 bacterial isolates tested, including E. coli, K. pneumoniae, Acinetobacter baumanii, and Pseudomonas aeruginosa. Potential transfer of these bacteria poses a risk to wildlife rehabilitators and to seabirds in these centers, as well as to free-ranging birds.

  9. Latest Pliocene and Quaternary diatom floras of the Lake Tahoe basin, California and Nevada, USA

    NASA Astrophysics Data System (ADS)

    Starratt, S. W.

    2005-12-01

    Despite an active research program at Lake Tahoe, few attempts have been made to understand the conditions that existed within the watershed prior to European contact. A greater understanding of the Quaternary history of the basin would not only benefit local stakeholders, but would also enhance the knowledge of the entire Truckee River system. Lake Tahoe has been called one of the most oligotrophic lakes in the world. Historically, the lake has contained low levels of phosphorus (5 g/L) and nitrogen (100 g/L). As a result, the abundance of phytoplankton and zooplankton is also low. Over the past century anthropogenic inputs have caused parts of the lake to become seasonally mesotrophic. The impact of climate variability on the nutrient load in the lake is poorly known. Detailed analysis of the pre-European contact record is necessary in order to unravel the complex interaction between natural and human inputs to the watershed. Dredge samples collected from slump blocks and surface sediments in the deep basin and surface samples collected at a number of sites around the margin of Lake Tahoe have been analyzed for diatoms and chrysophyte stomatocysts. The deep lake basin diatom flora is dominated by planktonic, oligotrophic, alkaliphilic taxa such as Cyclotella bodanica and C. ocellata. Planktonic and obligate planktonic taxa ( Aulacoseira distans, Fragilaria crotonensis, Stephanodiscus spp.) found close to shore and benthic taxa are representative of oligotrophic to eutrophic conditions ( Frustulia rhomboides, Tetracyclus glans, Achnanthes minutissima, Epithemia spp., Rhopalodia gibba, Meridion circulare). Several samples of diatomaceous sediment collected near Tahoe City, California, on the west side of the lake, contain taxa that are representative of shallow, more eutrophic conditions and at least one of these samples contains late Pliocene taxa ( Tertiarius sp., Pliocaenicus sp.), which suggests that at least locally, the lake at that time was shallower and was

  10. Comparison of enzootic risk measures for predicting West Nile disease, Los Angeles, California, USA, 2004-2010.

    PubMed

    Kwan, Jennifer L; Park, Bborie K; Carpenter, Tim E; Ngo, Van; Civen, Rachel; Reisen, William K

    2012-08-01

    In Los Angeles, California, USA, 2 epidemics of West Nile virus (WNV) disease have occurred since WNV was recognized in 2003. To assess which measure of risk was most predictive of human cases, we compared 3 measures: the California Mosquito-Borne Virus Surveillance and Response Plan Assessment, the vector index, and the Dynamic Continuous-Area Space-Time system. A case-crossover study was performed by using symptom onset dates from 384 persons with WNV infection to determine their relative environmental exposure to high-risk conditions as measured by each method. Receiver-operating characteristic plots determined thresholds for each model, and the area under the curve was used to compare methods. We found that the best risk assessment model for human WNV cases included surveillance data from avian, mosquito, and climate sources.

  11. Larva of Nothotrichia shasta Harris & Armitage (Trichoptera: Hydroptilidae) from California, USA, with its phylogenetic and taxonomic implications.

    PubMed

    Parys, Katherine A; Harris, Steven C

    2013-01-01

    Nothotrichia Flint 1967 is a small genus of infrequently collected microcaddisflies known from Chile and Brazil in South America, Costa Rica in Central America, and the United States in North America. Previously known only from adult specimens, we provide the first description and illustration of a larva in the genus, the larva of N. shasta from California, USA. We provide characters to separate Nothotrichia from other similar genera and an updated key to larval Hydroptilidae modified from that of Wiggins (1996). Larval characters provide additional evidence for the phylogeny and classification of the genus, which we now place tentatively in tribe Ochrotrichiini (subfamily Hydroptilinae).

  12. Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA

    USGS Publications Warehouse

    Noe, G.B.; Hupp, C.R.

    2005-01-01

    Net nutrient accumulation rates were measured in riverine floodplains of the Atlantic Coastal Plain in Virginia, Maryland, and Delaware, USA. The floodplains were located in watersheds with different land use and included two sites on the Chickahominy River (urban), one site on the Mattaponi River (forested), and five sites on the Pocomoke River (agricultural). The Pocomoke River floodplains lie along reaches with natural hydrogeomorphology and on reaches with restricted flooding due to channelization and levees. A network of feldspar clay marker horizons was placed on the sediment surface of each floodplain site 3-6 years prior to sampling. Sediment cores were collected from the material deposited over the feldspar clay pads. This overlying sediment was separated from the clay layer and then dried, weighed, and analyzed for its total carbon (C), nitrogen (N), and phosphorus (P) content. Mean C accumulation rates ranged from 61 to 212 g??m-2??yr-1, N accumulation rates ranged from 3.5 to 13.4 g??m -2??yr-1, and P accumulation rates ranged from 0.2 to 4.1 g??m-2??yr-1 among the eight floodplains. Patterns of intersite variation in mineral sediment and P accumulation rates were similar to each other, as was variation in organic sediment and C and N accumulation rates. The greatest sediment and C, N, and P accumulation rates were observed on Chickahominy River floodplains downstream from the growing metropolitan area of Richmond, Virginia. Nutrient accumulation rates were lowest on Pocomoke River floodplains that have been hydraulically disconnected from the main channel by channelization and levees. Sediment P concentrations and P accumulation rates were much greater on the hydraulically connected floodplain immediately downstream of the limit of channelization and dense chicken agriculture of the upper Pocomoke River watershed. These findings indicate that (1) watershed land use has a large effect on sediment and nutrient retention in floodplains, and (2) limiting

  13. Monitoring of Water Quality Dynamics in Fresno River and Hensley Lake, California*

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Blumenshine, S.; Wright, A.; McClanahan, M.; Holcomb, R. E.; Sartono, O.

    2004-12-01

    The Fresno River is located near the geographical center of California and is the first major tributary east of the San Joaquin River. Hensley Lake was created by the construction of Hidden Dam on the Fresno River for flood control, irrigation, resource management, and recreation. The reservoir has a storage capacity of 90,000 acre feet (110 million m3) and a water surface area of about 1,500 acres (6 km2). In recent years, algae blooms appeared in the lake, causing public concerns over continued beneficial uses of Fresno River and Hensley Lake. This monitoring and simulation project was conducted to identify the major nutrient sources and nutrient and algae dynamics in the watershed and reservoir. A GIS-aided BASINS model was set up for basin scale water quality simulation in the future. Historical data analysis and field sampling of physical, chemical and biological parameters of the River and Lake waters indicated that: (1) The annual contribution of river water to the lake has significantly decreased after the year 2000 (reasons to be investigated). This caused a decrease in water storage in the reservoir likely lead to eutrophic and even hypereutrophic conditions in the lake; (2) The dissolved oxygen in the river is at a critical (near minimum) level for potential beneficial uses. Oxygen levels quickly declined with depth in the lake during summer, far below the minimum concentrations for warm water systems as determined by California Water Quality Standards (5.0mg/L). Oxygen deficit is caused not only by not having enough light through surface water but also oxygen consumption by surface algae and their decomposers in the deep water through respiration; (3) Nutrient concentrations in the watershed were always lower than the lake site closest to the river inflow, strongly suggesting that the river water is diluting the lake; and (4) High bacteria (total Coliform and E. Coli) numbers prevailed in the middle and downstream reaches of the river, indicating that

  14. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2015-12-01

    Salmon are a valuable cultural and economic resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  15. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2016-02-01

    Salmon are a valuable resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the long term implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat after 12 years of re-colonization, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the long term, landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  16. Clumped isotope paleothermometry of the Mio-Pliocene freshwater Lake Mohave. Lower ancestral Colorado River, USA

    NASA Astrophysics Data System (ADS)

    Lang, K. A.; Huntington, K. W.

    2015-12-01

    The fluvio-lacustrine deposits of the Bouse Formation are an archive of ancestral Colorado River integration in the Late Miocene and Early Pliocene. In Mohave Valley along the California-Arizona-Nevada border, exposures of the Bouse Formation are observed ~400 m above the modern river elevation, which has been interpreted as evidence of tectonic uplift following a regionally extensive marine incursion and integration of the ancestral Colorado River by capture. However, recent investigations instead favor a "top-down" process of river integration by sequential infilling of freshwater lakes that does not require subsequent tectonic uplift. Accurate interpretation of the Bouse Formation's depositional environment is needed to test these models and ultimately, constrain the timing and mechanism of southwestern Colorado Plateau uplift. To further constrain interpretations of depositional environment, we present new clumped isotope analyses with major and trace element geochemistry and scanning electron microscopy of carbonate samples from the Bouse Formation in Mohave Valley. Here the Bouse Formation contains three distinct facies: basal marl and limestone overlain by thick beds of calcareous claystone interbedded with siltstone and sandstone and locally overlain by tufa. Bulk geochemistry of all facies is consistent with a similar freshwater source yet each facies is isotopically distinct, potentially indicating a strong influence of facies-specific fractionation processes. Carbonate formation temperatures measured in tufa samples are variable, suggesting multiple generations of calcite precipitation. Formation temperatures from basal marl and claystone samples are generally consistent with near-surface lake temperatures, broadly supporting a lacustrine depositional environment and "top-down" process of ancestral Colorado River integration. More broadly, our results quantify the variability in carbonate formation temperatures with different lacustrine facies and

  17. Thin layers and species-specific characterization of the phytoplankton community in Monterey Bay, California, USA

    NASA Astrophysics Data System (ADS)

    Rines, J. E. B.; McFarland, M. N.; Donaghay, P. L.; Sullivan, J. M.

    2010-01-01

    During the summers of 2005 and 2006, experiments designed to understand the properties of densely concentrated, thin layers of plankton and the processes governing their dynamics were conducted in Monterey Bay, California, USA. Our goal was to elucidate the role that species-specific properties of phytoplankton play in thin layer dynamics. Using adaptive sampling, we collected water samples from inside and outside bio-optical features of the water column. Characterization of the phytoplankton was compiled from live and preserved samples, and analyzed within a framework of physical, optical, chemical and acoustical data. In both years, Monterey Bay was home to an extraordinarily diverse assemblage of phytoplankton and other protists. Bioluminescent dinoflagellates, and Harmful Algal Bloom (HAB) taxa were common. In 2005, community assemblages were widespread, thus advection of water through the experimental mooring array did not result in floristic changes. In 2006 phytoplankton were very patchy in horizontal distribution, and advection of water through the array was at times accompanied by dramatic shifts in community composition. Individual taxa often exhibited disparate patterns of vertical distribution, with some found throughout the water column, whereas others were restricted to narrow depth intervals. Thin layers were observed in both years. In 2005, the dinoflagellate Akashiwo sanguinea formed intense thin layers near the pycnocline at night, and migrated to near surface waters at dawn. In 2006, layer composition was more complex, and related to the water mass present at the time of sampling. Optically detected thin layers of phytoplankton can be studied from the perspective of the impact their high biomass has on both ecological processes, and ocean optics. But thin layers can also be studied from the species-specific perspective of each organism, its role within the thin layer habitat, and the impact that life within a thin layer has on its life history

  18. Holocene climate on the Modoc Plateau, northern California, USA: The view from Medicine Lake

    USGS Publications Warehouse

    Starratt, S.W.

    2009-01-01

    Medicine Lake is a small (165 ha), relatively shallow (average 7.3 m), intermediate elevation (2,036 m) lake located within the summit caldera of Medicine Lake volcano, Siskiyou County, California, USA. Sediment cores and high-resolution bathymetric and seismic reflection data were collected from the lake during the fall of 1999 and 2000. Sediments were analyzed for diatoms, pollen, density, grain size (sand/mud ratio), total organic carbon (TOC), and micro-scale fabric analysis. Using both 14C (AMS) dating and tephrochronology, the basal sediments were estimated to have been deposited about 11,400 cal year BP, thus yielding an estimated average sedimentation rate of about 20.66 cm/1,000 year. The lowermost part of the core (11,400-10,300 cal year BP) contains the transition from glacial to interglacial conditions. From about 11,000-5,500 cal year BP, Medicine Lake consisted of two small, steep-sided lakes or one lake with two steep-sided basins connected by a shallow shelf. During this time, both the pollen (Abies/Artemisia ratio) and the diatom (Cyclotella/Navicula ratio) evidences indicate that the effective moisture increased, leading to a deeper lake. Over the past 5,500 years, the pollen record shows that effective moisture continued to increase, and the diatom record indicates fluctuations in the lake level. The change in the lake level pattern from one of the increasing depths prior to about 6,000 cal year BP to one of the variable depths may be related to changes in the morphology of the Medicine Lake caldera associated with the movement of magma and the eruption of the Medicine Lake Glass Flow about 5,120 cal year BP. These changes in basin morphology caused Medicine Lake to flood the shallow shelf which surrounds the deeper part of the lake. During this period, the Cyclotella/Navicula ratio and the percent abundance of Isoetes vary, suggesting that the level of the lake fluctuated, resulting in changes in the shelf area available for colonization by

  19. Fuel deposition rates of montane and subalpine conifers in the central Sierra Nevada, California, USA

    USGS Publications Warehouse

    van Wagtendonk, J.W.; Moore, P.E.

    2010-01-01

    Fire managers and researchers need information on fuel deposition rates to estimate future changes in fuel bed characteristics, determine when forests transition to another fire behavior fuel model, estimate future changes in fuel bed characteristics, and parameterize and validate ecosystem process models. This information is lacking for many ecosystems including the Sierra Nevada in California, USA. We investigated fuel deposition rates and stand characteristics of seven montane and four subalpine conifers in the Sierra Nevada. We collected foliage, miscellaneous bark and crown fragments, cones, and woody fuel classes from four replicate plots each in four stem diameter size classes for each species, for a total of 176 sampling sites. We used these data to develop predictive equations for each fuel class and diameter size class of each species based on stem and crown characteristics. There were consistent species and diameter class differences in the annual amount of foliage and fragments deposited. Foliage deposition rates ranged from just over 50 g m-2 year-1 in small diameter mountain hemlock stands to ???300 g m-2 year-1 for the three largest diameter classes of giant sequoia. The deposition rate for most woody fuel classes increased from the smallest diameter class stands to the largest diameter class stands. Woody fuel deposition rates varied among species as well. The rates for the smallest woody fuels ranged from 0.8 g m-2 year-1 for small diameter stands of Jeffrey pine to 126.9 g m-2 year-1 for very large diameter stands of mountain hemlock. Crown height and live crown ratio were the best predictors of fuel deposition rates for most fuel classes and species. Both characteristics reflect the amount of crown biomass including foliage and woody fuels. Relationships established in this study allow predictions of fuel loads to be made on a stand basis for each of these species under current and possible future conditions. These predictions can be used to

  20. Mortality and herpesvirus infections of the Pacific oyster Crassostrea gigas in Tomales Bay, California, USA.

    PubMed

    Burge, Colleen A; Griffin, Frederick J; Friedman, Carolyn S

    2006-09-14

    Seed losses of Pacific oysters Crassostrea gigas have been associated with an ostreid herpesvirus-1 (OsHV-1) in Europe, and in 2002, a similar OsHV was detected in Tomales Bay, California, USA. In May of 2003, 5 stocks of seed Pacific oysters were planted at 2 sites (Inner Bay and Outer Bay) in Tomales Bay and monitored for mortality, presence/prevalence of OsHV (using polymerase chain reaction [PCR] and histology), and growth. Temperature (degrees C) and salinity data were collected every half an hour at each site. OsHV was detected at both the Inner and Outer Bay sites on the same sample date and mean temperature predicted OsHV presence (p < 0.005). High levels of mortality occurred 2 wk (Inner Bay site) and 4 wk (Outer Bay site) after OsHV detection. OsHV presence predicted mortality (p = 0.01). Temperature maximums and overall temperature exposure were greater at the Inner Bay site and may explain why mortality affected these oysters sooner than oysters planted at the Outer Bay site. Differences in cumulative mortality were significant among stocks (p < 0.0001), but not between sites (p > 0.05). OsHV prevalence was similar among stocks (p > 0.05) and between sites (p > 0.05). No evidence of herpesvirus-induced Cowdry type A nuclear inclusions or other pathogens were observed. Changes in tissue and cellular architecture including dilation of the digestive tubules and nuclear chromatin margination and pycnosis were observed in OsHV-infected oysters, consistent with previously observed OsHV infections. Stocks with smaller oysters had higher mortality rates than those with larger oysters; growth rate did not correlate with mortalities (p > 0.05). Taken together, these data suggest that the OsHV may cause or act in synergy with temperature to kill Pacific oyster seed in Tomales Bay, but further investigation of OsHV etiology in seed oysters is needed.

  1. Pliocene to late Pleistocene magmatism in the Aurora Volcanic Field, Nevada and California, USA

    NASA Astrophysics Data System (ADS)

    Kingdon, S.; Cousens, B.; John, D. A.; du Bray, E. A.

    2013-12-01

    The 3.9- 0.1 Ma Aurora Volcanic Field (AVF) covers 325 km2 east and southeast of the Bodie Hills, north of Mono Lake, California, USA. The AVF is located immediately northwest of the Long Valley magmatic system and adjacent and overlapping the Miocene Bodie Hills Volcanic Field (BHVF). Rock types range from trachybasalt to trachydacite, and high-silica rhyolite. The trachybasalts to trachydacites are weakly to moderately porphyritic (1-30%) with variable phenocryst assemblages that are some combination of plagioclase, hornblende, clinopyroxene, and lesser orthopyroxene, olivine, and/or biotite. Microphenocrysts are dominated by plagioclase, and include opaque oxides, clinopyroxene, and apatite. These rocks are weakly to strongly devitrified. The high-silica rhyolites are sparsely porphyritic with trace to 10% phenocrysts of quartz, sanidine, plagioclase, biotite, (+/- hornblende), accessory opaque oxide minerals, titanite, allanite, (+/-apatite, zircon), and have glassy groundmasses. Rocks in the AVF are less strongly porphyritic than those of BHVF. Plagioclase phenocrysts are often oscillatory zoned and many have sieve texture. Amphiboles have distinct black opaque rims. Xenocrystic quartz and plagioclase are rare. AVF lavas have bimodal SiO2 compositions, ranging from 49 to 78 wt%, with a gap between 65 and 75 wt%. They are high-K calc-alkaline to shoshonitic in composition, and are metaluminous to weakly peraluminous. They are enriched in rare earth elements (REE), especially light REEs, compared to the Miocene BHVF rocks. Primordial mantle-normalized incompatible element patterns show arc- or subduction-related signatures, with enrichment in Ba and Pb, and depletion in Nb and Ta. Enrichment in K and Sr and depletion in Ti are less pronounced than in the BHVF rocks. There is no correlation between lead isotope ratios and silica (initial 206Pb/204Pb ratios range from 18.974 to 19.151). Neodymium isotope ratios show a moderate negative correlation with silica

  2. Quaternary eolian dunes in the Savannah River valley, Jasper County, South Carolina, USA

    NASA Astrophysics Data System (ADS)

    Swezey, Christopher S.; Schultz, Arthur P.; González, Wilma Alemán; Bernhardt, Christopher E.; Doar, William R.; Garrity, Christopher P.; Mahan, Shannon A.; McGeehin, John P.

    2013-09-01

    Sand hills in the Savannah River valley in Jasper County (South Carolina, USA) are interpreted as the remnants of parabolic eolian dunes composed of sand derived from the Savannah River and stabilized by vegetation under prevailing climate conditions. Optically stimulated luminescence ages reveal that most of the dunes were active ca. 40 to 19 ka ago, coincident with the last glacial maximum (LGM) through early deglaciation. Modern surface winds are not sufficient for sustained eolian sand transport. When the dunes were active, winds blew at velocities of at least 4 m/s from west to east, and some vegetation was present. The ratio of annual precipitation to potential evapotranspiration (P:PE) was less than the modern ratio of 1.23 and may have been < 0.30, caused by stronger winds (which would have resulted in greater evaporation) and/or reduced precipitation. The Savannah River dunes are part of a larger assemblage of eolian dunes that were active in the eastern United States during and immediately after the LGM, suggesting that eolian sediment behavior in this region has been controlled by regional forcing mechanisms during the Quaternary.

  3. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA

    USGS Publications Warehouse

    Walters, David M.; E.J. Rosi-Marshall,; Kennedy, Theodore A.; W.F. Cross,; C.V. Baxter,

    2015-01-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17–1.59 μg g–1 Hg and 1.35–2.65 μg g–1 Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ15N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6–100% and 56–100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. Environ Toxicol Chem2015;9999:1–10

  4. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA.

    PubMed

    Walters, David M; Rosi-Marshall, Emma; Kennedy, Theodore A; Cross, Wyatt F; Baxter, Colden V

    2015-10-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17-1.59 μg g(-1) Hg and 1.35-2.65 μg g(-1) Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ(15) N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6-100% and 56-100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. © 2015 SETAC.

  5. Public support for ecosystem restoration in the Hudson River Valley, USA.

    PubMed

    Connelly, Nancy A; Knuth, Barbara A; Kay, David L

    2002-04-01

    We applied the Theory of Planned Behavior to help understand the relationships between environmental beliefs, support for ecosystem restoration actions, and willingness to pay (WTP) for restoration and protection goals in the Hudson River estuary, New York State, USA. We conducted a mail survey with 3,000 randomly-chosen local residents of the Hudson River estuary in the fall of 1999. As hypothesized, the broad ecosystem restoration goals of the Hudson River Estuary Action Plan were more strongly supported than the corresponding specific implementation actions. We found that beliefs and past behavior were better explanatory variables than sociodemographic characteristics for explaining people's support for ecosystem restoration actions and WTP for restoration and protection goals. Because ecosystem restoration goals appear to be more generally acceptable than specific restoration actions, proponents of restoration programs should not become complacent about the need for active public outreach and involvement even if initial restoration program discussions have been low in controversy. Efforts to assess and foster support for ecosystem restoration should be targeted toward audiences identified on the basis of beliefs and past behaviors rather than on sociodemographic characteristics.

  6. Physical and ecological connectivity among restored oyster bars in the Severn River (Maryland, USA)

    NASA Astrophysics Data System (ADS)

    Steppe, C. N.; Fredriksson, D. W.; Wallendorf, L.; Barlow, A.

    2008-12-01

    In an effort to improve water quality and enhance the Crassostrea virginica fishery, many oyster restoration bars have been placed in Chesapeake Bay tributaries. Nevertheless, bars are often placed in sub-estuaries with poorly described circulation dynamics. Therefore the potential for the restored bars to either re-seed themselves or serve as larval sources for other beds remains unclear. To address this problem we assessed connectivity among 3 restored oyster bars in the Severn River Estuary, (Maryland, USA) via a combination of weekly plankton tows at each bar (College Creek, Weems Creek, and Lake Ogleton; May-October 2007); predictions from a hydrodynamic model (ADCIRC) adapted for the study area; and satellite-tracked drifter deployments from the College Creek and Weems Creek sites (2007-2008). Planktonic assemblages were similar among sites, and shifted on a time scale of weeks. Preliminary model runs showed that connectivity between the Weems Creek site and the main-stem of the Severn River may be higher than between the College Creek site and the Severn. Finally, drifter trajectories indicated two distinct transport regimes; retention within the Severn River system, on a time scale pertinent to C. virginica larval development (about 3 weeks), and export to the main-stem of Chesapeake Bay, indicating loss of larvae from the local system, either by mortality or recruitment to another sub-estuary.

  7. A spatial model of white sturgeon rearing habitat in the lower Columbia River, USA

    USGS Publications Warehouse

    Hatten, J.R.; Parsley, M.J.

    2009-01-01

    Concerns over the potential effects of in-water placement of dredged materials prompted us to develop a GIS-based model that characterizes in a spatially explicit manner white sturgeon Acipenser transmontanus rearing habitat in the lower Columbia River, USA. The spatial model was developed using water depth, riverbed slope and roughness, fish positions collected in 2002, and Mahalanobis distance (D2). We created a habitat suitability map by identifying a Mahalanobis distance under which >50% of white sturgeon locations occurred in 2002 (i.e., high-probability habitat). White sturgeon preferred relatively moderate to high water depths, and low to moderate riverbed slope and roughness values. The eigenvectors indicated that riverbed slope and roughness were slightly more important than water depth, but all three variables were important. We estimated the impacts that fill might have on sturgeon habitat by simulating the addition of fill to the thalweg, in 3-m increments, and recomputing Mahalanobis distances. Channel filling simulations revealed that up to 9 m of fill would have little impact on high-probability habitat, but 12 and 15 m of fill resulted in habitat declines of ???12% and ???45%, respectively. This is the first spatially explicit predictive model of white sturgeon rearing habitat in the lower Columbia River, and the first to quantitatively predict the impacts of dredging operations on sturgeon habitat. Future research should consider whether water velocity improves the accuracy and specificity of the model, and to assess its applicability to other areas in the Columbia River.

  8. Fish Assemblage Response to a Small Dam Removal in the Eightmile River System, Connecticut, USA

    NASA Astrophysics Data System (ADS)

    Poulos, Helen M.; Miller, Kate E.; Kraczkowski, Michelle L.; Welchel, Adam W.; Heineman, Ross; Chernoff, Barry

    2014-11-01

    We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.

  9. Fish assemblage response to a small dam removal in the Eightmile River system, Connecticut, USA.

    PubMed

    Poulos, Helen M; Miller, Kate E; Kraczkowski, Michelle L; Welchel, Adam W; Heineman, Ross; Chernoff, Barry

    2014-11-01

    We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.

  10. Salinity Tolerance of Early-Stage Oyster Larvae in the Choptank River, Chesapeake Bay, USA

    NASA Astrophysics Data System (ADS)

    Scharping, R. J.; North, E. W.; Plough, L. V.

    2016-02-01

    The eastern oyster (Crassostrea virginica) is ecologically and economically important to the Chesapeake Bay, Maryland, USA. Its population, however, is currently estimated to be less than one percent of what it was historically. To restore oyster populations, techniques such as larval transport modeling are being implemented to aid the selection of sanctuary locations. These models can incorporate biological factors such as salinity-induced mortality, but no data from low-salinity areas such as the oligohaline Choptank River, a major focus of oyster restoration in the Chesapeake, exist. The purpose of our study was to generate salinity-induced mortality data for oyster larvae from the Choptank River and compare their tolerances to those of oysters from different salinity regimes. We performed three experiments looking at the effect of salinities from 3 to 26 on the survival of larvae from 4 to 48 hrs post-fertilization. While overall survival differed across experiments, we found a consistent minimum survival threshold between 5-7 and peak survival window between 9-16. These salinity values were about 7 lower than those of oysters from the polyhaline Long Island Sound (threshold: 12.5-15; peak: 17.5-27). This research has direct application to oyster restoration in the Choptank River and similar low-salinity areas by improving larval transport model predictions.

  11. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha in the Willamette River, Oregon, USA

    USGS Publications Warehouse

    Billman, E.J.; Whitman, L.D.; Schroeder, R.K.; Sharpe, C.S.; Noakes, David L. G.; Schreck, Carl B.

    2014-01-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  12. Colorado River Floods, Droughts, and Shrimp Fishing in the Upper Gulf of California, Mexico

    NASA Astrophysics Data System (ADS)

    All, John D.

    2006-01-01

    Accurate procedures that measure hydrologic variability would have great value for evaluating ecosystem impacts of upstream water use in the Colorado River Basin. Many local extractive income-based stakeholders rely directly or indirectly on ecosystem health and are adversely affected when the river does not flow. This study focuses on the impact of little or no Colorado River flow on the Mexican shrimp industry. Although there have been complaints that U.S. diversions of Colorado River flow have greatly impaired the shrimp fishery, this research demonstrates that freshwater rarely reaches the Gulf even during times of flooding, and that other factors such as overfishing may influence the instability of shrimp populations. Advanced very-high-resolution radiometer (AVHRR) satellite imagery was used to assess water volumes diverted away from the channel of the Colorado River and ultimately the Gulf of California during flooding periods. Analysis of data demonstrated that little freshwater actually reaches the Gulf even during floods because of its diversion into a large dry lake bed basin known as Laguna Salada. Fuller use of the Colorado River throughout its entire course to the sea is possible and could benefit a large cohort of users without catastrophic habitat destruction in delta ecosystems. Reconstruction of a natural earthen berm, as proposed by Ducks Unlimited, would maximize the use of floodwaters for ecosystem benefits. These findings have profound implications for local economic activities dependent on hydrologic resources in the Colorado River Delta and Upper Gulf.

  13. Current Status of Western Yellow-Billed Cuckoo along the Sacramento and Feather Rivers, California.

    PubMed

    Dettling, Mark D; Seavy, Nathaniel E; Howell, Christine A; Gardali, Thomas

    2015-01-01

    To evaluate the current status of the western population of the Yellow-billed Cuckoo (Coccyzus americanus) along the Sacramento and Feather rivers in California's Sacramento Valley, we conducted extensive call playback surveys in 2012 and 2013. We also quantified the amount and distribution of potential habitat. Our survey transects were randomly located and spatially balanced to sample representative areas of the potential habitat. We estimated that the total area of potential habitat was 8,134 ha along the Sacramento River and 2,052 ha along the Feather River, for a total of 10,186 ha. Large-scale restoration efforts have created potential habitat along both of these rivers. Despite this increase in the amount of habitat, the number of cuckoos we detected was extremely low. There were 8 detection occasions in 2012 and 10 occasions in 2013 on the Sacramento River, in both restored and remnant habitat. We had no detections on the Feather River in either year. We compared our results to 10 historic studies from as far back as 1972 and found that the Yellow-billed Cuckoo had unprecedentedly low numbers in 2010, 2012, and 2013. The current limiting factor for the Yellow-billed Cuckoo in the Sacramento Valley is likely not the amount of appropriate vegetation, as restoration has created more habitat over the last 30 years. Reasons for the cuckoo decline on the Sacramento and Feather rivers are unclear.

  14. Colorado river floods, droughts, and shrimp fishing in the upper gulf of California, Mexico.

    PubMed

    All, John D

    2006-01-01

    Accurate procedures that measure hydrologic variability would have great value for evaluating ecosystem impacts of upstream water use in the Colorado River Basin. Many local extractive income-based stakeholders rely directly or indirectly on ecosystem health and are adversely affected when the river does not flow. This study focuses on the impact of little or no Colorado River flow on the Mexican shrimp industry. Although there have been complaints that U.S. diversions of Colorado River flow have greatly impaired the shrimp fishery, this research demonstrates that freshwater rarely reaches the Gulf even during times of flooding, and that other factors such as overfishing may influence the instability of shrimp populations. Advanced very-high-resolution radiometer (AVHRR) satellite imagery was used to assess water volumes diverted away from the channel of the Colorado River and ultimately the Gulf of California during flooding periods. Analysis of data demonstrated that little freshwater actually reaches the Gulf even during floods because of its diversion into a large dry lake bed basin known as Laguna Salada. Fuller use of the Colorado River throughout its entire course to the sea is possible and could benefit a large cohort of users without catastrophic habitat destruction in delta ecosystems. Reconstruction of a natural earthen berm, as proposed by Ducks Unlimited, would maximize the use of floodwaters for ecosystem benefits. These findings have profound implications for local economic activities dependent on hydrologic resources in the Colorado River Delta and Upper Gulf.

  15. Sediment Dynamics and Coastal Response to Large-Scale Dam Removal: Elwha River, USA

    NASA Astrophysics Data System (ADS)

    Gelfenbaum, G. R.; Stevens, A. W.; Miller, I. M.; Warrick, J. A.; Ritchie, A. C.

    2013-12-01

    Two dams on the Elwha River, Washington State, USA trapped over 25 million m3 of mud, sand, and gravel since the early 1900s and contributed to erosion of the delta protruding into the Strait of Juan de Fuca. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, is providing an unprecedented opportunity to examine the geomorphic response of a coastal delta to massive changes in river sediment supply. Observations once or twice a year prior to and during dam removal of nearshore bathymetry, collected using personal watercraft equipped with RTK GPS and single-beam echosounders and beach topography, collected with RTK GPS mounted on backpacks provide a sequence of continuous DEM surfaces to quantify geomorphic change. Bed sediments are sampled by grab sampler in water depths between -9 and -1 m around the delta, and by hand and a 'cobble-cam' digital camera during low tide on sub-aerial beaches. An approximately monthly series of low altitude, high-resolution vertical aerial ortho-images qualitatively document sub-aerial changes in coastal landforms. Comparison of the March 2013 survey with surveys conducted prior to dam removal shows large changes in the morphology of the river mouth and submarine delta. Sediment accumulation was widespread throughout the survey area but was concentrated primarily in two distinct areas. The largest area of deposition was located adjacent to the river mouth and covered approximately 368,000 m2 with an average thickness of 3.1 m and a maximum of 8 m. A secondary area of deposition was observed to the east of the river mouth and covered 115,600 m2 with a mean thickness of 0.69 m and a maximum of 1.8 m. Net accumulation within the study area totals roughly 1,300,000 m3 since the removal of the two dams began in 2011. Surface sediment of the primary deposit adjacent to the river mouth is coarser (coarse to medium sand) than the secondary deposit to the east (medium to fine sand). Numerical model simulations of

  16. ORGANIC POLLUTANT DEPOSITION TO THE SIERRA NEVADA (CALIFORNIA, USA) SNOWPACK AND ASSOCIATED LAKE AND STREAM ECOSYSTEM

    EPA Science Inventory

    High elevation ecosystems in the western USA and Canada are receiving deposition of persistent organic pollutants (POPs) that presumably originate in the USA as well as outside its borders. In April 1992 we obtained paired snowpack samples from each of two watersheds located in t...

  17. ORGANIC POLLUTANT DEPOSITION TO THE SIERRA NEVADA (CALIFORNIA, USA) SNOWPACK AND ASSOCIATED LAKE AND STREAM ECOSYSTEM

    EPA Science Inventory

    High elevation ecosystems in the western USA and Canada are receiving deposition of persistent organic pollutants (POPs) that presumably originate in the USA as well as outside its borders. In April 1992 we obtained paired snowpack samples from each of two watersheds located in t...

  18. How is Physical Depositional Setting Related to Silica Chemistry in the Platte River, USA?

    NASA Astrophysics Data System (ADS)

    Van Orsdel, Z. R.; Mohr, R. C.; Ford, E.; Wagner, Z.; Kettenring, K. M.; Triplett, L.

    2013-12-01

    Beginning in 2003, a non-native subspecies of Phragmites australis, a wetland grass, invaded the Platte River in Nebraska, USA. The plants' dense root and rhizome structures caused channel narrowing and increased deposition of fine sediment. We hypothesized that a significant proportion of the fine sediment was comprised of biogenic silica particles including terrestrial plant phytoliths. In this study, we determined a relationship between particle size and biogenic silica content in Platte River sediments to help characterize when and where silica is sequestered in the riparian areas of rivers. Historically a wide, braided, largely unvegetated sand-bed river, the Platte has undergone several major changes since the early 1900s. The main anthropogenic impact on the Platte has been a ~75 percent reduction in flow, leading to channel narrowing and more vegetation occupying riparian areas. Phragmites is particularly effective at building islands and extending river banks because its roots add cohesion to sediment. We suspect that the presence of Phragmites in the Platte River has resulted in a reduction of bioavailable silica (dissolved and particulate amorphous particles) being exported to the downstream receiving waters, ultimately including the Gulf of Mexico. We want to better understand silica sequestration in riverine environments, because silicon is often a limiting nutrient for some phytoplankton (e.g., diatoms and radiolaria) in coastal oceans. In the Platte, lower water levels and increased vegetation density cause reduced flow velocity, allowing more silica particles to settle out of suspension. We hypothesized that silica content in the riparian sediments of the Platte River negatively correlate with particle size, and that the non-native subspecies of Phragmites uses more silica than the native variety. In order to quantify the effect Phragmites is having on the Platte's silica load, plant and sediment samples were prepared using a timed NaOH digestion

  19. Fate of geothermal mercury from Yellowstone National Park in the Madison and Missouri Rivers, USA.

    PubMed

    Nimick, David A; Caldwell, Rodney R; Skaar, Donald R; Selch, Trevor M

    2013-01-15

    Mercury is a worldwide contaminant derived from natural and anthropogenic sources. River systems play a key role in the transport and fate of Hg because they drain widespread areas affected by aerial Hg deposition, transport Hg away from point sources, and are sites of Hg biogeochemical cycling and bioaccumulation. The Madison and Missouri Rivers provide a natural laboratory for studying the fate and transport of Hg contributed by geothermal discharge in Yellowstone National Park and from the atmosphere for a large drainage basin in Montana and Wyoming, United States of America (USA). Assessing Hg in these rivers also is important because they support fishery-based recreation and irrigated agriculture. During 2002 to 2006, Hg concentrations were measured in water, sediment, and fish from the main stem, 7 tributaries, and 6 lakes. Using these data, the geothermal Hg load to the Madison River and overall fate of Hg along 378 km of the Missouri River system were assessed. Geothermal Hg was the primary source of elevated total Hg concentrations in unfiltered water (6.2-31.2 ng/L), sediment (148-1100 ng/g), and brown and rainbow trout (0.12-1.23 μg total Hg/g wet weight skinless filet) upstream from Hebgen Lake (the uppermost impoundment). Approximately 7.0 kg/y of geothermal Hg was discharged from the park via the Madison River, and an estimated 87% of that load was lost to sedimentation in and volatilization from Hebgen Lake. Consequently, Hg concentrations in water, sediment, and fish from main-stem sites downstream from Hebgen Lake were not elevated and were comparable to concentrations reported for other areas affected solely by atmospheric Hg deposition. Some Hg was sequestered in sediment in the downstream lakes. Bioaccumulation of Hg in fish along the river system was strongly correlated (r(2)=0.76-0.86) with unfiltered total and methyl Hg concentrations in water and total Hg in sediment. Published by Elsevier B.V.

  20. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    EPA Science Inventory

    EPA announced the availability of the final report,River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  1. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    EPA Science Inventory

    EPA announced the availability of the final report,River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  2. CLASSIFICATION OF HIGH SPATIAL RESOLUTION, HYPERSPECTRAL REMOTE SENSING IMAGERY OF THE LITTLE MIAMI RIVER WATERSHED IN SOUTHWEST OHIO, USA (FINAL)

    EPA Science Inventory

    The document and associated land use/land cover (LULC) coverage, entitled Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA, is the result of a collaborative effort among an interdisci...

  3. Role of climate and invasive species in structuring trout distributions in the interior Columbia River Basin, USA

    Treesearch

    Seth J. Wenger; Daniel J. Isaak; Jason B. Dunham; Kurt D. Fausch; Charlie Luce; Helen M. Neville; Bruce E. Rieman; Michael K. Young; David E. Nagel; Dona L. Horan; Gwynne L. Chandler

    2011-01-01

    Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus...

  4. COMPONENTS OF SURFACE AND SUBSURFACE CONNECTIVITY IN A LARGE OREGON (USA) RIVER--WHAT CAN BE RESTORED?

    EPA Science Inventory

    We conducted research on the Willamette River in western Oregon (USA) to determine the ecological functions of off-channel habitats (OCH). OCHs have declined in our 70 km study reach of the active floodplain since European settlement. Surface and subsurface connectivity between...

  5. Impacts of Migratory Sandhill Cranes (Grus canadensis) on Microbial Water Quality in the Central Platte River, Nebraska, USA

    EPA Science Inventory

    Wild birds have been shown to be significant sources of numerous types of pathogens that are relevant to humans and agriculture. The presence of large numbers of migratory birds in such a sensitive and important ecosystem as the Platte River in central Nebraska, USA, could potent...

  6. Water's Way at Sleepers River watershed - revisiting flow generation in a post-glacial landscape, Vermont USA

    Treesearch

    James B. Shanley; Stephen D. Sebestyen; Jeffrey J. McDonnell; Brian L. McGlynn; Thomas. Dunne

    2015-01-01

    The Sleepers River Research Watershed (SRRW) in Vermont, USA, has been the site of active hydrologic research since 1959 and was the setting where Dunne and Black demonstrated the importance and controls of saturation-excess overland flow (SOF) on streamflow generation. Here, we review the early studies from the SRRW and show how they guided our conceptual approach to...

  7. Impacts of Migratory Sandhill Cranes (Grus canadensis) on Microbial Water Quality in the Central Platte River, Nebraska, USA

    EPA Science Inventory

    Wild birds have been shown to be significant sources of numerous types of pathogens that are relevant to humans and agriculture. The presence of large numbers of migratory birds in such a sensitive and important ecosystem as the Platte River in central Nebraska, USA, could potent...

  8. Flies from L.A., The Sequel: A further twelve new species of Megaselia (Diptera: Phoridae) from the BioSCAN Project in Los Angeles (California, USA)

    PubMed Central

    Brown, Brian V.; Disney, R. Henry L.

    2016-01-01

    Abstract Background Presented are continued results from the BioSCAN Project, an urban biodiversity study sampling primarily from private backyards in Los Angeles, California (USA). Presented are continued results from the BioSCAN Project, an urban biodiversity study sampling primarily from private backyards in Los Angeles, California (USA). New information Twelve new species of Megaselia (Diptera: Phoridae) are described: M. baileyae, M. friedrichae, M. gonzalezorum, M. joanneae, M. losangelensis, M. phyllissunae, M. pongsaiae, M. shatesae, M. stoakesi, M. studentorum, M. voluntariorum, M. wongae. PMID:27226746

  9. Morphodynamics of neck cutoffs on elongate meander loops, White River, Arkansas, USA

    NASA Astrophysics Data System (ADS)

    Konsoer, K. M.

    2015-12-01

    Meander cutoff and oxbow lake formation are essential components of alluvial architecture and riverine habitat of meandering river floodplains. Yet, despite their ubiquitous presence within active floodplains, the detailed processes involved in the initiation of cutoffs and oxbow lakes remain incompletely understood, primarily due to the intermittent nature of such events. Furthermore, conceptual models of meander cutoff and oxbow lake formation have been primarily developed for chute cutoffs and relatively simple planform configurations. Less attention has been given to neck cutoff dynamics occurring on highly sinuous meandering rivers with complex planform morphology. During the formation of a neck cutoff on a compound elongate loop, the upstream and downstream limbs can become oriented roughly subparallel with flow in opposite directions separated by a narrow meander neck. Immediately following cutoff of this thin neck, flow from the upstream limb is sharply redirected into the downstream limb over a short distance. These conditions of tight bend flow should become more pronounced as the ratio of radius of curvature to channel width become smaller, leading to complex patterns of three-dimensional velocities that have implications for the evolution of the cutoff channel and the transformation of the abandoned bend into an oxbow lake. This paper investigates the process dynamics of neck cutoff and oxbow lake formation using detailed field measurements of three-dimensional flow velocities, channel bed topography and geotechnical analysis of the banks and floodplains from three neck cutoffs along the White River, Arkansas (USA), each representing a different stage in the morphologic evolution from cutoff to oxbow lake. Results from this study suggests that the planform geometry of neck cutoff on an elongate meander loop can influence the spatial pattern of sediment deposition within the abandoned loop leading to increased hydrologic connectivity to the main channel

  10. A regional-scale study of chromium and nickel in soils of northern California, USA

    USGS Publications Warehouse

    Morrison, J.M.; Goldhaber, M.B.; Lee, L.; Holloway, J.M.; Wanty, R.B.; Wolf, R.E.; Ranville, J.F.

    2009-01-01

    A soil geochemical survey was conducted in a 27,000-km2 study area of northern California that includes the Sierra Nevada Mountains, the Sacramento Valley, and the northern Coast Range. The results show that soil geochemistry in the Sacramento Valley is controlled primarily by the transport and weathering of parent material from the Coast Range to the west and the Sierra Nevada to the east. Chemically and mineralogically distinctive ultramafic (UM) rocks (e.g. serpentinite) outcrop extensively in the Coast Range and Sierra Nevada. These rocks and the soils derived from them have elevated concentrations of Cr and Ni. Surface soil samples derived from UM rocks of the Sierra Nevada and Coast Range contain 1700-10,000 mg/kg Cr and 1300-3900 mg/kg Ni. Valley soils west of the Sacramento River contain 80-1420 mg/kg Cr and 65-224 mg/kg Ni, reflecting significant contributions from UM sources in the Coast Range. Valley soils on the east side contain 30-370 mg/kg Cr and 16-110 mg/kg Ni. Lower Cr and Ni concentrations on the east side of the valley are the result of greater dilution by granitic sources of the Sierra Nevada. Chromium occurs naturally in the Cr(III) and Cr(VI) oxidation states. Trivalent Cr is a non-toxic micronutrient, but Cr(VI) is a highly soluble toxin and carcinogen. X-ray diffraction and scanning electron microscopy of soils with an UM parent show Cr primarily occurs within chromite and other mixed-composition spinels (Al, Mg, Fe, Cr). Chromite contains Cr(III) and is highly refractory with respect to weathering. Comparison of a 4-acid digestion (HNO3, HCl, HF, HClO4), which only partially dissolves chromite, and total digestion by lithium metaborate (LiBO3) fusion, indicates a lower proportion of chromite-bound Cr in valley soils relative to UM source soils. Groundwater on the west side of the Sacramento Valley has particularly high concentrations of dissolved Cr ranging up to 50 ??g L-1 and averaging 16.4 ??g L-1. This suggests redistribution of Cr

  11. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river

    NASA Astrophysics Data System (ADS)

    Warrick, Jonathan A.; Xu, Jingping; Noble, Marlene A.; Lee, Homa J.

    2008-05-01

    Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January-February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (˜5 cm/s) were observed in the lower 20-40 cm of the water column 4-6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25-50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (˜1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.

  12. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river

    USGS Publications Warehouse

    Warrick, J.A.; Xu, Jie; Noble, M.A.; Lee, H.J.

    2008-01-01

    Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January-February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (???5 cm/s) were observed in the lower 20-40 cm of the water column 4-6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25-50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (???1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.

  13. Suspended sediment and organic contaminants in the San Lorenzo River, California, water years 2009-2010

    USGS Publications Warehouse

    Draut, Amy E.; Conaway, Christopher H.; Echols, Kathy R.; Storlazzi, Curt D.; Ritchie, Andrew

    2011-01-01

    This report presents analyses of suspended sediment and organic contaminants measured during a two-year study of the San Lorenzo River, central California, which discharges into the Pacific Ocean within the Monterey Bay National Marine Sanctuary. Most suspended-sediment transport occurred during flooding caused by winter storms; 55 percent of the sediment load was transported by the river during a three-day flood in January 2010. Concentrations of polyaromatic hydrocarbons can exceed regulatory criteria during high-flow events in the San Lorenzo River. These results highlight the importance of episodic sediment and contaminant transport in steep, mountainous, coastal watersheds and emphasize the importance of understanding physical processes and quantifying chemical constituents in discharge from coastal watersheds on event-scale terms.

  14. Water Hyacinth Identification Using CART Modeling With Hyperspectral Data in the Sacramento-San Joaquin River Delta of California

    NASA Astrophysics Data System (ADS)

    Khanna, S.; Hestir, E. L.; Santos, M. J.; Greenberg, J. A.; Ustin, S. L.

    2007-12-01

    Water hyacinth (Eichhornia crassipes) is an invasive aquatic weed that is causing severe economic and ecological impacts in the Sacramento-San Joaquin River Delta (California, USA). Monitoring its distribution using remote sensing is the crucial first step in modeling its predicted spread and implementing control and eradication efforts. However, accurately mapping this species is confounded by its several phenological forms, namely a healthy vegetative canopy, flowering canopy with dense conspicuous terminal flowers above the foliage, and floating dead and senescent forms. The full range of these phenologies may be simultaneously present at any time, given the heterogeneity of environmental and ecological conditions in the Delta. There is greater spectral variation within water hyacinth than between any of the co-occurring species (pennywort and water primrose), so classification approaches must take these different phenological stages into consideration. We present an approach to differentiating water hyacinth from co-occurring species based on knowledge of relevant variation in leaf chlorophyll, floral pigments, foliage water content, and variation in leaf structure using a classification and regression tree (CART) applied to airborne hyperspectral remote sensing imagery.

  15. Episodic Channels: Effects of Regulation on Non-Equilibrium River Systems in California (Invited)

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.; Minear, J. T.

    2010-12-01

    Mediterranean-climate rivers are characterized by episodic channels, whose geomorphic work is concentrated in short, infrequent events (large floods), separated by long periods of quiescence in which the channel narrows and riparian vegetation can establish and mature, only to be disrupted by the next large disturbance. While not ‘pretty’ in conventional terms, such rivers support diverse assemblages of native species, adapted to the episodic regime. Because of the importance of irrigated agriculture in Mediterranean-climate regions, large reservoir storage projects are common, resulting in dam-induced reductions flood peaks, which have reduced dynamism in downstream channels. The result has been loss of habitat diversity and native species. A systems-level analysis of the Sacramento-San Joaquin and other rivers reveals that Q2 has commonly been reduced by 80%, sediment loads reduced, and vegetation encroached in formerly active channels. More profound have been hardening of banks and isolation of floodplains by levees. Restoration of ecological values in such rivers will require room for the river to move and flood, as well as floods sufficient to drive these processes. We identify a set of rivers with highest potential for re-activation or preservation of dynamic process in California.

  16. Hyperpycnal sediment discharge from semiarid southern California rivers: Implications for coastal sediment budgets

    USGS Publications Warehouse

    Warrick, J.A.; Milliman, John D.

    2003-01-01

    Southern California rivers discharge hyperpycnal (river density greater than ocean density) concentrations of suspended sediment (>40 g/L, according to buoyancy theory) during flood events, mostly during El Nin??o-Southern Oscillation (ENSO) conditions. Because hyperpycnal river discharge commonly occurs during brief periods (hours to occasionally days), mean daily flow statistics often do not reveal the magnitude of these events. Hyperpycnal events are particularly important in rivers draining the Transverse Range and account for 75% of the cumulative sediment load discharged by the Santa Clara River over the past 50 yr. These events are highly pulsed, totaling only ??? 30 days (??? 0.15% of the total 50 yr period). Observations of the fate of sediment discharge, although rare, are consistent with hyperpycnal river dynamics and the high likelihood of turbidity currents during these events. We suggest that much of the sediment load initially bypasses the littoral circulation cells and is directly deposited on the adjacent continental shelf, thus potentially representing a loss of immediate beach sand supply. During particularly exceptional events (>100 yr recurrence intervals), flood underflows may extend past the shelf and escape to offshore basins.

  17. Channel Maintenance and Flushing Flows for the Klamath River Below Iron Gate Dam, California

    USGS Publications Warehouse

    Holmquist-Johnson, Cristopher L.; Milhous, Robert T.

    2010-01-01

    The Klamath River is a major river in northern California and southern Oregon. Iron Gate Dam divides the river into the two subunits where there is a significant change in utilization of the river. Downstream of Iron Gate Dam, the river is very important for the propagation of salmon. To address concerns relating to substrate conditions in the mainstem Klamath River below Iron Gate Dam, the Arcata, California, office of the U.S. Fish and Wildlife Service contracted with the U.S. Geological Survey (USGS) to determine flushing flows required to improve and maintain quality spawning and rearing habitats for salmon, and to reduce the abundance of preferred habitats of the polychaete worm suspected of being the intermediate host for Ceratomyxa shasta, a species of bacteria that infects fish. Historically, the river has had the capacity to move sediment just below Iron Gate Reservoir, but there have been periods when the capacity was very low. The results indicate that if the future is more like the pre-1961 period (low transport capacity) than the more recent period, there will be significant sediment issues in the Klamath River below Iron Gate Dam. It seems that during normal or wet years, winter months, and periods of high flow, sediments are flushed either downstream or deposited on higher surfaces. The recent drought conditions during 2000-2005 probably resulted in extensive fine-grained sedimentation along the river, which in turn may have caused increased establishment of aquatic vegetation and increased concentrations of C. shasta. It appears that releases from Iron Gate Dam as far downstream as Seiad Valley are important in maintaining flow conditions to flush the fines and clean the gravels in the river during summer months, or during drought years. Sediment transport studies indicate that supplemental flows during dry or drought conditions may provide some flushing flows in reaches downstream of the dam. For purposes of flushing fine sediments during drought

  18. Late Pleistocene to Holocene sedimentation and hydrocarbon seeps on the continental shelf of a steep, tectonically active margin, southern California, USA

    USGS Publications Warehouse

    Draut, Amy E.; Hart, Patrick E.; Lorenson, T.D.; Ryan, Holly F.; Wong, Florence L.; Sliter, Ray W.; Conrad, James E.

    2009-01-01

    Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara-Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5-20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources

  19. Impact of river discharge on the California coastal ocean circulation and variability

    NASA Astrophysics Data System (ADS)

    Leiva, J.; Chao, Y.; Farrara, J. D.; Zhang, H.

    2016-12-01

    A real-time California coastal ocean nowcast and forecast system is used to quantify the impact of river discharge on the California coastal ocean circulation and variability. River discharge and freshwater runoff is monitored by an extensive network of stream gages maintained through the U.S. Geological Survey, that offers archived stream flow records as well as real-time datasets. Of all the rivers monitored by the USGS, 25 empty into the Pacific Ocean and contribute a potential source of runoff data. Monthly averages for the current water year yield discharge estimates as high as 6,000 cubic meters per second of additional freshwater input into our present model. Using Regional Ocean Modeling System (ROMS), we performed simulations from October 2015 to May 2016 with and without the river discharge. Results of these model simulations are compared with available observations including both in situ and satellite. Particular attention is paid to the salinity simulation. Validation is done with comparisons to sea glider data available through Oregon State University and UC San Diego, which provides depth profiles along the California coast during this time period. Additional validation is performed through comparisons with sea surface salinity measurements from the Soil Moisture and Ocean Salinity (SMOS) mission. Continued testing for previous years, e.g. between 2011 and 2015, is being made using the Aquarius sea surface salinity data. Discharge data collected by the USGS stream gages provides a necessary source of freshwater input that must be accounted for. Incorporating a new runoff source produces a more robust model that generates improved forecasts. Following validation with available sea glider and satellite data, the enhanced model can be adapted to real-time forecasting.

  20. The influence of major dams on hydrology through the drainage network of the Sacramento River basin, California

    USGS Publications Warehouse

    Singer, M.B.

    2007-01-01

    This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and

  1. Habitat requirements of the endangered California freshwater shrimp (Syncaris pacifica) in lagunitas and Olema creeks, Marin County, California, USA

    USGS Publications Warehouse

    Martin, Barbara A.; Saiki, Michael K.; Fong, Darren

    2009-01-01

    This study was conducted to better understand the habitat requirements and environmental limiting factors of Syncaris pacifica, the California freshwater shrimp. This federally listed endangered species is native to perennial lowland streams in a few watersheds in northern California. Field sampling occurred in Lagunitas and Olema creeks at seasonal intervals from February 2003 to November 2004. Ten glides, five pools, and five riffles served as fixed sampling reaches, with eight glides, four pools, and four riffles located in Lagunitas Creek and the remainder in Olema Creek. A total of 1773 S. pacifica was counted during this study, all of which were captured along vegetated banks in Lagunitas Creek. Syncaris pacifica was most numerous in glides (64), then in pools (31), and lastly in riffles (5). According to logistic regression analysis, S. pacifica was mostly associated with submerged portions of streambank vegetation (especially overhanging vegetation such as ferns and blackberries, emergent vegetation such as sedge and brooklime, and fine roots associated with water hemlock, willow, sedge, and blackberries) along with low water current velocity and a sandy substrate. These seemingly favorable habitat conditions for S. pacifica were present in glides and pools in Lagunitas Creek, but not in Olema Creek. ?? 2009 The Crustacean Society.

  2. Nephrolithiasis in free-ranging North American river otter (Lontra canadensis) in North Carolina, USA.

    PubMed

    Niemuth, Jennifer N; Sanders, Charles W; Mooney, Charles B; Olfenbuttel, Colleen; DePerno, Christopher S; Stoskopf, Michael K

    2014-03-01

    The North American river otter (Lontra canadensis) serves as an indicator species for environmental monitoring, is prized as a valuable furbearer, and is a popular display animal in zoologic collections. Nephrolithiasis has been reported as a frequent problem in other free-ranging and captive otter species but is rarely reported in North American river otters. In this study, we compared the prevalence of nephrolithiasis diagnosed using routine gross pathologic examination techniques with the use of computed tomography (CT) of excised kidneys. We also evaluated whether otter nephroliths could be accurately classified by their CT densities, and we examined the renal tissue uric acid concentrations in free-ranging otters in North Carolina, USA. Kidneys were collected from carcasses of legally trapped, free-ranging animals. Nephroliths were observed in 16.2% of the individuals (n = 229). Associations were found between age and nephrolith status and between capture location and nephrolith status (P = 0.026 and < 0.001, respectively). Computed tomography Hounsfield unit density measurements were not useful in determining nephrolith chemical composition in this study. Renal tissue uric acid concentrations were similar across genders, age groups, and stone status. The chemical composition of the nephroliths was determined by scanning electron microscopy-energy dispersive X-ray spectroscopy to be calcium phosphate in the carbonate form.

  3. An Investigation Into the Ecohydrology of Riparian Wetlands Along the Gila River, NM, USA

    NASA Astrophysics Data System (ADS)

    Samson, J.; Stone, M. C.

    2013-12-01

    The dynamism of the Gila River, in southwestern New Mexico, USA, has resulted in the creation of a topographically diverse floodplain that supports an array of riparian wetlands. The purpose of this study is to investigate the ecohydrologic and ecohydraulic processes of two of these wetlands, in order to predict their potential response to anthropogenic or natural changes in hydrology. One represents a natural wetland and the other a wetland that exists only as a result of an anthropogenic modification to the river system. A network of 30 wells and 2 weather stations were installed in early 2013 to provide a high resolution of data on surface water and ground water hydrologic conditions. Phreatic surface contour maps were produced to aid in the visualization of sub-surface gradients. Based on these results, an electrical resistivity investigation was conducted to identify paleoflow channels as well as depth to bedrock and other potential areas of interest. These data formed the development of three dimensional ModFlow models that were used to investigate potential future stream flow scenarios on wetland hydrology. The model outputs are being used in tandem with the results of quarterly ecological surveys on vegetation, algae, benthic, and bird communities, to make predictions of potential changes in community structure and function.

  4. Revision of the biostratigraphy of the Chatham Group (Upper Triassic), Deep River basin, North Carolina, USA

    USGS Publications Warehouse

    Litwin, R.J.; Ash, S.R.

    1993-01-01

    Paleontological evidence from the Upper Triassic Chatham Group in the three subbasins of the Deep River basin (North Carolina, USA) supports a significant revision of the ages assigned to most of this non-marine continental sedimentary sequence. This study confirms an early(?) or mid-Carnian age in the Sanford subbasin for the base of the Pekin Formation, the lowest unit of the Chatham Group. However, diagnostic late Carnian palynomorphs have been recovered from coals in the lower part of the Cumnock Formation in the Sanford subbasin, and from a sample of the Cumnock Formation equivalent in the Wadesboro subbasin. Plant megafossils and fossil verebrates from rocks in the Sanford subbasin also support a late Carnian age for the Cumnock Formation and its equivalents. The overlying Sanford Formation, which has not yet been dated paleontologically, probably includes beds of Norian age, as over 1000 m of strata may be present between the Cumnock Formation coals (dated here as late Carnian) and the top of the Sanford Formation. This chronostratigraphic interval appears similar to, but slightly longer than, that preserved in the Dan River-Danville and Davie County basins 100 km to the northwest. Our evidence, therefore, indicates that the Chatham Group was deposited over a much longer time interval [early(?) to mid-Carnian through early Norian] than previously was believed. ?? 1993.

  5. Kinetics of Extracellular Peptidases in Sediments of the White Oak River, NC, USA

    NASA Astrophysics Data System (ADS)

    Steen, A. D.; Kevorkian, R. T.; Alperin, M. J.; Lloyd, K. G.

    2013-12-01

    Recent molecular work has shed light on the mechanisms underlying organoheterotrophy in the marine subsurface, including production of extracellular peptidases by deeply-branching Archaea. Here we present measurements of the potential activity (Vmax) and half-saturation constants (Km) for six extracellular peptidase substrates in sediments from 0 to 83 cm deep in the White Oak River estuary, NC, USA. Potential activities at 83 cm were on average 12% of the values at the surface, but because surface Vmax values were several orders of magnitude greater than comparable values from surface seawater, the deep activities were still substantial. Km values did not display a clear trend with depth. Activities consistent with leucyl aminopeptidase were higher than any other extracellular peptidase, but there was no clear division in activities between endopeptidases (which cleave bonds in the interior of proteins) versus aminopeptidases (which cleave N-terminal amino acids). Competitive inhibition experiments will reveal the extent to which the activities we measured reflect the distinct enzymes. We will also present model-based estimates of organic carbon mineralization rates based on methane and sulfate profiles in order to assess the relative importance of extracellular peptidases as a means to acquire organic carbon in the subsurface. Saturation curves for 5 peptidase substrates at the surface and 83 cm in the White Oak River.

  6. Early life stage survival of striped bass in the Delaware River, USA.

    PubMed

    Burton, W H; Weisberg, S B; Brindley, A; Gurley, J

    1992-10-01

    Four 96-h in situ bioassays were conducted on or near the striped bass spawning grounds in the Delaware River within the States of Delaware, New Jersey and Pennsylvania, USA during 1989 to determine if water quality was sufficient to support larval survival. Tests were accomplished by holding 500 striped bass yolk-sac larvae in each of two 75 L chambers at four locations in the river ranging from north of Philadelphia, PA to Salem, NJ and at one location in the Chesapeake and Delaware Canal. Survival varied significantly among stations; highest survival was in the Chesapeake and Delaware Canal, where it averaged more than 50%. Lowest survival occurred at the station near Salem, NJ, approximately 30 km downriver of the primary spawning grounds, where less than 1% of the larvae survived in any of the tests. Survival at stations closest to the primary spawning grounds was weather-dependent; survival was over 47% during periods of little rainfall, but only 11% following periods of higher than average rainfall.

  7. Identifying groundwater-stream interaction in a karst region: Lower Flint River Basin, Georgia, USA

    NASA Astrophysics Data System (ADS)

    Rugel, K.; Jackson, C. R.; Golladay, S. W.; Hicks, D. W.; Dowd, J. F.

    2010-12-01

    Fracturing and dissolution of the Ocala Limestone formation in southwestern Georgia, USA, have resulted in mature karstic development and a high-yielding aquifer; the Upper Floridan. This aquifer, which supplies many millions of gallons of water per day for irrigated agriculture, is hydraulically connected to many streams throughout the lower Flint River Basin. Analyses of long-term data from the U.S. Geological Survey indicate significant changes in stream flow since irrigation intensified during the mid 1970’s. Natural stream flow declines during droughts are exacerbated by irrigation pumping both directly from streams and from the aquifer, threatening several federally-listed aquatic species in this region. We compare physiochemical characteristics of stream reaches within the lower Flint River Basin (including specific conductivity, NO3-, Ca+, δ18O, and δD) with remote sensing data to identify the locations of streambed fractures and joints, which could be enhancing stream-aquifer exchanges. These methods may be useful for updating current hydrologic models and providing information to resource managers charged with protecting vulnerable aquatic species in this and other watersheds.

  8. Subsoil carbon storage in the lower Cosumnes River floodplain, California

    NASA Astrophysics Data System (ADS)

    Steger, K.; Kim, A. T.; Viers, J. H.; Fiener, P.; Smart, D. R.

    2016-12-01

    Active floodplains can store large amounts of carbon (C) in C-rich subsoils originating from catchment erosion processes with subsequent floodplain deposition. Traditional changes in catchment land use patterns and river management to optimize agricultural use of the floodplain may alter C stocks in these soils. Reverse effects might occur if floodplain restoration projects convert agricultural land back to natural systems. Our study focusses on the assessment of deep C pools associated with alluvial floodplain soils converting from conventional leveed agricultural production to floodplain restoration. We evaluated depth-dependent C contents using 21 drillings down to 3m and 10 drillings down to 7m along a transect through a floodplain area of the Cosumnes River. All of our sampling sites revealed a C-rich soil layer between 70 and 130 cm with C concentrations between 11 and 17 g kg-1, often exceeding the C concentration in the topsoil. Our data suggested that the typical C stock depth of 1m would not account for substantial amounts of C sequestered in subsurface soils down to 3m, whereas deep soils down to 7m accounted mainly for C concentrations between 1 and 4 g kg-1. Isotopic signatures of δ13C and δ15N were typical for C3 plants and agricultural soils, respectively. However, the isotopic composition of the topsoil layer seemed to be different from the composition of the buried C layer suggesting a spatial change in long-term input of plant organic matter, land use history and fertilization regimes. Radiocarbon dating showed that the 14C age in the buried horizon was younger than in the overlaying soils, perhaps indicating a major flood event which deposited younger soil under "older" soils. This might also explain why C-rich soil was prevented from further microbial decomposition. In summary, deep alluvial soils in floodplains store large amounts of C not yet accounted for in global models. Intensive agricultural use of these floodplains often combined with

  9. Comparison of Strong Currents and Impacts on the California (USA) Maritime Communities from the 2010 Chile and 2011 Japan Teletsunamis

    NASA Astrophysics Data System (ADS)

    Wilson, R. I.; Miller, K.; Davenport, C.; Nicolini, T.; Dengler, L.; Admire, A. R.; Synolakis, C.; Barberopoulou, A.; Borrero, J. C.; Lynett, P. J.; Jaffe, B. E.; Curtis, E.

    2011-12-01

    The February 27, 2010 Chile and March 11, 2011 Japan tsunamis caused dramatic loss of life and damage in the near-source region, and notable impacts in distant coastal regions like California. Comprehensive post-tsunami surveys and the availability of hundreds of videos within harbors and marinas allow for detailed documentation of these two events by the State of California Tsunami Program. Although neither event caused significant inundation of dry land in California because peak arrival occurred during low tide, damage to docks, harbor infrastructure, and boats was noteworthy. The 2010 Chile tsunami caused approximately 3-million in damage to a dozen harbors, primarily in central and southern California locations like Santa Cruz Harbor, Ventura Harbor and San Diego Bay. The 2011 Japan tsunami caused over 50-million in damage to more than two dozen harbors along the entire coast of California, most extensively to harbors/marinas in Crescent City, Noyo River, and Santa Cruz. During both events, strong tsunami currents, with some observed estimates greater than 15 knots, were generated at harbor entrances and along inside bends and narrows within harbors. Preliminary evaluations of harbor infrastructure and the interaction of boats indicate that drag along the base of large ships exacerbated the damage to docks to which the ships were tied. Evaluation of tsunami currents and damage will help in the validation/calibration of numerical tsunami model currents with the ultimate goal of developing tsunami current hazard maps for harbors statewide. These hazard maps will improve emergency response and infrastructure planning within harbors.

  10. Ground-water and surface-water relations along the Mojave River, southern California

    USGS Publications Warehouse

    Lines, G.C.

    1996-01-01

    The Mojave River and the associated flood-plain aquifer are important water supplies in the Mojave Desert of Southern California. The river and aquifer, in many areas, are in excellent hydraulic connection, and when flow conditions change in one, the other almost always is affected. To better understand these relations, records of gaging stations were analyzed to determine the frequency and duration of historical streamflow. Annual ground-water recharge from the river during water years 1931-94 was estimated from an accounting of all streamflow accretions and losses. Annual recharge ranged from about 24,000 to 460,000 acre-feet and averaged about 96,000 acre-feet. Channel-geometry regression techniques were used to estimate runoff of ungaged ephemeral streams that are tributary to the river. Water-table and gravity changes were used to estimate specific yield of the aquifer and changes in ground-water storage following storm runoff during the winters of 1992-94. In addition, streamflow hydrographs were analyzed to estimate both ground-water discharge to the river (base flow) and historical streamflow depletion caused by ground-water pumping and evapotranspiration. Ground-water pumpage from the flood-plain aquifer was about 120,000 acre-feet during water year 1994. Annual evapotranspiration along the river probably ranges from about 10,000 to 30,000 acre-feet. Factors controlling the exchange of water are identified in this report on the basis of the historical response of the river-aquifer system to stress (stormflows and pumping). Also identified are reaches of the river that are hydraulically suitable for artificial recharge.

  11. Invading species in the Eel River, California: Successes, failures, and relationships with resident species

    USGS Publications Warehouse

    Brown, L.R.; Moyle, P.B.

    1997-01-01

    We examined invasions of non-native fishes into the Eel River, California. At least 16 species of fish have been introduced into the drainage which originally supported 12-14 fish species. Our study was prompted by the unauthorized introduction in 1979 of Sacramento squawfish, Ptychocheilus grandis, a large predatory cyprinid. From 1986 to 1990, we conducted growth and diet studies of squaw fish, conducted intensive surveys of the distribution and habitat associations of both native and introduced species, and examined the nature of species-habitat and interspecies relationships. We found no evidence for increased growth or expanded feeding habits, compared to native populations, of Sacramento squawfish as they invaded the Eel River drainage. Ten of the introduced species were well established, with four species limited to a reservoir and six species established in streams. The success or failure of introductions of stream species appeared to be a function of the ability of a species to survive the fluctuating, highly seasonal, flow regime. The present mixture of native and exotic species has not formed stable fish assemblages but it seems likely that four habitat-associated assemblages will develop. The overall effect of the successful species introductions has been to assemble a group of species, with some exceptions, that are native to and occur together in many California streams. The assemblages now forming are similar to those found in other California streams. The assemblage characterized by squawfish and suckers is likely to be resistant to invasion, in the absence of human caused habitat modifications.

  12. Molecular Diversity of Trypanosoma cruzi Detected in the Vector Triatoma protracta from California, USA

    PubMed Central

    Shender, Lisa A.; Lewis, Michael D.; Rejmanek, Daniel; Mazet, Jonna A. K.

    2016-01-01

    Background Trypanosoma cruzi, causative agent of Chagas disease in humans and dogs, is a vector-borne zoonotic protozoan parasite that can cause fatal cardiac disease. While recognized as the most economically important parasitic infection in Latin America, the incidence of Chagas disease in the United States of America (US) may be underreported and even increasing. The extensive genetic diversity of T. cruzi in Latin America is well-documented and likely influences disease progression, severity and treatment efficacy; however, little is known regarding T. cruzi strains endemic to the US. It is therefore important to expand our knowledge on US T. cruzi strains, to improve upon the recognition of and response to locally acquired infections. Methodology/Principle Findings We conducted a study of T. cruzi molecular diversity in California, augmenting sparse genetic data from southern California and for the first time investigating genetic sequences from northern California. The vector Triatoma protracta was collected from southern (Escondido and Los Angeles) and northern (Vallecito) California regions. Samples were initially screened via sensitive nuclear repetitive DNA and kinetoplast minicircle DNA PCR assays, yielding an overall prevalence of approximately 28% and 55% for southern and northern California regions, respectively. Positive samples were further processed to identify discrete typing units (DTUs), revealing both TcI and TcIV lineages in southern California, but only TcI in northern California. Phylogenetic analyses (targeting COII-ND1, TR and RB19 genes) were performed on a subset of positive samples to compare Californian T. cruzi samples to strains from other US regions and Latin America. Results indicated that within the TcI DTU, California sequences were similar to those from the southeastern US, as well as to several isolates from Latin America responsible for causing Chagas disease in humans. Conclusions/Significance Triatoma protracta populations

  13. Molecular Diversity of Trypanosoma cruzi Detected in the Vector Triatoma protracta from California, USA.

    PubMed

    Shender, Lisa A; Lewis, Michael D; Rejmanek, Daniel; Mazet, Jonna A K

    2016-01-01

    Trypanosoma cruzi, causative agent of Chagas disease in humans and dogs, is a vector-borne zoonotic protozoan parasite that can cause fatal cardiac disease. While recognized as the most economically important parasitic infection in Latin America, the incidence of Chagas disease in the United States of America (US) may be underreported and even increasing. The extensive genetic diversity of T. cruzi in Latin America is well-documented and likely influences disease progression, severity and treatment efficacy; however, little is known regarding T. cruzi strains endemic to the US. It is therefore important to expand our knowledge on US T. cruzi strains, to improve upon the recognition of and response to locally acquired infections. We conducted a study of T. cruzi molecular diversity in California, augmenting sparse genetic data from southern California and for the first time investigating genetic sequences from northern California. The vector Triatoma protracta was collected from southern (Escondido and Los Angeles) and northern (Vallecito) California regions. Samples were initially screened via sensitive nuclear repetitive DNA and kinetoplast minicircle DNA PCR assays, yielding an overall prevalence of approximately 28% and 55% for southern and northern California regions, respectively. Positive samples were further processed to identify discrete typing units (DTUs), revealing both TcI and TcIV lineages in southern California, but only TcI in northern California. Phylogenetic analyses (targeting COII-ND1, TR and RB19 genes) were performed on a subset of positive samples to compare Californian T. cruzi samples to strains from other US regions and Latin America. Results indicated that within the TcI DTU, California sequences were similar to those from the southeastern US, as well as to several isolates from Latin America responsible for causing Chagas disease in humans. Triatoma protracta populations in California are frequently infected with T. cruzi. Our data extend

  14. River-quality assessment of the Truckee and Carson River system, California and Nevada; hydrologic characteristics

    USGS Publications Warehouse

    Brown, W. M.; Nowlin, J.O.; Smith, L.H.; Flint, M.R.

    1986-01-01

    A study of the Truckee and Carson Rivers was begun in October 1978 to assess the cause and effect relations between human and natural actions, and the quality of water at different times and places along the rivers. This report deals with the compilation of basic hydrologic data and the presentation of some of the new data collected during the study. Topographic, flow, and chemical data, data from recent time-of-travel studies, and new data on river mileages and drainage areas that were determined using new , high-resolution maps, are included. The report is a guide to locating maps, aerial photographs, computer files, and reports that relate to the rivers and their basins. It describes methods for compiling and expressing hydrologic information for ease of reading and understanding by the many users of water-related data. Text, tabular data, and colored plates with detailed maps and hydrographs are extensively cross referenced. (USGS)

  15. Iron isotope systematics in estuaries: The case of North River, Massachusetts (USA)

    NASA Astrophysics Data System (ADS)

    Escoube, Raphaelle; Rouxel, Olivier J.; Sholkovitz, Edward; Donard, Olivier F. X.

    2009-07-01

    Recent studies have suggested that rivers may present an isotopically light Fe source to the oceans . Since the input of dissolved iron from river water is generally controlled by flocculation processes that occur during estuarine mixing, it is important to investigate potential fractionation of Fe-isotopes during this process. In this study, we investigate the influence of the flocculation of Fe-rich colloids on the iron isotope composition of pristine estuarine waters and suspended particles. The samples were collected along a salinity gradient from the fresh water to the ocean in the North River estuary (MA, USA). Estuarine samples were filtered at 0.22 μm and the iron isotope composition of the two fractions (dissolved and particles) were analyzed using high-resolution MC-ICP-MS after chemical purification. Dissolved iron results show positive δ 56Fe values (with an average of 0.43 ± 0.04‰) relative to the IRMM-14 standard and do not display any relationships with salinity or with percentage of colloid flocculation. The iron isotopic composition of the particles suspended in fresh water is characterized by more negative δ 56Fe values than for dissolved Fe and correlate with the percentage of Fe flocculation. Particulate δ 56Fe values vary from -0.09‰ at no flocculation to ˜0.1‰ at the flocculation maximum, which reflect mixing effects between river-borne particles, lithogenic particles derived from coastal seawaters and newly precipitated colloids. Since the process of flocculation produces minimal Fe-isotope fractionation in the dissolved Fe pool, we suggest that the pristine iron isotope composition of fresh water is preserved during estuarine mixing and that the value of the global riverine source into the ocean can be identified from the fresh water values. However, this study also suggests that δ 56Fe composition of rivers can also be characterized by more positive δ 56Fe values (up to 0.3‰) relative to the crust than previously reported

  16. Ecology of nonnative Siberian prawn (Palaemon modestus) in the lower Snake River, Washington, USA

    USGS Publications Warehouse

    Erhardt, John M.; Tiffan, Kenneth F.

    2016-01-01

    We assessed the abundance, distribution, and ecology of the nonnative Siberian prawn Palaemon modestus in the lower Snake River, Washington, USA. Analysis of prawn passage abundance at three Snake River dams showed that populations are growing at exponential rates, especially at Little Goose Dam where over 464,000 prawns were collected in 2015. Monthly beam trawling during 2011–2013 provided information on prawn abundance and distribution in Lower Granite and Little Goose Reservoirs. Zero-inflated regression predicted that the probability of prawn presence increased with decreasing water velocity and increasing depth. Negative binomial models predicted higher catch rates of prawns in deeper water and in closer proximity to dams. Temporally, prawn densities decreased slightly in the summer, likely due to the mortality of older individuals, and then increased in autumn and winter with the emergence and recruitment of young of the year. Seasonal length frequencies showed that distinct juvenile and adult size classes exist throughout the year, suggesting prawns live from 1 to 2 years and may be able to reproduce multiple times during their life. Most juvenile prawns become reproductive adults in 1 year, and peak reproduction occurs from late July through October. Mean fecundity (189 eggs) and reproductive output (11.9 %) are similar to that in their native range. The current use of deep habitats by prawns likely makes them unavailable to most predators in the reservoirs. The distribution and role of Siberian prawns in the lower Snake River food web will probably continue to change as the population grows and warrants continued monitoring and investigation.

  17. Ecology of nonnative Siberian prawn (Palaemon modestus) in the lower Snake River, Washington, USA

    USGS Publications Warehouse

    Erhardt, John M.; Tiffan, Kenneth F.

    2016-01-01

    We assessed the abundance, distribution, and ecology of the nonnative Siberian prawn Palaemon modestus in the lower Snake River, Washington, USA. Analysis of prawn passage abundance at three Snake River dams showed that populations are growing at exponential rates, especially at Little Goose Dam where over 464,000 prawns were collected in 2015. Monthly beam trawling during 2011–2013 provided information on prawn abundance and distribution in Lower Granite and Little Goose Reservoirs. Zero-inflated regression predicted that the probability of prawn presence increased with decreasing water velocity and increasing depth. Negative binomial models predicted higher catch rates of prawns in deeper water and in closer proximity to dams. Temporally, prawn densities decreased slightly in the summer, likely due to the mortality of older individuals, and then increased in autumn and winter with the emergence and recruitment of young of the year. Seasonal length frequencies showed that distinct juvenile and adult size classes exist throughout the year, suggesting prawns live from 1 to 2 years and may be able to reproduce multiple times during their life. Most juvenile prawns become reproductive adults in 1 year, and peak reproduction occurs from late July through October. Mean fecundity (189 eggs) and reproductive output (11.9 %) are similar to that in their native range. The current use of deep habitats by prawns likely makes them unavailable to most predators in the reservoirs. The distribution and role of Siberian prawns in the lower Snake River food web will probably continue to change as the population grows and warrants continued monitoring and investigation.

  18. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  19. A Process-Based Assessment for Watershed Restoration Planning, Chehalis River Basin, USA

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Thompson, J.; Seixas, G.; Fogel, C.; Hall, J.; Chamberlin, J.; Kiffney, P.; Pollock, M. M.; Pess, G. R.

    2016-12-01

    Three key questions in identifying and prioritizing river restoration are: (1) How have habitats changed?, (2) What are the causes of those habitat changes?, and (3) How of those changes affected the species of interest? To answer these questions and assist aquatic habitat restoration planning in the Chehalis River basin, USA, we quantified habitat changes across the river network from headwaters to the estuary. We estimated historical habitat capacity to support salmonids using a combination of historical assessments, reference sites, and models. We also estimated current capacity from recent or newly created data sets. We found that losses of floodplain habitats and beaver ponds were substantial, while the estuary was less modified. Both tributary and main channel habitats—while modified—did not show particularly large habitat changes. Assessments of key processes that form and sustain habitats indicate that riparian functions (shading and wood recruitment) have been significantly altered, although peak and low flows have also been altered in some locations. The next step is to link our habitat assessments to salmon life-cycle models to evaluate which life stages and habitat types currently constrain population sizes of spring and fall Chinook salmon, coho salmon, and steelhead. By comparing model runs that represent different components of habitat losses identified in the analysis above, life-cycle models help identify which habitat losses have most impacted each species and population. This assessment will indicate which habitat types provide the greatest restoration potential, and help define a guiding vision for restoration efforts. Future analyses may include development and evaluation of alternative restoration scenarios, including different climate change scenarios, to refine our understanding of which restoration actions provide the greatest benefit to a salmon population.

  20. Risk of Myxobolus cerebralis infection to rainbow trout in the Madison River, Montana, USA

    USGS Publications Warehouse

    Krueger, R.C.; Kerans, B.L.; Vincent, E.R.; Rasmussen, C.

    2006-01-01

    Myxobolus cerebralis, the parasite that causes salmonid whirling disease, has had detrimental effects on several salmonid populations in the Intermountain West, including the rainbow trout in the Madison River, Montana, USA. The goal of this study was to examine relationships among characteristics of the environment, Tubifex tubifex (the alternate host) populations, and rainbow trout whirling disease risk in the Madison River. Environmental characteristics were measured in side channels of the Madison River, and differences were described with a principal components analysis. The density of T. tubifex, the prevalence of infection in T. tubifex, and the density of infected T. tubifex were determined for the side channels using benthic core samples and examination of live tubificids for infection. The site-specific contribution to whirling disease risk in the side channels was determined using in situ exposures of sentinel rainbow trout. Regression analyses were used to determine correlations among these characteristics. Side channels differed in site-specific contribution to rainbow trout whirling disease risk, which was positively correlated to the density of infected T. tubifex. Side channels with fine sediments and lower water temperatures made greater site-specific contribution to whirling disease risk and had higher densities of infected T. tubifex than side channels with coarser sediments and higher temperatures. The ability to characterize areas of high whirling disease risk is essential for improving our understanding of the dynamics of M. cerebralis such that appropriate management strategies can be implemented. In addition, this study provides a model of how the disease ecology of complex aquatic parasites can be examined when the influential processes operate on different spatial scales. ?? 2006 by the Ecological Society of America.

  1. Initial Geomorphic Responses to Removal of Milltown Dam, Clark Fork River, Montana, USA

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Brinkerhoff, D.; Woelfle-Erskine, C.

    2008-12-01

    The removal of Milltown Dam on the Clark Fork River, Montana, USA, is creating a field-scale experiment on upstream and downstream responses to dam removal and on how gravel-bed rivers respond to sediment pulses. Milltown Dam was removed in 2008, reconnecting the Clark Fork River to its upstream basin in terms of sediment transport and fish passage. This dam removal is especially notable because (1) it is the largest dam removal to date in the United States in terms of the volume of reservoir sediment potentially available for downstream transport (over 3 million m3; 1.7 million m3 are being mechanically removed); and (2) the dam is the downstream end of the largest Superfund site in the United States, the Clark Fork Complex, and reservoir sediments are composed largely of contaminated mine tailings. Data collection on pre- and post-dam removal channel morphology, bed sediment characteristics, and sediment loads are being used to investigate spatial and temporal patterns of sediment transport and deposition associated with this dam removal. In the first several months following breaching of the dam, snowmelt runoff with a 3-year recurrence interval peak caused substantial erosion and downstream transport of metals-laden sediments from Milltown reservoir. Reservoir sediments in the Clark Fork arm of Milltown reservoir eroded at levels far exceeding modeling predictions as a result of both incision to the new base level created by dam removal and bank retreat of over 200 m in reaches upstream of a constructed bypass reach and remediation area. Copper and other metals in these eroded reservoir sediments provide a tracer for identifying whether sediment deposits observed downstream of the dam originated from Milltown reservoir or uncontaminated tributaries and indicate that Milltown sediments have reached over 200 km downstream. Downstream deposition has been greatest along channel margins and in side-channel areas, whereas the transport capacity of the active channel

  2. Two-Dimensional (2-D) Acoustic Fish Tracking at River Mile 85, Sacramento River, California

    DTIC Science & Technology

    2013-06-01

    Methods and Materials Locations The movements of juvenile Chinook salmon smolts were monitored through a small stretch of the Sacramento River where...movements of out-migrating Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts in the Sacramento /San Joaquin...Figure A4. Sacramento River hydrograph. Tags Chinook salmon smolts The Chinook smolts were tagged by a highly experienced team with a mobile

  3. Planning and design of studies for river-quality assessment in the Truckee and Carson River basins, California and Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.; Brown, W.M.; Smith, L.H.; Hoffman, R.J.

    1980-01-01

    The objectives of the Geological Survey 's river-quality assessment in the Truckee and Carson River basins in California and Nevada are to identify the significant resource management problems; to develop techniques to assess the problems; and to effectively communicate results to responsible managers. Six major elements of the assessment to be completed by October 1981 are (1) a detailing of the legal, institutional, and structural development of water resources in the basins and the current problems and conflicts; (2) a compilation and synthesis of the physical hydrology of the basins; (3) development of a special workshop approach to involve local management in the direction and results of the study; (4) development of a comprehensive streamflow model emcompassing both basins to provide a quantitative hydrologic framework for water-quality analysis; (5) development of a water-quality transport model for selected constituents and characteristics on selected reaches of the Truckee River; and (6) a detailed examination of selected fish habitats for specified reaches of the Truckee River. Progress will be periodically reported in reports, maps, computer data files, mathematical models, a bibliography, and public presentations. In building a basic framework to develop techniques, the basins were viewed as a single hydrologic unit because of interconnecting diversion structures. The framework comprises 13 hydrographic subunits to facilitate modeling and sampling. Several significant issues beyond the scope of the assessment were considered as supplementary proposals; water-quality loadings in Truckee and Carson Rivers, urban runoff in Reno and management alternatives, and a model of limnological processes in Lahontan Reservoir. (USGS)

  4. Characterization of subsurface stratigraphy along the lower American River floodplain using electrical resistivity, Sacramento, California, 2011

    USGS Publications Warehouse

    Burton, Bethany L.; Powers, Michael H.; Ball, Lyndsay B.

    2014-01-01

    In July 2011, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, completed a geophysical survey using electrical resistivity along an approximately 6-mile reach of the lower American River in Sacramento, California, to map near-surface lithological variations. This survey is a part of a manifold and comprehensive study of river-flow dynamics and geologic boundary-property knowledge necessary to estimate scour potential and levee erosion risk. Data were acquired on the left (south or west) bank between river mile 5 and 10.7 as well as a short section on the right bank from river mile 5.4 to 6. Thirteen direct-current resistivity profiles and approximately 8.3 miles of capacitively coupled resisistivity data were acquired along accessible areas of the floodplain between the levee and river bank. Capacitively coupled resistivity was used as a reconnaissance tool, because it allowed for greater spatial coverage of data but with lower resolution and depth of investigation than the DC resistivity method. The study area contains Pleistocene-age alluvial deposits, dominated by gravels, sands, silts, and clays, that vary in both lateral extent and depth. Several generations of lithologic logs were used to help interpret resistivity variations observed in the resistivity models.

  5. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR

    Treesearch

    L. Liu; C.I. Millar; R.D. Westfall; H.A. Zebker

    2013-01-01

    Despite the abundance of rock glaciers in the Sierra Nevada of California, USA, few efforts have been made to measure their surface flow. Here we use the interferometric synthetic aperture radar (InSAR) technique to compile a~benchmark inventory describing the kinematic state of 59 active rock glaciers in this region. Statistically, these rock glaciers moved at...

  6. Response of Subalpine Conifers in the Sierra Nevada, California, U.S.A., to 20th-Century Warming and Decadal Climate Variability

    Treesearch

    Constance I. Millar; Robert D. Westfall; Diane L. Delany; John C. King; Lisa J. Graumlich

    2004-01-01

    Four independent studies of conifer growth between 1880 and 2002 in upper elevation forests of the central Sierra Nevada, California, U.S.A., showed correlated multidecadal and century-long responses associated with climate. Using tree-ring and ecological plot analysis, we studied annual branch growth of krummholz Pinus albicaulis; invasion by P....

  7. Potential climatic refugia in semi-arid, temperate mountains: plant and arthropod assemblages associated with rock glaciers, talus slopes, and their forefield wetlands, Sierra Nevada, California, USA

    Treesearch

    Constance I. Millar; Robert D. Westfall; Angela Evenden; Jeffrey G. Holmquist; Jutta Schmidt-Gengenbach; Rebecca S. Franklin; Jan Nachlinger; Diane L. Delany

    2015-01-01

    Unique thermal and hydrologic regimes of rock-glacier and periglacial talus environments support little-studied mountain ecosystems. We report the first studies of vascular plant and arthropod diversity for these habitats in the central Sierra Nevada, California, USA. Surfaces of active rock glaciers develop scattered islands of soil that provide habitat for vegetation...

  8. INDOOR AND OUTDOOR ULTRA-FINE PARTICLE COUNTS IN A 1999 TWO-SEASON FRESNO, CALIFORNIA, USA ACUTE CARDIAC PANEL STUDY

    EPA Science Inventory

    Indoor and Outdoor Ultrafine Particle Counts in a 1999 Two-Season Fresno, California, USA Acute Cardiac Panel Study.

    John Creason, Debra Walsh, Lucas Neas, US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects R...

  9. Re-introduction of tule elk to Point Reyes National Seashore, California, USA

    USGS Publications Warehouse

    Gogan, Peter J.; McCrea A. Cobb,; Gates, Natalie B.; Barrett, Reginald H.; Soorae, P. S.

    2013-01-01

    Tule elk (Cervus elaphus nannodes), a subspecies endemic to California, was historically found in large herds throughout much of central and coastal California. Market hunting during the California Gold Rush decimated these herds, and by 1895, only two to 10 elk remained. This remnant group was protected and served as the source for early relocation efforts (McCullough, 1971). Early efforts were generally unsuccessful but did establish a herd in California’s Owens Valley, outside their historical range, in 1933. The herd grew rapidly and supported six controversial hunts between 1943 and 1969. In an effort to limit hunting, concerned preservationists formed the Committee for the Preservation of Tule Elk in 1960. Public pressure resulted in the California State Legislature passing a law in 1971 that halted hunting until either state-wide numbers reached 2,000, or no further unoccupied elk habitat existed. This law prompted the California Department of Fish and Game to begin reintroducing tule elk throughout their former range. In 1976, the U.S. Congress passed a resolution that concurred with state law and directed federal agencies to make lands available for reintroductions within the subspecies’ historical range. Point Reyes National Seashore was identified as a potential translocation site.

  10. Transport and retention of dissolved silica in rivers of the conterminous USA

    NASA Astrophysics Data System (ADS)

    Lauerwald, Ronny; Hartmann, Jens; Jansen, Nils; Dürr, Hans H.

    2010-05-01

    Dissolved silica (DSi) is an important nutrient in freshwater and coastal ecosystems. The availability of DSi in aquatic ecosystems is governed by mobilization from the terrestrial system and fluvial transport. Part of the mobilized DSi is retained in the rivers, associated lakes and wetlands due to biotic uptake and sedimentation. On large scale, fluvial DSi fluxes to coastal zones have been assessed mainly based on data from sampling locations at or near the mouth of major world rivers, while for the limnic retention of silica only first-order estimates exist (e.g. Beusen et al., 2009). DSi fluxes from small basins are often neglected in analyses. For the conterminous USA, the mobilization of DSi has recently been analyzed by Jansen et al. (2010), who described an empirical DSi mobilization function trained on headwater catchments in which limnic DSi retention is less likely to occur. It is here hypothesized that for larger catchments retention of silica can be calculated as difference between predicted DSi mobilization and DSi fluxes derived from hydrochemical monitoring data. Based on this assumption, fluvial fluxes of DSi in the conterminous USA were analyzed distinguishing mobilization, retention, and export to the coastal zone. River chemistry data from the USGS programs WQN and NAWQA were used to calculate annual DSi fluxes for 638 sampling locations. For each water sampling location the river catchment and its properties (e.g. lithology, land cover, lake area) were derived. DSi mobilization was estimated spatially explicitly by applying a fitted mobilization function after Jansen et al. (2010). Silica retention was calculated by subtracting DSi fluxes based on USGS data from the predicted amount of mobilized DSi. Export of DSi was estimated for distinct coastal segments. For the analyses, average annual runoffs from two different data sets, gridded UNH/GRDC data (Fekete et al., 2002) and PCR-GLOBWB (Van Beek, 2007), were used. The respective results are

  11. Legacy Sediments and Channel Morphology in the Feather and Yuba Rivers, California

    NASA Astrophysics Data System (ADS)

    James, A.; Ghoshal, S.; Megison, M. E.; Singer, M. B.; Aalto, R.

    2007-12-01

    Channel aggradation and morphologic change following 19th century hydraulic gold-mining in the Sierra Nevada, California, differed substantially between the lower Feather and Yuba Rivers. These differences can be explained in part by topographic position in the Sacramento Valley but also by differences in early 20th century engineering structures and management policies. Both rivers experienced extreme aggradation by mining sediment and substantial avulsions but the timing and mechanics of channel adjustments were dissimilar, in part due to varying strategies in river-training and flood control. River engineering and management in the late 19th century identified the lower Yuba River as a repository zone where mining sediment could be sequestered to reduce deliveries to navigable rivers downstream. Levees were set back up to 4 km allowing formation of a multi-thread channel system across a broad floodplain that is now deeply buried by mining sediment. In contrast, levees along the lower Feather were given narrow spacings to encourage self-scouring of channels and promote navigability of channels. The lower Feather River drains a larger basin and has a lower gradient than the Yuba River. Construction of Fremont Weir across the mouth of the Yolo Basin raised flood levels in the lower Feather River and may have reduced transport of bed sediment. This could explain the persistence of large sand sheets at and below the Bear River confluence. Data from historical maps, topographic surveys, aerial photographs, and 1999 LiDAR swath mapping are used to document and contrast channel changes and floodplain evolution between these two rivers. Topographic changes derived by differencing detailed 1906-1909 topographic maps and 1999 LiDAR data indicate substantial channel morphologic changes including channel filling, lateral migration, and evolution towards single-thread channel systems. Modern streambank stratigraphy reflects the differences in channel responses. Sites where

  12. Isolation of Onchocerca lupi in Dogs and Black Flies, California, USA.

    PubMed

    Hassan, Hassan K; Bolcen, Shanna; Kubofcik, Joseph; Nutman, Thomas B; Eberhard, Mark L; Middleton, Kelly; Wekesa, Joseph Wakoli; Ruedas, Gimena; Nelson, Kimberly J; Dubielzig, Richard; De Lombaert, Melissa; Silverman, Bruce; Schorling, Jamie J; Adler, Peter H; Unnasch, Thomas R; Beeler, Emily S

    2015-05-01

    In southern California, ocular infections caused by Onchocerca lupi were diagnosed in 3 dogs (1 in 2006, 2 in 2012). The infectious agent was confirmed through morphologic analysis of fixed parasites in tissues and by PCR and sequencing of amplicons derived from 2 mitochondrially encoded genes and 1 nuclear-encoded gene. A nested PCR based on the sequence of the cytochrome oxidase subunit 1 gene of the parasite was developed and used to screen Simulium black flies collected from southern California for O. lupi DNA. Six (2.8%; 95% CI 0.6%-5.0%) of 213 black flies contained O. lupi DNA. Partial mitochondrial16S rRNA gene sequences from the infected flies matched sequences derived from black fly larvae cytotaxonomically identified as Simulium tribulatum. These data implicate S. tribulatum flies as a putative vector for O. lupi in southern California.

  13. Isolation of Onchocerca lupi in Dogs and Black Flies, California, USA

    PubMed Central

    Hassan, Hassan K.; Bolcen, Shanna; Kubofcik, Joseph; Nutman, Thomas B.; Eberhard, Mark L.; Middleton, Kelly; Wekesa, Joseph Wakoli; Ruedas, Gimena; Nelson, Kimberly J.; Dubielzig, Richard; De Lombaert, Melissa; Silverman, Bruce; Schorling, Jamie J.; Adler, Peter H.; Beeler, Emily S.

    2015-01-01

    In southern California, ocular infections caused by Onchocerca lupi were diagnosed in 3 dogs (1 in 2006, 2 in 2012). The infectious agent was confirmed through morphologic analysis of fixed parasites in tissues and by PCR and sequencing of amplicons derived from 2 mitochondrially encoded genes and 1 nuclear-encoded gene. A nested PCR based on the sequence of the cytochrome oxidase subunit 1 gene of the parasite was developed and used to screen Simulium black flies collected from southern California for O. lupi DNA. Six (2.8%; 95% CI 0.6%–5.0%) of 213 black flies contained O. lupi DNA. Partial mitochondrial16S rRNA gene sequences from the infected flies matched sequences derived from black fly larvae cytotaxonomically identified as Simulium tribulatum. These data implicate S. tribulatum flies as a putative vector for O. lupi in southern California. PMID:25897954

  14. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    NASA Astrophysics Data System (ADS)

    Crandall, Christy A.; Katz, Brian G.; Hirten, Joshua J.

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88m above mean sea level in April 1996 and discharge peaked at 360m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). Résumé Les aquifères karstiques sont particulièrement sensibles à l'infiltration rapide d'eau de rivières, spécialement pendant les périodes de hautes eaux. A la suite d'une période de pluies soutenues sur le bassin de la rivière Suwannee (Floride, États-Unis), le niveau de cette rivière est monté de 3,0 à 5,88m au-dessus du niveau

  15. The offshore export of sand during exceptional discharge from California rivers

    USGS Publications Warehouse

    Warrick, Jonathan A.; Barnard, Patrick L.

    2012-01-01

    Littoral cells along active tectonic margins receive large inputs of sand and gravel from coastal watersheds and commonly lose this sediment to submarine canyons. One hypothesis is that the majority of coarse (sand and gravel) river sediment discharge will be emplaced within and immediately “resupply” local littoral cells. A competing hypothesis is that the infrequent, large floods that supply the majority of littoral sediment may discharge water-sediment mixtures within negatively buoyant hyperpycnal plumes that transport sediment offshore of the littoral cell. Here we summarize pre- and post-flood surveys of two wave-dominated California (United States) river deltas during record to near-record floods to help evaluate these hypotheses: the 1982–1983 delta at the San Lorenzo River mouth and the 2005 delta at the Santa Clara River mouth. Flood sedimentation at both deltas resulted in several meters of aggradation and hundreds of meters of offshore displacement of isobaths. One substantial difference between these deltas was the thick (>2 m) aggradation of sand on the inner shelf of the Santa Clara River delta that contained substantial amounts (∼50%) of littoral-grade sediment. Once deposited on the inner shelf, only a fraction (∼20%) of this river sand was observed to migrate toward the beach over the following 5 yr. Furthermore, simple hypopycnal plume behavior could not explain deposition of this sand on the inner shelf. Thus, during an exceptional flood a substantial amount of littoral-grade sand was exported offshore of the littoral system at the Santa Clara River mouth—likely from hyperpycnal plume processes—and was deposited on the inner shelf.

  16. Valve morphology and systematic position of Navicula walkeri (Bacillariophyceae), a diatom endemic to Oregon and California (USA)

    USGS Publications Warehouse

    Kociolek, J.P.; Spaulding, S.A.; Kingston, J.C.

    1998-01-01

    Variation in valve size and ultrastructure is documented for Navicula walkeri, a freshwater diatom species endemic to Oregon and central California (USA). In LM, this large diatom has longitudinal lines on either side of the axial area, as well as lineolate striae. External proximal raphe ends recurve toward the same side as the deflected distal ends. A large central nodule and bulbous areas at the terminus of each raphe branch are visible internally. The edges of an axial plate form the image of longitudinal lines. The suite of features present in N. walkeri suggests it is part of Navicula sensu stricto but occupies an isolated position within the group. Navicula sensu stricto is not an entirely homogeneous assemblage, and further refinements of the systematic affinities of its members may be warranted.

  17. The effects of timber harvesting on the structure and composition of adjacent old-growth coast redwood forest, California, USA

    USGS Publications Warehouse

    Russell, W.H.; Jones, C.

    2001-01-01

    Data collected across timber harvest boundaries on nine sites within the Redwood National and State Park management area in California, USA, were used to estimate the effective size of old-growth coast redwood preserves. Fourteen variables related to stand structure and composition, wildlife habitat, and physical environment were significantly correlated to distance from the timber harvest boundary using multiple regression analysis. A maximum depth of edge influence of 200 m was determined for variables exhibiting a significant correlation to the distance from the harvest edge. A spatial analysis using ArcView indicated that 53% of the old growth preserved within the study area was influenced by edge conditions, leaving 47% as effective old-growth.

  18. Health Care–Associated Infection Outbreak Investigations in Outpatient Settings, Los Angeles County, California, USA, 2000−2012

    PubMed Central

    Coelho, Laura; Bancroft, Elizabeth; Terashita, Dawn

    2015-01-01

    Health care services are increasingly delivered in outpatient settings. However, infection control oversight in outpatient settings to ensure patient safety has not improved and literature quantifying reported health care–associated infection outbreaks in outpatient settings is scarce. The objective of this analysis was to characterize investigations of suspected and confirmed outbreaks in outpatient settings in Los Angeles County, California, USA, reported during 2000–2012, by using internal logs; publications; records; and correspondence of outbreak investigations by characteristics of the setting, number, and type of infection control breaches found during investigations, outcomes of cases, and public health responses. Twenty-eight investigations met the inclusion criteria. Investigations occurred frequently, in diverse settings, and required substantial public health resources. Most outpatient settings investigated had >1 infection control breach. Lapses in infection control were suspected to be the outbreak source for 16 of the reviewed investigations. PMID:26196293

  19. Atmospheric Rivers and floods in Southern California: Climate forcing of extreme weather events.

    NASA Astrophysics Data System (ADS)

    Hendy, I. L.; Heusser, L. E.; Napier, T.; Pak, D. K.

    2016-12-01

    Southern California has a Mediterranean type climate characterized by warm dry summers associated with the North Pacific High pressure system and cool, wet winters primarily associated in low pressure systems originating in the high latitude North Pacific. Extreme precipitation, however, is connected to strong zonal flow that brings warm, moist tropical across the Pacific (AKA atmospheric river). Here we present a revised record of flood events in Santa Barbara Basin that have been linked to atmospheric rivers focusing on events associated with transitions between known climate events using new radiocarbon chronology and detailed sediment composition. Flood events identified by homogenous grey layers are present throughout the Holocene with a recurrence every 110 years, but are particularly common (85 year recurrence) between 4,200 and 2,000 years BP. Interval between 6,500 and 4,500 commonly associated with dry conditions in California was associated with fewer flood events (recurrence interval increased to 176 years). Intervals of high lake levels in California associated with pluvials appear to be associated with more frequent extreme precipitation events. The longest recurrence interval (535 years) is associated with the Medieval Climate Anomaly. The season in which the atmospheric river occurs was estimated using the relative abundance of pollen within the flood deposit. The 735 and 1270 C.E. flood events are associated with May-June flowering vegetation, while the most recent events (1861-2 and 1761 C.E.) were associated with November to March flowering vegetation. This agrees with the December-January rainfall records of the historic 1861-62. We conclude the frequency of extreme precipitation events appears to increase as climate cools (e.g. the Little Ice Age).

  20. Placing the 2012-2015 California-Nevada drought into a paleoclimatic context: Insights from Walker Lake, California-Nevada, USA

    NASA Astrophysics Data System (ADS)

    Hatchett, Benjamin J.; Boyle, Douglas P.; Putnam, Aaron E.; Bassett, Scott D.

    2015-10-01

    Assessing regional hydrologic responses to past climate changes can offer a guide for how water resources might respond to ongoing and future climate change. Here we employed a coupled water balance and lake evaporation model to examine Walker Lake behaviors during the Medieval Climate Anomaly (MCA), a time of documented hydroclimatic extremes. Together, a 14C-based shoreline elevation chronology, submerged subfossil tree stumps in the West Walker River, and regional paleoproxy evidence indicate a ~50 year pluvial episode that bridged two 140+ year droughts. We developed estimates of MCA climates to examine the transient lake behavior and evaluate watershed responses to climate change. Our findings suggest the importance of decadal climate persistence to elicit large lake-level fluctuations. We also simulated the current 2012-2015 California-Nevada drought and found that the current drought exceeds MCA droughts in mean severity but not duration.

  1. Channel bifurcation and adjustment on the upper Yadkin River, North Carolina (USA)

    NASA Astrophysics Data System (ADS)

    Sorrells, Robert M.; Royall, Dan

    2014-10-01

    The bifurcation of river flow around large stable islands, also known as anabranching, represents a distinctive form of river adjustment that is uncommon in the Appalachian Piedmont province of the eastern U.S. Within this province, highly localized river branching similar to classical anabranching forms exists in one area near the foot of the Blue Ridge Escarpment. This paper examines channel form and processes along a reach of the upper Yadkin River in North Carolina (USA) before and after a flood-induced division of its flow into two subparallel branches, both of which remain active 35 years later. The research draws on aerial photograph analyses, channel surveying, and observations of inset channel benches, flood frequency analysis, and discharge monitoring and modeling to analyze planform history and to track and explain changes in newly excised and losing channels along the bifurcated reach. The characterization of this branched reach resembles some descriptions of gravel-dominated laterally active anabranching, although the match is imperfect. Reductions in valley slope and confinement and the presence of local valley constrictions near the base of the escarpment steeplands have been conducive to long-term sedimentation and a greater likelihood of branching. A period of relatively rapid cross section adjustment occurred on both branches soon after bifurcation, and this may have permitted the losing branch to remain open. Well-stratified benches currently observed along the losing branch are interpreted to be largely the late product of a waning early major adjustment phase and moderate, recent, and perhaps ongoing variations in flow division and appear to be not fully adjusted to prevailing discharges. Coarse benches along the newly excised branch are better-adjusted inset floodplain fragments created primarily by lateral migration and point accretion. Patterns of benchfull flow frequency variation are interpreted to indicate that the flow bifurcation ratio

  2. Regional and local hydrogeology of calcareous fens in the Minnesota river basin, USA

    USGS Publications Warehouse

    Almendinger, J.E.; Leete, J.H.

    1998-01-01

    Six calcareous fens in the Minnesota River Basin, USA are in regional hydrogeologic settings with large discharges of calcareous ground water. These settings juxtapose topographically high areas of ground-water recharge with fens in lower areas of discharge, thus creating steep upward hydraulic gradients at the fens. Coarse glacial deposits with high permeability connect recharge areas to discharge areas and transmit large amounts of ground water to the fens. Calcareous fens in the Minnesota River Basin are associated with two regional landforms, river terraces and glacial moraines. The calcareous drift is the likely source of carbonate for the fens; carbonate bedrock is not required. Five of the calcareous fens form peat aprons over broad areas of diffuse ground-water discharge on river terraces. One of the calcareous fens is a peat dome over an aquifer window, a relatively small area (about 15-m radius) of localized ground-water discharge through a breach in the clayey confining layer of the underlying aquifer. Carbonate content of calcareous fen peat averaged about 27% (calcium carbonate equivalent, dry weight basis) in the surface layer, which commonly overlies a carbonate-depleted zone with a carbonate content of 10% or less. Hydraulic conductivity (K) of calcareous fen peat determined from slug tests ranged from 2.7×10−7 to 9.8×10−5 m s−1 and had a geometric mean of 3.8×10−6 m s−1. These values likely underestimate the true horizontal hydraulic conductivity (Kh) and overestimate the true vertical hydraulic conductivity (Kv) because of errors in assumptions commonly used in slug-test analyses. Median (over time) hydraulic heads in wells screened below the base of the peat ranged from about 25 to 69 cm above the peat surface. Upward vertical gradients (dimensionless) through the peat ranged from 0.040 to 0.209. Vertical ground-water discharge was calculated by Darey’s Law and ranged from 2 to 172 L m−2 d−1. Because of bias in estimating

  3. Watershed scale response to climate change--Feather River Basin, California

    USGS Publications Warehouse

    Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Feather River Basin, California.

  4. A Mixed-Effects Heterogeneous Negative Binomial Model for Postfire Conifer Regeneration in Northeastern California, USA

    Treesearch

    Justin S. Crotteau; Martin W. Ritchie; J. Morgan. Varner

    2014-01-01

    Many western USA fire regimes are typified by mixed-severity fire, which compounds the variability inherent to natural regeneration densities in associated forests. Tree regeneration data are often discrete and nonnegative; accordingly, we fit a series of Poisson and negative binomial variation models to conifer seedling counts across four distinct burn severities and...

  5. Earthshots: Satellite images of environmental change – Imperial Valley, California, USA

    USGS Publications Warehouse

    ,

    2013-01-01

    At the bottom of the sink lies the Salton Sea, the largest lake in California. It lacks an outlet to the ocean and lies 70 m below sea level. About 85% of the sea’s inflows come from agricultural runoff, and its waters are 37% saltier than the Pacific Ocean.

  6. Change in spatial characteristics of forest openings in the Klamath Mountains of northwestern California, USA

    Treesearch

    Carl N. Skinner

    1995-01-01

    Change in the spatial characteristics of forest openings was investigated in three forested watersheds in northwestern Siskiyou County, California totalling approximately 24,600 hectares. Watersheds with minimal human disturbance were chosen for study. However, fi;e suppression has been pervasive throughout. Characteristics of forest openings (area, perimeter, distance...

  7. Historical and contemporary distributions of carnivores in forests of the Sierra Nevada, California, USA

    Treesearch

    William J Zielinski; Richard L Truex; Fredrick V. Schlexer; Lori A. Campbell; Carlos Caroll

    2005-01-01

    Malammalian carnivores are considered particularly sensitive indicators of environmental change. Information on the distribution of carnivores from the early 1900s provides a unique opportunity to evaluate changes in their distributions over a 75-year period during which the influence of human uses of forest resources in California greatly increased. We present...

  8. Predicting landslides related to clearcut logging, northwestern California, U.S.A.

    Treesearch

    David J. Furbish; Raymond M. Rice

    1983-01-01

    Abstract - Landslides related to clearcut logging are a significant source of erosion in the mountains of northwestern California. Forest managers, therefore, frequently must include assessments of landslide risk in their land-use plans. A quantitative method is needed to predict such risk over large areas of rugged mountainous terrain. From air photographs, data...

  9. Olive fruit fly (Diptera: Tephritidae) in California table olives, USA: Invasion, distribution, and management implications

    USDA-ARS?s Scientific Manuscript database

    Olive fruit fly, Bactrocera oleae (Rossi), was discovered in California in late 1998. Thereafter, intensive research was conducted to develop pest control methods in table olives. The life history of olive fruit fly was elucidated, and the distribution and abundance of the adults determined through ...

  10. Classic biological control of olive fruit fly in California, USA: release and recovery of introduced parasitoids

    USDA-ARS?s Scientific Manuscript database

    The establishment of olive fruit fly Bactrocera oleae (Rossi) in California led to a classical biological program. This study reports the release and recovery of two solitary larval endoparasitoids, Psyttalia humilis Silvestri and Psyttalia lounsburyi (Silvestri) from sub-Saharan Africa, in two coa...

  11. Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA

    Treesearch

    Becky L. Estes; Eric E. Knapp; Carl N. Skinner; Jay D. Miller; Haiganoush K. Preisler

    2017-01-01

    Topography, weather, and fuels are known factors driving fire behavior, but the degree to which each contributes to the spatial pattern of fire severity under different conditions remains poorly understood. The variability in severity within the boundaries of the 2006 wildfires that burned in the Klamath Mountains, northern California, along with data on burn...

  12. Citizen scientists monitor a deadly fungus threatening amphibian communities in northern coastal California, USA

    Treesearch

    Karen L. Pope; Greta M. Wengert; Janet E. Foley; Donald T. Ashton; Richard G. Botzler

    2016-01-01

    Ecoclub youth and supervising family members conducted citizen science to assess regional prevalence and distribution of Batrachochytrium dendrobatidis (Bd) among amphibians at Humboldt Bay National Wildlife Refuge (Refuge) and Redwood National and State Parks (Parks), Humboldt County, California, US, May 2013 through December...

  13. REVIEW OF THE FISHERIES OF THE SALTON SEA, CALIFORNIA, USA: PAST, PRESENT, FUTURE. (R826552)

    EPA Science Inventory

    The Salton Sea is an endorheic, 980-km2 salt lake in the Sonoran Desert of southern California. The historical fish community switched from freshwater to marine species as salinity increased due to evaporation and brackish water inflows. Three species, bairdiella (<...

  14. Response of ponderosa pine plantations to competing vegetation control in Northern California, USA: A meta- analysis

    Treesearch

    Jianwei Zhang; Robert Powers; William Oliver; Young David

    2013-01-01

    A meta-analysis was performed to determine response of stand basal area growth to competing vegetation control (CVC) in ponderosa pine (Pinus ponderosa) plantations grown at 29 sites across northern California. These studies were installed during the last 50 years on site indices from 11 to 35 m at 50 years and often included other treatments...

  15. Use of soil fumigants and air quality issues in California, USA

    USDA-ARS?s Scientific Manuscript database

    Many high value cash crops use soil fumigants for profitable production.The primary fumigants used in California are 1,3-dichloropropene (Telone®), chloropicrin, metam salts (sodium or potassium), and methyl bromide. Most of these toxic chemicals and their formulations are volatile compounds (VOCs),...

  16. Thermal regimes and snowpack relations of periglacial talus slopes, Sierra Nevada, California, USA.

    Treesearch

    Constance I Millar; Robert D. Westfall; Diane L. Delany

    2014-01-01

    Thermal regimes of eight periglacial talus slopes, at contrasting elevations, aspects, and substrates, in the Sierra Nevada, California, had complex microclimatic patterns partially decoupled from external conditions. Over three years, warm seasons showed mean talus matrix temperatures and daily variances lower than surfaces and cooler than free-air; talus surface and...

  17. APPLICATION OF ENVIRONMENTAL GROUNDWATER TRACERS AT THE SULPHUR BANK MERCURY MINE, CALIFORNIA, USA

    EPA Science Inventory

    This paper reports on boron, chloride, sulfate, δD, δ18O, and 3H concentrations in surface water and groundwater samples from the Sulphur Bank Mercury Mine, California (SBMM) to examine and provide constraints on the site’s groundwater system. SBMM is an abandoned sulfur and merc...

  18. APPLICATION OF ENVIRONMENTAL GROUNDWATER TRACERS AT THE SULPHUR BANK MERCURY MINE, CALIFORNIA, USA

    EPA Science Inventory

    This paper reports on boron, chloride, sulfate, δD, δ18O, and 3H concentrations in surface water and groundwater samples from the Sulphur Bank Mercury Mine, California (SBMM) to examine and provide constraints on the site’s groundwater system. SBMM is an abandoned sulfur and merc...

  19. REVIEW OF THE FISHERIES OF THE SALTON SEA, CALIFORNIA, USA: PAST, PRESENT, FUTURE. (R826552)

    EPA Science Inventory

    The Salton Sea is an endorheic, 980-km2 salt lake in the Sonoran Desert of southern California. The historical fish community switched from freshwater to marine species as salinity increased due to evaporation and brackish water inflows. Three species, bairdiella (<...

  20. Dissolved pesticides in the Alamo River and the Salton Sea, California, 1996-97

    USGS Publications Warehouse

    Crepeau, Kathryn L.; Kuivila, Kathryn; Bergamaschi, Brian A.

    2002-01-01

    Water samples were collected from the Alamo River and the Salton Sea, California, in autumn 1996 and late winter/early spring 1997 and analyzed for dissolved pesticides. The two seasons chosen for sampling were during pesticide application periods in the Imperial Valley. Pesticide concentrations were measured in filtered water samples using solid-phase extraction and analyzed by gas chromatography/mass spectrometry. Generally, the highest concentrations were measured in the Alamo River. The concentrations of carbaryl, chlorpyrifos, cycloate, dacthal, diazinon, and eptam were highest in samples collected in autumn 1996. In contrast, the concentrations of atrazine, carbofuran, and malathion were highest in samples collected in late winter/early spring 1997. The highest concentrations measured of atrazine, carbofuran, dacthal, eptam, and malathion all exceeded 1,000 nanograms per liter.

  1. Particle-bound metal transport after removal of a small dam in the Pawtuxet River, Rhode Island, USA.

    PubMed

    Katz, David R; Cantwell, Mark G; Sullivan, Julia C; Perron, Monique M; Burgess, Robert M; Ho, Kay T

    2016-10-06

    The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head dam at the mouth of the river, was removed in August 2011. The removal of the dam was part of an effort to restore the riverine ecosystem after centuries of anthropogenic impact. Sediment traps were deployed below the dam to assess changes in metal concentrations and fluxes (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) from the river system into Pawtuxet Cove. Sediment traps were deployed for an average duration of 24 days each, and deployments continued for 15 months after the dam was removed. Metal concentrations in the trapped suspended particulate matter dropped after dam removal (e.g., 460 to 276 mg/kg for Zn) and remained below preremoval levels for most of the study. However, particle-bound metal fluxes increased immediately after dam removal (e.g., 1206 to 4248 g/day for Zn). Changes in flux rates during the study period indicated that river volumetric flow rates acted as the primary mechanism controlling the flux of metals into Pawtuxet Cove and ultimately upper Narragansett Bay. Even though suspended particulate matter metal concentrations initially dropped after removal of the dam, no discernable effect on the concentration or flux of the study metals exiting the river could be associated with removal of the Pawtuxet River dam. Integr Environ Assess Manag 2016;00:000-000. Published 2016. This article is a US Government work and is in the public domain in the USA.

  2. Hydrologic Data for Water Years 1933-97 Used in the River and Reservoir Operational Model, Truckee River Basin, California and Nevada

    DTIC Science & Technology

    2000-01-01

    lakesucker and the threatened Lahontan cutthroat trout . The diversity of user interests, each with a demand on the limited water resource, has...Prepared in cooperation with the TRUCKEE–CARSON PROGRAM Hydrologic Data for Water Years 1933–97 Used in the River and Reservoir Operations Model...Truckee River Basin, California and Nevada U.S. Department of the Interior U.S. Geological Survey Open-File Report 00-478 Report Documentation Page

  3. An Investigation of Summertime Inland Water Body Temperatures in California and Nevada (USA): Recent Trends and Future Projections

    NASA Astrophysics Data System (ADS)

    Healey, Nathan; Hook, Simon; Piccolroaz, Sebastiano; Toffolon, Marco; Radocinski, Robert

    2016-04-01

    Inland water body temperature has been identified as an ideal indicator of potential climate change. Understanding inland water body temperature trends is important for forecasting impacts to limnological, biological, and hydrological resources. Many inland water bodies are situated in remote locations with incomplete data records of in-situ monitoring or lack in-situ observations altogether. Thus, the utilization of satellite data is essential for understanding the behavior of global inland water body temperatures. Part of this research provides an analysis of summertime (July-September) temperature trends in the largest California/Nevada (USA) inland water bodies between 1991 and 2015. We examine satellite temperature retrievals from ATSR (ATSR-1, ATSR-2, AATSR), MODIS (Terra and Aqua), and VIIRS sensors. Our findings indicate that inland water body temperatures in the western United States were rapidly warming between 1991 and 2009, but since then trends have been decreasing. This research also includes implementation of a model called air2water to predict future inland water body surface temperature through the sole input of air temperature. Using projections from CMIP5-CCSM4 output, our model indicates that Lake Tahoe (USA) is expected to experience an increase of roughly 3 °C by 2100.

  4. Complete nucleotide sequence and genome organization of an endornavirus from bottle gourd (Lagenaria siceraria) in California, U.S.A.

    PubMed

    Kwon, Sun-Jung; Tan, Shih-Hua; Vidalakis, Georgios

    2014-08-01

    The full-length nucleotide sequence and genome organization of an Endornavirus isolated from ornamental hard shell bottle gourd plants (Lagenaria siceraria (Molina) Standl.) in California (CA), USA tentatively named L. siceraria endornavirus-California (LsEV-CA) was determined. The LsEV-CA genome was 15088 bp in length, with a G + C content of 36.55 %. The lengths of the 5' and 3' untranslated regions were 111 and 52 bp, respectively. The genome of LsEV-CA contained one large ORF encoding a 576 kDa polyprotein. The predicted protein contains two glycosyltransferase motifs, as well as RNA-dependent RNA polymerase and helicase domains. LsEV-CA was detected in healthy-looking field-grown gourd plants, as well as plants expressing yellows symptoms. It was also detected in non-symptomatic greenhouse-grown gourd seedlings grown from seed obtained from the same field sites. These preliminary data indicate that LsEV-CA is likely not associated with the gourd-yellows syndrome observed in the field.

  5. Cadmium content in fresh and canned squid (Loligo opalescens) from the Pacific coastal waters of California (USA).

    PubMed

    Galitsopoulou, A; Georgantelis, D; Kontominas, M G

    2009-01-01

    Cadmium (Cd) levels were determined in 70 samples of mantle tissue and 70 whole individual squid (Loligo opalescens; commercially known as California squid). Samples were collected from the coastal zones of California (USA) during the period 2007/2008. To further investigate consumer exposure to processed fishery products, cadmium concentration was also determined in 200 canned samples of squid. Cd concentrations in raw mantle were low, between 0.01 and 0.29 mg kg(-1) and below the tolerance limit of current regulations (1 mg kg(-1)). Respective concentrations in whole individuals were significantly higher, ranging from 0.51 to 1.18 mg kg(-1), attributed to the presence of the visceral portion in whole squid samples. Cd concentrations varied in relation to age and sex of squid, indicating that several physiological factors may influence accumulation. Furthermore, canning of squid substantially enhanced Cd levels. Cd concentration ranged 0.17-0.67 mg kg(-1) in canned mantle tissue and 0.86-2.07 mg kg(-1) in canned whole squid samples, due to both concentration after canning and movement of the metal between different tissues. Several biological compounds, including metallothioneins, nucleic acids and enzymes, may affect Cd concentrations in commercial fishery products.

  6. Measurement of bedform migration rates on the Lower Missouri River in Missouri, USA using repeat measurements with a multibeam echosounder

    USGS Publications Warehouse

    Elliott, Caroline M.; Jacobson, Robert B.

    2016-01-01

    High-resolution repeat multibeam echosounder measurements on the Lower Missouri River near Boonville, Missouri, USA show bedform movement and sand storage patterns over daily to seasonal time scales and a range of discharges. Higher flows are frequently, but not always, associated with larger bedforms, higher bedform movement rates, and higher bedload transport rates. Measurements of the temporal and spatial variability in sand dune sizes, transport rates, and sand storage across the river channel have increased understanding of the dynamics of habitats utilized by benthic organisms over multiple life stages and daily to seasonal time scales.

  7. Sediment fluxes from California Coastal Rivers: the influences of climate, geology, and topography

    USGS Publications Warehouse

    Andrews, E.D.; Antweiler, Ronald C.

    2012-01-01

    The influences of geologic and climatic factors on erosion and sedimentation processes in rivers draining the western flank of the California Coast Range are assessed. Annual suspended, bedload, and total sediment fluxes were determined for 16 river basins that have hydrologic records covering all or most of the period from 1950 to 2006 and have been relatively unaffected by flow storage, regulation, and depletion, which alter the downstream movement of water and sediment. The occurrence of relatively large annual sediment fluxes are strongly influenced by the El Nino–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). The frequency of relatively large annual sediment fluxes decreases from north to south during La Nina phases and increases from north to south during El Nino phases. The influence of ENSO is modulated over a period of decades by the PDO, such that relatively large annual sediment fluxes are more frequent during a La Nina phase in conjunction with a cool PDO and during an El Nino phase in conjunction with a warm PDO. Values of mean annual sediment flux, , were regressed against basin and climatic characteristics. Basin area, bedrock erodibility, basin relief, and precipitation explain 87% of the variation in from the 16 river basins. Bedrock erodibility is the most significant characteristic influencing . Basin relief is a superior predictor of compared with basin slope. is nearly proportional to basin area and increases with increasing precipitation. For a given percentage change, basin relief has a 2.3-fold greater effect on than a similar change in precipitation. The estimated natural from all California coastal rivers for the period 1950–2006 would have been approximately 85 million tons without flow storage, regulation, and depletion; the actual has been approximately 50 million tons, because of the effects of flow storage, regulation, and depletion.

  8. Characterizing Past and Future Flood Regimes of California's Cosumnes River: A Hydroinformatic Approach

    NASA Astrophysics Data System (ADS)

    Whipple, A. A.; Condon, L. E.; Viers, J. H.

    2014-12-01

    As the only major undammed river on the west slope of California's Sierra Nevada, with over 100 years of USGS streamflow data, and the location of several floodplain conservation and restoration efforts, the Cosumnes River offers a unique opportunity to study connections between a river's flow regime and floodplain functions. Flow regime, including frequency and magnitude of floods, and its interaction with the surrounding landscape are primary drivers of floodplain structure and ecosystem dynamics. However, these floodplain processes and functions are often altered by water management schemes, land uses, and hydroclimatic alteration induced by climate warming. Improved understanding of ecologically relevant aspects of flow regime and potential future alteration is central to managing floodplain ecosystems and their services. In order to describe the inundation regime of the lower Cosumnes River floodplain, California, this research moves beyond flood frequency analysis to examine other flood event characteristics and identify flood types using statistical cluster analysis. Floods are characterized using metrics of ecological relevance, such as magnitude, timing, duration, and total volume. To explore potential effects of climate change, non-stationary Generalized Extreme Value models are fit to historical floods based on temperature and precipitation at the monthly scale. Temperature and precipitation variables from downscaled Global Climate Models of the Coupled Model Intercomparison Project Phase-5 are then applied to develop flood distributions for climate change scenarios. These results are used to adjust the magnitude of clustered flood events identified in the historical record, and the sensitivity of the inundation regime to these changes is assessed. This research provides useful scientific insights for management and restoration efforts within the Cosumnes watershed and demonstrates the utility of applying these methods to other floodplain systems.

  9. Sediment-vegetation interactions on the subaqueous Susquehanna River delta, upper Chesapeake Bay (USA)

    NASA Astrophysics Data System (ADS)

    Russ, E.; Palinkas, C. M.; Sanford, L. P.; Gurbisz, C.; Hinkle, D.

    2016-12-01

    Submersed aquatic vegetation (SAV) historically were abundant on the shallow, subaqueous delta of the Susquehanna River (SR), the largest tributary delivering water and sediment to Chesapeake Bay, USA. SAV began to decline in the 1960s on the delta (referred to as the Susquehanna Flats) due to poor water quality and disappeared completely following Tropical Storm Agnes (1972), which resulted in the highest recorded discharge of the SR and delivery of enormous fine-sediment loads to the upper Bay. In response to improved water quality, SAV have returned to the Flats in the last decade and once again are a prominent feature of the upper Bay. While it is well established that SAV promote sediment and nutrient retention, the timing and magnitude of trapping on the Flats is unclear but has important implications for water quality in the Bay. This study evaluates sediment trapping over seasonal to decadal time scales, using naturally occurring radioisotopes (7Be, 210Pb), within the context of fluvial sediment supply and plant biomass, as well as sediment erodibility experiments. Results show that, while average river discharge and suspended-sediment concentration (SSC) were lowest during the summer (plants present), sedimentation rates and mud content were highest, especially in the middle of the plant bed. In contrast, while average discharge and SSC were highest in the spring (plants absent), recent sedimentation was observed only at sites farthest downstream of the SR mouth. Thus, seasonal fluvial sediment supply is out of phase with the maximum deposition on the Flats, suggesting that sediment delivered during the spring freshet bypasses the Flats and enters the upper Bay, while fluvial sediment loads delivered during the SAV growing season can be retained on the Flats. This retention is aided by lower sediment erodibility during summer, relative to spring. This pulsing of seasonal sedimentation is also preserved in the sedimentary record over decadal time scales.

  10. Riverine Landscape Patch Heterogeneity Drives Riparian Ant Assemblages in the Scioto River Basin, USA

    PubMed Central

    Tagwireyi, Paradzayi; Sullivan, S. Mažeika P.

    2015-01-01

    Although the principles of landscape ecology are increasingly extended to include riverine landscapes, explicit applications are few. We investigated associations between patch heterogeneity and riparian ant assemblages at 12 riverine landscapes of the Scioto River, Ohio, USA, that represent urban/developed, agricultural, and mixed (primarily forested, but also wetland, grassland/fallow, and exurban) land-use settings. Using remotely-sensed and ground-collected data, we delineated riverine landscape patch types (crop, grass/herbaceous, gravel, lawn, mudflat, open water, shrub, swamp, and woody vegetation), computed patch metrics (area, density, edge, richness, and shape), and conducted coordinated sampling of surface-active Formicidae assemblages. Ant density and species richness was lower in agricultural riverine landscapes than at mixed or developed reaches (measured using S [total number of species], but not using Menhinick’s Index [DM]), whereas ant diversity (using the Berger-Park Index [DBP]) was highest in agricultural reaches. We found no differences in ant density, richness, or diversity among internal riverine landscape patches. However, certain characteristics of patches influenced ant communities. Patch shape and density were significant predictors of richness (S: R2 = 0.72; DM: R2=0.57). Patch area, edge, and shape emerged as important predictors of DBP (R2 = 0.62) whereas patch area, edge, and density were strongly related to ant density (R2 = 0.65). Non-metric multidimensional scaling and analysis of similarities distinguished ant assemblage composition in grass and swamp patches from crop, gravel, lawn, and shrub as well as ant assemblages in woody vegetation patches from crop, lawn, and gravel (stress = 0.18, R2 = 0.64). These findings lend insight into the utility of landscape ecology to river science by providing evidence that spatial habitat patterns within riverine landscapes can influence assemblage characteristics of riparian arthropods

  11. Tree swallow (Tachycineta bicolor) exposure to polychlorinated biphenyls at the Kalamazoo River superfund site, Michigan, USA.

    PubMed

    Neigh, Arianne M; Zwiernik, Matthew J; Bradley, Patrick W; Kay, Denise P; Park, Cyrus S; Jones, Paul D; Newsted, John L; Blankenship, Alan L; Giesy, John P

    2006-02-01

    In 1990, a portion of the Kalamazoo River in Michigan, USA, was designated a Superfund site because of the presence of polychlorinated biphenyls (PCBs) in the sediment and floodplain soils. During a four-year period from 2000 to 2003, several avian species were monitored for reproductive effects and concentrations of PCBs in tissues attributed to food chain transfer from contaminated sediments. The tree swallow (Tachycineta bicolor) was chosen as a model receptor for contamination of passerine species. A top-down methodology was used to evaluate the bioaccumulation of PCBs, including non-ortho and mono-ortho congeners, in tree swallow eggs, nestlings, and adults at the Kalamazoo River area of concern (KRAOC) and at an upstream reference site. Generally, a sixfold difference in tissue concentrations of total PCBs was observed between the two sites with concentrations in eggs and nestlings at the KRAOC ranging from 0.95 to 15 microg PCB/g wet weight. Concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQsWHO Avian) for PCBs, based on bird-specific World Health Organization toxic equivalence factors, were 10- to 30-fold greater in the KRAOC than at the reference location. Egg and nestling TEQsWHO-Avian ranged from 0.21 to 2.4 ng TEQ/g wet weight at the KRAOC. Hazard quotients calculated from literature-derived toxicity reference values were below 1.0 at both the target and the reference site based on the no-observed-adverse-effect level and the lowest-observed-adverse-effect level.

  12. Geomorphology and fish assemblages in a Piedmont river basin, U.S.A

    USGS Publications Warehouse

    Walters, D.M.; Leigh, D.S.; Freeman, Mary C.; Freeman, B.J.; Pringle, C.M.

    2003-01-01

    1. We investigated linkages between fishes and fluvial geomorphology in 31 wadeable streams in the Etowah River basin in northern Georgia, U.S.A. Streams were stratified into three catchment sizes of approximately 15, 50 and 100 km2, and fishes and geomorphology were sampled at the reach scale (i.e. 20?40 times stream width). 2. Non-metric multidimensional scaling (NMDS) identified 85% of the among-site variation in fish assemblage structure and identified strong patterns in species composition across sites. Assemblages shifted from domination by centrarchids, and other pool species that spawn in fine sediments and have generalised food preferences, to darter-cyprinid-redhorse sucker complexes that inhabit riffles and runs, feed primarily on invertebrates, and spawn on coarser stream beds. 3. Richness and density were correlated with basin area, a measure of stream size, but species composition was best predicted (i.e. |r| between 0.60?0.82) by reach-level geomorphic variables (stream slope, bed texture, bed mobility and tractive force) that were unrelated to stream size. Stream slope was the dominant factor controlling stream habitat. Low slope streams had smaller bed particles, more fines in riffles, lower tractive force and greater bed mobility compared with high slope streams. 4. Our results contrast with the `River Continuum Concept? which argues that stream assemblages vary predictably along stream size gradients. Our findings support the `Process Domains Concept?, which argues that local-scale geomorphic processes determine the stream habitat and disturbance regimes that influence stream communities.

  13. Riverine Landscape Patch Heterogeneity Drives Riparian Ant Assemblages in the Scioto River Basin, USA.

    PubMed

    Tagwireyi, Paradzayi; Sullivan, S Mažeika P

    2015-01-01

    Although the principles of landscape ecology are increasingly extended to include riverine landscapes, explicit applications are few. We investigated associations between patch heterogeneity and riparian ant assemblages at 12 riverine landscapes of the Scioto River, Ohio, USA, that represent urban/developed, agricultural, and mixed (primarily forested, but also wetland, grassland/fallow, and exurban) land-use settings. Using remotely-sensed and ground-collected data, we delineated riverine landscape patch types (crop, grass/herbaceous, gravel, lawn, mudflat, open water, shrub, swamp, and woody vegetation), computed patch metrics (area, density, edge, richness, and shape), and conducted coordinated sampling of surface-active Formicidae assemblages. Ant density and species richness was lower in agricultural riverine landscapes than at mixed or developed reaches (measured using S [total number of species], but not using Menhinick's Index [DM]), whereas ant diversity (using the Berger-Park Index [DBP]) was highest in agricultural reaches. We found no differences in ant density, richness, or diversity among internal riverine landscape patches. However, certain characteristics of patches influenced ant communities. Patch shape and density were significant predictors of richness (S: R2 = 0.72; DM: R2=0.57). Patch area, edge, and shape emerged as important predictors of DBP (R2 = 0.62) whereas patch area, edge, and density were strongly related to ant density (R2 = 0.65). Non-metric multidimensional scaling and analysis of similarities distinguished ant assemblage composition in grass and swamp patches from crop, gravel, lawn, and shrub as well as ant assemblages in woody vegetation patches from crop, lawn, and gravel (stress = 0.18, R2 = 0.64). These findings lend insight into the utility of landscape ecology to river science by providing evidence that spatial habitat patterns within riverine landscapes can influence assemblage characteristics of riparian arthropods.

  14. Spatial and Temporal Comparison of DNRA Communities in New River Estuary, USA

    NASA Astrophysics Data System (ADS)

    Song, B.; Lisa, J.; Tobias, C. R.

    2016-02-01

    Dissimilatory nitrate reduction to ammonium (DNRA) is an important nitrate respiring pathway, competing with denitrification, in various ecosystems. Studies examining the diversity and composition of DNRA communities are limited and their link to DNRA activity is unknown. We conducted a multidisciplinary investigation of sediment communities in the upper reaches of a eutrophic estuary to examine spatial and temporal variation of DNRA community structures and determine their linkage to activities. Sediment samples were collected seasonally from two study sites (AA2 and JAX) in the New River Estuary, North Carolina, USA. 15N-nitrate tracer experiments were conducted to measure potential DNRA rates while abundance of DNRA communities was measured using quantitative PCR of cytochrome C nitrite reductase genes (nrfA). Composition and diversity of DNRA communities were also examined based on next generation sequencing (NGS) of nrfA genes using an Ion Torrent PGM. Bioinformatic analysis was conducted using the FunGene pipeline and Mothur program. Higher DNRA activities were measured at JAX and associated with higher abundance of nrfA genes. Seasonal variation in DNRA rates and nrfA gene abundance was more evident at JAX than AA2. Nitrate concentration and dissolved oxygen in bottom water were significantly and positively correlated with activities and abundance of DNRA communities. The nrfA NGS analysis revealed that spatial variation of DNRA communities was much greater than temporal variation with salinity, dissolved organic carbon, and nitrate as the most important environmental variables affecting these communities. Diversity of DNRA communities was negative correlated with the DNRA rates and nrfA gene abundance, which suggests that dominant members of the DNRA community are responsible for higher rates. Thus, our multidisciplinary study clearly demonstrates the linkage between structure and activities of DNRA communities in the upper reaches of New River Estuary.

  15. Radiocarbon Depression in Aquatic Foodwebs of the Colorado River, USA: Coupling Between Carbonate Weathering and the Biosphere

    NASA Astrophysics Data System (ADS)

    Sickman, J. O.; Huang, W.; Lucero, D.; Anderson, M.

    2012-12-01

    The 14C isotopic composition of living organisms is generally considered to be in isotopic equilibrium with atmosphere CO2. During the course of investigations of aquatic foodwebs of the Colorado River, we measured substantial radiocarbon depression of organisms within planktonic and benthic foodwebs of Copper Basin Reservoir, a short residence-time water body at the intake to the Colorado River Aqueduct. All trophic levels had depressed radiocarbon content with inferred "age" of ca. 1,200 radiocarbon years (range: 0.85 to 0.87 fraction modern carbon (fmc)). Additional measurements of the radiocarbon content of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were made in other major rivers in California (New (near Salton Sea), Santa Ana (near Riverside), San Joaquin (near Fresno) and Salinas (near San Luis Obispo)). In the New River (which is composed primarily of irrigation tailwater derived from the Colorado River), the radiocarbon values for DIC closely matched those found in biota of the Copper Basin Reservoir (0.85 to 0.87 fmc), but radiocarbon values for DOC were slightly higher (0.91 to 0.95 fmc). In the other California rivers, radiocarbon concentrations in DIC were generally below modern and lower than corresponding levels in DOC; in the case of the Santa Ana River, DOC was older than DIC as a result of wastewater inputs from upstream treatment plants. Together these data suggest that the carbonate equilibrium of California rivers is influenced by weathering of carbonate minerals which produces HCO3- with no 14C. We hypothesize that this dead carbon can move into aquatic foodwebs via algae and phytoplankton uptake during photosynthesis, depressing the 14C content of aquatic foodwebs below that of the atmosphere. Based on a simple two-component mixing model incorporating carbonate weathering and atmospheric CO2, we estimate that 15-17% of the carbon in the aquatic foodweb of Copper Basin is derived directly from mineral weathering of

  16. Effects of lateral confinement in natural and leveed reaches of a gravel-bed river: Snake River, Wyoming, USA

    USGS Publications Warehouse

    Leonard, Christina M.; Legleiter, Carl; Overstreet, Brandon T.

    2017-01-01

    This study examined the effects of natural and anthropogenic changes in confining margin width by applying remote sensing techniques – fusing LiDAR topography with image-derived bathymetry – over a large spatial extent: 58 km of the Snake River, Wyoming, USA. Fused digital elevation models from 2007 and 2012 were differenced to quantify changes in the volume of stored sediment, develop morphological sediment budgets, and infer spatial gradients in bed material transport. Our study spanned two similar reaches that were subject to different controls on confining margin width: natural terraces versus artificial levees. Channel planform in reaches with similar slope and confining margin width differed depending on whether the margins were natural or anthropogenic. The effects of tributaries also differed between the two reaches. Generally, the natural reach featured greater confining margin widths and was depositional, whereas artificial lateral constriction in the leveed reach produced a sediment budget that was closer to balanced. Although our remote sensing methods provided topographic data over a large area, net volumetric changes were not statistically significant due to the uncertainty associated with bed elevation estimates. We therefore focused on along-channel spatial differences in bed material transport rather than absolute volumes of sediment. To complement indirect estimates of sediment transport derived by morphological sediment budgeting, we collected field data on bed mobility through a tracer study. Surface and subsurface grain size measurements were combined with bed mobility observations to calculate armoring and dimensionless sediment transport ratios, which indicated that sediment supply exceeded transport capacity in the natural reach and vice versa in the leveed reach. We hypothesize that constriction by levees induced an initial phase of incision and bed armoring. Because levees prevented bank erosion, the channel excavated sediment by

  17. How do Rivers Meander in Rock? Insights from the Santa Cruz Mountains, CA, USA

    NASA Astrophysics Data System (ADS)

    Johnson, K. N.; Finnegan, N. J.

    2011-12-01

    Meandering in bedrock rivers is not well understood, despite the fact that both sinuosity and strath terraces (both products of meandering) are commonly interpreted in tectonic or climatic contexts. To better understand bedrock river meandering, here we compare a meandering bedrock river in the Santa Cruz Mountains, USA (Pescadero Creek) to an adjacent river (Butano Creek) that does not meander. This natural experiment allows us to isolate the effects of lithology on lateral erosion processes since these two adjacent rivers have similar driving stress, valley orientation to prevailing weather systems, and structural setting, but incise contrasting lithologies: weak sandstone along Butano and weak mudstone along Pescadero. Building on published observations that some mudstones lose strength when subjected to wetting and drying of expansive clay minerals, we test the hypothesis that lateral bank erosion occurs in Pescadero Creek because wetting and drying of mudstone above the low water line weakens bank rock to the point where it can easily be detached by clear water flows on the exposed outside banks of river bends. We collected rock from below low summer water levels in order to explore how drying and rewetting influence the mechanical properties of the two sampled lithologies. Tensile strength measurements reveal that the mudstone was weak (~ 0.2 MPa, n = 6) before drying, visibly fractured but slightly stronger when measured dry (~ 0.6 MPa, n = 11), and upon rewetting disintegrated to washload, making strength testing impossible. Sandstone strength varied between sample sites (~0.1 - 0.8MPa, n=12) but has no consistent relationship to wetting, drying or rewetting. In the field, we tested the detachability of bedrock under a calibrated water jet and found that only mudstone above low water levels (subjected to repeated wetting and drying) was detachable by clear water flows. Saturated mudstone (from at the low water line) and sandstone (both dry and wet) did not

  18. Depth and velocity data in the Lower San Joaquin River, California, 2011-2014

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.; Whealdon-Haught, Dan; Kinzel, Paul J.

    2017-01-01

    This data release contains water depth, depth-averaged water velocity, and river stationing (based on 2012 ortho-imagery) in select locations in the Lower San Joaquin River, California, 2011-2014. Between 2011 and 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service (USFWS), collected approximately 105 channel cross-sections and multiple longitudinal profiles, which comprised of nearly 150,000 streamflow-velocity measurements and 246,000 water-depth measurements in various reaches and subreaches of the Lower San Joaquin River between Orestimba Creek and Sturgeon Bend. The data collection locations in the Lower San Joaquin River were selected based on discussions with USFWS to overlap with their sturgeon monitoring sites and areas that may provide beneficial spawning habitat (such as adjacent to gravel bars or known deep scour holes, etc.). An acoustic Doppler current profiler (ADCP) was primarily used to collect the depth and velocity data, however, in 2011 a multibeam sonar was used to map bathymetry in some areas.

  19. Pesticides and pesticide degradation products in stormwater runoff: Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, J.

    1996-01-01

    Pesticides in stormwater runoff, within the Sacramento River Basin, California, were assessed during a storm that occurred in January 1994. Two organophosphate insecticides (diazinon and methidathion), two carbamate pesticides (molinate and carbofuran), and one triazine herbicide (simazine) were detected. Organophosphate pesticide concentrations increased with the rising stage of the hydrographs; peak concentrations were measured near peak discharge. Diazinon oxon, a toxic degradation product of diazinon, made up approximately 1 to 3 percent of the diazinon load. The Feather River was the principal source of organophosphate pesticides to the Sacramento River during this storm. The concentrations of molinate and carbofuran, pesticides applied to rice fields during May and June, were relatively constant during and after the storm. Their presence in surface water was attributed to the flooding and subsequent drainage, as a management practice to degrade rice stubble prior to the next planting. A photodegradation product of molinate, 4-keto molinate, was in all samples where molinate was detected and made up approximately 50 percent of the total molinate load. Simazine, a herbicide used in orchards and to control weeds along the roadways, was detected in the storm runoff, but it was not possible to differentiate the two sources of that pesticide to the Sacramento River.

  20. Real-time management of water quality in the San Joaquin River Basin, California.

    SciTech Connect

    Quinn, N.W.T.; Karkoski, J.

    1997-09-01

    In the San Joaquin River Basin, California, a realtime water quality forecasting model was developed to help improve the management of saline agricultural and wetland drainage to meet water quality objectives. Predicted salt loads from the water quality forecasting model, SJRIODAY, were consistently within +- 11 percent of actual, within +- 14 percent for seven-day forecasts, and with in +- 26 percent for 14-day forecasts for the 16-month trial period. When the 48 days dominated by rainfall/runoff events were eliminated from the data set, the error bar decreased to +- 9 percent for the model and +- 11 percent and +- 17 percent for the seven-day and 14-day forecasts, respectively. Constraints on the use of the model for salinity management on the San Joaquin River include the number of entities that control or influence water quality and the lack of a centralized authority to direct their activities. The lack of real-time monitoring sensors for other primary constituents of concern, such as selenium and boron, limits the application of the model to salinity at the present time. A case study describes wetland drainage releases scheduled to coincide with high river flows and significant river assimilative capacity for salt loads.

  1. Real-time management of water quality in the San Joaquin River Basin, California.

    SciTech Connect

    Quinn, N.W.T.; Karkoski, J.

    1997-09-01

    In the San Joaquin River Basin, California, a realtime water quality forecasting model was developed to help improve the management of saline agricultural and wetland drainage to meet water quality objectives. Predicted salt loads from the water quality forecasting model, SJRIODAY, were consistently within +- 11 percent of actual, within +- 14 percent for seven-day forecasts, and with in +- 26 percent for 14-day forecasts for the 16-month trial period. When the 48 days dominated by rainfall/runoff events were eliminated from the data set, the error bar decreased to +- 9 percent for the model and +- 11 percent and +- 17 percent for the seven-day and 14-day forecasts, respectively. Constraints on the use of the model for salinity management on the San Joaquin River include the number of entities that control or influence water quality and the lack of a centralized authority to direct their activities. The lack of real-time monitoring sensors for other primary constituents of concern, such as selenium and boron, limits the application of the model to salinity at the present time. A case study describes wetland drainage releases scheduled to coincide with high river flows and significant river assimilative capacity for salt loads.

  2. Trends In Particulate Organic Carbon Composition In Oregon And California Coast Range Rivers

    NASA Astrophysics Data System (ADS)

    Hatten, J. A.; Goni, M. A.; Wheatcroft, R. A.; Borgeld, J.; Williamson, A.; Padgett, J.; Pasternack, G. B.; Gray, A.; Watson, E.

    2009-12-01

    The discharge of particulate organic carbon (POC) from small mountainous rivers may contribute nearly half of the world’s POC to the ocean. However, these smaller rivers have highly variable discharges throughout the year, which in turn affect the content and composition of POC being delivered to coastal margins. Further, POC composition has been shown to vary by season and throughout specific events. Understanding the composition of POC being discharged under these various conditions yields clues about the material’s stability in the coastal environment, its source within the watershed, and the process of delivery. During the 2008 and 2009 water years, suspended sediment samples were collected from the Alsea, Umpqua, Eel, and Salinas Rivers draining the Coast Ranges of Oregon and California. Events and discharges of various magnitudes were captured in this sample set. Fine (<63 μm) and coarse (>63 μm) particulate material was analyzed for OC, N, δ13C, δ15N, Δ14C, and cupric oxide oxidation products (e.g. lignin, cutin). This poster will present results from these coastal rivers and explore trends in POC in the context of watershed characteristics, discharge, season, and event-scale processes.

  3. Concentration, UV-spectroscopic characteristics and fractionation of DOC in stormflow from an urban stream, Southern California, USA

    USGS Publications Warehouse

    Izbicki, J.A.; Pimentel, I.M.; Johnson, R.; Aiken, G.R.; Leenheer, J.

    2007-01-01

    The composition of dissolved organic carbon (DOC) in stormflow from urban areas has been greatly altered, both directly and indirectly, by human activities and there is concern that there may be public health issues associated with DOC, which has unknown composition from different sources within urban watersheds. This study evaluated changes in the concentration and composition of DOC in stormflow in the Santa Ana River and its tributaries between 1995 and 2004 using a simplified approach based on the differences in the optical properties of DOC and using operationally defined differences in molecular weight and solubility. The data show changes in the composition of DOC in stormflow during the rainy season and differences associated with runoff from different parts of the basin, including extensive upland areas burned prior to the 2004 rainy season. Samples were collected from the Santa Ana River, which drains ???6950 km2 of the densely populated coastal area of southern California, during 23 stormflows between 1995 and 2004. Dissolved organic carbon (DOC) concentrations during the first stormflows of the ?winter' (November to March) rainy season increased rapidly with streamflow and were positively correlated with increased faecal indicator bacteria concentrations. DOC concentrations were not correlated with streamflow or with other constituents during stormflows later in the rainy season and DOC had increasing UV absorbance per unit carbon as the rainy season progressed. DOC concentrations in stormflow from an urban drain tributary to the river also increased during stormflow and were greater than concentrations in the river. DOC concentrations in stormflow from a tributary stream, draining urban and agricultural land that contained more than 320 000 animals, mostly dairy cows, were higher than concentrations in stormflow from the river and from the urban drain. Fires that burned large areas of the basin before the 2004 rainy season did not increase DOC

  4. Edaphic, salinity, and stand structural trends in chronosequences of native and non-native dominated riparian forests along the Colorado River, USA

    USGS Publications Warehouse

    Merritt, David M.; Shafroth, Patrick B.

    2012-01-01

    Tamarix spp. are introduced shrubs that have become among the most abundant woody plants growing along western North American rivers. We sought to empirically test the long-held belief that Tamarix actively displaces native species through elevating soil salinity via salt exudation. We measured chemical and physical attributes of soils (e.g., salinity, major cations and anions, texture), litter cover and depth, and stand structure along chronosequences dominated by Tamarix and those dominated by native riparian species (Populus or Salix) along the upper and lower Colorado River in Colorado and Arizona/California, USA. We tested four hypotheses: (1) the rate of salt accumulation in soils is faster in Tamarix-dominated stands than stands dominated by native species, (2) the concentration of salts in the soil is higher in mature stands dominated by Tamarix compared to native stands, (3) soil salinity is a function of Tamarix abundance, and (4) available nutrients are more concentrated in native-dominated stands compared to Tamarix-dominated stands. We found that salt concentration increases at a faster rate in Tamarix-dominated stands along the relatively free-flowing upper Colorado but not along the heavily-regulated lower Colorado. Concentrations of ions that are known to be preferentially exuded by Tamarix (e.g., B, Na, and Cl) were higher in Tamarix stands than in native stands. Soil salt concentrations in older Tamarix stands along the upper Colorado were sufficiently high to inhibit germination, establishment, or growth of some native species. On the lower Colorado, salinity was very high in all stands and is likely due to factors associated with floodplain development and the hydrologic effects of river regulation, such as reduced overbank flooding, evaporation of shallow ground water, higher salt concentrations in surface and ground water due to agricultural practices, and higher salt concentrations in fine-textured sediments derived from naturally saline

  5. Algal bioassessment metrics for wadeable streams and rivers of Maine, USA

    USGS Publications Warehouse

    Danielson, T.J.; Loftin, C.S.; Tsomides, L.; Difranco, J.L.; Connors, B.

    2011-01-01

    Many state water-quality agencies use biological assessment methods based on lotic fish and macroinvertebrate communities, but relatively few states have incorporated algal multimetric indices into monitoring programs. Algae are good indicators for monitoring water quality because they are sensitive to many environmental stressors. We evaluated benthic algal community attributes along a landuse gradient affecting wadeable streams and rivers in Maine, USA, to identify potential bioassessment metrics. We collected epilithic algal samples from 193 locations across the state. We computed weighted-average optima for common taxa for total P, total N, specific conductance, % impervious cover, and % developed watershed, which included all land use that is no longer forest or wetland. We assigned Maine stream tolerance values and categories (sensitive, intermediate, tolerant) to taxa based on their optima and responses to watershed disturbance. We evaluated performance of algal community metrics used in multimetric indices from other regions and novel metrics based on Maine data. Metrics specific to Maine data, such as the relative richness of species characterized as being sensitive in Maine, were more correlated with % developed watershed than most metrics used in other regions. Few community-structure attributes (e.g., species richness) were useful metrics in Maine. Performance of algal bioassessment models would be improved if metrics were evaluated with attributes of local data before inclusion in multimetric indices or statistical models. ?? 2011 by The North American Benthological Society.

  6. Sluiceway Operations for Adult Steelhead Downstream Passage at The Dalles Dam, Columbia River, USA

    SciTech Connect

    Khan, Fenton; Royer, Ida M.; Johnson, Gary E.; Tackley, Sean C.

    2013-10-01

    This study evaluated adult steelhead (Oncorhynchus mykiss; fallbacks and kelts) downstream passage at The Dalles Dam in the Columbia River, USA, during the late fall, winter, and early spring months between 2008 and 2011. The purpose of the study was to determine the efficacy of operating the dam’s ice-and-trash sluiceway during non-spill months to provide a relatively safe, non-turbine, surface outlet for overwintering steelhead fallbacks and downstream migrating steelhead kelts. We applied the fixed-location hydroacoustic technique to estimate fish passage rates at the sluiceway and turbines of the dam. The spillway was closed during our sampling periods, which generally occurred in late fall, winter, and early spring. The sluiceway was highly used by adult steelhead (91–99% of total fish sampled passing the dam) during all sampling periods. Turbine passage was low when the sluiceway was not operated. This implies that lack of a sluiceway route did not result in increased turbine passage. However, when the sluiceway was open, adult steelhead used it to pass through the dam. The sluiceway may be operated during late fall, winter, and early spring to provide an optimal, non-turbine route for adult steelhead (fallbacks and kelts) downstream passage at The Dalles Dam.

  7. Effects of bridge construction on songbirds and small mammals at Blennerhassett Island, Ohio River, USA.

    PubMed

    Vance, Joshua A; Angus, Norse B; Anderson, James T

    2013-09-01

    Construction of man-made objects such as roads and bridges may have impacts on wildlife depending on species or location. We investigated songbirds and small mammals along the Ohio River, WV, USA at a new bridge both before and after construction and at a bridge crossing that was present throughout the study. Comparisons were made at each site over three time periods (1985-1987 [Phase I] and 1998-2000 [Phase II] [pre-construction], 2007-2009 [Phase III] [post-construction]) and at three distances (0, 100, 300 m) from the bridge or proposed bridge location. Overall, 70 songbirds and 10 small mammals were detected during the study. Cliff swallows (Petrochelidon pyrrhonota) and rock pigeons (Columba livia) showed high affinity for bridges (P < 0.05). Combined small mammal abundances increased between Phases I and II (P < 0.05), but did not differ between Phases II and III (P > 0.05). Species richness and diversity for songbirds and small mammals did not differ before and after bridge construction (P > 0.05). We found that most species sampled did not respond to the bridge crossing, and believe that the bridge is not causing any measurable negative density impacts to the species we investigated. The new bridge does provide habitat for exotic rock pigeons that are adjusted to man-made structures for nesting.

  8. Neural network modelling of Cryptosporidium and Giardia concentrations in the Delaware River, USA.

    PubMed

    Neelakantan, T R; Brion, G M; Lingireddy, S

    2001-01-01

    Artificial neural networks are brain-like structures used in mathematical modelling that excel in pattern recognition. In this research, a simple feed-forward artificial neural network, trained by error back-propagation algorithm, was used as a tool to relate peak Cryptosporidium and Giardia concentrations with other biological, chemical and physical parameters in surface water. Multiple water quality parameters at a water treatment plant intake on the Delaware River, New Jersey, USA, collected in 1996, were provided to the authors for recognition analysis. Water samples were classified as "background" and "above background" based on the concentration of full and empty oocysts and cysts of Cryptosporidium and Giardia. The results of this preliminary effort were encouraging. Parameters significant to the identification of each protozoa were identified, eight for Cryptosporidium and seven for Giardia by a stepwise elimination technique. Data withheld from the model training was used to validate the trained models and evaluate the most effective internal architecture. In both cases, the best prediction performance was found when the number of internal nodes was twice that of the input parameters in single hidden-layer architecture. Predictions for the classification of the verification data set resulted in no false-negatives (mis-prediction of above background protozoa concentrations) when the models were optimally trained.

  9. Collection and analysis of colloidal particles transported in the Mississippi River, U.S.A.

    USGS Publications Warehouse

    Rees, T.F.; Ranville, J.F.

    1990-01-01

    Sediment transport has long been recognized as an important mechanism for the transport of contaminants in surface waters. Suspended sediment has traditionally been divided into three size classes: sand-sized (>63 ??m), silt-sized ( 63 ??m), silt-sized (< 63 ??m but settleable) and clay-sized (non-settleable). The first two classes are easily collected and characterized using screens (sand) and settling (silt). The clay-sized particles, more properly called colloids, are more difficult to collect and characterize, and until recently received little attention. From the hydrologic perspective, a colloid is a particle, droplet, or gas bubble with at least one dimension between 0.001 and 1 ??m. Because of their small size, colloids have large specific surface areas and high surface free energies which may facilitate sorption of hydrophobic materials. Understanding what types of colloids are present in a system, how contaminants of interest interact with these colloids, and what parameters control the transport of colloids in natural systems is critical if the relative importance of colloid-mediated transport is to be understood. This paper describes the collection, concentration and characterization of colloidal materials in the Mississippi River. Colloid concentrations, particle-size distributions, mineral composition and electrophoretic mobilities were determined. Techniques used are illustrated with samples collected at St. Louis, Missouri, U.S.A.

  10. Governing stem cell research in California and the USA: towards a social infrastructure.

    PubMed

    Winickoff, David E

    2006-09-01

    Owing to the restrictive human embryonic stem cell (hESC) policies of the US government, the question of whether to pursue human embryonic stem cell experiments has dominated the ethical and political discourse concerning such research. Explicit attention must now turn to problems of implementing the research on a large scale: in the 2004 US elections, California voters approved a state initiative for stem cell research, earmarking $3 billion in direct spending over 10 years. This article explores three ethical and political problem areas emerging out of the California program, the resolution of which will help set the trajectory of hESC research in the US and abroad, and then proposes an institutional approach to help address them: a network of public stem cell banks in the US that feature transparent and shared governance.

  11. Linking Watershed Nitrogen Sources with Nitrogen Dynamics in Rivers of Western Oregon, USA

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Compton, J.; Goodwin, K. E.

    2012-12-01

    We constructed contemporary nitrogen (N) budgets for 25 river basins in the Willamette River Basin (WRB) of western Oregon, USA, to improve the understanding of how recent trends in human-driven N loading have influenced riverine N dynamics in the region. Nearly 20% of WRB stream length is currently in fair or poor condition because of high N concentrations. Additionally, nitrate contamination of drinking water affects at least 8,000 people in the WRB. We hypothesized that 1) the majority of N inputs in the WRB would originate from agricultural activities in lowland portions of watersheds, 2) annual riverine N yield (kg/ha/yr) would correspond to annual per area watershed N inputs, and 3) riverine N yields would be seasonal and highest during winter due to the region's Mediterranean climate. We calculated average annual N inputs for each study basin by summing newly available datasets describing spatially explicit N inputs of synthetic fertilizer, atmospheric deposition, crop biological N2 fixation, biological N2 fixation by red alder (Alnus rubra Bong.), livestock manure, and point sources for the period 1996 - 2007. Annual and seasonal riverine N exports were estimated with the USGS model LOADEST calibrated to N concentration data collected during the study period. We estimated that two-thirds of total N input to the WRB study basins in the 2000s came from synthetic fertilizer application. Nearly all fertilizer application occurred on the lowlands near watershed mouths. We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than to percent of agricultural area in the watershed. Low watershed N yields reflected a high proportion of watershed area in the forested Cascade Mountain Range, which received low N inputs mainly from atmospheric deposition. N yields from study basins were strongly seasonal, with at least 50%, and

  12. Passerine Exposure to Primarily PCDFs and PCDDs in the River Floodplains Near Midland, Michigan, USA

    PubMed Central

    Zwiernik, Matthew J.; Seston, Rita M.; Coefield, Sarah J.; Plautz, Stephanie C.; Tazelaar, Dustin L.; Shotwell, Melissa S.; Bradley, Patrick W.; Kay, Denise P.; Giesy, John P.

    2009-01-01

    House wren (Troglodytes aedon), tree swallow (Tachycineta bicolor), and eastern bluebird (Sialia sialis) tissues collected in study areas (SAs) downstream of Midland, Michigan (USA) contained concentrations of polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs) greater than in upstream reference areas (RAs) in the region. The sum of concentrations of PCDD/DFs (ΣPCDD/DFs) in eggs of house wrens and eastern bluebirds from SAs were 4- to 22-fold greater compared to those from RAs, whereas concentrations in tree swallow eggs were similar among areas. Mean concentrations of ΣPCDD/DFs and sum 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (ΣTEQsWHO-Avian), based on 1998 WHO avian toxic equivalency factors, in house wren and eastern bluebird eggs ranged from 860 (430) to 1500 (910) ng/kg wet weight (ww) and 470 (150) to 1100 (510) ng/kg ww, respectively, at the most contaminated study areas along the Tittabawassee River, whereas mean concentrations in tree swallow eggs ranged from 280 (100) to 760 (280) ng/kg ww among all locations. Concentrations of ΣPCDD/DFs in nestlings of all studied species at SAs were 3- to 50-fold greater compared to RAs. Mean house wren, tree swallow, and eastern bluebird nestling concentrations of ΣPCDD/DFs and ΣTEQsWHO-Avian ranged from 350 (140) to 610 (300) ng/kg ww, 360 (240) to 1100 (860) ng/kg ww, and 330 (100) to 1200 (690) ng/kg ww, respectively, at SAs along the Tittabawassee River. Concentrations of ΣTEQsWHO-Avian were positively correlated with ΣPCDD/DF concentrations in both eggs and nestlings of all species studied. Profiles of relative concentrations of individual congeners were dominated by furan congeners (69–84%), primarily 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,7,8-pentachlorodibenzofuran, for all species at SAs on the Tittabawassee and Saginaw rivers but were dominated by dioxin congeners at upstream RAs. Electronic supplementary material The online version of this article (doi:10

  13. Geologic history of natural coal-bed fires, Powder River basin, USA

    USGS Publications Warehouse

    Heffern, E.L.; Coates, D.A.

    2004-01-01

    Coal-bed fires ignited by natural processes have baked and fused overlying sediments to form clinker, a hard red or varicolored rock, through much of the northern Great Plains of the United States (USA). The gently dipping coal beds in the region burn when regional downwasting brings them above the local water table. The resulting clinker forms a rim along the exposed edge of the coal bed in an ongoing process through geologic time. The resistant clinker is left capping buttes and ridges after the softer unbaked strata erode away. Clinker outcrops cover more than 4100 km2 in the Powder River basin (PRB), which lies in Wyoming (WY) and Montana (MT). The clinker in place records tens of billions of tons of coal that have burned, releasing gases into the atmosphere. The amount of clinker that has eroded away was at least an order of magnitude greater than the clinker that remains in place. Fission-track and uranium-thorium/ helium ages of detrital zircon crystals in clinker, and paleomagnetic ages of clinker, show that coal beds have burned naturally during at least the past 4 million years (Ma). The oldest in-place clinker that has been dated, collected from a high, isolated, clinker-capped ridge, has a fission track age of 2.8??0.6 Ma. Evidence of erosion and downcutting is also preserved by clinker clasts in gravel terraces. One clinker boulder in a terrace 360 m above the Yellowstone River has a fission track age of 4.0??0.7 Ma. Coal-bed fires are caused by lightning, wildfires, spontaneous combustion, or human activity on coal outcrops and in mines. Miners, government agencies, and ranchers have extinguished thousands of coal bed fires, but natural ignition continues where fresh coal has access to air. At any given time, hundreds of fires, mostly small, are burning. In the Powder River basin, the total amount of coal burned by natural fires in the last 2 Ma is one to two orders of magnitude greater than the total amount of coal removed by mining in the past

  14. Passerine exposure to primarily PCDFs and PCDDs in the river floodplains near Midland, Michigan, USA.

    PubMed

    Fredricks, Timothy B; Zwiernik, Matthew J; Seston, Rita M; Coefield, Sarah J; Plautz, Stephanie C; Tazelaar, Dustin L; Shotwell, Melissa S; Bradley, Patrick W; Kay, Denise P; Giesy, John P

    2010-05-01

    House wren (Troglodytes aedon), tree swallow (Tachycineta bicolor), and eastern bluebird (Sialia sialis) tissues collected in study areas (SAs) downstream of Midland, Michigan (USA) contained concentrations of polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs) greater than in upstream reference areas (RAs) in the region. The sum of concentrations of PCDD/DFs (SigmaPCDD/DFs) in eggs of house wrens and eastern bluebirds from SAs were 4- to 22-fold greater compared to those from RAs, whereas concentrations in tree swallow eggs were similar among areas. Mean concentrations of SigmaPCDD/DFs and sum 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (SigmaTEQs(WHO-Avian)), based on 1998 WHO avian toxic equivalency factors, in house wren and eastern bluebird eggs ranged from 860 (430) to 1500 (910) ng/kg wet weight (ww) and 470 (150) to 1100 (510) ng/kg ww, respectively, at the most contaminated study areas along the Tittabawassee River, whereas mean concentrations in tree swallow eggs ranged from 280 (100) to 760 (280) ng/kg ww among all locations. Concentrations of SigmaPCDD/DFs in nestlings of all studied species at SAs were 3- to 50-fold greater compared to RAs. Mean house wren, tree swallow, and eastern bluebird nestling concentrations of SigmaPCDD/DFs and SigmaTEQs(WHO-Avian) ranged from 350 (140) to 610 (300) ng/kg ww, 360 (240) to 1100 (860) ng/kg ww, and 330 (100) to 1200 (690) ng/kg ww, respectively, at SAs along the Tittabawassee River. Concentrations of SigmaTEQs(WHO-Avian) were positively correlated with SigmaPCDD/DF concentrations in both eggs and nestlings of all species studied. Profiles of relative concentrations of individual congeners were dominated by furan congeners (69-84%), primarily 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,7,8-pentachlorodibenzofuran, for all species at SAs on the Tittabawassee and Saginaw rivers but were dominated by dioxin congeners at upstream RAs.

  15. American Diabetes Association - 77th Scientific Sessions (June 9-13, 2017 - San Diego, California, USA).

    PubMed

    Lam, S

    2017-07-01

    The 77th American Diabetes Association (ADA) Sci-entific Sessions took place in San Diego, California. The meeting brought together scientists and professionals from a wide range of disciplines in the field of diabetes and provided a platform for networking, allowing experts and researchers to share ideas and learn about the significant advances in diabetes research, treatment and care. Over the course of the 5 days, participants received exclusive access to more than 2,500 original research presentations.

  16. Age Determination of the Remaining Peat in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; de Fontaine, Christian S.; Knifong, Donna L.

    2007-01-01

    Introduction The Sacramento-San Joaquin Delta of California was once a 1,400 square kilometer (km2) tidal marsh, which contained a vast layer of peat ranging up to 15 meters (m) thick (Atwater and Belknap, 1980). Because of its favorable climate and highly fertile peat soils, the majority of the Delta was drained and reclaimed for agriculture during the late 1800s and early 1900s. Drainage of the peat soils changed the conditions in the surface layers of peat from anaerobic (having no free oxygen present) to aerobic (exposed to the atmosphere). This change in conditions greatly increased the decomposition rate of the peat, which consists largely of organic (plant) matter. Thus began the process of land-surface subsidence, which initially was a result of peat shrinkage and compaction, and later largely was a result of oxidation by which organic carbon in the peat essentially vaporized to carbon dioxide (Deverel and others, 1998; Ingebritsen and Ikehara, 1999). Because of subsidence, the land-surface elevation on farmed islands in the Delta has decreased from a few meters to as much as 8 m below local mean sea level (California Department of Water Resources, 1995; Steve Deverel, Hydrofocus, Inc., written commun., 2007). The USGS, in collaboration with the University of California at Davis, and Hydrofocus Inc. of Davis, California, has been studying the formation of the Delta and the impact of wetland reclamation on the peat column as part of a project called Rates and Evolution of Peat Accretion through Time (REPEAT). The purpose of this report is to provide results on the age of the remaining peat soils on four farmed islands in the Delta.

  17. Suspended-sediment rating curve response to urbanization and wildfire, Santa Ana River, California

    USGS Publications Warehouse

    Warrick, J.A.; Rubin, D.M.

    2007-01-01

    River suspended-sediment concentrations provide insights to the erosion and transport of materials from a landscape, and changes in concentrations with time may result from landscape processes or human disturbance. Here we show that suspended-sediment concentrations in the Santa Ana River, California, decreased 20-fold with respect to discharge during a 34-year period (1968−2001). These decreases cannot be attributed to changes in sampling technique or timing, nor to event or seasonal hysteresis. Annual peak and total discharge, however, reveal sixfold increases over the 34-year record, which largely explain the decreases in sediment concentration by a nonlinear dilution process. The hydrological changes were related to the widespread urbanization of the watershed, which resulted in increases in storm water discharge without detectable alteration of sediment discharge, thus reducing suspended-sediment concentrations. Periodic upland wildfire significantly increased water discharge, sediment discharge, and suspended-sediment concentrations and thus further altered the rating curve with time. Our results suggest that previous inventories of southern California sediment flux, which assume time-constant rating curves and extend these curves beyond the sampling history, may have substantially overestimated loads during the most recent decades.

  18. Chronology of Miocene Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    NASA Astrophysics Data System (ADS)

    Dorsey, Rebecca J.; Fluette, Amy; McDougall, Kristin; Housen, Bernard A.; Janecke, Susanne U.; Axen, Gary J.; Shirvell, Catherine R.

    2007-01-01

    Late Miocene to early Pliocene deposits at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ± 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River.

  19. 1,000 Years of Climatic Variability in the Upper Colorado River Basin, USA

    NASA Astrophysics Data System (ADS)

    Tingstad, A. H.; MacDonald, G. M.

    2008-12-01

    The Upper Colorado River Basin (UCRB) is an essential water resource region in the United States. Seven western U.S. states, including water-hungry California, depend on water originating in the UCRB to support rising populations, agriculture, and infrastructure. Predictions that drought and depletion of water resources will intensify in the next several decades due to human-induced climate warming makes it essential that the natural patterns and causes of drought in the UCRB are understood. In particular, droughts that occurred during the Medieval Period (~ A.D. 900-1200) are of interest because temperatures are known to have been elevated during this time. We present a new 1,000-year tree-ring reconstruction for part of the UCRB using Pinus edulis (two-needle Pinyon) samples from northeastern Utah. We evaluate variability in the summer (JJA) and annual Palmer Drought Severity Index (PDSI) for the Uinta Mountains region, and use wavelet and other analyses to determine the importance of the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) in determining the timing and duration of droughts in the region. We conclude that while intense droughts did occur during the Medieval Period and throughout the record, water shortages may not be spatially and temporally uniform throughout the UCRB and the western U.S.

  20. Numerical model of a tracer test on the Santa Clara River, Ventura County, California

    USGS Publications Warehouse

    Nishikawa, T.; Paybins, K.S.; Izbicki, J.A.; Reichard, E.G.

    1999-01-01

    To better understand the flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of mass in the ephemeral middle subreaches, and (2) groundwater recharge does not explain the loss of mass in the perennial uppermost and lowermost subreaches. The observed tracer curves in the perennial subreaches were indicative of sorptive dye losses, transient storage, and (or) photodecay - these phenomena were simulated using a linear decay term. However, analysis of the linear decay terms indicated that photodecay was not a dominant source of dye loss.To better understand the flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimension-al flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of

  1. SRTM Perspective View with Landsat Overlay: Santa Paula, and Santa Clara River Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Rectangular fields of the agriculturally rich Santa Clara River Valley are visible in this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image. The Santa Clara River, which lends its name to this valley, flows from headwaters near Acton, California, 160 km (100 miles) to the Pacific Ocean, and is one of only two natural river systems remaining in southern California. In the foreground of this image, the largely dry riverbed can be seen as a bright feature as it winds its way along the base of South Mountain. The bright region at the right end of this portion of the valley is the city of Santa Paula, California. Founded in 1902, this small, picturesque town at the geographic center of Ventura County is referred to as the 'Citrus Capital of the World.' The city is surrounded by orange, lemon, and avocado groves and is a major distribution point for citrus fruits in the United States. The bright, linear feature in the center of the valley is State Highway 126, the valley's 'main drag.' For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory

  2. SRTM Perspective View with Landsat Overlay: Santa Paula, and Santa Clara River Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Rectangular fields of the agriculturally rich Santa Clara River Valley are visible in this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image. The Santa Clara River, which lends its name to this valley, flows from headwaters near Acton, California, 160 km (100 miles) to the Pacific Ocean, and is one of only two natural river systems remaining in southern California. In the foreground of this image, the largely dry riverbed can be seen as a bright feature as it winds its way along the base of South Mountain. The bright region at the right end of this portion of the valley is the city of Santa Paula, California. Founded in 1902, this small, picturesque town at the geographic center of Ventura County is referred to as the 'Citrus Capital of the World.' The city is surrounded by orange, lemon, and avocado groves and is a major distribution point for citrus fruits in the United States. The bright, linear feature in the center of the valley is State Highway 126, the valley's 'main drag.' For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory

  3. Projecting cumulative benefits of multiple river restoration projects: an example from the Sacramento-San Joaquin River system in California

    USGS Publications Warehouse

    Kondolf, G. Mathias; Angermeier, Paul L.; Cummins, Kenneth; Dunne, Thomas; Healey, Michael; Kimmerer, Wim; Moyle, Peter B.; Murphy, Dennis; Patten, Duncan; Railsback, Steve F.; Reed, Denise J.; Spies, Robert; Twiss, Robert

    2008-01-01

    Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.

  4. Projecting Cumulative Benefits of Multiple River Restoration Projects: An Example from the Sacramento-San Joaquin River System in California

    NASA Astrophysics Data System (ADS)

    Kondolf, G. Mathias; Angermeier, Paul L.; Cummins, Kenneth; Dunne, Thomas; Healey, Michael; Kimmerer, Wim; Moyle, Peter B.; Murphy, Dennis; Patten, Duncan; Railsback, Steve; Reed, Denise J.; Spies, Robert; Twiss, Robert

    2008-12-01

    Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.

  5. Projecting cumulative benefits of multiple river restoration projects: an example from the Sacramento-San Joaquin River system in California.

    PubMed

    Kondolf, G Mathias; Angermeier, Paul L; Cummins, Kenneth; Dunne, Thomas; Healey, Michael; Kimmerer, Wim; Moyle, Peter B; Murphy, Dennis; Patten, Duncan; Railsback, Steve; Reed, Denise J; Spies, Robert; Twiss, Robert

    2008-12-01

    Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to "restore" pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.

  6. Emplacement mode of a composite post-collisonal pluton in the Klamath Mountains (California, USA)

    NASA Astrophysics Data System (ADS)

    Machek, M.; Zavada, P.; Spicak, A.

    2011-12-01

    The Klamath Mountains represent an accreationary complex on the northwest California and southwestern Oregon. It consists of four arcuate belts representing terranes of former island archipelago environments that span in age from Paleozoic to Jurrasic and are divided by eastward dipping thrust faults (Snoke and Barnes, 2006). During and after the accretion, the entire thrust sheet was penetrated by numerous plutonic bodies. The Castle Crags pluton was selected for detailed internal fabrics to understand the emplacement mode of post-collisional plutons. Castle Crags pluton that intruded the Eastern Klamath terrane and in particular ultramafic Trinity Complex subterrane is an elliptical NW-SE elongated pluton with 12 km and 7 km in its long and short dimension, respectively. It is a well exposed composite plutonic body with about 1 km vertical crossfall. The pluton is affected by prominent NW-SE trending vertical joints and another less well developed vertical set perpendicular to the first one. The pluton is zoned and consists of three following igneous varieties: 1) marginal fine-grained granodioritic facies with abundant subsolidus shear zones, 2) coarse-grained granodiorite and 3) central, circular in plan-form and about 2 km in diameter, domain of trondhjemite. Numerous miarolitic cavities with macroscopically measurable trends mark the transition between the central trondhjemite and surrounding granodiorite (Vennum, 1980 a,b). Macroscopic foliations, jointing and sampling on the Castle Crags was carried out along the main crest of the pluton and numerous sideway crests and valleys gaining about 70 samples. The internal magmatic foliations and magnetic foliations show a concentric pattern of margin-parallel vertical foliations. The magnetic lineations reveal plunge trends parallel to the margins of the pluton and continuously increasing plunge angles from the margin to the core of the pluton. The zonality and fabric pattern of the pluton can reflect either

  7. Large-scale dam removal on the Elwha River, Washington, USA: Erosion of reservoir sediment

    NASA Astrophysics Data System (ADS)

    Randle, Timothy J.; Bountry, Jennifer A.; Ritchie, Andrew; Wille, Kurt

    2015-10-01

    Base-level lowering of reservoirs impounding upstream sediment supply triggers a series of channel evolution steps such as degradation, lateral erosion, and redeposition that can dramatically alter the reservoir landscape and decouple the relationship between stream power and sediment supply. Many case studies exist for small dam removals with a few years of sediment storage or dam breaches triggering instantaneous large sediment releases. However, quantitative information for a controlled drawdown initiating erosion of a large sediment deposit is rare. We investigate reservoir sediment response to the phased and concurrent drawdown of two reservoirs on the Elwha River, Washington, USA, during the largest dam removal in history by measuring changes in reservoir topography and channel morphology as a function of base-level lowering, river discharge, and cohesion. After two years, the Elwha Dam was completely removed, and three-quarters of Glines Canyon Dam were removed. Reservoir drawdown increments of 3 to 5 m were sufficient to initiate channel degradation and delta progradation across the width of the receding reservoir, redistributing decades of accumulated delta sediment throughout the reservoir while the lake still remained. The first year of dam removal resulted in up to 5 m of incision through the Lake Aldwell delta down to the predam surface and in just over 20 m of incision through the Lake Mills delta. In contrast, delta progradation resulted in a few meters of deposition in Lake Aldwell and 2 to 10 m in Lake Mills on top of prodelta and lakebed deposits. In coarse, noncohesive sediment, a braided channel developed and widened up to tenfold across the entire width of the reservoir. The most extensive lateral erosion occurred in noncohesive deposits during multiweek hold periods coinciding with flows greater than the mean annual flow, but less than a 2-year flood peak. Channel widening in more cohesive fine sediments of the prodelta and lakebed was less

  8. A Radiocarbon Chronology of Hunter-Gatherer Occupation from Bodega Bay, California, USA

    SciTech Connect

    Kennedy, M A; Russell, A D; Guilderson, T P

    2005-04-27

    The evolution of hunter-gatherer maritime adaptations in western North America has been a prominent topic of discussion among archaeologists in recent years (e.g. Arnold 1992; Erlandson and Colten 1991; Erlandson and Glassow 1997; Lightfoot 1993). Although vast coastal regions of the northeastern Pacific (for example, southern California) have been investigated in detail, our understanding of hunter-gatherer developments along the coast of northern California is limited. Previous research indicates that humans have exploited marine mammals, fish and shellfish along the northern California shoreline since the early Holocene (Schwaderer 1992). By the end of the late Holocene, some groups remained year-round on the coast subsisting primarily on marine resources (e.g. Gould 1975; Hildebrandt and Levulett 2002). However, a paucity of well-dated cultural deposits has hindered our understanding of these developments, particularly during the early and middle Holocene. The lack of a long and reliable chronological sequence has restricted our interpretations of behavioral change, including the adaptive strategies (such as foraging, mobility and settlement) used by human foragers to colonize and inhabit the coastal areas of this region. These shortcomings have also hindered comparative interpretations with other coastal and inland regions in western North America. Here we present a Holocene radiocarbon chronology of hunter-gatherer occupation based on contemporaneous samples of charcoal and Mytilus californianus (California sea mussel) shell recovered from seven archaeological sites near Bodega Bay, California. A series of 127 {sup 14}C ages reveal a chronological sequence that spans from ca. 8940-110 cal BP (1{sigma}) (7890-160 {sup 14}C yr BP = charcoal; 8934-101 {sup 14}C yr BP = shell). As part of this sequence, we report new {sup 14}C dates from the stratified cave and open-air midden deposits at Duncan's Landing (CA-SON-348/H). In addition, we present {sup 14}C ages

  9. Toxicity of storm-water runoff after dormant spray application in a french prune orchard, Glenn County, California, USA: temporal patterns and the effect of ground covers.

    PubMed

    Werner, Ingeborg; Zalom, Frank G; Oliver, Michael N; Deanovic, Linda A; Kimball, Tom S; Henderson, John D; Wilson, Barry W; Krueger, William; Wallender, Wes W

    2004-11-01

    Organophosphorous (OP) insecticides, especially diazinon, have been detected routinely in surface waters of the Sacramento and San Joaquin River watersheds, coincident with rainfall events following their application to dormant orchards during the winter months. Preventive best management practices (BMP) aim at reducing off-site movement of pesticides into surface waters. Two proposed BMPs are: The use of more hydrophobic pyrethroid insecticides believed to adsorb strongly to organic matter and soil and the use of various types of ground cover vegetation to increase the soil's capacity for water infiltration. To measure the effectiveness of these BMPs, storm water runoff was collected in a California prune orchard (Glenn County, CA, USA) during several rainstorms in the winter of 2001, after the organophosphate diazinon and the pyrethroid esfenvalerate were applied to different orchard sections. We tested and compared acute toxicity of orchard runoff from diazinon- and esfenvalerate-sprayed sections to two species of fish (Pimephales promelas, Onchorhynchus mykiss) and three aquatic invertebrates (Ceriodaphnia dubia, Simocephalus vetelus, Chironomus riparius), and determined the mitigating effect of three ground cover crops on toxicity and insecticide loading in diazinon-sprayed orchard rows. Runoff from the esfenvalerate-sprayed orchard section was less toxic to waterflea than runoff from the diazinon-sprayed section. However, runoff from the orchard section sprayed with esfenvalerate was highly toxic to fish larvae. Samples collected from both sections one month later were not toxic to fish, but remained highly toxic to invertebrates. The ground cover crops reduced total pesticide loading in runoff by approximately 50%. No differences were found between the types of vegetation used as ground covers.

  10. Determination of the components of stormflow using water chemistry and environmental isotopes, Mattole River basin, California

    USGS Publications Warehouse

    Kennedy, V.C.; Kendall, C.; Zellweger, G.W.; Wyerman, T.A.; Avanzino, R.J.

    1986-01-01

    The chemical and isotopic composition of rainfall and stream water was monitored during a storm in the Mattole River basin of northwestern California. About 250 mm of rain fell during 6 days (???80% within a 42 h period) in late January, 1972, following 24 days of little or no precipitation. River discharge near Petrolia increased from 22 m3 s-1 to a maximum of 1300 m3 s-1 while chloride and silica concentrations decreased only from 3.2 to 2.1 and 11.5 to 8.6 mgl-1, respectively. Meanwhile, the isotopic composition of the river changed from ??D = - 42???, ??180 = - 6.8??? and 40 tritium units (T.U.) to extreme values at highest flow of ??D = - 35???, ??180 = - 5.9??? and 25 T.U. in response to volume-weighted rainfall averaging ??D = - 19.5???, ??180 = - 3.1??? and 18 T.U