Sample records for river california usa

  1. Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USA.

    PubMed

    Anderson, Brian S; Hunt, John W; Phillips, Bryn M; Nicely, Patricia A; Gilbert, Kristine D; de Vlaming, Victor; Connor, Valerie; Richard, Nancy; Tjeerdema, Ronald S

    2003-10-01

    The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California (USA). Large areas of this watershed are cultivated year-round in row crops, and previous laboratory studies have demonstrated that acute toxicity of agricultural drain water to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. We investigated chemical contamination and toxicity in waters and sediments in the river downstream of an agricultural drain water input. Ecological impacts of drain water were investigated by using bioassessments of macroinvertebrate community structure. Toxicity identification evaluations were used to characterize chemicals responsible for toxicity. Salinas River water downstream of the agricultural drain was acutely toxic to the cladoceran Ceriodaphnia dubia, and toxicity to C. dubia was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. Toxicity identification evaluations (TIEs) conducted on sediment pore water suggested that toxicity to amphipods was due in part to OP pesticides; concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d mean lethal concentration (LC50) for H. azteca. Potentiation of toxicity with addition of the metabolic inhibitor piperonyl butoxide suggested that sediment toxicity also was due to other non-metabolically activated compounds. Macroinvertebrate community structure was highly impacted downstream of the agricultural drain input, and a number of macroinvertebrate community metrics were negatively correlated with combined TUs of chlorpyrifos and diazinon, as well as turbidity associated with the drain water. Some macroinvertebrate metrics were also correlated with bank vegetation cover. This study suggests that pesticide pollution is the

  2. Influences of the unsaturated, saturated, and riparian zones on the transport of nitrate near the Merced River, California, USA

    USGS Publications Warehouse

    Domagalski, Joseph L.; Phillips, S.P.; Bayless, E.R.; Zamora, C.; Kendall, C.; Wildman, R.A.; Hering, J.G.

    2008-01-01

    Transport and transformation of nitrate was evaluated along a 1-km groundwater transect from an almond orchard to the Merced River, California, USA, within an irrigated agricultural setting. As indicated by measurements of pore-water nitrate and modeling using the root zone water quality model, about 63% of the applied nitrogen was transported through a 6.5-m unsaturated zone. Transport times from recharge locations to the edge of a riparian zone ranged from approximately 6 months to greater than 100 years. This allowed for partial denitrification in horizons having mildly reducing conditions, and essentially no denitrification in horizons with oxidizing conditions. Transport times across a 50-100-m-wide riparian zone of less than a year to over 6 years and more strongly reducing conditions resulted in greater rates of denitrification. Isotopic measurements and concentrations of excess N2 in water were indicative of denitrification with the highest rates below the Merced River. Discharge of water and nitrate into the river was dependent on gradients driven by irrigation or river stage. The results suggest that the assimilative capacity for nitrate of the groundwater system, and particularly the riverbed, is limiting the nitrate load to the Merced River in the study area. ?? Springer-Verlag 2007.

  3. Evaluation of sources and loading of pesticides to the Sacramento River, California, USA, during a storm event of winter 2005.

    PubMed

    Guo, Lei; Kelley, Kevin; Goh, Kean S

    2007-11-01

    A monitoring study was conducted in the tributaries and main stem of the Sacramento River, California, USA, during the storm event of January 26 to February 1, 2005. The purpose of the study was to evaluate the sources and loading of pesticides in the Sacramento River watershed during the winter storm season. A total of 26 pesticides or pesticide degradates were analyzed, among which five pesticides and one triazine degradate were detected. Diuron, diazinon, and simazine were found in all streams with a total load of 110.4, 15.4, and 15.7 kg, respectively, in the Sacramento River over the single storm event. Bromacil, hexazinone, and the triazine degradate diaminochlorotriazine were only detected in two smaller drainage canals with a load ranged from 0.25 to 7 kg. The major source of pesticides detected in the main stem Sacramento River was from the most upstream subbasin, the Sacramento River above Colusa, where detected pesticides either exceeded or were close to those at the main outlet of the Sacramento River at Alamar Marina. The higher precipitation in this subbasin was partly responsible for the greater contribution of pesticides observed. Diazinon was the only pesticide with concentrations above water quality criteria, indicating that additional mitigation measures may be needed to reduce its movement to surface water.

  4. Evaluation of a floating fish guidance structure at a hydrodynamically complex river junction in the Sacramento-San Joaquin River Delta, California, USA

    USGS Publications Warehouse

    Romine, Jason G.; Perry, Russell W.; Pope, Adam C.; Stumpner, Paul; Liedtke, Theresa L.; Kumagai, Kevin K; Reeves, Ryan L

    2016-01-01

    Survival of out-migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento–San Joaquin River delta, California, USA, varies by migration route. Survival of salmonids that enter the interior and southern Delta can be as low as half that of salmonids that remain in the main-stem Sacramento River. Reducing entrainment into the higher-mortality routes, such as Georgiana Slough, should increase overall survival. In spring 2014, a floating fish-guidance structure (FFGS) designed to reduce entrainment into Georgiana Slough was deployed just upstream of the Georgiana Slough divergence. We used acoustic telemetry to evaluate the effect of the FFGS on Chinook entrainment to Georgiana Slough. At intermediate discharge (200–400 m3 s–1), entrainment into Georgiana Slough was five percentage points lower when the FFGS was in the on state (19.1% on; 23.9% off). At higher discharge (>400 m3 s–1), entrainment was higher when the FFGS was in the on state (19.3% on; 9.7% off), and at lower discharge (0–200 m3 s–1) entrainment was lower when the FFGS was in the on state (43.7% on; 47.3% off). We found that discharge, cross-stream fish position, time of day, and proportion of flow remaining in the Sacramento River contributed to the probability of being entrained to Georgiana Slough.

  5. Behaviour of wintering Tundra Swans Cygnus columbianus columbianus at the Eel River delta and Humboldt Bay, California, USA

    USGS Publications Warehouse

    Black, Jeffrey M.; Gress, Carol; Byers, Jacob W.; Jennings, Emily; Ely, Craig R.

    2010-01-01

    Tundra Swan Cygnus columbianus columbinanus phenology and behaviour at the Eel River delta and southern Humboldt Bay in northern California, USA, is described. Counts made each January from 1963 onwards peaked at 1,502 swans in 1988. Monthly counts recorded during the 2006/07 and 2008/09 winters peaked in February, at 1,033 and 772 swans respectively. Swans roosted on ephemeral ponds at the Humboldt Bay National Wildlife Refuge, on ephemeral ponds within grassland pastures in the vicinity of the Refuge, and perhaps also used the Eel River as a roost. Flights between Refuge roosts and the pastures and ponds occurred in the two hours after sunrise and before dark. In winters 2008/09 and 2009/10, the percentage of cygnets in the flocks was 10.6% and 21.4% respectively, and increased to =31% cygnets each year after most swans had departed from the area in March. Average brood size in 2009/10 was 2.1 cygnets. Daily activities consisted of foraging (44.9% of activities recorded), comfort behaviour (22.1%), locomotion (16.2%) and vigilance (15.5%). Eight neck-collared swans identified in the wintering flock were marked at four locations in different parts of Alaska, up to 1,300 km apart.

  6. Can genomics clarify the origins of Boreioglycaspis melaleucae in California, USA?

    USDA-ARS?s Scientific Manuscript database

    The Australian psyllid Boreioglycaspis melaleucae is a biological control agent of Melaleuca quinquenervia in Florida (USA) but was observed attacking M. quinquenervia trees in southern California (USA). Genotyping revealed the California population matched three of eight Australian haplotypes and ...

  7. Summer water use by mixed-age and young forest stands, Mattole River, northern California, U.S.A

    Treesearch

    Andrew Stubblefield; Max Kaufman; Greg Blomstrom; John Rogers

    2012-01-01

    Resource managers have noted a decline in summer flow levels in the last decade in the Mattole River watershed, Humboldt County, California. Reduced river flows pose a threat to endangered coho and chinook salmon in the watershed, as stream heating is inversely proportional to discharge. While the cause of the reduced flow is unclear, several factors have been cited:...

  8. The western pond turtle (Clemmys marmorata) in the Mojave River, California, USA: Highly adapted survivor or tenuous relict?

    USGS Publications Warehouse

    Lovich, J.; Meyer, K.

    2002-01-01

    Aspects of the ecology of populations of the western pond turtle Clemmys marmorata were investigated in the Mojave River of the central Mojave Desert, California, U.S.A. One population occupied man-made ponds and the other occurred in natural ponds in the flood plain of the Mojave River. Both habitats are severely degraded as a result of ground water depletion from human activities along the river and one is infested with the exotic shrub saltcedar Tamarix ramosissima. Mean female carapace length (CL) was significantly greater (14.4 cm) than that of males (13.7 cm). Live juveniles were not detected during the period of study. Shelled eggs were visible in X-radiographs from 26 May to 14 July. Mean clutch size was 4.46 and ranged from 3 to 6 eggs. Clutch size did not vary between 1998 and 1999 but was significantly correlated with CL for both years combined, increasing at the rate of 0.548 eggs/cm CL. Gravid female CL ranged from 13.3-16.0 cm. Some females nested in both years. Mean X-ray egg width (21.8 mm) was not significantly correlated with CL or clutch size. X-ray egg width differed more among clutches than within, whether including CL as a co-variate or not. Nesting migrations occurred from 6 June to 8 July with minimum round trip distances ranging from 17.5-585 m with a mean of 195 m. Mean estimated time of departure as measured at the drift fence was 18:13. Most females returned to the ponds in the early morning. Nesting migrations required females to be out of the water for estimated periods of 0.83 to 86 h. The destination of nesting females was typically fluvial sand bars in the channel of the dry riverbed. Overall, the ecology of C. marmorata in the Mojave River is very similar to that reported for populations in less severe habitats along the west coast of the United States. Notable exceptions include long nesting migrations to sandbars in the dry river channel, a possible result of human modifications to the environment, and an apparent lack of

  9. Reach-scale channel sensitivity to multiple human activities and natural events: Lower Santa Clara River, California, USA

    NASA Astrophysics Data System (ADS)

    Downs, Peter W.; Dusterhoff, Scott R.; Sears, William A.

    2013-05-01

    Understanding the cumulative impact of natural and human influences on the sensitivity of channel morphodynamics, a relative measure between the drivers for change and the magnitude of channel response, requires an approach that accommodates spatial and temporal variability in the suite of primary stressors. Multiple historical data sources were assembled to provide a reach-scale analysis of the lower Santa Clara River (LSCR) in Ventura County, California, USA. Sediment supply is naturally high due to tectonic activity, earthquake-generated landslides, wildfires, and high magnitude flow events during El Niño years. Somewhat typically for the region, the catchment has been subject to four reasonably distinct land use and resource management combinations since European-American settlement. When combined with analysis of channel morphological response (quantifiable since ca. 1930), reach-scale and temporal differences in channel sensitivity become apparent. Downstream reaches have incised on average 2.4 m and become narrower by almost 50% with changes focused in a period of highly sensitive response after about 1950 followed by forced insensitivity caused by structural flood embankments and a significant grade control structure. In contrast, the middle reaches have been responsive but are morphologically resilient, and the upstream reaches show a mildly sensitive aggradational trend. Superimposing the natural and human drivers for change reveals that large scale stressors (related to ranching and irrigation) have been replaced over time by a suite of stressors operating at multiple spatial scales. Lower reaches have been sensitive primarily to 'local' scale impacts (urban growth, flood control, and aggregate mining) whereas, upstream, catchment-scale influences still prevail (including flow regulation and climate-driven sediment supply factors). These factors illustrate the complexity inherent to cumulative impact assessment in fluvial systems, provide evidence for a

  10. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    USGS Publications Warehouse

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  11. Emmonsia helica Infection in HIV-Infected Man, California, USA.

    PubMed

    Rofael, Martin; Schwartz, Ilan S; Sigler, Lynne; Kong, Li K; Nelson, Nicholas

    2018-01-01

    Emmonsia-like fungi have rarely been reported from North America. We report a fatal case of E. helica infection in a man with advanced HIV infection from California, USA, who had progressive respiratory failure and a brain abscess.

  12. "Streamflow and sediment response to logging, California, USA"

    Treesearch

    Robert R. Ziemer; Jack Lewis; Elizabeth T. Keppeler

    1998-01-01

    Streamflow, suspended sediment, and bedload have been monitored since 1962 in the 473-ha North Fork and the 424-ha South Fork of Caspar Creek. These watersheds are about 7 km from the Pacific Ocean, on the Jackson Demonstration State Forest, 10 km south of Fort Bragg, California, USA (Ziemer et al. 1996)

  13. Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation.

    PubMed

    Wakeham, Stuart G; Canuel, Elizabeth A

    2016-06-01

    Biogenic perylene and higher plant pentacyclic triterpenoid-derived alkylated and partially aromatized tetra- and pentacyclic derivatives of chrysene (3,4,7-trimethyl- and 3,3,7-trimethyl-1,2,3,4-tetrahydrochrysene, THC) and picene (1,2,9-trimethyl- and 2,2,9-trimethyl-1,2,3,4-tetrahydropicene, THP) were two- to four-fold more abundant than pyrogenic PAH in two sediment cores from the San Joaquin River in Northern California (USA). In a core from Venice Cut (VC), located in the river, PAH concentrations varied little downcore and the whole-core PAH concentration (biogenics + pyrogenics) was 250.6 ± 73.7 ng g(-1) dw; biogenic PAH constituted 67 ± 4 % of total PAH. THC were 26 ± 9 % of total biogenic PAH, THP were 36 ± 7 %, and perylene was 38 ± 7 %. PAH distributions in a core from Franks Tract (FT), a former wetland that was converted to an agricultural tract in the late 1800s and flooded in 1938, were more variable. Surface sediments were dominated by pyrogenic PAH so that biogenic PAH were only ~30 % of total PAH. Deeper in the core, biogenic PAH constituted 60-93 % of total PAH; THC, THP and perylene were 31 ± 28 %, 24 ± 32 %, and 45 ± 36 % of biogenic PAH. At 100-103 cm depth, THP constituted 80 % of biogenic PAH and at 120-123 cm perylene was 95 % of biogenic PAH. Current concepts related to precursors and transformation processes responsible for the diagenetic generation of perylene and triterpenoid-derived PAH are discussed. Distributions of biogenic PAH in VC and FT sediments suggest that they may not form diagenetically within these sediments but rather might be delivered pre-formed from the river's watershed.

  14. Dispersal of river sediment in the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; Farnsworth, K.L.

    2009-01-01

    The rivers of Southern California deliver episodic pulses of water, sediment, nutrients, and pollutants to the region's coastal waters. Although river-sediment dispersal is observed in positively buoyant (hypopycnal) turbid plumes extending tens of kilometers from river mouths, very little of the river sediment is found in these plumes. Rather, river sediment settles quickly from hypopycnal plumes to the seabed, where transport is controlled by bottom-boundary layer processes, presumably including fluid-mud (hyperpycnal) gravity currents. Here we investigate the geographical patterns of river-sediment dispersal processes by examining suspended-sediment concentrations and loads and the continental shelf morphology offshore river mouths. Throughout Southern California, river sediment is discharged at concentrations adequately high to induce enhanced sediment settling, including negative buoyancy. The rivers draining the Western Transverse Range produce suspended-sediment concentrations that are orders of magnitude greater than those in the urbanized region and Peninsular Range to the south, largely due to differences in sediment yield. The majority of sediment discharge from the Santa Clara River and Calleguas Creek occurs above the theoretical negative buoyancy concentration (>40 g/l). These rivers also produce event sediment loading as great as the Eel River, where fluid-mud gravity currents are observed. The continental shelf of Southern California has variable morphology, which influences the ability to transport via gravity currents. Over half of the rivers examined are adjacent to shelf slopes greater than 0.01, which are adequately steep to sustain auto-suspending gravity currents across the shelf, and have little (<10 m) Holocene sediment accumulation. Shelf settings of the Ventura, Santa Clara, and Tijuana Rivers are very broad and low sloped (less than 0.004), which suggests that fluid-mud gravity currents could transport across these shelves, albeit slowly

  15. "Hydrologic effects of forest harvest in northwestern California, USA"

    Treesearch

    Robert Ziemer

    2000-01-01

    Streamflow, suspended sediment, and bedload have been monitored since 1962 in the 473-ha North Fork and 424-ha South Fork of Caspar Creek. These watersheds are about 7 km from the Pacific Ocean, on the Jackson Demonstation State Forest, 10 km south of Fort Bragg, California, USA

  16. Flooding on California's Russian River: Role of atmospheric rivers

    USGS Publications Warehouse

    Ralph, F.M.; Neiman, P.J.; Wick, G.A.; Gutman, S.I.; Dettinger, M.D.; Cayan, D.R.; White, A.B.

    2006-01-01

    Experimental observations collected during meteorological field studies conducted by the National Oceanic and Atmospheric Administration near the Russian River of coastal northern California are combined with SSM/I satellite observations offshore to examine the role of landfalling atmospheric rivers in the creation of flooding. While recent studies have documented the characteristics and importance of narrow regions of strong meridional water vapor transport over the eastern Pacific Ocean (recently referred to as atmospheric rivers), this study describes their impact when they strike the U.S. West Coast. A detailed case study is presented, along with an assessment of all 7 floods on the Russian River since the experimental data were first available in October 1997. In all 7 floods, atmospheric river conditions were present and caused heavy rainfall through orographic precipitation. Not only do atmospheric rivers play a crucial role in the global water budget, they can also lead to heavy coastal rainfall and flooding, and thus represent a key phenomenon linkingweather and climate. Copyright 2006 by the American Geophysical Union.

  17. Dispersal forcing of a southern California river plumes, based on field and remote sensing observations

    USGS Publications Warehouse

    Warrick, Jonathan A.; Mertes, Leal A.K.; Washburn, Libe; Siegel, David A.

    2004-01-01

    River plumes are important pathways of terrestrial materials entering the sea. In southern California, rivers are known to be the dominant source of littoral, shelf and basin sediment and coastal pollution, although a basic understanding of the dynamics of these river inputs does not exist. Here we evaluate forcing parameters of a southern California river plume using ship-based hydrographic surveys and satellite remote sensing measurements to provide the first insights of river dispersal dynamics in southern California. Our results suggest that plumes of the Santa Clara River are strongly influenced by river inertia, producing jet-like structures ~10 km offshore during annual recurrence (~two-year) flood events and ~30 km during exceptional (~10-year recurrence) floods. Upwelling-favorable winds may be strong following stormwater events and can alter dispersal pathways of thse plumes. Due to similar runoff relationships and other reported satellite observations, we hypothesize that interia-dominated dispersal may be an important characteristic of the small, mountainous rivers throughout southern California.

  18. Tsunami-generated sediment wave channels at Lake Tahoe, California-Nevada, USA

    USGS Publications Warehouse

    Moore, James G.; Schweickert, Richard A.; Kitts, Christopher A.

    2014-01-01

    A gigantic ∼12 km3 landslide detached from the west wall of Lake Tahoe (California-Nevada, USA), and slid 15 km east across the lake. The splash, or tsunami, from this landslide eroded Tioga-age moraines dated as 21 ka. Lake-bottom short piston cores recovered sediment as old as 12 ka that did not reach landslide deposits, thereby constraining the landslide age as 21–12 ka.Movement of the landslide splashed copious water onto the countryside and lowered the lake level ∼10 m. The sheets of water that washed back into the lake dumped their sediment load at the lowered shoreline, producing deltas that merged into delta terraces. During rapid growth, these unstable delta terraces collapsed, disaggregated, and fed turbidity currents that generated 15 subaqueous sediment wave channel systems that ring the lake and descend to the lake floor at 500 m depth. Sheets of water commonly more than 2 km wide at the shoreline fed these systems. Channels of the systems contain sediment waves (giant ripple marks) with maximum wavelengths of 400 m. The lower depositional aprons of the system are surfaced by sediment waves with maximum wavelengths of 300 m.A remarkably similar, though smaller, contemporary sediment wave channel system operates at the mouth of the Squamish River in British Columbia. The system is generated by turbidity currents that are fed by repeated growth and collapse of the active river delta. The Tahoe splash-induced backwash was briefly equivalent to more than 15 Squamish Rivers in full flood and would have decimated life in low-lying areas of the Tahoe region.

  19. Groundwater quality in the Colorado River basins, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  20. Characteristics of Atmospheric River Families in California's Russian River Basin

    NASA Astrophysics Data System (ADS)

    Fish, M. A.; Wilson, A. M.; Ralph, F. M.

    2017-12-01

    Previous studies have shown the importance of antecedent conditions and storm duration on atmospheric river (AR) impacts in California's Russian River basin. This study concludes that successive ARs, or families of ARs, produce an enhanced streamflow response compared to individual storms. This amplifies the impacts of these storms, which contribute to 50% of the annual precipitation in the Russian River basin. Using the Modern Era Retrospective - analysis for Research and Applications 2 dataset and 228 AR events from November 2004 - April 2017 affecting Bodega Bay, CA (BBY), this study identified favorable characteristics for families vs single ARs and their associated impacts. It was found that 111 AR events ( 50%) occurred within 5 days of one another with 44 events ( 40%) occurring within 24 hours. Using the winter of 2017, which had a multitude of successive ARs in Northern California, this study evaluates the applicability of family composites using case study comparisons. The results of this study show large divergences of family composites from the overall AR pattern, depending on the time interval between events. A composite of all AR events show Bodega Bay generally south of the jet exit region, SW-NE tilt of 500mb heights and a more northerly subtropical high. ARs occurring on the same day have faster southerly winds, a weaker low off the coast and a southerly moisture plume extending along the CA coast. Comparatively ARs that occur the following day, feature a more zonal pattern with faster winds north of BBY, a deeper low off the coast and a moisture plume southwest of the Russian River watershed.

  1. Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA

    USGS Publications Warehouse

    Domagalski, Joseph L.; Weston, Donald P.; Zhang, Minghua; Hladik, Michelle L.

    2010-01-01

    Pyrethroid insecticide use in California, USA, is growing, and there is a need to understand the fate of these compounds in the environment. Concentrations and toxicity were assessed in streambed sediment of the San Joaquin Valley of California, one of the most productive agricultural regions of the United States. Concentrations were also measured in the suspended sediment associated with irrigation or storm‐water runoff, and mass loads during storms were calculated. Western valley streambed sediments were frequently toxic to the amphipod, Hyalella azteca, with most of the toxicity attributable to bifenthrin and cyhalothrin. Up to 100% mortality was observed in some locations with concentrations of some pyrethroids up to 20 ng/g. The western San Joaquin Valley streams are mostly small watersheds with clay soils, and sediment‐laden irrigation runoff transports pyrethroid insecticides throughout the growing season. In contrast, eastern tributaries and the San Joaquin River had low bed sediment concentrations (<1 ng/g) and little or no toxicity because of the preponderance of sandy soils and sediments. Bifenthrin, cyhalothrin, and permethrin were the most frequently detected pyrethroids in irrigation and storm water runoff. Esfenvalerate, fenpropathrin, and resmethrin were also detected. All sampled streams contributed to the insecticide load of the San Joaquin River during storms, but some compounds detected in the smaller creeks were not detected in the San Joaquin River. The two smallest streams, Ingram and Hospital Creeks, which had high sediment toxicity during the irrigation season, accounted for less than 5% of the total discharge of the San Joaquin River during storm conditions, and as a result their contribution to the pyrethroid mass load of the larger river was minimal. 

  2. Stonefly (Plecoptera) Feeding Modes: Variation Along a California River Continuum

    Treesearch

    Richard L. Bottorff; Allen W. Knight

    1989-01-01

    The distribution of Plecoptera along a California river was used to test several predictions of the River Continuum Concept about how functional feeding groups should change along a stream's length. Stoneflies were collected from stream orders 1-6 (123 km) of the Cosumnes River continuum in the central Sierra Nevada. The 69 stonefly species collected were...

  3. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    USGS Publications Warehouse

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  4. Tobacco control in California compared with the rest of the USA: trends in adult per capita cigarette consumption.

    PubMed

    Pierce, John P; Shi, Yuyan; Hendrickson, Erik M; White, Martha M; Noble, Madison L; Kealey, Sheila; Strong, David R; Trinidad, Dennis R; Hartman, Anne M; Messer, Karen

    2017-11-27

    In the 1990s, California led the USA in state-level tobacco control strategies. However, after 2000, California lost ground on cigarette taxes, although it maintained higher levels of smoke-free homes among smokers. Trends in per capita cigarette consumption were assessed through taxed sales data and from self-report in repeated national cross-sectional surveys. Linear regressions identified changes in trends after year 2000 separately for California and the rest of the USA. Using data from each state, a linear regression tested the association between different tobacco control strategies and per capita consumption. Change in self-reported per capita consumption was partitioned into contributions associated with initiation, quitting and reduction in cigarette consumption level. Both taxed cigarette sales and per capita consumption declined rapidly in the USA from 1985 to 2015. Declines were particularly fast in California before 2000 but slowed thereafter. In 2014, per capita consumption in California was 29.4 packs/adult/year, but 90% higher in the rest of the USA. Modelling state-level data, every $1 increase in cigarette taxes reduced consumption by 4.8 (95% CI 2.9 to 6.8) packs/adult/year. Every 5% increase in the proportion of smokers with smoke-free homes reduced consumption by 8.0 (95% CI 7.0 to 8.9) packs/adult/year. The different patterns in California and the rest of the USA are at least partially explained by these two variables. The slow down in per capita consumption in California can be attributed to changes in initiation, quitting and especially smokers reducing their consumption level. Tobacco control strategies need to be continually updated to maintain momentum towards a smoke-free society. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Genotypes and phylogeographical relationships of infectious hematopoietic necrosis virus in California, USA

    USGS Publications Warehouse

    Kelley, G.O.; Bendorf, C.M.; Yun, S.C.; Kurath, G.; Hedrick, R.P.

    2007-01-01

    Infectious hematopoietic necrosis virus (IHNV) contains 3 major genogroups in North America with discreet geographic ranges designated as upper (U), middle (M), and lower (L). A comprehensive genotyping of 237 IHNV isolates from hatchery and wild salmonids in California revealed 25 different sequence types (a to y) all in the L genogroup; specifically, the genogroup contained 14 sequence types that were unique to individual isolates as well as 11 sequence types representing 2 or more identical isolates. The most evident trend was the phylogenetic and geographical division of the L genogroup into 2 distinct subgroups designated as LI and LII. Isolates within Subgroup LI were primarily found within waterways linked to southern Oregon and northern California coastal rivers. Isolates in Subgroup LII were concentrated within inland valley watersheds that included the Sacramento River, San Joaquin River, and their tributaries. The temporal and spatial patterns of virus occurrence suggested that infections among adult Chinook salmon in the hatchery or that spawn in the river are a major source of virus potentially infecting other migrating or resident salmonids in California. Serum neutralization results of the California isolates of IHNV corroborated a temporal trend of sequence divergence; specifically, 2 progressive shifts in which more recent virus isolates represent new serotypes. A comparison of the estimates of divergence rates for Subgroup LI (1 ?? ICT5 mutations per nucleotide site per year) indicated stasis similar to that observed in the U genogroup, while the Subgroup LII rate (1 ?? 10 3 mutations per nucleotide site per year) suggested a more active evolution similar to that of the M genogroup. ?? Inter-Research 2007.

  6. UHF RiverSonde observations of water surface velocity at Threemile Slough, California

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Ruhl, C.A.

    2005-01-01

    A UHF RiverSonde system, operating near 350 MHz, has been in operation at Threemile Slough in central California, USA since September 2004. The water in the slough is dominated by tidal effects, with flow reversals four times a day and a peak velocity of about 0.8 m/s in each direction. Water level and water velocity are continually measured by the U. S. Geological Survey at the experiment site. The velocity is measured every 15 minutes by an ultrasonic velocity meter (UVM) which determines the water velocity from two-way acoustic propagation time-difference measurements made across the channel. The RiverSonde also measures surface velocity every 15 minutes using radar resonant backscatter techniques. Velocity and water level data are retrieved through a radio data link and a wideband internet connection. Over a period of several months, the radar-derived mean surface velocity has been very highly correlated with the UVM index velocity several meters below the surface, with a coefficient of determination R2 of 0.976 and an RMS difference of less than 10 cm/s. The wind has a small but measurable effect on the velocities measured by both instruments. In addition to the mean surface velocity across the channel, the RiverSonde system provides an estimate of the cross-channel variation of the surface velocity. ?? 2005 IEEE.

  7. Mercury concentrations and loads in a large river system tributary to San Francisco Bay, California, USA

    USGS Publications Warehouse

    David, N.; McKee, L.J.; Black, F.J.; Flegal, A.R.; Conaway, C.H.; Schoellhamer, D.H.; Ganju, N.K.

    2009-01-01

    In order to estimate total mercury (HgT) loads entering San Francisco Bay, USA, via the Sacramento-San Joaquin River system, unfiltered water samples were collected between January 2002 and January 2006 during high flow events and analyzed for HgT. Unfiltered HgT concentrations ranged from 3.2 to 75 ng/L and showed a strong correlation (r2 = 0.8, p < 0.001, n = 78) to suspended sediment concentrations (SSC). During infrequent large floods, HgT concentrations relative to SSC were approximately twice as high as observed during smaller floods. This difference indicates the transport of more Hg-contaminated particles during high discharge events. Daily HgT loads in the Sacramento-San Joaquin River at Mallard Island ranged from below the limit of detection to 35 kg. Annual HgT loads varied from 61 ?? 22 kg (n = 5) in water year (WY) 2002 to 470 ?? 170 kg (n = 25) in WY 2006. The data collected will assist in understanding the long-term recovery of San Francisco Bay from Hg contamination and in implementing the Hg total maximum daily load, the long-term cleanup plan for Hg in the Bay. ?? 2009 SETAC.

  8. Coherence between coastal and river flooding along the California coast

    USGS Publications Warehouse

    Odigie, Kingsley O.; Warrick, Jonathan

    2018-01-01

    Water levels around river mouths are intrinsically determined by sea level and river discharge. If storm-associated coastal water-level anomalies coincide with extreme river discharge, landscapes near river mouths will be flooded by the hydrodynamic interactions of these two water masses. Unfortunately, the temporal relationships between ocean and river water masses are not well understood. The coherence between extreme river discharge and coastal water levels at six California river mouths across different climatic and geographic regions was examined. Data from river gauges, wave buoys, and tide gauges from 2007 to 2014 were integrated to investigate the relationships between extreme river discharge and coastal water levels near the mouths of the Eel, Russian, San Lorenzo, Ventura, Arroyo Trabuco, and San Diego rivers. Results indicate that mean and extreme coastal water levels during extreme river discharge are significantly higher compared with background conditions. Elevated coastal water levels result from the combination of nontidal residuals (NTRs) and wave setups. Mean and extreme (>99th percentile of observations) NTRs are 3–20 cm and ∼30 cm higher during extreme river discharge conditions, respectively. Mean and extreme wave setups are up to 40 cm and ∼20–90 cm higher during extreme river discharge than typical conditions, respectively. These water-level anomalies were generally greatest for the northern rivers and least for the southern rivers. Time-series comparisons suggest that increases in NTRs are largely coherent with extreme river discharge, owing to the low atmospheric pressure systems associated with storms. The potential flooding risks of the concurrent timing of these water masses are tempered by the mixed, semidiurnal tides of the region that have amplitudes of 2–2.5 m. In summary, flooding hazard assessments for floodplains near California river mouths for current or future conditions with sea-level rise should include the temporal

  9. RELATIONSHIPS BETWEEN ENVIRONMENTAL VARIABLES AND BENTHIC DIATOM ASSEMBLAGES IN CALIFORNIA CENTRAL VALLEY STREAMS (USA)

    EPA Science Inventory

    Streams and rivers in the California Central Valley Ecoregion have been substantially modified by human activities. This study examines distributional patterns of benthic diatom assemblages in relation to environmental characteristics in streams and rivers of this region. Benthic...

  10. Effects of flow regimes altered by dams on survival, population declines, and range-wide losses of California river-breeding frogs.

    PubMed

    Kupferberg, Sarah J; Palen, Wendy J; Lind, Amy J; Bobzien, Steve; Catenazzi, Alessandro; Drennan, Joe; Power, Mary E

    2012-06-01

    Widespread alteration of natural hydrologic patterns by large dams combined with peak demands for power and water delivery during summer months have resulted in frequent aseasonal flow pulses in rivers of western North America. Native species in these ecosystems have evolved with predictable annual flood-drought cycles; thus, their likelihood of persistence may decrease in response to disruption of the seasonal synchrony between stable low-flow conditions and reproduction. We evaluated whether altered flow regimes affected 2 native frogs in California and Oregon (U.S.A.) at 4 spatial and temporal extents. We examined changes in species distribution over approximately 50 years, current population density in 11 regulated and 16 unregulated rivers, temporal trends in abundance among populations occupying rivers with different hydrologic histories, and within-year patterns of survival relative to seasonal hydrology. The foothill yellow-legged frog (Rana boylii), which breeds only in flowing water, is more likely to be absent downstream of large dams than in free-flowing rivers, and breeding populations are on average 5 times smaller in regulated rivers than in unregulated rivers. Time series data (range = 8 - 19 years) from 5 populations of yellow-legged frogs and 2 populations of California red-legged frogs (R. draytonii) across a gradient of natural to highly artificial timing and magnitude of flooding indicate that variability of flows in spring and summer is strongly correlated with high mortality of early life stages and subsequent decreases in densities of adult females. Flow management that better mimics natural flow timing is likely to promote persistence of these species and others with similar phenology. ©2012 Society for Conservation Biology.

  11. Water Quality Outlet Works Prototype Tests, Warm Springs Dam Dry Creek, Russian River Basin Sonoma County, California

    DTIC Science & Technology

    1989-03-01

    34.4* TECHNICAL REPORT HL-89-4 WATER QUALITY OUTLET WORKS PROTOTYPE TESTS, WARM SPRINGS DAM DRY CREEK, RUSSIAN RIVER BASIN AD-A207 058 SONOMA COUNTY , CALIFORNIA...Clawflcation) [7 Water Quality Outlet Works Prototype Tests, Warm Springs Dam, Dry Creek, Russian River Basin, Sonoma County , California 12. PERSONAL...Cointogobvil Be,,pesso Figur 1. iciniyama Pealm WATER QUALITY OUTLET WORKS PROTOTYPE TESTS WARM SPRINGS DAM, DRY CREEK, RUSSIAN RIVER BASIN SONOMA COUNTY , CALIFORNIA

  12. 78 FR 25740 - Meridian Energy USA, Inc. v. California Independent System Operator Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... Energy USA, Inc. v. California Independent System Operator Corporation; Notice of Filing Take notice that... Appendix Y of the California Independent System Operator Corp. (CAISO) tariff to defer the second posting of Interconnection Financial Security for the Jacobs Canal Solar Farm, Laurel West Solar Farm, and...

  13. Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California

    USGS Publications Warehouse

    Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.

    2017-09-27

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies. 

  14. DETECTING FOREST STRESS AND DECLINE IN RESPONSE TO INCREASING RIVER FLOW IN SOUTHWEST FLORIDA, USA

    EPA Science Inventory

    Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...

  15. A draft genome sequence of “Candidatus Liberibacter asiaticus” from California, USA

    USDA-ARS?s Scientific Manuscript database

    The draft genome sequence of “Candidatus Liberibacter asiaticus” strain HHCA, collected from a lemon tree in California, USA, is reported. The HHCA strain has a genome size of 1,118,244 bp, with G+C content of 36.6%. The HHCA genome encodes 1,191 predicted open reading frames and 51 RNA genes....

  16. Turbidity and suspended-sediment transport in the Russian River Basin, California

    USGS Publications Warehouse

    Ritter, John R.; Brown, William M.

    1971-01-01

    The Russian River in north coastal California has a persistent turbidness, which has reportedly caused a decline in the success of the sports fishermen. As a consequence, the number of sports fishermen angling in the river has declined, and industries dependent on their business have suffered. To determine the source of the turbidity and the rate of sediment transport in the basin, a network of sampling station was established in February 1964 along the river, on some of its tributaries, and near Lake Pillsbury in the upper Eel River basin.

  17. Granite Exfoliation, Cosumnes River Watershed, Somerset, California

    NASA Astrophysics Data System (ADS)

    Crockett, I. Q.; Neiss-Cortez, M.

    2015-12-01

    In the Sierra Nevada foothills of California there are many exposed granite plutons within the greater Sierra Nevada batholith. As with most exposed parts of the batholith, these granite slabs exfoliate. It is important to understand exfoliation for issues of public safety as it can cause rock slides near homes, roads, and recreation areas. Through observation, measuring, and mapping we characterize exfoliation in our Cosumnes River watershed community.

  18. Effect of logging on subsurface pipeflow and erosion: coastal northern California, USA

    Treesearch

    R. R. Ziemer

    1992-01-01

    Abstract - Three zero-order swales, each with a contributing drainage area of about 1 ha, were instrumented to measure pipeflows within the Caspar Creek Experimental Watershed in northwestern California, USA. After two winters of data collection, the second-growth forest on two of the swales was clearcut logged. The third swale remained as an uncut control. After...

  19. Water-quality investigation, Salinas River, California

    USGS Publications Warehouse

    Irwin, G.A.

    1976-01-01

    Concentrations of dissolved solids in the Salinas River, California, are variable and range from 164 to 494 milligrams per liter near Bradley and from 170 to 1,090 milligrams per liter near Spreckels. Higher concentrations near Spreckels are caused mainly by sewage inflow about 150 feet (50 meters) upstream. Concentrations of nitrogen, phosphorus, total organic carbon, selected trace elements, and pesticides also generally increase downstream from Pozo to Spreckels and are related to sewage effluent; however, high concentrations occur elsewhere in the river. Specific conductance and water discharge regression results indicate that relations were all significant at the 1-percent probability level at Paso Robles, Bradley, and Spreckels with the explained variance ranging from 66 to 74 percent. Concentations of nitrogen, phosphorus, total organic carbon, and trace elements are only infrequently related to water discharge. (Woodard-USGS)

  20. Effects of Bank Revetment on Sacramento River, California

    Treesearch

    Michael D. Harvey; Chester C. Watson

    1989-01-01

    Twelve low radius of curvature bends, half of which were rivetted, were studied in the Butte Basin reach of Sacramento River, California, to determine whether bank revetment deleteriously affected salmonid habitat. At low discharge (128.6 cubic meters/s) it was demonstrated that revetment does not cause channel narrowing or deepening, nor does it prevent re-entrainment...

  1. River plume patterns and dynamics within the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; DiGiacomo, P.M.; Weisberg, S.B.; Nezlin, N.P.; Mengel, M.; Jones, B.H.; Ohlmann, J.C.; Washburn, L.; Terrill, E.J.; Farnsworth, K.L.

    2007-01-01

    Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.

  2. Groundwater quality in the Santa Clara River Valley, California

    USGS Publications Warehouse

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  3. Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California

    USGS Publications Warehouse

    Sickman, James O.; DiGiorgio, Carol L.; Davisson, M. Lee; Lucero, Delores M.; Bergamaschi, Brian A.

    2010-01-01

    We used radiocarbon measurements of dissolved organic carbon (DOC) to resolve sources of riverine carbon within agriculturally dominated landscapes in California. During 2003 and 2004, average Δ14C for DOC was −254‰ in agricultural drains in the Sacramento–San Joaquin Delta, −218‰ in the San Joaquin River, −175‰ in the California State Water Project and −152‰ in the Sacramento River. The age of bulk DOC transiting the rivers of California’s Central Valley is the oldest reported for large rivers and suggests wide-spread loss of soil organic matter caused by agriculture and urbanization. Using DAX 8 adsorbent, we isolated and measured 14C concentrations in hydrophobic acid fractions (HPOA); river samples showed evidence of bomb-pulse carbon with average Δ14C of 91 and 76‰ for the San Joaquin and Sacramento Rivers, respectively, with older HPOA, −204‰, observed in agricultural drains. An operationally defined non-HPOA fraction of DOC was observed in the San Joaquin River with seasonally computed Δ14C values of between −275 and −687‰; the source of this aged material was hypothesized to be physically protected organic-matter in high clay-content soils and agrochemicals (i.e., radiocarbon-dead material) applied to farmlands. Mixing models suggest that the Sacramento River contributes about 50% of the DOC load in the California State Water Project, and agricultural drains contribute approximately one-third of the load. In contrast to studies showing stabilization of soil carbon pools within one or two decades following land conversion, sustained loss of soil organic matter, occurring many decades after the initial agricultural-land conversion, was observed in California’s Central Valley.

  4. Riparian valley oak (Quercus lobata) forest restoration on the middle Sacramento River, California

    Treesearch

    F. Thomas Griggs; Gregory H. Golet

    2002-01-01

    In 1989 The Nature Conservancy initiated a riparian horticultural restoration program on the floodplain of the middle Sacramento River, California. At nearly all restoration sites Valley oak (Quercus lobata Nee) comprised a major component of the planting design. Valley oaks are a keystone tree species of lowland floodplain habitats in California...

  5. Accelerating slip rates on the puente hills blind thrust fault system beneath metropolitan Los Angeles, California, USA

    USGS Publications Warehouse

    Bergen, Kristian J.; Shaw, John H.; Leon, Lorraine A.; Dolan, James F.; Pratt, Thomas L.; Ponti, Daniel J.; Morrow, Eric; Barrera, Wendy; Rhodes, Edward J.; Murari, Madhav K.; Owen, Lewis A.

    2017-01-01

    Slip rates represent the average displacement across a fault over time and are essential to estimating earthquake recurrence for proba-bilistic seismic hazard assessments. We demonstrate that the slip rate on the western segment of the Puente Hills blind thrust fault system, which is beneath downtown Los Angeles, California (USA), has accel-erated from ~0.22 mm/yr in the late Pleistocene to ~1.33 mm/yr in the Holocene. Our analysis is based on syntectonic strata derived from the Los Angeles River, which has continuously buried a fold scarp above the blind thrust. Slip on the fault beneath our field site began during the late-middle Pleistocene and progressively increased into the Holocene. This increase in rate implies that the magnitudes and/or the frequency of earthquakes on this fault segment have increased over time. This challenges the characteristic earthquake model and presents an evolving and potentially increasing seismic hazard to metropolitan Los Angeles.

  6. Comparison of ground-water flow model particle-tracking results and isotopic data in the Mojave River ground-water basin, southern California, USA

    USGS Publications Warehouse

    Izbicki, John A.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2004-01-01

    Flow-path and time-of-travel results for the Mojave River ground-water basin, southern California, calculated using the ground-water flow model MODFLOW and particle-tracking model MODPATH were similar to flow path and time-of-travel interpretations derived from delta-deuterium and carbon-14 data. Model and isotopic data both show short flow paths and young ground-water ages throughout the floodplain aquifer along most the Mojave River. Longer flow paths and older ground-water ages as great as 10,000 years before present were measured and simulated in the floodplain aquifer near the Mojave Valley. Model and isotopic data also show movement of water between the floodplain and regional aquifer and subsequent discharge of water from the river to dry lakes in some areas. It was not possible to simulate the isotopic composition of ground-water in the regional aquifer away from the front of the San Gabriel and San Bernardino Mountains - because recharge in these areas does not occur under the present-day climatic conditions used for calibration of the model.

  7. The Eel River, northwestern California; high sediment yields from a dynamic landscape

    Treesearch

    Thomas E. Lisle

    1990-01-01

    The Eel River draining the Coast Range of northwestern California has the highest recorded average suspended sediment yield per drainage area of any river of its size or larger unaffected by volcanic eruptions or active glaciers in the conterminous United States (1,720 t/km 2 yr from 9,390 km 2 ; Brown and Ritter, 1971).

  8. Rates and Risk Factors for Coccidioidomycosis among Prison Inmates, California, USA, 2011

    PubMed Central

    Lucas, Kimberley D.; Mohle-Boetani, Janet C.

    2015-01-01

    In California, coccidioidomycosis is a disease acquired by inhaling spores of Coccidioides immitis, a fungus found in certain arid regions, including the San Joaquin Valley, California, USA, where 8 state prisons are located. During 2011, we reviewed coccidioidomycosis rates at 2 of the prisons that consistently report >80% of California’s inmate cases and determined inmate risk factors for primary, severe (defined as pulmonary coccidioidomycosis requiring >10 hospital days), and disseminated coccidioidomycosis (defined by hospital discharge International Classification of Disease, Ninth Revision code). Inmates of African American ethnicity who were >40 years of age were at significantly higher risk for primary coccidioidomycosis than their white counterparts (odds ratio = 2.0, 95% CI 1.5–2.8). Diabetes was a risk factor for severe pulmonary coccidioidomycosis, and black race a risk factor for disseminated disease. These findings contributed to a court decision mandating exclusion of black inmates and inmates with diabetes from the 2 California prisons with the highest rates of coccidioidomycosis. PMID:25533149

  9. Declining sediment loads from Redwood Creek and the Klamath River, north coastal California

    Treesearch

    Randy D. Klein; Jeffrey K. Anderson

    2012-01-01

    River basin sediment loads are affected by several factors, with flood magnitude and watershed erosional stability playing dominant and dynamic roles. Long-term average sediment loads for northern California river basins have been computed by several researchers by several methods. However, characterizing the dynamic nature of climate and watershed stability requires...

  10. 77 FR 12493 - Revisions to the California State Implementation Plan, Feather River Air Quality Management District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... the California State Implementation Plan, Feather River Air Quality Management District AGENCY... limited disapproval of revisions to the Feather River Air Quality Management District (FRAQMD) portion of.... * * * * * (c) * * * (378) * * * (i) * * * (E) Feather River Air Quality Management District. (1) Rule 3.22...

  11. Geochemical characteristics of Heavy metals of river sediment from the main rivers at Texas, USA.

    NASA Astrophysics Data System (ADS)

    Matsumoto, I.; Hoffman, D.; MacAlister, J.; Ishiga, H.

    2008-12-01

    Trinity River is one of the biggest rivers which flows through Dallas and Fort Worth two big cities of USA and are highly populated. Trinity river drains into the Gulf of Mexico. Sediment samples collected from various points along the upper and lower streams were subjected to content analysis and elution analysis (using liquate (flow) out test) on the heavy metals like Cd, CN, Pb, Cr, As, Hg, Ni, Zn and Cu from the river sediment for the purpose of environment assessment. A total of 22 sample points were identified from upper stream to lower stream and samples were collected such that almost the whole stream length of Trinity River is covered. Results show that heavy metal content through out the river stream is below the recommended limits posing no immediate environmental threat. However, the experimental results show clear impact of human population in bigger cities on heavy metal concentrations in the river sediments as compared to smaller cities with low human population. It could be seen from the analysis that all the heavy metals show relatively high content and high elution value in Dallas and Fort Worth. As we move away from the big cities, the value of content and elution of sediment decreased by natural dilution effect by the river. And we also present the data of the Colorado and San Antonio rivers.

  12. Freshwater mussel assemblage structure in a regulated river in the Lower Mississippi river Alluvial Basin, USA

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    2007-01-01

    1. This paper documents a diverse, reproducing freshwater mussel community (20 species) in Lower Lake } an impounded, regulated portion of the Little Tallahatchie River below Sardis Dam in Panola Co., Mississippi, USA. 2. Despite being regulated and impounded, the lake has a heterogeneous array of habitats that differ markedly in mussel community attributes...

  13. Particle-bound metal transport after removal of a small dam in the Pawtuxet River, Rhode Island, USA

    EPA Science Inventory

    The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head ...

  14. A legacy of change: The lower Colorado River, Arizona-California-Nevada, USA, and Sonora-Baja California Norte, Mexico

    USGS Publications Warehouse

    Mueller, G.A.; Marsh, P.C.; Minckley, W.L.

    2005-01-01

    The lower Colorado is among the most regulated rivers in the world. It ranks as the fifth largest river in volume in the coterminous United States, but its flow is fully allocated and no longer reaches the sea. Lower basin reservoirs flood nearly one third of the river channel and store 2 years of annual flow. Diverted water irrigates 1.5 million ha of cropland and provides water for industry and domestic use by 22 million people in the southwestern United States and northern Mexico. The native fish community of the lower Colorado River was among the most unique in the world, and the main stem was home to nine freshwater species, all of which were endemic to the basin. Today, five are extirpated, seven are federally endangered, and three are being reintroduced through stocking. Decline of the native fauna is attributed to predation by nonnative fishes and physical habitat degradation. Nearly 80 alien species have been introduced, and more than 20 now are common. These nonnative species thrived in modified habitats, where they largely eliminated the native kinds. As a result, the lower Colorado River has the dubious distinction of being among the few major rivers of the world with an entirely introduced fish fauna. ?? 2005 by the American Fisheries Society.

  15. Spatial prediction models for the probable biological condition of streams and rivers in the USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a probability-based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...

  16. Random forest models for the probable biological condition of streams and rivers in the USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a probability based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...

  17. Habitat Effects on Population Density and Movement of Insect Vectors of Xylella fastidiosa in California, USA

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a xylem-limited bacterium that causes disease in grapevines, almonds, citrus, pear, alfalfa, and many other economically important plants. In California, USA, the bacteria are transmitted by several species of leafhoppers including the cicadellids Draeculacephala minerva Ball a...

  18. Impact of river discharge on the California coastal ocean circulation and variability

    NASA Astrophysics Data System (ADS)

    Leiva, J.; Chao, Y.; Farrara, J. D.; Zhang, H.

    2016-12-01

    A real-time California coastal ocean nowcast and forecast system is used to quantify the impact of river discharge on the California coastal ocean circulation and variability. River discharge and freshwater runoff is monitored by an extensive network of stream gages maintained through the U.S. Geological Survey, that offers archived stream flow records as well as real-time datasets. Of all the rivers monitored by the USGS, 25 empty into the Pacific Ocean and contribute a potential source of runoff data. Monthly averages for the current water year yield discharge estimates as high as 6,000 cubic meters per second of additional freshwater input into our present model. Using Regional Ocean Modeling System (ROMS), we performed simulations from October 2015 to May 2016 with and without the river discharge. Results of these model simulations are compared with available observations including both in situ and satellite. Particular attention is paid to the salinity simulation. Validation is done with comparisons to sea glider data available through Oregon State University and UC San Diego, which provides depth profiles along the California coast during this time period. Additional validation is performed through comparisons with sea surface salinity measurements from the Soil Moisture and Ocean Salinity (SMOS) mission. Continued testing for previous years, e.g. between 2011 and 2015, is being made using the Aquarius sea surface salinity data. Discharge data collected by the USGS stream gages provides a necessary source of freshwater input that must be accounted for. Incorporating a new runoff source produces a more robust model that generates improved forecasts. Following validation with available sea glider and satellite data, the enhanced model can be adapted to real-time forecasting.

  19. NORTH FORK SMITH RIVER ROADLESS AREA, CALIFORNIA AND OREGON.

    USGS Publications Warehouse

    Gray, Floyd; Hamilton, Michael

    1984-01-01

    Geologic, geochemical, and geophysical investigations and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the North Fork Smith River Roadless Area, California. The area has probable and sustantiated resource potential for nickel, chromium, copper, and mercury and approximately 2300 mining claims exist in or adjacent to the area. The geologic terrane precludes the occurrence of fossil fuel resources.

  20. Using 10Be erosion rates and fluvial channel morphology to constrain fault throw rates in the southwestern Sacramento River Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Cyr, A. J.

    2013-12-01

    The Sacramento - San Joaquin River Delta, California, USA, is a critical region for California water resources, agriculture, and threatened or endangered species. This landscape is affected by an extensive set of levees that enclose artificial islands created for agricultural use. In addition to their importance for sustaining agriculture, this levee system also supports extensive transport and power transmission infrastructure and urban/suburban development. These levees are susceptible to damage from even moderate ground shaking by either a large earthquake on one of the high-activity faults in the nearby San Francisco Bay region, or even a moderate earthquake on one of the low-activity faults in the Delta region itself. However, despite this danger the earthquake hazards in this region are poorly constrained due to our lack of understanding of faults in and near the Delta region. As part of an effort to better constrain the seismic hazard associated with known, but poorly constrained, faults in the region, a geomorphic analysis of the Dunnigan Hills, northwest of Woodland, CA, is being combined with cosmogenic 10Be catchment-averaged erosion rates. The Dunnigan Hills are a low-relief (maximum elevation 87 m) landscape generated by fault-bend folding above the west-vergent Sweitzer reverse fault that soles into a blind east-vergent reverse fault. These faults have been imaged by seismic reflection data, and local microseismicity indicates that this system is actively propagating to the east. However, the throw rates on the faults in this system remain unconstrained, despite the potential for significant shaking such as that experienced in the nearby April, 1892 earthquake sequence between Winters and Vacaville, Ca, ~25 km to the south, which has been estimated at magnitude 6.0 or greater. Geomorphic and cosmogenic 10Be analyses from 12 catchments draining the eastern flank of the Dunnigan Hills will be used to infer vertical rock uplift rates to better constrain

  1. Conservation paleobiology in near time: Isotopic estimates for restoration flows to the estuary of the Colorado River, Mexico

    NASA Astrophysics Data System (ADS)

    Flessa, Karl; Dettman, David; Cintra-Buenrostro, Carlos; Rowell, Kirsten

    2016-04-01

    In most years since 1960, the Colorado River has not reached the sea. Upstream dams and diversions in the U.S.A. and Mexico have diverted the river's water for agricultural and municipal use. The river's estuary in the upper Gulf of California, in Mexico, once supported very large populations of Mulinia coloradoensis, a trophically important bivalve mollusk, and Totoaba macdonaldi, a now-endangered scianid fish,. Because Colorado River water is isotopically distinct from Gulf of California seawater, we used the δ18O composition of the pre-dam bivalve shells and fish otoliths to estimate past salinities and river flows. We estimate that five to ten percent of the river's annual flow would be needed to restore M. coloradoensis habitat in the river's mouth and to restore the nursery grounds of T. macdonaldi. The dead can speak to the living.

  2. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    USGS Publications Warehouse

    Draut, Amy E.

    2012-01-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble–Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial–aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  3. Multiscale Approach to Small River Plumes off California

    NASA Astrophysics Data System (ADS)

    Basdurak, N. B.; Largier, J. L.; Nidzieko, N.

    2012-12-01

    While larger scale plumes have received significant attention, the dynamics of plumes associated with small rivers typical of California are little studied. Since small streams are not dominated by a momentum flux, their plumes are more susceptible to conditions in the coastal ocean such as wind and waves. In order to correctly model water transport at smaller scales, there is a need to capture larger scale processes. To do this, one-way nested grids with varying grid resolution (1 km and 10 m for the parent and the child grid respectively) were constructed. CENCOOS (Central and Northern California Ocean Observing System) model results were used as boundary conditions to the parent grid. Semi-idealized model results for Santa Rosa Creek, California are presented from an implementation of the Regional Ocean Modeling System (ROMS v3.0), a three-dimensional, free-surface, terrain-following numerical model. In these preliminary results, the interaction between tides, winds, and buoyancy forcing in plume dynamics is explored for scenarios including different strengths of freshwater flow with different modes (steady and pulsed). Seasonal changes in transport dynamics and dispersion patterns are analyzed.

  4. Seroprevalence of Baylisascaris procyonis infection among humans, Santa Barbara County, California, USA, 2014–2016

    USGS Publications Warehouse

    Weinstein, Sara B.; Lake, Camille M.; Chastain, Holly M.; Fisk, David; Handali, Sukwan; Kahn, Philip L.; Montgomery, Susan P.; Wilkins, Patricia P.; Kuris, Armand M.; Lafferty, Kevin D.

    2017-01-01

    Baylisascaris procyonis (raccoon roundworm) infection is common in raccoons and can cause devastating pathology in other animals, including humans. Limited information is available on the frequency of asymptomatic human infection. We tested 150 adults from California, USA, for B. procyonis antibodies; 11 were seropositive, suggesting that subclinical infection does occur.

  5. Coccidioidomycosis among Workers Constructing Solar Power Farms, California, USA, 2011-2014.

    PubMed

    Wilken, Jason A; Sondermeyer, Gail; Shusterman, Dennis; McNary, Jennifer; Vugia, Duc J; McDowell, Ann; Borenstein, Penny; Gilliss, Debra; Ancock, Benedict; Prudhomme, Janice; Gold, Deborah; Windham, Gayle C; Lee, Lauren; Materna, Barbara L

    2015-11-01

    Coccidioidomycosis is associated with soil-disruptive work in Coccidioides-endemic areas of the southwestern United States. Among 3,572 workers constructing 2 solar power-generating facilities in San Luis Obispo County, California, USA, we identified 44 patients with symptom onset during October 2011-April 2014 (attack rate 1.2 cases/100 workers). Of these 44 patients, 20 resided in California outside San Luis Obispo County and 10 resided in another state; 9 were hospitalized (median 3 days), 34 missed work (median 22 days), and 2 had disseminated disease. Of the 25 patients who frequently performed soil-disruptive work, 6 reported frequent use of respiratory protection. As solar farm construction in Coccidioides-endemic areas increases, additional workers will probably be exposed and infected unless awareness is emphasized and effective exposure reduction measures implemented, including limiting dust generation and providing respiratory protection. Medical providers, including those in non-Coccidioides-endemic areas, should suspect coccidioidomycosis in workers with compatible illness and report cases to their local health department.

  6. Emissions calculated from particulate matter and gaseous ammonia measurements from a commercial dairy in California, USA

    USDA-ARS?s Scientific Manuscript database

    Emission rates and factors for particulate matter (PM) and gaseous ammonia (NH3) were estimated from measurements taken at a dairy in California, USA in June 2008. Concentration measurements were made using both point and remote sensors. Filter-based PM samplers and OPCs characterized aerodynamic an...

  7. Riparian Plant Water Relations Along the North Fork Kings River, California

    Treesearch

    Janet L. Nachlinger; Stanley D. Smith; Roland J. Risser

    1989-01-01

    Plant water relations of five obligate riparian species were studied along California's North Fork Kings River. Diurnal stomatal conductance, transpiration, and xylem pressure potentials were measured throughout the 1986 growing season and in mid-season in 1987. Patterns were similar for all species although absolute values varied considerably. Maximum stomatal...

  8. Quantifying Late Quaternary Deformation along the Santa Ynez River, Santa Maria Basin, California

    NASA Astrophysics Data System (ADS)

    Slatten, C. L.; Onderdonk, N.

    2017-12-01

    The fault bounded Santa Maria Basin, located on the Central Coast of California, is positioned in an area of convergence between the rotating Western Transverse Ranges and the non-rotated Southern Coast Ranges. The Santa Ynez River Fault (SYRF) is an east-west trending fault that parallels the Santa Ynez River west of Lake Cachuma, California and defines the southern structural boundary of the Santa Maria Basin. However, the rate and style of Late Quaternary deformation and uplift in this region and the potential for seismic hazard along the fault is lacking. Fluvial terraces are key geomorphological components of fluvial systems that can be used to provide insights into regional and local uplift and deformation. The Santa Ynez River delineates the northern edge of the Santa Ynez Mountains and flows west through the Santa Ynez Valley to its mouth at the Pacific Ocean. The Santa Ynez River Field Area is a 10 km stretch of the Santa Ynez River just west of Lake Cachuma where terraces are well developed and the SYRF cuts through terraces and the active river (Figure 1). If there has been Quaternary movement of the SYRF we expect to find deformation in these areas. An initial survey of the area identified five terrace levels ranging from 8 m to 135 m above modern river level. The fluvial terraces are being mapped as separate units, surveyed for deformation with GPS based transects, and sampled for optically stimulated luminescence (OSL) dating. These combined methods will allow us to document the geomorphic characteristics and landform evolution of the lower Santa Ynez River, evaluate the possibility of Late Quaternary activity of the SYRF, and determine the rate of Late Quaternary regional uplift along the western Santa Ynez River in the Santa Maria Basin providing a possible basis for augmentation of the seismic hazards for Santa Barbara County.

  9. A multifaceted approach to prioritize and design bank stabilization measures along the Big Sioux River, South Dakota, USA

    USDA-ARS?s Scientific Manuscript database

    A multifaceted approach was used to manage fine-grained sediment loadings from river bank erosion along the Big Sioux River between Dell Rapids and Sioux Falls, South Dakota, USA. Simulations with the RVR Meander and CONCEPTS river-morphodynamics computer models were conducted to identify stream-ban...

  10. Comparison of hydromorphological assessment methods: Application to the Boise River, USA

    NASA Astrophysics Data System (ADS)

    Benjankar, Rohan; Koenig, Frauke; Tonina, Daniele

    2013-06-01

    Recent national and international legislation (e.g., the European Water Framework Directive) identified the need to quantify the ecological condition of river systems as a critical component for an integrated river management approach. An important defining driver of ecological condition is stream hydromorphology. Several methodologies have been proposed from simple table-based approaches to complex hydraulics-based models. In this paper, three different methods for river hydromorphological assessment are applied to the Boise River, United States of America (USA): (1) the German LAWA overview method (Bund/Laender Arbeitsgemeinschaft Wasser/German Working Group on water issues of the Federal States and the Federal Government represented by the Federal Environment Ministry), (2) a special approach for a hydromorphological assessment of urban rivers and (3) a hydraulic-based method. The hydraulic-based method assessed stream conditions from a statistical analysis of flow properties predicted with hydrodynamic modeling. The investigation focuses on comparing the three methods and defining the transferability of the methods among different contexts, Europe and West United States. It also provides comparison of the hydromorphological conditions of an urban and a rural reaches of the Boise River.

  11. Holocene forest development and maintenance on different substrates in the Klamath mountains, northern California, USA

    Treesearch

    Christy E. Briles; Cathy Whitlock; Carl N. Skinner; Jerry Mohr

    2011-01-01

    The influence of substrate on long-term vegetation dynamics has received little attention, and yet nutrient-limited ecosystems have some of the highest levels of endemism in the world. The diverse geology of the Klamath Mountains of northern California (USA) allows examination of the long-term influence of edaphic constraints in subalpine forests through a comparison...

  12. 76 FR 76115 - Revisions to the California State Implementation Plan, Feather River Air Quality Management District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... the California State Implementation Plan, Feather River Air Quality Management District AGENCY... limited disapproval of revisions to the Feather River Air Quality Management District (FRAQMD) portion of..., Regulatory Planning and Review The Office of Management and Budget (OMB) has exempted this regulatory action...

  13. Population Trends and Management of the Bank Swallow (Riparia riparia) on the Sacramento River, California

    Treesearch

    Barrett A. Garrison; Ronald W. Schlorff; Joan M. Humphrey; Stephen A. Laymon; Frank J. Michny

    1989-01-01

    Annual monitoring of Bank Swallows (Riparia riparia) along the Sacramento River, California has been conducted since 1986 to determine population trends, evaluate impacts from bank protection and flood control projects, and implement and monitor mitigation efforts. The population of Bank Swallows in a 50-mile river reach remained static over 3...

  14. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    NASA Astrophysics Data System (ADS)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  15. Geochronology and paleoenvironment of pluvial Harper Lake, Mojave Desert, California, USA

    USGS Publications Warehouse

    Garcia, Anna L.; Knott, Jeffrey R.; Mahan, Shannon; Bright, Jordan

    2014-01-01

    Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.

  16. Water-quality assessment of the Merced River, California, in the 1977 water year

    USGS Publications Warehouse

    Sorenson, Stephen K.; Hoffman, Ray J.

    1981-01-01

    Water-quality conditions in the Merced River in California were sampled four times during the 1977 water year at 12 stations on the river and its major impoundments. Samples taken at the record or near-record low flows of the 1976-77 drought, showed that calcium and bicarbonate were the predominant ions in the water. Inflow of irrigation return water to the river caused a threefold to sevenfold increase in specific conductance between river kilometer 42 and the farthest downstream station at kilometer 8. During the four sampling periods, the increase in total nitrogen concentrations was twofold to sixfold in that reach. Upstream of kilometer 42, the river was free of apparent water-quality degradation, with the exception of occasional increases in nitrogen and phosphorus. Measurements of primary productivity and phytoplankton in Lake McClure and at three river stations gave indications of trophic conditions in the river system. (USGS)

  17. Influences of the vegetation mosaic on riparian and stream environments in a mixed forest-grassland landscape in "Mediterranean" northwestern California

    Treesearch

    Hartwell H Welsh Jr; Garth R. Hodgson; Nancy E. Karraker

    2005-01-01

    We examined differences in riparian and aquatic environments within the three dominant vegetation patch types of the Mattole River watershed, a 789-km2 mixed conifer-deciduous (hardwood) forest and grassland-dominated landscape in northwestern California, USA. Riparian and aquatic environments, and particularly microclimates therein, influence...

  18. Flies from L.A., The Sequel: A further twelve new species of Megaselia (Diptera: Phoridae) from the BioSCAN Project in Los Angeles (California, USA).

    PubMed

    Hartop, Emily A; Brown, Brian V; Disney, R Henry L

    2016-01-01

    Presented are continued results from the BioSCAN Project, an urban biodiversity study sampling primarily from private backyards in Los Angeles, California (USA). Presented are continued results from the BioSCAN Project, an urban biodiversity study sampling primarily from private backyards in Los Angeles, California (USA). Twelve new species of Megaselia (Diptera: Phoridae) are described: M. baileyae, M. friedrichae, M. gonzalezorum, M. joanneae, M. losangelensis, M. phyllissunae, M. pongsaiae, M. shatesae, M. stoakesi, M. studentorum, M. voluntariorum, M. wongae.

  19. Temporal and Spatial Variation of Atmospherically Deposited Organic Contaminants at High Elevation in Yosemite National Park, California, USA

    EPA Science Inventory

    Atmospherically deposited organic contaminants in the Sierra Nevada mountains of California, USA, have exceeded some thresholds of concern, but the spatial and temporal distributions of contaminants in the mountains are not well known. The present study evaluated (1) whether the...

  20. Hydro-economic analysis of groundwater pumping for irrigated agriculture in California's Central Valley, USA

    NASA Astrophysics Data System (ADS)

    Medellín-Azuara, Josué; MacEwan, Duncan; Howitt, Richard E.; Koruakos, George; Dogrul, Emin C.; Brush, Charles F.; Kadir, Tariq N.; Harter, Thomas; Melton, Forrest; Lund, Jay R.

    2015-09-01

    As in many places, groundwater in California (USA) is the major alternative water source for agriculture during drought, so groundwater's availability will drive some inevitable changes in the state's water management. Currently, agricultural, environmental, and urban uses compete for groundwater, resulting in substantial overdraft in dry years with lowering of water tables, which in turn increases pumping costs and reduces groundwater pumping capacity. In this study, SWAP (an economic model of agricultural production and water use in California) and C2VISim (the California Department of Water Resources groundwater model for California's Central Valley) are connected. This paper examines the economic costs of pumping replacement groundwater during drought and the potential loss of pumping capacity as groundwater levels drop. A scenario of three additional drought years continuing from 2014 show lower water tables in California's Central Valley and loss of pumping capacity. Places without access to groundwater and with uncertain surface-water deliveries during drought are the most economically vulnerable in terms of crop revenues, employment and household income. This is particularly true for Tulare Lake Basin, which relies heavily on water imported from the Sacramento-San Joaquin Delta. Remote-sensing estimates of idle agricultural land between 2012 and 2014 confirm this finding. Results also point to the potential of a portfolio approach for agriculture, in which crop mixing and conservation practices have substantial roles.

  1. Effects of an introduced piscivorous fish on native benthic fishes in a coastal river

    Treesearch

    Jason L. White; Bret C. Harvey

    2001-01-01

    We used field surveys to compare the density and mesohabitat-scale distribution of the native coastrange sculpin (Cottus aleuticus) and the prickly sculpin (C. asper) in coastal rivers in northwestern California, U.S.A., with and without an introduced piscivorous fish, the Sacramento pikeminnow, Ptychocheilus grandis. We also measured mortality of tethered prickly...

  2. The Impacts of Atmospheric Rivers on California's Extreme Precipitation

    NASA Astrophysics Data System (ADS)

    Asgari Lamjiri, M.; Dettinger, M. D.; Ralph, M.

    2017-12-01

    Atmospheric rivers (ARs) are long, narrow corridors of enhanced water vapor transport that are typically associated with extratropical cyclones. ARs can be beneficial and replenish water resources, be hazardous and cause damaging floods, or have a combination of hazardous and beneficial impacts. Thus, understanding hydrologic impacts of ARs can help to improve water reservoir management and enhance flood risk mitigation, especially in California where there is extremely large year-to-year variability in annual precipitation accumulations. At the continental scale, gridded hourly precipitation observations are used in this study to identify unique characteristics of precipitation events impacting the US west coast compared to other regions in the US; precipitation events are defined here as continuous periods of precipitation with at least 5 mm of accumulated precipitation. It is shown that on average, the US west coast receives the largest precipitation totals across the US; these extreme precipitation events are largely associated with the most persistent ARs. Within California, hourly precipitation observations from 200 sites are being analyzed to better understand distinct categories of ARs that dictate extreme precipitation in different regions of California. It is found that, on average, the north coast, northern Sierra, and the Transverse Ranges experience the largest precipitation events; north coast and northern Sierra precipitation events tend to be longer, whereas the Transverse Ranges generally experience higher maximum and event-averaged intensities. ARs contribute significantly to extreme precipitation events in all regions of California, particularly the north coast, northern Sierra, and the Transverse Ranges. ARs associated with extreme precipitation events across California are significantly more persistent and have higher integrated vapor transport intensities than those associated with non-extreme events. Composites of characteristics of ARs which

  3. Radiocarbon Depression in Aquatic Foodwebs of the Colorado River, USA: Coupling Between Carbonate Weathering and the Biosphere

    NASA Astrophysics Data System (ADS)

    Sickman, J. O.; Huang, W.; Lucero, D.; Anderson, M.

    2012-12-01

    The 14C isotopic composition of living organisms is generally considered to be in isotopic equilibrium with atmosphere CO2. During the course of investigations of aquatic foodwebs of the Colorado River, we measured substantial radiocarbon depression of organisms within planktonic and benthic foodwebs of Copper Basin Reservoir, a short residence-time water body at the intake to the Colorado River Aqueduct. All trophic levels had depressed radiocarbon content with inferred "age" of ca. 1,200 radiocarbon years (range: 0.85 to 0.87 fraction modern carbon (fmc)). Additional measurements of the radiocarbon content of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were made in other major rivers in California (New (near Salton Sea), Santa Ana (near Riverside), San Joaquin (near Fresno) and Salinas (near San Luis Obispo)). In the New River (which is composed primarily of irrigation tailwater derived from the Colorado River), the radiocarbon values for DIC closely matched those found in biota of the Copper Basin Reservoir (0.85 to 0.87 fmc), but radiocarbon values for DOC were slightly higher (0.91 to 0.95 fmc). In the other California rivers, radiocarbon concentrations in DIC were generally below modern and lower than corresponding levels in DOC; in the case of the Santa Ana River, DOC was older than DIC as a result of wastewater inputs from upstream treatment plants. Together these data suggest that the carbonate equilibrium of California rivers is influenced by weathering of carbonate minerals which produces HCO3- with no 14C. We hypothesize that this dead carbon can move into aquatic foodwebs via algae and phytoplankton uptake during photosynthesis, depressing the 14C content of aquatic foodwebs below that of the atmosphere. Based on a simple two-component mixing model incorporating carbonate weathering and atmospheric CO2, we estimate that 15-17% of the carbon in the aquatic foodweb of Copper Basin is derived directly from mineral weathering of

  4. PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA

    EPA Science Inventory

    This paper describes a sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA for the purpose of characterizing and forecasting sediment and arsenic distributions before and after proposed dredging activitie...

  5. Flies from L.A., The Sequel: A further twelve new species of Megaselia (Diptera: Phoridae) from the BioSCAN Project in Los Angeles (California, USA)

    PubMed Central

    Brown, Brian V.; Disney, R. Henry L.

    2016-01-01

    Abstract Background Presented are continued results from the BioSCAN Project, an urban biodiversity study sampling primarily from private backyards in Los Angeles, California (USA). Presented are continued results from the BioSCAN Project, an urban biodiversity study sampling primarily from private backyards in Los Angeles, California (USA). New information Twelve new species of Megaselia (Diptera: Phoridae) are described: M. baileyae, M. friedrichae, M. gonzalezorum, M. joanneae, M. losangelensis, M. phyllissunae, M. pongsaiae, M. shatesae, M. stoakesi, M. studentorum, M. voluntariorum, M. wongae. PMID:27226746

  6. Evaluation and Analysis of Regional Best Management Practices in San Diego, California (USA)

    NASA Astrophysics Data System (ADS)

    Flint, K.; Kinoshita, A. M.

    2017-12-01

    In urban areas, surface water quality is often impaired due to pollutants transported by stormwater runoff. To maintain and improve surface water quality, the United States Clean Water Act (CWA) requires an evaluation of available water quality information to develop a list of impaired water bodies and establish contaminant restrictions. Structural Best Management Practices (BMPs) are designed to reduce runoff volume and/or pollutant concentrations to comply with CWA requirements. Local level policy makers and managers require an improved understanding of the costs and benefits associated with BMP installation, performance, and maintenance. The International Stormwater BMP Database (Database) is an online platform for submittal of information about existing BMPs, such as cost, design details, and statistical analysis of influent and effluent pollutant concentrations. While the Database provides an aggregation of data which supports analysis of overall BMP performance at international and national scales, the sparse spatial distribution of the data is not suitable for regional and local analysis. This research conducts an extensive review of local inventory and spatial analysis of existing permanent BMPs throughout the San Diego River watershed in California, USA. Information collected from cities within the San Diego River watershed will include BMP types, locations, dates of installation, costs, expected removal efficiencies, monitoring data, and records of maintenance. Aggregating and mapping this information will facilitate BMP evaluation. Specifically, the identification of spatial trends, inconsistencies in BMP performances, and gaps in current records. Regression analysis will provide insight into the nature and significance of correlations between BMP performance and physical characteristics such as land use, soil type, and proximity to impaired waters. This analysis will also result in a metric of relative BMP performance and will provide a basis for future

  7. PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA

    EPA Science Inventory

    A sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA is described. The application is meant to characterize and forecast sediment and arsenic (As) distributions before and after proposed dredging activit...

  8. INDOOR AND OUTDOOR ULTRA-FINE PARTICLE COUNTS IN A 1999 TWO-SEASON FRESNO, CALIFORNIA, USA ACUTE CARDIAC PANEL STUDY

    EPA Science Inventory

    Indoor and Outdoor Ultrafine Particle Counts in a 1999 Two-Season Fresno, California, USA Acute Cardiac Panel Study.

    John Creason, Debra Walsh, Lucas Neas, US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects R...

  9. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  10. Occurrence and transport of total mercury and methyl mercury in the Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1999-01-01

    Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland

  11. Dissolved pesticide concentrations detected in storm-water runoff at selected sites in the San Joaquin River basin, California, 2000-2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn; Whitehead, Andrew

    2003-01-01

    As part of a collaborative study involving the United States Geological Survey Toxics Substances Hydrology Project (Toxics Project) and the University of California, Davis, Bodega Marine Laboratory (BML), water samples were collected at three sites within the San Joaquin River Basin of California and analyzed for dissolved pesticides. Samples were collected during, and immediately after, the first significant rainfall (greater than 0.5 inch per day) following the local application of dormant spray, organophosphate insecticides during the winters of 2000 and 2001. All samples were collected in conjunction with fish-caging experiments conducted by BML researchers. Sites included two locations potentially affected by runoff of agricultural chemicals (San Joaquin River near Vernalis, California, and Orestimba Creek at River Road near Crows Landing, California, and one control site located upstream of pesticide input (Orestimba Creek at Orestimba Creek Road near Newman, California). During these experiments, fish were placed in cages and exposed to storm runoff for up to ten days. Following exposure, the fish were examined for acetylcholinesterase concentrations and overall genetic damage. Water samples were collected throughout the rising limb of the stream hydrograph at each site for later pesticide analysis. Concentrations of selected pesticides were measured in filtered water samples using solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC/MS) at the U.S. Geological Survey organic chemistry laboratory in Sacramento, California. Results of these analyses are presented.

  12. Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA

    USGS Publications Warehouse

    Hoover, Daniel J.; Odigie, Kingsley; Swarzenski, Peter W.; Barnard, Patrick

    2017-01-01

    Study regionThe study region spans coastal California, USA, and focuses on three primary sites: Arcata, Stinson Beach, and Malibu Lagoon.Study focus1 m and 2 m sea-level rise (SLR) projections were used to assess vulnerability to SLR-driven groundwater emergence and shoaling at select low-lying, coastal sites in California. Separate and combined inundation scenarios for SLR and groundwater emergence were developed using digital elevation models of study site topography and groundwater surfaces constructed from well data or published groundwater level contours.New hydrological insights for the regionSLR impacts are a serious concern in coastal California which has a long (∼1800 km) and populous coastline. Information on the possible importance of SLR-driven groundwater inundation in California is limited. In this study, the potential for SLR-driven groundwater inundation at three sites (Arcata, Stinson Beach, and Malibu Lagoon) was investigated under 1 m and 2 m SLR scenarios. These sites provide insight into the vulnerability of Northern California coastal plains, coastal developments built on beach sand or sand spits, and developed areas around coastal lagoons associated with seasonal streams and berms. Northern California coastal plains with abundant shallow groundwater likely will see significant and widespread groundwater emergence, while impacts along the much drier central and southern California coast may be less severe due to the absence of shallow groundwater in many areas. Vulnerability analysis is hampered by the lack of data on shallow coastal aquifers, which commonly are not studied because they are not suitable for domestic or agricultural use. Shallow saline aquifers may be present in many areas along coastal California, which would dramatically increase vulnerability to SLR-driven groundwater emergence and shoaling. Improved understanding of the extent and response of California coastal aquifers to SLR will help in preparing for mitigation

  13. DISTRIBUTION OF AQUATIC OFF-CHANNEL HABITATS AND ASSOCIATED RIPARIAN VEGETATION, WILLAMETTE RIVER, OREGON, USA

    EPA Science Inventory

    The extent of aquatic off-channel habitats such as secondary and side channels, sloughs, and alcoves, have been reduced more than 50% since the 1850s along the upper main stem of the Willamette River, Oregon, USA. Concurrently, the hydrogeomorphic potential, and associated flood...

  14. ALTERED DEVELOPMENT AND REPRODUCTION IN MOSQUITOFISH EXPOSED TO PULP AND PAPER MILL EFFLUENT IN THE FENHOLLOW RIVER, FLORIDA USA

    EPA Science Inventory

    Female mosquitofish exposed to pulp and paper mill effluent (PME) in the Fenholloway River, Florida, USA have masculinized secondary sex characteristics and altered aromatase enzyme activity. We and others have shown that the Fenholloway River PME contains androgenic and progesto...

  15. Atmospheric Rivers and floods in Southern California: Climate forcing of extreme weather events.

    NASA Astrophysics Data System (ADS)

    Hendy, I. L.; Heusser, L. E.; Napier, T.; Pak, D. K.

    2016-12-01

    Southern California has a Mediterranean type climate characterized by warm dry summers associated with the North Pacific High pressure system and cool, wet winters primarily associated in low pressure systems originating in the high latitude North Pacific. Extreme precipitation, however, is connected to strong zonal flow that brings warm, moist tropical across the Pacific (AKA atmospheric river). Here we present a revised record of flood events in Santa Barbara Basin that have been linked to atmospheric rivers focusing on events associated with transitions between known climate events using new radiocarbon chronology and detailed sediment composition. Flood events identified by homogenous grey layers are present throughout the Holocene with a recurrence every 110 years, but are particularly common (85 year recurrence) between 4,200 and 2,000 years BP. Interval between 6,500 and 4,500 commonly associated with dry conditions in California was associated with fewer flood events (recurrence interval increased to 176 years). Intervals of high lake levels in California associated with pluvials appear to be associated with more frequent extreme precipitation events. The longest recurrence interval (535 years) is associated with the Medieval Climate Anomaly. The season in which the atmospheric river occurs was estimated using the relative abundance of pollen within the flood deposit. The 735 and 1270 C.E. flood events are associated with May-June flowering vegetation, while the most recent events (1861-2 and 1761 C.E.) were associated with November to March flowering vegetation. This agrees with the December-January rainfall records of the historic 1861-62. We conclude the frequency of extreme precipitation events appears to increase as climate cools (e.g. the Little Ice Age).

  16. Coccidioidomycosis among Workers Constructing Solar Power Farms, California, USA, 2011–2014

    PubMed Central

    Sondermeyer, Gail; Shusterman, Dennis; McNary, Jennifer; Vugia, Duc J.; McDowell, Ann; Borenstein, Penny; Gilliss, Debra; Ancock, Benedict; Prudhomme, Janice; Gold, Deborah; Windham, Gayle C.; Lee, Lauren; Materna, Barbara L.

    2015-01-01

    Coccidioidomycosis is associated with soil-disruptive work in Coccidioides-endemic areas of the southwestern United States. Among 3,572 workers constructing 2 solar power–generating facilities in San Luis Obispo County, California, USA, we identified 44 patients with symptom onset during October 2011–April 2014 (attack rate 1.2 cases/100 workers). Of these 44 patients, 20 resided in California outside San Luis Obispo County and 10 resided in another state; 9 were hospitalized (median 3 days), 34 missed work (median 22 days), and 2 had disseminated disease. Of the 25 patients who frequently performed soil-disruptive work, 6 reported frequent use of respiratory protection. As solar farm construction in Coccidioides-endemic areas increases, additional workers will probably be exposed and infected unless awareness is emphasized and effective exposure reduction measures implemented, including limiting dust generation and providing respiratory protection. Medical providers, including those in non–Coccidioides-endemic areas, should suspect coccidioidomycosis in workers with compatible illness and report cases to their local health department. PMID:26484688

  17. Climate, rain shadow, and human-use influences on fire regimes in the eastern Sierra Nevada, California, USA

    Treesearch

    M.P. North; K.M. van de Water; S.L. Stephens; B.M. Collins

    2009-01-01

    There have been few fire history studies of eastern Sierra Nevada forests in California, USA, where a steep elevation gradient, rain shadow conditions, and forest stand isolation may produce different fire regimes than those found on the range’s western slope. We investigated historic fire regimes and potential climate influences on four forest types ranging in...

  18. Factors influencing the variation in capture rates of shrews in southern California, USA

    USGS Publications Warehouse

    Laakkonen, Juha; Fisher, Robert N.; Case, Ted J.

    2003-01-01

    We examined the temporal variation in capture rates of shrewsNotiosorex crawfordi (Coues, 1877) and Sorex ornatus (Merriam, 1895) in 20 sites representing fragmented and continuous habitats in southern California, USA. InN. crawfordi, the temporal variation was significantly correlated with the mean capture rates. Of the 6 landscape variables analyzed (size of the landscape, size of the sample area, altitude, edge, longitude and latitude), sample area was positively correlated with variation in capture rates ofN. crawfordi. InS. ornatus, longitude was negatively correlated with variation in capture rates. Analysis of the effect of precipitation on the short- and long-term capture rates at 2 of the sites showed no correlation between rainfall and capture rates of shrews even though peak number of shrews at both sites were reached during the year of highest amount of rainfall. A key problem confounding capture rates of shrews in southern California is the low overall abundance of both shrew species in all habitats and seasons.

  19. Detecting groundwater contamination of a river in Georgia, USA using baseflow sampling

    NASA Astrophysics Data System (ADS)

    Reichard, James S.; Brown, Chandra M.

    2009-05-01

    Algal blooms and fish kills were reported on a river in coastal Georgia (USA) downstream of a poultry-processing plant, prompting officials to conclude the problems resulted from overland flow associated with over-application of wastewater at the plant’s land application system (LAS). An investigation was undertaken to test the hypothesis that contaminated groundwater was also playing a significant role. Weekly samples were collected over a 12-month period along an 18 km reach of the river and key tributaries. Results showed elevated nitrogen concentrations in tributaries draining the plant and a tenfold increase in nitrate in the river between the tributary inputs. Because ammonia concentrations were low in this reach, it was concluded that nitrate was entering via groundwater discharge. Data from detailed river sampling and direct groundwater samples from springs and boreholes were used to isolate the entry point of the contaminant plume. Analysis showed two separate plumes, one associated with the plant’s unlined wastewater lagoon and another with its LAS spray fields. The continuous discharge of contaminated groundwater during summer low-flow conditions was found to have a more profound impact on river-water quality than periodic inputs by overland flow and tributary runoff.

  20. Monomorphic pathogens: The case of Candidatus Xenohaliotis californiensis from abalone in California, USA and Baja California, Mexico.

    PubMed

    Cicala, Francesco; Moore, James D; Cáceres-Martínez, Jorge; Del Río-Portilla, Miguel A; Hernández-Rodríguez, Mónica; Vásquez-Yeomans, Rebeca; Rocha-Olivares, Axayácatl

    2018-05-01

    Withering syndrome (WS) is a chronic wasting disease affecting abalone species attributed to the pathogen Candidatus Xenohaliotis californiensis (CXc). Wild populations of blue (Haliotis fulgens) and yellow (H. corrugata) abalone have experienced unusual mortality rates since 2009 off the peninsula of Baja California and WS has been hypothesized as a possible cause. Currently, little information is available about the genetic diversity of CXc and particularly the possible existence of strains differing in pathogenicity. In a recent phylogenetic analysis, we characterized five coding genes from this rickettsial pathogen. Here, we analyze those genes and two additional intergenic non-coding regions following multi-locus sequence typing (MLST) and multi-spacer typing (MST) approaches to assess the genetic variability of CXc and its relationship with blue, yellow and red (H. rufescens) abalone. Moreover, we used 16S rRNA pyrosequencing reads from gut microbiomes of blue and yellow abalone to complete the genetic characterization of this prokaryote. The presence of CXc was investigated in more than 150 abalone of the three species; furthermore, a total of 385 DNA sequences and 7117 16S rRNA reads from Candidatus Xenohaliotis californiensis were used to evaluate its population genetic structure. Our findings suggest the absence of polymorphism in the DNA sequences of analyzed loci and the presence of a single lineage of CXc infecting abalone from California (USA) and Baja California (Mexico). We posit that the absence of genetic variably in this marine rickettsia may be the result of evolutionary and ecological processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Linking hyporheic flow and nitrogen cycling near the Willamette River - A large river in Oregon, USA

    USGS Publications Warehouse

    Hinkle, S.R.; Duff, J.H.; Triska, F.J.; Laenen, A.; Gates, E.B.; Bencala, K.E.; Wentz, D.A.; Silva, S.R.

    2001-01-01

    Several approaches were used to characterize ground water/surface water interactions near the Willamette River - A large (ninth order) river in Oregon, USA. A series of potentiometric surface maps demonstrated the presence of highly dynamic hydraulic gradients between rivers and the adjacent aquifer. Hyporheic zone gradients extended on the order of hundreds of meters. River gains and losses at the river stretch scale (tens of kilometers) were consistent with fluxes implied by the potentiometric surface maps, and apparently reflect regional ground water/surface water interactions. Gains and losses of up to 5-10% of streamflow were observed at this scale. On the river reach scale (1-2 km), gains and losses on the order of 5% of streamflow were interpreted as representing primarily local hyporheic exchange. Isotopic and chemical data collected from shallow hyporheic zone wells demonstrated interaction between regional ground water and river water. The origin of sampled hyporheic zone water ranged from a mixture dominated by regional ground water to water containing 100% river water. The common assumption that ground and river water mix primarily in the river channel is not applicable in this system. Isotopic and chemical data also indicated that significant (nearly complete) vegetative nitrate uptake and/or nitrate reduction occurred in water from 4 of 12 hyporheic zone sites. In these cases, it was primarily nitrate transported to the hyporheic zone in regional ground water that was removed from solution. Isotopes of water and nitrate indicated that hyporheic zone water sampled at two sites was composed of water originating as river water and demonstrated that significant vegetative nitrate uptake and nitrate reduction occurred along these hyporheic zone flowpaths. Thus, the hyporheic zone may, in some instances, serve to remove nitrate from river water. Additional investigations with chemical tools and microbial enzyme assays were conducted at one hyporheic site. A

  2. Prediction of River Flooding using Geospatial and Statistical Analysis in New York, USA and Kent, UK

    NASA Astrophysics Data System (ADS)

    Marsellos, A.; Tsakiri, K.; Smith, M.

    2014-12-01

    Flooding in the rivers normally occurs during periods of excessive precipitation (i.e. New York, USA; Kent, UK) or ice jams during the winter period (New York, USA). For the prediction and mapping of the river flooding, it is necessary to evaluate the spatial distribution of the water (volume) in the river as well as study the interaction between the climatic and hydrological variables. Two study areas have been analyzed; one in Mohawk River, New York and one in Kent, United Kingdom (UK). A high resolution Digital Elevation Model (DEM) of the Mohawk River, New York has been used for a GIS flooding simulation to determine the maximum elevation value of the water that cannot continue to be restricted in the trunk stream and as a result flooding in the river may be triggered. The Flooding Trigger Level (FTL) is determined by incremental volumetric and surface calculations from Triangulated Irregular Network (TIN) with the use of GIS software and LiDAR data. The prediction of flooding in the river can also be improved by the statistical analysis of the hydrological and climatic variables in Mohawk River and Kent, UK. A methodology of time series analysis has been applied for the decomposition of the hydrological (water flow and ground water data) and climatic data in both locations. The KZ (Kolmogorov-Zurbenko) filter is used for the decomposition of the time series into the long, seasonal, and short term components. The explanation of the long term component of the water flow using the climatic variables has been improved up to 90% for both locations. Similar analysis has been performed for the prediction of the seasonal and short term component. This methodology can be applied for flooding of the rivers in multiple sites.

  3. Microplastic contamination in the San Francisco Bay, California, USA.

    PubMed

    Sutton, Rebecca; Mason, Sherri A; Stanek, Shavonne K; Willis-Norton, Ellen; Wren, Ian F; Box, Carolynn

    2016-08-15

    Despite widespread detection of microplastic pollution in marine environments, data describing microplastic abundance in urban estuaries and microplastic discharge via treated municipal wastewater are limited. This study presents information on abundance, distribution, and composition of microplastic at nine sites in San Francisco Bay, California, USA. Also presented are characterizations of microplastic in final effluent from eight wastewater treatment plants, employing varying treatment technologies, that discharge to the Bay. With an average microplastic abundance of 700,000particles/km(2), Bay surface water appears to have higher microplastic levels than other urban waterbodies sampled in North America. Moreover, treated wastewater from facilities that discharge into the Bay contains considerable microplastic contamination. Facilities employing tertiary filtration did not show lower levels of contamination than those using secondary treatment. As textile-derived fibers were more abundant in wastewater, higher levels of fragments in surface water suggest additional pathways of microplastic pollution, such as stormwater runoff. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Concentrations of organic contaminants detected during managed flow conditions, San Joaquin River and Old River, California, 2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn

    2005-01-01

    Concentrations of organic contaminants were determined in water samples collected at six surface-water sites located along the San Joaquin and Old Rivers during April through June 2001. Water samples were collected, coincident with salmon smolt caging studies conducted by researchers from the Bodega Marine Laboratory at the University of California at Davis to characterize exposure of the salmon smolt to organic contaminants. Sampling occurred prior to, during, and following the implementation of managed streamflow conditions on the San Joaquin and Old Rivers as part of the Vernalis Adaptive Management Plan. Thirteen pesticides were detected in water samples collected during this study, and at least five pesticides were detected in each sample. The total number of pesticide detections varied little between river systems and between sites, but the maximum concentrations of most pesticides occurred in San Joaquin River samples. The total number of pesticides detected varied little over the three time periods. However, during the period of managed streamflow, the fewest number of pesticides were detected at their absolute maximum concentration. Nine wastewater compounds were detected during this study. Suspended-sediment concentrations were similar for the San Joaquin and Old Rivers except during the period of managed streamflow conditions, when suspended-sediment concentration was higher at sites on the San Joaquin River than at sites on the Old River. Values for water parameters (pH, specific conductance, and hardness) were lowest during the period of managed flows.

  5. Modeled summer background concentration nutrients and suspended sediment in the mid-continent (USA) great rivers

    EPA Science Inventory

    We used regression models to predict background concentration of four water quality indictors: total nitrogen (N), total phosphorus (P), chloride, and total suspended solids (TSS), in the mid-continent (USA) great rivers, the Upper Mississippi, the Lower Missouri, and the Ohio. F...

  6. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer

    Miller, Clay

    2013-11-15

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  7. ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA

    EPA Science Inventory

    We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...

  8. Spatio-temporal patterns of the decline of fresh water mussels in the Little South Fork Cumberland River,USA

    Treesearch

    Melvin L. Warren; Wendell R. Haag

    2005-01-01

    The Little South Fork Cumberland River, Kentucky and Tennessee, USA, was a globally important conservation refugium for freshwater mussels (Mollusca:Unionidae) because it supported an intact example (26 species) of the unique Cumberland River mussel fauna including imperiled species. We used previous surveys and our 1997–1998 survey to reconstruct the historical fauna...

  9. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    USGS Publications Warehouse

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  10. Hydrometeorology Testbed in the American River Basin of Northern California

    NASA Astrophysics Data System (ADS)

    Kingsmill, D.; Lundquist, J.; Jorgensen, D.; McGinley, J.; Werner, K.

    2006-12-01

    In California, most precipitation occurs in the winter, as a mixture of rain at lower elevations and snow in the higher mountains. Storms from the Pacific carry large amounts of moisture, and put people and property at risk from flooding because of the vast urban development and infrastructure in low-lying areas of the central valley of California. Improved flood prediction at finer spatial and temporal resolutions can help minimize these risks. The first step is to accurately measure and predict spatially-distributed precipitation. This is particularly true for river basins with complex orography where the processes that lead to the development of precipitation and determine its distribution and fate on the ground are not well understood. To make progress in this important area, the U.S. National Oceanic and Atmospheric Administration (NOAA) is leading a Hydrometeorology Testbed (HMT) effort designed to accelerate the testing and infusion of new technologies, models, and scientific results from the research community into daily forecasting operations. HMT is a national effort (http://hmt.noaa.gov) that will be implemented in different regions of the U.S. over the next decade. In each region, the focus will be on individual experimental test basins. The first full-scale implementation of HMT, called HMT-West, targets northern California's flood-vulnerable American River Basin (4740 km2) on the west slopes of the Sierra Nevada between Sacramento and Lake Tahoe. The deployment strategy is focused on the North Fork of the basin (875 km2), which is the least- controlled portion of the entire catchment. This basin was selected as a test basin because it has reliable streamflow records dating back to 1941 and has been well characterized by prior field studies (e.g. the Sierra Cooperative Pilot Project) and modeling efforts, focusing on both short-term operations and long-term climate scenarios. Intensive field activities in the North Fork of the American River started in

  11. Riparian and upland vegetation on the Kings River Experimental Watershed, Sierra Nevada, California

    Treesearch

    Christopher R. Dolanc; Carolyn T. Hunsaker

    2007-01-01

    The Kings River Experimental Watershed (KREW) is a watershed-level study on headwater streams in the Sierra Nevada, California. Eight perennial streams, from 1500 m (4920 ft) to 2490 m (8170 ft) elevation, have been instrumented and collecting data since 2002. Component research areas of the study include stream flow, water chemistry, sediment, soil chemistry, stream...

  12. Organochlorines and mercury in eggs of coastal terns and herons in California, USA

    USGS Publications Warehouse

    Ohlendorf, H.M.; Custer, T.W.; Lowe, Roy W.; Rigney, M.; Cromartie, E.

    1988-01-01

    In San Franciso Bay, California, USA, concentrations of DDE and mercury in eggs differed among Caspian Tern, Forster's Tern, Black-crowned Night-Heron, and Snowy Egret in 1982. Geometric mean DDE concentrations were higher (P < 0.05) in Caspian Tern eggs (6.93 ppm, wet weight) than in eggs of other species (1.92-2.84 ppm). Mean mercury concentrations were significantly greater in Caspian Tern (1.25 ppm) and forster's Tern (0.90 ppm) eggs than in night-herons (0.41 ppm), but night-heron eggs contained higher concentrations of mercury than did the eggs of Snowy Egrets (0.21 ppm). There were no significant differences among species for mean concentrations of trans-nonachlor or PCBs; other organochlorines occurred in fewer than half of the samples, so means were not compared. Caspian Tern eggs from San Francisco Bay had higher PCB concentrations (4.85 ppm) than did eggs of this species from San Diego Bay, California (1.70 ppm) or Elkhorn Slough, California (1.83 ppm), but we detected no significant differences in mean concentrations of other organochlorines. DDE concentrations in 5 of 47 (10.6%) night-heron eggs from San Francisco Bay exceeded 8 ppm, a level associated with impaired reproduction in this species. DDE concentrations were negatively correlated with eggshell thickness in night-herons and egrets.

  13. Geochemistry of the Mattole River in Northern California

    USGS Publications Warehouse

    Kennedy, Vance C.; Malcolm, Ronald L.

    1977-01-01

    The chemical composition of streams can vary greatly with changing discharge during storm runoff. These chemical changes are related to the pathways of various water parcels from the time they fall as rain until they enter the stream, and to the interactions between water and sediment during transport downstream. In order to understand better the chemical variations during storms, an extensive investigation was made of the Mattole River, a chemically clean coastal stream in Mendocino County, California. The Mattole drains a topographically mature basin of 620 sw km which has relief of about 1200 m, a long summer dry season, and mean annual rainfall of about 2300 mm. The stream flow is composed of seasonally varying proportions of four flow components, namely, surface runoff, quick-return flow (rainfall having brief and intimate contact with the soil before entering the surface drainage), delayed-return flow, and base runoff. Each component is identified by its characteristic chemistry and by the time delay between rainfall and entrance into the stream. Information is also presented on rain chemistry, adsorption reactions of suspended sediments in the fresh and brackish environments, and compositional variation of river sediments with particle size. (Woodard-USGS)

  14. Responses of turtle assemblage to environmental gradients in the St. Croix River in Minnesota and Wisconsin, U.S.A.

    Treesearch

    Deahn DonnerWright; Michael A. Bozek; John R. Probst; Eric M. Anderson

    1999-01-01

    We investigated how environmental gradients measured along the St. Croix River in Minnesota and Wisconsin, U.S.A., influenced the turtle assemblage. Among seven species, the five most common species were generalists and had wide distributions throughout the study area. However, patterns in assemblage structure were related to environmental gradients along the river....

  15. Hyperpycnal sediment discharge from semiarid southern California rivers: Implications for coastal sediment budgets

    USGS Publications Warehouse

    Warrick, J.A.; Milliman, John D.

    2003-01-01

    Southern California rivers discharge hyperpycnal (river density greater than ocean density) concentrations of suspended sediment (>40 g/L, according to buoyancy theory) during flood events, mostly during El Nin??o-Southern Oscillation (ENSO) conditions. Because hyperpycnal river discharge commonly occurs during brief periods (hours to occasionally days), mean daily flow statistics often do not reveal the magnitude of these events. Hyperpycnal events are particularly important in rivers draining the Transverse Range and account for 75% of the cumulative sediment load discharged by the Santa Clara River over the past 50 yr. These events are highly pulsed, totaling only ??? 30 days (??? 0.15% of the total 50 yr period). Observations of the fate of sediment discharge, although rare, are consistent with hyperpycnal river dynamics and the high likelihood of turbidity currents during these events. We suggest that much of the sediment load initially bypasses the littoral circulation cells and is directly deposited on the adjacent continental shelf, thus potentially representing a loss of immediate beach sand supply. During particularly exceptional events (>100 yr recurrence intervals), flood underflows may extend past the shelf and escape to offshore basins.

  16. COMPONENTS OF SURFACE AND SUBSURFACE CONNECTIVITY IN A LARGE OREGON (USA) RIVER--WHAT CAN BE RESTORED?

    EPA Science Inventory

    We conducted research on the Willamette River in western Oregon (USA) to determine the ecological functions of off-channel habitats (OCH). OCHs have declined in our 70 km study reach of the active floodplain since European settlement. Surface and subsurface connectivity between...

  17. Basin-scale patterns in the drift of embryonic and larval fishes and lamprey ammocoetes in two coastal rivers

    Treesearch

    Jason L. White; Bret C. Harvey

    2003-01-01

    We studied the distribution and abundance of drifting embryonic and larval fishes and lampreys in the Smith and Van Duzen rivers of northern California, U.S.A. We collected seven fish species in four families and at least one lamprey species in the drift. All taxa drifted almost exclusively at night. Sculpins, Cottus aleuticus and C. asper...

  18. Wildfires alter rodent community structure across four vegetation types in southern California, USA

    USGS Publications Warehouse

    Brehme, Cheryl S.; Clark, Denise R.; Rochester, Carlton J.; Fisher, Robert N.

    2011-01-01

    We surveyed burned and unburned plots across four habitat reserves in San Diego County, California, USA, in 2005 and 2006, to assess the effects of the 2003 wildfires on the community structure and relative abundance of rodent species. The reserves each contained multiple vegetation types (coastal sage scrub, chaparral, woodland, and grassland) and spanned from 250 m to 1078 m in elevation. Multivariate analyses revealed a more simplified rodent community structure in all burned habitats in comparison to unburned habitats. Reduction in shrub and tree cover was highly predictive of changes in post-fire rodent community structure in the burned coastal sage scrub and chaparral habitats. Reduction in cover was not predictive for the less substantially burned woodlands and grasslands, for which we hypothesized that interspecific competition played a greater role in post-fire community structure. Across vegetation types, generalists and open habitat specialists typically increased in relative abundance, whereas closed habitat specialists decreased. We documented significant increases in relative abundance of the deer mouse (Peromyscus maniculatus Wagner) and Dulzura kangaroo rat (Dipodomys simulans Merriam). In contrast, we found significant decreases in relative abundance for the California mouse (Peromyscus californicus Gambel), San Diego pocket mouse (Chaetodipus fallax Merriam), desert woodrat (Neotoma lepida Thomas), and brush mouse (Peromyscus boylii Baird). Currently, our research program involves assessment of whether habitat conservation plans (HCPs) in southern California provide long-term protection to HCP covered species, as well as preserve ecosystem function. The scenario of increased wildfires needs to be incorporated into this assessment. We discuss our results in relation to management and conservation planning under a future scenario of larger and more frequent wildfires in southern California.

  19. Temporal and geographic trends in mercury concentrations in muscle tissue in five species of Hudson River, USA, fish.

    PubMed

    Levinton, Jeffrey S; Pochron, Sharon T

    2008-08-01

    We analyzed a New York (USA) state database of mercury concentrations in muscle tissue for five species of fish (striped bass, yellow perch, largemouth bass, smallmouth bass, and carp) over a range of locations in the Hudson River (USA) between 1970 and 2004. We used regression models to discern temporal and geographic change in the fish while controlling for a positive correlation between mercury concentration and body mass. Mercury concentrations significantly increased in fish from New York Harbor waters to the mid-Hudson River. Striped bass and yellow perch showed a shallower increase in mercury concentration with river mile than did carp, largemouth bass, and smallmouth bass. Mercury concentrations declined over the 34-year period. These results imply that a geographically restricted source of mercury may be spread throughout the watershed by toxin-laden dispersing species. The increase of mercury toward the north may relate to a point source in the mid-Hudson River, or it may indicate mercury released from the Adirondack watershed. The decline of mercury over three decades corresponds to a reduction of various inputs in the region. The temporal and geographic pattern of mercury in sediments corresponds to the geographic trend of mercury in fish.

  20. Channel Maintenance and Flushing Flows for the Klamath River Below Iron Gate Dam, California

    USGS Publications Warehouse

    Holmquist-Johnson, Cristopher L.; Milhous, Robert T.

    2010-01-01

    The Klamath River is a major river in northern California and southern Oregon. Iron Gate Dam divides the river into the two subunits where there is a significant change in utilization of the river. Downstream of Iron Gate Dam, the river is very important for the propagation of salmon. To address concerns relating to substrate conditions in the mainstem Klamath River below Iron Gate Dam, the Arcata, California, office of the U.S. Fish and Wildlife Service contracted with the U.S. Geological Survey (USGS) to determine flushing flows required to improve and maintain quality spawning and rearing habitats for salmon, and to reduce the abundance of preferred habitats of the polychaete worm suspected of being the intermediate host for Ceratomyxa shasta, a species of bacteria that infects fish. Historically, the river has had the capacity to move sediment just below Iron Gate Reservoir, but there have been periods when the capacity was very low. The results indicate that if the future is more like the pre-1961 period (low transport capacity) than the more recent period, there will be significant sediment issues in the Klamath River below Iron Gate Dam. It seems that during normal or wet years, winter months, and periods of high flow, sediments are flushed either downstream or deposited on higher surfaces. The recent drought conditions during 2000-2005 probably resulted in extensive fine-grained sedimentation along the river, which in turn may have caused increased establishment of aquatic vegetation and increased concentrations of C. shasta. It appears that releases from Iron Gate Dam as far downstream as Seiad Valley are important in maintaining flow conditions to flush the fines and clean the gravels in the river during summer months, or during drought years. Sediment transport studies indicate that supplemental flows during dry or drought conditions may provide some flushing flows in reaches downstream of the dam. For purposes of flushing fine sediments during drought

  1. The offshore export of sand during exceptional discharge from California rivers

    USGS Publications Warehouse

    Warrick, Jonathan A.; Barnard, Patrick L.

    2012-01-01

    Littoral cells along active tectonic margins receive large inputs of sand and gravel from coastal watersheds and commonly lose this sediment to submarine canyons. One hypothesis is that the majority of coarse (sand and gravel) river sediment discharge will be emplaced within and immediately “resupply” local littoral cells. A competing hypothesis is that the infrequent, large floods that supply the majority of littoral sediment may discharge water-sediment mixtures within negatively buoyant hyperpycnal plumes that transport sediment offshore of the littoral cell. Here we summarize pre- and post-flood surveys of two wave-dominated California (United States) river deltas during record to near-record floods to help evaluate these hypotheses: the 1982–1983 delta at the San Lorenzo River mouth and the 2005 delta at the Santa Clara River mouth. Flood sedimentation at both deltas resulted in several meters of aggradation and hundreds of meters of offshore displacement of isobaths. One substantial difference between these deltas was the thick (>2 m) aggradation of sand on the inner shelf of the Santa Clara River delta that contained substantial amounts (∼50%) of littoral-grade sediment. Once deposited on the inner shelf, only a fraction (∼20%) of this river sand was observed to migrate toward the beach over the following 5 yr. Furthermore, simple hypopycnal plume behavior could not explain deposition of this sand on the inner shelf. Thus, during an exceptional flood a substantial amount of littoral-grade sand was exported offshore of the littoral system at the Santa Clara River mouth—likely from hyperpycnal plume processes—and was deposited on the inner shelf.

  2. Characteristics of pools used by adult summer steelhead oversummering in the New River, California

    Treesearch

    Rodney J. Nakamoto

    1994-01-01

    Abstract - I assessed characteristics of pools used by oversummering adults of summer steelhead Oncorhynchus mykiss between July and October 1991 in the New River, northwestern California. Most fish occupied channel confluence pools and other pools of moderate size (200-1,200 m 2); these pools had less than 35% substrate embeddedness and mean water depths of about 1.0...

  3. Sero-prevalence of Taenia solium cysticercosis and Taenia solium taeniasis in California, USA.

    PubMed

    DeGiorgio, C; Pietsch-Escueta, S; Tsang, V; Corral-Leyva, G; Ng, L; Medina, M T; Astudillo, S; Padilla, N; Leyva, P; Martinez, L; Noh, J; Levine, M; del Villasenor, R; Sorvillo, F

    2005-02-01

    Taenia solium Cysticercosis is a leading cause of epilepsy and neurological disability in the developing world. It is caused by ingestion of the eggs of the tapeworm, T. solium Taeniasis. The prevalence of either T. solium Cysticercosis or T. solium Taeniasis in the United States in populations at risk is poorly understood. The primary objectives of this study are to perform the first study of the sero-prevalence of T. solium Cysticercosis and T. solium Taeniasis in an at-risk community in the USA, specifically rural Southern California; identify T. solium Taeniasis positive individuals, and treat positive individuals for the tapeworm T. solium Taeniasis. Community based sero-prevalence study of antibodies to T. solium Cysticercosis and T. solium Taeniasis in 449 subjects living in a federally funded, predominantly Hispanic residential community; and in two migrant farm worker camps in rural Ventura County, California, USA. For this study, fingerstick blood samples were obtained. Serum immunoblots for both T. solium Cysticercosis and T. solium Taeniasis were performed. The sero-prevalence of T. solium Cysticercosis was 1.8% and the sero-prevalence of T. solium Taeniasis by serum immunoblot was 1.1%. Taenia solium Cysticercosis and T. solium Taeniasis antibodies were not detected in children. The sero-prevalence of T. solium Taeniasis was highest in the migrant farm worker community. Handwashing frequency was correlated with T. solium Taeniasis sero-positivity. The sero-prevalence of T. solium Cysticercosis and T. solium Taeniasis in this population, as detected by serum immunoblot, approximates the prevalence in some endemic areas of Latin America. Importantly, most patients likely had prior exposure, not active infection. This study establishes for the first time, the relative sero-prevalence of T. solium Cysticercosis and T. solium Taeniasis in at-risk populations in the United States.

  4. Sea Level Rise Drove Enhanced Coastal Erosion following the Last Glacial Maximum, Southern California, U.S.A.

    NASA Astrophysics Data System (ADS)

    Sharman, G.; Covault, J. A.; Stockli, D. F.; Sickmann, Z.; Malkowski, M. A.; Johnstone, S.

    2017-12-01

    Seacliff erosion poses a major threat to southern California coastal communities, including the propensity for episodic cliff failure and damage to residential and commercial property. Rising sea level is predicted to accelerate seacliff retreat, yet few constraints exist on how rapid sea level rise influenced coastal erosion rates in pre-modern timescales. Here we look to the geologic record in submarine fans to investigate changes in relative sediment supply from rivers and coastal erosion, the latter including seacliff retreat and bluffland erosion. To understand how sea level rise driven by past global warming impacted coastal erosion rates, we sampled modern rivers of the Peninsular Ranges and latest Pleistocene-Holocene submarine canyon-fan systems in southern California for detrital zircon U-Pb geochronology (1369 analyses from 10 samples). Modern river samples show a systematic north-south change in grain age populations broadly distributed across Cretaceous time (ca. 70-135 Ma) to a predominance of middle Cretaceous grain ages (ca. 95-115 Ma), reflecting variations in the geologic age of units within each river catchment. The Carlsbad and La Jolla submarine canyon-fan systems, deposited during sea level lowstand and highstand, respectively, exhibit detrital zircon age distributions consistent with derivation from upstream rivers, with mixing in the littoral zone. However, a sample from the Oceanside fan, deposited during rapid sea level rise at ca. 13 ka, is dominated by detrital ages that lack a local source in the northern Peninsular Ranges, including latest Cretaceous, late Jurassic, and Proterozoic ages. However, such grain ages are widespread in Paleogene sedimentary rocks that comprise the shelf and coastal area, suggesting increased sediment supply from coastal and shelf erosion. Assuming that the Oceanside sample is representative of sediment production during sea level rise, sediment mixing calculations suggest a one to two orders of magnitude

  5. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and

  6. Sediment fluxes from California Coastal Rivers: the influences of climate, geology, and topography

    USGS Publications Warehouse

    Andrews, E.D.; Antweiler, Ronald C.

    2012-01-01

    The influences of geologic and climatic factors on erosion and sedimentation processes in rivers draining the western flank of the California Coast Range are assessed. Annual suspended, bedload, and total sediment fluxes were determined for 16 river basins that have hydrologic records covering all or most of the period from 1950 to 2006 and have been relatively unaffected by flow storage, regulation, and depletion, which alter the downstream movement of water and sediment. The occurrence of relatively large annual sediment fluxes are strongly influenced by the El Nino–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). The frequency of relatively large annual sediment fluxes decreases from north to south during La Nina phases and increases from north to south during El Nino phases. The influence of ENSO is modulated over a period of decades by the PDO, such that relatively large annual sediment fluxes are more frequent during a La Nina phase in conjunction with a cool PDO and during an El Nino phase in conjunction with a warm PDO. Values of mean annual sediment flux, , were regressed against basin and climatic characteristics. Basin area, bedrock erodibility, basin relief, and precipitation explain 87% of the variation in from the 16 river basins. Bedrock erodibility is the most significant characteristic influencing . Basin relief is a superior predictor of compared with basin slope. is nearly proportional to basin area and increases with increasing precipitation. For a given percentage change, basin relief has a 2.3-fold greater effect on than a similar change in precipitation. The estimated natural from all California coastal rivers for the period 1950–2006 would have been approximately 85 million tons without flow storage, regulation, and depletion; the actual has been approximately 50 million tons, because of the effects of flow storage, regulation, and depletion.

  7. Fish communities of the Sacramento River Basin: Implications for conservation of native fishes in the Central Valley, California

    USGS Publications Warehouse

    May, J.T.; Brown, L.R.

    2002-01-01

    The associations of resident fish communities with environmental variables and stream condition were evaluated at representative sites within the Sacramento River Basin, California between 1996 and 1998 using multivariate ordination techniques and by calculating six fish community metrics. In addition, the results of the current study were compared with recent studies in the San Joaquin River drainage to provide a wider perspective of the condition of resident fish communities in the Central Valley of California as a whole. Within the Sacramento drainage, species distributions were correlated with elevational and substrate size gradients; however, the elevation of a sampling site was correlated with a suite of water-quality and habitat variables that are indicative of land use effects on physiochemical stream parameters. Four fish community metrics - percentage of native fish, percentage of intolerant fish, number of tolerant species, and percentage of fish with external anomalies - were responsive to environmental quality. Comparisons between the current study and recent studies in the San Joaquin River drainage suggested that differences in water-management practices may have significant effects on native species fish community structure. Additionally, the results of the current study suggest that index of biotic integrity-type indices can be developed for the Sacramento River Basin and possibly the entire Central Valley, California. The protection of native fish communities in the Central Valley and other arid environments continues to be a conflict between human needs for water resources and the requirements of aquatic ecosystems; preservation of these ecosystems will require innovative management strategies.

  8. Katrina's Lessons in California: Social and Political Trajectories of Flood Management in the Sacramento River Watershed since 2005

    NASA Astrophysics Data System (ADS)

    Comby, E.; Le Lay, Y. F.; Piegay, H.

    2017-12-01

    Over the last decade, major changes have occurred in the way that environments are managed. They can be linked with external or internal events which may shape public perception. An external event can reveal a forgotten risk and create a social problem (Hilgartner et Bosk 1988). Following the Advocacy Coalition Framework (Sabatier 1988), we studied the role of Hurricane Katrina in flood management in California from 2005 to 2013. How do policies intend to increase the city's resilience? We compared different flood policies of the Sacramento River from 2005 to 2013, by combining field observations with a principal dataset of 340 regional newspaper items (Sacramento Bee). Media coverage was analyzed using content, quotation, and textometry as well as GIS. We underlined temporal variability in public perceptions towards floods. Some planning choices (such as levees) became controversial, while journalists praised weirs, bypasses, and dams. However, Katrina does not seem to have a real impact on urban sprawl strategies in three Sacramento neighborhoods (Fig.1). We analyzed also the limits of the comparison between New Orleans and Sacramento. Dialog between stakeholders existed in space and time between here (California) and elsewhere (Louisiana), present (post-2005) and past (Katrina catastrophe), and risk and disaster. Katrina was a national scandal with political announcements. However, flood policy was developed first at a regional and then local scales. After Katrina awareness, conflicts appear: some California residents refuse to have a policy linked to Katrina applied to them. We underlined that different stakeholders became prominent: it may be useless to tackle with only one institution. Some institutions had an integrated river management, while others kept a traditional risk management. We assessed the changes in river management while using discourse to understand the (potential) shift in human-river relationships from risk management to integrated river

  9. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    USGS Publications Warehouse

    Crandall, C.A.; Katz, B.G.; Hirten, J.J.

    1999-01-01

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). ?? Springer-Verlag.

  10. Anthropic signatures in alluvium of the Upper Little Tennessee River valley, Southern Blue Ridge Mountains, USA

    Treesearch

    Lixin Wang; David S. Leigh

    2015-01-01

    Human activities have become important influences on the fluvial systems of eastern North America since post-colonial settlement. This research identifies post-settlement anthropic signatures in alluvial sediments in the Upper Little Tennessee River, USA. Agricultural and mining activities were scattered and discontinuous in this relatively remote region of...

  11. Comparison of Enzootic Risk Measures for Predicting West Nile Disease, Los Angeles, California, USA, 2004–2010

    PubMed Central

    Kwan, Jennifer L.; Park, Bborie K.; Carpenter, Tim E.; Ngo, Van; Civen, Rachel

    2012-01-01

    In Los Angeles, California, USA, 2 epidemics of West Nile virus (WNV) disease have occurred since WNV was recognized in 2003. To assess which measure of risk was most predictive of human cases, we compared 3 measures: the California Mosquito-Borne Virus Surveillance and Response Plan Assessment, the vector index, and the Dynamic Continuous-Area Space-Time system. A case–crossover study was performed by using symptom onset dates from 384 persons with WNV infection to determine their relative environmental exposure to high-risk conditions as measured by each method. Receiver-operating characteristic plots determined thresholds for each model, and the area under the curve was used to compare methods. We found that the best risk assessment model for human WNV cases included surveillance data from avian, mosquito, and climate sources. PMID:22840314

  12. Continuous measurement of suspended-sediment discharge in rivers by use of optical backscatterance sensors

    USGS Publications Warehouse

    Schoellhamer, D.H.; Wright, S.A.; Bogen, J.; Fergus, T.; Walling, D.

    2003-01-01

    Optical sensors have been used to measure turbidity and suspended-sediment concentration by many marine and estuarine studies, and optical sensors can provide automated, continuous time series of suspended-sediment concentration and discharge in rivers. Three potential problems with using optical sensors are biological fouling, particle-size variability, and particle-reflectivity variability. Despite varying particle size, output from an optical backscatterance sensor in the Sacramento River at Freeport, California, USA, was calibrated successfully to discharge-weighted, cross-sectionally averaged suspended-sediment concentration, which was measured with the equal discharge-, or width-increment, methods and an isokinetic sampler. A correction for sensor drift was applied to the 3-year time series. However, the calibration of an optical backscatterance sensor used in the Colorado River at Cisco, Utah, USA, was affected by particle-size variability. The adjusted time series at Freeport was used to calculate hourly suspended-sediment discharge that compared well with daily values from a sediment station at Freeport. The appropriateness of using optical sensors in rivers should be evaluated on a site-specific basis and measurement objectives, potential particle size effects, and potential fouling should be considered.

  13. Recovery of thermophilic Campylobacter by three sampling methods from classified river sites in Northeast Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    It is not clear how best to sample streams for the detection of Campylobacter which may be introduced from agricultural or community land use. Fifteen sites in the watershed of the South Fork of the Broad River (SFBR) in Northeastern Georgia, USA, were sampled in three seasons. Seven sites were cl...

  14. American River Watershed Investigation, California, Feasibility Report. Part 1. Main Report. Part 2. Environmental Impact Statement/Environmental Impact Report

    DTIC Science & Technology

    1991-12-01

    determined more by economic forces than by flood protection. Thus, if inadequate flood protection rendered development in portions of the American River flood...1978 Patwin. In: Handbook of North American Indians: Volume 8 California, Robert F. Heizer , volume editor. Smithsonian Institution, Washington, D.C. pp...Norman L. & Arlean H. Towne. 1978 Nisenan. In: Handbook of North American Indians: Volume 8 California, Robert F. Heizer , volume editor. Smithsonian

  15. Suspended sediment and organic contaminants in the San Lorenzo River, California, water years 2009-2010

    USGS Publications Warehouse

    Draut, Amy E.; Conaway, Christopher H.; Echols, Kathy R.; Storlazzi, Curt D.; Ritchie, Andrew

    2011-01-01

    This report presents analyses of suspended sediment and organic contaminants measured during a two-year study of the San Lorenzo River, central California, which discharges into the Pacific Ocean within the Monterey Bay National Marine Sanctuary. Most suspended-sediment transport occurred during flooding caused by winter storms; 55 percent of the sediment load was transported by the river during a three-day flood in January 2010. Concentrations of polyaromatic hydrocarbons can exceed regulatory criteria during high-flow events in the San Lorenzo River. These results highlight the importance of episodic sediment and contaminant transport in steep, mountainous, coastal watersheds and emphasize the importance of understanding physical processes and quantifying chemical constituents in discharge from coastal watersheds on event-scale terms.

  16. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR

    Treesearch

    L. Liu; C.I. Millar; R.D. Westfall; H.A. Zebker

    2013-01-01

    Despite the abundance of rock glaciers in the Sierra Nevada of California, USA, few efforts have been made to measure their surface flow. Here we use the interferometric synthetic aperture radar (InSAR) technique to compile a~benchmark inventory describing the kinematic state of 59 active rock glaciers in this region. Statistically, these rock glaciers moved at...

  17. Dissolved and Particulate Amino Acids in the Lower Mississippi and Pearl Rivers (USA)

    NASA Astrophysics Data System (ADS)

    Duan, S.; Bianchi, T. S.

    2006-12-01

    Seasonal changes (monthly samples) in abundance and composition of dissolved and particulate amino acids were observed at one station in the lower Mississippi and Pearl Rivers (MS, USA) from September 2001 to August 2003. Spatial variability was also observed during a 4 day transmit from river-mile 225 to river mouth (Head of Passes, LA) in the Mississippi River, and a two-day downstream sampling from Jackson (MS) to Stennis Space Center (MS). Temporal data in the lower Mississippi River showed significantly lower concentrations of dissolved combined amino acids (DCAA, 0.45-1.4 μ M) and dissolved amino acids in high molecular weight fraction (HMW DAA, 0.13-0.27 μ M) than in the Pearl River (DCAA, 0.91-2.8 μ M; HMW DAA, 0.25-0.95 μ M). DCAA and HMW DAA in both rivers were generally higher during high-flow periods. DFAA was significantly lower than DCAA in both rivers (0.05-0.08 μ M), and displayed minimal seasonal variability. Total particulate amino acids (PAA) in both rivers were in the same range (0.7-1.4 μ M). A C- normalized yield of PAA (PAA-C/POC) was negatively correlated with suspended particulate matter and positively with chl-a in both rivers. No significant difference in PAA composition was observed in the two rivers. However, PAA in both rivers was relatively enriched in arginine, alanine, methionine and leucine, and depleted in aspartic acid, serine, and non-protein amino acids, compared to DCAA. While DCAA spatial variability in the lower Mississippi River was minimal, decreases in PAA (from 1.06 to 0.43 μ M) were consistent with particulate organic carbon (POC) and particulate nitrogen (PN). Frequent variations in the PAA-C/POC ratio were inversely correlated with suspended particulate matter and PAA (R = -0.7, n = 48), suggesting short- scale sedimentation and resuspension events. A gradual increase in % non-protein AA along with a loss of phytoplankton biomass along the river, suggested was indicative of bacterial utilization of labile

  18. 76 FR 59167 - Siemens Medical Solutions USA, Inc., Oncology Care Systems Division, Concord, CA; Siemens Medical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... Medical Solutions USA, Inc., Oncology Care Systems Division, Concord, CA; Siemens Medical Solutions USA... Solutions USA, Inc. (Siemens), Oncology Care Systems Division, Concord, California (subject firm). The...., Oncology Care Systems Division, Concord, California (TA-W-73,158) and Siemens Medical Solutions USA, Inc...

  19. Watershed scale response to climate change--Feather River Basin, California

    USGS Publications Warehouse

    Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Feather River Basin, California.

  20. West Pacific Forcing of Atmospheric River Events in the North Pacific and the End of California's Recent Drought

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Ding, Q.

    2017-12-01

    The prolonged drought in California has by now largely subsided due to the large number of land-falling atmospheric rivers in the 2016-2017 winter season. Here we explore intraseasonal, interannual and decadal variabilities in winter AR activity along the California coast, especially in Southern California, with a special focus on the leading modes of covariance between tropical SSTs and the 200-hPa geopotential height in the Northern Hemisphere and an understanding of how the tropical related teleconnections modulate the AR activity in the North Pacific. This new approach explores a path towards improved intra-seasonal to seasonal predictions of climate variability in Southern California and may help explain how the most recent winter, which is not the anomalously strong el Niño as that in the last winter, brought California out of drought. Finally, we will suggest a way forward to better understand the causes of the recent drought over Southern California and how we may improve projections of its future change.

  1. Response of Subalpine Conifers in the Sierra Nevada, California, U.S.A., to 20th-Century Warming and Decadal Climate Variability

    Treesearch

    Constance I. Millar; Robert D. Westfall; Diane L. Delany; John C. King; Lisa J. Graumlich

    2004-01-01

    Four independent studies of conifer growth between 1880 and 2002 in upper elevation forests of the central Sierra Nevada, California, U.S.A., showed correlated multidecadal and century-long responses associated with climate. Using tree-ring and ecological plot analysis, we studied annual branch growth of krummholz Pinus albicaulis; invasion by P....

  2. Trends in the suspended-sediment yields of coastal rivers of northern California, 1955–2010

    USGS Publications Warehouse

    Warrick, J.A.; Madej, Mary Ann; Goñi, M. A.; Wheatcroft, R.A.

    2013-01-01

    Time-dependencies of suspended-sediment discharge from six coastal watersheds of northern California – Smith River, Klamath River, Trinity River, Redwood Creek, Mad River, and Eel River – were evaluated using monitoring data from 1955 to 2010. Suspended-sediment concentrations revealed time-dependent hysteresis and multi-year trends. The multi-year trends had two primary patterns relative to river discharge: (i) increases in concentration resulting from both land clearing from logging and the flood of record during December 1964 (water year 1965), and (ii) continual decreases in concentration during the decades following this flood. Data from the Eel River revealed that changes in suspended-sediment concentrations occurred for all grain-size fractions, but were most pronounced for the sand fraction. Because of these changes, the use of bulk discharge-concentration relationships (i.e., “sediment rating curves”) without time-dependencies in these relationships resulted in substantial errors in sediment load estimates, including 2.5-fold over-prediction of Eel River sediment loads since 1979. We conclude that sediment discharge and sediment discharge relationships (such as sediment rating curves) from these coastal rivers have varied substantially with time in response to land use and climate. Thus, the use of historical river sediment data and sediment rating curves without considerations for time-dependent trends may result in significant errors in sediment yield estimates from the globally-important steep, small watersheds.

  3. Dissolved pesticides in the Alamo River and the Salton Sea, California, 1996-97

    USGS Publications Warehouse

    Crepeau, Kathryn L.; Kuivila, Kathryn; Bergamaschi, Brian A.

    2002-01-01

    Water samples were collected from the Alamo River and the Salton Sea, California, in autumn 1996 and late winter/early spring 1997 and analyzed for dissolved pesticides. The two seasons chosen for sampling were during pesticide application periods in the Imperial Valley. Pesticide concentrations were measured in filtered water samples using solid-phase extraction and analyzed by gas chromatography/mass spectrometry. Generally, the highest concentrations were measured in the Alamo River. The concentrations of carbaryl, chlorpyrifos, cycloate, dacthal, diazinon, and eptam were highest in samples collected in autumn 1996. In contrast, the concentrations of atrazine, carbofuran, and malathion were highest in samples collected in late winter/early spring 1997. The highest concentrations measured of atrazine, carbofuran, dacthal, eptam, and malathion all exceeded 1,000 nanograms per liter.

  4. Hydrologic analysis of Mojave River Basin, California, using electric analog model

    USGS Publications Warehouse

    Hardt, W.F.

    1971-01-01

    The water needs of the Mojave River basin will increase because of population and industrial growth. The Mojave Water Agency is responsible for providing sufficient water of good quality for the full economic development of the area. The U.S. Geological Survey suggested an electric analog model of the basin as a predictive tool to aid management. About 1,375 square miles of the alluvial basin was simulated by a passive resistor-capacitor network. The Mojave River, the main source of recharge, was simulated by subdividing the river into 13 reaches, depending on intermittent or perennial flow and on phreatophytes. The water loss to the aquifer was based on records at five gaging stations. The aquifer system depends on river recharge to maintain the water table as most of the ground-water pumping and development is adjacent to the river. The accuracy and reliability of the model was assessed by comparing the water-level changes computed by the model for the period 1930-63 with the changes determined from field data for the same period. The model was used to predict the effects on the physical system by determining basin-wide water-level changes from 1930-2000 under different pumping rates and extremes in flow of the Mojave River. Future pumping was based on the 1960-63 rate, on an increase of 20 percent from this rate, and on population projections to 2000 in the Barstow area. For future predictions, the Mojave River was modeled as average flow based on 1931-65 records and also as high flow, 1937-46, and low flow, 1947-65. Other model runs included water-level change 1930-63 assuming aquifer depletion only and no recharge, effects of a well field pumping 10,000 acre-feet in 4 months north of Victorville and southeast of Yermo, and effects of importing 10,000, 35,000, and 50,800 acre-feet of water per year from the California Water Project into the Mojave River for conveyance downstream.

  5. Pesticides and pesticide degradation products in stormwater runoff: Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1996-01-01

    Pesticides in stormwater runoff, within the Sacramento River Basin, California, were assessed during a storm that occurred in January 1994. Two organophosphate insecticides (diazinon and methidathion), two carbamate pesticides (molinate and carbofuran), and one triazine herbicide (simazine) were detected. Organophosphate pesticide concentrations increased with the rising stage of the hydrographs; peak concentrations were measured near peak discharge. Diazinon oxon, a toxic degradation product of diazinon, made up approximately 1 to 3 percent of the diazinon load. The Feather River was the principal source of organophosphate pesticides to the Sacramento River during this storm. The concentrations of molinate and carbofuran, pesticides applied to rice fields during May and June, were relatively constant during and after the storm. Their presence in surface water was attributed to the flooding and subsequent drainage, as a management practice to degrade rice stubble prior to the next planting. A photodegradation product of molinate, 4-keto molinate, was in all samples where molinate was detected and made up approximately 50 percent of the total molinate load. Simazine, a herbicide used in orchards and to control weeds along the roadways, was detected in the storm runoff, but it was not possible to differentiate the two sources of that pesticide to the Sacramento River.

  6. Large-scale dam removal on the Elwha River, Washington, USA: coastal geomorphic change

    USGS Publications Warehouse

    Gelfenbaum, Guy R.; Stevens, Andrew W.; Miller, Ian M.; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily

    2015-01-01

    Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that ~ 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is ~ 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that ~ 70% of the sand and gravel and ~ 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological

  7. Integrated Science Investigations of the Salton Sea, California, USA

    NASA Astrophysics Data System (ADS)

    Barnum, D.

    2006-12-01

    The Salton Sea is the latest waterbody to be formed by Colorado River floodwaters within the Salton Trough. Over the past 100 years, floodwaters have been replaced by agricultural drainage water and municipal discharges so that today, most of the water reaching the Salton Sea is agricultural drainwater flowing down the New, Alamo and Whitewater Rivers. An evaporation of about 6 feet per year and inputs of more than 4 million tons of salt per year have increased salinity of the waters of the Salton Sea. The current salinity level of approximately 46 parts per thousand is about 25% more saline than ocean water. Diverting water from the Imperial Valley agricultural lands to urban Southern California, and anticipated loss of inflows from Mexico and increasing water conservation activities will result in less water flowing into the Salton Sea. A Restoration Program is being conducted to evaluate the effects of diminished inflows on the Salton Sea Ecosystem and recommend alternatives to avoid or minimize those effects. The Salton Sea has become increasingly important as habitat for migratory birds because of wetland losses. California has lost approximately 91% of interior wetland acreage from pre-settlement until the mid-1980's. The Salton Sea provides critical habitat linking distant wetlands of Pacific and Central Flyways to wintering habitats in Mexico and Central and South America. More than 400 species of birds have been observed in the Salton Sea Ecosystem. Large percentages of the populations for several bird species such as the endangered Yuma Clapper Rail, the Eared Grebe, Snowy Plover and American White Pelican utilize the Salton Sea. Approximately 20 species of conservation concern utilize the Salton Sea ecosystem. Fish-eating birds such as Great Blue Herons, California Brown Pelicans, Double-crested Cormorants and several species of egrets are highly dependent upon the fishery of the Salton Sea. The Salton Sea fishery is now primarily comprised of tilapia

  8. Higher Education Transformation: Some Trends in California and Asia

    ERIC Educational Resources Information Center

    Hawkins, John N.

    2008-01-01

    This article discusses higher education transformation in California, the wider USA, and Asia. It touches on several sensitive topics, including the relationship between higher education and the public good versus commodification, privatization, and centralization versus decentralization, as well as others. In the USA and California, this has led…

  9. Invading species in the Eel River, California: Successes, failures, and relationships with resident species

    USGS Publications Warehouse

    Brown, L.R.; Moyle, P.B.

    1997-01-01

    We examined invasions of non-native fishes into the Eel River, California. At least 16 species of fish have been introduced into the drainage which originally supported 12-14 fish species. Our study was prompted by the unauthorized introduction in 1979 of Sacramento squawfish, Ptychocheilus grandis, a large predatory cyprinid. From 1986 to 1990, we conducted growth and diet studies of squaw fish, conducted intensive surveys of the distribution and habitat associations of both native and introduced species, and examined the nature of species-habitat and interspecies relationships. We found no evidence for increased growth or expanded feeding habits, compared to native populations, of Sacramento squawfish as they invaded the Eel River drainage. Ten of the introduced species were well established, with four species limited to a reservoir and six species established in streams. The success or failure of introductions of stream species appeared to be a function of the ability of a species to survive the fluctuating, highly seasonal, flow regime. The present mixture of native and exotic species has not formed stable fish assemblages but it seems likely that four habitat-associated assemblages will develop. The overall effect of the successful species introductions has been to assemble a group of species, with some exceptions, that are native to and occur together in many California streams. The assemblages now forming are similar to those found in other California streams. The assemblage characterized by squawfish and suckers is likely to be resistant to invasion, in the absence of human caused habitat modifications.

  10. Trends In Particulate Organic Carbon Composition In Oregon And California Coast Range Rivers

    NASA Astrophysics Data System (ADS)

    Hatten, J. A.; Goni, M. A.; Wheatcroft, R. A.; Borgeld, J.; Williamson, A.; Padgett, J.; Pasternack, G. B.; Gray, A.; Watson, E.

    2009-12-01

    The discharge of particulate organic carbon (POC) from small mountainous rivers may contribute nearly half of the world’s POC to the ocean. However, these smaller rivers have highly variable discharges throughout the year, which in turn affect the content and composition of POC being delivered to coastal margins. Further, POC composition has been shown to vary by season and throughout specific events. Understanding the composition of POC being discharged under these various conditions yields clues about the material’s stability in the coastal environment, its source within the watershed, and the process of delivery. During the 2008 and 2009 water years, suspended sediment samples were collected from the Alsea, Umpqua, Eel, and Salinas Rivers draining the Coast Ranges of Oregon and California. Events and discharges of various magnitudes were captured in this sample set. Fine (<63 μm) and coarse (>63 μm) particulate material was analyzed for OC, N, δ13C, δ15N, Δ14C, and cupric oxide oxidation products (e.g. lignin, cutin). This poster will present results from these coastal rivers and explore trends in POC in the context of watershed characteristics, discharge, season, and event-scale processes.

  11. SRTM Perspective View with Landsat Overlay: Santa Paula, and Santa Clara River Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Rectangular fields of the agriculturally rich Santa Clara River Valley are visible in this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image. The Santa Clara River, which lends its name to this valley, flows from headwaters near Acton, California, 160 km (100 miles) to the Pacific Ocean, and is one of only two natural river systems remaining in southern California. In the foreground of this image, the largely dry riverbed can be seen as a bright feature as it winds its way along the base of South Mountain. The bright region at the right end of this portion of the valley is the city of Santa Paula, California. Founded in 1902, this small, picturesque town at the geographic center of Ventura County is referred to as the 'Citrus Capital of the World.' The city is surrounded by orange, lemon, and avocado groves and is a major distribution point for citrus fruits in the United States. The bright, linear feature in the center of the valley is State Highway 126, the valley's 'main drag.' For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory

  12. Gonad organochlorine concentrations and plasma steroid levels in white sturgeon (Acipenser transmontanus) from the Columbia River, USA

    USGS Publications Warehouse

    Foster, E.P.; Fitzpatrick, M.S.; Feist, G.W.; Schreck, C.B.; Yates, J.

    2001-01-01

    Sturgeon are an important fishery resource world-wide, providing food and income through commercial, sport, and tribal fisheries. However, sturgeon populations are imperiled in many areas due to overharvest, habitat loss, and pollution. White Sturgeon (Acipenser transmontanus) are found along the west coast of North America from San Francisco Bay, USA to British Columbia, Canada. The Columbia River, located in the Pacific Northwest USA, supports active commercial, sport, and tribal white sturgeon fisheries. The white sturgeon fishery in the Columbia River estuary is one of the most productive sturgeon fisheries in the World. Despite the success of the Columbia River estuary white sturgeon fishery, the populations within the impounded sections (i.e. behind the hydroelectric dams) of the Columbia River experience poor reproductive success (Beamesderfer et al. 1995). This poor reproductive success has been attributed to hydroelectric development, but water pollution could also be a significant factor. The bottom dwelling life history and late maturing reproductive strategy for this species may make it particularly sensitive to the adverse effects of bioaccumulative pollutants.The Columbia River receives effluent from bleached-kraft pulp mills, aluminum smelters, municipal sewage treatment plants and runoff from agricultural. industrial, and urban areas. Bioaccumulative contaminants that have the potential for endocrine disruption have been detected in fish and sediments from the Columbia River (Foster et al. 1999). An integrated system of hormones control reproduction in vertebrates. Plasma steroids direct developmental events essential for reproduction. Disruption of endocrine control by contaminants has been linked to reproductive anomalies and failure in a number of vertebrate species (Guillette et al. 1996; Jobling et al. 1996). Because of this, it is important to understand if organochlorine compounds are accumulating in Columbia River white sturgeon and having

  13. Water's Way at Sleepers River watershed - revisiting flow generation in a post-glacial landscape, Vermont USA

    Treesearch

    James B. Shanley; Stephen D. Sebestyen; Jeffrey J. McDonnell; Brian L. McGlynn; Thomas Dunne

    2015-01-01

    The Sleepers River Research Watershed (SRRW) in Vermont, USA, has been the site of active hydrologic research since 1959 and was the setting where Dunne and Black demonstrated the importance and controls of saturation-excess overland flow (SOF) on streamflow generation. Here, we review the early studies from the SRRW and show how they guided our conceptual approach to...

  14. Application of environmental groundwater tracers at the Sulphur Bank Mercury Mine, California, USA

    USGS Publications Warehouse

    Engle, M.A.; Goff, F.; Jewett, D.G.; Reller, G.J.; Bauman, J.B.

    2008-01-01

    Boron, chloride, sulfate, ??D, ??18O, and 3H concentrations in surface water and groundwater samples from the Sulphur Bank Mercury Mine (SBMM), California, USA were used to examine geochemical processes and provide constraints on evaporation and groundwater flow. SBMM is an abandoned sulfur and mercury mine with an underlying hydrothermal system, adjacent to Clear Lake, California. Results for non-3H tracers (i.e., boron, chloride, sulfate, ??D, and ??18O) identify contributions from six water types at SBMM. Processes including evaporation, mixing, hydrothermal water input and possible isotopic exchange with hydrothermal gases are also discerned. Tritium data indicate that hydrothermal waters and other deep groundwaters are likely pre-bomb (before ???1952) in age while most other waters were recharged after ???1990. A boron-based steady-state reservoir model of the Herman Impoundment pit lake indicates that 71-79% of its input is from meteoric water with the remainder from hydrothermal contributions. Results for groundwater samples from six shallow wells over a 6-month period for ??D and ??18O suggests that water from Herman Impoundment is diluted another 3% to more than 40% by infiltrating meteoric water, as it leaves the site. Results for this investigation show that environmental tracers are an effective tool to understand the SBMM hydrogeologic regime. ?? Springer-Verlag 2007.

  15. Quantifying the fire regime distributions for severity in Yosemite National Park, California, USA

    USGS Publications Warehouse

    Thode, Andrea E.; van Wagtendonk, Jan W.; Miller, Jay D.; Quinn, James F.

    2011-01-01

    This paper quantifies current fire severity distributions for 19 different fire-regime types in Yosemite National Park, California, USA. Landsat Thematic Mapper remote sensing data are used to map burn severity for 99 fires (cumulatively over 97 000 ha) that burned in Yosemite over a 20-year period. These maps are used to quantify the frequency distributions of fire severity by fire-regime type. A classification is created for the resultant distributions and they are discussed within the context of four vegetation zones: the foothill shrub and woodland zone; the lower montane forest zone; the upper montane forest zone and the subalpine forest zone. The severity distributions can form a building block from which to discuss current fire regimes across the Sierra Nevada in California. This work establishes a framework for comparing the effects of current fires on our landscapes with our notions of how fires historically burned, and how current fire severity distributions differ from our desired future conditions. As this process is refined, a new set of information will be available to researchers and land managers to help understand how fire regimes have changed from the past and how we might attempt to manage them in the future.

  16. Groundwater quality in the Mokelumne, Cosumnes, and American River Watersheds, Sierra Nevada, California

    USGS Publications Warehouse

    Fram, Miranda S.; Shelton, Jennifer L.

    2018-03-23

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Mokelumne, Cosumnes, and American River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking-water supplies.

  17. Source, movement and age of groundwater in the upper part of the Mojave River Basin, California, USA

    USGS Publications Warehouse

    Izbicki, J.A.; Martin, P.; Michel, R.L.

    1995-01-01

    Water samples from wells were collected and analysed for oxygen-18, deuterium, tritium, carbon-14, and carbon-13 to determine the source, movement and age of groundwater in the upper part of the Mojave River basin. Water in the alluvial aquifer has a median deuterium composition of -66??? and contains tritium, and was recently recharged by water from the Mojave River. Water in the regional aquifer near the Mojave River, near Summit Valley, and underlying several small washes has deuterium compositions heavier than -60???. Although some water in the regional aquifer near the Mojave River contains tritium, most of this water does not contain tritium. Carbon-14 data indicate that this water was recharged less than 2400 years ago. Water in the remainder of the regional aquifer has a median deuterium composition of -84???, which is as much as 20??? lighter than the volume-weighted deuterium composition of present-day precipitation. These data show that this water was recharged under climatic conditions different from average conditions today. Carbon-14 data indicate that some water in the regional aquifer was recharged more than 20 000 years ago.Water samples from wells were collected and analyzed for oxygen-18, deuterium, tritium, carbon-14, and carbon-13 to determine the source, movement and age of groundwater in the upper part of the Mojave River basin. Water in the alluvial aquifer has a median deuterium composition of -66qq and contains tritium, and was recently recharged by water from the Mojave River. Water in the regional aquifer near the Mojave River, near Summit Valley, and underlying several small washes has deuterium compositions heavier than -60qq. Although some water in the regional aquifer near the Mojave River contains tritium, most of this water does not contain tritium. Carbon-14 data indicate that this water was recharged less than 2400 years ago. Water in the remainder of the regional aquifer has a median deuterium composition of -84qq, which is as

  18. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river

    USGS Publications Warehouse

    Warrick, J.A.; Xu, Jie; Noble, M.A.; Lee, H.J.

    2008-01-01

    Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January-February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (???5 cm/s) were observed in the lower 20-40 cm of the water column 4-6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25-50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (???1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.

  19. Extensive geographic and ontogenetic variation characterizes the trophic ecology of a temperate reef fish on southern California (USA) rocky reefs

    PubMed Central

    Hamilton, Scott L.; Caselle, Jennifer E.; Lantz, Coulson A.; Egloff, Tiana L.; Kondo, Emi; Newsome, Seth D.; Loke-Smith, Kerri; Pondella, Daniel J.; Young, Kelly A.; Lowe, Christopher G.

    2015-01-01

    Interactions between predator and prey act to shape the structure of ecological communities, and these interactions can differ across space. California sheephead Semicossyphus pulcher are common predators of benthic invertebrates in kelp beds and rocky reefs in southern California, USA. Through gut content and stable isotope (δ13C and †15N) analyses, we investigated geographic and ontogenetic variation in trophic ecology across 9 populations located at island and mainland sites throughout southern California. We found extensive geographic variation in California sheephead diet composition over small spatial scales. Populations differed in the proportion of sessile filter/suspension feeders or mobile invertebrates in the diet. Spatial variation in diet was highly correlated with other life history and demographic traits (e.g. growth, survivorship, reproductive condition, and energy storage), in addition to proxies of prey availability from community surveys. Multivariate descriptions of the diet from gut contents roughly agreed with the spatial groupings of sites based on stable isotope analysis of both California sheephead and their prey. Ontogenetic changes in diet occurred consistently across populations, despite spatial differences in size structure. As California sheephead increase in size, diets shift from small filter feeders, like bivalves, to larger mobile invertebrates, such as sea urchins. Our results indicate that locations with large California sheephead present, such as many marine reserves, may experience increased predation pressure on sea urchins, which could ultimately affect kelp persistence. PMID:26246648

  20. Wind energy development in California, USA

    USGS Publications Warehouse

    Wilshire, H.; Prose, D.

    1987-01-01

    Windfarms have been developed rapidly in California in the last few years. The impetus has been a legislated goal to generate 10% of California's electricity by windpower by the year 2000, and generous state and federal tax incentives. Windpower is promoted as environmentally benign, which it is in traditional uses. The California program, however, is not traditional: it calls for centralized development of a magnitude sufficient to offset significant amounts of fossil fuels now used to generate electricity. Centralized windfarm development, as exemplified by the Altamont Pass, Tehachapi Mountains, and San Gorgonio Pass developments, involves major road building projects in erosion-sensitive terrain, effective closure of public lands, and other detrimental effects. A windfarm consisting of 200 turbines with 17-m rotors located in steep terrain 16 km from an existing corridor might occupy 235 ha and physically disturb 86 ha. With average annual wind speeds of 22.5 km/h, the farm would generate about 10??106 kWh/year at present levels of capacity. This annual production would offset 1% of one day's consumption of oil in California. To supply 10% of the state's electricity (at 1984 production rates) would require about 600,000 turbines of the type in common use today and would occupy more than 685,000 ha. It is likely that indirect effects would be felt in much larger areas and would include increased air and water pollution resulting from accelerated erosion, degradation of habitat of domestic and wild animals, damage to archaeological sites, and reduction of scenic quality of now-remote areas of the state. ?? 1987 Springer-Verlag New York Inc.

  1. Edaphic, salinity, and stand structural trends in chronosequences of native and non-native dominated riparian forests along the Colorado River, USA

    USGS Publications Warehouse

    Merritt, David M.; Shafroth, Patrick B.

    2012-01-01

    Tamarix spp. are introduced shrubs that have become among the most abundant woody plants growing along western North American rivers. We sought to empirically test the long-held belief that Tamarix actively displaces native species through elevating soil salinity via salt exudation. We measured chemical and physical attributes of soils (e.g., salinity, major cations and anions, texture), litter cover and depth, and stand structure along chronosequences dominated by Tamarix and those dominated by native riparian species (Populus or Salix) along the upper and lower Colorado River in Colorado and Arizona/California, USA. We tested four hypotheses: (1) the rate of salt accumulation in soils is faster in Tamarix-dominated stands than stands dominated by native species, (2) the concentration of salts in the soil is higher in mature stands dominated by Tamarix compared to native stands, (3) soil salinity is a function of Tamarix abundance, and (4) available nutrients are more concentrated in native-dominated stands compared to Tamarix-dominated stands. We found that salt concentration increases at a faster rate in Tamarix-dominated stands along the relatively free-flowing upper Colorado but not along the heavily-regulated lower Colorado. Concentrations of ions that are known to be preferentially exuded by Tamarix (e.g., B, Na, and Cl) were higher in Tamarix stands than in native stands. Soil salt concentrations in older Tamarix stands along the upper Colorado were sufficiently high to inhibit germination, establishment, or growth of some native species. On the lower Colorado, salinity was very high in all stands and is likely due to factors associated with floodplain development and the hydrologic effects of river regulation, such as reduced overbank flooding, evaporation of shallow ground water, higher salt concentrations in surface and ground water due to agricultural practices, and higher salt concentrations in fine-textured sediments derived from naturally saline

  2. Predicting thermal reference conditions for USA streams and rivers

    USGS Publications Warehouse

    Hill, Ryan A.; Hawkins, Charles P.; Carlisle, Daren M.

    2013-01-01

    Temperature is a primary driver of the structure and function of stream ecosystems. However, the lack of stream temperature (ST) data for the vast majority of streams and rivers severely compromises our ability to describe patterns of thermal variation among streams, test hypotheses regarding the effects of temperature on macroecological patterns, and assess the effects of altered STs on ecological resources. Our goal was to develop empirical models that could: 1) quantify the effects of stream and watershed alteration (SWA) on STs, and 2) accurately and precisely predict natural (i.e., reference condition) STs in conterminous USA streams and rivers. We modeled 3 ecologically important elements of the thermal regime: mean summer, mean winter, and mean annual ST. To build reference-condition models (RCMs), we used daily mean ST data obtained from several thousand US Geological Survey temperature sites distributed across the conterminous USA and iteratively modeled ST with Random Forests to identify sites in reference condition. We first created a set of dirty models (DMs) that related STs to both natural factors (e.g., climate, watershed area, topography) and measures of SWA, i.e., reservoirs, urbanization, and agriculture. The 3 models performed well (r2 = 0.84–0.94, residual mean square error [RMSE] = 1.2–2.0°C). For each DM, we used partial dependence plots to identify SWA thresholds below which response in ST was minimal. We then used data from only the sites with upstream SWA below these thresholds to build RCMs with only natural factors as predictors (r2 = 0.87–0.95, RMSE = 1.1–1.9°C). Use of only reference-quality sites caused RCMs to suffer modest loss of predictor space and spatial coverage, but this loss was associated with parts of ST response curves that were flat and, therefore, not responsive to further variation in predictor space. We then compared predictions made with the RCMs to predictions made with the DMs with SWA set to 0. For most

  3. Impacts of Migratory Sandhill Cranes (Grus canadensis) on Microbial Water Quality in the Central Platte River, Nebraska, USA

    EPA Science Inventory

    Wild birds have been shown to be significant sources of numerous types of pathogens that are relevant to humans and agriculture. The presence of large numbers of migratory birds in such a sensitive and important ecosystem as the Platte River in central Nebraska, USA, could potent...

  4. Colorado River Floods, Droughts, and Shrimp Fishing in the Upper Gulf of California, Mexico

    NASA Astrophysics Data System (ADS)

    All, John D.

    2006-01-01

    Accurate procedures that measure hydrologic variability would have great value for evaluating ecosystem impacts of upstream water use in the Colorado River Basin. Many local extractive income-based stakeholders rely directly or indirectly on ecosystem health and are adversely affected when the river does not flow. This study focuses on the impact of little or no Colorado River flow on the Mexican shrimp industry. Although there have been complaints that U.S. diversions of Colorado River flow have greatly impaired the shrimp fishery, this research demonstrates that freshwater rarely reaches the Gulf even during times of flooding, and that other factors such as overfishing may influence the instability of shrimp populations. Advanced very-high-resolution radiometer (AVHRR) satellite imagery was used to assess water volumes diverted away from the channel of the Colorado River and ultimately the Gulf of California during flooding periods. Analysis of data demonstrated that little freshwater actually reaches the Gulf even during floods because of its diversion into a large dry lake bed basin known as Laguna Salada. Fuller use of the Colorado River throughout its entire course to the sea is possible and could benefit a large cohort of users without catastrophic habitat destruction in delta ecosystems. Reconstruction of a natural earthen berm, as proposed by Ducks Unlimited, would maximize the use of floodwaters for ecosystem benefits. These findings have profound implications for local economic activities dependent on hydrologic resources in the Colorado River Delta and Upper Gulf.

  5. Colorado river floods, droughts, and shrimp fishing in the upper gulf of California, Mexico.

    PubMed

    All, John D

    2006-01-01

    Accurate procedures that measure hydrologic variability would have great value for evaluating ecosystem impacts of upstream water use in the Colorado River Basin. Many local extractive income-based stakeholders rely directly or indirectly on ecosystem health and are adversely affected when the river does not flow. This study focuses on the impact of little or no Colorado River flow on the Mexican shrimp industry. Although there have been complaints that U.S. diversions of Colorado River flow have greatly impaired the shrimp fishery, this research demonstrates that freshwater rarely reaches the Gulf even during times of flooding, and that other factors such as overfishing may influence the instability of shrimp populations. Advanced very-high-resolution radiometer (AVHRR) satellite imagery was used to assess water volumes diverted away from the channel of the Colorado River and ultimately the Gulf of California during flooding periods. Analysis of data demonstrated that little freshwater actually reaches the Gulf even during floods because of its diversion into a large dry lake bed basin known as Laguna Salada. Fuller use of the Colorado River throughout its entire course to the sea is possible and could benefit a large cohort of users without catastrophic habitat destruction in delta ecosystems. Reconstruction of a natural earthen berm, as proposed by Ducks Unlimited, would maximize the use of floodwaters for ecosystem benefits. These findings have profound implications for local economic activities dependent on hydrologic resources in the Colorado River Delta and Upper Gulf.

  6. Stormwater input of pyrethroid insecticides to an urban river.

    PubMed

    Weston, Donald P; Lydy, Michael J

    2012-07-01

    The American River flows for nearly 50 km through highly urbanized lands surrounding Sacramento, California, USA. Twenty-three streams, drainage canals, or pumping stations discharge urban runoff to the river, with the cumulative effect of nearly doubling the river's flow during rain events. During winter storms, the water column in the most downstream 13-km reach of the river exhibited toxicity to the standard testing species, Hyalella azteca, in 52% of samples, likely because of the pyrethroid insecticide bifenthrin. The compound is heavily used by professional pest controllers, either as a liquid perimeter treatment around homes or as granules broadcast over landscaped areas. It was found in 11 of 12 runoff sources examined, at concentrations averaging five times the H. azteca 96-h EC50. Quantified inputs of bifenthrin should have been sufficient to attain peak concentrations in the river twice those actually observed, suggesting loss by sedimentation of particulates and pesticide adsorption to the substrate and/or vegetation. Nevertheless, observed bifenthrin concentrations in the river were sufficient to cause water column toxicity, demonstrated during six storms studied over three successive winters. Toxicity and bifenthrin concentrations were greatest when river flow was low (<23 m(3) /s) but persisted even at atypically high flows (585 m(3) /s). Copyright © 2012 SETAC.

  7. Response surfaces of vulnerability to climate change: The Colorado River Basin, the High Plains, and California

    Treesearch

    Romano Foti; Jorge A. Ramirez; Thomas C. Brown

    2014-01-01

    We quantify the vulnerability of water supply to shortage for the Colorado River Basin and basins of the High Plains and California and assess the sensitivity of their water supply system to future changes in the statistical variability of supply and demand. We do so for current conditions and future socio-economic scenarios within a probabilistic framework that...

  8. Carbon and nutrient contents in soils from the Kings River Experimental Watersheds, Sierra Nevada Mountains, California

    Treesearch

    D.W. Johnson; C.T. Hunsaker; D.W. Glass; B.M. Rau; B.A. Roath

    2011-01-01

    Soil C and nutrient contents were estimated for eight watersheds in two sites (one high elevation, Bull, and one low elevation, Providence) in the Kings River Experimental Watersheds in the western Sierra Nevada Mountains of California. Eighty-seven quantitative pits were dug to measure soil bulk density and total rock content, while three replicate surface samples...

  9. Role of climate and invasive species in structuring trout distributions in the interior Columbia River Basin, USA

    Treesearch

    Seth J. Wenger; Daniel J. Isaak; Jason B. Dunham; Kurt D. Fausch; Charlie Luce; Helen M. Neville; Bruce E. Rieman; Michael K. Young; David E. Nagel; Dona L. Horan; Gwynne L. Chandler

    2011-01-01

    Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus...

  10. Spatial relationships in a dendritic network: the herpetofaunal metacommunity of the Mattole River catchment of northwest California.

    Treesearch

    Hartwell Welsh; Garth Hodgson

    2010-01-01

    We investigated the aquatic and riparian herpetofauna in a 789 km² river catchment in northwest California to examine competing theories of biotic community structuring in catchment stream networks. Research in fluvial geomorphology has resulted in multi-scale models of dynamic processes that cyclically create, maintain, and destroy environments in stream...

  11. Use of historically fishless high-mountain lakes and streams by neartic River Otters (Lontra canadensis) in California

    Treesearch

    Justin M. Garwood; Roland A. Knapp; Karen L. Pope; Robert L. Grasso; Michael L. Magnuson; Jeff R. Maurer

    2013-01-01

    In California, River Otters (Lontra canadensis) are most commonly associated with food-rich lowland aquatic habitats where they forage primarily on fish and crustaceans. Their distribution in high-elevation montane regions of the state, areas in which fish and crayfish were absent historically, is largely unknown.We compiled occurrence records of...

  12. Water Quality Assessment of the Los Angeles River Watershed, California, USA in Wet and Dry Weather Periods

    NASA Astrophysics Data System (ADS)

    Rezaie Boroon, M. H.; Von L Coo, C.

    2015-12-01

    The purpose of this study is to identify sources of potential pollutants and characterize urban water quality along the Los Angeles River from its head to the mouth during dry and wet weather periods. Los Angeles (LA) River flows through heavily populated urbanized area in the Los Angeles downtown. The LA River is an effluent-dominated water body during the dry season. The three waste water treatment plants (WWTP) including the Tillman, Burbank, and Glendale discharge the majority of the volume flowing in the LA River during the dry and wet period. The concentration values (ppm) for anions in the dry season ranging 5.5-16,027 (Cl), 0-1.0 (F), 0-21(NO3), 0-1.6 (PO4), and 13.3-2,312 (SO4); whereas the values (ppm) for anions in the wet season ranging 3.4-5,860 (Cl), 0-0.66 (F), 0-17 (NO3), 0-0.67 (PO4), 7.9- 745 (SO4). Dry season concentrations values for trace metals were obtained with values (ppb) ranging 0.9-10 (Ni), 0.8-62 (Zn), 1-4 (As), 0-1 (Pb) and 0-3 (Se). As for wet season trace metals (ppb) ranging 0.001-0.008 (Ni), 0.000001-0.038 (Zn), 0.0016-0.016 (As), 0.00099-0.0058 (Pb), 0.000001-0.0093 (Se). Higher concentrations values during the dry period in the LA River watershed may be attributed to the three WWTPs discharge (75% of the volume of water flowing in the LA River). In water-limited areas such as the Los Angeles basin, urban runoff is a water resource that could enhance restricted water supplies and to enhance localized renewable groundwater resources, thus an assessment of this precious water resource is important for local city and regulatory organizations. In water-limited areas such as the LA basin, urban runoff is a water resource that could enhance restricted water supplies and groundwater resources, thus an assessment of this precious water resource is important for local regulatory organizations.

  13. 76 FR 87 - Grant of Authority for Subzone Status; Skechers USA, LLC (Distribution of Footwear); Moreno...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... Status; Skechers USA, LLC (Distribution of Footwear); Moreno Valley, California Pursuant to its authority... distribution facility of Skechers USA, LLC, located in Moreno Valley, California, (FTZ Docket 5- 2008, filed 2... activity related to footwear warehousing and distribution at the facility of Skechers USA, LLC, located in...

  14. The remarkable occurrence of large rainfall-induced debris flows at two different locations on July 12, 2008, Southern Sierra Nevada, CA, USA

    USGS Publications Warehouse

    DeGraff, J.V.; Wagner, D.L.; Gallegos, A.J.; DeRose, M.; Shannon, C.; Ellsworth, T.

    2011-01-01

    On July 12, 2008, two convective cells about 155 km apart produced a brief period of intense rainfall triggering large debris flows in the southern Sierra Nevada. The northernmost cell was centered over Oak Creek Canyon, an east-flowing drainage, and its tributaries near Independence, CA, USA. About 5:00 P.M., debris flows passed down the South Fork and North Fork of Oak Creek to merge into a large single feature whose passage affected the historic Mt. Whitney Fish hatchery and blocked California State Highway 395. At about the same time, the southernmost cell was largely centered over Erskine Creek, a main tributary of the west-flowing Kern River. Debris flows issued from several branches to coalesce into a large debris flow that passed along Erskine Creek, through the town of Lake Isabella, CA, USA and into the Kern River. It was observed reaching Lake Isabella about 6:30 P.M. Both debris flows caused significant disruption and damage to local communities. ?? 2011 Springer-Verlag.

  15. Macroinvertebrate Responses to Constructed Riffles in the Cache River, Illinois, USA

    NASA Astrophysics Data System (ADS)

    Walther, Denise A.; Whiles, Matt R.

    2008-04-01

    Stream restoration practices are becoming increasingly common, but biological assessments of these improvements are still limited. Rock weirs, a type of constructed riffle, were implemented in the upper Cache River in southern Illinois, USA, in 2001 and 2003-2004 to control channel incision and protect high quality riparian wetlands as part of an extensive watershed-level restoration. Construction of the rock weirs provided an opportunity to examine biological responses to a common in-stream restoration technique. We compared macroinvertebrate assemblages on previously constructed rock weirs and newly constructed weirs to those on snags and scoured clay streambed, the two dominant substrates in the unrestored reaches of the river. We quantitatively sampled macroinvertebrates on these substrates on seven occasions during 2003 and 2004. Ephemeroptera, Plecoptera, and Trichoptera (EPT) biomass and aquatic insect biomass were significantly higher on rock weirs than the streambed for most sample periods. Snags supported intermediate EPT and aquatic insect biomass compared to rock weirs and the streambed. Nonmetric multidimensional scaling (NMDS) ordinations for 2003 and 2004 revealed distinct assemblage groups for rock weirs, snags, and the streambed. Analysis of similarity supported visual interpretation of NMDS plots. All pair-wise substrate comparisons differed significantly, except recently constructed weirs versus older weirs. Results indicate positive responses by macroinvertebrate assemblages to in-stream restoration in the Cache River. Moreover, these responses were not evident with more common measures of total density, biomass, and diversity.

  16. Toxicity of two insecticides to California, USA, anurans and its relevance to declining amphibian populations

    USGS Publications Warehouse

    Sparling, D.W.; Fellers, G.M.

    2009-01-01

    Contaminants have been associated with population declines of several amphibian species in California (USA). Pesticides from the Central Valley of California are transported by winds into the Sierra Nevada Mountains and precipitate into wet meadows where amphibians breed. The present study examined the chronic toxicity of two of the insecticides most commonly used in the Central Valley and found in the mountains, chlorpyrifos and endosulfan, to larval Pacific treefrogs (Pseudacris regilla) and foothill yellow-legged frogs (Rana boylii) and discusses the implications of this toxicity to declining amphibian populations. Larvae were exposed to the pesticides from Gosner stages 25 to 26 through metamorphosis. The estimated median lethal concentration (LC50) for chlorpyrifos was 365 ??g/L in P. regilla and 66.5 ??g/L for R. boylii. Time to metamorphosis increased with concentration of chlorpyrifos in both species, and cholinesterase activity declined with exposure concentration in metamorphs of both species at Gosner stages 42 to 46. For endosulfan, the estimated LC50 was 15.6 ??g/L for P. regilla and 0.55 ??g/L for R. boylii. All R. boylii exposed to concentrations of greater than 0.8 ??g/L died before they entered metamorphosis. Pseudacris regilla remains relatively abundant and is broadly distributed throughout California. In contrast, R. boylii is among the species experiencing severe population declines. The present study adds to the increasing evidence that pesticides are very harmful to amphibians living in areas that are miles from sources of pesticide application. ?? 2009 SETAC.

  17. An Assessment of Climate Change Impacts on Los Angeles (California USA) Hospitals, Wildfires Highest Priority.

    PubMed

    Adelaine, Sabrina A; Sato, Mizuki; Jin, Yufang; Godwin, Hilary

    2017-10-01

    Introduction Although many studies have delineated the variety and magnitude of impacts that climate change is likely to have on health, very little is known about how well hospitals are poised to respond to these impacts. Hypothesis/Problem The hypothesis is that most modern hospitals in urban areas in the United States need to augment their current disaster planning to include climate-related impacts. Using Los Angeles County (California USA) as a case study, historical data for emergency department (ED) visits and projections for extreme-heat events were used to determine how much climate change is likely to increase ED visits by mid-century for each hospital. In addition, historical data about the location of wildfires in Los Angeles County and projections for increased frequency of both wildfires and flooding related to sea-level rise were used to identify which area hospitals will have an increased risk of climate-related wildfires or flooding at mid-century. Only a small fraction of the total number of predicted ED visits at mid-century would likely to be due to climate change. By contrast, a significant portion of hospitals in Los Angeles County are in close proximity to very high fire hazard severity zones (VHFHSZs) and would be at greater risk to wildfire impacts as a result of climate change by mid-century. One hospital in Los Angeles County was anticipated to be at greater risk due to flooding by mid-century as a result of climate-related sea-level rise. This analysis suggests that several Los Angeles County hospitals should focus their climate-change-related planning on building resiliency to wildfires. Adelaine SA , Sato M , Jin Y , Godwin H . An assessment of climate change impacts on Los Angeles (California USA) hospitals, wildfires highest priority. Prehosp Disaster Med. 2017;32(5):556-562.

  18. Estimation of local extreme suspended sediment concentrations in California Rivers.

    PubMed

    Tramblay, Yves; Saint-Hilaire, André; Ouarda, Taha B M J; Moatar, Florentina; Hecht, Barry

    2010-09-01

    The total amount of suspended sediment load carried by a stream during a year is usually transported during one or several extreme events related to high river flow and intense rainfall, leading to very high suspended sediment concentrations (SSCs). In this study quantiles of SSC derived from annual maximums and the 99th percentile of SSC series are considered to be estimated locally in a site-specific approach using regional information. Analyses of relationships between physiographic characteristics and the selected indicators were undertaken using the localities of 5-km radius draining of each sampling site. Multiple regression models were built to test the regional estimation for these indicators of suspended sediment transport. To assess the accuracy of the estimates, a Jack-Knife re-sampling procedure was used to compute the relative bias and root mean square error of the models. Results show that for the 19 stations considered in California, the extreme SSCs can be estimated with 40-60% uncertainty, depending on the presence of flow regulation in the basin. This modelling approach is likely to prove functional in other Mediterranean climate watersheds since they appear useful in California, where geologic, climatic, physiographic, and land-use conditions are highly variable. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Numerical model of a tracer test on the Santa Clara River, Ventura County, California

    USGS Publications Warehouse

    Nishikawa, Tracy; Paybins, Katherine S.; Izbicki, John A.; Reichard, Eric G.

    1999-01-01

    To better understand the flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of mass in the ephemeral middle subreaches, and (2) groundwater recharge does not explain the loss of mass in the perennial uppermost and lowermost subreaches. The observed tracer curves in the perennial subreaches were indicative of sorptive dye losses, transient storage, and (or) photodecay - these phenomena were simulated using a linear decay term. However, analysis of the linear decay terms indicated that photodecay was not a dominant source of dye loss.To better understand the flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimension-al flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of

  20. Plasma cholinesterase levels of mountain plovers (Charadrius montanus) wintering in central California, USA

    USGS Publications Warehouse

    Iko, W.M.; Archuleta, A.S.; Knopf, F.L.

    2003-01-01

    Declines of over 60% in mountain plover (Charadrius montanus) populations over the past 30 years have made it a species of concern throughout its current range and a proposed species for listing under the U.S. Endangered Species Act. Wintering mountain plovers spend considerable time on freshly plowed agricultural fields where they may potentially be exposed to anticholinesterase pesticides. Because of the population status and wintering ecology of plovers, the objectives of our study were to use nondestructive methods to report baseline plasma cholinesterase (ChE) levels in free-ranging mountain plovers wintering in California, USA, and to assess whether sampled birds showed signs of ChE inhibition related to anticholinesterase chemical exposure. We compared plasma ChE activity for mountain plovers sampled from the Carrizo Plain (an area relatively free of anticholinesterase pesticide use) with similar measures for plovers from the Central Valley (where anticholinesterase pesticides are widely used). Analyses for ChE inhibition indicated that none of the plovers had been recently exposed to these chemicals. However, mean ChE levels of plovers from the Central Valley were significantly higher (32%) than levels reported for plovers from the Carrizo Plain. This result differs from our original assumption of higher exposure risk to mountain plovers in the Central Valley but does suggest that some effect is occurring in the ChE activity of mountain plovers wintering in California.

  1. Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA

    USGS Publications Warehouse

    Noe, G.B.; Hupp, C.R.

    2005-01-01

    Net nutrient accumulation rates were measured in riverine floodplains of the Atlantic Coastal Plain in Virginia, Maryland, and Delaware, USA. The floodplains were located in watersheds with different land use and included two sites on the Chickahominy River (urban), one site on the Mattaponi River (forested), and five sites on the Pocomoke River (agricultural). The Pocomoke River floodplains lie along reaches with natural hydrogeomorphology and on reaches with restricted flooding due to channelization and levees. A network of feldspar clay marker horizons was placed on the sediment surface of each floodplain site 3-6 years prior to sampling. Sediment cores were collected from the material deposited over the feldspar clay pads. This overlying sediment was separated from the clay layer and then dried, weighed, and analyzed for its total carbon (C), nitrogen (N), and phosphorus (P) content. Mean C accumulation rates ranged from 61 to 212 g??m-2??yr-1, N accumulation rates ranged from 3.5 to 13.4 g??m -2??yr-1, and P accumulation rates ranged from 0.2 to 4.1 g??m-2??yr-1 among the eight floodplains. Patterns of intersite variation in mineral sediment and P accumulation rates were similar to each other, as was variation in organic sediment and C and N accumulation rates. The greatest sediment and C, N, and P accumulation rates were observed on Chickahominy River floodplains downstream from the growing metropolitan area of Richmond, Virginia. Nutrient accumulation rates were lowest on Pocomoke River floodplains that have been hydraulically disconnected from the main channel by channelization and levees. Sediment P concentrations and P accumulation rates were much greater on the hydraulically connected floodplain immediately downstream of the limit of channelization and dense chicken agriculture of the upper Pocomoke River watershed. These findings indicate that (1) watershed land use has a large effect on sediment and nutrient retention in floodplains, and (2) limiting

  2. The influence of major dams on hydrology through the drainage network of the Sacramento River basin, California

    USGS Publications Warehouse

    Singer, M.B.

    2007-01-01

    This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and

  3. Climate change, atmospheric rivers, and floods in California - a multimodel analysis of storm frequency and magnitude changes

    USGS Publications Warehouse

    Dettinger, M.

    2011-01-01

    Recent studies have documented the important role that "atmospheric rivers" (ARs) of concentrated near-surface water vapor above the Pacific Ocean play in the storms and floods in California, Oregon, and Washington. By delivering large masses of warm, moist air (sometimes directly from the Tropics), ARs establish conditions for the kinds of high snowlines and copious orographic rainfall that have caused the largest historical storms. In many California rivers, essentially all major historical floods have been associated with AR storms. As an example of the kinds of storm changes that may influence future flood frequencies, the occurrence of such storms in historical observations and in a 7-model ensemble of historical-climate and projected future climate simulations is evaluated. Under an A2 greenhouse-gas emissions scenario (with emissions accelerating throughout the 21st Century), average AR statistics do not change much in most climate models; however, extremes change notably. Years with many AR episodes increase, ARs with higher-than-historical water-vapor transport rates increase, and AR storm-temperatures increase. Furthermore, the peak season within which most ARs occur is commonly projected to lengthen, extending the flood-hazard season. All of these tendencies could increase opportunities for both more frequent and more severe floods in California under projected climate changes. ?? 2011 American Water Resources Association.

  4. Planning and design of studies for river-quality assessment in the Truckee and Carson River basins, California and Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.; Brown, W.M.; Smith, L.H.; Hoffman, R.J.

    1980-01-01

    The objectives of the Geological Survey 's river-quality assessment in the Truckee and Carson River basins in California and Nevada are to identify the significant resource management problems; to develop techniques to assess the problems; and to effectively communicate results to responsible managers. Six major elements of the assessment to be completed by October 1981 are (1) a detailing of the legal, institutional, and structural development of water resources in the basins and the current problems and conflicts; (2) a compilation and synthesis of the physical hydrology of the basins; (3) development of a special workshop approach to involve local management in the direction and results of the study; (4) development of a comprehensive streamflow model emcompassing both basins to provide a quantitative hydrologic framework for water-quality analysis; (5) development of a water-quality transport model for selected constituents and characteristics on selected reaches of the Truckee River; and (6) a detailed examination of selected fish habitats for specified reaches of the Truckee River. Progress will be periodically reported in reports, maps, computer data files, mathematical models, a bibliography, and public presentations. In building a basic framework to develop techniques, the basins were viewed as a single hydrologic unit because of interconnecting diversion structures. The framework comprises 13 hydrographic subunits to facilitate modeling and sampling. Several significant issues beyond the scope of the assessment were considered as supplementary proposals; water-quality loadings in Truckee and Carson Rivers, urban runoff in Reno and management alternatives, and a model of limnological processes in Lahontan Reservoir. (USGS)

  5. Diazinon and chlorpyrifos loads in the San Joaquin River basin, California, January and February 2000

    USGS Publications Warehouse

    Kratzer, Charles R.; Zamora, Celia; Knifong, Donna L.

    2002-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2000 in the San Joaquin River Basin was less than 21 percent of application in 1993 and 1994. A total of 13 sites were sampled weekly during nonstorm periods and more frequently during two storm periods. The sites included five major river and eight minor tributary sites. The highest concentrations of diazinon and chlorpyrifos occurred during the storm periods. Four samples from major river sites (Tuolumne River and two San Joaquin River sites) had diazinon concentrations greater than 0.08 microgram per liter, the concentration being considered by the state of California as its criterion maximum concentration for the protection of aquatic habitat. One sample from a major river site (San Joaquin River) exceeded the equivalent State guideline of 0.02 microgram per liter for chlorpyrifos. At the eight minor tributary sites, 24 samples exceeded the diazinon guideline and four samples exceeded the chlorpyrifos guideline. The total diazinon load in the San Joaquin River near Vernalis during January and February 2000 was 19.6 pounds active ingredient; of this, 8.17 pounds active ingredient was transported during two storms. In 1994, 27.4 pounds active ingredient was transported during two storms. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2000 was 5.68 pounds active ingredient; of this, 2.17 pounds active ingredient was transported during the two storms. During the frequently sampled February 2000 storm, the main sources of diazinon in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (25 percent), Tuolumne River Basin (14 percent), and the Stanislaus River Basin (10 percent). The main sources of chlorpyrifos in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (17 percent), Tuolumne River Basin (13 percent), and the Merced River Basin (11 percent). The total January and February diazinon load in the

  6. Diel and seasonal movements by adult Sacramento pikeminnow (Ptychocheilus grandis) in the Eel River, northwestern California

    Treesearch

    Bret C. Harvey; Rodney J. Nakamoto

    1999-01-01

    Abstract - In late summer and fall, radio-tagged adult Sacramento pike-minnow (Ptychocheilus grandis) at three sites in the Eel River of northwestern California moved more at night than during the day. Fish moved up to 535 m at night and returned to their original positions the following morning. Adult Sacramento pikeminnow at all sites occupied only pools during the...

  7. Hantavirus infections among overnight visitors to Yosemite National Park, California, USA, 2012.

    PubMed

    Núñez, Jonathan J; Fritz, Curtis L; Knust, Barbara; Buttke, Danielle; Enge, Barryett; Novak, Mark G; Kramer, Vicki; Osadebe, Lynda; Messenger, Sharon; Albariño, César G; Ströher, Ute; Niemela, Michael; Amman, Brian R; Wong, David; Manning, Craig R; Nichol, Stuart T; Rollin, Pierre E; Xia, Dongxiang; Watt, James P; Vugia, Duc J

    2014-03-01

    In summer 2012, an outbreak of hantavirus infections occurred among overnight visitors to Yosemite National Park in California, USA. An investigation encompassing clinical, epidemiologic, laboratory, and environmental factors identified 10 cases among residents of 3 states. Eight case-patients experienced hantavirus pulmonary syndrome, of whom 5 required intensive care with ventilatory support and 3 died. Staying overnight in a signature tent cabin (9 case-patients) was significantly associated with becoming infected with hantavirus (p<0.001). Rodent nests and tunnels were observed in the foam insulation of the cabin walls. Rodent trapping in the implicated area resulted in high trap success rate (51%), and antibodies reactive to Sin Nombre virus were detected in 10 (14%) of 73 captured deer mice. All signature tent cabins were closed and subsequently dismantled. Continuous public awareness and rodent control and exclusion are key measures in minimizing the risk for hantavirus infection in areas inhabited by deer mice.

  8. Hantavirus Infections among Overnight Visitors to Yosemite National Park, California, USA, 2012

    PubMed Central

    Núñez, Jonathan J.; Fritz, Curtis L.; Knust, Barbara; Buttke, Danielle; Enge, Barryett; Novak, Mark G.; Kramer, Vicki; Osadebe, Lynda; Messenger, Sharon; Albariño, César G.; Ströher, Ute; Niemela, Michael; Amman, Brian R.; Wong, David; Manning, Craig R.; Nichol, Stuart T.; Rollin, Pierre E.; Xia, Dongxiang; Watt, James P.

    2014-01-01

    In summer 2012, an outbreak of hantavirus infections occurred among overnight visitors to Yosemite National Park in California, USA. An investigation encompassing clinical, epidemiologic, laboratory, and environmental factors identified 10 cases among residents of 3 states. Eight case-patients experienced hantavirus pulmonary syndrome, of whom 5 required intensive care with ventilatory support and 3 died. Staying overnight in a signature tent cabin (9 case-patients) was significantly associated with becoming infected with hantavirus (p<0.001). Rodent nests and tunnels were observed in the foam insulation of the cabin walls. Rodent trapping in the implicated area resulted in high trap success rate (51%), and antibodies reactive to Sin Nombre virus were detected in 10 (14%) of 73 captured deer mice. All signature tent cabins were closed and subsequently dismantled. Continuous public awareness and rodent control and exclusion are key measures in minimizing the risk for hantavirus infection in areas inhabited by deer mice. PMID:24565589

  9. Coccidioidomycosis-associated hospitalizations, California, USA, 2000-2011.

    PubMed

    Sondermeyer, Gail; Lee, Lauren; Gilliss, Debra; Tabnak, Farzaneh; Vugia, Duc

    2013-10-01

    In the past decade, state-specific increases in the number of reported cases of coccidioidomycosis have been observed in areas of California and Arizona where the disease is endemic. Although most coccidioidomycosis is asymptomatic or mild, infection can lead to severe pulmonary or disseminated disease requiring hospitalization and costly disease management. To determine the epidemiology of cases and toll of coccidioidomycosis-associated hospitalizations in California, we reviewed hospital discharge data for 2000-2011. During this period, there were 25,217 coccidioidomycosis-associated hospitalizations for 15,747 patients and >$2 billion US in total hospital charges. Annual initial hospitalization rates increased from 2.3 initial hospitalizations/100,000 population in 2000 to 5.0 initial hospitalizations/100,000 population in 2011. During this period, initial hospitalization rates were higher for men than women, African Americans and Hispanics than Whites, and older persons than younger persons. In California, the increasing health- and cost-related effects of coccidioidomycosis-associated hospitalizations are a major public health challenge.

  10. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA)

    USGS Publications Warehouse

    Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.

    2007-01-01

    Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( < 1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short

  11. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Shiri, Jalal

    2012-06-01

    Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.

  12. Gemini IV Mission Image - Baja California, Colorado river and Sonora Desert

    NASA Image and Video Library

    1965-06-05

    S65-34673 (3-7 June 1965) --- This photograph shows the north end of the Gulf of California at the mouth of the Colorado River as it was seen from the Gemini-4 spacecraft during orbital flight June 3-7, 1965. This picture was part of the Synoptic Terrain Photography experiments conducted during the flight to obtain high quality photographs of large land areas already mapped by aerial photography. In charge of these experiments was Dr. Paul D. Lowman Jr., NASA geologist from Goddard Space Flight Center, Greenbelt, Md. This picture was taken with a modified 70mm Hasselblad camera using Eastman color film, ASA 64 at a lens setting of 250th of a second at f/11.

  13. Landscape-level connectivity in coastal southern California, USA, as assessed through carnivore habitat suitability

    USGS Publications Warehouse

    Hunter, Richard D.; Fisher, Robert N.; Crooks, Kevin R.

    2003-01-01

    Although the fragmentation of the natural landscape of coastal southern California, USA, is accelerating, large-scale assessments of regional connectivity are lacking. Because of their large area requirements and long dispersal movements, mammalian carnivores can be effective focal species to use when evaluating landscape-level connectivity. Our goal was to make an initial assessment of the extent of landscape-level connectivity in coastal southern California using mountain lions (Felis concolor [Linnaeus]) and bobcats (Felis rufus [Shreber]) as focal species. We first characterized habitat preferences for mountain lions and bobcats from previously derived habitat relationship models for these species; the resulting maps provided a coarse view of habitat preferences for use at regional scales. We then constructed GIS models to evaluate the disturbance impact of roadways and development, major determinants of carnivore distribution and abundance in the south coast region. Finally, we combined the habitat relationship models with the disturbance impact models to characterize habitat connectivity for mountain lions and bobcats in the ecoregion. Habitat connectivity in the ecoregion appeared higher for bobcats than for mountain lions due in part to higher habitat suitability for bobcats in coastal lowland areas. Our models suggest that much of the key carnivore habitat in the coastal southern California is at risk; over 80% of high suitability habitat and over 90% of medium suitability habitat for carnivores is found in the least protected land management classes. Overall, these models allow for (1) identification of core habitat blocks for carnivores and key landscape connections between core areas, (2) evaluation of the level of protection of these areas, and (3) a regional framework within which to develop and coordinate local management and conservation plans.

  14. Investigation of and Response to 2 Plague Cases, Yosemite National Park, California, USA, 2015.

    PubMed

    Danforth, Mary; Novak, Mark; Petersen, Jeannine; Mead, Paul; Kingry, Luke; Weinburke, Matthew; Buttke, Danielle; Hacker, Gregory; Tucker, James; Niemela, Michael; Jackson, Bryan; Padgett, Kerry; Liebman, Kelly; Vugia, Duc; Kramer, Vicki

    2016-12-01

    In August 2015, plague was diagnosed for 2 persons who had visited Yosemite National Park in California, USA. One case was septicemic and the other bubonic. Subsequent environmental investigation identified probable locations of exposure for each patient and evidence of epizootic plague in other areas of the park. Transmission of Yersinia pestis was detected by testing rodent serum, fleas, and rodent carcasses. The environmental investigation and whole-genome multilocus sequence typing of Y. pestis isolates from the patients and environmental samples indicated that the patients had been exposed in different locations and that at least 2 distinct strains of Y. pestis were circulating among vector-host populations in the area. Public education efforts and insecticide applications in select areas to control rodent fleas probably reduced the risk for plague transmission to park visitors and staff.

  15. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    EPA Science Inventory

    EPA announced the availability of the final report,River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  16. Habitat separation of prickly sculpin, Cottus asper, and coastrange sculpin, Cottus aleuticus, in the mainstem Smith River, northwestern California

    Treesearch

    Jason L. White; Bret Harvey

    1999-01-01

    Sympatric coastrange sculpin, Cottus aleuticus, and prickly sculpin, C. asper, occupied distinct habitats in the mainstem Smith River, northwestern California. For example, 90% of coastrange sculpin (n = 294) used habitat with water velocity > 5 cm s-1, whereas 89% of prickly sculpin (n = 981) used...

  17. Investigating the Geomorphic and Ecologic Functions of Wood in Relationship to Habitat Type and Salmonid Redds on a Regulated California River

    NASA Astrophysics Data System (ADS)

    Senter, A. E.; Pasternack, G. B.

    2006-12-01

    Most river rehabilitation projects incorporate little to no wood in current designs, and those that do have little science to guide them. The overall goal of this research is to investigate the role of wood in a regulated, mid- sized (where river width is greater than most tree heights), Mediterranean-climate (where smaller, softer-wood trees dominate the landscape) river in order to provide a scientific foundation for the potential use of wood in rehabilitation projects within such systems. Wood structures in the active salmonid spawning reach of the Lower Mokelumne River in Central California were measured, mapped, and described during summer and fall 2006. Digital photos and GPS coordinates were used to establish wood location within the stream channel. Structural morphology was determined by measuring physical properties such as individual diameter and length, orientation to stream flow, and jam dimensions. In addition, qualitative attributes were recorded such as decay class and leaf, limb, bark, and root characteristics. A GIS wood layer will be created and added to a database of existing Mokelumne River GIS layers containing salmonid redd (salmon egg nests) densities, hydraulic conditions associated with individual redds, and sub-reach habitat types. An analysis of wood properties, redd locations and conditions, and habitat types will be used to develop a conceptual model of wood dynamics in relation to salmonid habitat on the Lower Mokelumne River. The primary products of this study will be (1) a scientific conceptual model of the role of wood in regulated gravel reaches of mid-size rivers in Mediterranean California and (2) a decision-making framework that will enable river managers to include scientifically based wood structures into rehabilitation designs, thereby enhancing spawning habitat, stream complexity, and biological diversity. These tools will be developed in collaboration with East Bay Municipal Utilities District to aid in the continuing

  18. Late Pleistocene to Holocene sedimentation and hydrocarbon seeps on the continental shelf of a steep, tectonically active margin, southern California, USA

    USGS Publications Warehouse

    Draut, Amy E.; Hart, Patrick E.; Lorenson, T.D.; Ryan, Holly F.; Wong, Florence L.; Sliter, Ray W.; Conrad, James E.

    2009-01-01

    Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara-Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5-20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources

  19. Role of river flow and sediment mobilization in riparian alder establishment along a bedrock-gravel river, South Fork Eel River, California

    NASA Astrophysics Data System (ADS)

    Jablkowski, P.; Johnson, E. A.; Martin, Y. E.

    2017-10-01

    Climatic, hydraulics, hydrologic, and fluvial geomorphic processes are the main drivers of riparian white alder (Alnus rhombifolia Nutt.) distribution in northern California. The Mediterranean climate and canyon bound, bedrock-gravel morphology of the South Fork Eel have a distinct effect on these processes. White alder seeds are preferentially deposited on river bars where river hydraulics create eddies coinciding with the downstream part of riffles and the upstream part of pools. Seeds are generally deposited below bankfull elevations by the descending hydrograph during the spring season in this Mediterranean climate. For successful germination and establishment, the seeds must be deposited at a location such that they are not remobilized by late spring flows. The summer establishment period is defined from the date of seed deposition and germination to the fall/winter date of river sediment mobilization. Seedling root growth rate decreases exponentially with decreasing water potential. However, seedlings are shown not to be generally limited by water availability at the elevations they are most commonly deposited. The establishment of white alder seedlings following the first summer will therefore depend on their ability to resist fall/winter high flows. The method proposed here compares the predicted rooting depth to predicted sediment scour rates. The length of the establishment period rather than water availability determines final seedling rooting depth. Over the past 40 years, very few years had establishment periods that were long enough or had fast enough alder growth rates to survive winter floods that often scour deeper than the total root length. The low survival of seedlings in the first autumn season following germination is believed to be a principal reason for the missing age classes often found in alder distributions along rivers.

  20. Sources, dispersal, and fate of fine sediment supplied to coastal California

    USGS Publications Warehouse

    Farnsworth, Katherine L.; Warrick, Jonathan A.

    2007-01-01

    We have investigated the sources, dispersal, and fate of fine sediment supplied to California coastal waters in a partnership between the U.S. Geological Survey (USGS) and the California Sediment Management Workgroup (CSMW). The purpose of this study was to document the rates and characteristics of these processes so that the State can better manage its coastal resources, including sediment. In this study, we made the following observations: - Rivers dominate the supply of fine sediment to the California coastal waters, with an average annual flux of 34 megatonnes (Mt). - Cliff and bluff erosion in central and southern California is a source of fine sediment, with a delivery rate of approximately 10 percent of river loads. In the southern most part of the State, however, where river-sediment loads are low, cliff and bluff erosion represent approximately 40 percent of the total fine-sediment flux. - Temporal variation in the sources of fine sediment is high. River floods and bluff erosion are episodic and dominated by winter storms, which supply most sediment flux to the coast. The magnitude of winter storms is generally related to the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate cycles. - The three rivers that dominate fine-sediment flux to the California coast are the Eel, Salinas, and Santa Clara Rivers. Because the sediment delivery from these and all other California coastal watersheds is episodic, individual rivers discharge most of their annual loads over the course of only a few days per year. - Spatial variation in river-sediment discharge is high and generally related to such watershed characteristics as geology, precipitation, and drainage area. For example, the Transverse Range of southern California represents only 9 percent of the watershed-drainage area but 18 percent of the fine-sediment flux, a function of the young sedimentary bedrock and active tectonics of this region. The urban rivers of southern California

  1. Influence of hydrologic modifications on Fraxinus pennsylvanica in the Mississippi River Alluvial Valley, USA

    USGS Publications Warehouse

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2015-01-01

    We used tree-ring analysis to examine radial growth response of a common, moderately flood-tolerant species (Fraxinus pennsylvanica Marshall) to hydrologic and climatic variability for > 40 years before and after hydrologic modifications affecting two forest stands in the Mississippi River Alluvial Valley (USA): a stand without levees below dams and a stand within a ring levee. At the stand without levees below dams, spring flood stages decreased and overall growth increased after dam construction, which we attribute to a reduction in flood stress. At the stand within a ring levee, growth responded to the elimination of overbank flooding by shifting from being positively correlated with river stage to not being correlated with river stage. In general, growth in swales was positively correlated with river stage and Palmer Drought Severity Index (an index of soil moisture) for longer periods than flats. Growth decreased after levee construction, but swales were less impacted than flats likely because of differences in elevation and soils provide higher soil moisture. Results of this study indicate that broad-scale hydrologic processes differ in their effects on the flood regime, and the effects on growth of moderately flood-tolerant species such as F. pennsylvanica can be mediated by local-scale factors such as topographic position, which affects soil moisture.

  2. Habitat relationships and larval drift of native and nonindigenous fishes in neighboring tributaries of a coastal California river

    Treesearch

    Bret C. Harvey; Jason L. White; Rodney J. Nakamoto

    2002-01-01

    Abstract - Motivated by a particular interest in the distribution of the nonindigenous, piscivorous Sacramento pikeminnow, Ptychocheilus grandis, we examined fish-habitat relationships in small tributaries (draining 20-200 km 2 )in the Eel River drainage of northwestern California.We sampled juvenile and adult fish in 15 tributaries in both the summer and...

  3. The Paleogene California River: Evidence of Mojave-Uinta paleodrainage from U-Pb ages of detrital zircons

    USGS Publications Warehouse

    Davis, S.J.; Dickinson, W.R.; Gehrels, G.E.; Spencer, J.E.; Lawton, T.F.; Carroll, A.R.

    2010-01-01

    U-Pb age spectra of detrital zircons in samples from the Paleogene Colton Formation in the Uinta Basin of northeastern Utah and the Late Cretaceous McCoy Mountains Formation of southwestern Arizona (United States) are statistically indistinguishable. This finding refutes previous inferences that arkosic detritus of the Colton was derived from cratonic basement exposed by Laramide tectonism, and instead establishes the Cordilleran magmatic arc (which also provided sediment to the McCoy Mountains Formation) as the primary source. Given the existence of a north-south-trending drainage divide in eastern Nevada and the north-northeast direction of Laramide paleoflow throughout Arizona and southern Utah, we infer that a large river system headed in the arc of the Mojave region flowed northeast ~700 km to the Uinta Basin. Named after its source area, this Paleogene California River would have been equal in scale but opposite in direction to the modern Green River-Colorado River system, and the timing and causes of the subsequent drainage reversal are important constraints on the tectonic evolution of the Cordillera and the Colorado Plateau. ?? 2010 Geological Society of America.

  4. Accounting for Consumptive Use of Lower Colorado River Water in Arizona, California, Nevada, and Utah

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.

    1994-01-01

    In the Colorado River valley between the east end of Lake Mead and the international boundary with Mexico (see figure), the river is the principal source of water for agricultural, domestic, municipal, industrial, hydroelectric-power generation, and recreational purposes. Water is stored in surface reservoirs and in the river aquifer---permeable sediments and sedimentary rocks that fill the lower Colorado River valley and adjacent tributary valleys. The hydraulic connection between the river and the river aquifer, overbank flow prior to building of the dams, and infiltration as the reservoirs filled allowed the sediments and sedimentary rocks to become saturated with water from the river. Ratios of isotopes of hydrogen and oxygen in water from wells indicate that most of the water in the river aquifer beneath the flood plain and in many places beneath the adjacent alluvial slopes originated from the river. The water table in the river aquifer extends from the river, beneath the flood plain, and under the alluvial slopes until it intersects bedrock. Precipitation in the surrounding mountains and inflow from tributary valleys also contribute small quantities of water to the river aquifer. Consumptive use of river water in the valley results from evapotranspiration by vegetation (crops and phreatophytes) on the flood plain, pumpage from wells to meet domestic and municipal needs, and pumpage from the river for export to areas in California, Arizona, and Nevada outside of the river valley. Most crops are grown on the flood plain; in a few areas, land on the adjacent terraces has been cultivated. Crops were grown on about 70 percent of the total vegetated area in 1984. Phreatophytes---natural vegetation that obtains water from the river aquifer---covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped directly from the river and reservoirs. Most of the water used for domestic and municipal

  5. Effects of hydrologic infrastructure on flow regimes of California's Central Valley rivers: Implications for fish populations

    USGS Publications Warehouse

    Brown, Larry R.; Bauer, Marissa L.

    2010-01-01

    Alteration of natural flow regimes is generally acknowledged to have negative effects on native biota; however, methods for defining ecologically appropriate flow regimes in managed river systems are only beginning to be developed. Understanding how past and present water management has affected rivers is an important part of developing such tools. In this paper, we evaluate how existing hydrologic infrastructure and management affect streamflow characteristics of rivers in the Central Valley, California and discuss those characteristics in the context of habitat requirements of native and alien fishes. We evaluated the effects of water management by comparing observed discharges with estimated discharges assuming no water management ("full natural runoff"). Rivers in the Sacramento River drainage were characterized by reduced winter–spring discharges and augmented discharges in other months. Rivers in the San Joaquin River drainage were characterized by reduced discharges in all months but particularly in winter and spring. Two largely unaltered streams had hydrographs similar to those based on full natural runoff of the regulated rivers. The reduced discharges in the San Joaquin River drainage streams are favourable for spawning of many alien species, which is consistent with observed patterns of fish distribution and abundance in the Central Valley. However, other factors, such as water temperature, are also important to the relative success of native and alien resident fishes. As water management changes in response to climate change and societal demands, interdisciplinary programs of research and monitoring will be essential for anticipating effects on fishes and to avoid unanticipated ecological outcomes.

  6. Selected trace elements in the Sacramento River, California: occurrence and distribution.

    PubMed

    Taylor, H E; Antweiler, R C; Roth, D A; Alpers, C N; Dileanis, P

    2012-05-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements-including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium-were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going

  7. Selected trace elements in the Sacramento River, California: Occurrence and distribution

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.

    2012-01-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going

  8. Investigation of and Response to 2 Plague Cases, Yosemite National Park, California, USA, 2015

    PubMed Central

    Danforth, Mary; Novak, Mark; Petersen, Jeannine; Mead, Paul; Kingry, Luke; Weinburke, Matthew; Buttke, Danielle; Hacker, Gregory; Tucker, James; Niemela, Michael; Jackson, Bryan; Padgett, Kerry; Liebman, Kelly; Vugia, Duc

    2016-01-01

    In August 2015, plague was diagnosed for 2 persons who had visited Yosemite National Park in California, USA. One case was septicemic and the other bubonic. Subsequent environmental investigation identified probable locations of exposure for each patient and evidence of epizootic plague in other areas of the park. Transmission of Yersinia pestis was detected by testing rodent serum, fleas, and rodent carcasses. The environmental investigation and whole-genome multilocus sequence typing of Y. pestis isolates from the patients and environmental samples indicated that the patients had been exposed in different locations and that at least 2 distinct strains of Y. pestis were circulating among vector–host populations in the area. Public education efforts and insecticide applications in select areas to control rodent fleas probably reduced the risk for plague transmission to park visitors and staff. PMID:27870634

  9. Evolution of regional stress state based on faulting and folding near the pit river, Shasta county, California

    NASA Astrophysics Data System (ADS)

    Austin, Lauren Jean

    We investigate the evolution of the regional stress state near the Pit River, northern California, in order to understand the faulting style in a tectonic transition zone and to inform the hazard analysis of Fault 3432 near the Pit 3 Dam. By analyzing faults and folds preserved in and adjacent to a diatomite mine north of the Pit River, we have determined principal stress directions preserved during the past million years. We find that the stress state has evolved from predominantly normal to strike slip and most recently to reverse, which is consistent with regional structures such as the extensional Hat Creek Fault to the south and the compressional folding of Mushroom Rock to the north. South of the Pit River, we still observe normal and strike slip faults, suggesting that changes in stress state are moving from north to south through time.

  10. Polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in tree swallows from the upper Hudson River, New York State, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secord, A.L.; McCarty, J.P.; Echols, K.R.

    1999-11-01

    The upper Hudson River of New York State, USA, is contaminated with polychlorinated biphenyls (PCBs) as a result of industrial discharges throughout the latter half of this century. In 1994 and 1995, the authors monitored the transfer of PCBs from aquatic sediments to a terrestrial wildlife community using the tree swallow (Tachycineta bicolor) as a model organism. Tree swallow eggs and nestlings were collected at four colonies established along a 40-km stretch of the upper Hudson River watershed. Samples were analyzed for total PCBs and PCB congeners, including non-ortho- and mono-ortho-substituted PCBs. Mean concentrations of PCBs in tree swallow eggsmore » and nestlings ranged from 721 to 62,200 ng/g and were as much as 15 times greater than PCB concentrations in tree swallow eggs and nestlings collected from PCB-contaminated areas within the Great Lakes ecosystem. The corresponding 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQs) calculated using avian toxic equivalency factors ranged from 410 to 25,400 pg/g. Concentrations of PCB congener 77 (3.3{prime}, 4,4{prime}-tetrachlorobiphenyl) were extremely elevated and were major contributors to the calculated TEQs. Homologue pattern comparisons between Hudson River and Saginaw River (Michigan, USA) ecosystems supported the hypothesis that a consistent Hudson River PCB source was the major contributor to PCBs in Hudson River tree swallows. The high concentrations of PCBs in Hudson River sediments and resultant concentrations observed in tree swallows were indicative of a potential elevated risk to these and other wildlife linked to the aquatic food web of the Hudson River ecosystem.« less

  11. Linking habitat quality with trophic performance of steelhead along forest gradients in the South Fork Trinity River watershed, California

    Treesearch

    Sarah G. McCarthy; Jeffrey J. Duda; John M. Emlen; Garth R. Hodgson; David A. Beauchamp

    2009-01-01

    We examined invertebrate prey, fish diet, and energy assimilation in relation to habitat variation for steelhead Oncorhynchus mykiss (anadromous rainbow trout) and rainbow trout in nine low-order tributaries of the South Fork Trinity River, northern California. These streams spanned a range of environmental conditions, which allowed us to use...

  12. Chemical preservation of insect cuticle from the Pleistocene asphalt deposits of California, USA

    NASA Astrophysics Data System (ADS)

    Stankiewicz, B. Artur; Briggs, Derek E. G.; Evershed, Richard P.; Duncan, Ian J.

    1997-06-01

    Cuticles of Coleoptera (beetles) and Orthoptera (crickets) from the Pleistocene asphalt deposits of Rancho La Brea and McKittrick in California, USA were studied by means of flash pyrolysis-gas chromatography /mass spectrometry (py-GC/MS). Commercial chitin, amino acid standards, and fresh and decayed cuticles of modern beetle and cricket were likewise investigated to allow the state of preservation of the fossil specimens to be interpreted. Insect cuticles are composed of chitin and proteins covalently cross-linked via catecholamine moieties. Pyrolysis of the fossil insects yielded all the products normally obtained from the pyrolysis of the chitin biopolymer, indicating that it has survived in a highly intact state. Proteins, on the other hand, are poorly preserved. Only phenols, indoles, and nitrobenzenes were present among the pyrolysis products, providing evidence for the preservation of tyrosine, tryptophan, and phenylalanine moieties. This demonstrates the preferential preservation of chitin in comparison with proteins, a result confirmed by scanning electron microscopy of the structure.

  13. Hydrogen peroxide measurements in recreational marine bathing waters in Southern California, USA.

    PubMed

    Clark, Catherine D; De Bruyn, Warren J; Hirsch, Charlotte M; Jakubowski, Scott D

    2010-04-01

    Hydrogen peroxide (H(2)O(2)) was measured in the surf zone at 13 bathing beaches in Southern California, USA. Summer dry season concentrations averaged 122 +/- 38 nM with beaches with tide pools having lower levels (50-90 nM). No significant differences were observed for ebb waters at a salt marsh outlet vs. a beach (179 +/- 20 vs. 163 +/- 26 nM), and between ebb and flood tides at one site (171 +/- 24 vs. 146 +/- 42 nM). H(2)O(2) levels showed little annual variation. Diel cycling was followed over short (30 min; 24 h study) and long (d) time scales, with maximum afternoon concentration = 370 nM and estimated photochemical production rate of 44 nM h(-1). There was no correlation between the absorbance coefficient at 300 nm (used as a measure of chromophoric dissolved organic matter (CDOM) levels) and H(2)O(2). H(2)O(2) concentrations measured in this study are likely sufficient to inhibit fecal indicator bacteria in marine recreational waters through indirect photoinactivation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Seasonal Variability of Salt Marsh Foraminifera at the Narrow River, Rhode Island, USA

    NASA Astrophysics Data System (ADS)

    Amelse, C. M.; Engelhart, S. E.; Halavik, B.; Kemp, A.

    2016-12-01

    Salt-marsh foraminifera are commonly used as proxies for producing high-resolution relative sea-level reconstructions over the Holocene. These reconstructions are based on the analogy between modern and fossil assemblages of foraminifera, in which modern assemblages were characterized using surface sediment samples collected on a single day. This approach implicitly assumes that instantaneous sampling of modern salt-marsh foraminifera is adequate to characterize the relationship between foraminiferal assemblages and tidal elevation. However, foraminiferal populations may vary during a year in response to seasonal changes, which may affect the reliability of relative sea-level reconstructions. The effect of seasonality on salt marsh foraminiferal populations has been studied in the United Kingdom as well as on the Pacific coast of the USA, but is absent on the Atlantic coast of the USA. To address this, we investigated the role of seasonality on foraminiferal distributions from a salt marsh environment at the Narrow River (Rhode Island, USA). We analyzed living and dead foraminiferal species from 48 samples through a full year during all four seasons. Common species included Trochammina inflata, Jadammina macrescens, Tiphotrocha comprimata, Miliammina fusca, Reophax spp., and Haplophragmoides spp. Other species included Siphotrochammina lobata, Arenoparella mexicana, Textularia spp., Ammobaculites spp., and Eggerella advena. Low marsh samples were dominated by Miliammina fusca and Reophax spp., while high marsh samples are identified by high abundances of Haplophragmoides spp. Statistical analyses of these samples enables us to identify the influence of seasonality on modern foraminiferal distributions.

  15. Estimating Mudpuppy (Necturus maculosus) abundance in the Lamoille River, Vermont, USA

    USGS Publications Warehouse

    Chellman, Isaac C.; Parrish, Donna; Donovan, Therese M.

    2017-01-01

    The Mudpuppy (Necturus maculosus) is classified as a Species of Greatest Conservation Need by the state of Vermont. There is concern regarding status of populations in the Lake Champlain basin because of habitat alteration and potential effects of 3-trifluromethyl-4-nitrophenol (TFM), a chemical used to control Sea Lamprey (Petromyzon marinus). The purpose of our research was to assess Mudpuppy capture methods and abundance in the Lamoille River, Vermont, USA. We sampled Mudpuppies under a mark-recapture framework, using modified, baited minnow traps set during two winter-spring periods. We marked each Mudpuppy with a passive integrated transponder (PIT) tag and released individuals after collecting morphological measurements. We collected 80 individuals during 2,581 trap days in 2008–2009 (year 1), and 81 individuals during 3,072 trap days in 2009–2010 (year 2). We estimated abundance from spring trapping periods in 2009 and 2010, during which capture rates were sufficient for analysis. Capture probability was low (< 0.04), but highest following precipitation events in spring, during periods of higher river flow, when water temperatures were approximately 3 to 6° C. During October 2009, management agencies treated the Lamoille River with TFM. Surveyors recovered more than 500 dead Mudpuppies during the post-treatment assessment. Overall, Mudpuppy captures did not change between sampling periods; however, we captured fewer females during year 2 compared to year 1, and the sex ratio changed from 0.79:1 (M:F) during year 1 to 3:1 (M:F) during year 2. Our data may help wildlife managers assess population status of Mudpuppies in conjunction with fisheries management techniques.

  16. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA.

    PubMed

    Walters, David M; Rosi-Marshall, Emma; Kennedy, Theodore A; Cross, Wyatt F; Baxter, Colden V

    2015-10-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17-1.59 μg g(-1) Hg and 1.35-2.65 μg g(-1) Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ(15) N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6-100% and 56-100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. © 2015 SETAC.

  17. Pesticides in surface water measured at select sites in the Sacramento River basin, California, 1996-1998

    USGS Publications Warehouse

    Domagalski, Joseph L.

    2000-01-01

    Pesticides were measured in one urban stream, one agricultural stream, one site on the Sacramento River, and one large flood control channel over a period of 18 months during 1996-1998. All sites were located within the Sacramento River Basin of California. Measurements were made on 83 pesticides or pesticide transformation products by either gas chromatography/mass spectrometry or by high performance liquid chromatography with ultraviolet light spectrometry. Some pesticides were detected frequently at the agricultural stream and downstream in the Sacramento River and at the flood control channel of the Sacramento River. These were pesticides related to rice farming (molinate, carbofuran, thiobencarb, and bentazon); herbicides used both agriculturally or for roadside maintenance (diuron, simazine, and metolachlor); or insecticides used on orchards and row corps (diazinon and chlorpyrifos). No pesticide concen-trations above enforceable water quality criteria were measured at either the agricultural site or the Sacramento River sites. In contrast to the agricul-tural site, insecticides used for household, lawn, or garden maintenance were the most frequently detected pesticides at the urban site. Diazinon, an organophosphate insecticide, exceeded recom-mended criteria for the protection of aquatic life, and the diazinon levels were frequently above known toxic levels for certain zooplankton species at the urban site. Because of the low discharge of the urban stream, pesticide concentrations were greatly diluted upon mixing with Sacramento River water.

  18. Characterizing the influence of atmospheric river orientation and intensity on precipitation distributions over North Coastal California

    NASA Astrophysics Data System (ADS)

    Hecht, Chad W.; Cordeira, Jason M.

    2017-09-01

    Atmospheric rivers (ARs) are long (>2000 km) and narrow (500-1000 km) corridors of enhanced vertically integrated water vapor and enhanced integrated water vapor transport (IVT) that are responsible for a majority of global poleward moisture transport and can result in extreme orographic precipitation. Observational evidence suggests that ARs within different synoptic-scale flow regimes may contain different water vapor source regions, orientations, and intensities and may result in different precipitation distributions. This study uses k-means clustering to objectively identify different orientations and intensities of ARs that make landfall over the California Russian River watershed. The ARs with different orientations and intensities occur within different synoptic-scale flow patterns in association with variability in IVT direction and quasi-geostrophic forcing for ascent and lead to different precipitation distributions over the Russian River watershed. These differences suggest that both mesoscale upslope moisture flux and synoptic-scale forcing for ascent are important factors in modulating precipitation distributions during landfalling ARs.

  19. Hydrodynamics and Connectivity of Channelized Floodplains: Insights from the Meandering East Fork White River, Indiana, USA

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2017-12-01

    High resolution topography reveals that meandering river floodplains in Indiana commonly have networks of channels. These floodplain channel networks are most prevalent in agricultural, low-gradient, wide floodplains. It appears that these networks are formed when floodplain channels connect oxbows to each other and the main river channel. Collectively, the channels in the floodplain create an interconnected network of pathways that convey water beginning at flows less than bankfull, and as stage increases, more of the floodplain becomes dissected by floodplain channels. In this work, we quantify the hydrodynamics and connectivity of the flow on the floodplain and in the main channel of the East Fork White River near Seymour, Indiana, USA. We constructed a two-dimensional numerical model using HECRAS of the river-floodplain system from LiDAR data and from main-channel river bathymetry to elucidate the behaviour of these floodplain channels across a range of flows. Model calibration and verification data included stage from a USGS gage, high-water marks at a high and medium flow, and an aerial photograph of inundation in the floodplain channels. The numerical model simulated flow depth and velocity, which was used to quantify connectivity of the floodplain channels, exchange between the main channel and floodplain channels, and residence time of water on the floodplain. Model simulations suggest that the floodplain channels convey roughly 50% of the total flow at what is typically considered "bankfull" flow. Overall, we present a process-based approach for analyzing complex floodplain-river systems where an individual floodplain-river system can be distilled down to a set of characteristic curves. Notably, we map the East Fork White River system to exchange-residence time space and argue that this characterization forms the basis for thinking about morphologic evolution (e.g., sediment deposition and erosion) and biogeochemistry (e.g., nitrate removal) in floodplain-river

  20. Ribosomal DNA identification of Nosema/Vairimorpha in freshwater polychaete, Manayunkia speciosa, from Oregon/California and the Laurentian Great Lakes

    USGS Publications Warehouse

    Malakauskas, David M.; Altman, Emory C.; Malakauskas, Sarah J.; Thiem, Suzanne M.; Schloesser, Donald W.

    2015-01-01

    We examined Manayunkia speciosa individuals from the Klamath River, Oregon/California and Lake Erie, Michigan, USA for the presence of Microsporidia. We identified microsporidian spores and sequenced their SSU, ITS, and part of the LSU rDNA. Phylogenetic analysis of SSU rDNA indicated spores from both populations belonged to the Nosema/Vairimorpha clade. PCR showed an infection prevalence in Lake Erie M. speciosa of 0.6% (95% CI = 0.5%, 0.7%). This represents the first known example of molecularly characterized Nosema/Vairimorpha isolates infecting a non-arthropod host.

  1. Characterization of subsurface stratigraphy along the lower American River floodplain using electrical resistivity, Sacramento, California, 2011

    USGS Publications Warehouse

    Burton, Bethany L.; Powers, Michael H.; Ball, Lyndsay B.

    2014-01-01

    In July 2011, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, completed a geophysical survey using electrical resistivity along an approximately 6-mile reach of the lower American River in Sacramento, California, to map near-surface lithological variations. This survey is a part of a manifold and comprehensive study of river-flow dynamics and geologic boundary-property knowledge necessary to estimate scour potential and levee erosion risk. Data were acquired on the left (south or west) bank between river mile 5 and 10.7 as well as a short section on the right bank from river mile 5.4 to 6. Thirteen direct-current resistivity profiles and approximately 8.3 miles of capacitively coupled resisistivity data were acquired along accessible areas of the floodplain between the levee and river bank. Capacitively coupled resistivity was used as a reconnaissance tool, because it allowed for greater spatial coverage of data but with lower resolution and depth of investigation than the DC resistivity method. The study area contains Pleistocene-age alluvial deposits, dominated by gravels, sands, silts, and clays, that vary in both lateral extent and depth. Several generations of lithologic logs were used to help interpret resistivity variations observed in the resistivity models.

  2. Water-Quality Data for the Lower Russian River Basin, Sonoma County, California, 2003-2004

    USGS Publications Warehouse

    Anders, Robert; Davidek, Karl; Koczot, Kathryn M.

    2006-01-01

    In 2003, the U.S. Geological Survey, in cooperation with the Sonoma County Water Agency, began a study to determine the chemical, microbiological, and isotopic composition of the surface water and ground water in selected areas of the Lower Russian River Basin, Sonoma County, California. This report is a compilation of the hydrologic and water-quality data collected from 10 Russian River sites, 1 gravel-terrace pit site, 12 ground-water sites, 11 tributary sites including Mark West Creek, and 2 estuary sites between the city of Healdsburg and the Pacific Ocean, for the period August 2003 to September 2004. Field measurements made included streamflow, barometric pressure, dissolved oxygen, pH, specific conductance, and turbidity. Water samples were analyzed for nutrients, major ions, total and dissolved organic carbon, trace elements, mercury, wastewater compounds, total coliform, Escherichia coli, Enterococci, Clostridium perfringens, and the stable isotopes of hydrogen and oxygen. Discharge measurements and sampling techniques were modified to accommodate the very low summer flows at most of the tributaries, and discharge measurements were made with an acoustic Doppler velocity meter at the estuary river site to overcome the complexities associated with tidal influences.

  3. Diagnosis and seroprevalence of leptospirosis in California sea lions from coastal California.

    PubMed

    Colagross-Schouten, Angela M; Mazet, Jonna A K; Gulland, Frances M D; Miller, Melissa A; Hietala, Sharon

    2002-01-01

    The sensitivity and specificity of the microscopic agglutination test (MAT) as a method for detection of exposure to Leptospira spp. in California sea lions (Zalophus californianus) were determined. Sera came from individuals that demonstrated clinical signs of renal disease, had lesions suggestive of leptospirosis at necropsy, and had visible leptospires in silver stained kidney sections as positive controls. Sera from unexposed captive individuals were used as negative controls. The test was 100% sensitive at 1:3,200 for confirming renal infection and 100% specific at negative < 1:100 for detection of Leptospira interrogans scrovar pomona antibodies by MAT in California sea lions. Leptospira interrogans serovar pomona was used as a screening serovar because it has been isolated previously from the kidneys and placentas of California sea lions, and there appears to be cross-reactivity between serovar pomona and other serovars. Sera from 225 free-ranging California sea lions presented to one of three participating California (USA) coastal marine mammal rehabilitation centers in 1996 were then evaluated for antibodies to serovar pomona using the MAT. The overall seroprevalence was 38.2% (86/225), although the prevalence varied among locations from 100% (38/38) in animals at the Marine Mammal Care Center (Fort MacArthur, California, USA) to 0% (0/14) at SeaWorld California (San Diego, California). At The Marine Mammal Center (Sausalito, California) [prevalence 27.8% (48/173)], the majority of seropositive animals were subadults and adults, and males were 4.7 times more likely to be seropositive to serovar pomona than females. When combining results from all three centers, subadult and adult animals were more likely to be seropositive than pups and juvenile sea lions, and the highest proportion of seropositive animals presented during the autumn months. Serum elevations of blood urea nitrogen, creatinine, phosphorus, and/or calcium were associated with seropositivity

  4. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    USGS Publications Warehouse

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  5. Salinity Tolerance of Early-Stage Oyster Larvae in the Choptank River, Chesapeake Bay, USA

    NASA Astrophysics Data System (ADS)

    Scharping, R. J.; North, E. W.; Plough, L. V.

    2016-02-01

    The eastern oyster (Crassostrea virginica) is ecologically and economically important to the Chesapeake Bay, Maryland, USA. Its population, however, is currently estimated to be less than one percent of what it was historically. To restore oyster populations, techniques such as larval transport modeling are being implemented to aid the selection of sanctuary locations. These models can incorporate biological factors such as salinity-induced mortality, but no data from low-salinity areas such as the oligohaline Choptank River, a major focus of oyster restoration in the Chesapeake, exist. The purpose of our study was to generate salinity-induced mortality data for oyster larvae from the Choptank River and compare their tolerances to those of oysters from different salinity regimes. We performed three experiments looking at the effect of salinities from 3 to 26 on the survival of larvae from 4 to 48 hrs post-fertilization. While overall survival differed across experiments, we found a consistent minimum survival threshold between 5-7 and peak survival window between 9-16. These salinity values were about 7 lower than those of oysters from the polyhaline Long Island Sound (threshold: 12.5-15; peak: 17.5-27). This research has direct application to oyster restoration in the Choptank River and similar low-salinity areas by improving larval transport model predictions.

  6. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2015-12-01

    Salmon are a valuable cultural and economic resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  7. Changes in productivity and contaminants in bald eagles nesting along the lower Columbia River, USA

    USGS Publications Warehouse

    Buck, J.A.; Anthony, R.G.; Schuler, C.A.; Isaacs, F.B.; Tillitt, D.E.

    2005-01-01

    Previous studies documented poor productivity of bald eagles (Haliaeetus leucocephalus) in the lower Columbia River (LCR), USA, and elevated p,p???-dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCBs), dioxins, and furans in eagle eggs. From 1994 to 1995, we collected partially incubated eggs at 19 of 43 occupied territories along the LCR and compared productivity and egg contaminants to values obtained in the mid-1980s. We found higher productivity at new nesting sites along the river, yet productivity at 23 older breeding territories remained low and was not different (p = 0.713) between studies. Eggshell thickness at older territories had not improved (p = 0.404), and eggshells averaged 11% thinner than shells measured before dichlorodiphenyltrichloroethane use. Decreases in DDE (p = 0.022) and total PCBs (p = 0.0004) in eggs from older breeding areas occurred between study periods. Productivity was not correlated to contaminants, but DDE, PCBs, and dioxin-like chemicals exceeded estimated no-effect values. Some dioxin-like contaminants in eggs were correlated to nest location, with highest concentrations occurring toward the river's mouth where productivity was lowest. Although total productivity increased due to the success of new nesting pairs in the region, egg contaminants remain high enough to impair reproduction at older territories and, over time, may alter productivity of new pairs nesting near the river's mouth. ?? 2005 SETAC.

  8. Determination of channel capacity of the Sacramento River between Ordbend and Glenn, Butte and Glenn counties, California

    USGS Publications Warehouse

    Simpson, R.G.

    1976-01-01

    The adequacy of an 8.5-mi reach of the Sacramento River to carry flood flows is evaluated. The reach studied is in Butte and Glenn Counties, California, and extends northward from the present east-bank Sacramento River Flood Control Project levee near Glenn upstream to the Ord Ferry gaging station near Ordbend. There is a west-bank levee throughout the study reach. Flows analyzed range from 11,500 to 265,000 cfs. Computed water-surface elevations are based on topography obtained during September through November 1974. The present Sacramento River Flood Control Project levees at the downstream end of the study reach near Glenn are designed to contain flows up to 150,000 cfs. Water-surface elevations computed for flows of this magnitude are about 6 to 8 ft below the top of the existing west-bank levee throughout the study reach. (Woodard-USGS)

  9. Discovery of South American suckermouth armored catfishes (Loricariidae, Pterygoplichthys spp.) in the Santa Fe River drainage, Suwannee River basin, USA

    USGS Publications Warehouse

    Nico, Leo G.; Butt, Peter L.; Johnston, Gerald R.; Jelks, Howard L.; Kail, Matthew; Walsh, Stephen J.

    2012-01-01

    We report on the occurrence of South American suckermouth armored catfishes (Loricariidae) in the Suwannee River basin, southeastern USA. Over the past few years (2009-2012), loricariid catfishes have been observed at various sites in the Santa Fe River drainage, a major tributary of the Suwannee in the state of Florida. Similar to other introduced populations of Pterygoplichthys, there is high likelihood of hybridization. To date, we have captured nine specimens (270-585 mm, standard length) in the Santa Fe River drainage. One specimen taken from Poe Spring best agrees with Pterygoplichthys gibbiceps (Kner, 1854) or may be a hybrid with either P. pardalis or P. disjunctivus. The other specimens were taken from several sites in the drainage and include seven that best agree with Pterygoplichthys disjunctivus (Weber, 1991); and one a possible P. disjunctivus x P. pardalis hybrid. We observed additional individuals, either these or similar appearing loricariids, in Hornsby and Poe springs and at various sites upstream and downstream of the long (> 4 km) subterranean portion of the Santa Fe River. These specimens represent the first confirmed records of Pterygoplichthys in the Suwannee River basin. The P. gibbiceps specimen represents the first documented record of an adult or near adult of this species in open waters of North America. Pterygoplichthys disjunctivus or its hybrids (perhaps hybrid swarms) are already abundant and widespread in other parts of peninsular Florida, but the Santa Fe River represents a northern extension of the catfish in the state. Pterygoplichthys are still relatively uncommon in the Santa Fe drainage and successful reproduction not yet documented. However, in May 2012 we captured five adult catfish (two mature or maturing males and three gravid females) from a single riverine swallet pool. One male was stationed at a nest burrow (no eggs present). To survive the occasional harsh Florida winters, these South American catfish apparently use

  10. The Effects of Urbanization and Flood Control on Sediment Discharge of a Southern California River, Evidence of a Dilution Effect

    NASA Astrophysics Data System (ADS)

    Warrick, J. A.; Orzech, K. M.; Rubin, D. M.

    2004-12-01

    The southern California landscape has undergone dramatic urbanization and population growth during the past 60 years and currently supports almost 20 million inhabitants. During this time, rivers of the region have been altered with damming, channel straightening and hardening, and water transfer engineering. These changes have drastically altered water and sediment discharge from most of the region's drainage basins. Here we focus on changes in sediment discharge from the largest watershed of southern California, the Santa Ana River. Order-of-magnitude drops in the suspended sediment rating curves (the relationship between suspended sediment concentration and instantaneous river discharge) are observed between 1967 and 2001, long after the construction of a major flood control dam in 1941. These sediment concentration decreases do not, however, represent alteration of the total sediment flux from the basin (a common interpretation of sediment rating curves), but rather a dilution of suspended sediment by increases (approx. 4x) in stormwater discharge associated with urbanization. Increases in peak and total stormwater discharge are consistent with runoff patterns from urbanizing landscapes, supporting our hypothesis that the diluting water originated from stormwater runoff generated in urban areas both up- and downstream of dams. Our dilution hypothesis is further supported with water and sediment budgets, dilution calculations, and suspended and bed grain size information.

  11. Potential climatic refugia in semi-arid, temperate mountains: plant and arthropod assemblages associated with rock glaciers, talus slopes, and their forefield wetlands, Sierra Nevada, California, USA

    Treesearch

    Constance I. Millar; Robert D. Westfall; Angela Evenden; Jeffrey G. Holmquist; Jutta Schmidt-Gengenbach; Rebecca S. Franklin; Jan Nachlinger; Diane L. Delany

    2015-01-01

    Unique thermal and hydrologic regimes of rock-glacier and periglacial talus environments support little-studied mountain ecosystems. We report the first studies of vascular plant and arthropod diversity for these habitats in the central Sierra Nevada, California, USA. Surfaces of active rock glaciers develop scattered islands of soil that provide habitat for vegetation...

  12. Sediment connectivity at source-bordering aeolian dunefields along the Colorado River in the Grand Canyon, USA

    NASA Astrophysics Data System (ADS)

    Sankey, Joel; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen

    2017-04-01

    Aeolian dunefields that are primarily built and maintained with river-derived sediment are found in many river valleys throughout the world and are impacted by changes in climate, land use, and river regulation. Quantifying the dynamic response of these aeolian dunefields to alterations in river flow is especially difficult given the highly correlated nature of the interacting geomorphic and sediment transport processes that drive their formation and maintenance. We characterize the effects of controlled river floods on changes in sediment connectivity at source-bordering aeolian dunefields in the Grand Canyon, USA. Controlled floods from the Glen Canyon Dam are used to build sandbars along the Colorado River in Grand Canyon which provide the main sediment source for aeolian dunefields. Aeolian dunefields are a primary resource of concern for land managers in the Grand Canyon because they often contain buried archaeological features. To characterize dunefield response to controlled floods, we use a novel, automated approach for the mechanistic segregation of geomorphic change to discern the geomorphic processes responsible for driving topographic change in very high resolution digital elevation models-of-difference (DODs) that span multiple, consecutive controlled river floods at source-bordering dunefields. We subsequently compare the results of mechanistic segregation with modelled estimates of aeolian dunefield evolution in order to understand how dunefields respond to contemporary, anthropogenically-driven variability in sediment supply and connectivity. These methods provide a rapid technique for sediment budgeting and enable the inference of spatial and temporal patterns in sediment flux between the fluvial and aeolian domains. We anticipate that this approach will be adaptable to other river valleys where the interactions of aeolian, fluvial, and hillslope processes drive sediment connectivity for the maintenance of source-bordering aeolian dunefields.

  13. Chlorinated, brominated, and perfluorinated compounds, polycyclic aromatic hydrocarbons and trace elements in livers of sea otters from California, Washington, and Alaska (USA), and Kamchatka (Russia)

    USGS Publications Warehouse

    Kannan, K.; Moon, H.-B.; Yun, S.-H.; Agusa, T.; Thomas, N.J.; Tanabe, S.

    2008-01-01

    Concentrations of organochlorine pesticides (DDTs, HCHs, and chlordanes), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), perfluorinated compounds (PFCs), and 20 trace elements were determined in livers of 3- to 5-year old stranded sea otters collected from the coastal waters of California, Washington, and Alaska (USA) and from Kamchatka (Russia). Concentrations of organochlorine pesticides, PCBs, and PBDEs were high in sea otters collected from the California coast. Concentrations of DDTs were 10-fold higher in California sea otters than in otters from other locations; PCB concentrations were 5-fold higher, and PBDE concentrations were 2-fold higher, in California sea otters than in otters from other locations. Concentrations of PAHs were higher in sea otters from Prince William Sound than in sea otters from other locations. Concentrations of several trace elements were elevated in sea otters collected from California and Prince William Sound. Elevated concentrations of Mn and Zn in sea otters from California and Prince William Sound were indicative of oxidative stress-related injuries in these two populations. Concentrations of all of the target compounds, including trace elements, that were analyzed in sea otters from Kamchatka were lower than those found from the US coastal locations. ?? The Royal Society of Chemistry.

  14. Scroll bar growth on the coastal Trinity River, TX, USA

    NASA Astrophysics Data System (ADS)

    Mason, J.; Hassenruck-Gudipati, H. J.; Mohrig, D. C.

    2017-12-01

    The processes leading to the formation and growth of scroll bars remain relatively mysterious despite how often they are referenced in fluvial literature. Their definition is descriptive; they are characterized as arcuate topographic highs present on the inner banks of channel bends on meandering rivers, landward of point bars. Often, they are used as proxies for previous positions of point bars. This assumption of a one-to-one correspondence between point bars and scroll bars should be reconsidered as 1) planform curvature for scroll bars is consistently smaller than the curvature for adjacent point bars, and 2) deposition on the scroll bar is typically distinct and disconnected from the adjacent point bar deposition. Results from time-lapse airborne lidar data as well as from trenches through five separate scroll bar - point bar pairings on the Trinity River in east TX, USA, will be discussed in relation to formative scroll bar processes and their connection to point bars. On the lidar difference map, scroll bar growth appears as a strip of increased deposition flanked on both the land- and channel-ward sides by areas with no or limited deposition. Trenches perpendicular to these scrolls typically show a base of dune-scale cross stratification interpreted to be associated with a previous position of the point bar. These dune sets are overlain by sets of climbing-ripple cross-strata that form the core of the modern scroll bar and preserve a record of multiple transport directions (away from, towards, and parallel to the channel). Preliminary Trinity River grain-size analyses show that the constructional scrolls are enriched in all grain sizes less than 250 microns in diameter, while point bars are enriched in all grain sizes above this cut off. Scroll bars are hypothesized to be akin to levees along the inner banks of channels-flow expansion caused by the presence of point bars induces deposition of suspended sediment that defines the positions of the scroll bars.

  15. Bat Response to Differing Fire Severity in Mixed-Conifer Forest California, USA

    PubMed Central

    Heady, Paul A.; Hayes, John P.; Frick, Winifred F.

    2013-01-01

    Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts. PMID:23483936

  16. "Habitat separation of prickly sculpin, Cottus asper, and coastrange sculpin, Cottus aleuticus, in the mainstem Smith River, northwestern California"

    Treesearch

    Jason L. White; Bret C. Harvey

    1999-01-01

    Sympatric coastrange sculpin, Cottus aleuticus, and prickly sculpin, C. asper, occupied distinct habitats in the mainstem Smith River, northwestern California. For example, 90% of coastrange sculpin (n = 294) used habitat with water velocity > 5 cm s -1 , whereas 89% of prickly sculpin (n = 981) used habitat with water velocity ? 5 cm s -1. Sixty-five percent of...

  17. Sub-decadal turbidite frequency during the early Holocene: Eel Fan, offshore northern California

    USGS Publications Warehouse

    Paull, Charles K.; McGann, Mary L.; Sumner, Esther J; Barnes, Philip M; Lundsten, Eve M.; Anderson, Krystle; Gwiazda, Roberto; Edwards, Brian D.; Caress, David W

    2014-01-01

    Remotely operated and autonomous underwater vehicle technologies were used to image and sample exceptional deep sea outcrops where an ∼100-m-thick section of turbidite beds is exposed on the headwalls of two giant submarine scours on Eel submarine fan, offshore northern California (USA). These outcrops provide a rare opportunity to connect young deep-sea turbidites with their feeder system. 14C measurements reveal that from 12.8 ka to 7.9 ka, one turbidite was being emplaced on average every 7 yr. This emplacement rate is two to three orders of magnitude higher than observed for turbidites elsewhere along the Pacific margin of North America. The turbidites contain abundant wood and shallow-dwelling foraminifera, demonstrating an efficient connection between the Eel River source and the Eel Fan sink. Turbidite recurrence intervals diminish fivefold to ∼36 yr from 7.9 ka onward, reflecting sea-level rise and re-routing of Eel River sediments.

  18. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA

    USGS Publications Warehouse

    Walters, David M.; E.J. Rosi-Marshall,; Kennedy, Theodore A.; W.F. Cross,; C.V. Baxter,

    2015-01-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17–1.59 μg g–1 Hg and 1.35–2.65 μg g–1 Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ15N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6–100% and 56–100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. Environ Toxicol Chem2015;9999:1–10

  19. Characteristics of southern California atmospheric rivers

    NASA Astrophysics Data System (ADS)

    Harris, Sarah M.; Carvalho, Leila M. V.

    2018-05-01

    Atmospheric rivers (ARs) are channels of high water vapor flux that transport moisture from low to higher latitudes on synoptic timescales. In areas of topographical variability, ARs may lead to high-intensity precipitation due to orographic forcing. ARs landfalling along North America's west coast are linked to extreme events including those leading to flooding and landslides. In southern California (SCA), proper AR forecasting is important for regional water resources as well as hazard mitigation and as the area's annual precipitation totals occur from relatively few storms per season, any changes to storm frequency and/or intensity may have dramatic consequences. Yet, as most regional AR studies focus on the Pacific Northwest, there is little information about SCA ARs. We develop an algorithm to identify ARs landfalling on North America's west coast between 1979 and 2013 within total precipitable water reanalysis fields. ARs are then categorized according to landfall region. To determine and differentiate the characteristics and spatial distributions of ARs affecting these areas, we examine lag composites of various atmospheric variables for each landfall region. SCA ARs differ from ARs landfalling farther north in the days prior to landfall with the position and amplitude of a trough offshore from the Asian continent and ridge over Alaska, as well as the displacement and eastward extension of the jet core that potentially guides AR moisture southwards. The relationships between AR landfalls and the El Niño/Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and the Pacific/North American Teleconnection Pattern (PNA) are also investigated.

  20. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2016-02-01

    Salmon are a valuable resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the long term implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat after 12 years of re-colonization, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the long term, landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  1. Basque Diaspora in the USA and Language Maintenance

    ERIC Educational Resources Information Center

    Lasagabaster, David

    2008-01-01

    The Basques first immigrated on a large scale to the USA during the Gold Rush of 1848. After immigrating to the USA, they settled in pockets throughout the West, especially in California, Nevada and Idaho, and it is currently estimated that more than 35,000 Basque-Americans live in these three states. This represents one of the largest…

  2. Final report on International Conference on Radiationless Transitions Held at Newport Beach, California on January 3-7, 1984.

    DTIC Science & Technology

    1984-12-31

    Ca. 90007 USA Eric C. Apel Dr. G. Comtet Department of Chemstry Department of Chemistry University of CAlifornia University of Californiai Irvine...Chicago Tempo, Az 85827 USA Chicago, Ill. 60637 USA - Professor R. Kopelman Professor S’. H. Lin Department of Chemistry Department of Chemstry . University...Nadler Department of Chemstry Ms. B. Lawrence University of Southern Calif. Department of Chemistry Los Angeles, Ca. 90007 USA University of California

  3. Risk Factors for Human Lice and Bartonellosis among the Homeless, San Francisco, California, USA

    PubMed Central

    Cole-Porse, Charsey; Kjemtrup, Anne; Osikowicz, Lynn; Kosoy, Michael

    2014-01-01

    Homeless persons in San Francisco, California, USA, have been shown to have head and body lice infestations and Bartonella quintana infections. We surveyed a self-selected population of homeless persons in San Francisco to assess infestations of head and body lice, risks of having body lice, and presence of B. quintana in lice. A total of 203 persons who reported itching were surveyed during 2008–2010 and 2012: 60 (30%) had body lice, 10 (4.9%) had head lice, and 6 (3.0%) had both. B. quintana was detected in 10 (15.9%) of 63 body lice pools and in 6 (37.5%) of 16 head lice pools. Variables significantly associated (p<0.05) with having body lice in this homeless population included male sex, African–American ethnicity, and sleeping outdoors. Our study findings suggest that specific segments of the homeless population would benefit from information on preventing body lice infestations and louseborne diseases. PMID:25280380

  4. Risk factors for human lice and bartonellosis among the homeless, San Francisco, California, USA.

    PubMed

    Bonilla, Denise L; Cole-Porse, Charsey; Kjemtrup, Anne; Osikowicz, Lynn; Kosoy, Michael

    2014-10-01

    Homeless persons in San Francisco, California, USA,have been shown to have head and body lice infestations and Bartonella quintana infections. We surveyed a self selected population of homeless persons in San Francisco to assess infestations of head and body lice, risks of having body lice, and presence of B. quintana in lice. A total of 203 persons who reported itching were surveyed during 2008-2010 and 2012: 60 (30%) had body lice, 10 (4.9%)had head lice, and 6 (3.0%) had both. B. quintana was detected in 10 (15.9%) of 63 body lice pools and in 6 (37.5%)of 16 head lice pools. Variables significantly associated(p<0.05) with having body lice in this homeless population included male sex, African-American ethnicity, and sleeping outdoors. Our study findings suggest that specific segments of the homeless population would benefit from information on preventing body lice infestations and louse borne diseases.

  5. Earliest record of the invasive Foraminifera Trochammina hadai in San Francisco Bay, California, USA

    USGS Publications Warehouse

    McGann, Mary

    2014-01-01

    In 1995, Trochammina hadai, a benthic Foraminifera prevalent in Japanese estuaries, was found in San Francisco Bay, California, USA. Subsequent field investigations determined that the species was also present in nearly all of the major ports and estuaries along the western United States. Because of its widespread colonization, it is of interest to determine when T. hadai first appeared as an invasive in the coastal regions of the North Pacific. In San Francisco Bay, the species was not found in 404 surface samples collected between 1930 and 1981. In 1983, however, a grab sediment sample from one of four sites in the southern portion of the bay contained T. hadai. This site was the most northern of the four and contained 12 specimens of the invasive, comprising 1.5% of the assemblage. This is the earliest appearance on record of T. hadai in San Francisco Bay.

  6. The persistence of lead from past gasoline emissions and mining drainage in a large riparian system: Evidence from lead isotopes in the Sacramento River, California

    USGS Publications Warehouse

    Dunlap, C.E.; Alpers, Charles N.; Bouse, R.; Taylor, Howard E.; Unruh, D.M.; Flegal, A.R.

    2008-01-01

    Lead concentrations and isotope ratios measured in river water colloids and streambed sediment samples along 426 km of the Sacramento River, California reveal that the influence of lead from the historical mining of massive sulfide deposits in the West Shasta Cu-mining district (at the headwaters of the Sacramento River) is confined to a 60 km stretch of river immediately downstream of that mining region, whereas inputs from past leaded gasoline emissions and historical hydraulic Au-mining in the Sierra Nevadan foothills are the dominant lead sources in the remaining 370 km of the river. Binary mixing calculations suggest that more than 50% of the lead in the Sacramento River outside of the region of influence of the West Shasta Cu-mining district is derived from past depositions of leaded gasoline emissions. This predominance is the first direct documentation of the geographic extent of gasoline lead persistence throughout a large riparian system (>160,000 km2) and corroborates previous observations based on samples taken at the mouth of the Sacramento River. In addition, new analyses of sediment samples from the hydraulic gold mines of the Sierra Nevada foothills confirm the present-day fluxes into the Sacramento River of contaminant metals derived from historical hydraulic Au-mining that occurred during the latter half of the 19th and early part of the 20th centuries. These fluxes occur predominantly during periods of elevated river discharge associated with heavy winter precipitation in northern California. In the broadest context, the study demonstrates the potential for altered precipitation patterns resulting from climate change to affect the mobility and transport of soil-bound contaminants in the surface environment. ?? 2008 Elsevier Ltd.

  7. Characterization of extreme precipitation within atmospheric river events over California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, S.; Prabhat,; Byna, S.

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  8. Characterization of extreme precipitation within atmospheric river events over California

    DOE PAGES

    Jeon, S.; Prabhat,; Byna, S.; ...

    2015-11-17

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  9. The long-term legacy of geomorphic and riparian vegetation feedbacks on the dammed Bill Williams River, Arizona, USA

    USGS Publications Warehouse

    Kui, Li; Stella, John C.; Shafroth, Patrick B.; House, P. Kyle; Wilcox, Andrew C.

    2017-01-01

    On alluvial rivers, fluvial landforms and riparian vegetation communities codevelop as a result of feedbacks between plants and abiotic processes. The influence of vegetation on river channel and floodplain geomorphology can be particularly strong on dammed rivers with altered hydrology and reduced flood disturbance. We used a 56-year series of aerial photos on the dammed Bill Williams River (Arizona, USA) to investigate how (a) different woody riparian vegetation types influence river channel planform and (b) how different fluvial landforms drive the composition of riparian plant communities over time. We mapped vegetation types and geomorphic surfaces and quantified how relations between fluvial and biotic processes covaried over time using linear mixed models. In the decades after the dam was built, woody plant cover within the river's bottomland nearly doubled, narrowing the active channel by 60% and transforming its planform from wide and braided to a single thread and more sinuous channel. Compared with native cottonwood–willow vegetation, nonnative tamarisk locally induced a twofold greater reduction in channel braiding. Vegetation expanded at different rates depending on the type of landform, with tamarisk cover on former high-flow channels increasing 17% faster than cottonwood–willow. Former low-flow channels with frequent inundation supported a greater increase in cottonwood–willow relative to tamarisk. These findings give insight into how feedbacks between abiotic and biotic processes in river channels accelerate and fortify changes triggered by dam construction, creating river systems increasingly distinct from predam ecological communities and landforms, and progressively more resistant to restoration of predam forms and processes.

  10. Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA

    NASA Astrophysics Data System (ADS)

    Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.

    2017-12-01

    Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.

  11. River mouth morphodynamics - Examples from small, mountainous rivers (Invited)

    NASA Astrophysics Data System (ADS)

    Warrick, J. A.

    2013-12-01

    Small, high-sediment yield rivers are known to discharge massive amounts of sediment to the world's oceans. Because of these high rates of sediment discharge, many of these small rivers provide important sources of sediment to littoral cells, such as those along the west coasts of North and South America. Sediment discharge from these small watersheds is commonly ephemeral and dominated by infrequent high flow. Thus, the morphodynamic states of these river mouths will vary with time, often being 'wave dominated' for the majority of the year and then changing to 'river dominated' during river sediment discharge events. Here I will provide a summary of recent observations of the morphodynamics of river mouths along California that reveal that sediment dispersal and deposition patterns vary owing to the sediment transport processes at the river mouths, which are influenced by the buoyancy of the river discharge. During low rates of sediment discharge and low river sediment concentrations, sediment dispersal will occur in hypopycnal (positively buoyant) plumes and sand deposition will be close to the river mouth. These conditions commonly result in transfer of sand from the river delta to the littoral cell during the first 1-2 years following the river discharge event. During high rates of sediment discharge and high river sediment concentrations, river discharge may form hyperpycnal (negatively buoyant) plumes and disperse sand to deeper portions of the continental shelf, where transfer back to the littoral cell may take decades or may not occur. High-resolution bathymetry from southern California provides several examples of sand dispersal by hyperpycnal plumes to regions of the inner and middle continental shelf. Thus, sediment dispersal from river mouths influences coastal morphodynamics, morphology, and the rates and timing of sediment supply to littoral cells.

  12. Identification of Geologic and Anthropogenic Sources of Phosphorus to Streams in California and Portions of Adjacent States, U.S.A., Using SPARROW Modeling

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.

    2013-12-01

    agriculturally productive Central Valley of California has a low amount of background phosphorus in spite of inputs from streams draining upland areas. Many years of intensive agriculture may be responsible for the decrease of soil phosphorus in that area. Watersheds with significant background sources of phosphorus and large amounts of cultivated land had some of the highest per hectare yields. Seven different stream systems important for water management, or to describe transport processes, were investigated in detail for downstream changes in sources and loads. For example, the Klamath River (Oregon and California) has intensive agriculture and andesite-derived phosphorus in the upper reach. The proportion of agricultural-derived phosphorus decreases as the river flows into California before discharge to the ocean. The river flows through at least three different types of geological background sources from high to intermediate to very low. Knowledge of the role of natural sources in developed watersheds is critical for developing nutrient management strategies and these model results will have applicability for the establishment of realistic nutrient criteria.

  13. Massive infestation by Amyloodinium ocellatum (Dinoflagellida) of fish in a highly saline lake, Salton Sea, California, USA.

    PubMed

    Kuperman, B I; Matey, V E

    1999-12-22

    Persistent fish infestation by the parasitic dinoflagellate Amyloodinium ocellatum was found at a highly saline lake, Salton Sea, California, USA. The seasonal dynamics of the infestation of young tilapia was traced in 1997-1998. First appearing in May, it became maximal in June-August, decreased in October and was not detectable in November. Outbreak of the infestation and subsequent mortality of young fish was registered at the Sea at a water temperature and salinity of 40 degrees C and 46 ppt, respectively. Some aspects of the ultrastructure of parasitic trophonts of A. ocellatum and their location on the fish from different size groups are considered. The interactions of parasitological and environmental factors and their combined effect upon fish from the Salton Sea are discussed.

  14. The Colorado River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Moderate-resolution Imaging Spectroradiometer (MODIS) true-color image shows the passage of the Colorado River through several southwestern states. The river begins, in this image, in Utah at the far upper right, where Lake Powell is visible as dark pixels surrounded by the salmon-colored rocks of the Colorado Plateau. The Colorado flows southwest through Glen Canyon, to the Glen Canyon Dam, on the Utah-Arizona border. From there it flows south into Arizona, and then turns sharply west where the Grand Canyon of the Colorado cuts through the mountains. The Colorado flows west to the Arizona-Nevada (upper left) border, where it is dammed again, this time by the Hoover Dam. The dark-colored pixels surrounding the bend in the river are Lake Mead. The river flows south along the border of first Nevada and Arizona and then California and Arizona. The Colorado River, which begins in Rocky Mountain National Park in Colorado, empties into the Gulf of California, seen at the bottom center of this image.

  15. Initial river test of a monostatic RiverSonde streamflow measurement system

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; ,

    2003-01-01

    A field experiment was conducted on May 7-8, 2002 using a CODAR RiverSonde UHF radar system at Vernalis, California on the San Joaquin River. The monostatic radar configuration on one bank of the river, with the antennas looking both upriver and downriver, provided very high-quality data. Estimates of both along-river and cross-river surface current were generated using several models, including one based on normal-mode analysis. Along-river surface velocities ranged from about 0.6 m/s at the river banks to about 1.0 m/s near the middle of the river. Average cross-river surface velocities were 0.02 m/s or less.

  16. Apportionment of polycyclic aromatic hydrocarbon sources in lower Fox River, USA, sediments by a chemical mass balance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, M.C.; Christensen, E.R.; Karls, J.F.

    Four sediment cores were collected from the lower Fox River, Wisconsin, USA, to identify possible sources of polycyclic aromatic hydrocarbons (PAHs) using a chemical mass balance model. The cores, which were obtained in 1995 from areas close to Green Bay, Wisconsin, USA, had total PAH concentrations between 19.3 and 0.34 ppm. To determine historical trends of PAH inputs, {sup 210}Pb and {sup 137}Cs dating was used, and elemental carbon particle analysis was done to characterize particles from the combustion of coal, wood, and petroleum. Source fingerprints were taken from the literature. Their results indicate that coke oven emissions, highway dust,more » coal gasification, and wood burning are likely sources of PAHs in the lower Fox River. Coke oven emissions are in the range of 40 to 90% of total PAHs, and this fraction decreases from 1930 to 1990, except in core Fox River-A (FR-A). The overall highway dust (HWY) contribution is between 10 and 75%, and this fraction increases from 1930 to present, except in core FR-A. The wood burning (WB) contribution is less than 7% in cores FR-B, FR-C, and FR-D. In core FR-A, a maximum ({approximately}23%) is found around 1960. The contribution of wood burning has changed from less than 6% in 1950 to between 3 and 10% in 1995. Evidence of aerobic biodegradation or photolysis in the sediment of phenanthrene, with a half-life of approximately 0.5 years has been found at the site of core FR-D, which is the shallowest (1.1 m) of the four core sites.« less

  17. Mercury bioaccumulation in fish in a region affected by historic gold mining; the South Yuba River, Deer Creek, and Bear River watersheds, California, 1999

    USGS Publications Warehouse

    May, Jason T.; Hothem, Roger L.; Alpers, Charles N.; Law, Matthew A.

    2000-01-01

    Mercury that was used historically for gold recovery in mining areas of the Sierra Nevada continues to enter local and downstream water bodies, including the Sacramento Delta and the San Francisco Bay of northern California. Methylmercury is of particular concern because it is the most prevalent form of mercury in fish and is a potent neurotoxin that bioaccumulates at successive trophic levels within food webs. In April 1999, the U.S. Geological Survey, in cooperation with several other agencies the Forest Service (U.S. Department of Agriculture), the Bureau of Land Management, the U.S. Environmental Protection Agency, the California State Water Resources Control Board, and the Nevada County Resource Conservation District began a pilot investigation to characterize the occurrence and distribution of mercury in water, sediment, and biota in the South Yuba River, Deer Creek, and Bear River watersheds of California. Biological samples consisted of semi-aquatic and aquatic insects, amphibians, bird eggs, and fish. Fish were collected from 5 reservoirs and 14 stream sites during August through October 1999 to assess the distribution of mercury in these watersheds. Fish that were collected from reservoirs included top trophic level predators (black basses, Micropterus spp.) intermediate trophic level predators [sunfish (blue gill, Lepomis macrochirus; green sunfish, Lepomis cyanellus; and black crappie, Poxomis nigromaculatus)] and benthic omnivores (channel catfish, Ictularus punctatus). At stream sites, the species collected were upper trophic level salmonids (brown trout, Salmo trutta) and upper-to-intermediate trophic level salmonids (rainbow trout, Oncorhynchus mykiss). Boneless and skinless fillet portions from 161 fish were analyzed for total mercury; 131 samples were individual fish, and the remaining 30 fish were combined into 10 composite samples of three fish each of the same species and size class. Mercury concentrations in samples of black basses

  18. Water-quality assessment of the Smith River drainage basin, California and Oregon

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Washabaugh, Donna S.

    1982-01-01

    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  19. The Chemehuevi Indians of Southern California. Malki Museum Brochure No. 3.

    ERIC Educational Resources Information Center

    Miller, Ronald Dean; Miller, Peggy Jeanne

    The only local tribe to migrate into California during recorded history, the Chemehuevi Indians had one of the largest tribal areas in California, though their population probably never exceeded 800. Today most live on the Colorado River Reservation, where they share membership with the Colorado River tribes. First mentioned in a priest's report…

  20. Water quality modeling in the systems impact assessment model for the Klamath River basin - Keno, Oregon to Seiad Valley, California

    USGS Publications Warehouse

    Hanna, R. Blair; Campbell, Sharon G.

    2000-01-01

    This report describes the water quality model developed for the Klamath River System Impact Assessment Model (SIAM). The Klamath River SIAM is a decision support system developed by the authors and other US Geological Survey (USGS), Midcontinent Ecological Science Center staff to study the effects of basin-wide water management decisions on anadromous fish in the Klamath River. The Army Corps of Engineersa?? HEC5Q water quality modeling software was used to simulate water temperature, dissolved oxygen and conductivity in 100 miles of the Klamath River Basin in Oregon and California. The water quality model simulated three reservoirs and the mainstem Klamath River influenced by the Shasta and Scott River tributaries. Model development, calibration and two validation exercises are described as well as the integration of the water quality model into the SIAM decision support system software. Within SIAM, data are exchanged between the water quantity model (MODSIM), the water quality model (HEC5Q), the salmon population model (SALMOD) and methods for evaluating ecosystem health. The overall predictive ability of the water quality model is described in the context of calibration and validation error statistics. Applications of SIAM and the water quality model are described.

  1. Method to identify wells that yield water that will be replaced by water from the Colorado River downstream from Laguna Dam in Arizona and California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.; Carpenter, Michael C.; Fink, James B.

    2000-01-01

    Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. The accounting-surface method developed for the area upstream from Laguna Dam was modified for use downstream from Laguna Dam to identify wells outside the flood plain of the lower Colorado River that yield water that will be replaced by water from the river. Use of the same method provides a uniform criterion of identification for all users pumping water from wells by determining if the static water-level elevation in the well is above or below the elevation of the accounting surface. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation above the accounting surface are presumed to yield river water stored above river level. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The subsurface limit of the river aquifer is the nearly impermeable bedrock of the bottom and sides of the basins that underlie the Yuma area and adjacent valleys. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain of the Colorado River that would exist if the river were the only source of water to the river aquifer. The accounting surface was generated by using water

  2. Cadmium content in fresh and canned squid (Loligo opalescens) from the Pacific coastal waters of California (USA).

    PubMed

    Galitsopoulou, A; Georgantelis, D; Kontominas, M G

    2009-01-01

    Cadmium (Cd) levels were determined in 70 samples of mantle tissue and 70 whole individual squid (Loligo opalescens; commercially known as California squid). Samples were collected from the coastal zones of California (USA) during the period 2007/2008. To further investigate consumer exposure to processed fishery products, cadmium concentration was also determined in 200 canned samples of squid. Cd concentrations in raw mantle were low, between 0.01 and 0.29 mg kg(-1) and below the tolerance limit of current regulations (1 mg kg(-1)). Respective concentrations in whole individuals were significantly higher, ranging from 0.51 to 1.18 mg kg(-1), attributed to the presence of the visceral portion in whole squid samples. Cd concentrations varied in relation to age and sex of squid, indicating that several physiological factors may influence accumulation. Furthermore, canning of squid substantially enhanced Cd levels. Cd concentration ranged 0.17-0.67 mg kg(-1) in canned mantle tissue and 0.86-2.07 mg kg(-1) in canned whole squid samples, due to both concentration after canning and movement of the metal between different tissues. Several biological compounds, including metallothioneins, nucleic acids and enzymes, may affect Cd concentrations in commercial fishery products.

  3. Contamination status and accumulation profiles of organotins in sea otters (Enhydra lutris) found dead along the coasts of California, Washington, Alaska (USA), and Kamchatka (Russia)

    USGS Publications Warehouse

    Murata, S.; Takahashi, S.; Agusa, T.; Thomas, N.J.; Kannan, K.; Tanabe, S.

    2008-01-01

    Organotin compounds (OTs) including mono- to tri-butyltins, -phenyltins, and -octyltins were determined in the liver of adult sea otters (Enhydra lutris) found dead along the coasts of California, Washington, and Alaska in the USA and Kamchatka, Russia. Total concentrations of OTs in sea otters from California ranged from 34 to 4100 ng/g on a wet weight basis. The order of concentrations of OTs in sea otters was total butyltins ??? total octyltins ??? total phenyltins. Elevated concentrations of butyltins (BTs) were found in some otters classified under 'infectious-disease' mortality category. Concentrations of BTs in few of these otters were close to or above the threshold levels for adverse health effects. Total butyltin concentrations decreased significantly in the livers of California sea otters since the 1990s. Based on the concentrations of organotins in sea otters collected from 1992 to 2002, the half-lives of tributyltin and total butyltins in sea otters were estimated to be approximately three years. ?? 2008 Elsevier Ltd. All rights reserved.

  4. Using SPARROW to Model Total Nitrogen Sources, and Transport in Rivers and Streams of California and Adjacent States, U.S.A

    NASA Astrophysics Data System (ADS)

    Saleh, D.; Domagalski, J. L.

    2012-12-01

    Sources and factors affecting the transport of total nitrogen are being evaluated for a study area that covers most of California and some areas in Oregon and Nevada, by using the SPARROW model (SPAtially Referenced Regression On Watershed attributes) developed by the U.S. Geological Survey. Mass loads of total nitrogen calculated for monitoring sites at stream gauging stations are regressed against land-use factors affecting nitrogen transport, including fertilizer use, recharge, atmospheric deposition, stream characteristics, and other factors to understand how total nitrogen is transported under average conditions. SPARROW models have been used successfully in other parts of the country to understand how nutrients are transported, and how management strategies can be formulated, such as with Total Maximum Daily Load (TMDL) assessments. Fertilizer use, atmospheric deposition, and climatic data were obtained for 2002, and loads for that year were calculated for monitored streams and point sources (mostly from wastewater treatment plants). The stream loads were calculated by using the adjusted maximum likelihood estimation method (AMLE). River discharge and nitrogen concentrations were de-trended in these calculations in order eliminate the effect of temporal changes on stream load. Effluent discharge information as well as total nitrogen concentrations from point sources were obtained from USEPA databases and from facility records. The model indicates that atmospheric deposition and fertilizer use account for a large percentage of the total nitrogen load in many of the larger watersheds throughout the study area. Point sources, on the other hand, are generally localized around large cities, are considered insignificant sources, and account for a small percentage of the total nitrogen loads throughout the study area.

  5. A Process-Based Assessment for Watershed Restoration Planning, Chehalis River Basin, USA

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Thompson, J.; Seixas, G.; Fogel, C.; Hall, J.; Chamberlin, J.; Kiffney, P.; Pollock, M. M.; Pess, G. R.

    2016-12-01

    Three key questions in identifying and prioritizing river restoration are: (1) How have habitats changed?, (2) What are the causes of those habitat changes?, and (3) How of those changes affected the species of interest? To answer these questions and assist aquatic habitat restoration planning in the Chehalis River basin, USA, we quantified habitat changes across the river network from headwaters to the estuary. We estimated historical habitat capacity to support salmonids using a combination of historical assessments, reference sites, and models. We also estimated current capacity from recent or newly created data sets. We found that losses of floodplain habitats and beaver ponds were substantial, while the estuary was less modified. Both tributary and main channel habitats—while modified—did not show particularly large habitat changes. Assessments of key processes that form and sustain habitats indicate that riparian functions (shading and wood recruitment) have been significantly altered, although peak and low flows have also been altered in some locations. The next step is to link our habitat assessments to salmon life-cycle models to evaluate which life stages and habitat types currently constrain population sizes of spring and fall Chinook salmon, coho salmon, and steelhead. By comparing model runs that represent different components of habitat losses identified in the analysis above, life-cycle models help identify which habitat losses have most impacted each species and population. This assessment will indicate which habitat types provide the greatest restoration potential, and help define a guiding vision for restoration efforts. Future analyses may include development and evaluation of alternative restoration scenarios, including different climate change scenarios, to refine our understanding of which restoration actions provide the greatest benefit to a salmon population.

  6. Urban sources and emissions of nitrous oxide and methane in southern California, USA

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Pataki, D.; Tyler, S. C.; Czimczik, C. I.; Xu, X.; Christensen, L. E.

    2012-12-01

    Anthropogenic activities have resulted in increasing levels of greenhouse gases, including carbon dioxide, methane, and nitrous oxide. While global and regional emissions sources of carbon dioxide are relatively well understood, methane and nitrous oxide are less constrained, particularly at regional scales. Here we present the results of an investigation of sources and emissions of methane and nitrous oxide in Los Angeles, California, USA, one of Earth's largest urban areas. The original goal of the project was to determine whether isotopes are useful tracers of agricultural versus urban nitrous oxide and methane sources. For methane, we found that stable isotopes (carbon-13 and deuterium) and radiocarbon are good tracers of biogenic versus fossil fuel sources. High altitude observations of methane concentration, measured continuously using tunable laser spectroscopy, and isotope ratios, measured on discrete flask samples using mass spectrometry, indicate that the predominant methane source in Los Angeles is from fossil fuels, likely from "fugitive" emissions from geologic formations, natural gas pipelines, oil refining, or power plants. We also measured nitrous oxide emissions and isotope ratios from urban (landscaping and wastewater treatment) and agricultural sources (corn and vegetable fields). There was no difference in nitrous oxide isotope ratios between the different types of sources, although stable isotopes did differ between nitrous oxide produced in oxic and anoxic wastewater treatment tanks. Our nitrous oxide flux data indicate that landscaped turfgrass emits nitrous oxide at rates equivalent to agricultural systems, indicating that ornamental soils should not be disregarded in regional nitrous oxide budgets. However, we also showed that wastewater treatment is a much greater source of nitrous oxide than soils regionally. This work shows that global nitrous oxide and methane budgets are not easily downscaled to regional, urban settings, which has

  7. Streamflow, dissolved solids, suspended sediment, and trace elements, San Joaquin River, California, June 1985-September 1988

    USGS Publications Warehouse

    Hill, B.R.; Gilliom, R.J.

    1993-01-01

    The 1985-88 study period included hydrologic extremes throughout most of central California. Except for an 11-month period during and after the 1986 flood, San Joaquin River streamflows during 1985-88 were generally less than median for 1975-88. The Merced Tuolumne, and Stanislaus Rivers together comprised 56 to 69 percent of the annual San Joaquin River flow, Salt and Mud Sloughs together comprised 6 to 19 percent, the upper San Joaquin River comprised 2 to 25 percent, and unmeasured sources from agricultural discharges and ground water accounted for 13 to 20 percent. Salt and Mud Sloughs and the unmeasured sources contribute most of the dissolved-solids load. The Merced, Tuolumne, and Stanislaus Rivers greatly dilute dissolved-solids concentrations. Suspended-sediment concentration peaked sharply at more than 600 milligrams per liter during the flood of February 1986. Concentrations and loads varied seasonally during low-flow conditions, with concentrations highest during the early summer irrigation season. Trace elements present primarily in dissolved phases are arsenic, boron, lithium, molybdenum, and selenium. Boron concentrations exceeded the irrigation water-quality criterion of 750 micrograms per liter more than 75 percent of the time in Salt and Mud Sloughs and more than 50 percent of the time at three sites on the San Joaquin River. Selenium concentrations exceeded the aquatic-life criterion of 5 micrograms per liter more than 75 percent of the time in Salt Slough and more than 50 percent of the time in Mud Slough and in the San Joaquin River from Salt Slough to the Merced River confluence. Concentrations of dissolved solids, boron, and selenium usually are highest during late winter to early spring, lower in early summer, higher again in mid-to-late summer, and the lowest in autumn, and generally correspond to seasonal inflows of subsurface tile-drain water to Salt and Mud Sloughs. Trace elements present primarily in particulate phases are aluminum

  8. Application of hydrologic tools and monitoring to support managed aquifer recharge decision making in the Upper San Pedro River, Arizona, USA

    USGS Publications Warehouse

    Lacher, Laurel J.; Turner, Dale S.; Gungle, Bruce W.; Bushman, Brooke M.; Richter, Holly E.

    2014-01-01

    The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr). Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.

  9. Use of Landsat Thematic Mapper images in regional correlation of syntectonic strata, Colorado river extensional corridor, California and Arizona

    NASA Technical Reports Server (NTRS)

    Beratan, K. K.; Blom, R. G.; Crippen, R. E.; Nielson, J. E.

    1990-01-01

    Enhanced Landsat TM images were used in conjunction with field work to investigate the regional correlation of Miocene rocks in the Colorado River extensional corridor of California and Arizona. Based on field investigations, four sequences of sedimentary and volcanic strata could be recognized in the Mohave Mountains (Arizona) and the eastern Whipple Mountains (California), which display significantly different relative volumes and organization of lithologies. The four sequences were also found to have distinctive appearances on the TM image. The recognition criteria derived from field mapping and image interpretation in the Mohave Mountains and Whipple Mountains were applied to an adjacent area in which stratigraphic affinities were less well known. The results of subsequent field work confirmed the stratigraphic and structural relations suggested by the Tm image analysis.

  10. Sedimentology of new fluvial deposits on the Elwha River, Washington, USA, formed during large-scale dam removal

    USGS Publications Warehouse

    Draut, Amy; Ritchie, Andrew C.

    2015-01-01

    Removal of two dams 32 m and 64 m high on the Elwha River, Washington, USA, provided the first opportunity to examine river response to a dam removal and controlled sediment influx on such a large scale. Although many recent river-restoration efforts have included dam removal, large dam removals have been rare enough that their physical and ecological effects remain poorly understood. New sedimentary deposits that formed during this multi-stage dam removal result from a unique, artificially created imbalance between fluvial sediment supply and transport capacity. River flows during dam removal were essentially natural and included no large floods in the first two years, while draining of the two reservoirs greatly increased the sediment supply available for fluvial transport. The resulting sedimentary deposits exhibited substantial spatial heterogeneity in thickness, stratal-formation patterns, grain size and organic content. Initial mud deposition in the first year of dam removal filled pore spaces in the pre-dam-removal cobble bed, potentially causing ecological disturbance but not aggrading the bed substantially at first. During the second winter of dam removal, thicker and in some cases coarser deposits replaced the early mud deposits. By 18 months into dam removal, channel-margin and floodplain deposits were commonly >0.5 m thick and, contrary to pre-dam-removal predictions that silt and clay would bypass the river system, included average mud content around 20%. Large wood and lenses of smaller organic particles were common in the new deposits, presumably contributing additional carbon and nutrients to the ecosystem downstream of the dam sites. Understanding initial sedimentary response to the Elwha River dam removals will inform subsequent analyses of longer-term sedimentary, geomorphic and ecosystem changes in this fluvial and coastal system, and will provide important lessons for other river-restoration efforts where large dam removal is planned or

  11. Water-quality assessment of the Sacramento River basin, California : water quality of fixed sites, 1996-1998

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dileanis, Peter D.

    2000-01-01

    Water-quality samples were collected from 12 sites in the Sacramento River Basin, Cali-fornia, from February 1996 through April 1998. Field measurements (dissolved oxygen, pH, specific conductance, alkalinity, and water tem-perature) were completed on all samples, and laboratory analyses were done for suspended sediments, nutrients, dissolved and particulate organic carbon, major ions, trace elements, and mercury species. Samples were collected at four types of locations on the Sacramento River?large tributaries to the Sacramento River, agricul-tural drainage canals, an urban stream, and a flood control channel. The samples were collected across a range of flow conditions representative of those sites during the timeframe of the study. The water samples from the Sacramento River indi-cate that specific conductance increases slightly downstream but that the water quality is indicative of dilute water. Water temperature of the Sacramento River increases below Shasta Lake during the spring and summer irrigation season owing to diversion of water out of the river and subsequent lower flow. All 12 sites had generally low concentrations of nutrients, but chlorophyll concentrations were not measured; therefore, the actual consequences of nutrient loading could not be adequately assessed. Concentrations of dis-solved organic carbon in samples from the Sacramento River and the major tributaries were generally low; the formation of trihalomethanes probably does not currently pose a problem when water from the Sacramento River and its major tributaries is chlorinated for drinking-water purposes. However, dissolved organic carbon concentrations were higher in the urban stream and in agricultural drainage canals, but were diluted upon mixing with the Sacramento River. The only trace element that currently poses a water-quality problem in the Sacramento River is mercury. A federal criterion for the protection of aquatic life was exceeded during this study, and floodwater

  12. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  13. A Proposed Habitat Management Plan for Yellow-Billed Cuckoos in California

    Treesearch

    Stephen A. Laymon; Mary D. Halterman

    1989-01-01

    The California Wildlife-Habitat Relationship (WHR) system was tested for birds breeding in the Valley-Foothill Riparian habitat along California's Sacramento and South Fork Kern rivers. The model performed poorly with 33 pct and 21 pct correct predictions respectively at the two locations. Changes to the model for 60 species on the Sacramento River and 66 species...

  14. Fish Assemblage Response to a Small Dam Removal in the Eightmile River System, Connecticut, USA

    NASA Astrophysics Data System (ADS)

    Poulos, Helen M.; Miller, Kate E.; Kraczkowski, Michelle L.; Welchel, Adam W.; Heineman, Ross; Chernoff, Barry

    2014-11-01

    We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.

  15. Fish assemblage response to a small dam removal in the Eightmile River system, Connecticut, USA.

    PubMed

    Poulos, Helen M; Miller, Kate E; Kraczkowski, Michelle L; Welchel, Adam W; Heineman, Ross; Chernoff, Barry

    2014-11-01

    We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.

  16. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha in the Willamette River, Oregon, USA

    USGS Publications Warehouse

    Billman, E.J.; Whitman, L.D.; Schroeder, R.K.; Sharpe, C.S.; Noakes, David L. G.; Schreck, Carl B.

    2014-01-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  17. Concentration, UV-spectroscopic characteristics and fractionation of DOC in stormflow from an urban stream, Southern California, USA

    USGS Publications Warehouse

    Izbicki, J.A.; Pimentel, I.M.; Johnson, Russell; Aiken, G.R.; Leenheer, J.

    2007-01-01

    The composition of dissolved organic carbon (DOC) in stormflow from urban areas has been greatly altered, both directly and indirectly, by human activities and there is concern that there may be public health issues associated with DOC, which has unknown composition from different sources within urban watersheds. This study evaluated changes in the concentration and composition of DOC in stormflow in the Santa Ana River and its tributaries between 1995 and 2004 using a simplified approach based on the differences in the optical properties of DOC and using operationally defined differences in molecular weight and solubility. The data show changes in the composition of DOC in stormflow during the rainy season and differences associated with runoff from different parts of the basin, including extensive upland areas burned prior to the 2004 rainy season.Samples were collected from the Santa Ana River, which drains ~6950 km2 of the densely populated coastal area of southern California, during 23 stormflows between 1995 and 2004. Dissolved organic carbon (DOC) concentrations during the first stormflows of the ‘winter’ (November to March) rainy season increased rapidly with streamflow and were positively correlated with increased faecal indicator bacteria concentrations. DOC concentrations were not correlated with streamflow or with other constituents during stormflows later in the rainy season and DOC had increasing UV absorbance per unit carbon as the rainy season progressed. DOC concentrations in stormflow from an urban drain tributary to the river also increased during stormflow and were greater than concentrations in the river. DOC concentrations in stormflow from a tributary stream, draining urban and agricultural land that contained more than 320 000 animals, mostly dairy cows, were higher than concentrations in stormflow from the river and from the urban drain. Fires that burned large areas of the basin before the 2004 rainy season did not increase DOC

  18. Accumulation of current-use and organochlorine pesticides in crab embryos from Northern California, USA

    USGS Publications Warehouse

    Smalling, Kelly L.; Morgan, Steven; Kuivila, Kathryn K.

    2010-01-01

    Invertebrates have long been used as resident sentinels for assessing ecosystem health and productivity. The shore crabs, Hemigrapsus oregonensis and Pachygrapsus crassipes, are abundant in estuaries and beaches throughout northern California, USA and have been used as indicators of habitat conditions in several salt marshes. The overall objectives of the present study were to conduct a lab-based study to test the accumulation of current-use pesticides, validate the analytical method and to analyze field-collected crabs for a suite of 74 current-use and legacy pesticides. A simple laboratory uptake study was designed to determine if embryos could bioconcentrate the herbicide molinate over a 7-d period. At the end of the experiment, embryos were removed from the crabs and analyzed by gas chromatography/mass spectrometry. Although relatively hydrophilic (log KOW of 2.9), molinate did accumulate with an estimated bioconcentration factor (log BCF) of approximately 2.5. Following method validation, embryos were collected from two different Northern California salt marshes and analyzed. In field-collected embryos 18 current-use and eight organochlorine pesticides were detected including synthetic pyrethroids and organophosphate insecticides, as well as DDT and its degradates. Lipid-normalized concentrations of the pesticides detected in the field-collected crab embryos ranged from 0.1 to 4 ppm. Pesticide concentrations and profiles in crab embryos were site specific and could be correlated to differences in land-use practices. These preliminary results indicate that embryos are an effective sink for organic contaminants in the environment and have the potential to be good indicators of ecosystem health, especially when contaminant body burden analyses are paired with reproductive impairment assays.

  19. Accumulation of current-use and organochlorine pesticides in crab embryos from northern California, USA.

    PubMed

    Smalling, Kelly L; Morgan, Steven; Kuivila, Kathryn K

    2010-11-01

    Invertebrates have long been used as resident sentinels for assessing ecosystem health and productivity. The shore crabs, Hemigrapsus oregonensis and Pachygrapsus crassipes, are abundant in estuaries and beaches throughout northern California, USA and have been used as indicators of habitat conditions in several salt marshes. The overall objectives of the present study were to conduct a lab-based study to test the accumulation of current-use pesticides, validate the analytical method and to analyze field-collected crabs for a suite of 74 current-use and legacy pesticides. A simple laboratory uptake study was designed to determine if embryos could bioconcentrate the herbicide molinate over a 7-d period. At the end of the experiment, embryos were removed from the crabs and analyzed by gas chromatography/mass spectrometry. Although relatively hydrophilic (log K(OW) of 2.9), molinate did accumulate with an estimated bioconcentration factor (log BCF) of approximately 2.5. Following method validation, embryos were collected from two different Northern California salt marshes and analyzed. In field-collected embryos 18 current-use and eight organochlorine pesticides were detected including synthetic pyrethroids and organophosphate insecticides, as well as DDT and its degradates. Lipid-normalized concentrations of the pesticides detected in the field-collected crab embryos ranged from 0.1 to 4 ppm. Pesticide concentrations and profiles in crab embryos were site specific and could be correlated to differences in land-use practices. These preliminary results indicate that embryos are an effective sink for organic contaminants in the environment and have the potential to be good indicators of ecosystem health, especially when contaminant body burden analyses are paired with reproductive impairment assays. © 2010 SETAC.

  20. Adult tree swallow survival on the polychlorinated biphenyl-contaminated Hudson River, New York, USA, between 2006 and 2010

    USGS Publications Warehouse

    Custer, Christine M.; Custer, Thomas W.; Hines, James E.

    2012-01-01

    The upper Hudson River basin in east central New York, USA, is highly contaminated, primarily with polychlorinated biphenyls (PCBs). Reduced adult survival has been documented in tree swallows (Tachycineta bicolor) at a similarly PCB-contaminated river system in western Massachusetts. The purpose of the present study was to assess whether adult survival of tree swallows was likewise affected in the Hudson River basin. Between 2006 and 2010, a total of 521 female tree swallows were banded, of which 148 were retrapped at least once. The authors used Program MARK and an information theoretic approach to test the hypothesis that PCB contamination reduced annual survival of female tree swallows. The model that best described the processes that generated the capture history data included covariate effects of year and female plumage coloration on survival but not PCB/river. Annual survival rates of brown-plumaged females (mostly one year old) were generally lower (mean phi = 0.39) than those of blue-plumaged females (mean phi = 0.50, one year or older). Poor early spring weather in 2007 was associated with reduced survival in both plumage-color groups compared to later years. Models with the effects of PCB exposure on survival (all ΔAICc values >5.0) received little support.

  1. PAHs and PCBs deposited in surficial sediments along a rural to urban transect in a mid-Atlantic coastal river basin (USA).

    PubMed

    Foster, Gregory D; Cui, Vickie

    2008-10-01

    PAHs and PCBs were measured in river sediments along a 226 km longitudinal transect that spanned rural to urban land use settings through Valley and Ridge, Piedmont Plateau and Coastal Plain physiographic provinces in the Potomac River basin (mid-Atlantic USA). A gradient in PAH concentrations was found in river bed sediments along the upstream transect in the Potomac and Shenandoah Rivers that correlated with population densities in the nearby sub-basins. Sediment PAH concentrations halved per each approximately 40 km of transect distance upstream (i.e., the half-concentration distance) from the urban center (Washington, DC) of the Potomac River basin in direct proportion to population density. The PAH molecular composition was consistent across all geologic provinces, revealing a dominant pyrogenic source. Fluoranthene to perylene ratios served as useful markers for urban inputs, with a ratio > 2.4 observed in sediments near urban structures such as roadways, bridges and sewer outfalls. PCBs in sediments were not well correlated with population densities along the river basin transect, but the highest concentrations were found in the urban Coastal Plain region near Washington, DC and in the Shenandoah River near a known industrial Superfund site. PAHs were moderately correlated with sediment total organic carbon (TOC) in the Shenandoah River and Coastal Plain Potomac River regions, but TOC was poorly correlated with PCB concentrations throughout the entire basin. Although both PAHs and PCBs are widely recognized as urban-derived contaminants, their concentration profiles and geochemistry in river sediments were uniquely different throughout the upper Potomac River basin.

  2. Wildfires in California, August 17, 2015

    NASA Image and Video Library

    2017-12-08

    Very hot, dry and unstable conditions in California and across the Pacific Northwest add to the challenges facing firefighters as they battle blazes around the region. Cal Fire is urging Californians to be extremely cautious, especially for the next few days, as the current conditions increase the dangers authorities face. This image was taken by NASA-NOAA's Suomi NPP satellite's VIIRS instrument around 2145 UTC (5:45 p.m. EDT) on August 17, 2015. Northern California is seeing smoke from the River Complex, Route Complex, South Complex, Fork Complex and Mad River Complex fires combine over a large area of the Shasta-Trinity National Forest west of Redding, California, while the Rough Fire in Fresno County is spreading toward the Black Rock Reservoir, causing evacuations and road closures. Fires across the Pacific Northwest aren't limited to California. Please see the Suomi NPP VIIRS composites in NOAA View to see the growth and extent of fires over the past weeks. Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory

  3. Tracking plant-derived biomarkers from source to sink in the Miners River, Upper Peninsula of Michigan (USA)

    NASA Astrophysics Data System (ADS)

    Giri, S. J.; Diefendorf, A. F.; Lowell, T. V.

    2012-12-01

    Biogeochemical cycling of terrestrial organic matter and it subsequent burial plays a vital role in the global carbon cycle. Rivers provide a pathway for terrestrial organic carbon dispersal and integration into sediments. Terrestrial plant biomarkers are useful tools for studying carbon cycling because they can provide an indication of the source of organic carbon in both modern and ancient sediments. Biomarkers can also be used as paleovegetation proxies in geologic sediments where fossils are absent. However, limited information is available about the dispersal and deposition of plant biomarkers in modern river systems, especially for compounds that provide taxonomic specificity such as di- and triterpenoids (diagnostic for conifers and angiosperms, respectively). To better resolve the modes of biomarker transport within fluvial and riparian systems, we characterized plant biomarker transport in the Miners River, a small river basin within a mixed angiosperm-conifer forest at Pictured Rocks National Lakeshore (MI, USA). To assess the transport of biomarkers in river systems, we collected plants, soils, river sediments, and filtered particulate and dissolved organic carbon from seven sites from the headwaters to Lake Superior along the Miners River (~20 km pathway). All samples contained long-chain n-alkyl lipids, sterols, diterpenoids (abietane and pimarane classes), and triterpenoids (oleanane, ursane, and lupane classes). With the exception of a soil sample taken at a depth of 30 cm, triterpenoids are found in higher concentrations than diterpenoids in riparian soils and river sediments. Biomarker compositions in riparian soils, point bar, and overbank deposits are similar to the surrounding vegetation, albeit much lower in concentration. The composition of di- and triterpenoids in the river-suspended particulate organic carbon is similar in composition to the surrounding vegetation and soils. We developed a method to isolate biomarkers in the dissolved

  4. Coupled Teleconnections and River Dynamics for Enhanced Hydrologic Forecasting in the Upper Colorado River Basin USA

    NASA Astrophysics Data System (ADS)

    Matter, M. A.; Garcia, L. A.; Fontane, D. G.

    2005-12-01

    Accuracy of water supply forecasts has improved for some river basins in the western U.S.A. by integrating knowledge of climate teleconnections, such as El Niño/Southern Oscillation (ENSO), into forecasting routines, but in other basins, such as the Colorado River Basin (CRB), forecast accuracy has declined (Pagano et al. 2004). Longer lead time and more accurate seasonal forecasts, particularly during floods or drought, could help reduce uncertainty and risk in decision-making and lengthen the period for planning more efficient and effective strategies for water use and ecosystem management. The goal of this research is to extend the lead time for snowmelt hydrograph estimation by 4-6 months (from spring to the preceding fall), and at the same time increase the accuracy of snowmelt runoff estimates in the Upper CRB (UCRB). We hypothesize that: (1) UCRB snowpack accumulation and melt are driven by large scale climate modes, including ENSO, PDO and AMO, that establish by fall and persist into early spring; (2) forecast analysis may begin in the fall prior to the start of the primary snow accumulation period and when energy to change the climate system is decreasing; and (3) between fall and early spring, streamflow hydrographs will amplify precipitation and temperature signals, and thus will evolve characteristically in response to wet, dry or average hydroclimatic conditions. Historical in situ records from largely unregulated river reaches and undeveloped time periods of the UCRB are used to test this hypothesis. Preliminary results show that, beginning in the fall (e.g., October or November) streamflow characteristics, including magnitude, rate of change and variability, as well as timing and magnitude of fall/early winter and late winter/early spring season flow volumes, are directly correlated with the magnitude of the upcoming snowmelt runoff (or annual basin yield). The use of climate teleconnections to determine characteristic streamflow responses in the

  5. Geochemical evidence for a complex origin for the Kelso dunes, Mojave National Preserve, California USA

    USGS Publications Warehouse

    Muhs, Daniel; Lancaster, Nicholas; Skipp, Gary L.

    2017-01-01

    The Kelso Dune field in southern California is intriguing because although it is of limited areal extent (~ 100 km2), it has a wide variety of dune forms and contains many active dunes (~ 40 km2), which is unusual in the Mojave Desert. Studies over the past eight decades have concluded that the dunes are derived primarily from a single source, Mojave River alluvium, under a dominant, westerly-to-northwesterly wind regime. The majority of these studies did not, however, present data to support the Mojave River as the only source. We conducted mineralogical and geochemical studies of most of the 14 geomorphically defined dune groups of the Kelso Dune field as well as potential sand sources, alluvial sediments from the surrounding mountain ranges. Results indicate that sands in the nine western dune groups have K/Rb and K/Ba (primarily from K-feldspar) compositions that are indistinguishable from Mojave River alluvium (westerly/northwesterly winds) and Budweiser Wash alluvium (southwesterly winds), permitting an interpretation of two sources. In contrast, sands from the five eastern dune groups have K/Rb and K/Ba values that indicate significant inputs from alluvial fan deposits of the Providence Mountains. This requires either rare winds from the east or southeast or, more likely, aeolian reworking of distal Providence Mountain fan sediments by winds from the west, at a rate greater than input from the Mojave River or other western sources. The results indicate that even a small dune field can have a complex origin, either from seasonally varying winds or complex alluvial-fan-dune interaction. Application of K/Rb and K/Ba in K-feldspar as a provenance indicator could be used in many of the world's ergs or sand seas, where dune origins are still not well understood or are controversial. Four examples are given from Africa and the Middle East where such an approach could yield useful new information about dune sand provenance.

  6. Precipitation-runoff processes in the Feather River basin, northeastern California, and streamflow predictability, water years 1971-97

    USGS Publications Warehouse

    Koczot, Kathryn M.; Jeton, Anne E.; McGurk, Bruce; Dettinger, Michael D.

    2005-01-01

    Precipitation-runoff processes in the Feather River Basin of northern California determine short- and long-term streamflow variations that are of considerable local, State, and Federal concern. The river is an important source of water and power for the region. The basin forms the headwaters of the California State Water Project. Lake Oroville, at the outlet of the basin, plays an important role in flood management, water quality, and the health of fisheries as far downstream as the Sacramento-San Joaquin Delta. Existing models of the river simulate streamflow in hourly, daily, weekly, and seasonal time steps, but cannot adequately describe responses to climate and land-use variations in the basin. New spatially detailed precipitation-runoff models of the basin have been developed to simulate responses to climate and land-use variations at a higher spatial resolution than was available previously. This report characterizes daily rainfall, snowpack evolution, runoff, water and energy balances, and streamflow variations from, and within, the basin above Lake Oroville. The new model's ability to predict streamflow is assessed. The Feather River Basin sits astride geologic, topographic, and climatic divides that establish a hydrologic character that is relatively unusual among the basins of the Sierra Nevada. It straddles a north-south geologic transition in the Sierra Nevada between the granitic bedrock that underlies and forms most of the central and southern Sierra Nevada and volcanic bedrock that underlies the northernmost parts of the range (and basin). Because volcanic bedrock generally is more permeable than granitic, the northern, volcanic parts of the basin contribute larger fractions of ground-water flow to streams than do the southern, granitic parts of the basin. The Sierra Nevada topographic divide forms a high altitude ridgeline running northwest to southeast through the middle of the basin. The topography east of this ridgeline is more like the rain

  7. The Middle Sacramento River: Human Impacts on Physical and Ecological Processes Along a Meandering River

    Treesearch

    Koll Buer; Dave Forwalter; Mike Kissel; Bill Stohlert

    1989-01-01

    Native plant and wildlife communities along Northern California's middle Sacramento River (Red Bluff to Colusa) originally adapted to a changing pattern of erosion and deposition across a broad meander belt. The erosion-deposition process was in balance, with the river alternately building and eroding terraces. Human-induced changes to the Sacramento River,...

  8. Conservation Effects Assessment Project-Wetlands assessment in California's Central Valley and Upper Klamath River Basin

    USGS Publications Warehouse

    Duffy, Walter G.; Kahara, Sharon N.; Records, Rosemary M.

    2011-01-01

    Executive Summary-Ecosystem Services Derived from Wetlands Reserve Program Conservation Practices in California's Central Valley and Oregon's Upper Klamath River Basin. The Wetlands Reserve Program (WRP) is one of several programs implemented by the U.S. Department of Agriculture (USDA). Since the WRP's inception in 1990, it has resulted in the restoration of approximately 29,000 hectares in California's Central Valley (CCV) and roughly 12,300 hectares in Oregon's Upper Klamath River Basin (UKRB). Both the CCV and UKRB are agricultural dominated landscapes that have experienced extensive wetland losses and hydrological alteration. Restored habitats in the CCV and UKRB are thought to provide a variety of ecosystem services, but little is known about the actual benefits afforded. The U.S. Geological Survey (USGS) California Cooperative Fish and Wildlife Unit in collaboration with the USDA Natural Resources Conservation Service surveyed 70 WRP sites and 12 National Wildlife Refuge sites in the CCV, and 11 sites in the UKRB to estimate ecosystem services provided. In the CCV, sites were selected along three primary gradients; (1) restoration age, (2) management intensity, and (3) latitude (climate). Sites in the UKRB were assessed along restoration age and management intensity gradients where possible. The management intensity gradient included information about the type and frequency of conservation practices applied at each site, which was then ranked into three categories that differentiated sites primarily along a hydrological gradient. Information collected was used to estimate the following ecosystem services: Soil and vegetation nutrient content, soil loss reduction, floodwater storage as well as avian, amphibian, fish, and pollinator use and habitat availability. Prior to this study, very little was known about WRP habitat morphology in the CCV and UKRB. Therefore in this study, we described these habitats and related them to ecosystem services provided. Our

  9. Inputs of the Dormant-Spray Pesticide, Diazinon, to the San Joaquin River, California, February 1993

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dubrovsky, Neil M.; Kratzer, Charles R.

    1995-01-01

    INTRODUCTION The objective of the National Water Quality Assessment (NAWQA) Program of the U.S. Geological Survey is to describe the status and trends of the Nation's water quality with respect to natural features of the environment and human activities or land-use. Pesticides are a major water-quality issue in the San Joaquin Valley of California (fig. 1), and pesticide residues may be transported to rivers and streams in agricultural runoff following winter storms. Three sites in the western San Joaquin Valley were monitored during and after two February 1993 storms. The storms occurred after extensive spraying of organophosphate insecticides, mostly diazinon, on almond and other stone-fruit orchards.

  10. An integrated study of earth resources in the State of California using remote sensing techniques. [supply, demand, and impact of California water resources

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.; Burgy, R. H.; Algazi, V. R.; Draeger, W. C.; Estes, J. E.; Bowden, L. W. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The supply, demand, and impact relationships of California's water resources as exemplified by the Feather River project and other aspects of the California Water Plan are discussed.

  11. Genetic diversity of infectious hematopoietic necrosis virus from Feather River and Lake Oroville, California, and virulence of selected isolates for Chinook salmon and rainbow trout

    USGS Publications Warehouse

    Bendorf, C.M.; Kelley, G.O.; Yun, S.C.; Kurath, G.; Andree, K.B.; Hedrick, R.P.

    2007-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a significant pathogen of young salmonid fishes worldwide but particularly within the historical range of the Pacific Northwest and California. In the Sacramento and San Joaquin River drainages of California, IHNV outbreaks in juvenile Chinook salmon Oncorhynchus tshawytscha have been observed regularly at large production hatcheries, including Coleman National Fish Hatchery (established in 1941) and Feather River State Fish Hatchery (FRH; established in 1967), since facility operations began. Recent severe epidemics at the FRH in 1998 and 2000-2002 prompted investigations into the characteristics and potential sources of virus at this facility. Both phylogenetic analyses of a variable portion of the glycoprotein gene and serologic comparisons based on neutralization with three polyclonal rabbit sera were used to characterize 82 IHNV isolates from the Feather River watershed between 1969 and 2004. All isolates examined were in the L genogroup and belonged to one of three serologic groups typical of IHNV from California. The IHNV isolates from the Feather River area demonstrated a maximum nucleotide sequence divergence of 4.0%, and new isolates appeared to emerge from previous isolates rather than by the introduction of more diverse subgroups from exogenous sources. The earliest isolates examined from the watershed formed the subgroup LI, which disappeared coincidently with a temporal shift to new genetic and serologic types of the larger subgroup LII. Experimental challenges demonstrated no significant differences in the virulence for juvenile Chinook salmon and rainbow trout O. mykiss from selected isolates representing the principal types of IHNV found historically and from recent epidemics at FRH. While most isolates were equally virulent for both host species, one isolate was found to be more virulent for Chinook salmon than for rainbow trout. ?? Copyright by the American Fisheries Society 2007.

  12. A spatial model of white sturgeon rearing habitat in the lower Columbia River, USA

    USGS Publications Warehouse

    Hatten, J.R.; Parsley, M.J.

    2009-01-01

    Concerns over the potential effects of in-water placement of dredged materials prompted us to develop a GIS-based model that characterizes in a spatially explicit manner white sturgeon Acipenser transmontanus rearing habitat in the lower Columbia River, USA. The spatial model was developed using water depth, riverbed slope and roughness, fish positions collected in 2002, and Mahalanobis distance (D2). We created a habitat suitability map by identifying a Mahalanobis distance under which >50% of white sturgeon locations occurred in 2002 (i.e., high-probability habitat). White sturgeon preferred relatively moderate to high water depths, and low to moderate riverbed slope and roughness values. The eigenvectors indicated that riverbed slope and roughness were slightly more important than water depth, but all three variables were important. We estimated the impacts that fill might have on sturgeon habitat by simulating the addition of fill to the thalweg, in 3-m increments, and recomputing Mahalanobis distances. Channel filling simulations revealed that up to 9 m of fill would have little impact on high-probability habitat, but 12 and 15 m of fill resulted in habitat declines of ???12% and ???45%, respectively. This is the first spatially explicit predictive model of white sturgeon rearing habitat in the lower Columbia River, and the first to quantitatively predict the impacts of dredging operations on sturgeon habitat. Future research should consider whether water velocity improves the accuracy and specificity of the model, and to assess its applicability to other areas in the Columbia River.

  13. California salmon and steelhead: Beyond the crossroads

    USGS Publications Warehouse

    Mills, Terry J.; McEwan, Dennis R.; Jennings, Mark R.; Stouder, Deanna J.; Bisson, Peter A.; Naiman, Robert J.

    1997-01-01

    Virtually all California salmon (Oncorhynchus spp.) and steelhead (O. mykiss) stocks have declined to record or near-record low levels during 1980-95. Escapement of naturally spawning Klamath and Sacramento basin fall-run chinook salmon (O. tshawytscha) stocks has fallen consistently below the goals of 35,000 adults (Klamath) and 120,000 adults (Sacramento) established by the Pacific Fishery Management Council. These two stocks constitute the primary management units for ocean harvest regulations in California and southern Oregon. This decline triggered a mandatory review of ocean harvest and inland production conditions in each basin. The Sacramento winter-run chinook salmon, once numbering >100,000 adult spawners, was listed as threatened in 1990 and endangered in 1994 under the Endangered Species Act. The listing occurred as a result of a precipitous decline in abundance (to <200 adult spawners) and significant threats to this stock’s continued existence.Spring-run chinook salmon, historically an abundant component of California’s inland fish fauna with >500,000 adult spawners, has been extirpated from the San Joaquin River basin. However, remnant populations of this naturally spawning stock remain within the Klamath, Smith, and Sacramento river basins. Unfortunately, annual counts of 3,000-25,000 spawners in the Sacramento River basin during the past 25 years are largely of hatchery origin. Recent steelhead data from the same region indicate that many stocks are close to extinction, and nearly all steel-head in the Sacramento River are also of hatchery origin. Both spring-run chinook salmon and summer steelhead are considered to be species of special concern by the California Department of Fish and Game because of their limited distributions and sensitivities to degraded habitat conditions. The southern race of winter steelhead south of Point Conception is nearly extinct and remnant populations have been recently recorded in only 9 streams.Coastal cutthroat

  14. Utilization of protein expression profiles as indicators of environmental impairment of smallmouth bass (Micropterus dolomieu) from the Shenandoah River, Virginia, USA.

    PubMed

    Ripley, Jennifer; Iwanowicz, Luke; Blazer, Vicki; Foran, Christy

    2008-08-01

    The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption.

  15. Utilization of protein expression profiles as indicators of environmental impairment of smallmouth bass (Micropterus dolomieu) from the Shenandoah River, Virginia, USA

    USGS Publications Warehouse

    Ripley, J.; Iwanowicz, L.; Blazer, V.; Foran, C.

    2008-01-01

    The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption. ?? 2008 SETAC.

  16. Mountains to the sea: River study of plastic and non-plastic microfiber pollution in the northeast USA.

    PubMed

    Miller, Rachael Z; Watts, Andrew J R; Winslow, Brooke O; Galloway, Tamara S; Barrows, Abigail P W

    2017-11-15

    Aquatic environments are sinks for anthropogenic contamination, whether chemical or solid pollutants. Microfibers shed from clothing and other textiles contribute to this problem. These can be plastic or non-plastic origin. Our aim was to investigate the presence and distribution of both types of anthropogenic microfibers along the length of the Hudson River, USA. Surface grab samples were collected and filtered through a 0.45μm filter paper. Abundance of fibers was determined after subtraction of potential contamination. 233 microfibers were recorded in 142 samples, averaging 0.98microfibersL -1 . Subsequent micro-FTIR showed half of the fibers were plastic while the other half were non-plastic, but of anthropogenic origin. There was no relationship between fiber abundance, wastewater treatment plant location or population density. Extrapolating from this data, and using available hydrographic data, 34.4% of the Hudson River's watershed drainage area contributes an average 300 million anthropogenic microfibers into the Atlantic Ocean per day. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. View of the Salinas River Valley area south of Monterey Bay, California

    NASA Image and Video Library

    1973-08-15

    SL3-88-004 (July-September 1973) --- A vertical view of the Salinas River Valley area south of Monterey Bay, California area is seen in this Skylab 3 Earth Resources Experiments Package S190-B (five-inch Earth terrain camera) photograph taken from the Skylab space station in Earth orbit. The valley is an irrigated agricultural area, and is indicated by the dark-green and light-gray rectangular patterns in the centre of the picture. The city of Salinas is barely visible under the cloud cover at the top (north) end of the valley. The dark mass on the left (west) side of the valley is the Santa Lucia mountain range. The Big Sur area is on the left and partly covered by clouds. The Diablo Range forms the dark mass in the lower right (southeast) corner of the photograph. The town of Hollister is the gray area in the dark-green rectangular farm tracts which occupy the floor of the San Benito Valley in the upper right (northeast) corner of the photograph. The Salinas River flows northwestward toward Monterey Bay. The towns of Soledad, Greenfield and King City appear as gray areas along U.S. 101 in the Salinas Valley. The geology of the area is complex, and has been racked by several earthquakes resulting from movement along the San Andreas and subsidiary faults. Here, the surface expression of the San Andreas Fault can be traced from a point just west of Hollister at the contrast of dark brown and tan to a point about one inch left of the lower right (southeast) corner of the picture. Subsidiary faults are indicated by the curving trend of the rocks along the right side. The photograph will provide detailed information on land use patterns (Dr. R. Colwell, University of California, Berkeley) and fault tectonics (Dr. P. Merifield, Earth Science Res., Inc. and Dr. M. Abdel-Gawad, Rockwell International). Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of

  18. Contingency table analysis of pebble lithology and roundness: A case study of Huangshui River, China and comparison to rivers in the Rocky Mountains, USA

    USGS Publications Warehouse

    Miao, X.; Lindsey, D.A.; Lai, Z.; Liu, Xiuying

    2010-01-01

    Contingency table analysis of pebble lithology and roundness is an effective way to identify the source terrane of a drainage basin and to distinguish changes in basin size, piracy, tectonism, and other events. First, the analysis to terrace gravel deposited by the Huangshui River, northeastern Tibet Plateau, China, shows statistically contrasting pebble populations for the oldest terrace (T7, Dadongling, 1.2. Ma) and the youngest terraces (T0-T3, ?. 0.15. Ma). Two fluvial processes are considered to explain the contrast in correlation between lithology and roundness in T7 gravel versus T0-T3 gravel: 1) reworking of T7 gravel into T0-T3 gravel and 2) growth in the size of the river basin between T7 and T0-T3 times. We favor growth in basin size as the dominant process, from comparison of pebble counts and contingency tables. Second, comparison of results from Huangshui River of China to three piedmont streams of the Rocky Mountains, USA highlights major differences in source terrane and history. Like Rocky Mountain piedmont gravel from Colorado examples, the Huangshui gravels show a preference (observed versus expected frequency) for rounded granite. But unlike Rocky Mountain gravel, Huangshui gravel shows a preference for angular quartzite and for rounded sandstone. In conclusion, contrasting behavior of lithologies during transport, not always apparent in raw pebble counts, is readily analyzed using contingency tables to identify the provenance of individual lithologies, including recycled clasts. Results of the analysis may help unravel river history, including changes in basin size and lithology. ?? 2009.

  19. Intimate Views of Cretaceous Plutons, the Colorado River Extensional Corridor, and Colorado River Stratigraphy in and near Topock Gorge, Southwest USA

    NASA Astrophysics Data System (ADS)

    Howard, K. A.; John, B. E.; Nielson, J. E.; Miller, J. M.; Priest, S. S.

    2010-12-01

    Geologic mapping of the Topock 7.5’ quadrangle, CA-AZ, reveals a structurally complex part of the Colorado River extensional corridor, and a younger stratigraphic record of landscape evolution during the history of the Colorado River. Paleoproterozoic gneisses and Mesoproterozoic granitoids and diabase sheets are exposed through cross-sectional thicknesses of many kilometers. Mesozoic to Tertary igneous rocks intrude the older rocks and include dismembered parts of the Late Cretaceous Chemehuevi Mountains Plutonic Suite. Plutons of this suite exposed in the Arizona part of the quad reconstruct, if Miocene deformation is restored, as cupolas capping the sill-like Chemehuevi Mountains batholith exposed in California. A nonconformity between Proterozoic and Miocene rocks reflects pre-Miocene uplift and erosional stripping of regional Paleozoic and Mesozoic strata. Thick (1-3 km) Miocene sections of volcanic rocks, sedimentary breccias, and conglomerate record the Colorado River extensional corridor’s structural and erosional evolution. Four major Miocene low-angle normal faults and a steep block-bounding Miocene fault divide the deformed rocks into major structural plates and giant tilted blocks on the east side of the Chemehuevi Mountains core complex. The low-angle faults attenuate >10 km of crustal section, superposing supracrustal and upper crustal rocks against originally deeper gneisses and granitoids. The block-bounding Gold Dome fault zone juxtaposes two large hanging-wall blocks, each tilted 90°, and splays at its tip into folds that deform layered Miocene rocks. A 15-16 Ma synfaulting intrusion occupies the triangular zone or gap where the folding strata detached from an inside corner along this fault between the tilt blocks. Post-extensional landscape evolution is recorded by upper Miocene to Quaternary strata, locally deformed. This includes several Pliocene and younger aggradational episodes in the Colorado River valley, and intervening degradation

  20. Improving assessments of tropospheric ozone injury to Mediterranean montane conifer forests in California (USA) and Catalonia (Spain) with GIS models related to plant water relations

    NASA Astrophysics Data System (ADS)

    Kefauver, Shawn C.; Peñuelas, Josep; Ustin, Susan L.

    2012-12-01

    The impacts of tropospheric ozone on conifer health in the Sierra Nevada of California, USA, and the Pyrenees of Catalonia, Spain, were measured using field assessments and GIS variables of landscape gradients related to plant water relations, stomatal conductance and hence to ozone uptake. Measurements related to ozone injury included visible chlorotic mottling, needle retention, needle length, and crown depth, which together compose the Ozone Injury Index (OII). The OII values observed in Catalonia were similar to those in California, but OII alone correlated poorly to ambient ozone in all sites. Combining ambient ozone with GIS variables related to landscape variability of plant hydrological status, derived from stepwise regressions, produced models with R2 = 0.35, p = 0.016 in Catalonia, R2 = 0.36, p < 0.001 in Yosemite and R2 = 0.33, p = 0.007 in Sequoia/Kings Canyon National Parks in California. Individual OII components in Catalonia were modeled with improved success compared to the original full OII, in particular visible chlorotic mottling (R2 = 0.60, p < 0.001). The results show that ozone is negatively impacting forest health in California and Catalonia and also that modeling ozone injury improves by including GIS variables related to plant water relations.

  1. An Investigation Into the Ecohydrology of Riparian Wetlands Along the Gila River, NM, USA

    NASA Astrophysics Data System (ADS)

    Samson, J.; Stone, M. C.

    2013-12-01

    The dynamism of the Gila River, in southwestern New Mexico, USA, has resulted in the creation of a topographically diverse floodplain that supports an array of riparian wetlands. The purpose of this study is to investigate the ecohydrologic and ecohydraulic processes of two of these wetlands, in order to predict their potential response to anthropogenic or natural changes in hydrology. One represents a natural wetland and the other a wetland that exists only as a result of an anthropogenic modification to the river system. A network of 30 wells and 2 weather stations were installed in early 2013 to provide a high resolution of data on surface water and ground water hydrologic conditions. Phreatic surface contour maps were produced to aid in the visualization of sub-surface gradients. Based on these results, an electrical resistivity investigation was conducted to identify paleoflow channels as well as depth to bedrock and other potential areas of interest. These data formed the development of three dimensional ModFlow models that were used to investigate potential future stream flow scenarios on wetland hydrology. The model outputs are being used in tandem with the results of quarterly ecological surveys on vegetation, algae, benthic, and bird communities, to make predictions of potential changes in community structure and function.

  2. Organochlorine pesticide residues in bed sediments of the San Joaquin River and its tributary streams, California

    USGS Publications Warehouse

    Gilliom, R.J.; Clifton, D.G.

    1987-01-01

    The distribution and concentrations of organochlorine pesticide residues in bed sediments were assessed from samples collected at 24 sites in the San Joaquin River and its tributaries in the San Joaquin Valley, California. Sampling was designed to collect the finest grained bed sediments present in the vicinity of each site. One or more of the 14 pesticides analyzed were detected at every site. Pesticides detected at one or more sites were chlordane, DDD, DDE, DDT, dieldrin, endosulfan, mirex, and toxaphene. Pesticides not detected were endrin, heptachlor, heptachlor epoxide, lindane, methoxychlor, and perthane. The most frequently detected pesticides were DDD (83% of sites), DDE (all sites), DDT (33% of sites), and dieldrin (58% of sites). Maximum concentrations of these pesticides, which were correlated with each other and with the amount of organic carbon in the sample, were DDD, 260 micrograms/kg; DDE, 430 micrograms/kg; DDT, 420 micrograms/kg; and dieldrin, 8.9 micrograms/kg. Six small tributary streams that drain agricultural areas west of the San Joaquin River had the highest concentrations. Water concentrations and loads were estimated for each pesticide from its concentration in bed sediments, the concentration of suspended sediment, and streamflow. Estimated loadings of DDD, DDE, DDT, and dieldrin from tributaries to the San Joaquin River indicate that most of the loading to the river at the time of the study was probably from the westside tributaries. Estimated water concentrations exceeded the aquatic life criterion for the sum of DDD, DDE, and DDt of 0.001 microgram/L at nine of the 24 sites sampled. Five of the nine sites are westside tributaries and one is the San Joaquin River near Vernalis. (Author 's abstract)

  3. Development of water facilities in the Santa Ana River Basin, California, 1810-1968: a compilation of historical notes derived from many sources describing ditch and canal companies, diversions, and water rights

    USGS Publications Warehouse

    Scott, M.B.

    1977-01-01

    This report traces by text, maps, and photographs, the development of the water supply in the Santa Ana River basin from its beginning in 1810 or 1811 to 1968. The value of the report lies in the fact that interpretation of the hydrologic systems in the basin requires knowledge of the concurrent state of development of the water supply, because that development has progressively altered the local regimen of both surface water and ground water. Most of the information for the earlier years was extracted and condensed from an investigation made by W. H. Hall, California State Engineer during the years 1878-87. Hall's study described irrigation development in southern California from its beginning through 1888. Information for the years following 1888 was obtained from the archives of the numerous water companies and water agencies in the Santa Ana River basin and from the various depositories of courthouse, county, and municipal records. The history of water-resources development in the Santa Ana River basin begins with the introduction of irrigation in the area by the Spanish, who settled in southern California in the latter part, of the 18th century. The first irrigation diversion from the Santa Ana River was made in 1810 or 1811 by Jose Antonio Yorba and Juan Pablo Peralta. Irrigation remained a localized practice during the Mexican-Californian, or rancho, period following the separation of Mexico from Spain in 1821. Rancho grantees principally raised cattle, horses, and sheep and irrigated only small· plots of feed grain for their livestock and fruit crops for household use. The breakup of the ranchos through sales to Americans, who were migrating to California in ever-increasing numbers following the acquisition of California by the United States in 1848, marked the beginning of a rapid increase in water use and the beginning of widespread irrigation. Many water companies and water agencies were organized to divert the surface flow of the Santa Ana River and

  4. Introduction. [usefulness of modern remote sensing techniques for studying components of California water resources

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1973-01-01

    Since May 1970, personnel on several campuses of the University of California have been conducting investigations which seek to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Emphasis has been given to California's water resources as exemplified by the Feather River project and other aspects of the California Water Plan. This study is designed to consider in detail the supply, demand, and impact relationships. The specific geographic areas studied are the Feather River drainage in northern California, the Chino-Riverside Basin and Imperial Valley areas in southern California, and selected portions of the west side of San Joaquin Valley in central California. An analysis is also given on how an effective benefit-cost study of remote sensing in relation to California's water resources might best be made.

  5. Modeling studies of landfalling atmospheric rivers and orographic precipitation over northern California

    NASA Astrophysics Data System (ADS)

    Eiserloh, Arthur J.; Chiao, Sen

    2015-02-01

    This study investigated a slow-moving long-wave trough that brought four Atmospheric Rivers (AR) "episodes" within a week to the U.S. West Coast from 28 November to 3 December 2012, bringing over 500 mm to some coastal locations. The highest 6- and 12-hourly rainfall rates (131 and 195 mm, respectively) over northern California occurred during Episode 2 along the windward slopes of the coastal Santa Lucia Mountains. Surface observations from NOAA's Hydrometeorological Testbed sites in California, available GPS Radio Occultation (RO) vertical profiles from the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) satellite mission were both assimilated into WRF-ARW via eight combinations of observation nudging, grid nudging, and 3DVAR to improve the upstream moisture characteristics and quantitative precipitation forecast (QPF) during this event. Results during the 6-hourly rainfall maximum period in Episode 2 revealed that the models underestimated the observed 6-hourly rainfall rate maximum on the windward slopes of the Santa Lucia mountain range. The grid-nudging experiments smoothed out finer mesoscale details in the inner domain that may affect the final QPFs. Overall, the experiments that did not use grid nudging were more accurate in terms of less mean absolute error. In the time evolution of the accumulated rainfall forecast, the observation nudging experiment that included RAOB and COSMIC GPS RO data demonstrated results with the least error for the north central Coastal Range and the 3DVAR cold-start experiment demonstrated the least error for the windward Sierra Nevada. The experiment that combined 3DVAR cold start, observation nudging, and grid nudging showed the most error in the rainfall forecasts. Results from this study further suggest that including surface observations at frequencies less than 3 h for observation nudging and having cycling intervals less than 3 h for 3DVAR cycling would be more beneficial for short

  6. Method to identify wells that yield water that will be replaced by Colorado River water in Arizona, California, Nevada, and Utah

    USGS Publications Warehouse

    Wilson, Richard P.; Owen-Joyce, Sandra J.

    1994-01-01

    Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. A method was developed to identify wells outside the f1ood plain of the lower Colorado River that yield water that will be replaced by water from the river. The method provides a uniform criterion of identification for all users pumping water from wells. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the river. Wells that have a static water-level elevation above the accounting surface are presumed to yield water that will be replaced by water from precipitation and inflow from tributary valleys. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable, partly saturated sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain and reservoirs that would exist if the river were the only source of water to the river aquifer. Maps at a scale of 1:100,000 show the extent and elevation of the accounting surface from the area surrounding Lake Mead to Laguna Dam near Yuma, Arizona.

  7. Results of a prototype surface water network design for pesticides developed for the San Joaquin River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1997-01-01

    A nested surface water monitoring network was designed and tested to measure variability in pesticide concentrations in the San Joaquin River and selected tributaries during the irrigation season. The network design an d sampling frequency necessary for determining the variability and distribution in pesticide concentrations were tested in a prototype study. The San Joaquin River Basin, California, was sampled from April to August 1992, a period during the irrigation season where there was no rainfall. Orestimba Creek, which drains a part of the western San Joaquin Valley, was sampled three times per week for 6 weeks, followed by a once per week sampling for 6 weeks, and the three times per week sampling for 6 weeks. A site on the San Joaquin River near the mouth of the basin, and an irrigation drain of the eastern San Joaquin Valley, were sampled weekly during the entire sampling period. Pesticides were most often detected in samples collected from Orestimba Creek. This suggests that the western valley was the principal source of pesticides to the San Joaquin River during the irrigation season. Irrigation drainage water was the source of pesticides to Orestimba Creek. Pesticide concentrations of Orestimba Creek showed greater temporal variability when sampled three times per week than when sampled once a week, due to variations in field management and irrigation. The implication for the San Joaquin River basin (an irrigation-dominated agricultural setting) is that frequent sampling of tributary sites is necessary to describe the variability in pesticides transported to the San Joaquin River.

  8. Application of sedimentary-structure interpretation to geoarchaeological investigations in the Colorado River Corridor, Grand Canyon, Arizona, USA

    USGS Publications Warehouse

    Draut, A.E.; Rubin, D.M.; Dierker, J.L.; Fairley, H.C.; Griffiths, R.E.; Hazel, J.E.; Hunter, R.E.; Kohl, K.; Leap, L.M.; Nials, F.L.; Topping, D.J.; Yeatts, M.

    2008-01-01

    We present a detailed geoarchaeological study of landscape processes that affected prehistoric formation and modern preservation of archaeological sites in three areas of the Colorado River corridor in Grand Canyon, Arizona, USA. The methods used in this case study can be applied to any locality containing unaltered, non-pedogenic sediments and, thus, are particularly relevant to geoarchaeology in arid regions. Resolving the interaction of fluvial, aeolian, and local runoff processes in an arid-land river corridor is important because the archaeological record in arid lands tends to be concentrated along river corridors. This study uses sedimentary structures and particle-size distributions to interpret landscape processes; these methods are commonplace in sedimentology but prove also to be valuable, though less utilized, in geoarchaeology and geomorphology. In this bedrock canyon, the proportion of fluvial sediment generally decreases with distance away from the river as aeolian, slope-wash, colluvial, and debris-flow sediments become more dominant. We describe a new facies consisting of 'flood couplets' that include a lower, fine-grained fluvial component and an upper, coarser, unit that reflects subaerial reworking at the land surface between flood events. Grain-size distributions of strata that lack original sedimentary structures are useful within this river corridor to distinguish aeolian deposits from finer-grained fluvial deposits that pre-date the influence of the upstream Glen Canyon Dam on the Colorado River. Identification of past geomorphic settings is critical for understanding the history and preservation of archaeologically significant areas, and for determining the sensitivity of archaeological sites to dam operations. Most archaeological sites in the areas studied were formed on fluvial deposits, with aeolian deposition acting as an important preservation agent during the past millennium. Therefore, the absence of sediment-rich floods in this

  9. Life cycle greenhouse gas and energy assessment of winegrape production in California

    USDA-ARS?s Scientific Manuscript database

    Purpose: This study applies life cycle assessment (LCA) to assess greenhouse gas (GHG) emissions, energy use, and direct water use in winegrape production across common vineyard management scenarios in two representative growing regions of California, USA (Napa and Lodi). California hosts 90 percent...

  10. Proparasitylenchus californicus n. sp. (Tylenchida: Allantonematidae), parasitic in the intertidal rove beetle Tarphiota geniculata (Mäklin) (Coleoptera: Staphylinidae) in California, USA.

    PubMed

    Poinar, George; Datlen, Nicole; Espinoza, Magaly; McLaughlin, John

    2015-09-01

    A new nematode species, Proparasitylenchus californicus n. sp., is described from the intertidal rove beetle Tarphiota geniculata (Mäklin) (Coleoptera: Staphylinidae) in California, USA. The new species differs from European representatives of the genus by possessing a cleft stylet in both sexes. The parasitic female is ovoviviparous and produces numerous juveniles that moult twice in the beetle host, then exit and moult twice to the adult stage in the environment. After mating, the free-living fertilised females enter a new host. Heavy infections sterilise the beetles. This is the first record of the genus Proparasitylenchus Wachek, 1955 in the New World and the first allantonematid parasite of a marine, intertidal beetle.

  11. Bedrock river networks of the Sierra Nevada, USA record westward tilting, large-scale drainage area loss, and distinct patterns and causes of stream incision between the northern and southern Sierra

    NASA Astrophysics Data System (ADS)

    Beeson, H. W.; McCoy, S. W.

    2017-12-01

    The timing, rates, and spatial patterns of elevation change in the Sierra Nevada, California, USA, has been the subject of vigorous debate with multiple lines of evidence supporting the contrasting hypotheses that (1) the Sierra has been topographically high throughout the Cenozoic and (2) that the range has experienced a pulse of late Cenozoic uplift. We combined 2-D landscape evolution modeling with topographic analysis of the Sierra Nevada to investigate whether river networks dissecting the range record a change in tectonic forcing during the late Cenozoic. Specifically, we quantify basin geometry, including its area-channel length scaling relationship, fluvial channel steepness, and the spatial distributions of knickzones. We show that, throughout the Sierra, short equilibrated reaches near the mountain front are consistent with an ongoing westward tilt. However, the disequilibrium forms of river profiles north of the Kaweah River reflect large-scale drainage area loss due to network beheading by the Sierra Frontal Fault and/or reestablishment of a fluvial network on an inclined planar surface. Despite these similarities along the length of the range, river network analysis reveals striking differences north and south of approximately 37° N. In the northern Sierra, topographic asymmetry of drainage divides and large differences in cross-divide steady-state elevation suggest mobile divides. Additionally, the broad distribution of normalized knickzone locations, variability in channel steepness and basin shape, and the prevalence of anomalous topology, narrow basins, unadjusted captured reaches, and wind gaps is consistent with large-scale drainage reorganization following incision into an inclined planar surface. In contrast, in the southern Sierra, drainage divides appear more stable and knickzone locations are tightly distributed. We suggest that, although the northern Sierra may currently be tilting westward, the presence of large knickzones and deeply

  12. A comparative analysis: storm water pollution policy in California, USA and Victoria, Australia.

    PubMed

    Swamikannu, X; Radulescu, D; Young, R; Allison, R

    2003-01-01

    Urban drainage systems historically were developed on principles of hydraulic capacity for the transport of storm water to reduce the risk of flooding. However, with urbanization the percent of impervious surfaces increases dramatically resulting in increased flood volumes, peak discharge rates, velocities and duration, and a significant increase in pollutant loads. Storm water and urban runoff are the leading causes of the impairment of receiving waters and their beneficial uses in Australia and the United States today. Strict environmental and technology controls on wastewater treatment facilities and industry for more than three decades have ensured that these sources are less significant today as the cause of impairment of receiving waters. This paper compares the approach undertaken by the Environmental Protection Authority Victoria for the Melbourne metropolitan area with the approach implemented by the California Environmental Protection Agency for the Los Angeles area to control storm water pollution. Both these communities are largely similar in population size and the extent of urbanization. The authors present an analysis of the different approaches contrasting Australia with the USA, comment on their comparative success, and discuss the relevance of the two experiences for developed and developing nations in the context of environmental policy making to control storm water and urban runoff pollution.

  13. Geomorphic response to flow regulation and channel and floodplain alteration in the gravel-bedded Cedar River, Washington, USA

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.

    2012-01-01

    Decadal- to annual-scale analyses of changes to the fluvial form and processes of the Cedar River in Washington State, USA, reveal the effects of flow regulation, bank stabilization, and log-jam removal on a gravel-bedded river in a temperate climate. During the twentieth century, revetments were built along ~ 60% of the lower Cedar River's length and the 2-year return period flow decreased by 47% following flow regulation beginning in 1914. The formerly wide, anastomosing channel narrowed by over 50% from an average of 47 m in 1936 to 23 m in 1989 and became progressively single threaded. Subsequent high flows and localized revetment removal contributed to an increase in mean channel width to about 34 m by 2011. Channel migration rates between 1936 and 2011 were up to 8 m/year in reaches not confined by revetments or valley walls and less than analysis uncertainty throughout most of the Cedar River's length where bank armoring restricted channel movement. In unconfined reaches where large wood and sediment can be recruited, contemporary high flows, though smaller in magnitude than preregulation high flows, form and maintain geomorphic features such as pools, gravel bars, and side channels. Reaches confined by revetments remain mostly unmodified in the regulated flow regime. While high flows are important for maintaining channel dynamics in the Cedar River, their effectiveness is currently reduced by revetments, limited sediment supply, the lack of large wood available for recruitment to the channel, and decreased magnitude since flow regulation.

  14. Water and Sediment Quality in the Yukon River and its Tributaries Between Atlin, British Columbia, Canada, and Eagle, Alaska, USA, 2004

    USGS Publications Warehouse

    Halm, Douglas R.; Dornblaser, Mark M.

    2007-01-01

    The Yukon River basin is the fourth largest watershed in North America at 831,400 square kilometers (km2). Approximately 126,000 people live within the basin and depend on the Yukon River and its tributaries for drinking water, commerce, subsistence, and recreational fish and game resources. Climate warming in the Arctic and Subarctic regions encompassing the Yukon basin has recently become a concern because of possible far-reaching effects on the ecosystem. Large amounts of carbon and nutrients are stored in permafrost and have potential for release in response to this warming. These changes in carbon and nutrient cycling may result in changes in stream chemistry and productivity, including salmon populations, and ultimately changes in the chemistry and productivity of the Bearing Sea. To address these concerns, the U.S. Geological Survey (USGS) conducted a 5-year comprehensive water-quality study of the Yukon River and its major tributaries starting in 2000. The study included frequent water-quality sampling at a fixed site network as well as intensive sampling along the Yukon River and its major tributaries. This report contains observations of water and sediment quantity and quality of the Yukon River and its tributaries in Canada during 2004. Chemical, biological, physical, and discharge data are presented for the reach of river between Atlin, British Columbia, Canada, and Eagle, Alaska, USA.

  15. Ecology of nonnative Siberian prawn (Palaemon modestus) in the lower Snake River, Washington, USA

    USGS Publications Warehouse

    Erhardt, John M.; Tiffan, Kenneth F.

    2016-01-01

    We assessed the abundance, distribution, and ecology of the nonnative Siberian prawn Palaemon modestus in the lower Snake River, Washington, USA. Analysis of prawn passage abundance at three Snake River dams showed that populations are growing at exponential rates, especially at Little Goose Dam where over 464,000 prawns were collected in 2015. Monthly beam trawling during 2011–2013 provided information on prawn abundance and distribution in Lower Granite and Little Goose Reservoirs. Zero-inflated regression predicted that the probability of prawn presence increased with decreasing water velocity and increasing depth. Negative binomial models predicted higher catch rates of prawns in deeper water and in closer proximity to dams. Temporally, prawn densities decreased slightly in the summer, likely due to the mortality of older individuals, and then increased in autumn and winter with the emergence and recruitment of young of the year. Seasonal length frequencies showed that distinct juvenile and adult size classes exist throughout the year, suggesting prawns live from 1 to 2 years and may be able to reproduce multiple times during their life. Most juvenile prawns become reproductive adults in 1 year, and peak reproduction occurs from late July through October. Mean fecundity (189 eggs) and reproductive output (11.9 %) are similar to that in their native range. The current use of deep habitats by prawns likely makes them unavailable to most predators in the reservoirs. The distribution and role of Siberian prawns in the lower Snake River food web will probably continue to change as the population grows and warrants continued monitoring and investigation.

  16. The influence of Dworshak Dam on epilithic community metabolism in the Clearwater River, U.S.A.

    USGS Publications Warehouse

    Munn, M.D.; Brusven, M.A.

    2004-01-01

    Epilithic community metabolism was determined on a seasonal basis over two years in nonregulated and regulated reaches of the Clearwater River in northern Idaho, U.S.A. Metabolism was estimated using three, 12-liter recirculating chambers and the dissolved oxygen method, with parameters expressed as g O2 m−2 d−1. In the nonregulated reach above the reservoir, gross community productivity (GCP) ranged from 0.8 to 3.2, community respiration (CR24) from 0.3 to 1.2, and production/respiration (P/R) ratios from 1.2 to 3.3. Epilithic metabolism in the regulated reach immediately below the dam increased sharply; GCP ranged from 4.2 to 25.5, CR24 from 1.9 to 9.7, and P/R ratios from 1.4 to 5.7. Increased primary production and respiration in the regulated reach was a result of extensive growth of an aquatic moss (Fontanalis neo-mexicanus). The influence of the dam on epilithic community metabolism was mitigated 2.5 km downstream of the dam due to the regulated North Fork of the Clearwater River (NFCR) merging with the larger, nonregulated Clearwater River. While the regulated Clearwater River below the confluence was somewhat affected by the regulated NFCR flows upstream, metabolism was similar to that found above the reservoir (GCP = 1.2 – 2.6, CR24 = 0.6 – 1.3, and P/R = 1.4 – 2.2). This study demonstrates that while Dworshak Dam has altered both primary production and respiration directly below the dam, the placement of the dam only 2.5 km upstream from a nonregulated reach greatly mitigates its effects on stream metabolism downstream.

  17. Diazinon and chlorpyrifos loads in precipitation and urban and agricultural storm runoff during January and February 2001 in the San Joaquin River basin, California

    USGS Publications Warehouse

    Zamora, Celia; Kratzer, Charles R.; Majewski, Michael S.; Knifong, Donna L.

    2003-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2001 in the San Joaquin River Basin was 24 percent less and 3.2 times more than applications in 2000, respectively. A total of 16 sites were sampled during January and February 2001 storm events: 7 river sites, 8 precipitation sites, and 1 urban storm drain. The seven river sites were sampled weekly during nonstorm periods and more frequently during storm runoff from a total of four storms. The monitoring of storm runoff at a city storm drain in Modesto, California, occurred simultaneously with the collection of precipitation samples from eight sites during a January 2001 storm event. The highest concentrations of diazinon occurred during the storm periods for all 16 sites, and the highest concentrations of chlorpyrifos occurred during weekly nonstorm sampling for the river sites and during the January storm period for the urban storm drain and precipitation sites. A total of 60 samples (41 from river sites, 10 from precipitation sites, and 9 from the storm drain site) had diazinon concentrations greater than 0.08 ?g/L, the concentration being considered by the California Department of Fish and Game as its criterion maximum concentration for the protection of aquatic habitats. A total of 18 samples (2 from river sites, 9 from precipitation sites, and 7 from the storm drain site) exceeded the equivalent California Department of Fish and Game guideline of 0.02 ?g/L for chlorpyrifos. The total diazinon load in the San Joaquin River near Vernalis during January and February 2001 was 23.8 pounds active ingredient; of this amount, 16.9 pounds active ingredient were transported by four storms, 1.06 pounds active ingredient were transported by nonstorm events, and 5.82 pounds active ingredient were considered to be baseline loads. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2001 was 2.17 pounds active ingredient; of this amount, 0.702 pound active

  18. A Common Parvovirus in Deer from California, USA.

    PubMed

    Li, Linlin; Woods, Leslie; Gerstenberg, Greg; Deng, Xutao; Delwart, Eric

    2016-10-01

    We characterize the genome of the first reported deer parvovirus, Ungulate tetraparvovirus 5, which we detected by PCR in multiple tissues from 2/9 California mule deer ( Odocoileus hemionus californicus) with hair loss syndrome (HLS) and in 4/12 deer without HLS, suggesting this common infection does not cause HLS.

  19. Water availability and land subsidence in the Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Faunt, Claudia C.; Sneed, Michelle; Traum, Jon; Brandt, Justin T.

    2016-05-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  20. Channel evolution on the dammed Elwha River, Washington, USA

    USGS Publications Warehouse

    Draut, A.E.; Logan, J.B.; Mastin, M.C.

    2011-01-01

    Like many rivers in the western U.S., the Elwha River, Washington, has changed substantially over the past century in response to natural and human forcing. The lower river is affected by two upstream dams that are slated for removal as part of a major river restoration effort. In preparation for studying the effects of dam removal, we present a comprehensive field and aerial photographic analysis of dam influence on an anabranching, gravel-bed river. Over the past century with the dams in place, loss of the upstream sediment supply has caused spatial variations in the sedimentary and geomorphic character of the lower Elwha River channel. Bed sediment is armored and better sorted than on the naturally evolving bed upstream of the dams. On time scales of flood seasons, the channel immediately below the lower dam is fairly stable, but progresses toward greater mobility downstream such that the lowermost portion of the river responded to a recent 40-year flood with bank erosion and bed-elevation changes on a scale approaching that of the natural channel above the dams. In general, channel mobility in the lowest 4 km of the Elwha River has not decreased substantially with time. Enough fine sediment remains in the floodplain that – given sufficient flood forcing – the channel position, sinuosity, and braiding index change substantially. The processes by which this river accesses new fine sediment below the dams (rapid migration into noncohesive banks and avulsion of new channels) allow it to compensate for loss of upstream sediment supply more readily than would a dammed river with cohesive banks or a more limited supply of alluvium. The planned dam removal will provide a valuable opportunity to evaluate channel response to the future restoration of natural upstream sediment supply.

  1. Pesticide concentrations in water and in suspended and bottom sediments in the New and Alamo rivers, Salton Sea Watershed, California, April 2003

    USGS Publications Warehouse

    LeBlanc, Lawrence A.; Orlando, James L.; Kuivila, Kathryn

    2004-01-01

    This report contains pesticide concentration data for water, and suspended and bed sediment samples collected in April 2003 from twelve sites along the New and Alamo Rivers in the Salton Sea watershed, in southeastern California. The study was done in collaboration with the California State Regional Water Quality Control Board, Colorado River Region, to assess inputs of current-use pesticides associated with water and sediment into the New and Alamo Rivers. Five sites along the New River and seven sites along the Alamo River, downstream of major agricultural drains, were selected and covered the lengths of the rivers from the international boundary to approximately 1.5 km from the river mouths. Sampling from bridges occurred at seven of the twelve sites. At these sites, streamflow measurements were taken. These same sites were also characterized for cross-stream homogeneity by measuring dissolved oxygen, pH, specific conductance, temperature, and suspended solids concentration at several vertical (depths) and horizontal (cross-stream) points across the river. Large volume water samples (200?300 L) were collected for isolation of suspended sediments by flow-through centrifugation. Water from the outflow of the flow-through centrifuge was sampled for the determination of aqueous pesticide concentrations. In addition, bottom sediments were sampled at each site. Current-use pesticides and legacy organochlorine compounds (p,p'-DDT, p,p'-DDE and p,p'-DDD) were extracted from sediments and measured via gas chromatography/mass spectrometry (GC/MS). Organic carbon and percentage of fines were also determined for suspended and bottom sediments. Cross-stream transects of dissolved constituents and suspended sediments showed that the rivers were fairly homogeneous at the sites sampled. Streamflow was higher at the outlet sites, with the Alamo River having higher flow (1,240 cfs) than the New River (798 cfs). Twelve current-use pesticides, one legacy organochlorine compound (p

  2. Sediment Dynamics Affecting the Threatened Santa Ana Sucker in the Highly-modified Santa Ana River and Inset Channel, Southern California, USA

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Wright, S. A.

    2015-12-01

    In this study, we investigate the sediment dynamics of the low-flow channel of the Santa Ana River that is formed by wastewater discharges and contains some of the last remaining habitat of the Santa Ana Sucker (Catostomus santaanae). The Santa Ana River is a highly-modified river draining the San Bernardino Mountains and Inland Empire metropolitan area east of Los Angeles. Home to over 4 million people, the watershed provides habitat for the federally-threatened Santa Ana Sucker, which presently reside within the mainstem Santa Ana River in a reach supported by year-round constant discharges from water treatment plants. The nearly constant low-flow wastewater discharges and infrequent runoff events create a small, approximately 8 m wide, inset channel within the approximately 300 m wide mainstem channel that is typically dry except for large flood flows. The sediment dynamics within the inset channel are characterized by constantly evolving bed substrate and sediment transport rates, and occasional channel avulsions. The sediment dynamics have large influence on the Sucker, which rely on coarse-substrate (gravel and cobble) for their food production. In WY 2013 through the present, we investigated the sediment dynamics of the inset channel using repeat bathymetric and substrate surveys, bedload sampling, and discharge measurements. We found two distinct phases of the inset channel behavior: 1. 'Reset' flows, where sediment-laden mainstem discharges from upstream runoff events result in sand deposition in the inset channel or avulse the inset channel onto previously dry riverbed; and 2. 'Winnowing' flows, whereby the sand within the inset channel is removed by clear-water low flows from the wastewater treatment plant discharges. Thus, in contrast to many regulated rivers where high flows are required to flush fine sediments from the bed (for example, downstream from dams), in the Santa Ana River the low flows from wastewater treatment plants serve as the flushing

  3. Uncinariasis in northern fur seal and California sea lion pups from California.

    PubMed

    Lyons, E T; DeLong, R L; Melin, S R; Tolliver, S C

    1997-10-01

    Northern fur seal (Callorhinus ursinus) (n = 25) and California sea lion (Zalophus californianus) (n = 53) pups, found dead on rookeries on San Miguel Island (California, USA), were examined for adult Uncinaria spp. Prevalence of these nematodes was 96% in fur seal pups and 100% in sea lion pups. Mean intensity of Uncinaria spp. per infected pup was 643 in fur seals and 1,284 in sea lions. Eggs of Uncinaria spp. from dead sea lion pups underwent embryonation in an incubator; development to the free-living third stage larva occurred within the egg. This study provided some specific information on hookworm infections in northern fur seal and California sea lion pups on San Miguel Island. High prevalence rate of Uncinaria spp. in both species of pinnipeds was documented and much higher numbers (2X) of hookworms were present in sea lion than fur seal pups.

  4. The California stream quality assessment

    USGS Publications Warehouse

    Van Metre, Peter C.; Egler, Amanda L.; May, Jason T.

    2017-03-06

    In 2017, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project is assessing stream quality in coastal California, United States. The USGS California Stream Quality Assessment (CSQA) will sample streams over most of the Central California Foothills and Coastal Mountains ecoregion (modified from Griffith and others, 2016), where rapid urban growth and intensive agriculture in the larger river valleys are raising concerns that stream health is being degraded. Findings will provide the public and policy-makers with information regarding which human and natural factors are the most critical in affecting stream quality and, thus, provide insights about possible approaches to protect the health of streams in the region.

  5. Multimetric Fish Indices for Midcontinent (USA) Great Rivers

    EPA Science Inventory

    As part of the Environmental Monitoring and Assessment Program for Great River Ecosystems we developed a fish-assemblage based multimetric index (Great River Fish Index,GRFIn) as an indicator of ecological conditions in the Lower Missouri, impounded Upper Mississippi, unimpounded...

  6. Post-project appraisals in adaptive management of river channel restoration.

    PubMed

    Downs, Peter W; Kondolf, G Mathias

    2002-04-01

    Post-project appraisals (PPAs) can evaluate river restoration schemes in relation to their compliance with design, their short-term performance attainment, and their longer-term geomorphological compatibility with the catchment hydrology and sediment transport processes. PPAs provide the basis for communicating the results of one restoration scheme to another, thereby improving future restoration designs. They also supply essential performance feedback needed for adaptive management, in which management actions are treated as experiments. PPAs allow river restoration success to be defined both in terms of the scheme attaining its performance objectives and in providing a significant learning experience. Different levels of investment in PPA, in terms of pre-project data and follow-up information, bring with them different degrees of understanding and tbus different abilities to gauge both types of success. We present four case studies to illustrate how the commitment to PPA has determined the understanding achieved in each case. In Moore's Gulch (California, USA), understanding was severely constrained by the lack of pre-project data and post-implementation monitoring. Pre-project data existed for the Kitswell Brook (Hertfordshire, UK), but the monitoring consisted only of one site visit and thus the understanding achieved is related primarily to design compliance issues. The monitoring undertaken for Deep Run (Maryland, USA) and the River Idle (Nottinghamshire, UK) enabled some understanding of the short-term performance of each scheme. The transferable understanding gained from each case study is used to develop an illustrative five-fold classification of geomorphological PPAs (full, medium-term, short-term, one-shot, and remains) according to their potential as learning experiences. The learning experience is central to adaptive management but rarely articulated in the literature. Here, we gauge the potential via superimposition onto a previous schematic

  7. Projecting cumulative benefits of multiple river restoration projects: an example from the Sacramento-San Joaquin River system in California

    USGS Publications Warehouse

    Kondolf, G. Mathias; Angermeier, Paul L.; Cummins, Kenneth; Dunne, Thomas; Healey, Michael; Kimmerer, Wim; Moyle, Peter B.; Murphy, Dennis; Patten, Duncan; Railsback, Steve F.; Reed, Denise J.; Spies, Robert B.; Twiss, Robert

    2008-01-01

    Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.

  8. Long-term changes in river-floodplain dynamics: implications for salmonid habitat in the Interior Columbia Basin, USA.

    PubMed

    Tomlinson, Matthew J; Gergel, Sarah E; Beechie, Timothy J; McClure, Michelle M

    2011-07-01

    Rivers and their associated floodplains are among the world's most highly altered ecosystems, resulting in billions of dollars in restoration expenditures. Successful restoration of these systems requires information at multiple spatial scales (from localized reaches to broader-scale watersheds), as well as information spanning long time frames. Here, we develop a suite of historical landscape indicators of riverine status, primarily from the perspective of salmonid management, using a case study in the Interior Columbia Basin, Washington, USA. We use a combination of historical and modern aerial photography to quantify changes in land cover and reach type, as well as potential fish habitat within channel and off-channel floodplain areas. As of 1949, 55% of the Wenatchee River floodplain had been converted to agriculture. By 2006, 62% had been modified by anthropogenic development, of which 20% was due to urban expansion. The historical percentage of agricultural land in the watershed and the contemporary percentage of urban area surpass thresholds in land cover associated with deleterious impacts on river systems. In addition, the abundance of reach types associated with the highest quality salmonid habitat (island braided and meandering reaches) has declined due to conversion to straight reach types. The area occupied by fish habitats associated with channel migration (slow/stagnant channels and dry channels) has declined approximately 25-30%. Along highly modified rivers, these habitats have also become increasingly fragmented. Caveats related to visual quality and seasonal timing of historical photographs were important considerations in the interpretation of changes witnessed for headwater island braided systems, as well as for floodplain ponds. Development of rigorous, long-term, multi-scale monitoring techniques is necessary to guide the management and restoration of river-floodplain systems for the diversity of ecosystem services they provide.

  9. Aquatic assemblages of the highly urbanized Santa Ana River Basin, California

    USGS Publications Warehouse

    Brown, Larry R.; Burton, Carmen; Belitz, Kenneth

    2005-01-01

    We assessed the structure of periphyton, benthic macroinvertebrate, and fish assemblages and their associations with environmental variables at 17 sites on streams of the highly urbanized Santa Ana River basin in Southern California. All assemblages exhibited strong differences between highly urbanized sites in the valley and the least-impacted sites at the transition between the valley and undeveloped mountains. Results within the urbanized area differed among taxa. Periphyton assemblages were dominated by diatoms (>75% of total taxa). Periphyton assemblages within the urbanized area were not associated with any of the measured environmental variables, suggesting that structure of urban periphyton assemblages might be highly dependent on colonization dynamics. The number of Ephemeroptera, Trichoptera, and Plecoptera (EPT) taxa included in macroinvertebrate assemblages ranged from 0 to 6 at urbanized sites. Benthic macroinvertebrate assemblages had significant correlations with several environmental variables within the urban area, suggesting that stream size and permanence were important determinants of distribution among the species able to survive conditions in urban streams. Only 4 of 16 fish species collected were native to the drainage. Fish assemblages of urbanized sites included two native species, arroyo chub Gila orcuttii and Santa Ana sucker Catostomus santaanae, at sites that were intermediate in coefficient of variation of bank-full width, depth, bed substrate, and water temperature. Alien species dominated urbanized sites with lesser or greater values for these variables. These results suggest that urban streams can be structured to enhance populations of native fishes. Continued study of urban streams in the Santa Ana River basin and elsewhere will contribute to the basic understanding of ecological principles and help preserve the maximum ecological value of streams in highly urbanized areas.

  10. Series of Storms Battering California Tracked by NASA AIRS Instrument

    NASA Image and Video Library

    2017-01-13

    A series of atmospheric rivers that brought drought-relieving rains, heavy snowfall and flooding to California this week is highlighted in a new movie created with satellite data from the Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite. The images of atmospheric water vapor were collected by AIRS between January 7 and 11. They show the amount of moisture present in the atmosphere and its movement across the Pacific Ocean to the United States, where much of it fell as rain or snow. In early January 2017, the Western U.S. experienced rain and flooding from a series of storms flowing to America on multiple streams of moist air, each individually known as an atmospheric river. Atmospheric rivers are typically 250 to 375 miles (400 to 600 kilometers) wide. The term "Pineapple Express" refers to atmospheric rivers that originate near or just east of the Hawaiian Islands and terminate along the West Coast of North America. Other atmospheric rivers originate in the tropical Western Pacific Ocean and take on a more west-to-east orientation near the U.S. West Coast. Several distinct plumes of moisture are apparent in the AIRS imagery. The first of three atmospheric river events occurred on January 7 and 8. This was a classic Pineapple Express, featuring an uninterrupted supply of heavy moisture drawn up from the deep tropics. This was the wettest storm of the series, producing very heavy rainfall, more than 1 foot (0.3 meter), in parts of Central and Northern California, with relatively smaller amounts of snow at the highest elevations of the Sierra Nevada. The second blob of heavy moisture, from January 8 to 10 to the west of California, likely originated thousands of miles to the west, in the tropical Western Pacific. This atmospheric river did not maintain its tropical connection. However, it still produced prodigious rainfall totals in Northern California and much more snow than the first event, since the storm had a more northern and colder

  11. 5. View showing Crooked River High Bridge in background and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View showing Crooked River High Bridge in background and Ralph Modjeski railroad bridge in foreground - Crooked River High Bridge, Spanning Crooked River Gorge at Dalles-California Highway, Terrebonne, Deschutes County, OR

  12. Spatial and temporal relationships among watershed mining, water quality, and freshwater mussel status in an eastern USA river.

    PubMed

    Zipper, Carl E; Donovan, Patricia F; Jones, Jess W; Li, Jing; Price, Jennifer E; Stewart, Roger E

    2016-01-15

    The Powell River of southwestern Virginia and northeastern Tennessee, USA, drains a watershed with extensive coal surface mining, and it hosts exceptional biological richness, including at-risk species of freshwater mussels, downstream of mining-disturbed watershed areas. We investigated spatial and temporal patterns of watershed mining disturbance; their relationship to water quality change in the section of the river that connects mining areas to mussel habitat; and relationships of mining-related water constituents to measures of recent and past mussel status. Freshwater mussels in the Powell River have experienced significant declines over the past 3.5 decades. Over that same period, surface coal mining has influenced the watershed. Water-monitoring data collected by state and federal agencies demonstrate that dissolved solids and associated constituents that are commonly influenced by Appalachian mining (specific conductance, pH, hardness and sulfates) have experienced increasing temporal trends from the 1960s through ~2008; but, of those constituents, only dissolved solids concentrations are available widely within the Powell River since ~2008. Dissolved solids concentrations have stabilized in recent years. Dissolved solids, specific conductance, pH, and sulfates also exhibited spatial patterns that are consistent with dilution of mining influence with increasing distance from mined areas. Freshwater mussel status indicators are correlated negatively with dissolved solids concentrations, spatially and temporally, but the direct causal mechanisms responsible for mussel declines remain unknown. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Exposure and effects of chemical contaminants on tree swallows nesting along the Housatonic River, Berkshire County, Massachusetts, USA, 1998-2000

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.; Dummer, P.M.; Munney, K.L.

    2003-01-01

    Hatching success of tree swallows (Tachycineta bicolor) was assessed for three years in relation to chemical contamination along the Housatonic River, Berkshire County (MA, USA), in 1998, 1999, and 2000. Nest boxes were erected at five sites along the Housatonic River and its tributaries and at one reference location. Concentrations of total polychlorinated biphenyls (PCBs) were some of the highest ever reported in bird eggs. Mean concentrations at sites along the Housatonic River ranged between 32 and 101 I?g/g wet weight. A significant negative relationship was observed between concentrations of total PCBs in clutches and hatching success. A significant negative relationship was also observed between hatching success and the sum of the total dioxins and furans and the associated toxic equivalents (TEQs) for dioxins and furans. In a combined model with PCB TEQs and dioxin/furan TEQs, PCB TEQs were not significantly correlated to hatching success, whereas dioxin/furan TEQs were. Contamination of tree swallows was from local food sources. Accumulation rates of total PCBs in 12-d-old nestlings averaged between 34 and 76 I?g/d at the sites along the main stem of the Housatonic River compared to <1 I?g/d at the reference location.

  14. Digital geospatial presentation of geoelectrical and geotechnical data for the lower American River and flood plain, east Sacramento, California

    USGS Publications Warehouse

    Ball, Lyndsay B.; Burton, Bethany L.; Powers, Michael H.; Asch, Theodore H.

    2015-01-01

    To characterize the extent and thickness of lithologic units that may have differing scour potential, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, has performed several geoelectrical surveys of the lower American River channel and flood plain between Cal Expo and the Rio Americano High School in east Sacramento, California. Additional geotechnical data have been collected by the U.S. Army Corps of Engineers and its contractors. Data resulting from these surveys have been compiled into similar database formats and converted to uniform geospatial datums and projections. These data have been visualized in a digital three-dimensional framework project that can be viewed using freely available software. These data facilitate a comprehensive analysis of the resistivity structure underlying the lower American River corridor and assist in levee system management.

  15. Sediment toxicity in mid-continent great rivers (USA)

    EPA Science Inventory

    In this study, 530 sediment samples were collected from 447 sites between 2004 and 2006 at randomly selected shoreline sites along the main channel of the Ohio, Missouri and Upper Mississippi Rivers as part of the Environmental Monitoring and Assessment Program for Great Rivers E...

  16. Riverine based eco-tourism: Trinity River non-market benefits estimates

    USGS Publications Warehouse

    Douglas, A.J.; Taylor, J.G.

    1998-01-01

    California's Central Valley Project (CVP) was approved by voters in a statewide referendum in 1933. CVP referendum approval initiated funding for construction of important water development projects that had far reaching effects on regional water supplies. The construction of Trinity Dam in 1963 and the subsequent transbasin diversion of Trinity River flow was one of several CVP projects that had noteworthy adverse environmental and regional economic impacts. The Trinity River is the largest tributary of the Klamath River, and has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel. Before 1963, the Trinity River was a major recreation resource of Northern California. The loss of streamflow has had a marked adverse impact on Trinity River-related recreation activities and the size and robustness of Trinity River salmon, steelhead, shad, and sturgeon runs. Trinity River water produces hydropower during its transit via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The benefits provided by Trinity River instream flow-related environmental amenities were estimated with the travel cost method (TCM). Trinity River non-market benefits are about $406 million per annum, while the social cost of sending water down the Trinity River ranges from $17 to $42 million per annum, depending on the exact flow. We also discuss the relative magnitude of Trinity River survey data contingent value method (CVM) benefits estimates.

  17. Los Rios Community College District. Student Transfer Profile to All Public Universities of California, 1998 Report.

    ERIC Educational Resources Information Center

    Blyer-Culver, Betty; Beachler, Judy

    This report, ninth in a series prepared by the Office of Institutional Research, provides information regarding student transfers from the three Los Rios Community College District (LRCCD) colleges--American River College, Cosumnes River College, and Sacramento City College--to the University of California (UC) and the California State University…

  18. Synoptic evolution of Atmospheric River landfalls in Northern California and the pre-conditioning of their characteristics by the climate state

    NASA Astrophysics Data System (ADS)

    Gershunov, A.; Guirguis, K.; Shulgina, T.; Clemesha, R.; Ralph, M.

    2017-12-01

    Atmospheric Rivers (ARs) contribute the lion's share of water resources for California, but can also cause flooding and draw heavily on emergency resources of state and local governments. Comprehensive probabilistic tools relating landfalling ARs to pre-existing weather/climate conditions could be useful for subseasonal forecasting, emergency preparedness and water resource management. We examine ARs targeting the Northern California coast using long-term observations of synoptic-scale circulation, high-resolution precipitation, and a seven-decade-long catalog of AR landfalls to quantify distinct orientations of landfalling ARs. Using a probabilistic approach to relate these historic events to precursor weather patterns, we identify synoptic circulation patterns that precede AR landfalls at various lead times in the range of 0-30 days. Examination of the evolution of these precursor patterns reveals subtle but important differences in the atmospheric states that lead to AR landfalls versus those that don't. Synoptic precursors can also differentiate between orientations of ARs at landfall, which produce rather different precipitation patterns over the region's complex topography. Moreover, low-frequency climate forcing appears to modulate the likelihood of AR landfalls, as well as their preferred orientations. These results provide a link between seasonal and subseasonal timescales and suggest a new approach toward extended-range prediction of land-falling atmospheric rivers and their related precipitation.

  19. An extirpated lineage of a threatened frog species resurfaces in southern California

    USGS Publications Warehouse

    Backlin, Adam R.; Richmond, Jonathan Q.; Gallegos, Elizabeth; Christensen, Clinton K.; Fisher, Robert N.

    2017-01-01

    Southern California has experienced widespread amphibian declines since the 1960s. One species, the Vulnerable California red-legged frog Rana draytonii, is now considered to be extirpated from most of southern California. In February 2017 a population of R. draytonii was discovered in the southern foothills of the San Bernardino Mountains of Riverside County, California, near the edge of the species’ historical distribution. This population belongs to an mtDNA lineage that was presumed to be extirpated within the USA but is still extant in Baja California, Mexico. This discovery increases the potential for future, evolutionarily informed translocations within the southern portion of this species’ range in California.

  20. Provenance variation in Eucalyptus camaldulensis Dehnh. in California

    Treesearch

    B.M. Emery; F. Thomas Ledig

    1987-01-01

    In California, the Lake Albacutya provenance of river red gum was clearly superior in volume growth to 22 other provenances collected throughout the range of the species in Australia. It had at least 2.5 times the volume of the plantation mean at 5.5 years, consistent with its performance in other countries with Mediterranean climates like California's. Other...

  1. Tertiary basin development and tectonic implications, Whipple detachment system, Colorado River extensional corridor, California and Arizona

    NASA Technical Reports Server (NTRS)

    Nielson, J. E.; Beratan, K. K.

    1990-01-01

    This paper reports on geologic mapping, stratigraphic and structural observations, and radiometric dating of Miocene deposits of the Whipple detachment system, Colorado River extensional corridor of California and Arizona. From these data, four regions are distinguished in the study area that correspond to four Miocene depositional basins. It is shown that these basins developed in about the same positions, relative to each other and to volcanic sources, as they occupy at present. They formed in the early Miocene from a segmentation of the upper crust into blocks bounded by high-angle faults that trended both parallel and perpendicular to the direction of extension and which were terminated at middle crustal depths by a low-angle detachment fault.

  2. Re-introduction of tule elk to Point Reyes National Seashore, California, USA

    USGS Publications Warehouse

    Gogan, Peter J.; McCrea A. Cobb,; Gates, Natalie B.; Barrett, Reginald H.; Soorae, Pritpal S.

    2013-01-01

    Tule elk (Cervus elaphus nannodes), a subspecies endemic to California, was historically found in large herds throughout much of central and coastal California. Market hunting during the California Gold Rush decimated these herds, and by 1895, only two to 10 elk remained. This remnant group was protected and served as the source for early relocation efforts (McCullough, 1971). Early efforts were generally unsuccessful but did establish a herd in California’s Owens Valley, outside their historical range, in 1933. The herd grew rapidly and supported six controversial hunts between 1943 and 1969. In an effort to limit hunting, concerned preservationists formed the Committee for the Preservation of Tule Elk in 1960. Public pressure resulted in the California State Legislature passing a law in 1971 that halted hunting until either state-wide numbers reached 2,000, or no further unoccupied elk habitat existed. This law prompted the California Department of Fish and Game to begin reintroducing tule elk throughout their former range. In 1976, the U.S. Congress passed a resolution that concurred with state law and directed federal agencies to make lands available for reintroductions within the subspecies’ historical range. Point Reyes National Seashore was identified as a potential translocation site.

  3. Geologic history of natural coal-bed fires, Powder River basin, USA

    USGS Publications Warehouse

    Heffern, E.L.; Coates, D.A.

    2004-01-01

    Coal-bed fires ignited by natural processes have baked and fused overlying sediments to form clinker, a hard red or varicolored rock, through much of the northern Great Plains of the United States (USA). The gently dipping coal beds in the region burn when regional downwasting brings them above the local water table. The resulting clinker forms a rim along the exposed edge of the coal bed in an ongoing process through geologic time. The resistant clinker is left capping buttes and ridges after the softer unbaked strata erode away. Clinker outcrops cover more than 4100 km2 in the Powder River basin (PRB), which lies in Wyoming (WY) and Montana (MT). The clinker in place records tens of billions of tons of coal that have burned, releasing gases into the atmosphere. The amount of clinker that has eroded away was at least an order of magnitude greater than the clinker that remains in place. Fission-track and uranium-thorium/ helium ages of detrital zircon crystals in clinker, and paleomagnetic ages of clinker, show that coal beds have burned naturally during at least the past 4 million years (Ma). The oldest in-place clinker that has been dated, collected from a high, isolated, clinker-capped ridge, has a fission track age of 2.8??0.6 Ma. Evidence of erosion and downcutting is also preserved by clinker clasts in gravel terraces. One clinker boulder in a terrace 360 m above the Yellowstone River has a fission track age of 4.0??0.7 Ma. Coal-bed fires are caused by lightning, wildfires, spontaneous combustion, or human activity on coal outcrops and in mines. Miners, government agencies, and ranchers have extinguished thousands of coal bed fires, but natural ignition continues where fresh coal has access to air. At any given time, hundreds of fires, mostly small, are burning. In the Powder River basin, the total amount of coal burned by natural fires in the last 2 Ma is one to two orders of magnitude greater than the total amount of coal removed by mining in the past

  4. Eolian deposits in the Neoproterozoic Big Bear Group, San Bernardino Mountains, California, USA

    NASA Astrophysics Data System (ADS)

    Stewart, John H.

    2005-12-01

    Strata interpreted to be eolian are recognized in the Neoproterozoic Big Bear Group in the San Bernardino Mountains of southern California, USA. The strata consist of medium- to large-scale (30 cm to > 6 m) cross-stratified quartzite considered to be eolian dune deposits and interstratified thinly laminated quartzite that are problematically interpreted as either eolian translatent climbing ripple laminae, or as tidal-flat deposits. High index ripples and adhesion structures considered to be eolian are associated with the thinly laminated and cross-stratified strata. The eolian strata are in a succession that is characterized by flaser bedding, aqueous ripple marks, mudcracks, and interstratified small-scale cross-strata that are suggestive of a tidal environment containing local fluvial deposits. The eolian strata may have formed in a near-shore environment inland of a tidal flat. The Neoproterozoic Big Bear Group is unusual in the western United States and may represent a remnant of strata that were originally more widespread and part of the hypothetical Neoproterozoic supercontinent of Rodinia. The Big Bear Group perhaps is preserved only in blocks that were downdropped along Neoproterozoic extensional faults. The eolian deposits of the Big Bear Group may have been deposited during arid conditions that preceded worldwide glacial events in the late Neoproterozoic. Possibly similar pre-glacial arid events are recognized in northern Mexico, northeast Washington, Australia, and northwest Canada.

  5. Eolian deposits in the Neoproterozoic Big Bear Group, San Bernardino Mountains, California, USA

    USGS Publications Warehouse

    Stewart, John H.

    2005-01-01

    Strata interpreted to be eolian are recognized in the Neoproterozoic Big Bear Group in the San Bernardino Mountains of southern California, USA. The strata consist of medium- to large-scale (30 cm to > 6 m) cross-stratified quartzite considered to be eolian dune deposits and interstratified thinly laminated quartzite that are problematically interpreted as either eolian translatent climbing ripple laminae, or as tidal-flat deposits. High index ripples and adhesion structures considered to be eolian are associated with the thinly laminated and cross-stratified strata. The eolian strata are in a succession that is characterized by flaser bedding, aqueous ripple marks, mudcracks, and interstratified small-scale cross-strata that are suggestive of a tidal environment containing local fluvial deposits. The eolian strata may have formed in a near-shore environment inland of a tidal flat. The Neoproterozoic Big Bear Group is unusual in the western United States and may represent a remnant of strata that were originally more widespread and part of the hypothetical Neoproterozoic supercontinent of Rodinia. The Big Bear Group perhaps is preserved only in blocks that were downdropped along Neoproterozoic extensional faults. The eolian deposits of the Big Bear Group may have been deposited during arid conditions that preceded worldwide glacial events in the late Neoproterozoic. Possibly similar pre-glacial arid events are recognized in northern Mexico, northeast Washington, Australia, and northwest Canada.

  6. Initial Geomorphic Responses to Removal of Milltown Dam, Clark Fork River, Montana, USA

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Brinkerhoff, D.; Woelfle-Erskine, C.

    2008-12-01

    The removal of Milltown Dam on the Clark Fork River, Montana, USA, is creating a field-scale experiment on upstream and downstream responses to dam removal and on how gravel-bed rivers respond to sediment pulses. Milltown Dam was removed in 2008, reconnecting the Clark Fork River to its upstream basin in terms of sediment transport and fish passage. This dam removal is especially notable because (1) it is the largest dam removal to date in the United States in terms of the volume of reservoir sediment potentially available for downstream transport (over 3 million m3; 1.7 million m3 are being mechanically removed); and (2) the dam is the downstream end of the largest Superfund site in the United States, the Clark Fork Complex, and reservoir sediments are composed largely of contaminated mine tailings. Data collection on pre- and post-dam removal channel morphology, bed sediment characteristics, and sediment loads are being used to investigate spatial and temporal patterns of sediment transport and deposition associated with this dam removal. In the first several months following breaching of the dam, snowmelt runoff with a 3-year recurrence interval peak caused substantial erosion and downstream transport of metals-laden sediments from Milltown reservoir. Reservoir sediments in the Clark Fork arm of Milltown reservoir eroded at levels far exceeding modeling predictions as a result of both incision to the new base level created by dam removal and bank retreat of over 200 m in reaches upstream of a constructed bypass reach and remediation area. Copper and other metals in these eroded reservoir sediments provide a tracer for identifying whether sediment deposits observed downstream of the dam originated from Milltown reservoir or uncontaminated tributaries and indicate that Milltown sediments have reached over 200 km downstream. Downstream deposition has been greatest along channel margins and in side-channel areas, whereas the transport capacity of the active channel

  7. Water availability and land subsidence in the Central Valley, California, USA

    USGS Publications Warehouse

    Faunt, Claudia; Sneed, Michelle; Traum, Jonathan A.; Brandt, Justin

    2016-01-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  8. Sources of sediment to the coastal waters of the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; Farnsworth, K.L.

    2009-01-01

    The sources of sediment to the Southern California Bight were investigated with new calculations and published records of sediment fluxes, both natural and anthropogenic. We find that rivers are by far the largest source of sediment, producing over 10 ?? 106 t/yr on average, or over 80% of the sediment input to the Bight. This river flux is variable, however, over both space and time. The rivers draining the Transverse Ranges produce sediment at rates approximately an order of magnitude greater than the Peninsular Ranges (600-1500 t/km2/yr versus <90 t/km2/yr, respectively). Although the Transverse Range rivers represent only 23% of the total Southern California watershed drainage area, they are responsible for over 75% of the total sediment flux. River sediment flux is ephemeral and highly pulsed due to the semiarid climate and the influence of infrequent large storms. For more than 90% of the time, negligible amounts of sediment are discharged from the region's rivers, and over half of the post-1900 sediment load has been discharged during events with recurrence intervals greater than 10 yr. These rare, yet important, events are related to the El Ni??o-Southern Oscillation (ENSO), and the majority of sediment flux occurs during ENSO periods. Temporal trends in sediment discharge due to land-use changes and river damming are also observed. We estimate that there has been a 45% reduction in suspended-sediment flux due to the construction of dams. However, pre-dam sediment loads were likely artificially high due to the massive land-use changes of coastal California to rangeland during the nineteenth century. This increase in sediment production is observed in estuarine deposits throughout coastal California, which reveal that sedimentation rates were two to ten times higher during the nineteenth and twentieth centuries than during pre-European colonization. ?? 2009 The Geological Society of America.

  9. Groundwater movement, recharge, and perchlorate occurrence in a faulted alluvial aquifer in California (USA)

    USGS Publications Warehouse

    Izbicki, John A.; Teague, Nicholas F.; Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.

    2015-01-01

    Perchlorate from military, industrial, and legacy agricultural sources is present within an alluvial aquifer in the Rialto-Colton groundwater subbasin, 80 km east of Los Angeles, California (USA). The area is extensively faulted, with water-level differences exceeding 60 m across parts of the Rialto-Colton Fault separating the Rialto-Colton and Chino groundwater subbasins. Coupled well-bore flow and depth-dependent water-quality data show decreases in well yield and changes in water chemistry and isotopic composition, reflecting changing aquifer properties and groundwater recharge sources with depth. Perchlorate movement through some wells under unpumped conditions from shallower to deeper layers underlying mapped plumes was as high as 13 kg/year. Water-level maps suggest potential groundwater movement across the Rialto-Colton Fault through an overlying perched aquifer. Upward flow through a well in the Chino subbasin near the Rialto-Colton Fault suggests potential groundwater movement across the fault through permeable layers within partly consolidated deposits at depth. Although potentially important locally, movement of groundwater from the Rialto-Colton subbasin has not resulted in widespread occurrence of perchlorate within the Chino subbasin. Nitrate and perchlorate concentrations at the water table, associated with legacy agricultural fertilizer use, may be underestimated by data from long-screened wells that mix water from different depths within the aquifer.

  10. Sequentially and alternatively developed heights for two representative bench marks: near Palmdale, California and along the Bill Williams River, Arizona

    USGS Publications Warehouse

    Gilmore, Thomas D.; Elliot, Michael R.

    1985-01-01

    This report consists chiefly of 41 tables that both describe and fully document the reconstructions of a series of alternately developed heights based on levelings leading into two representative bench marks in the southwestern United States. One of these marks, 3219, Vincent, California (fig. 1), lies within the area of the Pacific-North American plate boundary; the other, 22Q, Bill Williams River, Arizona (fig. 1), falls within what is believed to be a singularly stable section of southwestern Arizona. Because the levelings that produced these heights were characterized by especially disparate routes with respect to both terrain and climate, the resulting heights provide a test for the existence and magnitude of path-dependent error in geodetic leveling. These two marks were chosen both because of their relative stability with respect to adjacent marks and because their tectonic stability (or instability) can be inferred from the geologic record. Specifically, we can reasonably speculate that 3219 may have sustained measurably significant tectonic displacements during the 20th century, whereas 22Q probably has remained virtually invariant with respect to any fixed datum during the same period. Bench mark 3219 is a standard Geological Survey iron post stamped "3219" near the Southern Pacific Railroad station at Vincent (U.S. Geological Survey, 1898, p. 392); 22Q is a brass cap stamped "22Q (MWD)" set in a concrete post located in a gully immediately north of the Bill Williams River, Arizona (USC&GS Quad. 34114). 3219 was established by the Geological Survey no later than 1897 (Gannett and Baldwin, 1907, p. 365); 22Q was established by the Metropolitan Water District of southern California in advance of the 1931 control surveys along the projected route of the Colorado River Aqueduct.

  11. Migratory patterns of hatchery and stream-reared Atlantic salmon Salmo salar smolts in the Connecticut River, U.S.A.

    USGS Publications Warehouse

    McCormick, Stephen D.; Haro, Alexander; Lerner, Darren T.; O'Dea, Michael F.; Regish, Amy M.

    2014-01-01

    The timing of downstream migration and detection rates of hatchery-reared Atlantic salmon Salmo salar smolts and stream-reared smolts (stocked 2 years earlier as fry) were examined in the Connecticut River (U.S.A.) using passive integrated transponder (PIT) tags implanted into fish and then detected at a downstream fish bypass collection facility at Turners Falls, MA (river length 192 km). In two successive years, hatchery-reared smolts were released in mid-April and early May at two sites: the West River (river length 241 km) or the Passumpsic (river length 450 km). Hatchery-reared smolts released higher in the catchment arrived 7 to 14 days later and had significantly lower detection rates than smolts stocked lower in the catchment. Hatchery-reared smolts released 3 weeks apart at the same location were detected downstream at similar times, indicating that early-release smolts had a lower average speed after release and longer residence time. The size and gill Na+/K+-ATPase (NKA) activity of smolts at the time of release were significantly greater for detected fish (those that survived and migrated) than for those that were not detected. Stream-reared pre-smolts (>11·5 cm) from four tributaries (length 261–551 km) were tagged in autumn and detected during smolt migration the following spring. Stream-reared smolts higher in the catchment arrived later and had significantly lower detection rates. The results indicate that both hatchery and stream-reared smolts from the upper catchment will arrive at the mouth of the river later and experience higher overall mortality than fish from lower reaches, and that both size and gill NKA activity are related to survival during downstream migration.

  12. Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California

    USGS Publications Warehouse

    Perry, Russell W.; Pope, Adam C.

    2018-05-11

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3 /s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta. In this report, we conduct four analyses to investigate the effect of the NDD and its proposed operation on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha). All analyses used the results of a Bayesian survival model that allowed us to simulate travel time, migration routing, and survival of juvenile Chinook salmon migrating through the Delta in response to NDD operations, which affected both inflows to the Delta and operation of the Delta Cross Channel (DCC). For the first analysis, we evaluated the effect of the NDD bypass rules on salmon survival. The NDD bypass rules are a set of operational rule curves designed to provide adaptive levels of fish protection by defining allowable diversion rates as a function of (1) Sacramento River discharge as measured at Freeport, and (2) time of year when endangered runs requiring the most protection are present. We determined that all bypass rule curves except constant low-level pumping (maximum diversion of 900 ft3 /s) could cause a sizeable decrease in survival by as

  13. Statistical analysis and mathematical modeling of a tracer test on the Santa Clara River, Ventura County, California

    USGS Publications Warehouse

    Paybins, Katherine S.; Nishikawa, Tracy; Izbicki, John A.; Reichard, Eric G.

    1998-01-01

    To better understand flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 28-mile reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. Dye was injected at a site on Piru Creek, and fluorescence of river water was measured continuously at four sites and intermittently at two sites. Discharge measurements were also made at the six sites. The time of travel of the dye, peak dye concentration, and time-variance of time-concentration curves were obtained at each site. The long tails of the time-concentration curves are indicative of sources/sinks within the river, such as riffles and pools, or transient bank storage. A statistical analysis of the data indicates that, in general, the transport characteristics follow Fickian theory. These data and previously collected discharge data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). DAFLOW solves a simplified form of the diffusion-wave equation and uses empirical relations between flow rate and cross-sectional area, and flow rate and channel width. BLTM uses the velocity data from DAFLOW and solves the advection-dispersion transport equation, including first-order decay. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of dye mass in the middle, ephemeral, subreaches, and (2) ground-water recharge does not explain the loss of dye mass in the uppermost and lowermost, perennial, subreaches. This loss of mass was simulated using a linear decay term. The loss of mass in the perennial subreaches may be caused by a combination of photodecay or adsorption/desorption.

  14. Isolation of Onchocerca lupi in Dogs and Black Flies, California, USA

    PubMed Central

    Hassan, Hassan K.; Bolcen, Shanna; Kubofcik, Joseph; Nutman, Thomas B.; Eberhard, Mark L.; Middleton, Kelly; Wekesa, Joseph Wakoli; Ruedas, Gimena; Nelson, Kimberly J.; Dubielzig, Richard; De Lombaert, Melissa; Silverman, Bruce; Schorling, Jamie J.; Adler, Peter H.; Beeler, Emily S.

    2015-01-01

    In southern California, ocular infections caused by Onchocerca lupi were diagnosed in 3 dogs (1 in 2006, 2 in 2012). The infectious agent was confirmed through morphologic analysis of fixed parasites in tissues and by PCR and sequencing of amplicons derived from 2 mitochondrially encoded genes and 1 nuclear-encoded gene. A nested PCR based on the sequence of the cytochrome oxidase subunit 1 gene of the parasite was developed and used to screen Simulium black flies collected from southern California for O. lupi DNA. Six (2.8%; 95% CI 0.6%–5.0%) of 213 black flies contained O. lupi DNA. Partial mitochondrial16S rRNA gene sequences from the infected flies matched sequences derived from black fly larvae cytotaxonomically identified as Simulium tribulatum. These data implicate S. tribulatum flies as a putative vector for O. lupi in southern California. PMID:25897954

  15. California coast nearshore processes study. [nearshore currents, sediment transport, estuaries, and river discharge

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Large scale sediment plumes from intermittent streams and rivers form detectable seasonal patterns on ERTS-1 imagery. The ocean current systems, as plotted from three California coast ERTS mosaics, were identified. Offshore patterns of sediment in areas such as the Santa Barbara Channel are traceable. These patterns extend offshore to heretofore unanticipated ranges as shown on the ERTS-1 imagery. Flying spot scanner enhancements of NASA tapes resulted in details of subtle and often invisible (to the eye) nearshore features. The suspended sediments off San Francisco and in Monterey Bay are emphasized in detail. These are areas of extremely changeable offshore sediment transport patterns. Computer generated contouring of radiance levels resulted in maps that can be used in determining surface and nearsurface suspended sediment distribution. Tentative calibrations of ERTS-1 spectral brightness against sediment load have been made using shipboard measurements. Information from the combined enhancement and interpretation techniques is applicable to operational coastal engineering programs.

  16. Proposal for adaptive management to conserve biotic integrity in a regulated segment of the Tallapoosa River, Alabama, U.S.A

    USGS Publications Warehouse

    Irwin, Elise R.; Freeman, Mary C.

    2002-01-01

    Conserving river biota will require innovative approaches that foster and utilize scientific understanding of ecosystem responses to alternative river-management scenarios. We describe ecological and societal issues involved in flow management of a section of the Tallapoosa River (Alabama, U.S.A.) in which a species-rich native fauna is adversely affected by flow alteration by an upstream hydropower dam. We hypothesize that depleted Iow flows, flow instability and thermal alteration resulting from pulsed flow releases at the hydropower dam are most responsible for changes in the Tallapoosa River biota. However, existing data are insufficient to prescribe with certainty minimum flow levels or the frequency and duration of stable flow periods that would be necessary or sufficient to protect riverine biotic integrity. Rather than negotiate a specific change in the flow regime, we propose that stakeholders--including management agencies, the power utility, and river advocates--engage in a process of adaptive-flow management. This process would require that stakeholders (1) develop and agree to management objectives; (2) model hypothesized relations between dam operations and management objectives; (3) implement a change in dam operations; and (4) evaluate biological responses and other stakeholder benefits through an externally reviewed monitoring program. Models would be updated with monitoring data and stakeholders would agree to further modify flow regimes as necessary to achieve management objectives. A primary obstacle to adaptive management will be a perceived uncertainty of future costs for the power utility and other stakeholders. However, an adaptive, iterative approach offers the best opportunity for improving flow regimes for native biota while gaining information critical to guiding management decisions in other flow-regulated rivers.

  17. Dual-RiverSonde measurements of two-dimensional river flow patterns

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Stumpner, P.; Burau, J.R.

    2008-01-01

    Two-dimensional river flow patterns have been measured using a pair of RiverSondes in two experiments in the Sacramento-San Joaquin River Delta system of central California during April and October 2007. An experiment was conducted at Walnut Grove, California in order to explore the use of dual RiverSondes to measure flow patterns at a location which is important in the study of juvenile fish migration. The data available during the first experiment were limited by low wind, so a second experiment was conducted at Threemile Slough where wind conditions and surface turbulence historically have resulted in abundant data. Both experiments included ADCP near-surface velocity measurements from either manned or unmanned boats. Both experiments showed good comparisons between the RiverSonde and ADCP measurements. The flow conditions at both locations are dominated by tidal effects, with partial flow reversal at Walnut Grove and complete flow reversal at Threemile Slough. Both systems showed complex flow patterns during the flow reversals. Quantitative comparisons between the RiverSondes and an ADCP on a manned boat at Walnut Grove showed mean differences of 4.5 cm/s in the u (eastward) and 7.6 cm/s in the v (northward) components, and RMS differences of 14.7 cm/s in the u component and 21.0 cm/s in the v component. Quantitative comparisons between the RiverSondes and ADCPs on autonomous survey vessels at Threemile Slough showed mean differences of 0.007 cm/s in the u component and 0.5 cm/s in the v component, and RMS differences of 7.9 cm/s in the u component and 13.5 cm/s in the v component after obvious outliers were removed. ?? 2008 IEEE.

  18. Design of a ground-water-quality monitoring network for the Salinas River basin, California

    USGS Publications Warehouse

    Showalter, P.K.; Akers, J.P.; Swain, L.A.

    1984-01-01

    A regional ground-water quality monitoring network for the entire Salinas River drainage basin was designed to meet the needs of the California State Water Resources Control Board. The project included phase 1--identifying monitoring networks that exist in the region; phase 2--collecting information about the wells in each network; and phase 3--studying the factors--such as geology, land use, hydrology, and geohydrology--that influence the ground-water quality, and designing a regional network. This report is the major product of phase 3. Based on the authors ' understanding of the ground-water-quality monitoring system and input from local offices, an ideal network was designed. The proposed network includes 317 wells and 8 stream-gaging stations. Because limited funds are available to implement the monitoring network, the proposed network is designed to correspond to the ideal network insofar as practicable, and is composed mainly of 214 wells that are already being monitored by a local agency. In areas where network wells are not available, arrangements will be made to add wells to local networks. The data collected by this network will be used to assess the ground-water quality of the entire Salinas River drainage basin. After 2 years of data are collected, the network will be evaluated to test whether it is meeting the network objectives. Subsequent network evaluations will be done very 5 years. (USGS)

  19. Habitat use by a Midwestern U.S.A. riverine fish assemblage: effects of season, water temperature and river discharge

    USGS Publications Warehouse

    Gillette, D.P.; Tiemann, J.S.; Edds, D.R.; Wildhaber, M.L.

    2006-01-01

    The hypothesis that temperate stream fishes alter habitat use in response to changing water temperature and stream discharge was evaluated over a 1 year period in the Neosho River, Kansas, U.S.A. at two spatial scales. Winter patterns differed from those of all other seasons, with shallower water used less frequently, and low-flow habitat more frequently, than at other times. Non-random habitat use was more frequent at the point scale (4.5 m2) than at the larger reach scale (20-40 m), although patterns at both scales were similar. Relative to available habitats, assemblages used shallower, swifter-flowing water as temperature increased, and shallower, slower-flowing water as river discharge increased. River discharge had a stronger effect on assemblage habitat use than water temperature. Proportion of juveniles in the assemblage did not have a significant effect. This study suggests that many riverine fishes shift habitats in response to changing environmental conditions, and supports, at the assemblage level, the paradigm of lotic fishes switching from shallower, high-velocity habitats in summer to deeper, low-velocity habitats in winter, and of using shallower, low-velocity habitats during periods of high discharge. Results also indicate that different species within temperate river fish assemblages show similar habitat use patterns at multiple scales in response to environmental gradients, but that non-random use of available habitats is more frequent at small scales. ?? 2006 The Fisheries Society of the British Isles.

  20. Resting habitat selection by fishers in California

    Treesearch

    William J. Zielinski; Richard L. Truex; Gregory A. Schmidt; Fredrick V. Schlexer; Kristin N. Schmidt; Reginald H. Barrett

    2004-01-01

    We studied the resting habitat ecology of fishers (Martes pennanti) in 2 disjunct populations in California, USA: the northwestern coastal mountains (hereafter, Coastal) and the southern Sierra Nevada (hereafter, Sierra). We described resting structures and compared features surrounding resting structures (the resting site) with those at randomly...

  1. A Two-Generation Study of Body Mass Index, Energy Balance and Specific Physical Activity of College Students and Their Respective Parents Living in the Same Household at Los Angeles, California, U.S.A.

    ERIC Educational Resources Information Center

    Liang, Ying; Lee, Judy; Tam, Chick F.; Bridges, Elizabeth; Keating, Xiaofen D.

    2007-01-01

    The purpose was to compare the differences in body mass index (BMI), energy balance (EB) and specific physical activity (SPA) between 30 CSULA college students (Y) and their respective parents (O) living in the same household at Los Angeles, California, U.S.A. Each student completed a 24-hour dietary record with SPA journal, and the same for…

  2. Paleogeomorphology of the early Colorado River inferred from relationships in Mohave and Cottonwood Valleys, Arizona, California and Nevada

    USGS Publications Warehouse

    Pearthree, Philip; House, P. Kyle

    2014-01-01

    Geologic investigations of late Miocene–early Pliocene deposits in Mohave and Cottonwood valleys provide important insights into the early evolution of the lower Colorado River system. In the latest Miocene these valleys were separate depocenters; the floor of Cottonwood Valley was ∼200 m higher than the floor of Mohave Valley. When Colorado River water arrived from the north after 5.6 Ma, a shallow lake in Cottonwood Valley spilled into Mohave Valley, and the river then filled both valleys to ∼560 m above sea level (asl) and overtopped the bedrock divide at the southern end of Mohave Valley. Sediment-starved water spilling to the south gradually eroded the outlet as siliciclastic Bouse deposits filled the lake upstream. When sediment accumulation reached the elevation of the lowering outlet, continued erosion of the outlet resulted in recycling of stored lacustrine sediment into downstream basins; depth of erosion of the outlet and upstream basins was limited by the water levels in downstream basins. The water level in the southern Bouse basin was ∼300 m asl (modern elevation) at 4.8 Ma. It must have drained and been eroded to a level <150 m asl soon after that to allow for deep erosion of bedrock divides and basins upstream, leading to removal of large volumes of Bouse sediment prior to massive early Pliocene Colorado River aggradation. Abrupt lowering of regional base level due to spilling of a southern Bouse lake to the Gulf of California could have driven observed upstream river incision without uplift. Rapid uplift of the entire region immediately after 4.8 Ma would have been required to drive upstream incision if the southern Bouse was an estuary.

  3. Ferguson rock slide buries California State Highway near Yosemite National Park

    USGS Publications Warehouse

    Harp, E.L.; Reid, M.E.; Godt, J.W.; DeGraff, J.V.; Gallegos, A.J.

    2008-01-01

    During spring 2006, talus from the toe area of a rock-block slide of about 800,000 m3 buried California State Highway 140, one of the main routes into heavily-visited Yosemite National Park, USA. Closure of the highway for 92 days caused business losses of about 4.8 million USD. The rock slide, composed of slate and phyllite, moved slowly downslope from April to June 2006, creating a fresh head scarp with 9-12 m of displacement. Movement of the main rock slide, a re-activation of an older slide, was triggered by an exceptionally wet spring 2006, following a very wet spring 2005. As of autumn 2006, most of the main slide appeared to be at rest, although rocks occasionally continued to fall from steep, fractured rock masses at the toe area of the slide. Future behavior of the slide is difficult to predict, but possible scenarios range from continued scattered rock fall to complete rapid failure of the entire mass. Although unlikely except under very destabilizing circumstances, a worst-case, rapid failure of the entire rock slide could extend across the Merced River, damming the river and creating a reservoir. As a temporary measure, traffic has been rerouted to the opposite side of the Merced River at about the same elevation as the buried section of Highway 140. A state-of-the-art monitoring system has been installed to detect movement in the steep talus slope, movement of the main slide mass, local strong ground motion from regional earthquakes, and sudden changes in stream levels, possibly indicating damming of the river by slide material. ?? 2008 Springer-Verlag.

  4. Ferguson rock slide buries California State Highway near Yosemite National Park

    USGS Publications Warehouse

    Harp, Edwin L.; Reid, Mark E.; Godt, Jonathan W.; DeGraff, Jerome V.; Gallegos, Alan J.

    2008-01-01

    During spring 2006, talus from the toe area of a rock-block slide of about 800,000 m3 buried California State Highway 140, one of the main routes into heavily-visited Yosemite National Park, USA. Closure of the highway for 92 days caused business losses of about 4.8 million USD. The rock slide, composed of slate and phyllite, moved slowly downslope from April to June 2006, creating a fresh head scarp with 9-12 m of displacement. Movement of the main rock slide, a re-activation of an older slide, was triggered by an exceptionally wet spring 2006, following a very wet spring 2005. As of autumn 2006, most of the main slide appeared to be at rest, although rocks occasionally continued to fall from steep, fractured rock masses at the toe area of the slide. Future behavior of the slide is difficult to predict, but possible scenarios range from continued scattered rock fall to complete rapid failure of the entire mass. Although unlikely except under very destabilizing circumstances, a worst-case, rapid failure of the entire rock slide could extend across the Merced River, damming the river and creating a reservoir. As a temporary measure, traffic has been rerouted to the opposite side of the Merced River at about the same elevation as the buried section of Highway 140. A state-of-the-art monitoring system has been installed to detect movement in the steep talus slope, movement of the main slide mass, local strong ground motion from regional earthquakes, and sudden changes in stream levels, possibly indicating damming of the river by slide material.

  5. Spatial and Temporal Comparison of DNRA Communities in New River Estuary, USA

    NASA Astrophysics Data System (ADS)

    Song, B.; Lisa, J.; Tobias, C. R.

    2016-02-01

    Dissimilatory nitrate reduction to ammonium (DNRA) is an important nitrate respiring pathway, competing with denitrification, in various ecosystems. Studies examining the diversity and composition of DNRA communities are limited and their link to DNRA activity is unknown. We conducted a multidisciplinary investigation of sediment communities in the upper reaches of a eutrophic estuary to examine spatial and temporal variation of DNRA community structures and determine their linkage to activities. Sediment samples were collected seasonally from two study sites (AA2 and JAX) in the New River Estuary, North Carolina, USA. 15N-nitrate tracer experiments were conducted to measure potential DNRA rates while abundance of DNRA communities was measured using quantitative PCR of cytochrome C nitrite reductase genes (nrfA). Composition and diversity of DNRA communities were also examined based on next generation sequencing (NGS) of nrfA genes using an Ion Torrent PGM. Bioinformatic analysis was conducted using the FunGene pipeline and Mothur program. Higher DNRA activities were measured at JAX and associated with higher abundance of nrfA genes. Seasonal variation in DNRA rates and nrfA gene abundance was more evident at JAX than AA2. Nitrate concentration and dissolved oxygen in bottom water were significantly and positively correlated with activities and abundance of DNRA communities. The nrfA NGS analysis revealed that spatial variation of DNRA communities was much greater than temporal variation with salinity, dissolved organic carbon, and nitrate as the most important environmental variables affecting these communities. Diversity of DNRA communities was negative correlated with the DNRA rates and nrfA gene abundance, which suggests that dominant members of the DNRA community are responsible for higher rates. Thus, our multidisciplinary study clearly demonstrates the linkage between structure and activities of DNRA communities in the upper reaches of New River Estuary.

  6. Tumor prevalence and biomarkers of exposure in brown bullheads (Ameiurus nebulosus) from the tidal Potomac River, USA, watershed.

    PubMed

    Pinkney, A E; Harshbarger, J C; May, E B; Melancon, M J

    2001-06-01

    Associations between contaminant exposure and liver and skin tumor prevalence were evaluated in brown bullheads (Ameiurus nebulosus) from the tidal Potomac River, USA, watershed. Thirty bullheads (> or = age 3) were collected from Quantico embayment, near a Superfund site that released organochlorine contaminants; Neabsco Creek, a tributary with petroleum inputs from runoff and marinas; and Anacostia River (spring and fall), an urban tributary designated as a Chesapeake Bay region of concern, that was contaminated with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides. Fish were collected from the Tuckahoe River, as a reference. Cytochrome P450 activity, bile PAH metabolites, and muscle organochlorine pesticide and PCB concentrations were measured in randomly selected individuals and sediment contaminants were analyzed. We found statistically significant differences in liver tumor prevalences: Anacostia (spring), 50%; Anacostia (fall), 60%; Neabsco, 17%; Quantico, 7%; and Tuckahoe, 10%. Skin tumor prevalences were significantly different: Anacostia (spring), 37%; Anacostia (fall), 10%; Neabsco, 3%; Quantico, 3%; and Tuckahoe, 0%. Tumor prevalence in Anacostia bullheads warrants concern and was similar to those at highly contaminated sites in the Great Lakes. Evidence was found of higher PAH exposure in Anacostia fish but a cause-effect linkage could not be established. Fish tumor surveys, with histopathologic examination of internal and external organs, are recommended for monitoring the status of regions of concern.

  7. Cottus schitsuumsh, a new species of sculpin (Scorpaeniformes: Cottidae) in the Columbia River basin, Idaho-Montana, USA.

    PubMed

    Lemoine, Michael; Young, Michael K; Mckelvey, Kevin S; Eby, Lisa; Pilgrim, Kristine L; Schwartz, Michael K

    2014-01-22

    Fishes of the genus Cottus have long been taxonomically challenging because of morphological similarities among species and their tendency to hybridize, and a number of undescribed species may remain in this genus. We used a combination of genetic and morphological methods to delineate and describe Cottus schitsuumsh, Cedar Sculpin, a new species, from the upper Columbia River basin, Idaho-Montana, USA. Although historically confused with the Shorthead Sculpin (C. confusus), the genetic distance between C. schitsuumsh and C. confusus (4.84-6.29%) suggests these species are distant relatives. Moreover, the two species can be differentiated on the basis of lateral-line pores on the caudal peduncle, head width, and interpelvic width. Cottus schitsuumsh is also distinct from all other Cottus in this region in having a single small, skin-covered, preopercular spine. Haplotypes of mtDNA cytochrome oxidase c subunit 1 of C. schitsuumsh differed from all other members of the genus at three positions, had interspecific genetic distances typical for congeneric fishes (1.61-2.74% to nearest neighbors), and were monophyletic in maximum-likelihood trees. Microsatellite analyses confirmed these taxonomic groupings for species potentially sympatric with C. schitsuumsh and that fish used in morphological comparisons were unlikely to be introgressed. Its irregular distribution, in the Spokane River basin in Idaho and portions of the Clark Fork River basin in Montana, may have resulted from human-assisted translocation.

  8. Tumor prevalence and biomarkers of exposure in brown bullheads (Ameiurus nebulosus) from the tidal Potomac River, USA, watershed

    USGS Publications Warehouse

    Pinkney, A.E.; Harshbarger, J.C.; May, E.B.; Melancon, M.J.

    2001-01-01

    Associations between contaminant exposure and liver and skin tumor prevalence were evaluated in brown bullheads (Ameiurus nebulosus) from the tidal Potomac River, USA, watershed. Thirty bullheads (>age 3) were collected from Quantico embayment near a Superfund site that released organochlorine contaminants; Neabsco Creek, a tributary with petroleum inputs from runoff and marinas; and Anacostia River (spring and fall), an urban tributary designated as a Chesapeake Bay region of concern, that was contaminated with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides. Fish were collected from the Tuckahoe River, as a reference. Cytochrome P450 activity, bile PAH metabolites, and muscle organochlorine pesticide and PCB concentrations were measured in randomly selected individuals and sediment contaminants were analyzed. We found statistically significant differences in liver tumor prevalences: Anacostia (spring), 50%, Anacostia (fall), 60%, Neabsco, 17%, Quantico, 7%, and Tuckahoe, 10%. Skin tumor prevalences were significantly different: Anacostia (spring), 37%, Anacostia (fall), 10%, Neabsco, 3%, Quantico, 3%, and Tuckahoe, 0%. Tumor prevalences in Anacostia bullheads warrants concern and was similar to those as highly contaminated sites in the Great Lakes. Evidence was found of higher PAH exposure in Anacostia fish but a cause-effect linkage could not be established. Fish tumor surveys, with histopathologic examination of internal and external organs are recommended for monitoring the status of regions of concern.

  9. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.210 Central California... (Oncorhynchus kisutch). Critical habitat is designated to include all river reaches accessible to listed coho... part. Critical habitat consists of the water, substrate, and adjacent riparian zone of estuarine and...

  10. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.210 Central California... (Oncorhynchus kisutch). Critical habitat is designated to include all river reaches accessible to listed coho... part. Critical habitat consists of the water, substrate, and adjacent riparian zone of estuarine and...

  11. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA

    USGS Publications Warehouse

    Rosenberry, Donald O.; Briggs, Martin A.; Voytek, Emily B.; Lane, John W.

    2016-01-01

    The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers), thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling), and geophysical (electromagnetic-induction) methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared) may be useful in locating and protecting other currently unknown mussel populations.

  12. Subsidence (2004-2009) in and near lakebeds of the Mojave River and Morongo groundwater basins, southwest Mojave Desert, California

    USGS Publications Warehouse

    Solt, Mike; Sneed, Michelle

    2014-01-01

    Subsidence, in the vicinity of dry lakebeds, within the Mojave River and Morongo groundwater basins of the southwest Mojave Desert has been measured by Interferometric Synthetic Aperture Radar (InSAR). The investigation has focused on determining the location, extent, and magnitude of changes in land-surface elevation. In addition, the relation of changes in land-surface elevation to changes in groundwater levels and lithology was explored. This report is the third in a series of reports investigating land-surface elevation changes in the Mojave and Morongo Groundwater Basins, California. The first report, U.S. Geological Survey (USGS) Water-Resources Investigations Report 03-4015 by Sneed and others (2003), describes historical subsidence and groundwater-level changes in the southwest Mojave Desert from 1969 to 1999. The second report, U.S. Geological Survey Water-Resources Investigations Report 07-5097, an online interactive report and map, by Sneed and Brandt (2007), describes subsidence and groundwater-level changes in the southwest Mojave Desert from 1999 to 2004. The purpose of this report is to document an updated assessment of subsidence in these lakebeds and selected neighboring areas from 2004 to 2009 as measured by InSAR methods. In addition, continuous Global Positioning System (GPS)(2005-10), groundwater level (1951-2010), and lithologic data, if available, were used to characterize compaction mechanisms in these areas. The USGS California Water Science Center’s interactive website for the Mojave River and Morongo groundwater basins was created to centralize information pertaining to land subsidence and water levels and to allow readers to access available data and related reports online. An interactive map of land subsidence and water levels in the Mojave River and Morongo groundwater basins displays InSAR interferograms, subsidence areas, subsidence contours, hydrographs, well information, and water-level contours. Background information, including

  13. Evaluation of Stream Loads Used to Calibrate a SPARROW Model for California, USA

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Saleh, D.

    2012-12-01

    A SPARROW (Spatially Referenced Regression on Watershed Attributes) Model is being developed for California. The model will be used to understand how Total Nitrogen (TN) and Total Phosphorus (TP) are transported from land to water from sources such as the atmosphere, fertilizer, soils, wastewater treatment facilities, etc., and relies on accurate calibration of mass loads obtained from water sampling at gauging stations in order to link mass at a location to upstream sources. Prior to input to the SPARROW model, the mass loads are calculated separately using a five-parameter log linear multi-regression model utilizing discharge, chemical measurements, time, and seasonal adjustments to obtain the best fit for the relationship of discharge and concentration. The gauging stations are situated in three ecological management zones as defined by the U.S. Environmental Protection Agency: the Western Forested Mountains, the Central Valley, and the Xeric West. Load models for nitrogen have at times been shown to be positively biased when the form of TN is predominately nitrate. The regions under study have different sources of nitrogen, which will affect the form of TN transported. Some stream segments are natural settings (forested), while others are highly influenced by agriculture and urban (Central Valley) settings and others by arid climate (Xeric). These differences affect the form of TN transported (dissolved as nitrate or suspended in the form of organic nitrogen), and hence it is expected that the efficiency of the discharge-load model may not be uniform at all locations. Less than 10% of the TN is in the form of nitrate in streams of the western forested mountains, but about 30% is nitrate in the Central Valley and about 40% in the arid region. Model efficiency was evaluated using the Nash Sutcliffe (NS) equation, which examines the square of the residuals of modeled results and observed values after transforming the logarithm of loads back to the actual data

  14. Climate and floods still govern California levee breaks

    USGS Publications Warehouse

    Florsheim, J.L.; Dettinger, M.D.

    2007-01-01

    Even in heavily engineered river systems, climate still governs flood variability and thus still drives many levee breaks and geomorphic changes. We assemble a 155-year record of levee breaks for a major California river system to find that breaks occurred in 25% of years during the 20th Century. A relation between levee breaks and river discharge is present that sets a discharge threshold above which most levee breaks occurred. That threshold corresponds to small floods with recurrence intervals of ???2-3 years. Statistical analysis illustrates that levee breaks and peak discharges cycle (broadly) on a 12-15 year time scale, in time with warm-wet storm patterns in California, but more slowly or more quickly than ENSO and PDO climate phenomena, respectively. Notably, these variations and thresholds persist through the 20th Century, suggesting that historical flood-control effects have not reduced the occurrence or frequency of levee breaks. Copyright 2007 by the American Geophysical Union.

  15. Monitoring radionuclide and suspended-sediment transport in the Little Colorado River basin, Arizona and New Mexico, USA

    USGS Publications Warehouse

    Gray, John R.; Fisk, Gregory G.

    1992-01-01

    From July 1988 through September 1991, radionuclide and suspended-sediment transport were monitored in ephemeral streams in the semiarid Little Colorado River basin of Arizona and New Mexico, USA, where in-stream gross-alpha plus gross-beta activities have exceeded Arizona's Maximum Allowable Limit through releases from natural weathering processes and from uranium-mining operations in the Church Rock Mining District, Grants Mineral Belt, New Mexico. Water samples were collected at a network of nine continuous-record streamgauges equipped with microprocessor-based satellite telemetry and automatic water-sampling systems, and six partial-record streamgauges equipped with passive water samplers. Analytical results from these samples were used to calculate transport of selected suspended and dissolved radionuclides in the uranium-238 and thorium-232 decay series.

  16. Mercury levels, reproduction, and hematology in western grebes from three California Lakes, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elbert, R.A.; Anderson, D.W.

    1998-02-01

    Twenty-three healthy adult western and Clark`s grebes (Aechmorphorus occidentalis and Aechmorphorus clarkii) were collected at three study sites in California, USA, in 1992: Clear Lake, Lake County; Eagle Lake, Lassen County; and Tule Lake, Siskiyou County. Liver, kidney, breast muscle, and brain were analyzed for total mercury (Hg) concentration (ppm wet weight), and blood was analyzed for various blood parameters. Clear Lake birds had greater Hg concentrations in kidney, breast muscle, and brain than birds from the other two lakes whereas liver concentrations were not statistically different. Average concentrations for Clear Lake birds were 2.74 ppm for liver, 2.06 ppmmore » for kidney, 1.06 ppm for breast muscle, and 0.28 ppm for brain. The tissue levels of kidney, breast muscle, and brain at the other two study sites were one half the levels found at Clear Lake. These mean tissue levels were near, but below, those known to cause adverse effects. When data from all sites were merged, kidney, breast muscle, and brain concentrations are positively correlated to each other. Liver concentrations were not correlated to any other value. Brain Hg concentrations were also negatively correlated to blood potassium and blood phosphorus levels. Kidney Hg levels were positively correlated to percent blood heterophils and negatively correlated to percent eosinophils, suggesting that mercury levels might be affecting immune function. These biomarkers could not be related to any obvious ecological effects.« less

  17. Mercury correlations among six tissues for four waterbird species breeding in San Francisco Bay, California, USA

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; Adelsbach, T.L.; Takekawa, John Y.; Miles, A.K.; Keister, R.A.

    2008-01-01

    Despite a large body of research concerning mercury (Hg) in birds, no single tissue has been used consistently to assess Hg exposure, and this has hampered comparisons across studies. We evaluated the relationships of Hg concentrations among tissues in four species of waterbirds (American avocets [Recurvirostra americana], black-necked stilts [Himantopus mexicanus], Caspian terns [Hydroprogne caspia; formerly Sterna caspia], and Forster's terns [Sterna forsteri]) and across three life stages (prebreeding adults, breeding adults, and chicks) in San Francisco Bay, California, USA. Across species and life stages, Hg concentrations (least square mean ?? standard error) were highest in head feathers (6.45 ?? 0.31 ??g/g dry wt) and breast feathers (5.76 ?? 0.28 ??g/g dry wt), followed by kidney (4.54 ?? 0.22 ??g/g dry wt), liver (4.43 ?? 0.21 ??g/g dry wt), blood (3.10 ?? 0.15 ??g/g dry wt), and muscle (1.67 ?? 0.08 ??g/g dry wt). Relative Hg distribution among tissues, however, differed by species and life stage. Mercury concentrations were highly correlated among internal tissues (r 2 ??? 0.89). Conversely, the relationships between Hg in feathers and internal tissues were substantially weaker (r2 ??? 0.42). Regression slopes sometimes differed among species and life stages, indicating that care must be used when predicting Hg concentrations in one tissue based on those in another. However, we found good agreement between predictions made using a general tissue-prediction equation and more specific equations developed for each species and life stage. Finally, our results suggest that blood is an excellent, nonlethal predictor of Hg concentrations in internal tissues but that feathers are relatively poor indicators of Hg concentrations in internal tissues. ?? 2008 SETAC Printed in the USA.

  18. 1. HEALDSBURG BRIDGE, OLD HIGHWAY 101, ACROSS THE RUSSIAN RIVER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. HEALDSBURG BRIDGE, OLD HIGHWAY 101, ACROSS THE RUSSIAN RIVER. HEALDSBURG, MEDDOCINO COUNTY, CALIFORNIA. LOOKING NW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  19. Determination of the components of stormflow using water chemistry and environmental isotopes, Mattole River basin, California

    USGS Publications Warehouse

    Kennedy, V.C.; Kendall, C.; Zellweger, G.W.; Wyerman, T.A.; Avanzino, R.J.

    1986-01-01

    The chemical and isotopic composition of rainfall and stream water was monitored during a storm in the Mattole River basin of northwestern California. About 250 mm of rain fell during 6 days (???80% within a 42 h period) in late January, 1972, following 24 days of little or no precipitation. River discharge near Petrolia increased from 22 m3 s-1 to a maximum of 1300 m3 s-1 while chloride and silica concentrations decreased only from 3.2 to 2.1 and 11.5 to 8.6 mgl-1, respectively. Meanwhile, the isotopic composition of the river changed from ??D = - 42???, ??180 = - 6.8??? and 40 tritium units (T.U.) to extreme values at highest flow of ??D = - 35???, ??180 = - 5.9??? and 25 T.U. in response to volume-weighted rainfall averaging ??D = - 19.5???, ??180 = - 3.1??? and 18 T.U. Despite much rainfall of a composition quite different from that of the prestorm river water, "buffering" processes in the watershed greatly restricted changes in the chemical and isotopic content of the river during storm runoff. Because of the physical and hydrologic characteristics of the watershed, major contributions of groundwater to stormflow are very unlikely. The large increase in dissolved chemical load observed at maximum river discharge required that extensive interaction with, and presumably penetration of, soils occurred within a few hours time. Such a large increase in chemical load also required subsurface stormflow throughout a high proportion of the watershed. Chemical and isotopic stabilization of stormflow is believed to be due mainly to displacement of prestorm soil water, with some effects on river chemistry due to rapid rain-soil interactions. The isotopic and chemical composition of prestorm soil moisture cannot readily be predicted a priori because of possible variability in rainfall composition, evaporation, and exchange with atmospheric moisture, nor can it be assumed that baseflow has a predictable relation to the chemical or isotopic composition of water displaced

  20. Hydraulic Geometry and Microtopography of Tidal Freshwater Forested Wetlands and Implications for Restoration, Columbia River, U.S.A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenderfer, Heida L.; Coleman, Andre M.; Borde, Amy B.

    2008-01-01

    The hydrologic reconnection of tidal channels, riverine floodplains, and main stem channels are among responses by ecological restoration practitioners to the increasing fragmentation and land conversion occurring in coastal and riparian zones. Design standards and monitoring of such ecological restoration depend upon the characterization of reference sites that vary within and among regions. Few locales, such as the 235 km tidal portion of the Columbia River on the West Coast U.S.A., remain in which the reference conditions and restoration responses of tidal freshwater forested wetlands on temperate zone large river floodplains can be compared. This study developed hydraulic geometry relationshipsmore » for Picea sitchensis (Sitka spruce) dominated tidal forests (swamps) in the vicinity of Grays Bay on the Columbia River some 37 km from the Pacific Coast using field surveys and Light Detection and Ranging (LiDAR) data. Scaling relationships between catchment area and the parameters of channel cross-sectional area at outlet and total channel length were comparable to tidally influenced systems of San Francisco Bay and the United Kingdom. Dike breaching, culvert replacement, and tide gate replacement all affected channel cross-sectional geometry through changes in the frequency of over-marsh flows. Radiocarbon dating of buried wood provided evidence of changes in sedimentation rates associated with diking, and restoration trajectories may be confounded by historical subsidence behind dikes rendering topographical relationships with water level incomparable to reference conditions. At the same time, buried wood is influencing the development of channel morphology toward characteristics resembling reference conditions. Ecological restoration goals and practices in tidal forested wetland regions of large river floodplains should reflect the interactions of these controlling factors.« less

  1. Molecular Diversity of Trypanosoma cruzi Detected in the Vector Triatoma protracta from California, USA.

    PubMed

    Shender, Lisa A; Lewis, Michael D; Rejmanek, Daniel; Mazet, Jonna A K

    2016-01-01

    Trypanosoma cruzi, causative agent of Chagas disease in humans and dogs, is a vector-borne zoonotic protozoan parasite that can cause fatal cardiac disease. While recognized as the most economically important parasitic infection in Latin America, the incidence of Chagas disease in the United States of America (US) may be underreported and even increasing. The extensive genetic diversity of T. cruzi in Latin America is well-documented and likely influences disease progression, severity and treatment efficacy; however, little is known regarding T. cruzi strains endemic to the US. It is therefore important to expand our knowledge on US T. cruzi strains, to improve upon the recognition of and response to locally acquired infections. We conducted a study of T. cruzi molecular diversity in California, augmenting sparse genetic data from southern California and for the first time investigating genetic sequences from northern California. The vector Triatoma protracta was collected from southern (Escondido and Los Angeles) and northern (Vallecito) California regions. Samples were initially screened via sensitive nuclear repetitive DNA and kinetoplast minicircle DNA PCR assays, yielding an overall prevalence of approximately 28% and 55% for southern and northern California regions, respectively. Positive samples were further processed to identify discrete typing units (DTUs), revealing both TcI and TcIV lineages in southern California, but only TcI in northern California. Phylogenetic analyses (targeting COII-ND1, TR and RB19 genes) were performed on a subset of positive samples to compare Californian T. cruzi samples to strains from other US regions and Latin America. Results indicated that within the TcI DTU, California sequences were similar to those from the southeastern US, as well as to several isolates from Latin America responsible for causing Chagas disease in humans. Triatoma protracta populations in California are frequently infected with T. cruzi. Our data extend

  2. Molecular Diversity of Trypanosoma cruzi Detected in the Vector Triatoma protracta from California, USA

    PubMed Central

    Shender, Lisa A.; Lewis, Michael D.; Rejmanek, Daniel; Mazet, Jonna A. K.

    2016-01-01

    Background Trypanosoma cruzi, causative agent of Chagas disease in humans and dogs, is a vector-borne zoonotic protozoan parasite that can cause fatal cardiac disease. While recognized as the most economically important parasitic infection in Latin America, the incidence of Chagas disease in the United States of America (US) may be underreported and even increasing. The extensive genetic diversity of T. cruzi in Latin America is well-documented and likely influences disease progression, severity and treatment efficacy; however, little is known regarding T. cruzi strains endemic to the US. It is therefore important to expand our knowledge on US T. cruzi strains, to improve upon the recognition of and response to locally acquired infections. Methodology/Principle Findings We conducted a study of T. cruzi molecular diversity in California, augmenting sparse genetic data from southern California and for the first time investigating genetic sequences from northern California. The vector Triatoma protracta was collected from southern (Escondido and Los Angeles) and northern (Vallecito) California regions. Samples were initially screened via sensitive nuclear repetitive DNA and kinetoplast minicircle DNA PCR assays, yielding an overall prevalence of approximately 28% and 55% for southern and northern California regions, respectively. Positive samples were further processed to identify discrete typing units (DTUs), revealing both TcI and TcIV lineages in southern California, but only TcI in northern California. Phylogenetic analyses (targeting COII-ND1, TR and RB19 genes) were performed on a subset of positive samples to compare Californian T. cruzi samples to strains from other US regions and Latin America. Results indicated that within the TcI DTU, California sequences were similar to those from the southeastern US, as well as to several isolates from Latin America responsible for causing Chagas disease in humans. Conclusions/Significance Triatoma protracta populations

  3. A Test of the California Wildlife-Habitat Relationship System for Breeding Birds in Valley-Foothill Riparian Habitat

    Treesearch

    Stephen A. Laymon

    1989-01-01

    The California Wildlife-Habitat Relationship (WHR) system was tested for birds breeding in the Valley-Foothill Riparian habitat along California's Sacramento and South Fork Kern rivers. The model performed poorly with 33 pct and 21 pct correct predictions respectively at the two locations. Changes to the model for 60 species on the Sacramento River and 66 species...

  4. Dramatic beach and nearshore morphological changes due to extreme flooding at a wave-dominated river mouth

    USGS Publications Warehouse

    Barnard, P.L.; Warrick, J.A.

    2010-01-01

    Record flooding on the Santa Clara River of California (USA) during January 2005 injected ∼ 5 million m3 of littoral-grade sediment into the Santa Barbara Littoral Cell, approximately an order of magnitude more than both the average annual river loads and the average annual alongshore littoral transport in this portion of the cell. This event appears to be the largest sediment transport event on record for a Southern California river. Over 170 m of local shoreline (mean high water (MHW)) progradation was observed as a result of the flood, followed by 3 years of rapid local shoreline recession. During this post-flood stage, linear regression-determined shoreline change rates are up to −45 m a− 1 on the subaerial beach (MHW) and − 114 m a− 1 on the submarine delta (6 m isobath). Starting approximately 1 km downdrift of the river mouth, shoreline progradation persisted throughout the 3-year post-flood monitoring period, with rates up to + 19 m a− 1. Post-flood bathymetric surveys show nearshore (0 to 12 m depth) erosion on the delta exceeding 400 m3/m a− 1, more than an order of magnitude higher than mean seasonal cross-shore sediment transport rates in the region. Changes were not constant with depth, however; sediment accumulation and subsequent erosion on the delta were greatest at − 5 to − 8 m, and accretion in downdrift areas was greatest above –2 m. Thus, this research shows that the topographic bulge (or “wave”) of sediment exhibited both advective and diffusive changes with time, although there were significant variations in the rates of change with depth. The advection and diffusion of the shoreline position was adequately reproduced with a simple “one line” model, although these modeling techniques miss the important cross-shore variations observed in this area. This study illustrates the importance of understanding low-frequency, high volume coastal discharge events for understanding short- and long-term sediment supply, littoral

  5. SPARROW modeling of nitrogen sources and transport in rivers and streams of California and adjacent states, U.S.

    USGS Publications Warehouse

    Saleh, Dina; Domagalski, Joseph L.

    2015-01-01

    The SPARROW (SPAtially Referenced Regressions On Watershed attributes) model was used to evaluate the spatial distribution of total nitrogen (TN) sources, loads, watershed yields, and factors affecting transport and decay in the stream network of California and portions of adjacent states for the year 2002. The two major TN sources to local catchments on a mass basis were fertilizers and manure (51.7%) and wastewater discharge (15.9%). Other sources contributed < 12%. Fertilizer use is widespread in the Central Valley region of California, and also important in several other regions because of the diversity of California agriculture. Precipitation, sand content of surficial soils, wetlands, and tile drains were important for TN movement to stream reaches. Median streamflow in the study area is about 0.04 m3/s. Aquatic losses of nitrogen were found to be most important in intermittent and small to medium sized streams (0.2-14 m3/s), while larger streams showed less loss, and therefore are important for TN transport. Nitrogen loss in reservoirs was found to be insignificant, possibly because most of the larger ones are located upstream of nitrogen sources. The model was used to show loadings, sources, and tributary inputs to several major rivers. The information provided by the SPARROW model is useful for determining both the major sources contributing nitrogen to streams and the specific tributaries that transport the load.

  6. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  7. Effect of irrigation pumpage during drought on karst aquifer systems in highly agricultural watersheds: example of the Apalachicola-Chattahoochee-Flint river basin, southeastern USA

    NASA Astrophysics Data System (ADS)

    Mitra, Subhasis; Srivastava, Puneet; Singh, Sarmistha

    2016-09-01

    In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river-aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river-aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river-aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.

  8. The new Wallula CO2 project may revive the old Columbia River Basalt (western USA) nuclear-waste repository project

    NASA Astrophysics Data System (ADS)

    Schwartz, Michael O.

    2018-02-01

    A novel CO2 sequestration project at Wallula, Washington, USA, makes ample use of the geoscientific data collection of the old nuclear waste repository project at the Hanford Site nearby. Both projects target the Columbia River Basalt (CRB). The new publicity for the old project comes at a time when the approach to high-level nuclear waste disposal has undergone fundamental changes. The emphasis now is on a technical barrier that is chemically compatible with the host rock. In the ideal case, the waste container is in thermodynamic equilibrium with the host-rock groundwater regime. The CRB groundwater has what it takes to represent the ideal case.

  9. Assessing the impacts of river regulation on native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats in the upper Flathead River, Montana, USA

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Jones, Leslie A.; Kotter, D.; Miller, William J.; Geise, Doran; Tohtz, Joel; Marotz, Brian

    2012-01-01

    Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin.

  10. Channel-planform evolution in four rivers of Olympic National Park, Washington, U.S.A.: The roles of physical drivers and trophic cascades

    USGS Publications Warehouse

    East, Amy E.; Jenkins, Kurt J.; Happe, Patricia J.; Bountry, Jennifer A.; Beechie, Timothy J.; Mastin, Mark C.; Sankey, Joel B.; Randle, Timothy J.

    2017-01-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history. All four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, evident from landslide response on the Elwha River. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. In this sediment-routing system with high connectivity, such climate-driven signals appear to propagate downstream without being buffered substantially by sediment storage. Legacy effects of anthropogenic modification likely also affect the Quinault River planform. We infer no correspondence between channel geomorphic evolution and elk abundance, suggesting that trophic-cascade effects in this setting are subsidiary to physical controls on channel morphology. Our findings differ from previous interpretations of Olympic National Park fluvial dynamics and contrast with the classic example of Yellowstone National Park, where legacy effects of elk overuse are apparent in channel morphology; we attribute these differences to hydrologic regime and large-wood availability.

  11. Transport of diazinon in the San Joaquin River basin, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1997-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  12. Salton Sea, California

    NASA Image and Video Library

    2015-09-23

    The Salton Sea in south California was created in 1905 when spring flooding on the Colorado River breached a canal. For 18 months the entire volume of the river rushed into the Salton Trough, creating a lake 32 km wide and 72 km long. In the 1950s, resorts sprang up along the shores. However, shrinking of the lake and increased salinity led to the abandonment of the resorts. The two images show the shrinking lake on May 31, 1984 (Landsat) and June 14, 2015 (ASTER). The images cover an area of 37.5 x 27 km, and are located at 33.2 degrees north, 115.7 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19786

  13. Assessment of juvenile coho salmon movement and behavior in relation to rehabilitation efforts in the Trinity River, California, using PIT tags and radiotelemetry

    USGS Publications Warehouse

    Chase, Robert; Hemphill, Nina; Beeman, John; Juhnke, Steve; Hannon, John; Jenkins, Amy M.

    2013-01-01

    Coho salmon (Oncorhynchus kisutch) of the Southern Oregon/Northern California Coast (SONCC) Evolutionarily Significant Unit (ESU) is federally listed as a threatened species. The Trinity River Restoration Program (TRRP) is rehabilitating the Trinity River to restore coho salmon (coho) and other salmonid populations. In order to evaluate the program’s actions, several studies of movements and behavior of coho in the Trinity River were conducted from 2006 to 2009, including snorkel surveys and mark-recapture techniques based on Passive Integrated Transponder (PIT) tags, elastomer tags, and radio transmitters. Catch, recapture, and condition of natural sub-yearlings, along with site fidelity and emigration of hatchery-reared yearlings in rehabilitated and reference habitats, were studied. Location was important because coho were absent from the lower controlled and rehabilitated sites most of the time. However, rehabilitation did not have a significant effect on natural coho salmon at the site level. Apparent survival of radio-tagged, hatchery-reared yearling coho released downstream from Lewiston Dam was much lower in the first 10 km downstream from the release site than in other areas between Lewiston Dam and the Klamath River estuary. Estimated survival of yearling hatchery coho salmon per 100 km down to Blake’s Riffle was estimated at 64 % over the distance of the 239 km study area. Migration primarily occurred at night in the upper Trinity River; however, as yearlings moved through the lower Trinity River towards the Klamath River, estuary nocturnal migration became less. Apparent survival was generally lowest in areas upstream from the North Fork of the Trinity River.

  14. Feeding ecology and energetic relationships with habitat of blue catfish, Ictalurus furcatus, and flathead catfish, Pylodictis olivaris, in the lower Mississippi River, U.S.A.

    USGS Publications Warehouse

    Eggleton, M.A.; Schramm, H.L.

    2004-01-01

    We examined feeding of blue catfish, Ictalurus furcatus, and flathead catfish, Pylodictis olivaris, collected from floodplain lake, secondary (side) river channel, and main river channel habitats in the lower Mississippi River (LMR), U.S.A. We described the feeding ecology of two large river catfish species within the context of whether off-channel habitats in the LMR (i.e., floodplain lakes and secondary channels) potentially provided energetic benefits to these fishes as purported in contemporary theory on the ecology of large rivers. We used diet composition and associated caloric densities of prey consumed as indicators of energetic benefit to catfishes. Differences in diet among habitats were strong for blue catfish, but weak for flathead catfish; consumed foods generally differed among habitats in caloric (energy) content. Caloric densities of consumed foods were generally greatest in floodplain lakes, least in the main river channel, and intermediate in secondary river channels. Strong between-year variation in diet was observed, but only for blue catfish. Blue catfish fed disproportionately on lower-energy zebra mussels in the main river channel during 1997, and higher-energy chironomids and oligochaetes in floodplain lakes during 1998. Results suggested that although off-channel habitats potentially provided greater energetic return to catfishes in terms of foods consumed, patterns of feeding and subsequent energy intake may vary annually. Energetic benefits associated with off-channel habitats as purported under contemporary theory (e.g., the 'flood-pulse concept') may not be accrued by catfishes every year in the LMR.

  15. Fine scale mapping of the structure and composition of the Elkhorn Slough (California, USA) tidal plume

    NASA Astrophysics Data System (ADS)

    Fischer, Andrew M.; Ryan, John P.; Rienecker, Erich V.

    2017-01-01

    Fine scale mapping of the structure and composition of a tidal ebb plume from a highly modified coastal lagoon (Elkhorn Slough, California, USA) was conducted by combining in situ, observational data sets from surface underway mapping, autonomous underwater vehicle (AUV) profiles, drifter tracking and the analysis of plume structure indices. The results reveal a 6-m-deep, jet-like, sediment laden plume extending one km offshore at low tide, which becomes entrained in the prevailing nearshore circulation. The plume that exits the slough is significantly different from the water that enters the slough. The rapidly evolving discharge plume is associated with elevated and highly correlated (r = 0.93) concentrations of dissolved organic matter and nitrate. While dissolved constituents remain in the shallow plume and are transported northward with the prevailing current, sediment may settle quickly through the water column and can be transported southwestward with the littoral currents. This study illustrates the applications of AUVs, when coupled with additional datasets, for generating higher resolution observational snapshots of dynamic and ephemeral tidal plumes. The results provide unique perspective on small-scale dynamics of an estuarine plume and its influence on coastal ecology.

  16. Algal bioassessment metrics for wadeable streams and rivers of Maine, USA

    USGS Publications Warehouse

    Danielson, Thomas J.; Loftin, Cynthia S.; Tsomides, Leonidas; DiFranco, Jeanne L.; Connors, Beth

    2011-01-01

    Many state water-quality agencies use biological assessment methods based on lotic fish and macroinvertebrate communities, but relatively few states have incorporated algal multimetric indices into monitoring programs. Algae are good indicators for monitoring water quality because they are sensitive to many environmental stressors. We evaluated benthic algal community attributes along a landuse gradient affecting wadeable streams and rivers in Maine, USA, to identify potential bioassessment metrics. We collected epilithic algal samples from 193 locations across the state. We computed weighted-average optima for common taxa for total P, total N, specific conductance, % impervious cover, and % developed watershed, which included all land use that is no longer forest or wetland. We assigned Maine stream tolerance values and categories (sensitive, intermediate, tolerant) to taxa based on their optima and responses to watershed disturbance. We evaluated performance of algal community metrics used in multimetric indices from other regions and novel metrics based on Maine data. Metrics specific to Maine data, such as the relative richness of species characterized as being sensitive in Maine, were more correlated with % developed watershed than most metrics used in other regions. Few community-structure attributes (e.g., species richness) were useful metrics in Maine. Performance of algal bioassessment models would be improved if metrics were evaluated with attributes of local data before inclusion in multimetric indices or statistical models. ?? 2011 by The North American Benthological Society.

  17. Large-scale dam removal on the Elwha River, Washington, USA: river channel and floodplain geomorphic change

    USGS Publications Warehouse

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool–riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat structure, benthic fauna, salmonid fish spawning and rearing potential, and riparian vegetation. The response of the river to dam removal represents a unique opportunity to observe and quantify fundamental geomorphic processes associated with a massive sediment influx, and also provides important lessons for future river-restoration endeavors.

  18. Microbial diversity associated with the anaerobic sediments of a soda lake (Mono Lake, California, USA).

    PubMed

    Rojas, Patricia; Rodríguez, Nuria; de la Fuente, Vicenta; Sánchez-Mata, Daniel; Amils, Ricardo; Sanz, José L

    2018-06-01

    Soda lakes are inhabited by important haloalkaliphilic microbial communities that are well adapted to these extreme characteristics. The surface waters of the haloalkaline Mono Lake (California, USA) are alkaline but, in contrast to its bottom waters, do not present high salinity. We have studied the microbiota present in the shoreline sediments of Mono Lake using next-generation sequencing techniques. The statistical indexes showed that Bacteria had a higher richness, diversity, and evenness than Archaea. Seventeen phyla and 8 "candidate divisions" were identified among the Bacteria, with a predominance of the phyla Firmicutes, Proteobacteria, and Bacteroidetes. Among the Proteobacteria, there was a notable presence of Rhodoplanes and a high diversity of sulfate-reducing Deltaproteobacteria, in accordance with the high sulfate-reducing activity detected in soda lakes. Numerous families of bacterial fermenters were identified among the Firmicutes. The Bacteroides were represented by several environmental groups that have not yet been isolated. Since final organic matter in anaerobic environments with high sulfate contents is mineralized mainly by sulfate-reducing bacteria, very little methanogenic archaeal biodiversity was detected. Only 2 genera, Methanocalculus and Methanosarcina, were retrieved. The species similarities described indicate that a significant number of the operational taxonomic units identified may represent new species.

  19. Temporal and spatial patterns in tumour prevalence in brown bullhead Ameiurus nebulosus (Lesueur) in the tidal Potomac River watershed (USA).

    PubMed

    Pinkney, A E; Harshbarger, J C; Rutter, M A

    2014-10-01

    For two decades, fish tumour surveys have been used to monitor habitat quality in the Chesapeake Bay (USA) watershed. Tributaries with sediments contaminated with polynuclear aromatic hydrocarbons (PAHs), known to cause liver neoplasia, were frequently targeted. Here, we compare surveys in brown bullhead Ameiurus nebulosus conducted in 2009-2011 in the tidal Potomac River watershed (including the Anacostia River) with previous surveys. Using logistic regression, we identified length and sex as covariates for liver and skin tumours. We reported a statistically significant decrease in liver tumour probabilities for standardized 280 mm Anacostia bullheads between the 1996 and 2001 samplings (merged collections: female-77.5%, male-43.0%) and 2009-2011 (female-42.2%, male-13.6%). However, liver tumour prevalence in bullheads from the Anacostia, Potomac River (Washington, DC) and Piscataway Creek (17 km downriver) was significantly higher than that for Chesapeake Bay watershed reference locations. The causes of skin tumours in bullheads are uncertain, requiring further research. The similar liver tumour prevalence in these three locations suggests that the problem is regional rather than restricted to the Anacostia. To monitor habitat quality and the success of pollution control actions, we recommend conducting tumour surveys on a 5-year cycle coordinated with sediment chemistry analyses. © 2014 John Wiley & Sons Ltd.

  20. Mechanisms of carbon storage in mountainous headwater rivers

    Treesearch

    Ellen Wohl; Kathleen Dwire; Nicholas Sutfin; Lina Polvi; Roberto Bazan

    2012-01-01

    Published research emphasizes rapid downstream export of terrestrial carbon from mountainous headwater rivers, but little work focuses on mechanisms that create carbon storage along these rivers, or on the volume of carbon storage. Here we estimate organic carbon stored in diverse valley types of headwater rivers in Rocky Mountain National Park, CO, USA. We show that...

  1. Ecosystem Services of Rivers: The Don River (Russian Federation) and the Roanoke River (USA)

    EPA Science Inventory

    The concept of ecosystem services recognizes the services, and benefits, provided to people by ecosystems. River systems provide many services to people, including freshwater provisioning, carbon storage, fisheries, recreation, transportation, and biodiversity. Here, we review th...

  2. Effects of Groundwater Development on Uranium: Central Valley, California, USA

    USGS Publications Warehouse

    Jurgens, Bryant C.; Fram, Miranda S.; Belitz, Kenneth; Burow, Karen R.; Landon, Matthew K.

    2009-01-01

    Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential longterm effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world.

  3. Pharmaceutical chemicals, steroids and xenoestrogens in water, sediments and fish from the tidal freshwater Potomac River (Virginia, USA).

    PubMed

    Arya, Golala; Tadayon, Sara; Sadighian, James; Jones, Jennifer; de Mutsert, Kim; Huff, Thomas B; Foster, Gregory D

    2017-06-07

    Selected pharmaceutical chemicals, steroids and xenoestrogens (PCSXs) consisting of 29 endocrine modulators, therapeutic drugs, pesticides, detergents, plastics, and active ingredients in household products were measured in water, riverbed sediments and fish collected in a tributary embayment of the Potomac River (Hunting Creek, Alexandria, VA, USA) in the vicinity of wastewater discharge. A total of 17 PCSXs were found in the Hunting Creek samples, with steroid hormones (e.g., progesterone and 17α-ethinylestradiol), triclosan, dextromethorphan and bisphenol A being the most prominent micropollutants detected.The geospatial distribution of the PCSXs in Hunting Creek indicated that the steroids correlated with wastewater treatment plant discharge in all matrices, but such an association is tentative in Hunting Creek given the complex nature of urban sources of PCSXs and hydrodynamics in an urban tidal river. The sediment PCSX concentrations correlated with sediment total organic carbon content at all sampling sites. For the most part, the PCSXs showed an enrichment in fish tissue relative to sediments when concentrations were normalized to lipids and sediment organic carbon contents, but the influence of endogenous steroids is also an important consideration for these chemicals.

  4. Widespread sewage pollution of the Indian River Lagoon system, Florida (USA) resolved by spatial analyses of macroalgal biogeochemistry.

    PubMed

    Barile, Peter J

    2018-03-01

    The Indian River Lagoon (IRL) system, a poorly flushed 240 km long estuary in east-central Florida (USA), previously received 200 MLD of point source municipal wastewater that was largely mitigated by the mid-1990's. Since then, non-point source loads, including septic tank effluent, have become more important. Seventy sites were sampled for bloom-forming macroalgae and analyzed for δ 15 N, % nitrogen, % phosphorus, carbon:nitrogen, carbon:phosphorus, and nitrogen:phosphorus ratios. Data were fitted to geospatial models showing elevated δ 15 N values (>+5‰), matching human wastewater in most of the IRL system, with elevated enrichment (δ 15 N ≥ +7‰ to +10‰) in urbanized portions of the central IRL and Banana River Lagoon. Results suggest increased mobilization of OSDS NH 4 + during the wetter 2014 season. Resource managers must improve municipal wastewater treatment infrastructure and commence significant septic-to-sewer conversion to mitigate nitrogen over-enrichment, water quality decline and habitat loss as mandated in the Tampa and Sarasota Bays and the Florida Keys. Copyright © 2018 Marine Research & Consulting, Inc. Published by Elsevier Ltd.. All rights reserved.

  5. Persistent organic pollutants associated to water fluxes and sedimentary processes in the Colorado River delta, Baja California, México.

    PubMed

    Lugo-Ibarra, K C; Daesslé, L W; Macías-Zamora, J V; Ramírez-Álvarez, N

    2011-09-01

    Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were studied in sediment cores from two distinctive modern channels of the Colorado River (CR) delta. Their abundance and temporal changes are associated with flood-flows from the CR across the USA-Mexico border. The CR channel is directly exposed to river flood-flows while the Hardy River (HR) is a local channel derived mainly from agricultural runoff, geothermal effluents, and treated urban wastewater. Different headwater compositions and degrees of exposure to flood-flows appear to be the factors controlling the composition of persistent organic pollutants (POPs). Enrichment of OCPs (46 ng g(-1) dwt in HR and 4.37 ng g(-1) dwt in CR) occurred during or a few years after flooding. PCB-138 (4.2 ng g(-1)dwt) is enriched in HR suggesting its origin in dielectric oils from the geothermal power plant. PCB-28 (2.1 ng g(-1)dwt) in CR may be related with atmospheric input and/or re-deposition of upstream sediments. In surficial sediments (0-3 cm), only HR exceeds international sediment quality guidelines (4,4'-DDE=8.16 ng g(-1)dwt and ΣDDT=8.34 ng g(-1)dwt). Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Revision of the biostratigraphy of the Chatham Group (Upper Triassic), Deep River basin, North Carolina, USA

    USGS Publications Warehouse

    Litwin, R.J.; Ash, S.R.

    1993-01-01

    Paleontological evidence from the Upper Triassic Chatham Group in the three subbasins of the Deep River basin (North Carolina, USA) supports a significant revision of the ages assigned to most of this non-marine continental sedimentary sequence. This study confirms an early(?) or mid-Carnian age in the Sanford subbasin for the base of the Pekin Formation, the lowest unit of the Chatham Group. However, diagnostic late Carnian palynomorphs have been recovered from coals in the lower part of the Cumnock Formation in the Sanford subbasin, and from a sample of the Cumnock Formation equivalent in the Wadesboro subbasin. Plant megafossils and fossil verebrates from rocks in the Sanford subbasin also support a late Carnian age for the Cumnock Formation and its equivalents. The overlying Sanford Formation, which has not yet been dated paleontologically, probably includes beds of Norian age, as over 1000 m of strata may be present between the Cumnock Formation coals (dated here as late Carnian) and the top of the Sanford Formation. This chronostratigraphic interval appears similar to, but slightly longer than, that preserved in the Dan River-Danville and Davie County basins 100 km to the northwest. Our evidence, therefore, indicates that the Chatham Group was deposited over a much longer time interval [early(?) to mid-Carnian through early Norian] than previously was believed. ?? 1993.

  7. The effects of urbanization on the hydrochemistry of base flow within the Chattahoochee River Basin (Georgia, USA)

    NASA Astrophysics Data System (ADS)

    Rose, Seth

    2007-07-01

    SummaryA comprehensive network of stream data ( n = 50) was used to assess the effects of urbanization upon the hydrochemical variation within base flow in the Chattahoochee River Basin (CRB), Georgia (USA). Base flow solute concentrations (particularly sulfate, chloride, bicarbonate alkalinity, and sodium) increase with the degree of urbanization and any degree of urbanization within the Atlanta Metropolitan Region (AMR) results in elevated base flow solute concentrations. This suggests that there are pervasive low-level non-point sources of contamination such as septic tanks systems and leaky sewer lines affecting the chemistry of shallow groundwater throughout much of the AMR and CRB. Six groups or subsets representing the "rural-to-urban gradient" were defined, characterized by the following order of increasing solute concentrations: rural basins < Chattahoochee River. semi-urbanized basins < urbanized basins < urban basins with main sewer trunk lines < urbanized basins directly receiving treated effluent and combined sewer overflow (CSO) basins. There is a strong and unusual basin-wide correlation ( r2 values >0.79) between Na-K-Cl within the CRB that likely reflects the widespread input of electrolytes present in human wastes and wastewater. The most likely source and pathway for contaminant input involves the mobilization of salts, originally present in waste water, within the riparian or hypoheric zone.

  8. Population genetic structure of the round stingray Urobatis halleri (Elasmobranchii: Rajiformes) in southern California and the Gulf of California

    PubMed Central

    Plank, S. M.; Lowe, C. G.; Feldheim, K. A.; Wilson, R. R.; Brusslan, J. A.

    2017-01-01

    The round stingray, Urobatis halleri, is a viviparous elasmobranch that inhabits inshore, benthic habitats ranging from the western U.S.A. to Panama. The population genetic structure of this species was inferred with seven polymorphic microsatellite loci in samples collected at three sites in coastal southern California, one near Santa Catalina Island, California and one in the eastern Gulf of California. Urobatis halleri is relatively common, but little is known of its movement patterns or population structure. Small FST values (−0·0017 to 0·0005) suggested little structure among coastal populations of southern and Baja California. The population sampled at Santa Catalina Island, which is separated by a deep-water channel from the coastal sites, however, was significantly divergent (large FST, 0·0251) from the other populations, suggesting low connectivity with coastal populations. The Santa Catalina Island population also had the lowest allele richness and lowest average heterozygosity, suggesting recent population bottlenecks in size. PMID:20646159

  9. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, U.S.A.

    USGS Publications Warehouse

    Ericksen, G.E.; Hosterman, J.W.; St., Amand

    1988-01-01

    The clay-hill nitrate deposits of the Amargosa River valley, California, are caliche-type accumulations of water-soluble saline minerals in clay-rich soils on saline lake beds of Miocene, Pliocene(?) and Pleistocene age. The soils have a maximum thickness of ??? 50 cm, and commonly consist of three layers: (1) an upper 5-10 cm of saline-free soil; (2) an underlying 15-20 cm of rubbly saline soil; and (3) a hard nitrate-rich caliche, 10-20 cm thick, at the bottom of the soil profile. The saline constituents, which make up as much as 50% of the caliche, are chiefly Cl-, NO-3, SO2-4 and Na+. In addition are minor amounts of K+, Mg2+ and Ca2+, varying, though generally minor, amounts of B2O3 and CO2-3, and trace amounts of I (probably as IO-3), NO-2, CrO2-4 and Mo (probably as MoO2-4). The water-soluble saline materials have an I/Br ratio of ??? 1, which is much higher than nearly all other saline depostis. The principal saline minerals of the caliche are halite (NaCl), nitratite (NaNO3), darapskite (Na3(SO4)(NO3)??H2O), glauberite (Na2Ca(SO4)2), gypsum (CaSO4??2H2O) and anhydrite (CaSO4). Borax (Na2B4O5(OH)4??8H2O), tincalconite (Na2B4O5(OH)4??3H2O) and trona (Na3(CO3)(HCO3)??2H2O) are abundant locally. The clay-hill nitrate deposits are analogous to the well-known Chilean nitrate deposits, and probably are of similar origin. Whereas the Chilean deposits are in permeable soils of the nearly rainless Atacama Desert, the clay-hill deposits are in relatively impervious clay-rich soils that inhibited leaching by rain water. The annual rainfall in the Death Valley region of ??? 5 cm is sufficient to leach water-soluble minerals from the more permeable soils. The clay-hill deposits contain saline materials from the lake beds beneath the nitrate deposits are well as wind-transported materials from nearby clay-hill soils, playas and salt marshes. The nitrate is probably of organic origin, consisting of atmospheric nitrogen fixed as protein by photoautotrophic blue-green algae

  10. Assessment of pathogen levels in stream water column and bed sediment of Merced River Watershed in California

    NASA Astrophysics Data System (ADS)

    Vaddella, V. K.; Pandey, P.; Biswas, S.; Lewis, D. J.

    2014-12-01

    Mitigating pathogen levels in surface water is crucial for protecting public health. According to the U.S. Environmental Protection Agency (US EPA), approximately 480,000 km of rivers/streams are contaminated in the U.S., and a major cause of contamination is elevated levels of pathogen/pathogen indicator. Many of past studies showed considerably higher pathogen levels in sediment bed than that of the stream water column in rivers. In order to improve the understanding of pathogen levels in rivers in California, we carried out an extensive pathogen monitoring study in four different watersheds (Bear Creek, Ingalsbe, Maxwell, and Yosemite watersheds) of Merced River. Stream water and streambed sediment samples were collected from 17 locations. Pathogen levels (E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were enumerated in streambed sediment and water column. In addition, the impacts of heat stress on pathogen survival were assessed by inoculating pathogens into the water and sediment samples for understanding the pathogen survival in stream water column and streambed sediment. The pathogen enumeration (in water column and sediment bed) results indicated that the E. coli O157:H7, Salmonella spp. and Listeria monocytogenes levels were non-detectable in the water column and streambed sediment. The results of heat stress (50◦ C for 180 minutes) test indicated a pathogen decay at one order of magnitude (108 cfu/ml to 107 cfu/ml). Nonetheless, higher pathogen levels (1.13 × 107 cfu/ml) after the heat stress study showed potential pathogen survival at higher temperature. Preliminary results of this study would help in understanding the impacts of elevated temperature on pathogen in stream environment. Further studies are required to test the long-term heat-stress impacts on pathogen survival.

  11. Isotopic and Chemical Analysis of Nitrate Sources and Cycling in the San Joaquin River Near Stockton, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Bemis, B.; Wankel, S.; Bergamaschi, B.; Kratzer, C.; Dileanis, P.; Erickson, D.; Avery, E.; Paxton, K.

    2002-12-01

    Fish migration through the deep-water channel in the San Joaquin River at Stockton, California is inhibited by low oxygen concentrations during the summer months. The cause for this condition appears to be stagnation and decomposition of algae with attendant oxygen consumption. Algae growth in the San Joaquin River is promoted by nutrients entering the river mainly in the form of nitrate. Possible significant sources of nitrate include soil, fertilizer from agriculture, manure from dairy operations, and N derived from municipal sewage. A 2000 CALFED pilot study investigated the sources and cycling of nitrate at four sites along the San Joaquin River upstream of Stockton using the carbon and nitrogen isotopes of total dissolved and particulate organic matter, together with hydrological measurements and various concentration data, including chlorophyll-a. The nitrate source, its relationship to phytoplankton, and the effect of the nitrate source and cycling on the N isotopic composition of dissolved and particulate organic matter were the primary concerns of the study. The d15N values of dissolved organic nitrogen (DON) were used as a proxy for nitrate d15N because nitrate comprised about 90% of DON. Chlorophyll-a and C:N ratios indicated that the particulate organic matter (POM) consisted largely of plankton and therefore the d15N of POM was used as a proxy for the d15N of plankton. A tentative interpretation of the pilot study was that nitrate was a major nutrient for the plankton and the nitrate was of anthropogenic origin, possibly sewage or animal waste. To test these assumptions and interpretations, we are currently analyzing a set of samples collected in 2001. In addition to the previous sample types, a subset of samples will be measured directly for nitrate d15N to assess the validity of using d15N of DON as a proxy for nitrate.

  12. Review of Vedder pool development, Kern River field, Kern County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Condon, M.W.

    1986-07-01

    The Kern River field is located on the east side of the San Joaquin Valley, just north of Bakersfield, California. Since its discovery in 1899, the field has produced over 1 billion bbl of heavy oil from the Kern River Formation. It was not until 1981 that light oil was discovered from a deeper zone, the Vedder formation. The discovery well, Getty Oil Company WD-1 Apollo, encountered 40 ft of net oil sand within the third Vedder sand and was completed on pump for an initial production of 100 bbl of 40.5/sup 0/ API oil and 200 MCDGD. As suggestedmore » by its name, WD-1 Apollo was drilled as a water-water injection wells. However, a detailed subsurface study of the field suggested the possibility of a trap within the Vedder formation. The originally proposed location of WD-1 Apollo was then moved to test the proposal. The trap is a series of intersecting, up-to-the-basin normal faults trending west and northwest. These faults have dropped impermeable silty zones within the Vedder formation against the productive Vedder sands. Since the completion of WD-1 Apollo, nine other wells have been drilled within this pool, extending production over 1 mi to the southeast. One of the first of the extension wells, Getty Oil Company 73X Central Point, located approximately 600 ft southeast of WD-1 Apollo, established production from the second Vedder sand. This well was completed flowing 300 b/d of 32/sup 0/ API oil and 1000 MCFGD through a 16/64-in. choke. Through December 1985, Texaco (Getty Oil) produced more than 250,000 bbl of oil and 350,000 mcf of gas combined from the second and third Vedder sands from 2.5 net wells. Although attempts to find other such Vedder pools have met with limited success, there is still the potential for many to exist, given proper structural closure, as seen in the Apollo pool.« less

  13. Spatial and temporal assessment of environmental contaminants in water, sediments and fish of the Salton Sea and its two primary tributaries, California, USA, from 2002 to 2012.

    PubMed

    Xu, Elvis Genbo; Bui, Cindy; Lamerdin, Cassandra; Schlenk, Daniel

    2016-07-15

    The Salton Sea, the largest inland surface water body in California, has been designated as a sensitive ecological area by federal and state governments. Its two main tributaries, the New River and Alamo River are impacted by urban and agriculture land use wastes. The purpose of this study was to temporally and spatially evaluate the ecological risks of contaminants of concern in water, sediments and fish tissues. A total of 229 semivolatile organic compounds and 12 trace metals were examined. Among them Selenium, DDTs, PAHs, PCBs, chlorpyrifos and some current-use pesticides such as pyrethroids exceeded risk thresholds. From 2002 to 2012, measurements of chlorpyrifos in sediments generally declined and were not observed after 2009 at the river outlets. In contrast, pyrethroid concentrations in sediments rose consistently after 2009. In water samples, the outlets of the two rivers showed relatively higher levels of contamination than the main water body of the Salton Sea. However, sediments of the main water body of the Salton Sea showed relatively higher sediment concentrations of contaminants than the two rivers. This was particularly true for selenium which showed reductions in concentrations from 2002 to 2007, but then gradual increases to 2012. Consistent with water evaluations, contaminant concentrations in fish tissues tended to be higher at the New River boundary and at the drainage sites for the Alamo River compared to sites along each river. The persistent contaminants DDTs, PAHs, chlorpyrifos and several pyrethroid insecticides were associated with the toxicity of sediments and water collected from the rivers. Overall, assessment results suggested potential ecological risk in sediments of the Salton Sea as well as in water and fish from the two rivers. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Characterization of major lithologic units underlying the lower American River using water-borne continuous resistivity profiling, Sacramento, California, June 2008

    USGS Publications Warehouse

    Ball, Lyndsay B.; Teeple, Andrew

    2013-01-01

    The levee system of the lower American River in Sacramento, California, is situated above a mixed lithology of alluvial deposits that range from clay to gravel. In addition, sand deposits related to hydraulic mining activities underlie the floodplain and are preferentially prone to scour during high-flow events. In contrast, sections of the American River channel have been observed to be scour resistant. In this study, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, explores the resistivity structure of the American River channel to characterize the extent and thickness of lithologic units that may impact the scour potential of the area. Likely lithologic structures are interpreted, but these interpretations are non-unique and cannot be directly related to scour potential. Additional geotechnical data would provide insightful data on the scour potential of certain lithologic units. Additional interpretation of the resistivity data with respect to these results may improve interpretations of lithology and scour potential throughout the American River channel and floodplain. Resistivity data were collected in three profiles along the American River using a water-borne continuous resistivity profiling technique. After processing and modeling these data, inverted resistivity profiles were used to make interpretations about the extent and thickness of possible lithologic units. In general, an intermittent high-resistivity layer likely indicative of sand or gravel deposits extends to a depth of around 30 feet (9 meters) and is underlain by a consistent low-resistivity layer that likely indicates a high-clay content unit that extends below the depth of investigation (60 feet or 18 meters). Immediately upstream of the Watt Avenue Bridge, the high-resistivity layer is absent, and the low-resistivity layer extends to the surface where a scour-resistant layer has been previously observed in the river bed.

  15. Organic Carbon and Trace Element Cycling in a River-Dominated Tidal Coastal Wetland System (Tampa Bay, FL, USA)

    NASA Astrophysics Data System (ADS)

    Moyer, R. P.; Smoak, J. M.; Engelhart, S. E.; Powell, C. E.; Chappel, A. R.; Gerlach, M. J.; Kemp, A.; Breithaupt, J. L.

    2016-02-01

    Tampa Bay is the largest open water, river-fed estuary in Florida (USA), and is characterized by the presence of both mangrove and salt marsh ecosystems. Both coastal wetland systems, and small rivers such as the ones draining into Tampa Bay have historically been underestimated in terms of their role in the global carbon and elemental cycles. Climate change and sea-level rise (SLR) are major threats in Tampa Bay and stand to disrupt hydrologic cycles, compromising sediment accumulation and the rate of organic carbon (OC) burial. This study evaluates organic carbon content, sediment accumulation, and carbon burial rates in salt marsh and mangrove ecosystems, along with measurements of fluxes of dissolved OC (DOC) and trace elements in the water column of the Little Manatee River (LMR) in Tampa Bay. The characterization of OC and trace elements in tidal rivers and estuaries is critical for quantitatively constraining these systems in local-to-regional scale biogeochemical budgets, and provide insight into biogeochemical processes occurring with the estuary and adjacent tidal wetlands. Material fluxes of DOC and trace elements were tied to discharge irrespective of season, and the estuarine habitats removed 15-65% of DOC prior to export to Tampa Bay and the Gulf of Mexico. Thus, material is available for cycling and burial within marsh and mangrove peats, however, LMR mangrove peats have higher OC content and burial rates than adjacent salt marsh peats. Sedimentary accretion rates in LMR marshes are not currently keeping pace with SLR, thus furthering the rapid marsh-to-mangrove conversions that have been seen in Tampa Bay over the past half-century. Additionally, wetlands in Tampa Bay tend to have a lower rate of carbon burial than other Florida tidal wetlands, demonstrating their high sensitivity to climate change and SLR.

  16. Fisher research and the Kings River Sustainable Forest Ecosystem Project: current results and future efforts

    Treesearch

    Brian B. Boroski; Richard T. Golightly; Amie K. Mazzoni; Kimberly A. Sager

    2002-01-01

    The Kings River Sustainable Forest Ecosystems Project was initiated on the Kings River Ranger District of the Sierra National Forest, California, in 1993, with fieldwork beginning in 1994. Knowledge of the ecology of the fisher (Martes pennanti) in the Project area, and in the Sierra Nevada of California in general, is insufficient to develop...

  17. Ephemeral stream reaches preserve the evolutionary and distributional history of threespine stickleback in the Santa Clara and Ventura River watersheds of southern California

    USGS Publications Warehouse

    Richmond, Jonathan Q.; Jacobs, David K.; Backlin, Adam R.; Swift, Camm C.; Dellith, Chris; Fisher, Robert N.

    2015-01-01

    Much remains to be understood about the evolutionary history and contemporary landscape genetics of unarmored threespine stickleback in southern California, where populations collectively referred to as Gasterosteus aculeatus williamsoni have severely declined over the past 70+ years and are now endangered. We used mitochondrial sequence and microsatellite data to assess the population genetics and phylogeography of unarmored populations sampled immediately downstream from the type locality of G. a. williamsoni in the upper Santa Clara River, and assessed their distinctiveness with respect to low-armor populations in the downstream sections of the river and the adjacent Ventura River. We also characterized the geographic limits of different plate morphs and evaluated the congruence of those boundaries with barriers to dispersal in both river systems and to neutral genetic variation. We show substantial population structuring within the upper reach of the Santa Clara River, but little partitioning between the lower Santa Clara and Ventura Rivers—we attribute these patterns to different ancestry between spatially subdivided populations within the same drainage, a predominance of downstream gene flow, and ability for coastal dispersal between the Santa Clara and Ventura Rivers. We also show that alleles from introduced low-plate stock have infiltrated a native population in at least one upper Santa Clara River tributary, causing this formerly unarmored population to become gradually low-plated over a 30 + year time period. Measures of genetic diversity, census surveys, and severe habitat disturbance all indicate that unarmored stickleback near the type locality are currently at high risk of extinction.

  18. Abundance and Bulk Composition of DOM in the Lower Mississippi and Pearl Rivers (USA)

    NASA Astrophysics Data System (ADS)

    Duan, S.; Bianchi, T. S.; Shiller, A. M.; Dria, K.; Hatcher, P. G.

    2005-05-01

    Here we report on temporal changes in the composition of dissolved organic carbon (DOC) and nitrogen (DON) collected in the tidal freshwater region of the lower Mississippi and Pearl Rivers (MR and PR) (USA). Bulk stable carbon isotopes and 13C nuclear magnetic resonance (NMR) spectrometry were used to examine the composition of high molecular weight (< 0.2 µm > 1 kDa) dissolved organic matter (HMW DOM). Monthly water samples were collected at one station in each river from August 2001 to July 2003. Surveys of spatial variability (225 km downstream in the MR and from Jackson to Stennis Space Center in the PR) in total DOC and DON were also conducted in both rivers in June 2003. Higher total DOC (336 to 1156 uM), DON (9.3 to 59.5 uM), % HMW DOM (25 to 47 %), ultraviolet (UV) absorption (0.13 to 0.70 /m), and more depleted delta-15N (0.76 to 2.16 per mil) delta-13C (-25.1 to -28.0 permil) were observed in the PR than in the lower MR (223 to 380 uM, 6.1 to 13.4 uM, 16 to 38 %, 0.08 to 0.17 /m, 0.76 to 2.16 permil, -25.7 to -27.1 permil, respectively). 13C-NMR spectra revealed that alkyl and carbohydrate carbons were dominant in HMW DOC in both rivers. However, a significantly lower percentage of aromatic C (13.2 to 16.6 %) and higher carboxyl C (17.1 to 25.8 %) were observed in the lower MR than in the PR (16.9 to 21.3 % and 12.3 to 20.9 %). Total DOC, DON, HMW DOM, and percent aromaticity of HMW DOM were higher in the PR during local flooding events, and lower during low discharge, indicating a coupling between local carbon inputs (soil and wetlands) and regional precipitation events in the PR. Conversely, seasonal variability of total DOC, DON, and HMW DOM in the lower MR was controlled by spatial variability of an integrative signal from watershed inputs and in-situ production from upriver sources, resulting in a more phytoplankton-derived 13C-NMR signature of HMW DOM. Spatially, very little change occurred in total DOC (259 to 282 uM) and DON (8.85 to 13.3 u

  19. STS-49 Earth observation of the Salton Sea and the Gulf of California

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Earth observation taken aboard Endeavour, Orbiter Vehicle (OV) 105, shows the Salton Sea and the Gulf of California. The nearly cloud-free view follows the Colorado River Delta from the Gulf of California (Mexico) to the Salton Sea (California). The Colorado River enters its delta from the right (east), then turns directly south to form saline tidal flats at the edge of the gulf. Nearly all the water is used for irrigation. The United States (U.S.) / Mexican border shows clearly in the different field patterns and the intensity of the greenish color. The irrigated agricultural area offers a sharp contrast to the surrounding desert. The crew used a handheld HASSELBLAD camera with a 100-mm lens to record the image.

  20. Effects of Groundwater Development on Uranium: Central Valley, California, USA

    USGS Publications Warehouse

    Jurgens, B.C.; Fram, M.S.; Belitz, K.; Burow, K.R.; Landon, M.K.

    2010-01-01

    Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world. Journal compilation ?? 2009 National Ground Water Association. No claim to original US government works.

  1. Accumulation pattern of organochlorine pesticides and polychlorinated biphenyls in sourthern sea otters (Enhydra lutris nereis) found stranded along coastal California, USA

    USGS Publications Warehouse

    Nakata, H.; Kannan, K.; Jing, L.; Thomas, N.J.; Tanabe, S.; Giesy, J.P.

    1998-01-01

    Concentrations of PCBs, DDTs (p,p'-DDE, p,p'-DDD and p,p'-DDT), HCHs (α-, β-, γ-isomers), chlordanes (trans-chlordane, cis-chlordane, trans-nonachlor, cis-nonachlor and oxychlordane) and HCB (hexachlorobenzene were measured in liver, kidney and brain tissues of adult southern sea otters (Enhydra lutris nereis) found stranded along coastal California, USA, during 1992–96. The contamination pattern of organochlorines in sea otters from several locations was in the order of DDTs > PCBs > > CHLs > HCHs > > HCB, whereas those from Monterey Harbor contained greater concentrations of PCBs than of DDTs. Hepatic concentrations of PCBs and DDTs were in the ranges of 58–8700 and 280–5900 ng/g, wet weight, respectively, which varied depending on the geographic location. Sea otters collected from Monterey Harbor contained the greatest concentrations of PCBs and DDTs. In general, accumulation of DDTs, CHLs and PCBs was greater in kidney than in liver, whereas that of HCHs was similar in both the tissues. The gender difference in organochlorine concentrations was less than those reported in cetaceans. The composition of DDTs, HCHs and CHLs compounds in sea otter tissues indicated no recent inputs of these compounds in coastal California. Sea otters that died from infectious diseases, neoplasia and emaciation contained higher concentrations of DDTs than those that died from trauma.

  2. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  3. Lateral migration of the Middle Sacramento River, California

    USGS Publications Warehouse

    Brice, James Coble

    1977-01-01

    Rates and processes of lateral erosion were studied for the middle Sacramento River between Chico Landing and Colusa, Calif. , a river distance of about 50 miles which is bordered by valuable agricultural land. The study is based on comparison of maps made during 1867-1949 and on aerial photographs made during 1924-74. Meander loops migrate by downstream translation in a direction nearly perpendicular to the loop axis. Loops are cut off by straight or diagonal chutes across the meander neck. The sinuosity of the river has gradually decreased from a value of 1.56 in 1896 to 1.35 in 1974. The morphology and curvature of meander loops cut off before white settlers came to the area indicate that the river was more stable, as well as more sinuous , then than now; subsequent morphologic changes are attributed mainly to the clearing of riparian vegetation and the effects of levees in reducing the area of overflow. The bank-erosion is 1.82 acres per year per stream mile or about 15 feet per year per stream foot for the period 1896-1974. (Woodard-USGS)

  4. Who is food-insecure in California? Findings from the California Women's Health Survey, 2004.

    PubMed

    Kaiser, Lucia; Baumrind, Nikki; Dumbauld, Sheila

    2007-06-01

    To identify factors associated with food insecurity in California women. The California Women's Health Survey is an ongoing annual telephone survey that collects data about health-related attitudes and behaviours from a randomly selected sample of women. Food insecurity of the women was measured by a 6-item subset of the Food Security Module. Statistical procedures included chi-square tests, t-tests, logistic regression analysis and analysis of covariance. California, USA. Four thousand and thirty-seven women (18 years or older). Prevalence of food insecurity was 25.7%. After controlling for income, factors associated with greater food insecurity were Hispanic or Black race/ethnicity; less than a 12th grade education; being unmarried; less than 55 years old; being Spanish-speaking; having spent less than half of one's life in the USA; sadness/depression; feeling overwhelmed; poor physical/mental health interfering with activities; and fair to poor general health. Among Food Stamp Program (FSP) participants, 71% were food-insecure. Among FSP-eligible women who had not applied for the programme, the prevalence of food insecurity was lower among women responding that they did not need food stamps than in women giving other reasons for not applying (23.9% vs. 66.9%, P < 0.001). Factors associated with food insecurity in FSP recipients included being unable to make food stamps last for 30 days, feeling overwhelmed, and having a birthplace in Mexico or Central America. Along with several socio-economic variables, poor physical and mental health is associated with food insecurity. Whether food insecurity is a cause or effect of poor health remains in question.

  5. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    USGS Publications Warehouse

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy

    2018-01-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  6. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy E.

    2018-06-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  7. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    USGS Publications Warehouse

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are <5 pCi/l. Four ground water samples were analyzed for 210Po and one sample contained a high concentration of 21 pCi/l. Seven samples were analyzed for 210Pb; six contained <3 pCi/l and one contained 12 pCi/l. Thorium-230 was detected at concentrations of 0.15 and 0.20 pCi/l in two of four samples. Alpha-emitting radionuclides in the ground water originated from the dissolution of U-rich granitic rocks in the Sierra Nevada by CO2, oxygenated water. Dissolution of primary minerals, mainly titanite (sphene) in the granitic rocks, releases U to the water. Dissolved U is probably removed from the water by adsorption on Fe- and Mn-oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial

  8. From Drought to Flood: Biological Responses of Large River Salmonids and Emergent Management Challenges Under California's Extreme Hydroclimatic Variability

    NASA Astrophysics Data System (ADS)

    Anderson, C.

    2017-12-01

    California's hydroclimatic regime is characterized by extreme interannual variability including periodic, multi-year droughts and winter flooding sequences. Statewide, water years 2012-2016 were characterized by extreme drought followed by likely one of the wettest years on record in water year 2017. Similar drought-flood patterns have occurred multiple times both in the contemporary empirical record and reconstructed climate records. Both the extreme magnitude and rapid succession of these hydroclimatic periods pose difficult challenges for water managers and regulatory agencies responsible for providing instream flows to protect and recover threatened and endangered fish species. Principal among these riverine fish species are federally listed winter-run and spring-run Chinook salmon (Oncorhynchus tshawytscha), Central Valley steelhead (Oncorhynchus mykiss), and the pelagic species Delta smelt (Hypomesus transpacificus). Poor instream conditions from 2012-2016 resulted in extremely low abundance estimates and poor overall fish health, and while fish monitoring results from water year 2017 are too preliminary to draw substantive conclusions, early indicators show continued downward population trends despite the historically wet conditions. This poster evaluates California's hydroclimatic conditions over the past decade and quantifies resultant impacts of the 2012-2016 drought and the extremely wet 2017 water year to both adult escapement and juvenile production estimates in California's major inland salmon rivers over that same time span. We will also examine local, state, and federal regulatory actions both in response to the extreme hydroclimatic variability and in preparation for future drought-flood sequences.

  9. Residence Times in Central Valley Aquifers Recharged by Dammed Rivers

    NASA Astrophysics Data System (ADS)

    Loustale, M.; Paukert Vankeuren, A. N.; Visser, A.

    2017-12-01

    Groundwater is a vital resource for California, providing between 30-60% of the state's water supply. Recent emphasis on groundwater sustainability has induced a push to characterize recharge rates and residence times for high priority aquifers, including most aquifers in California's Central Valley. Flows in almost all rivers from the western Sierra to the Central Valley are controlled by dams, altering natural flow patterns and recharge to local aquifers. In eastern Sacramento, unconfined and confined shallow aquifers (depth <300 feet) are recharged by a losing reach of the Lower American River, despite the presence of levees with slurry cut-off walls.1 Flow in the Lower American River is controlled through the operation of the Folsom and Nimbus Dams, with a minimum flow of 500 cfs. Water table elevation in wells in close proximity to the river are compared to river stage to determine the effect of river stage on groundwater recharge rates. Additionally, Tritium-3Helium dates and stable isotopes (∂18O and ∂2H) have been measured in monitoring wells 200- 2400 ft lateral distance from the river, and depths of 25 -225 feet BGS. Variation in groundwater age in the vertical and horizontal directions are used to determine groundwater flow path and velocity. These data are then used to calculate residence time of groundwater in the unconfined and confined aquifer systems for the Central Valley in eastern Sacramento. Applying groundwater age tracers can benefit future compliance metrics of the California Sustainable Groundwater Resources Act (SGMA), by quantifying river seepage rates and impacts of groundwater management on surface water resources. 1Moran et al., UCRL-TR-203258, 2004.

  10. Response of macroinvertebrate communities to temporal dynamics of pesticide mixtures: A case study from the Sacramento River watershed, California.

    PubMed

    Chiu, Ming-Chih; Hunt, Lisa; Resh, Vincent H

    2016-12-01

    Pesticide pollution from agricultural field run-off or spray drift has been documented to impact river ecosystems worldwide. However, there is limited data on short- and long-term effects of repeated pulses of pesticide mixtures on biotic assemblages in natural systems. We used reported pesticide application data as input to a hydrological fate and transport model (Soil and Water Assessment Tool) to simulate spatiotemporal dynamics of pesticides mixtures in streams on a daily time-step. We then applied regression models to explore the relationship between macroinvertebrate communities and pesticide dynamics in the Sacramento River watershed of California during 2002-2013. We found that both maximum and average pesticide toxic units were important in determining impacts on macroinvertebrates, and that the compositions of macroinvertebrates trended toward taxa having higher resilience and resistance to pesticide exposure, based on the Species at Risk pesticide (SPEAR pesticides ) index. Results indicate that risk-assessment efforts can be improved by considering both short- and long-term effects of pesticide mixtures on macroinvertebrate community composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA

    EPA Science Inventory

    Current bioassessment efforts are focused on small wadeable streams, at least partly because assessing ecological conditions in non-wadeable large rivers poses many additional challenges. In this study, we sampled 20 sites in each of seven large rivers in the Pacific Northwest, U...

  12. Groundwater quality in the Central Sierra Nevada, California

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. Two small watersheds of the Fresno and San Joaquin Rivers in the Central Sierra Nevada constitute one of the study units being evaluated.

  13. Groundwater quality in the Southern Sierra Nevada, California

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tehachapi-Cummings Valley and Kern River Valley basins and surrounding watersheds in the Southern Sierra Nevada constitute one of the study units being evaluated.

  14. 17. "Concrete Bridge Over Salt River, Port Kenyon, Humboldt County, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. "Concrete Bridge Over Salt River, Port Kenyon, Humboldt County, California, A.J. Logan, County Surveyor, H.J. Brunnier, Consulting Engineer, March 7, 1919," showing plan of bars in top flange, elevation of girder reinforcement, plan of bars in bottom flange - Salt River Bridge, Spanning Salt River at Dillon Road, Ferndale, Humboldt County, CA

  15. 15. 'Concrete Bridge Over Salt River, Port Kenyon, Humboldt County, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. 'Concrete Bridge Over Salt River, Port Kenyon, Humboldt County, California, A.J. Logan, County Surveyor, H.J. Brunnier, Consulting Engineer, March 7, 1919,' showing general plan, plan of top chord, elevation of main girder, transverse section, plan section at deck level. - Salt River Bridge, Spanning Salt River at Dillon Road, Ferndale, Humboldt County, CA

  16. California's potential volcanic hazards

    USGS Publications Warehouse

    Jorgenson, P.

    1989-01-01

    This is a summary of "Potential Hazards from Future Volcanic Eruptions in California' (USGS Bulletin No. 1847: price $4.75). The chief areas of danger are Lassen Peak, Mount Shasta and Medicine Lake Highland in the north; Clear Lake, Mono Lake and Long Valley in the centre; and Owen's River-Death Valley, Amboy Crater and the Saltan Butter in the south of the State. -A.Scarth

  17. Monitoring and modeling very large, rapid infiltration using geophysics during the 2014 Lower Colorado River pulse flow experiment

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Macy, J. P.; Callegary, J. B.; Lopez, J. R.

    2014-12-01

    In March and April 2014, an unprecedented experiment released over 100x106 cubic meters (81,000 acre-feet) of water from Morelos Dam into the normally-dry lower Colorado River below Yuma, Arizona, USA. More than half of the water released from Morelos Dam infiltrated within the limitrophe reach, a 32-km stretch between the Northern U.S.-Mexico International Boundary and the Southern International Boundary, a distance of just 32 river-kilometers. To characterize the spatial and temporal extent of infiltration, scientists from the US Geological Survey, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, and Universidad Autónoma de Baja California carried out several geophysical surveys. Frequency-domain electromagnetic transects throughout the limitrophe reach showed that the subsurface comprised exclusively sandy material, with little finer-grained material to impede or otherwise influence infiltration. Direct current resistivity clearly imaged the rising water table near the stream channel. Both techniques provide valuable parameterization and calibration information for a surface-water/groundwater interaction model currently in development. Time-lapse gravity data were collected at 25 stations to expand the monitoring well network and provide storage-coefficient information for the groundwater model. Despite difficult field conditions, precise measurements of large gravity changes showed that changes in groundwater storage in the upper reach of the study area, where groundwater levels were highest, were constrained to the near vicinity of the river channel. Downstream near the Southern International Boundary, however, groundwater storage increased substantially over a large area, expanding into the regional aquifer that supplies irrigation water to surrounding agriculture.

  18. Temporal and spatial patterns of phytoplankton production in Tomales Bay, California, U.S.A.

    USGS Publications Warehouse

    Cole, B.E.

    1989-01-01

    Primary productivity in the water column was measured 14 times between April 1985 and April 1986 at three sites in Tomales Bay, California, USA The conditions at these three stations encompassed the range of hydrographic conditions, phytoplankton biomass, phytoplankton community composition, and turbidity typical of this coastal embayment. Linear regression of the measured daily carbon uptake against the composite parameter B Zp Io (where B is the average phytoplankton biomass in the photic zone; Zp is the photic depth; and Io is the daily surface insolation) indicates that 90% of the variability in primary productivity is explained by variations in phytoplankton biomass and light availability. The linear function derived using Tomales Bay data is essentially the same as that which explains more than 80% of the variation in productivity in four other estuarine systems. Using the linear function and measured values for B, Zp, and Io, the daily photic-zone productivity was estimated for 10 sites at monthly intervals over the annual period. The average daily photic-zone productivity for the 10 sites ranged from 0??2 to 2??2 g C m-2. The bay-wide average annual primary productivity in the water column was 400 g C m-2, with most of the uptake occuring in spring and early summer. Spatial and temporal variations in primary productivity were similar to variations in phytoplankton biomass. Productivity was highest in the seaward and central regions of the bay and lowest in the shallow landward region. ?? 1989.

  19. Integrating History and the Art of Larry Rivers.

    ERIC Educational Resources Information Center

    Turner, Dianne

    2000-01-01

    Focuses on the artwork of Larry Rivers as a means to integrate art and history. Discusses a project completed by preservice teachers in which they created a Rivers-style mural for the Ronald Reagan Elementary School (Bakersville, California), depicting the life and contributions of former U.S. President Ronald Reagan. (CMK)

  20. Predicted effects of future climate warming on thermal habitat suitability for Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) in rivers in Wisconsin, USA

    USGS Publications Warehouse

    Lyons, John D.; Stewart, Jana S.

    2015-01-01

    The Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) may be threatened by future climate warming. The purpose of this study was to identify river reaches in Wisconsin, USA, where they might be vulnerable to warming water temperatures. In Wisconsin, A. fulvescens is known from 2291 km of large-river habitat that has been fragmented into 48 discrete river-lake networks isolated by impassable dams. Although the exact temperature tolerances are uncertain, water temperatures above 28–30°C are potentially less suitable for this coolwater species. Predictions from 13 downscaled global climate models were input to a lotic water temperature model to estimate amounts of potential thermally less-suitable habitat at present and for 2046–2065. Currently, 341 km (14.9%) of the known habitat are estimated to regularly exceed 28°C for an entire day, but only 6 km (0.3%) to exceed 30°C. In 2046–2065, 685–2164 km (29.9–94.5%) are projected to exceed 28°C and 33–1056 km (1.4–46.1%) to exceed 30°C. Most river-lake networks have cooler segments, large tributaries, or lakes that might provide temporary escape from potentially less suitable temperatures, but 12 short networks in the Lower Fox and Middle Wisconsin rivers totaling 93.6 km are projected to have no potential thermal refugia. One possible adaptation to climate change could be to provide fish passage or translocation so that riverine Lake Sturgeon might have access to more thermally suitable habitats.

  1. California State Waters Map Series--Offshore of Ventura, California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Seitz, Gordon G.; Gutierrez, Carlos I.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Ventura map area lies within the Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the Ventura Basin, in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. The city of Ventura is the major cultural center in the map area. The Ventura River cuts through Ventura, draining the Santa Ynez Mountains and the coastal hills north of Ventura. Northwest of Ventura, the coastal zone is a narrow strip containing highway and railway transportation corridors and a few small residential clusters. Rincon Island, an island constructed for oil and gas production, lies offshore of Punta Gorda. Southeast of Ventura, the coastal zone consists of the mouth and broad, alluvial plains of the Santa Clara River

  2. Transport of sediment-bound organochlorine pesticides to the San Joaquin River, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Suspended sediment samples were collected in westside tributaries and the main stem of the San Joaquin River, California, in June 1994 during the irrigation season and in January 1995 during a winter storm. These samples were analyzed for 15 organochlorine pesticides to determine their occurrence and their concentrations on suspended sediment and to compare transport during the irrigation season (April to September) to transport during winter storm runoff (October to March). Ten organochlorine pesticides were detected during the winter storm runoff; seven during the irrigation season. The most frequently detected organochlorine pesticides during both sampling periods were p,p'-DDE, p,p'-DDT, p,p'-DDD, dieldrin, toxaphene, and chlordane. Dissolved samples were analyzed for three organochlorine pesticides during the irrigation season and for 15 during the winter storm. Most calculated total concentrations of p,p'-DDT, chlordane, dieldrin, and toxaphene exceeded chronic criteria for the protection of freshwater aquatic life. At eight sites in common between sampling periods, suspended sediment concentrations and streamflow were greater during the winter storm runoff median concentration of 3,590 mg/L versus 489 mg/and median streamflow of 162 ft3/s versus 11 ft3/s. Median concentrations of total DDT (sum of p,p'-DDD, p,p'-DDE, and p,p'-DDT), chlordane, dieldrin, and toxaphene on suspended sediment were slightly greater during the irrigation season, but instantaneous loads of organochlorine pesticides at the time of sampling were substantially greater during the winter storm. Estimated loads for the entire irrigation season exceeded estimated loads for the January 1995 storm by about 2 to 4 times for suspended transport and about 3 to 11 times for total transport. However, because the mean annual winter runoff is about 2 to 4 times greater than the runoff during the January 1995 storm, mean winter transport may be similar to irrigation season transport. This conclusion

  3. Maturation and fecundity of a stock-enhanced population of striped bass in the Savannah River Estuary, U.S.A.

    USGS Publications Warehouse

    Will, T.A.; Reinert, T.R.; Jennings, C.A.

    2002-01-01

    The striped bass Morone saxatilis population in the Savannah River (south-eastern U.S.A.) collapsed in the 1980s, and recent efforts to restore the population have resulted in increased catch-per-unit-effort (CPUE) of striped bass in the Savannah River Estuary (SRE). The abundance of eggs and larvae, however, remain well below historic levels. The primary cause of the population decline was remedied, and environmental conditions seem suitable for striped bass spawning. Regression analysis of data derived from ultrasonic imaging of 31 striped bass resulted in a statistical model that predicted ovary volume well (r2=0.95). The enumeration of oocytes from ovarian tissue samples and the prediction of ovary volume allowed fecundity to be estimated without sacrificing the fish. Oocyte maturation in Savannah River striped bass seemed to progress normally, with oocytes developing to final stages of maturity in larger fish (>750 mm LT). Additionally, fecundity estimates were comparable to a neighbouring striped bass population. The environmental cues needed to trigger development and release of striped bass oocytes into the SRE appeared to be present. If most of the striped bass females in the SRE are still young (<7 years), the ability to produce large numbers of eggs will be limited. As these young fish mature, egg production probably will increase and the density of striped bass eggs eventually will approach historic levels, provided suitable habitat and water quality are maintained. ?? 2002 The Fisheries Society of the British Isles.

  4. Restoration and recovery of damaged eco-epidemiological systems: application to the Salton Sea, California, USA.

    PubMed

    Upadhyay, Ranjit Kumar; Raw, S N; Roy, P; Rai, Vikas

    2013-04-01

    In this paper, we have proposed and analysed a mathematical model to figure out possible ways to rescue a damaged eco-epidemiological system. Our strategy of rescue is based on the realization of the fact that chaotic dynamics often associated with excursions of system dynamics to extinction-sized densities. Chaotic dynamics of the model is depicted by 2D scans, bifurcation analysis, largest Lyapunov exponent and basin boundary calculations. 2D scan results show that μ, the total death rate of infected prey should be brought down in order to avoid chaotic dynamics. We have carried out linear and nonlinear stability analysis and obtained Hopf-bifurcation and persistence criteria of the proposed model system. The other outcome of this study is a suggestion which involves removal of infected fishes at regular interval of time. The estimation of timing and periodicity of the removal exercises would be decided by the nature of infection more than anything else. If this suggestion is carefully worked out and implemented, it would be most effective in restoring the health of the ecosystem which has immense ecological, economic and aesthetic potential. We discuss the implications of this result to Salton Sea, California, USA. The restoration of the Salton Sea provides a perspective for conservation and management strategy. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood

    NASA Astrophysics Data System (ADS)

    Briody, Alyse C.; Cardenas, M. Bayani; Shuai, Pin; Knappett, Peter S. K.; Bennett, Philip C.

    2016-06-01

    Periodic releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River near Austin, Texas, USA. These daily pulses modulate fluid exchange and residence times in the hyporheic zone where biogeochemical reactions are typically pronounced. The effects of a small flood pulse under low-flow conditions on surface-water/groundwater exchange and biogeochemical processes were studied by monitoring and sampling from two dense transects of wells perpendicular to the river. The first transect recorded water levels and the second transect was used for water sample collection at three depths. Samples were collected from 12 wells every 2 h over a 24-h period which had a 16-cm flood pulse. Analyses included nutrients, carbon, major ions, and stable isotopes of water. The relatively small flood pulse did not cause significant mixing in the parafluvial zone. Under these conditions, the river and groundwater were decoupled, showed potentially minimal mixing at the interface, and did not exhibit any discernible denitrification of river-borne nitrate. The chemical patterns observed in the parafluvial zone can be explained by evaporation of groundwater with little mixing with river water. Thus, large pulses may be necessary in order for substantial hyporheic mixing and exchange to occur. The large regulated river under a low-flow and small flood pulse regime functioned mainly as a gaining river with little hydrologic connectivity beyond a narrow hyporheic zone.

  6. 18. "Concrete Bridge Over Salt River, Port Kenyon, Humboldt County, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. "Concrete Bridge Over Salt River, Port Kenyon, Humboldt County, California, A.J. Logan, County Surveyor, H.J. Brunnier, Consulting Engineer, March 7, 1919," showing elevation of center pier, elevation and plan of north and south abutments, sections of abutments, pier, and pier footings - Salt River Bridge, Spanning Salt River at Dillon Road, Ferndale, Humboldt County, CA

  7. Individuals in a Collectivist World: Born in the U.S.A., Teaching in Caracas, Venezuela

    ERIC Educational Resources Information Center

    Warring, Douglas F.; Huber-Warring, Tonya

    2006-01-01

    Venezuela is a country slightly larger than twice the size of California, the third largest U.S.A. state in land area. Caracas, the capitol city, is home to a population of 6 million people nested into a space that is actually smaller in size than the area of Minneapolis-St. Paul, Minnesota, U.S.A., a city/suburb of only 2.8 million people. In…

  8. A mantle plume beneath California? The mid-Miocene Lovejoy Flood Basalt, northern California

    USGS Publications Warehouse

    Garrison, N.J.; Busby, C.J.; Gans, P.B.; Putirka, K.; Wagner, D.L.

    2008-01-01

    The Lovejoy basalt represents the largest eruptive unit identified in California, and its age, volume, and chemistry indicate a genetic affinity with the Columbia River Basalt Group and its associated mantle-plume activity. Recent field mapping, geochemical analyses, and radiometric dating suggest that the Lovejoy basalt erupted during the mid-Miocene from a fissure at Thompson Peak, south of Susanville, California. The Lovejoy flowed through a paleovalley across the northern end of the Sierra Nevada to the Sacramento Valley, a distance of 240 km. Approximately 150 km3 of basalt were erupted over a span of only a few centuries. Our age dates for the Lovejoy basalt cluster are near 15.4 Ma and suggest that it is coeval with the 16.1-15.0 Ma Imnaha and Grande Ronde flows of the Columbia River Basalt Group. Our new mapping and age dating support the interpretation that the Lovejoy basalt erupted in a forearc position relative to the ancestral Cascades arc, in contrast with the Columbia River Basalt Group, which erupted in a backarc position. The arc front shifted trenchward into the Sierran block after 15.4 Ma. However, the Lovejoy basalt appears to be unrelated to volcanism of the predominantly calc-alkaline Cascade arc; instead, the Lovejoy is broadly tholeiitic, with trace-element characteristics similar to the Columbia River Basalt Group. Association of the Lovejoy basalt with mid-Miocene flood basalt volcanism has considerable implications for North American plume dynamics and strengthens the thermal "point source" explanation, as provided by the mantle-plume hypothesis. Alternatives to the plume hypothesis usually call upon lithosphere-scale cracks to control magmatic migrations in the Yellowstone-Columbia River basalt region. However, it is difficult to imagine a lithosphere-scale flaw that crosses Precambrian basement and accreted terranes to reach the Sierra microplate, where the Lovejoy is located. Therefore, we propose that the Lovejoy represents a rapid

  9. The FIRO-2017 Field Campaign: Findings from a Unique Observing Period in the Russian River Watershed in Northern California during Jan - Mar 2017

    NASA Astrophysics Data System (ADS)

    Wilson, A. M.; Ralph, M.; Demirdjian, R.; Kawzenuk, B.; Cannon, F.; Cordeira, J. M.

    2017-12-01

    Forecast Informed Reservoir Operations (FIRO) is a proposed water management strategy that aims to improve water supply, maintain reduction in flood risk, and achieve ecosystem sustainability using data from state of the art watershed monitoring and weather and water forecasting. The first testbed for this strategy is Lake Mendocino, in the Russian River Watershed in northern California. In order to accomplish these goals, it is necessary to understand and better predict Atmospheric Rivers (ARs), which provide 50% of the annual precipitation, and cause most of the heavy rain and flood events in this watershed. To support this effort, a field campaign was held during January-March 2017 in the Russian River Watershed with the science objectives of understanding AR evolution as the AR makes landfall and interacts with terrain, assess reasons for additional variance in the relationship between storm total precipitation and bulk water vapor flux, and to form a unique database for model verification. Coastal and inland field sites equipped with multiple ground-based sensors as well as Vaisala radiosonde systems were deployed to support these objectives. The 2017 water year was among the wettest recorded in California. During the January-March 2017 period, the coastal/inland pair of radiosonde systems captured 13 storms with maximum integrated vapor transport (IVT) values nearing 1200 kg/m/s. This presentation will provide an overview of the water year and the field campaign observations. Results indicate that bulk upslope water vapor flux measured by the ARO, which is the measurement regularly available to forecasters and researchers, correlates extremely well with integrated vapor transport (IVT). The profiles of water vapor flux observed by the coastal and inland sites are very different both in maximum flux magnitude and height of the maximum flux.

  10. Pesticides in mountain yellow-legged frogs (Rana muscosa) from the Sierra Nevada Mountains of California, USA

    USGS Publications Warehouse

    Fellers, G.M.; McConnell, L.L.; Pratt, D.; Datta, S.

    2004-01-01

    In 1997, pesticide concentrations were measured in mountain yellow-legged frogs (Rana muscosa) from two areas in the Sierra Nevada Mountains of California, USA. One area (Sixty Lakes Basin, Kings Canyon National Park) had large, apparently healthy populations of frogs. A second area (Tablelands, Sequoia National Park) once had large populations, but the species had been extirpated from this area by the early 1980s. The Tablelands is exposed directly to prevailing winds from agricultural regions to the west. When an experimental reintroduction of R. muscosa in 1994 to 1995 was deemed unsuccessful in 1997, the last 20 (reintroduced) frogs that could be found were collected from the Tablelands, and pesticide concentrations in both frog tissue and the water were measured at both the Tablelands and at reference sites at Sixty Lakes. In frog tissues, dichlorodiphenyldichloroethylene (DDE) concentration was one to two orders of magnitude higher than the other organochlorines (46 ?? 20 ng/g wet wt at Tablelands and 17 ?? 8 Sixty Lakes). Both ??-chlordane and trans-nonachlor were found in significantly greater concentrations in Tablelands frog tissues compared with Sixty Lakes. Organophosphate insecticides, chlorpyrifos, and diazinon were observed primarily in surface water with higher concentrations at the Tablelands sites. No contaminants were significantly higher in our Sixty Lakes samples.

  11. Recent rates of carbon accumulation in montane fens ofYosemite National Park, California, U.S.A.

    USGS Publications Warehouse

    Drexler, Judith; Fuller, Christopher C.; Orlando, James L.; Moore, Peggy E.

    2016-01-01

    Little is known about recent rates of carbon storage in montane peatlands, particularly in the western United States. Here we report on recent rates of carbon accumulation (past 50 to 100 years) in montane groundwater-fed peatlands (fens) of Yosemite National Park in central California, U.S.A. Peat cores were collected at three sites ranging in elevation from 2070 to 2500 m. Core sections were analyzed for bulk density, % organic carbon, and 210Pb activities for dating purposes. Organic carbon densities ranged from 0.026 to 0.065 g C cm-3. Mean vertical accretion rates estimated using210Pb over the 50-year period from ∼1960 to 2011 and the 100-year period from ∼1910 to 2011 were 0.28 (standard deviation = ±0.09) and 0.18 (±-0.04) cm yr-1, respectively. Mean carbon accumulation rates over the 50- and 100-year periods were 95.4 (±25.4) and 74.7 (±17.2) g C m-2 yr-1, respectively. Such rates are similar to recent rates of carbon accumulation in rich fens in western Canada, but more studies are needed to definitively establish both the similarities and differences in peat formation between boreal and temperate montane fens.

  12. Using NASA's Giovanni System to Simulate Time-Series Stations in the Outflow Region of California's Eel River

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Shen, Suhung; Leptoukh, Gregory G.; Lee, Zhongping

    2012-01-01

    Oceanographic time-series stations provide vital data for the monitoring of oceanic processes, particularly those associated with trends over time and interannual variability. There are likely numerous locations where the establishment of a time-series station would be desirable, but for reasons of funding or logistics, such establishment may not be feasible. An alternative to an operational time-series station is monitoring of sites via remote sensing. In this study, the NASA Giovanni data system is employed to simulate the establishment of two time-series stations near the outflow region of California s Eel River, which carries a high sediment load. Previous time-series analysis of this location (Acker et al. 2009) indicated that remotely-sensed chl a exhibits a statistically significant increasing trend during summer (low flow) months, but no apparent trend during winter (high flow) months. Examination of several newly-available ocean data parameters in Giovanni, including 8-day resolution data, demonstrates the differences in ocean parameter trends at the two locations compared to regionally-averaged time-series. The hypothesis that the increased summer chl a values are related to increasing SST is evaluated, and the signature of the Eel River plume is defined with ocean optical parameters.

  13. Linking Watershed Nitrogen Sources with Nitrogen Dynamics in Rivers of Western Oregon, USA

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Compton, J.; Goodwin, K. E.

    2012-12-01

    We constructed contemporary nitrogen (N) budgets for 25 river basins in the Willamette River Basin (WRB) of western Oregon, USA, to improve the understanding of how recent trends in human-driven N loading have influenced riverine N dynamics in the region. Nearly 20% of WRB stream length is currently in fair or poor condition because of high N concentrations. Additionally, nitrate contamination of drinking water affects at least 8,000 people in the WRB. We hypothesized that 1) the majority of N inputs in the WRB would originate from agricultural activities in lowland portions of watersheds, 2) annual riverine N yield (kg/ha/yr) would correspond to annual per area watershed N inputs, and 3) riverine N yields would be seasonal and highest during winter due to the region's Mediterranean climate. We calculated average annual N inputs for each study basin by summing newly available datasets describing spatially explicit N inputs of synthetic fertilizer, atmospheric deposition, crop biological N2 fixation, biological N2 fixation by red alder (Alnus rubra Bong.), livestock manure, and point sources for the period 1996 - 2007. Annual and seasonal riverine N exports were estimated with the USGS model LOADEST calibrated to N concentration data collected during the study period. We estimated that two-thirds of total N input to the WRB study basins in the 2000s came from synthetic fertilizer application. Nearly all fertilizer application occurred on the lowlands near watershed mouths. We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than to percent of agricultural area in the watershed. Low watershed N yields reflected a high proportion of watershed area in the forested Cascade Mountain Range, which received low N inputs mainly from atmospheric deposition. N yields from study basins were strongly seasonal, with at least 50%, and

  14. Postglacial vegetation and fire history, eastern Klamath Mountains, California, USA

    Treesearch

    Jerry A. Mohr; Cathy Whitlock; Carl N. Skinner

    2000-01-01

    Pollen and high-resolution charcoal data from Bluff Lake and Crater Lake, California, indicate simi lar changes in climate, vegetation and fire history during the last 15 500 years. Pollen data at Bluff Lake suggest that the vegetation betweenc. 15 500 and 13 100 cal. BP consisted of subalpine parkland with scattered Pinus...

  15. Cumberland River and Nashville, TN, USA

    NASA Image and Video Library

    1973-06-22

    SL2-81-198 (22 June 1973) --- Making its way through the rugged Cumberland Plateau, the Cumberland River winds through the city of Nashville in north central Tennessee (36.0N, 87.0W) where the heavily forested upland terrain produces a landscape of rolling hills with elevations up to 1,100 ft. and narrow valleys. Before the advent of modern communications and transportation in this region, widely scattered and isolated communities had little contact with the outside world. Photo credit: NASA

  16. Impacts of pesticides in a Central California estuary.

    PubMed

    Anderson, Brian; Phillips, Bryn; Hunt, John; Siegler, Katie; Voorhees, Jennifer; Smalling, Kelly; Kuivila, Kathy; Hamilton, Mary; Ranasinghe, J Ananda; Tjeerdema, Ron

    2014-03-01

    Recent and past studies have documented the prevalence of pyrethroid and organophosphate pesticides in urban and agricultural watersheds in California. While toxic concentrations of these pesticides have been found in freshwater systems, there has been little research into their impacts in marine receiving waters. Our study investigated pesticide impacts in the Santa Maria River estuary, which provides critical habitat to numerous aquatic, terrestrial, and avian species on the central California coast. Runoff from irrigated agriculture constitutes a significant portion of Santa Maria River flow during most of the year, and a number of studies have documented pesticide occurrence and biological impacts in this watershed. Our study extended into the Santa Maria watershed coastal zone and measured pesticide concentrations throughout the estuary, including the water column and sediments. Biological effects were measured at the organism and community levels. Results of this study suggest the Santa Maria River estuary is impacted by current-use pesticides. The majority of water samples were highly toxic to invertebrates (Ceriodaphnia dubia and Hyalella azteca), and chemistry evidence suggests toxicity was associated with the organophosphate pesticide chlorpyrifos, pyrethroid pesticides, or mixtures of both classes of pesticides. A high percentage of sediment samples were also toxic in this estuary, and sediment toxicity occurred when mixtures of chlorpyrifos and pyrethroid pesticides exceeded established toxicity thresholds. Based on a Relative Benthic Index, Santa Maria estuary stations where benthic macroinvertebrate communities were assessed were degraded. Impacts in the Santa Maria River estuary were likely due to the proximity of this system to Orcutt Creek, the tributary which accounts for most of the flow to the lower Santa Maria River. Water and sediment samples from Orcutt Creek were highly toxic to invertebrates due to mixtures of the same pesticides measured

  17. A water-resources data-network evaluation for Monterey County, California; Phase 3, Northern Salinas River drainage basin

    USGS Publications Warehouse

    Templin, W.E.; Schluter, R.C.

    1990-01-01

    This report evaluates existing data collection networks and possible additional data collection to monitor quantity and quality of precipitation, surface water, and groundwater in the northern Salinas River drainage basin, California. Of the 34 precipitation stations identified, 20 were active and are concentrated in the northwestern part of the study area. No precipitation quality networks were identified, but possible data collection efforts include monitoring for acid rain and pesticides. Six of ten stream-gaging stations are active. Two surface water quality sites are sampled for suspended sediment, specific conductance, and chloride; one U.S. Geological Survey NASOAN site and one site operated by California Department of Water Resources make up the four active sampling locations; reactivation of 45 inactive surface water quality sites might help to achieve objectives described in the report. Three local networks measure water levels in 318 wells monthly, during peak irrigation, and at the end of the irrigation season. Water quality conditions are monitored in 379 wells; samples are collected in summer to monitor saltwater intrusion near Castroville and are also collected annually throughout the study area for analysis of chloride, specific conductance, and nitrate. An ideal baseline network would be an evenly spaced grid of index wells with a density of one per section. When baseline conditions are established, representative wells within the network could be monitored periodically according to specific data needs. (USGS)

  18. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA

    USGS Publications Warehouse

    Bertolo, P.; Wieczorek, G.F.

    2005-01-01

    This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004). To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content. We applied the one dimensional DAN (Dynamic ANalysis) model (Hungr, 1995) and the two-dimensional FLO2D model (O'Brien et al., 1993) to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris- flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities. After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening. European Geosciences Union ?? 2005 Author(s). This work is licensed under a Creative Commons License.

  19. Atmospheric River Development and Effects on Southern California

    NASA Astrophysics Data System (ADS)

    Harris, S. M.; Carvalho, L. V.

    2014-12-01

    Throughout most of southern California (SCA) annual precipitation totals occur from relatively few storms per season. Any changes to storm frequency or intensity may dramatically impact the region, as its landscapes are prone to various rainfall-induced hazards including landslides and floods. These hazards become more frequent following drought or fire events, conditions also reliant on precipitation and common in SCA. Rainfall forecasts are especially difficult to determine as regional precipitation is affected by numerous phenomena. On synoptic timescales, atmospheric rivers (ARs) are one such phenomenon known to impact SCA rainfall. ARs are channels of high water vapor content found within the lower atmosphere that transport moisture towards midlatitudes. In areas with varying topography, ARs often produce high-intensity precipitation due to orographic forcing. Although much insight has been gained in understanding AR climatology affecting North America's western coast, the spatiotemporal characteristics and atmospheric forcings driving ARs to SCA need to be further addressed. The goal of this work is to understand the characteristics of ARs that impact SCA and to distinguish them from ARs that impact northern latitudes. We investigate AR characteristics as well as atmospheric features prior to plume initiation for ARs impacting different landfall regions along North America's western coast between 1998-2008. Dates of AR events are organized according to landfall region using total precipitable water (TPW) fields from the National Oceanic and Atmospheric Administration's Climate Forecast System Reanalysis (CFSR). Additional CFSR fields are used to create anomaly composites of moist static energy, geopotential height, as well as upper-level zonal and low-level meridional winds for each landfall region on the day of and prior to AR occurrence. ARs that impact SCA display different TPW plume characteristics as well as wave train patterns throughout the AR

  20. Geophysical Characterization of the American River Levees, Sacramento, California, using Electromagnetics, Capacitively Coupled Resistivity, and DC Resistivity

    USGS Publications Warehouse

    Asch, Theodore H.; Deszcz-Pan, Maria; Burton, Bethany L.; Ball, Lyndsay B.

    2008-01-01

    A geophysical characterization of a portion of American River levees in Sacramento, California was conducted in May, 2007. Targets of interest included the distribution and thickness of sand lenses that underlie the levees and the depth to a clay unit that underlies the sand. The concern is that the erosion of these sand lenses can lead to levee failure in highly populated areas of Sacramento. DC resistivity (Geometric?s OhmMapper and Advanced Geosciences, Inc.?s SuperSting R8 systems) and electromagnetic surveys (Geophex?s GEM-2) were conducted over a 6 mile length of the levee on roads and bicycle and horse trails. 2-D inversions were conducted on all the geophysical data. The OhmMapper and SuperSting surveys produced consistent inversion results that delineated potential sand and clay units. GEM-2 apparent resistivity data were consistent with the DC inversion results. However, the GEM-2 data could not be inverted due to low electromagnetic response levels, high ambient electromagnetic noise, and large system drifts. While this would not be as large a problem in conductive terrains, it is a problem for a small induction number electromagnetic profiling system such as the GEM-2 in a resistive terrain (the sand lenses). An integrated interpretation of the geophysical data acquired in this investigation is presented in this report that includes delineation of those areas consisting of predominantly sand and those areas consisting predominantly of clay. In general, along most of this part of the American River levee system, sand lenses are located closest to the river and clay deposits are located further away from the river. The interpreted thicknesses of the detected sand deposits are variable and range from 10 ft up to 60 ft. Thus, despite issues with the GEM-2 inversion, this geophysical investigation successfully delineated sand lenses and clay deposits along the American River levee system and the approximate depths to underlying clay zones. The results of

  1. Assessment of sediment toxicity and chemical concentrations in the San Diego Bay region, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairey, R.; Roberts, C.; Jacobi, M.

    1998-08-01

    Sediment quality within San Diego Bay, Mission Bay, and the Tijuana River Estuary of California was investigated as part of an ongoing statewide monitoring effort (Bay Protection and Toxic Cleanup Program). Study objectives were to determine the incidence, spatial patterns, and spatial extent of toxicity in sediments and porewater; the concentration and distribution of potentially toxic anthropogenic chemicals; and the relationships between toxicity and chemical concentrations. Rhepoxynius abronius survival bioassays, grain size, and total organic carbon analyses were performed on 350 sediment samples. Strongylocentrotus purpuratus development bioassays were performed on 164 pore-water samples. Toxicity was demonstrated throughout the San Diegomore » Bay region, with increased incidence and concordance occurring in areas of industrial and shipping activity. Trace metal and trace synthetic organic analyses were performed on 229 samples. Copper, zinc, mercury, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlordane were found to exceed ERM (effects range median) or PEL (probable effects level) sediment quality guidelines and were considered the six major chemicals or chemical groups of concern. Statistical analysis of the relationships between amphipod toxicity, bulk phase sediment chemistry, and physical parameters demonstrated few significant linear relationships. Significant differences in chemical levels were found between toxic and nontoxic responses using multivariate and univariate statistics. Potential sources of anthropogenic chemicals were discussed.« less

  2. Plasma insulin-like growth factor-I concentrations in yearling chinook salmon (Oncorhynchus tshawytscha) migrating from the Snake River Basin, USA

    USGS Publications Warehouse

    Congleton, J.L.; Biga, P.R.; Peterson, B.C.

    2003-01-01

    During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week spring migration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility, yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses of migrating fish either did not increase during the migration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations in migrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability of migrating smolts to maintain relatively elevated IGF-I levels despite restricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance. ?? 2004 Kluwer Academic Publishers.

  3. Effect of river sediment on phosphorus chemistry of similarly aged natural and created wetlands in the Atchafalaya Delta, Louisiana, USA

    USGS Publications Warehouse

    Poach, M.E.; Faulkner, S.P.

    2007-01-01

    The goal of wetland creation is to produce an artificial wetland that functions as a natural wetland. Studies comparing created wetlands to similarly aged natural wetlands provide important information about creation techniques and their improvement so as to attain that goal. We hypothesized that differences in sediment phosphorus accretion, deposition, and chemistry between created and natural wetlands in the Atchafalaya Delta, Louisiana, USA were a function of creation technique and natural river processes. Sediment deposition was determined with feldspar marker horizons located in created and natural wetlands belonging to three age classes (<3, 5-10, and 15-20 yr old). Phosphorus fractions were measured in these deposited sediments and in suspended and bedload sediment from the Atchafalaya River. Bedload sediment had significantly lower iron- and aluminum-bound, reductant-soluble, and total phosphorus than suspended sediment due to its high sand percentage. This result indicates that wetlands artificially created in the Atchafalaya Delta using bedload sediment will initially differ from natural wetlands of the same age. Even so, similarities between the mudflat stratum of the <1- to 3-yr-old created wetland and the mudflat stratum of the 15- to 20-yr-old natural wetland support the contention that created wetlands in the Atchafalaya Delta can develop natural characteristics through the deposition of river suspended sediment. Differences between three created wetland strata, the 15- to 20-yr-old willow stratum and the < 1- to 3-yr-old willow and mixed marsh strata, and their natural counterparts were linked to design elements of the created wetlands that prevented the direct deposition of the river's suspended sediment. ?? ASA, CSSA, SSSA.

  4. How Well the Early 2017 California Atmospheric River Precipitation Events Were Captured by Satellite Products and Ground-based Radars?

    NASA Astrophysics Data System (ADS)

    Wen, Y. B.; Behrangi, A.; Chen, H.; Lambrigtsen, B.

    2017-12-01

    In January and February of 2017, California experienced multiple heavy storms that caused serious destruction of facilities and economic loss, although it also helped to reduce water storage deficit due to prolonged drought in previous years. These extreme precipitation events were mainly associated with Atmospheric Rivers (ARs) and brought about 174 km3 of water to California according to ground observations. This paper evaluates the performance of six commonly used satellite-based precipitation products (IMERG, 3B42RT, PERSIANN, CCS, CMORPH, and GSMaP), as well as ground-based radar products (Radar-only and Radar-lgc) in capturing the ARs precipitation rate and distribution. It is found that precipitation maps from all products present heavy precipitation in January and February, with more consistent observations over ocean than land. Though large uncertainties exist in quantitative precipitation estimation (QPE) over land, the ensemble mean of different remote sensing precipitation products over California is consistent with gauge measurements. Among the six satellite-based products, IMERG correlates the best with gauge observations both in the detection and quantification of precipitation, but it is not the best product in terms of root mean square error (RMSE) or bias. Compared to satellite products, ground weather radar shows better precipitation detectability and estimation skill. However, neither radar nor satellite QPE products have good performances in quantifying the peak precipitation intensity during the extreme events, suggesting that further advancement in quantification of extremely intense precipitation associated with AR in the Western United States is needed.

  5. Remote sensing of tamarisk beetle (Diorhabda carinulata) impacts along 412 km of the Colorado River in the Grand Canyon, Arizona, USA

    USGS Publications Warehouse

    Bedford, Ashton; Sankey, Temuulen T.; Sankey, Joel B.; Durning, Laura E.C.; Ralston, Barbara

    2018-01-01

    Tamarisk (Tamarix spp.) is an invasive plant species that is rapidly expanding along arid and semi-arid rivers in the western United States. A biocontrol agent, tamarisk beetle (Diorhabda carinulata), was released in 2001 in California, Colorado, Utah, and Texas. In 2009, the tamarisk beetle was found further south than anticipated in the Colorado River ecosystem within the Grand Canyon National Park and Glen Canyon National Recreation Area. Our objectives were to classify tamarisk stands along 412 km of the Colorado River from the Glen Canyon Dam through the Grand Canyon National Park using 2009 aerial, high spatial resolution multispectral imagery, and then quantify tamarisk beetle impacts by comparing the pre-beetle images from 2009 with 2013 post-beetle images. We classified tamarisk presence in 2009 using the Mahalanobis Distance method with a total of 2500 training samples, and assessed the classification accuracy with an independent set of 7858 samples across 49 image quads. A total of 214 ha of tamarisk were detected in 2009 along the Colorado River, where each image quad, on average, included an 8.4 km segment of the river. Tamarisk detection accuracies varied across the 49 image quads, but the combined overall accuracy across the entire study region was 74%. Using the Normalized Difference Vegetation Index (NDVI) from 2009 and 2013 with a region-specific ratio of >1.5 decline between the two image dates (2009NDVI/2013NDVI), we detected tamarisk defoliation due to beetle herbivory. The total beetle-impacted tamarisk area was 32 ha across the study region, where tamarisk defoliation ranged 1–86% at the local levels. Our tamarisk classification can aid long-term efforts to monitor the spread and impact of the beetle along the river and the eventual mortality of tamarisk due to beetle impacts. Identifying areas of tamarisk defoliation is a useful ecological indicator for managers to plan restoration and tamarisk removal efforts.

  6. Two new species of Chloroperlidae (Plecoptera) from California

    Treesearch

    R. W. Baumann; R. L. Bottorff

    1997-01-01

    Abstract - Suwallia sierra and Sweltsa pisteri are described as new species in the family Chloroperlidae from California, USA. Illustrations of the male terminalia of both species and the female and egg of S. sierra are presented. In addition, detailed figures of the epiproct of 2 similar species, Sweltsa townesi and Sweltsa resima, are included. Diagnoses are...

  7. Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, Central-Eastside San Joaquin Valley, California, USA

    USGS Publications Warehouse

    Landon, M.K.; Green, C.T.; Belitz, K.; Singleton, M.J.; Esser, B.K.

    2011-01-01

    In a 2,700-km2 area in the eastern San Joaquin Valley, California (USA), data from multiple sources were used to determine interrelations among hydrogeologic factors, reduction-oxidation (redox) conditions, and temporal and spatial distributions of nitrate (NO3), a widely detected groundwater contaminant. Groundwater is predominantly modern, or mixtures of modern water, with detectable NO3 and oxic redox conditions, but some zones have anoxic or mixed redox conditions. Anoxic conditions were associated with long residence times that occurred near the valley trough and in areas of historical groundwater discharge with shallow depth to water. Anoxic conditions also were associated with interactions of shallow, modern groundwater with soils. NO3 concentrations were significantly lower in anoxic than oxic or mixed redox groundwater, primarily because residence times of anoxic waters exceed the duration of increased pumping and fertilizer use associated with modern agriculture. Effects of redox reactions on NO3 concentrations were relatively minor. Dissolved N2 gas data indicated that denitrification has eliminated gt;5 mg/L NO3-N in about 10% of 39 wells. Increasing NO3 concentrations over time were slightly less prevalent in anoxic than oxic or mixed redox groundwater. Spatial and temporal trends of NO3 are primarily controlled by water and NO3 fluxes of modern land use. ?? 2011 Springer-Verlag (outside the USA).

  8. 19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, IN CENTRAL PORTION OF SAN LUIS OBISPO, CALIFORNIA. Leeds Hill Barnard & Jewett - Consulting Engineers, February 1942. - Salinas River Project, Cuesta Tunnel, Southeast of U.S. 101, San Luis Obispo, San Luis Obispo County, CA

  9. Littoral and Shoreline Wood in Mid-continent Great Rivers (USA)

    EPA Science Inventory

    Less is known about the ecology of wood in great rivers than in smaller lotic systems. We used a probability survey to estimate the abundance of littoral and shoreline wood along the mid-continent great rivers of the United States: the Missouri, Upper Mississippi, and the Ohio Ri...

  10. Quantifying habitat benefits of channel reconfigurations on a highly regulated river system, Lower Missouri River, USA

    USGS Publications Warehouse

    Erwin, Susannah O.; Jacobson, Robert B.; Elliott, Caroline M.

    2017-01-01

    We present a quantitative analysis of habitat availability in a highly regulated lowland river, comparing a restored reach with two reference reaches: an un-restored, channelized reach, and a least-altered reach. We evaluate the effects of channel modifications in terms of distributions of depth and velocity as well as distributions and availability of habitats thought to be supportive of an endangered fish, the pallid sturgeon (Scaphirhynchus albus). It has been hypothesized that hydraulic conditions that support food production and foraging may limit growth and survival of juvenile pallid sturgeon. To evaluate conditions that support these habitats, we constructed two-dimensional hydrodynamic models for the three study reaches, two located in the Lower Missouri River (channelized and restored reaches) and one in the Yellowstone River (least-altered reach). Comparability among the reaches was improved by scaling by bankfull discharge and bankfull channel area. The analysis shows that construction of side-channel chutes and increased floodplain connectivity increase the availability of foraging habitat, resulting in a system that is more similar to the reference reach on the Yellowstone River. The availability of food-producing habitat is low in all reaches at flows less than bankfull, but the two reaches in the Lower Missouri River – channelized and restored – display a threshold-like response as flows overtop channel banks, reflecting the persistent effects of channelization on hydraulics in the main channel. These high lateral gradients result in punctuated ecological events corresponding to flows in excess of bankfull discharge. This threshold effect in the restored reach remains distinct from that of the least-altered reference reach, where hydraulic changes are less abrupt and overbank flows more gradually inundate the adjacent floodplain. The habitat curves observed in the reference reach on the Yellowstone River may not be attainable within the

  11. Feedbacks Among Rifting, Erosion, Lithospheric Rupture, and Crustal Recycling: From the Colorado River to the Salton Trough and Gulf of California (Invited)

    NASA Astrophysics Data System (ADS)

    Dorsey, R. J.; Lazear, G. D.

    2013-12-01

    Many studies examine the influence of climate and erosion on growth of convergent orogens, but feedbacks between tectonics and erosion in extensional and transtensional settings are less well understood. The Colorado River has delivered a huge volume of sediment to rapidly subsiding transtensional basins along the Pacific - North America plate boundary over the past ~5.5 million years. Oblique rifting, rupture, and rapid subsidence drive a newly recognized style of crustal recycling in which sediment is funneled out of the continental interior by a large river and delivered to subsiding basins where it is rapidly converted to a new generation of crust at a rifted continental margin. Transfer of crust can be tracked because the eroding source (Colorado Plateau) and depositional sinks (Salton Trough and northern Gulf of California) are intact and well preserved. Using distribution of late Miocene basalt flows and thermochronologic data, we calculate that 3.4 × 1.2 x 105 km3 of rock has been eroded from the Colorado Plateau since 10 Ma. Most of this erosion occurred starting 5.5-6.0 Ma when the river drainage became integrated and incision rates increased dramatically. Two estimates for the volume of Colorado River sediment stored in basinal sinks since ~5.5 Ma are: (1) 2.8 × 0.6 x 105 km3 assuming that crust between 5 and 10-12 km depth in the plate-boundary basins is young metasedimentary rock mixed with intrusions; or (2) 1.55 × 0.35 x 105 km3 assuming that crust below 4-5 km is thinned pre-Cenozoic crystalline rock. Significant overlap of estimate 1 with the volume eroded from the Plateau provides new support for a model of lithospheric rupture and crustal recycling in the Salton Trough and northern Gulf of California. Assuming an average density of 2.3-2.5 g/cc and the preferred volume estimate above, the total mass of crust transferred is roughly 5.1-11.5 x 1014 metric tons, representing an average annual flux of 156 × 60 Mt/yr since 5.3 Ma (when the

  12. Long-term changes in sediment barium inventories associated with drilling-related discharges in the Santa Maria Basin, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.; Evans, J.; Hom, W.

    1998-09-01

    Nine-year (1986--1995) records of barium (Ba) concentrations in surficial, subsurface, and suspended sediments near offshore oil and gas platforms in the Santa Maria Basin, California, USA, were analyzed to evaluate temporal trends related to drilling activities. These trends provide important information on the long-term effects of drilling discharges on geochemical conditions. Drilling during the 1986 through 1989 (phase II) monitoring period resulted in significant changes in Ba concentrations in suspended particles and surficial sediments, whereas the relatively shorter 1993 through 1994 (phase III) drilling operations resulted in only minor increases in Ba concentrations in suspended sediments. Residual excess Ba wasmore » present in some sediments within 500 m of the platforms at concentrations up to an order of magnitude above background. These elevated levels probably were associated with cuttings particles deposited near the base of the platforms. Calculated excess Ba in sediments within 500 m of the platforms represented 6 to 11% of the total Ba discharged during the two drilling periods.« less

  13. Monitoring suspended sediment and associated trace element and nutrient fluxes in large river basins in the USA

    USGS Publications Warehouse

    Horowitz, A.J.

    2004-01-01

    In 1996, the US Geological Survey converted its occurrence and distribution-based National Stream Quality Accounting Network (NASQAN) to a national, flux-based water-quality monitoring programme. The main objective of the revised programme is to characterize large USA river basins by measuring the fluxes of selected constituents at critical nodes in various basins. Each NASQAN site was instrumented to determine daily discharge, but water and suspended sediment samples are collected no more than 12-15 times per year. Due to the limited sampling programme, annual suspended sediment fluxes were determined from site-specific sediment rating (transport) curves. As no significant relationship could be found between either discharge or suspended sediment concentration (SSC) and suspended sediment chemistry, trace element and nutrient fluxes are estimated using site-specific mean or median chemical levels determined from a number of samples collected over a period of years, and under a variety of flow conditions.

  14. Hummingbird conservation: discovering diversity patterns in southwest U.S.A.

    Treesearch

    Susan M. Wethington; George C. West; Barbara A. Carlson

    2005-01-01

    Using data obtained in 2002 and 2003 from sites in the Hummingbird Monitoring Network, we investigated the effect of geographic factors—latitude, longitude, and elevation—and year on hummingbird diversity patterns in Southwestern U.S.A. In California, none of these factors affected hummingbird richness but elevation significantly affected abundance. In southeastern...

  15. Proceedings: CE (Corps of Engineers) Workshop on Design and Operation of Selective Withdrawal Intake Structures Held in San Francisco, California on 24-28 June 1985.

    DTIC Science & Technology

    1986-05-01

    design of the outlet works for Warm Springs Dam on Dry Creek in Sonoma County , California, are discussed. Water quality design considerations include both...on Dry Creek, "-’- a right-bank tributary of the Russian River, approximately 14 river miles upstream of their confluence in Sonoma County , California...Dry Creek, Sonoma County , California, are discussed. Water quality design considerations include both temperature and turbidity of discharged water

  16. Differences in Ultrasonic Vocalizations between Wild and Laboratory California Mice (Peromyscus californicus)

    PubMed Central

    Kalcounis-Rueppell, Matina C.; Petric, Radmila; Briggs, Jessica R.; Carney, Catherine; Marshall, Matthew M.; Willse, John T.; Rueppell, Olav; Ribble, David O.; Crossland, Janet P.

    2010-01-01

    Background Ultrasonic vocalizations (USVs) emitted by muroid rodents, including laboratory mice and rats, are used as phenotypic markers in behavioral assays and biomedical research. Interpretation of these USVs depends on understanding the significance of USV production by rodents in the wild. However, there has never been a study of muroid rodent ultrasound function in the wild and comparisons of USVs produced by wild and laboratory rodents are lacking to date. Here, we report the first comparison of wild and captive rodent USVs recorded from the same species, Peromyscus californicus. Methodology and Principal Findings We used standard ultrasound recording techniques to measure USVs from California mice in the laboratory (Peromyscus Genetic Stock Center, SC, USA) and the wild (Hastings Natural History Reserve, CA, USA). To determine which California mouse in the wild was vocalizing, we used a remote sensing method that used a 12-microphone acoustic localization array coupled with automated radio telemetry of all resident Peromyscus californicus in the area of the acoustic localization array. California mice in the laboratory and the wild produced the same types of USV motifs. However, wild California mice produced USVs that were 2–8 kHz higher in median frequency and significantly more variable in frequency than laboratory California mice. Significance The similarity in overall form of USVs from wild and laboratory California mice demonstrates that production of USVs by captive Peromyscus is not an artifact of captivity. Our study validates the widespread use of USVs in laboratory rodents as behavioral indicators but highlights that particular characteristics of laboratory USVs may not reflect natural conditions. PMID:20368980

  17. 76 FR 56427 - California Department of Water Resources; Notice of Application Accepted for Filing, Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... Department of Water Resources; Notice of Application Accepted for Filing, Soliciting Comments, Motions To....: 2100-175. c. Date Filed: August 17, 2011. d. Applicant: California Department of Water Resources (CDWR... Request: The California Department of Water Resources (CDWR), licensee for the Feather River Hydroelectric...

  18. Graphical method for estimating occurrence and duration of a critical low flow in the Sacramento River at Freeport, California

    USGS Publications Warehouse

    Harmon, J.G.

    1983-01-01

    Sacramento County expects to begin operation of the Sacramento Regional Wastewater Treatment Plant in 1982. The California State Water Resources Control Board has ruled that the plant will not be allowed to release effluent into the Sacramento River when flow in the river is 4,000 cubic feet per second or less. Depending on tide condition, flows less than 4,000 cubic feet per second may occur either once or twice during each 24-hour 50-minute tide cycle when the daily mean flow is less than about 12,000 cubic feet per second. Daily means flows less than 12,000 cubic feet per second occur about 28% of the time. Riverflow at the plant outfall is monitored by an acoustic streamflow-measuring system. Regulation of effluent released from the plant will normally be based on real-time flow data computed by the acoustic system. A graphical method for determining the occurrence and duration of flows of 4,000 cubic feet per second and less was developed as a backup system to be used if a temporary failure in the acoustic system occurs. (USGS)

  19. Atmospheric River Observations with the HAMSR Aircraft Microwave Sounder

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Brown, S. T.; Schreier, M. M.; Dang, H. V. T.; Behrangi, A.

    2015-12-01

    The High Altitude MMIC Sounding Radiometer (HAMSR) was developed at the Jet Propulsion Laboratory in 2001 to serve as an aircraft based hurricane observatory. It initially flew on the high altitude ER-2 and later on the DC-8. More recently it was modified to fly on the Global Hawk UAV. It uses the most advanced technology and is among the most sensitive instruments of its kind. In addition to a number of NASA hurricane field campaigns - mostly in the North Atlantic, HAMSR has participated in two atmospheric river campaigns off the California coast, one in 2011 (WISPAR) and one in 2015 (CalWater2). We will discuss observations from the 2015 campaign, with particular focus on a flight over an atmsospheric river making landfall in central California in early February, as well as compare with highlights from the 2011 flights. Copyright 2015 California Institute of Technology. Government sponsorship acknowledged.

  20. Mapping the biological condition of USA rivers and streams

    EPA Science Inventory

    We predicted the probable (pr) biological condition (BC) of ~5.4 million km of stream within the conterminous USA (CONUS). National maps of prBC could provide an important tool for prioritizing monitoring and restoration of streams. The USEPA uses a spatially balanced survey desi...

  1. Update of the Accounting Surface Along the Lower Colorado River

    USGS Publications Warehouse

    Wiele, Stephen M.; Leake, Stanley A.; Owen-Joyce, Sandra J.; McGuire, Emmet H.

    2008-01-01

    The accounting-surface method was developed in the 1990s by the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, to identify wells outside the flood plain of the lower Colorado River that yield water that will be replaced by water from the river. This method was needed to identify which wells require an entitlement for diversion of water from the Colorado River and need to be included in accounting for consumptive use of Colorado River water as outlined in the Consolidated Decree of the United States Supreme Court in Arizona v. California. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The study area includes the valley adjacent to the lower Colorado River and parts of some adjacent valleys in Arizona, California, Nevada, and Utah and extends from the east end of Lake Mead south to the southerly international boundary with Mexico. Contours for the original accounting surface were hand drawn based on the shape of the aquifer, water-surface elevations in the Colorado River and drainage ditches, and hydrologic judgment. This report documents an update of the original accounting surface based on updated water-surface elevations in the Colorado River and drainage ditches and the use of simple, physically based ground-water flow models to calculate the accounting surface in four areas adjacent to the free-flowing river.

  2. Algal Biomass as an Indicator for Biochemical Oxygen Demand in the San Joaquin River, California.

    NASA Astrophysics Data System (ADS)

    Volkmar, E. C.; Dalhgren, R. A.

    2005-12-01

    Episodes of hypoxia (DO < 2 mg/L) occur in the lower San Joaquin River (SJR), California, and are typically most acute in the late summer and fall. The oxygen deficit can stress and kill aquatic organisms, and often inhibits the upstream migration of fall-run Chinook salmon. Hypoxia is most pronounced downstream from the Stockton Deep Water Ship Channel, which has been dredged from a depth of 2-3 m to about 11 m to allow ocean-going ships to reach the Port of Stockton. To protect aquatic organisms and facilitate the upstream migration of fall-run Chinook salmon, the minimum water quality standard for DO is 6 mg/L during September through November, and 5 mg/L for the remainder of the year. A five year study examined components contributing to biochemical oxygen demand (BOD): ammonia, algal biomass, non-algal particulate organic matter, and dissolved organic carbon. BOD shows a significant increase in loading rates as the SJR flows downstream, which parallels the load of algal biomass due to instream growth. BOD loading rates from tributaries accounts for 28% in a wet year and 39% in a dry year. Regression analysis revealed that chlorophyll-a + pheophyton-a was the only significant (p<0.05) predictor for BOD (r2 = 0.71). Less than 20% of the BOD was found in the dissolved fraction (<0.45 μm). The average BOD decomposition rate of the SJR and tributaries is 0.0841 d-1. We conclude that algal biomass is the primary contributor to BOD loads in the San Joaquin River.

  3. Evapotranspiration rates and crop coefficients for a restored marsh in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Anderson, Frank E.; Snyder, Richard L.

    2008-01-01

    The surface renewal method was used to estimate evapotranspiration (ET) for a restored marsh on Twitchell Island in the Sacramento–San Joaquin Delta, California, USA. ET estimates for the marsh, together with reference ET measurements from a nearby climate station, were used to determine crop coefficients over a 3‐year period during the growing season. The mean ET rate for the study period was 6 mm day−1, which is high compared with other marshes with similar vegetation. High ET rates at the marsh may be due to the windy, semi‐arid Mediterranean climate of the region, and the permanently flooded nature of the marsh, which results in very low surface resistance of the vegetation. Crop coefficient (Kc) values for the marsh ranged from 0·73 to 1·18. The mean Kc value over the entire study period was 0·95. The daily Kc values for any given month varied from year to year, and the standard deviation of daily Kc values varied between months. Although several climate variables were undoubtedly responsible for this variation, our analysis revealed that wind direction and the temperature of standing water in the wetland were of particular importance in determining ET rates and Kc values. 

  4. Testing alternative conceptual models of seawater intrusion in a coastal aquifer using computer simulation, southern California, USA

    USGS Publications Warehouse

    Nishikawa, Tracy

    1997-01-01

    Two alternative conceptual models of the physical processes controlling seawater intrusion in a coastal basin in California, USA, were tested to identify a likely principal pathway for seawater intrusion. The conceptual models were tested by using a two-dimensional, finite-element groundwater flow and transport model. This pathway was identified by the conceptual model that best replicated the historical data. The numerical model was applied in cross section to a submarine canyon that is a main avenue for seawater to enter the aquifer system underlying the study area. Both models are characterized by a heterogeneous, layered, water-bearing aquifer. However, the first model is characterized by flat-lying aquifer layers and by a high value of hydraulic conductivity in the basal aquifer layer, which is thought to be a principal conduit for seawater intrusion. The second model is characterized by offshore folding, which was modeled as a very nearshore outcrop, thereby providing a shorter path for seawater to intrude. General conclusions are that: 1) the aquifer system is best modeled as a flat, heterogeneous, layered system; 2) relatively thin basal layers with relatively high values of hydraulic conductivity are the principal pathways for seawater intrusion; and 3) continuous clay layers of low hydraulic conductivity play an important role in controlling the movement of seawater.

  5. Use of soil fumigants and air quality issues in California, USA

    USDA-ARS?s Scientific Manuscript database

    Many high value cash crops use soil fumigants for profitable production.The primary fumigants used in California are 1,3-dichloropropene (Telone®), chloropicrin, metam salts (sodium or potassium), and methyl bromide. Most of these toxic chemicals and their formulations are volatile compounds (VOCs),...

  6. Synoptic Sampling to Determine Distributed Groundwater-Surface Water Nitrate Loading and Removal Potential Along a Lowland River

    NASA Astrophysics Data System (ADS)

    Pai, Henry; Villamizar, Sandra R.; Harmon, Thomas C.

    2017-11-01

    Delineating pollutant reactive transport pathways that connect local land use patterns to surface water is an important goal. This work illustrates high-resolution river mapping of salinity or specific conductance (SC) and nitrate (NO3-) as a potential part of achieving this goal. We observed longitudinal river SC and nitrate distributions using high-resolution synoptic in situ sensing along the lower Merced River (38 river km) in Central California (USA) from 2010 to 2012. We calibrated a distributed groundwater-surface water (GW-SW) discharge model for a conservative solute using 13 synoptic SC sampling events at flows ranging from 1.3 to 31.6 m3 s-1. Nitrogen loads ranged from 0.3 to 1.6 kg N d-1 and were greater following an extended high flow period during a wet winter. Applying the distributed GW-SW discharge estimates to a simplistic reactive nitrate transport model, the model reproduced observed river nitrate distribution well (RRMSE = 5-21%), with dimensionless watershed-averaged nitrate removal (kt) ranging from 0 to 0.43. Estimates were uncertain due to GW nitrate data variability, but the resulting range was consistent with prior removal estimates. At the segment scale, estimated GW-SW nitrate loading ranged from 0 to 17 g NO3- s-1 km-1. Local loading peaked near the middle of the study reach, a location that coincides with a shallow clay lens and with confined animal feed operations in close proximity to the river. Overall, the results demonstrate the potential for high-resolution synoptic monitoring to support GW-SW modeling efforts aimed at understanding and managing nonpoint source pollution.

  7. The increasing wildfire and post-fire debris-flow threat in western USA, and implications for consequences of climate change

    USGS Publications Warehouse

    Cannon, Susan H.; DeGraff, Jerry

    2009-01-01

    In southern California and the intermountain west of the USA, debris flows generated from recently-burned basins pose significant hazards. Increases in the frequency and size of wildfires throughout the western USA can be attributed to increases in the number of fire ignitions, fire suppression practices, and climatic influences. Increased urbanization throughout the western USA, combined with the increased wildfire magnitude and frequency, carries with it the increased threat of subsequent debris-flow occurrence. Differences between rainfall thresholds and empirical debris-flow susceptibility models for southern California and the intermountain west indicate a strong influence of climatic and geologic settings on post-fire debris-flow potential. The linkages between wildfires, debris-flow occurrence, and global warming suggests that the experiences in the western United States are highly likely to be duplicated in many other parts of the world, and necessitate hazard assessment tools that are specific to local climates and physiographies.

  8. River-quality assessment of the Truckee and Carson River system, California and Nevada; hydrologic characteristics

    USGS Publications Warehouse

    Brown, W. M.; Nowlin, J.O.; Smith, L.H.; Flint, M.R.

    1986-01-01

    A study of the Truckee and Carson Rivers was begun in October 1978 to assess the cause and effect relations between human and natural actions, and the quality of water at different times and places along the rivers. This report deals with the compilation of basic hydrologic data and the presentation of some of the new data collected during the study. Topographic, flow, and chemical data, data from recent time-of-travel studies, and new data on river mileages and drainage areas that were determined using new , high-resolution maps, are included. The report is a guide to locating maps, aerial photographs, computer files, and reports that relate to the rivers and their basins. It describes methods for compiling and expressing hydrologic information for ease of reading and understanding by the many users of water-related data. Text, tabular data, and colored plates with detailed maps and hydrographs are extensively cross referenced. (USGS)

  9. On the nature and dynamics of the seismogenetic systems of North California, USA: An analysis based on Non-Extensive Statistical Physics

    NASA Astrophysics Data System (ADS)

    Efstathiou, Angeliki; Tzanis, Andreas; Vallianatos, Filippos

    2017-09-01

    We examine the nature of the seismogenetic system in North California, USA, by searching for evidence of complexity and non-extensivity in the earthquake record. We attempt to determine whether earthquakes are generated by a self-excited Poisson process, in which case they obey Boltzmann-Gibbs thermodynamics, or by a Critical process, in which long-range interactions in non-equilibrium states are expected (correlation) and the thermodynamics deviate from the Boltzmann-Gibbs formalism. Emphasis is given to background seismicity since it is generally agreed that aftershock sequences comprise correlated sets. We use the complete and homogeneous earthquake catalogue published by the North California Earthquake Data Centre, in which aftershocks are either included, or have been removed by a stochastic declustering procedure. We examine multivariate cumulative frequency distributions of earthquake magnitudes, interevent time and interevent distance in the context of Non-Extensive Statistical Physics, which is a generalization of extensive Boltzmann-Gibbs thermodynamics to non-equilibrating (non-extensive) systems. Our results indicate that the seismogenetic systems of North California are generally sub-extensive complex and non-Poissonian. The background seismicity exhibits long-range interaction as evidenced by the overall increase of correlation observed by declustering the earthquake catalogues, as well as by the high correlation observed for earthquakes separated by long interevent distances. It is also important to emphasize that two subsystems with rather different properties appear to exist. The correlation observed along the Sierra Nevada Range - Walker Lane is quasi-stationary and indicates a Self-Organized Critical fault system. Conversely, the north segment of the San Andreas Fault exhibits changes in the level of correlation with reference to the large Loma Prieta event of 1989 and thus has attributes of Critical Point behaviour albeit without acceleration of

  10. Opportunity in our Ignorance: Urban Biodiversity Study Reveals 30 New Species and One New Nearctic Record for Megaselia (Diptera: Phoridae) in Los Angeles (California, USA).

    PubMed

    Hartop, Emily A; Brown, Brian V; Disney, R Henry L

    2015-04-02

    An urban biodiversity study sampling primarily from private backyards in Los Angeles, California (USA), reveals the presence of fifty-six species of Megaselia within the first few months of sampling. Thirty of these are described as new to science: M. armstrongorum, M. bradyi, M. brejchaorum, M. carthayensis, M. ciancii, M. creasoni, M. defibaughorum, M. donahuei, M. francoae, M. fujiokai, M. hardingorum, M. heini, M. hentschkeae, M. hoffmanorum, M. hoggorum, M. hoguei, M. isaacmajorum, M. kelleri, M. lombardorum, M. marquezi, M. mikejohnsoni, M. oxboroughae, M. pisanoi, M. renwickorum, M. rodriguezorum, M. sacatelensis, M. seaverorum, M. sidneyae, M. steptoeae, and M. wiegmanae. M. largifrontalis is newly reported from the Nearctic Region. The implications these findings have for future taxonomic work in Megaselia, particularly in urban areas, are discussed.

  11. Preliminary juvenile Lost River and shortnose sucker investigations in Clear Lake, California--2011 pilot study summary

    USGS Publications Warehouse

    Burdick, Summer M.; Rasmussen, Josh

    2012-01-01

    Poor recruitment appears to limit the recovery of Lost River and shortnose sucker populations in Clear Lake Reservoir, California, but the cause is unknown. Adult suckers migrate up Willow Creek and its tributaries to spawn in some years, but low flow in Willow Creek may inhibit spawning migrations in other years. It is unclear whether spawning is successful, larvae survive, or juveniles persist to adulthood. Environmental variables associated with successful spawning or young-of-year survival have not been identified and early life history for these populations is poorly understood. The U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service and Ruby Pipeline L.L.C. Corporation (El Paso, Tex.) initiated a study in 2011 to better understand juvenile sucker life history in Clear Lake Reservoir, and to identify constraints in the early life history that may limit recruitment to the adult spawning populations. This is a report on the 2011 pilot study for this project.

  12. Integrating understanding of biophysical processes governing larval fish dispersal with basin-scale management decisions: lessons from the Missouri River, USA

    NASA Astrophysics Data System (ADS)

    Erwin, S. O.; Jacobson, R. B.; Fischenich, C. J.; Bulliner, E. A., IV; McDonald, R.; DeLonay, A. J.; Braaten, P.; Elliott, C. M.; Chojnacki, K.

    2017-12-01

    Management of the Missouri River—the longest river in the USA, with a drainage basin covering one sixth of the conterminous USA—is increasingly driven by the need to understand biophysical processes governing the dispersal of 8-mm long larval pallid sturgeon. In both the upper and lower basin, survival of larval sturgeon is thought to be a bottleneck limiting populations, but because of different physical processes at play, different modeling frameworks and resolutions are required to link management actions with population-level responses. In the upper basin, a series of impoundments reduce the length of river for the drifting larval sturgeon to complete their development. Downstream from the mainstem dams, recruitment is most likely diminished by channelization and reduced floodplain connectivity that limit the benthic habitat available for larval sturgeon to settle and initiate feeding. We present a synthesis of complementary field studies, laboratory observations, and numerical simulations that evaluate the physical processes related to larval dispersal of sturgeon in the Missouri River basin. In the upper basin, we use one-dimensional advection-dispersion models, calibrated with field experiments conducted in 2016-2017 using surrogate particles and tracers, to evaluate reservoir management alternatives. Results of field experimentation and numerical modeling show that proposed management alternatives in the upper basin may be limited by insufficient lengths of flowing river for drifting larvae to fully develop into their juvenile lifestage. In the intensively engineered lower basin, we employ higher resolution measurements and models to evaluate potential for channel reconfiguration and flow alteration to promote successful interception of drifting larvae into supportive benthic habitats for the initiation of feeding and transition to the juvenile life stage. We illustrate how refined understanding of small-scale biophysical process has been incorporated

  13. Using 87Sr/86Sr ratios to investigate changes in stream chemistry during snowmelt in the Provo River, Utah, USA

    NASA Astrophysics Data System (ADS)

    Hale, C. A.; Carling, G. T.; Fernandez, D. P.; Nelson, S.; Aanderud, Z.; Tingey, D. G.; Dastrup, D.

    2017-12-01

    Water chemistry in mountain streams is variable during spring snowmelt as shallow groundwater flow paths are activated in the watershed, introducing solutes derived from soil water. Sr isotopes and other tracers can be used to differentiate waters that have interacted with soils and dust (shallow groundwater) and bedrock (deep groundwater). To investigate processes controlling water chemistry during snowmelt, we analyzed 87Sr/86Sr ratios, Sr and other trace element concentrations in bulk snowpack, dust, soil, soil water, ephemeral channels, and river water during snowmelt runoff in the upper Provo River watershed in northern Utah, USA, over four years (2014-2017). Strontium concentrations in the river averaged 20 ppb during base flow and decreased to 10 ppb during snowmelt runoff. 87Sr/86Sr ratios were around 0.717 during base flow and decreased to 0.715 in 2014 and 0.713 in 2015 and 2016 during snowmelt, trending towards less radiogenic values of mineral dust inputs in the Uinta Mountain soils. Ephemeral channels, representing shallow flow paths with soil water inputs, had Sr concentrations between 7-20 ppb and 87Sr/86Sr ratios between 0.713-0.716. Snowpack Sr concentrations were generally <2 ppb with 87Sr/86Sr ratios between 0.710-711, similar to atmospheric dust inputs. The less radiogenic 87Sr/86Sr ratios and lower Sr concentrations in the river during snowmelt are likely a result of activating shallow groundwater flow paths, which allows melt water to interact with shallow soils that contain accumulated dust deposits with a less radiogenic 87Sr/86Sr ratio. These results suggest that flow paths and atmospheric dust are important to consider when investigating variable solute loads in mountain streams.

  14. 1,000 Years of Climatic Variability in the Upper Colorado River Basin, USA

    NASA Astrophysics Data System (ADS)

    Tingstad, A. H.; MacDonald, G. M.

    2008-12-01

    The Upper Colorado River Basin (UCRB) is an essential water resource region in the United States. Seven western U.S. states, including water-hungry California, depend on water originating in the UCRB to support rising populations, agriculture, and infrastructure. Predictions that drought and depletion of water resources will intensify in the next several decades due to human-induced climate warming makes it essential that the natural patterns and causes of drought in the UCRB are understood. In particular, droughts that occurred during the Medieval Period (~ A.D. 900-1200) are of interest because temperatures are known to have been elevated during this time. We present a new 1,000-year tree-ring reconstruction for part of the UCRB using Pinus edulis (two-needle Pinyon) samples from northeastern Utah. We evaluate variability in the summer (JJA) and annual Palmer Drought Severity Index (PDSI) for the Uinta Mountains region, and use wavelet and other analyses to determine the importance of the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) in determining the timing and duration of droughts in the region. We conclude that while intense droughts did occur during the Medieval Period and throughout the record, water shortages may not be spatially and temporally uniform throughout the UCRB and the western U.S.

  15. Buddingtonite in Menlo Park, California

    USGS Publications Warehouse

    Pampeyan, Earl H.

    2010-01-01

    The mineral buddingtonite, named after A.F. Buddington, long-time professor of petrology at Princeton University, was first identified at the Sulfur Bank mine in Lake County, California (Erd and others, 1964). The ammonium feldspar was recognized in Menlo Park, California, in 1964 by the author, with Erd's help, shortly before publication of the original description of the new mineral. Subsequently, buddingtonite has been widely recognized in hydrothermal mineral deposits and has been used in remote-sensing applications by the mineral industry. Buddingtonite also has been identified in the Phosphoria Formation and in oil shales of the Green River Formation. This paper briefly describes the geologic setting and mineralogy of the occurrences of buddingtonite and other ammonium-bearing minerals in the vicinity of Menlo Park.

  16. Fish assemblages of the upper Little Sioux River basin, Iowa, USA: Relationships with stream size and comparison with historical assemblages

    USGS Publications Warehouse

    Palic, D.; Helland, L.; Pedersen, B.R.; Pribil, J.R.; Grajeda, R.M.; Loan-Wilsey, Anna; Pierce, C.L.

    2007-01-01

    We characterized the fish assemblages in second to fifth order streams of the upper Little Sioux River basin in northwest Iowa, USA and compared our results with historical surveys. The fish assemblage consisted of over twenty species, was dominated numerically by creek chub, sand shiner, central stoneroller and other cyprinids, and was dominated in biomass by common carp. Most of the species and the great majority of all individuals present were at least moderately tolerant to environmental degradation, and biotic integrity at most sites was characterized as fair. Biotic integrity declined with increasing stream size, and degraded habitat in larger streams is a possible cause. No significant changes in species richness or the relative distribution of species' tolerance appear to have occurred since the 1930s.

  17. Sustainability of massively anthropic deltas via dispersal of sediment to manage land building: results from two unique case studies, the Mississippi River (U.S.A.) and the Yellow River (China) deltas

    NASA Astrophysics Data System (ADS)

    Nittrouer, Jeffrey

    2016-04-01

    Owing to their extraordinary natural resources and ecosystem services, deltaic coastlines host hundreds of millions of people worldwide. Societal sustainability on these coastal landscapes is far from certain, however, due to anthropogenic influences including sediment-supply reduction, accelerated subsidence from sub-surface fluid extraction, and leveeing of rivers. The crucial resource in building stable deltaic coastlines is sediment, and the key control on sediment delivery, whether natural or engineered, is by way river channel diversions. Two case studies, based on previous and ongoing research efforts, are presented here to describe the effects of engineered diversions for the removal of river water and associated sediment: the Mississippi River (U.S.A) and the Yellow River (China). Comparatively speaking, these two systems are end-members: Mississippi River water discharge is five times greater than the Yellow River, and yet historically, the Yellow River sediment discharges five times more sediment than the Mississippi system. As such, diversions for the two systems have contrasting goals. During flood events, the Mississippi water stage threatens major metropolitan regions with levee overtopping; spillways are therefore utilized to reduce water flux through the main channel. For the Yellow River, extremely high sediment loads result in significant sedimentation within the main channel, and so there is a concerted effort to divert and shorten the main channel, in order to enhance the water surface slope and increase sediment transport capacity. Interestingly, the net effect of these two projects has been to deposit a significant amount of sediment into the respective receiving basins, which in turn has led to the development of subaerial land. In essence, this represents two compelling case studies documenting how managed (engineered) land building practices can be implemented for other large fluvial-deltaic systems. Observational data collected from field

  18. Early Warning System for West Nile Virus Risk Areas, California, USA

    PubMed Central

    Ahearn, Sean C.; McConchie, Alan; Glaser, Carol; Jean, Cynthia; Barker, Chris; Park, Bborie; Padgett, Kerry; Parker, Erin; Aquino, Ervic; Kramer, Vicki

    2011-01-01

    The Dynamic Continuous-Area Space-Time (DYCAST) system is a biologically based spatiotemporal model that uses public reports of dead birds to identify areas at high risk for West Nile virus (WNV) transmission to humans. In 2005, during a statewide epidemic of WNV (880 cases), the California Department of Public Health prospectively implemented DYCAST over 32,517 km2 in California. Daily risk maps were made available online and used by local agencies to target public education campaigns, surveillance, and mosquito control. DYCAST had 80.8% sensitivity and 90.6% specificity for predicting human cases, and κ analysis indicated moderate strength of chance-adjusted agreement for >4 weeks. High-risk grid cells (populations) were identified an average of 37.2 days before onset of human illness; relative risk for disease was >39× higher than for low-risk cells. Although prediction rates declined in subsequent years, results indicate DYCAST was a timely and effective early warning system during the severe 2005 epidemic. PMID:21801622

  19. Determination of channel capacity of the Mokelumne River downstream from Camanche Dam, San Joaquin and Sacramento Counties, California

    USGS Publications Warehouse

    Simpson, R.G.

    1972-01-01

    This study evaluates the adequacy of a 39-mile reach of the Mokelumne River in San Joaquin and Sacramento Counties, California, to carry planned flood releases between Camanche Reservoir and the Bensons Ferry Bridge near Thornton. The flood releases from Camanche Reservoir are to be restricted, insofar as possible, so that the flows in the Mokelumne River will not exceed 5,000 cfs (cubic feet per second) as measured at the gaging station below Camanche Dam. Areas of inundation and computed floodwater profiles are based on channel conditions in late 1970 and on observed water-surface profiles during flood releases of about 5,000 cfs in January 1969 and January 1970. The inundated area shown on the maps (appendix A) and the water-surface elevations indicated on the cross sections (appendix G) are for the flood releases of those dates. The following conclusions are contingent on there being no levee failures during periods of high flow and no significant channel changes since the flood release of January 1970. 1. High tides in San Francisco Bay and, to a greater degree, flood stages on the Cosumnes River, cause backwater in the study reach. Severe backwater conditions occurring simultaneously with a flow of 5,000 cfs in the Mokelumne River can increase the flood stage 4 to 6 feet at Bensons Ferry Bridge (cross section 1). Backwater effects decrease in an upstream direction and are less than 0.5 foot at cross section 35, a river distance of 8.6 miles upstream from cross section 1, and 1.5 miles downstream from the Peltier Road bridge. 2. In the reach between cross sections 1 and 35, a 5,000 cfs release from Camanche Reservoir with maximum backwater effect (measured at cross section 1 at the mouth of the Cosumnes River) is confined within the natural or leveed banks except on the right bank flood plain between cross sections 12 and 19. 3. Upstream from cross section 35, there is overbank flooding at a flow of 5,000 cfs between cross sections 48 and 51, and 62 and 67

  20. Underwater Light Regimes in Rivers from Multiple Measurement Approaches

    NASA Astrophysics Data System (ADS)

    Gardner, J.; Ensign, S.; Houser, J.; Doyle, M.

    2017-12-01

    Underwater light regimes are complex over space and time. Light in rivers is less understood compared to other aquatic systems, yet light is often the limiting resource and a fundamental control of many biological and physical processes in riverine systems. We combined multiple measurement approaches (fixed-site and flowpath) to understand underwater light regimes. We measured vertical light profiles over time (fixed-site) with stationary buoys and over space and time (flowpath) with Lagrangian neutrally buoyant sensors in two different large US rivers; the Upper Mississippi River in Wisconsin, USA and the Neuse River in North Carolina, USA. Fixed site data showed light extinction coefficients, and therefore the depth of the euphotic zone, varied up to three-fold within a day. Flowpath data revealed the stochastic nature of light regimes from the perspective of a neutrally buoyant particle as it moves throughout the water column. On average, particles were in the euphotic zone between 15-50% of the time. Combining flowpath and fixed-site data allowed spatial disaggregation of a river reach to determine if changes in the light regime were due to space or time as well as development of a conceptual model of the dynamic euphotic zone of rivers.