Sample records for river experimental study

  1. Flooding on California's Russian River: Role of atmospheric rivers

    USGS Publications Warehouse

    Ralph, F.M.; Neiman, P.J.; Wick, G.A.; Gutman, S.I.; Dettinger, M.D.; Cayan, D.R.; White, A.B.

    2006-01-01

    Experimental observations collected during meteorological field studies conducted by the National Oceanic and Atmospheric Administration near the Russian River of coastal northern California are combined with SSM/I satellite observations offshore to examine the role of landfalling atmospheric rivers in the creation of flooding. While recent studies have documented the characteristics and importance of narrow regions of strong meridional water vapor transport over the eastern Pacific Ocean (recently referred to as atmospheric rivers), this study describes their impact when they strike the U.S. West Coast. A detailed case study is presented, along with an assessment of all 7 floods on the Russian River since the experimental data were first available in October 1997. In all 7 floods, atmospheric river conditions were present and caused heavy rainfall through orographic precipitation. Not only do atmospheric rivers play a crucial role in the global water budget, they can also lead to heavy coastal rainfall and flooding, and thus represent a key phenomenon linkingweather and climate. Copyright 2006 by the American Geophysical Union.

  2. The Kings River Experimental Watersheds: new findings about headwater streams of the southern Sierra Nevada

    Treesearch

    Carolyn Hunsaker

    2013-01-01

    The Kings River Experimental Watersheds (KREW) study was designed to (1) characterize the variability in watershed attributes considered important to understanding processes and health of headwater streams and forest watersheds and (2) evaluate forest restoration treatments. The KREW is a paired watershed experiment located in the headwaters of the Kings River Basin...

  3. Upper Washita River experimental watersheds: Sediment Database

    USDA-ARS?s Scientific Manuscript database

    Improving the scientific understanding of the effectiveness of watershed conservation practices and floodwater-retardation structures to control floods and soil erosion is one of the primary objectives for sediment studies in the upper Washita River Experimental Watersheds. This paper summarizes se...

  4. Riparian and upland vegetation on the Kings River Experimental Watershed, Sierra Nevada, California

    Treesearch

    Christopher R. Dolanc; Carolyn T. Hunsaker

    2007-01-01

    The Kings River Experimental Watershed (KREW) is a watershed-level study on headwater streams in the Sierra Nevada, California. Eight perennial streams, from 1500 m (4920 ft) to 2490 m (8170 ft) elevation, have been instrumented and collecting data since 2002. Component research areas of the study include stream flow, water chemistry, sediment, soil chemistry, stream...

  5. Wind River Experimental Forest.

    Treesearch

    Valerie. Rapp

    2003-01-01

    The Wind River Experimental Forest, known as the cradle of forest research in the Pacific Northwest, is a major center for ecological and silvicultural research in west-side Pacific Northwest forests. In the state of Washington, Wind River Experimental Forest is in the south-central area of the Gifford Pinchot National Forest, north of the Columbia River Gorge National...

  6. A comprehensive fluvial geomorphology study of riverbank erosion on the Red River in Winnipeg, Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Kimiaghalam, Navid; Goharrokhi, Masoud; Clark, Shawn P.; Ahmari, Habib

    2015-10-01

    Riverbank erosion on the Red River in Winnipeg, Manitoba has raised concerns over the last 20 years and more. Although several recent studies have shown that fluvial erosion can reduce riverbank stability and promote geotechnical slope failure, there are too few that have focused on this phenomenon. The present study includes field measurements, experimental testing, and numerical modelling to quantify fluvial erosion through a 10 km reach of the Red River. Results have shown that seasonal freeze-thaw processes can dramatically reduce the critical shear stress and increase erodibility of the riverbanks. Moreover, a simple method has been employed using hydrodynamic numerical models to define the applied shear stresses on the river banks based on the river water level, which will be useful for further research and design purposes. The TEMP/W numerical model was used to define seasonal frost depth to estimate freeze-thaw effects. Finally all field measurements, experimental and numerical models results were used to predict annual fluvial erosion through this reach of the river.

  7. Preliminary Experimental Results on the Technique of Artificial River Replenishment to Mitigate Sediment Loss Downstream Dams

    NASA Astrophysics Data System (ADS)

    Franca, M. J.; Battisacco, E.; Schleiss, A. J.

    2014-12-01

    The transport of sediments by water throughout the river basins, from the steep slopes of the upstream regions to the sea level, is recognizable important to keep the natural conditions of rivers with a role on their ecology processes. Over the last decades, a reduction on the supply of sand and gravel has been observed downstream dams existing in several alpine rivers. Many studies highlight that the presence of a dam strongly modifies the river behavior in the downstream reach, in terms of morphology and hydrodynamics, with consequences on local ecology. Sediment deficit, bed armoring, river incision and bank instability are the main effects which affect negatively the aquatic habitats and the water quality. One of the proposed techniques to solve the problem of sediment deficit downstream dams, already adopted in few Japanese and German rivers although on an unsatisfactory fashion, is the artificial replenishment of these. Generally, it was verified that the erosion of the replenishments was not satisfactory and the transport rate was not enough to move the sediments to sufficient downstream distances. In order to improve and to provide an engineering answer to make this technique more applicable, a series of laboratory tests are ran as preparatory study to understand the hydrodynamics of the river flow when the replenishment technique is applied. Erodible volumes, with different lengths and submergence conditions, reproducing sediment replenishments volumes, are positioned along a channel bank. Different geometrical combinations of erodible sediment volumes are tested as well on the experimental flume. The first results of the experimental research, concerning erosion time evolution, the influence of discharge and the distance travelled by the eroded sediments, will be presented and discussed.

  8. North Fork Snoqualmie River Basin Wildlife Study.

    DTIC Science & Technology

    1981-03-01

    purposes other than travel. In Olympic National Park , marked mountain goats have been ob- served to descend several thousand feet to a valley floor for...Howard Hanson Reservoir near the mouth of the Green River. The reservoir’s pool was full. These gillnets were the "experimental type " and included...river below the proposed damsite. A secondary purpose was to allow comparisons of the amount and type of habitat in different river sections. We used the

  9. 78 FR 63439 - Endangered and Threatened Species: Designation of a Nonessential Experimental Population of Upper...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Experimental Population of Upper Columbia Spring-Run Chinook Salmon in the Okanogan River Subbasin, Washington... authorize the release of a nonessential experimental population (NEP) of Upper Columbia River spring-run... (301-427-8403). SUPPLEMENTARY INFORMATION: Background Information Relevant to Experimental Population...

  10. Deformation and evolution of an experimental drainage network subjected to oblique deformation: Insight from chi-maps

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Goren, Liran; Dominguez, Stéphane; Malavieille, Jacques; Castelltort, Sébastien

    2017-04-01

    The morphology of a fluvial landscape reflects a balance between its own dynamics and external forcings, and therefore holds the potential to reveal local or large-scale tectonic patterns. Commonly, particular focus has been cast on the longitudinal profiles of rivers as they constitute sensitive recorders of vertical movements, that can be recovered based on models of bedrock incision. However, several recent studies have suggested that maps of rescaled distance along channel called chi (χ), derived from the commonly observed power law relation between the slope and the drainage area , could reveal transient landscapes in state of reorganization of basin geometry and location of water divides. If river networks deforms in response to large amount of distributed strain, then they might be used to reconstruct the mode and rate of horizontal deformation away from major active structures through the use of the parameter χ. To explore how streams respond to tectonic horizontal deformation, we develop an experimental model for studying river pattern evolution over a doubly-vergent orogenic wedge growing in a context of oblique convergence. We use a series of sprinklers located about the experimental table to activate erosion, sediment transport and river development on the surface of the experimental wedge. At the end of the experiment, the drainage network is statistically rotated clockwise, confirming that rivers can record the distribution of motion along the wedge. However, the amount of rotation does not match with the imposed deformation, and thus we infer that stream networks are not purely passive markers. Based on the comparison between the observed evolution of the fluvial system and the predictions made from χ maps, we show that the plan-view morphology of the streams results from the competition between the imposed deformation and fluvial processes of drainage reorganization.

  11. BIOREMEDIATION AND BIORESTORATION OF A CRUDE OIL CONTAMINATED FRESHWATER WETLAND ON THE ST. LAWRENCE RIVER

    EPA Science Inventory

    Biostimulation by nutrient enrichment and phytoremediation were studied for the restoration of an acutely stressed freshwater wetland experimentally exposed to crude oil. The research was carried out along the shores of the St. Lawrence River at Ste. Croix, Quebec, Canada. The ...

  12. The Western River--An Offscale Teaching and Experimental Tool.

    ERIC Educational Resources Information Center

    Chapman, John J.; Wilcox, John T.

    1983-01-01

    Sedimentary patterns and hydraulic effects can be studies in model streams which are not to scale. The "Western River" is such a model which is being used effectively at Western Carolina College. Construction of the model, student exercises, and observations made when using the model are discussed. (Author/JN)

  13. Hydrological modelling over different scales on the edge of the permafrost zone: approaching model realism based on experimentalists' knowledge

    NASA Astrophysics Data System (ADS)

    Nesterova, Natalia; Makarieva, Olga; Lebedeva, Lyudmila

    2017-04-01

    Quantitative and qualitative experimentalists' data helps to advance both understanding of the runoff generation and modelling strategies. There is significant lack of such information for the dynamic and vulnerable cold regions. The aim of the study is to make use of historically collected experimental hydrological data for modelling poorly-gauged river basins on larger scales near the southern margin of the permafrost zone in Eastern Siberia. Experimental study site "Mogot" includes the Nelka river (30.8 km2) and its three tributaries with watersheds area from 2 to 5.8 km2. It is located in the upper elevated (500 - 1500 m a.s.l.) part of the Amur River basin. Mean annual temperature and precipitation are -7.5°C and 555 mm respectively. Top of the mountains with weak vegetation has well drained soil that prevents any water accumulation. Larch forest on the northern slopes has thick organic layer. It causes shallow active layer and relatively small subsurface water storage. Soil in the southern slopes has thinner organic layer and thaws up to 1.6 m depth. Flood plains are the wettest landscape with highest water storage capacity. Measured monthly evaporation varies from 9 to 100 mm through the year. Experimental data shows importance of air temperature and precipitation changes with the elevation. Their gradient was taken into account for hydrological simulations. Model parameterization was developed according to available quantitative and qualitative data in the Mogot station. The process-based hydrological Hydrograph model was used in the study. It explicitly describes hydrological processes in different permafrost environments. Flexibility of the Hydrograph model allows take advantage from the experimental data for model set-up. The model uses basic meteorological data as input. The level of model complexity is suitable for a remote, sparsely gauged region such as Southern Siberia as it allows for a priori assessment of the model parameters. Model simulation of river runoff, snow depth, soil temperature and moisture in the Mogot study site are satisfactory. Model parameterization developed on the Mogot watersheds was employed to simulate runoff generation in the four river basins with area from 150 to 4060 km2 in the surrounded region. We conclude that data about internal catchment processes is extremely helpful for the increasing model realism. Hard and soft experimental knowledge in the form of model parameters and settings could be transferred to larger river basins in the region. The study is supported by Russian Foundation for Basic Research (project 15-35-21146).

  14. Breakdown and invertebrate colonization of dead wood in wetland, upland, and river habitats

    Treesearch

    A Braccia; D Batzer

    2010-01-01

    Breakdown of woody debris in river and upland habitats as well as the interactions between wood and invertebrates have been well described. Studies of wood in wetlands are rare, and far less is known about breakdown and invertebrate use of wood in these transitional habitats. This study experimentally assessed breakdown and invertebrate colonization of wood in a...

  15. A Decade Remote Sensing River Bathymetry with the Experimental Advanced Airborne Research LiDAR

    NASA Astrophysics Data System (ADS)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.; Skinner, K.

    2012-12-01

    Since 2002, the first generation of the Experimental Advanced Airborne Research LiDAR (EAARL-A) sensor has been deployed for mapping rivers and streams. We present and summarize the results of comparisons between ground truth surveys and bathymetry collected by the EAARL-A sensor in a suite of rivers across the United States. These comparisons include reaches on the Platte River (NE), Boise and Deadwood Rivers (ID), Blue and Colorado Rivers (CO), Klamath and Trinity Rivers (CA), and the Shenandoah River (VA). In addition to diverse channel morphologies (braided, single thread, and meandering) these rivers possess a variety of substrates (sand, gravel, and bedrock) and a wide range of optical characteristics which influence the attenuation and scattering of laser energy through the water column. Root mean square errors between ground truth elevations and those measured by the EAARL-A ranged from 0.15-m in rivers with relatively low turbidity and highly reflective sandy bottoms to over 0.5-m in turbid rivers with less reflective substrates. Mapping accuracy with the EAARL-A has proved challenging in pools where bottom returns are either absent in waveforms or are of such low intensity that they are treated as noise by waveform processing algorithms. Resolving bathymetry in shallow depths where near surface and bottom returns are typically convolved also presents difficulties for waveform processing routines. The results of these evaluations provide an empirical framework to discuss the capabilities and limitations of the EAARL-A sensor as well as previous generations of post-processing software for extracting bathymetry from complex waveforms. These experiences and field studies not only provide benchmarks for the evaluation of the next generation of bathymetric LiDARs for use in river mapping, but also highlight the importance of developing and standardizing more rigorous methods to characterize substrate reflectance and in-situ optical properties at study sites. They also point out the continued necessity of ground truth data for algorithm refinement and survey verification.

  16. Large-scale flow experiments for managing river systems

    USGS Publications Warehouse

    Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.

  17. [Seasonal and interannual variations of sockeye salmon (Oncorhynchus nerka) microsatellite DNA in two Kamchatka lake-river systems].

    PubMed

    Khrustaleva, A M; Zelenina, D A

    2008-07-01

    Seasonal and interannual variations in the sockeye salmon populations from two lake-river systems of the East and West Kamchatka were studied. Stability of allele and genotypic frequencies of six microsatellite DNA loci in the adjacent generations and spawning populations of the sockeye salmon of the Bol'shaya River was confirmed experimentally. The pairwise intersample differentiation (F(st)) of the local sockeye salmon populations from the southwestern Kamchatka coast (Ozernaya and Bol'shaya Rivers)was almost 7 times higher than the corresponding values for the spawning populations of the Bol'shaya River sockeye salmon of the adjacent years; 15 times, for the adjacent Bol'shaya River sockeye salmon generations; and four times, for the seasonal races within the Kamchatka River.

  18. Spatio-Temporal Distribution of Particulate and CDOM in the Mississippi River Bight (MRB) from Optical Measurements

    NASA Technical Reports Server (NTRS)

    D'Sa, Eurico; Miller, Richard; DelCastillo, Carlos

    2004-01-01

    NASA's projects for the Mississippi River Coastal Margin Study include Mississippi River Interdisciplinary Research (MiRIR) and NASA Experimental Program to Stimulate Competitive Research (EPSCoR). These projects, undertaken with the help of Tulane University and the Louisiana Universities Marine Consortium (LUMCON) sampled water in the Gulf of Mexico to measure colored dissolved organic matter (CDOM). This viewgraph presentation contains images of each program's sampling strategy and equipment.

  19. An Experimental Approach for Restoration of Salmon River Ecosystems

    NASA Astrophysics Data System (ADS)

    Stanford, J. A.

    2005-05-01

    River ecosystem theory predicts that dynamic, nonlinear physical and biological processes linking water, heat and materials (biota, sediment, plant-growth nutrients) flux and retention to fluvial landscape change in a habitat mosaic context drive salmon life histories and productivity in freshwater. Multidisciplinary studies and cross-site comparisons within a network of pristine salmon river observatories around the north Pacific Rim support these predictions. Billions of dollars have been spent on salmon-river restoration worldwide to little avail, mainly because salmon biology, rather than ecosystem process boundaries and bottlenecks, is driving restoration goals. I argue that entire river catchment restoration, in relation to these dynamic processes and bottlenecks and also coherent with the estuarine and marine implications of salmon life history parameters, is the only possibility for sustaining or restoring natural productivity and life history (genetic) diversity in salmon rivers. This can be done only in a few places owing to the continual press of human demands on river ecosystems, the morass of legal challenges to proactive salmon river restoration strategies and insufficient understanding of freshwater and marine linkages. The Elwha and Yakima Rivers in Washington, among a few others that I will name, offer real opportunities to restore entire watersheds for wild salmon. These restorations should be viewed as experimental manipulations in which outcomes may be evaluated against norms measured in the salmon river observatory network. Bias from hatcheries and harvest, among other anthropogenic interferences, must be eliminated for such experiments to be evaluated in light of contemporary river ecosystem theory. And, a much more synthetic understanding of freshwater and marine linkages must be forthcoming in concert with a much more robust general theory of river restoration.

  20. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    PubMed

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  1. An Experimental Study to Control Scour at River Confluence

    NASA Astrophysics Data System (ADS)

    Wuppukondur, A.; Chandra, V.

    2015-12-01

    The aim of present study is finding a method to control sediment erosion at river confluence. The confluences are mixture of two different flows and are common occurrences along the river. River confluences are sites of natural scour phenomenon and also influence reservoir sedimentation. The river confluence is associated with a separation zone, stagnation zone and a mixing layer along which the scour hole is observed. The eroded sediment creates potential problems by depositing at unwanted downstream locations such as barrages, weirs, check dams, reservoirs etc. As per the literature, the storage capacity of major reservoirs in India is going to be reduced nearly half of the storage capacity by 2020. Hence, an experimental study has been conducted on mobile bed (d50=0.28 mm) with a confluence angle of 90o for a discharge ratio (Qr) of 0.5, where, Qr is defined as the ratio between lateral flow discharge (Ql) and main flow discharge (Qm). Circular shape pile models of same diameter are arranged in a systematic manner with constant spacing (5 cm, 10 cm and 15 cm) to change the flow pattern for reducing scour at the confluence. Two types of pile models (8 mm ϕ and 12 mm ϕ) are used to conduct the experiments. The experimental results show that maximum scour depth at confluence is reduced by 60%. In addition, the bed profile modifications are also reported. Keywords: Reservoir sedimentation, River confluence, Mobile bed, Scour, Vanes. References:1. Borghei, S. M., and Sahebari, A. J. (2010). "Local Scour at Open-Channel Junctions", Journal of Hydraulic Research, 48(4), 37 - 41. 2. Kothyari, U. C. (1996). "Methods for Estimation Sediment Yield from Catchments", Proc., Int. Sem. On Civil Engg. Practices in Twenty First Century, Roorkee, India, 1071-1086. 3. Mosley, M. P. (1976) "An Experimental Study of Channel Confluences". The Journal of Geology, 84(55), 532-562. 4. Ouyang, H. T. (2009). "Investigation on the dimensions and shape of a submerged vane for sediment management in alluvial channels." Journal of Hydraulic Engineering, 135 (3), 209- 217. 5. Tan, S. K., Yu, G., Lim, S.Y., and Ong, M. C. (2005). "Flow structure and sediment motion around submerged vanes in open channel." Journal of Waterway, Port, Coastal and Ocean Engineering, 131(3), 132-136.

  2. Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra.

    PubMed

    Billore, S K; Prashant; Sharma, J K

    2009-01-01

    The discharge of untreated wastewater in River Kshipra had brought annual average of BOD, TKN and TS levels up to 39 mg/l, 38 mg/l and 781 mg/l respectively in the study area. Treatment performance by Artificial Floating Reed Beds (AFRB) was evaluated for removal efficiency of TS, NH4-N, NO3-N, TKN and BOD from river water, initially, under a pilot scale by an AFRB of size 200 m2 planted with local reed grass, Phragmites karka, in the part of River Kshipra at the confluence with meeting point of a wastewater stream. The system performance was recorded as 43% reduction in TS, 38% reduction in TKN and 39% BOD reduction. The experimental AFRBs were buoyant structure planted with reed grass, each unit had a rectangular size and covered an effective surface area of 2 m2. The experiment with the mesocosms with treatment of River water resulted that AFRB was reducing pollution load by 55-60% of TS, 45-55% of NH4-N, 33-45% of NO3-N, 45-50% of TKN and 40-50% of BOD. AFRB may be recommended as an in-situ, eco-friendly river water treatment structures for small shallow, slow flowing (or slightly stagnant) water bodies.

  3. What to see and where to find it on the Priest River Experimental Forest Idaho

    Treesearch

    C. A. Wellner; R. F. Watt; A. E. Helmers

    1951-01-01

    Dedicated to the development of better methods of management and protection of forested lands, the Priest River Experimental Forest is maintained for research and demonstration purposes by the Northern Rocky Mountain Forest and Range Experiment Station of the Forest Service, U. S. Department of Agriculture. The chart on the opposite page shows where the Experimental...

  4. Experimental Study of Alluvial Fan Formation

    NASA Astrophysics Data System (ADS)

    Delorme, P.; Devauchelle, O.; Barrier, L.; Métivier, F.

    2015-12-01

    At the outlet of mountain ranges, rivers flow onto flatter lowlands. The associated change of slope causes sediment deposition. As the river is free to move laterally, it builds conical sedimentary structures called alluvial fans. Their location at the interface between erosional and depositional areas makes them valuable sedimentary archives. To decipher these sedimentary records, we need to understand the dynamics of their growth. Most natural fans are built by braided streams. However, to avoid the complexity of braided rivers, we develop a small-scale experiment in which an alluvial fan is formed by a single channel. We use a mixture of water and glycerol to produce a laminar river. The fluid is mixed with corindon sand (~ 300 μm) in a tilted channel and left free to form a fan around its outlet. The sediment and water discharges are constant during an experimental run. We record the fan progradation and the channel morphology with top-view pictures. We also generate an elevation map with an optical method based on the deformation of a moiré pattern. We observe that, to leading order, the fan remains self-affine as it grows, with a constant slope. We compare two recent studies about the formation of one-dimensionnal fan [Guerit et al. 2014] and threshold rivers [Seizilles et al. 2013] to our experimental findings. In particular, we propose a theory witch relates the fan morphology to the control parameters ( fluid and sediment discharges, grain size). Our observation accord with the predictions, suggesting that the fan is built near the threshold of sediment motion. Finally, we intend to expand our interpretation to alluvial fans build by single-thread channels ( Okavango, Bostwana; Taquari and Paraguay, Brasil; Pastaza, Peru).

  5. Impacts of forest management on runoff and erosion

    Treesearch

    William J. Elliot; Brandon D. Glaza

    2009-01-01

    In a parallel study, ten small watersheds (about 5 ha) were installed in the Priest River Experimental Forest (PREF) in northern Idaho, and another ten were installed in the Boise Basin Experimental Forest (BBEF) in central Idaho. The long-term objective of the study is to compare the effects of different forest management activities on runoff and...

  6. An operational methodology for riparian land cover fine scale regional mapping for the study of landscape influence on river ecological status

    NASA Astrophysics Data System (ADS)

    Tormos, T.; Kosuth, P.; Souchon, Y.; Villeneuve, B.; Durrieu, S.; Chandesris, A.

    2010-12-01

    Preservation and restoration of river ecosystems require an improved understanding of the mechanisms through which they are influenced by landscape at multiple spatial scales and particularly at river corridor scale considering the role of riparian vegetation for regulating and protecting river ecological status and the relevance of this specific area for implementing efficient and realistic strategies. Assessing correctly this influence over large river networks involves accurate broad scale (i.e. at least regional) information on Land Cover within Riparian Areas (LCRA). As the structure of land cover along rivers is generally not accessible using moderate-scale satellite imagery, finer spatial resolution imagery and specific mapping techniques are needed. For this purpose we developed a generic multi-scale Object Based Image Analysis (OBIA) scheme able to produce LCRA maps in different geographic context by exploiting information available from very high spatial resolution imagery (satellite or airborne) and/or metric to decametric spatial thematic data on a given study zone thanks to fuzzy expert knowledge classification rules. A first experimentation was carried out on the Herault river watershed (southern of France), a 2650 square kilometers basin that presents a contrasted landscape (different ecoregions) and a total stream length of 1150 Km, using high and very high multispectral remotely-sensed images (10m Spot5 multispectral images and 0.5m aerial photography) and existing spatial thematic data. Application of the OBIA scheme produced a detailed (22 classes) LCRA map with an overall accuracy of 89% and a Kappa index of 83% according to a land cover pressures typology (six categories). A second experimentation (using the same data sources) was carried out on a larger test zone, a part of the Normandy river network (25 000 square kilometers basin; 6000 km long river network; 155 ecological stations). This second work aimed at elaborating a robust statistical eco-regional model to study links between land cover spatial indicators calculated at local and watershed scales, and river ecological status assessed with macroinvertebrate indicators. Application of the OBIA scheme produced a detailed (62 classes) LCRA map which allowed the model to highlight influence of specific land use patterns: (i) the significant beneficial effect of 20-m riparian tree vegetation strip near a station and 20-m riparian grassland strip along the upstream network of a station and (ii) the negative impact on river ecological status of urban areas and roads on the upstream flood plain of a station. Results of these two experimentations highlight that (i) the application of an OBIA scheme using multi-source spatial data provides an efficient approach for mapping and monitoring LCRA that can be implemented operationally at regional or national scale and (ii) and the interest of using LCRA-maps derived from very high spatial resolution imagery (satellite or airborne) and/or metric spatial thematic data to study landscape influence on river ecological status and support managers in the definition of optimized riparian preservation and restoration strategies.

  7. Temporal variations in baseflow for the Little River Experimental Watershed in South Georgia

    USDA-ARS?s Scientific Manuscript database

    Hydrology is the driving force of sediment, nutrient, and pesticide movement. Separation of streamflow hydrographs into rapid surface runoff and baseflow can vastly improve our understanding of watershed processes. Data collected at the Little River Experimental Watershed (LREW) in the South Atlanti...

  8. A Laboratory Study of River Discharges into Shallow Seas

    NASA Astrophysics Data System (ADS)

    Crawford, T. J.; Linden, P. F.

    2016-02-01

    We present an experimental study that aims to simulate the buoyancy driven coastal currents produced by estuarine freshwater discharges into the ocean. The currents are generated inside a rotating tank filled with saltwater by the continuous release of buoyant freshwater from a source structure located at the fluid surface. The freshwater is discharged horizontally from a finite-depth source, giving rise to significant momentum-flux effects and a non-zero potential vorticity. We perform a parametric study in which we vary the rotation rate, freshwater discharge magnitude, the density difference and the source cross-sectional area. The parameter values are chosen to match the regimes appropriate to the River Rhine and River Elbe when entering the North Sea. Persistent features of an anticyclonic outflow vortex and a propagating boundary current were identified and their properties quantified. We also present a finite potential vorticity, geostrophic model that provides theoretical predictions for the current height, width and velocity as functions of the experimental parameters. The experiments and model are compared with each other in terms of a set of non-dimensional parameters identified in the theoretical analysis of the problem. Good agreement between the model and the experimental data is found. The effect of mixing in the turbulent ocean is also addressed with the addition of an oscillating grid to the experimental setup. The grid generates turbulence in the saltwater ambient that is designed to represent the mixing effects of the wind, tides and bathymetry in a shallow shelf sea. The impact of the addition of turbulence is discussed in terms of the experimental data and through modifications to the theoretical model to include mixing. Once again, good agreement is seen between the experiments and the model.

  9. History of the Priest River Experiment Station

    Treesearch

    Kathleen L. Graham

    2004-01-01

    In 1911, the U.S. Forest Service established the Priest River Experimental Forest near Priest River, Idaho. The Forest served as headquarters for the Priest River Forest Experiment Station and continues to be used for forest research critical to understanding forest development and the many processes, structures, and functions occurring in them. At...

  10. Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers

    NASA Astrophysics Data System (ADS)

    Attal, Mikaël; Lavé, Jérôme

    2009-12-01

    In actively eroding landscapes, fluvial abrasion modifies the characteristics of the sediment carried by rivers and consequently has a direct impact on the ability of mountain rivers to erode their bedrock and on the characteristics and volume of the sediment exported from upland catchments. In this experimental study, we use a novel flume replicating hydrodynamic conditions prevailing in mountain rivers to investigate the role played by different controlling variables on pebble abrasion during fluvial transport. Lithology controls abrasion rates and processes, with differences in abrasion rates exceeding two orders of magnitude. Attrition as well as breaking and splitting are efficient processes in reducing particle size. Mass loss by attrition increases with particle velocity but is weakly dependent on particle size. Fragment production is enhanced by the use of large particles, high impact velocities and the presence of joints. Based on our experimental results, we extrapolate a preliminary generic relationship between pebble attrition rate and transport stage (τ*/τ*c), where τ* = fluvial Shields stress and τ*c = critical Shields stress for incipient pebble motion. This relationship predicts that attrition rates are independent of transport stage for (τ*/τ*c) ≤ 3 and increase linearly with transport stage beyond this value. We evaluate the extent to which abrasion rates control downstream fining in several different natural settings. A simplified model predicts that the most resistant lithologies control bed load flux and fining ratio and that the concavity of transport-limited river profiles should rarely exceed 0.25 in the absence of deposition and sorting.

  11. Characterization of the Kootenai River Aquatic Macroinvertebrate Community before and after Experimental Nutrient Addition, 2003-2006. [Chapter 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holderman, Charlie

    2009-02-19

    The Kootenai River ecosystem has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam, completed in 1972 on the river near Libby Montana. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel, eliminating nutrient production and habitat diversity crucial to the functioning of a large river-floodplain ecosystem. Libby Dam continues to create large changes inmore » the timing, duration, and magnitude of river flows, and greatly reduces sediment and nutrient transport to downstream river reaches. These changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to this artificial loss of nutrients, experimental nutrient addition was initiated in the Kootenay Lake's North Arm in 1992, the South Arm in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes the macroinvertebrate community in the Kootenai River and its response to experimental nutrient addition during 2005 and 2006. This report also provides an initial evaluation of cascading trophic interactions in response to nutrient addition. Macroinvertebrates were sampled at 12 sites along a 325 km section of the Kootenai River, representing an upriver unimpounded reference reach, treatment and control canyon reach sites, and braided and meandering reach sites, all downstream from Libby Dam. Principle component analysis revealed that richness explained the greatest amount of variability in response to nutrient addition as did taxa from Acari, Coleoptera, Ephemeroptera, Plecoptera, and Trichoptera. Analysis of variance revealed that nutrient addition had a significant effect (p<0.0001) on invertebrate abundance, biomass, and richness at sites KR-9 and KR-9.1 combined (the zone of maximum biological response). Richness, a valuable ecological metric, increased more than abundance and biomass, which were subject to greater sampling bias. Cascading trophic interactions were observed as increased algal accrual, increased in-river invertebrate abundance, and increased invertebrate counts in mountain whitefish (Prosopium williamsonii) guts samples, but were not quantitatively tested. Sampling and analyses across trophic levels are currently ongoing and are expected to better characterize ecological responses to experimental nutrient addition in the Kootenai River.« less

  12. Hydrological applications of Landsat imagery used in the study of the 1973 Indus River flood, Pakistan

    USGS Publications Warehouse

    Deutsch, Morris; Ruggles, F.H.

    1978-01-01

    During August and September 1973, the Indus River Valley of Pakistan experienced one of the largest floods on record, resulting in damages to homes, businesses, public works, and crops amounting to millions of rupees. Tremendous areas of lowlands were inundated along the Indus River and major tributaries. Landsat data made it possible to easily measure the extent of flooding, totaling about 20,000 km2 within an area of about 400,000 km2 south from the Punjab to the Arabian Sea.The Indus River data were used to continue experimentation in the development of rapid, accurate, and inexpensive optical techniques of flood mapping by satellite begun in 1973 for the Mississipi River floods. The research work on the Indus River not resulted in the development of more effective procedures for optical processing of flood data and synoptically depicting flooding, but also provided potentially valuable ancillary information concerning the hydrology of much of the Indus River Basin.

  13. Climate of Priest River Experimental Forest, northern Idaho

    Treesearch

    Arnold I. Finklin

    1983-01-01

    Detailed climatic description of Priest River Experimental Forest; applies to much of the northern Idaho panhandle. Covers year-round pattern and focuses on the fire season. Topographic and local site differences in climate are examined; also, climatic trends or fluctuations during the past 70 years. Includes numerous tables and graphs. Written particularly for forest...

  14. Climate, snowpack, and streamflow of Priest River Experimental Forest, revisited

    Treesearch

    Wade T. Tinkham; Robert Denner; Russell T. Graham

    2015-01-01

    The climate record of Priest River Experimental Forest has the potential to provide a century-long history of northern Rocky Mountain forest ecosystems. The record, which began in 1911 with the Benton Flat Nursery control weather station, included observations of temperature, precipitation, humidity, and wind. Later, other observations stations were added to the...

  15. Reservoir sedimentation rates in the Little Washita River experimental watershed, Oklahoma: measurement and controlling factors

    USDA-ARS?s Scientific Manuscript database

    Forty-five flood control reservoirs, authorized in the United States Flood Control Act of 1936, were installed between 1969 and 1982 in the Little Washita River Experimental Watershed (LWREW), located in central Oklahoma. Over time, these reservoirs have lost water storage capacity due to sedimentat...

  16. Bridging Gender Gap in the Physics Classroom: The Instructional Method Perspective

    ERIC Educational Resources Information Center

    Obafemi, Deborah T. A.

    2015-01-01

    The study investigated the influence of students' gender on their understanding, application and analysis of Light waves concept in physics in Ikwerre Local Government Area of Rivers State, Nigeria. A quasi-experimental pretest-posttest design comprising of three experimental and one control group was used, each group was taught with a different…

  17. Sediment heterogeneity and mobility in the morphodynamic modelling of gravel-bed braided rivers

    NASA Astrophysics Data System (ADS)

    Singh, Umesh; Crosato, Alessandra; Giri, Sanjay; Hicks, Murray

    2017-06-01

    The effects of sediment heterogeneity and sediment mobility on the morphology of braided rivers are still poorly studied, especially when the partial sediment mobility occurs. Nevertheless, increasing the bed sediment heterogeneity by coarse sediment supply is becoming a common practice in river restoration projects and habitat improvement all over the world. This research provides a step forward in the identification of the effects of sediment sorting on the evolution of sediment bars and braiding geometry of gravel-bed rivers. A two-dimensional morphodynamic model was used to simulate the long-term developments of a hypothetical braided system with discharge regime and morphodynamic parameters derived from the Waimakariri River, New Zealand. Several scenarios, differing in bed sediment heterogeneity and sediment mobility, were considered. The results agree with the tendencies already identified in linear analyses and experimental studies, showing that a larger sediment heterogeneity increases the braiding indes and reduces the bars length and height. The analyses allowed identifying the applicability limits of uniform sediment and variable discharge modelling approaches.

  18. A Three-Year Study of Ichyoplankton in Coastal Plains Reaches of the Savannah River Site and its Tributaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D.

    2007-03-05

    Altering flow regimes of rivers has large effects on native floras and faunas because native species are adapted to the natural flow regime, many species require lateral connectivity with floodplain habitat for feeding or spawning, and the change in regime often makes it possible for invasive species to replace natives (Bunn & Arthington 2002). Floodplain backwaters, both permanent and temporary, are nursery areas for age 0+ fish and stable isotope studies indicate that much of the productivity that supports fish larvae is autochthonous to these habitats (Herwig et al. 2004). Limiting access by fish to floodplain habitat for feeding, spawningmore » and nursery habitat is one of the problems noted with dams that regulate flow in rivers and is considered to be important as an argument to remove dams and other flow regulating structures from rivers (Shuman 1995; Bednarek 2001). While there have been a number of studies in the literature about the use of floodplain habitat for fish reproduction (Copp 1989; Killgore & Baker 1996; Humphries, et al. 1999; Humphries and Lake 2000; Crain et al. 2004; King 2004) there have been only a few studies that examined this aspect of stream ecology in more than a cursory way. The study reported here was originally designed to determine whether the Department of Energy's (DOE) Savannah River Site was having a negative effect on fish reproduction in the Savannah River but its experimental design allowed examination of the interactions between the river, the floodplain and the tributaries entering the Savannah River across this floodplain. This study is larger in length of river covered than most in the literature and because of its landscape scale may be in important indicator of areas where further study is required.« less

  19. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and running...

  20. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and running...

  1. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and running...

  2. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and running...

  3. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and running...

  4. Upper Washita River experimental watersheds: Land cover data sets (1974-2007) for two southwestern Oklahoma agricultural watersheds

    USDA-ARS?s Scientific Manuscript database

    A retrospective land cover analysis covering the time period from the early 1970s to early 1990s was conducted to gain a sense of the dynamics of land cover changes on the Little Washita River and Fort Cobb Reservoir experimental watersheds (LWREW, FCREW), located in southwestern Oklahoma. This stu...

  5. A large-scale environmental flow experiment for riparian restoration in the Colorado River delta

    USGS Publications Warehouse

    Shafroth, Patrick B.; Schlatter, Karen; Gomez-Sapiens, Martha; Lundgren, Erick; Grabau, Matthew R.; Ramirez-Hernandez, Jorge; Rodriguez-Burgeueno, J. Eliana; Flessa, Karl W.

    2017-01-01

    Managing streamflow is a widely-advocated approach to provide conditions necessary for seed germination and seedling establishment of trees in the willow family (Salicaceae). Experimental flow releases to the Colorado River delta in 2014 had a primary objective of promoting seedling establishment of Fremont cottonwood (Populus fremontii) and Goodding's willow (Salix gooddingii). We assessed seed germination and seedling establishment of these taxa as well as the non-native tamarisk (Tamarix spp.) and native seepwillow shrubs (Baccharis spp.) in the context of seedling requirements and active land management (land grading, vegetation removal) at 23 study sites along 87 river km. In the absence of associated active land management, experimental flows to the Colorado River delta were minimally successful at promoting establishment of new woody riparian seedlings, except for non-native Tamarix. Our results suggest that the primary factors contributing to low seedling establishment varied across space, but included low or no seed availability in some locations for some taxa, insufficient soil moisture availability during the growing season indicated by deep groundwater tables, and competition from adjacent vegetation (and, conversely, availability of bare ground). Active land management to create bare ground and favorable land grades contributed to significantly higher rates of Salicaceae seedling establishment in a river reach with high groundwater tables. Our results provide insights that can inform future environmental flow deliveries to the Colorado River delta and its ecosystems and other similar efforts to restore Salicaceae taxa around the world.

  6. Connecting tropical river DOM and POM to the landscape with lignin

    NASA Astrophysics Data System (ADS)

    Hernes, Peter J.; Dyda, Rachael Y.; McDowell, William H.

    2017-12-01

    Tropical rivers account for two thirds of global fluxes of terrigenous organic matter to the oceans, yet because of their remote locations relative to most industrialized countries, they are poorly studied compared to temperate and even Arctic rivers. Further, most tropical river research has focused on large rivers like the Amazon or Congo, yet more than half of organic matter fluxes from tropical rivers comes from much smaller rivers. This study focuses on two such rivers in the Luquillo Experimental Forest of Puerto Rico, namely the Rio Mameyes and Rio Icacos, and uses time-series measurements of lignin biomarkers to put them in context with much bigger tropical rivers in the literature. Although lignin concentrations and carbon-normalized yields offer some distinction between mountainous vs. floodplain tropical river reaches, compositional differences appear to offer greater potential, including S:V vs. C:V plots that may capture the poorly-studied influence of palm trees, and (Ad:Al)s vs. (Ad:Al)v plots that may reflect differences in underlying mineralogy and degradation in soils. Even though dissolved and particulate lignin ultimately come from the same vegetation sources, comparison of dissolved and particulate lignin parameters within the two Puerto Rican rivers indicate that the pathways by which they end up in the same parcel of river water are largely decoupled. Across several particulate lignin studies in tropical rivers, mineral composition and concentration appears to exert a strong control on particulate lignin compositions and concentrations. Finally, the time-series nature of this study allows for new ways of analyzing dissolved lignin endmember compositions and degradation within the catchment. Plots of dissolved lignin parameters vs. lignin concentration reveal both the composition of "fresh" DOM that is likely mobilized from organic-rich soil surface layers along with the extent and trajectory of degradation of that signature that is possible within the lower mineral layers of the soil. Establishing connectivity between river chemistry and catchment sources and processes in this manner is the only way to realize the full potential of river chemistry as a diagnostic tool for changing sources and processes within the catchment.

  7. The Wind River Arboretum 1912-1956.

    Treesearch

    Roy R. Silen; Leonard R. Woike

    1959-01-01

    Wind River Arboretum, located in the Wind River valley near Carson, Wash., was established in 1912 with the planting of a few species of introduced trees on stump land adjacent to the Wind River Nursery. It is the oldest arboretum in the Northwest and ranks among the earliest forestry projects of an experimental nature still in existence in the region. The initial...

  8. Salmon Supplementation Studies in Idaho Rivers, 1999-2000 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andy; Taki, Doug; Teton, Angelo

    2001-11-01

    As part of the Idaho Supplementation Studies, fisheries crews from the Shoshone-Bannock Tribes have been snorkeling tributaries of the Salmon River to estimate chinook salmon (Oncorhynchus tshawytscha) parr abundance; conducting surveys of spawning adult chinook salmon to determine the number of redds constructed and collect carcass information; operating a rotary screw trap on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag emigrating juvenile chinook salmon; and collecting and PIT-tagging juvenile chinook salmon on tributaries of the Salmon River. The Tribes work in the following six tributaries of the Salmon River: Bear Valleymore » Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork Salmon River. Snorkeling was used to obtain parr population estimates for ISS streams from 1992 to 1997. However, using the relatively vigorous methods described in the ISS experimental design to estimate summer chinook parr populations, results on a project-wide basis showed extraordinarily large confidence intervals and coefficients of variation. ISS cooperators modified their sampling design over a few years to reduce the variation around parr population estimates without success. Consequently, in 1998 snorkeling to obtain parr population estimates was discontinued and only General Parr Monitoring (GPM) sites are snorkeled. The number of redds observed in SBT-ISS streams has continued to decline as determined by five year cycles. Relatively weak strongholds continue to occur in the South Fork Salmon River and Bear Valley Creek. A rotary screw trap was operated on the West Fork Yankee Fork during the spring and fall of 1999 and the spring of 2000 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997 and 1999 (fall only) to 2000. Significant supplementation treatments have occurred in the South Fork Salmon River (IDFG). The East Fork Salmon River received supplementation treatments yearly through 1995. There have been no treatments since 1995, and no significant future treatments from local broodstock are conceivable due to extremely poor escapement. The West Fork Yankee Fork received a single presmolt treatment in 1994. Similarly, no significant future treatments are planned for the WFYF due to extremely poor escapement. However, small scale experimental captive rearing and broodstock techniques are currently being tested with populations from the EFSR and WFYF. Captive rearing/broodstock techniques could potentially provide feedback for evaluation of supplementation. The other three SBT-ISS streams are control streams and do not receive hatchery treatments.« less

  9. Development of Energy-Saving Devices for a 20,000DWT River-Sea Bulk Carrier

    NASA Astrophysics Data System (ADS)

    Chen, Kunpeng; Gao, Yuling; Huang, Zhenping; Dong, Guoxiang

    2018-05-01

    A reduction of fuel consumption and an increase in efficiency are currently required for river-sea bulk carriers. Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels. Based on the hydrodynamic characteristics of the 20,000DWT river-sea bulk carrier, in this study, we proposed, designed, and tested a series of pre-swirl energy-saving devices (ESDs). The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power. The results confirm the success of our ESD for the 20,000DWT river-sea bulk carrier. We validated the role of Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) in the twin-skeg river-sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process.

  10. Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete

    NASA Astrophysics Data System (ADS)

    Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.

    2018-03-01

    This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.

  11. Discharge and sediment loads at the Kings River Experimental Forest in the Southern Sierra Nevada of California

    Treesearch

    S.M. Eagan; C.T. Hunsaker; C.R. Dolanc; M.E. Lynch; C.R. Johnson

    2007-01-01

    The Kings River Experimental Watershed (KREW) is now in its third year of data collection on eight small perennial watersheds. We are collecting meteorology, stream discharge, sediment load, water chemistry, shallow soil water chemistry, vegetation, macro-invertebrate, stream microclimate, and air quality data. This paper primarily examines discharge and sediment data...

  12. Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems.

    PubMed

    Winkler, M; Lawrence, J R; Neu, T R

    2001-09-01

    A field survey indicated that the Elbe and Saale Rivers were contaminated with both clofibric acid and ibuprofen. In Elbe River water we could detect the metabolite hydroxy-ibuprofen. Analyses of the city of Saskatoon sewage effluent discharged to the South Saskatchewan river detected clofibric acid but neither ibuprofen nor any metabolite. Laboratory studies indicated that the pharmaceutical ibuprofen was readily degraded in a river biofilm reactor. Two metabolites were detected and identified as hydroxy- and carboxy-ibuprofen. Both metabolites were observed to degrade in the biofilm reactors. However, in human metabolism the metabolite carboxy-ibuprofen appears and degrades second whereas the opposite occurs in biofilm systems. In biofilms the pharmacologically inactive stereoisomere of ibuprofen is degraded predominantly. In contrast, clofibric acid was not biologically degraded during the experimental period of 21 days. Similar results were obtained using biofilms developed using waters from either the South Saskatchewan or Elbe River. In a sterile reactor no losses of ibuprofen were observed. These results suggested that abiotic losses and adsorption played only a minimal role in the fate of the pharmaceuticals in the river biofilm reactors.

  13. Origin of the Colorado River experimental flood in Grand Canyon

    USGS Publications Warehouse

    Andrews, E.D.; Pizzi, L.A.

    2000-01-01

    The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of ~17 x 109 m3 year -1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of approximately 17??109 m3 year-1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.

  14. Carbon and nutrient contents in soils from the Kings River Experimental Watersheds, Sierra Nevada Mountains, California

    Treesearch

    D.W. Johnson; C.T. Hunsaker; D.W. Glass; B.M. Rau; B.A. Roath

    2011-01-01

    Soil C and nutrient contents were estimated for eight watersheds in two sites (one high elevation, Bull, and one low elevation, Providence) in the Kings River Experimental Watersheds in the western Sierra Nevada Mountains of California. Eighty-seven quantitative pits were dug to measure soil bulk density and total rock content, while three replicate surface samples...

  15. Ecological Functions of Shallow, Unvegetated Esturaine Habitats and Potential Dredging Impacts (With Emphasis on Chesapeake Bay)

    DTIC Science & Technology

    2005-12-01

    than seagrass , Seitz et al. (2005) has recently shown that growth of juvenile blue crabs was greater in unvegetated mud and sand flats of the upper...York River than the same habitats or seagrass beds in the lower river. In a companion study Lipcius et al. (2005) report that survival and overall...that decapod fauna of oyster shell habitats are distinct from that of either seagrass or marsh-edge habitats. Posey et al. (1999) have experimentally

  16. Human health risk assessment: A case study involving heavy metal soil contamination after the flooding of the river Meuse during the winter of 1993-1994.

    PubMed Central

    Albering, H J; van Leusen, S M; Moonen, E J; Hoogewerff, J A; Kleinjans, J C

    1999-01-01

    At the end of December 1993 and also at the end of January 1995, the river Meuse, one of the major rivers in Europe, flooded and river banks were inundated. We investigated the possible health risks of exposure to heavy metal concentrations in river bank soils resulting from the flooding of the river Meuse at the end of 1993. Soil and deposit samples and corresponding aerable and fodder crops were collected and analyzed for heavy metals. Although the soils of the floodplain of the river Meuse appeared severely polluted mainly by Cd and Zn, the heavy metal concentrations in the crops grown on these soils were within background ranges. Incidentally, the legal standard for Cd as endorsed by the Commodities Act was exceeded in wheat crops. The main exposure pathways for the general population were through the consumption of food crops grown on the river banks and through the direct ingestion of contaminated soils. For estimating potential human exposure in relation to soil pollution, we used a multiple pathway exposure model. For estimating the actual risk, we determined metal contents of vegetables grown in six experimental gardens. From this study, it can be concluded that there is a potential health risk for the river bank inhabitants as a consequence of Pb and Cd contaminations of the floodplain soils of the river Meuse, which are frequently inundated (averaged flooding frequency once every 2 years). Images Figure 1 Figure 2 PMID:9872715

  17. Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M.

    1990-11-01

    Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985.more » The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.« less

  18. Sediment Transport in the Bill Williams River and Turbidity in Lake Havasu During and Following Two High Releases from Alamo Dam, Arizona, in 2005 and 2006

    USGS Publications Warehouse

    Wiele, Stephen M.; Hart, Robert J.; Darling, Hugh L.; Hautzinger, Andrew B.

    2009-01-01

    Discharges higher than are typically released from Alamo Dam in west-central Arizona were planned and released in 2005, 2006, 2007, and 2008 to study the effects of these releases on the Bill Williams River and Lake Havasu, into which the river debouches. Sediment concentrations and water discharges were measured in the Bill Williams River, and turbidity, temperature, and dissolved oxygen were measured in Lake Havasu during and after experimental releases in 2005 and 2006 from Alamo Dam. Data from such releases will support ongoing ecological studies, improve environmentally sensitive management of the river corridor, and support the development of a predictive relationship between the operation of Alamo Dam and downstream flows and their impact on Lake Havasu and the Colorado River. Elevated discharges in the Bill Williams River mobilize more sediment than during more typical dam operation and can generate a turbidity plume in Lake Havasu. The intakes for the Central Arizona Project, which transfers Colorado River water to central and southern Arizona, are near the mouth of the Bill Williams River. Measurement of the turbidity and the development of the plume over time consequently were important components of the study. In this report, the measurements of suspended sediment concentration and discharges in the Bill Williams River and of turbidity in Lake Havasu are presented along with calculations of silt and sand loads in the Bill Williams River. Sediment concentrations were varied and likely dependent on a variable supply. Sediment loads were calculated at the mouth of the river and near Planet, about 10 km upstream from the mouth for the 2005 release, and they indicate that a net increase in transport of silt and a net decrease in the transport of sand occurred in the reach between the two sites.

  19. Large river bed sediment characterization with low-cost sidecan sonar: Case studies from two setting in the Colorado (Arizona) and Penobscot (Maine) Rivers

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Melis, Theodore S.; Smith, Sean

    2015-01-01

    Here we discuss considerations in the use of sidescan sonar for riverbed sediment classification using examples from two large rivers, the Colorado River below Glen Canyon Dam in Arizona and the Upper Penobscot River in northern Maine (Figure 3). These case studies represent two fluvial systems that differ in recent history, physiography, sediment transport, and fluvial morphologies. The bed of the Colorado River in Glen Canyon National Recreation Area is predominantly graveled with extensive mats of submerged vegetation, and ephemeral surficial sand deposits exist below major tributaries. The bed is imaged periodically to assess the importance of substrate type and variability on rainbow trout spawning and juvenile rearing habitats and controls on aquatic invertebrate population dynamics. The Colorado River bed further below the dam in Grand Canyon National Park is highly dynamic. Tributary inputs of sand, gravel and boulders are spatially variable, and hydraulics of individual pools and eddies vary considerably in space and in response to varying dam operations, including experimental controlled flood releases to rebuild eroding sandbars. The bed encompasses the full range of noncohesive sediments, deposited in complicated spatial patterns. The mobile portion of the Penobscot River is generally more uniform, and consists predominantly of embedded gravels interspersed between bedrock outcrops with small isolated sand patches in sections with modest or low gradients. Patches of large cobbles, boulders and bedrock outcrops are present in the lower reaches of the river near locations of two recent dam removal projects but are of limited extent below the "head of tide" on the river. Aggregations of coarse materials often correspond to locations with abrupt bed elevation drops in the Upper Penobscot River.

  20. Testing the effect of increased temperature and river water input on benthic and pelagic metabolism using a large scale experimental pond ecosystem

    NASA Astrophysics Data System (ADS)

    Rodriguez, Patricia; Geibrink, Erik; Vasconcelos, Francisco; Hedström, Per; Byström, Pär; Karlsson, Jan

    2013-04-01

    We performed a large scale experimental study to test the effect of increased temperatures and concentration of allochthonous dissolved organic carbon (DOC) on benthic and pelagic primary production and respiration. The experiment was carried out during one ice-free season (May-October 2012) in a clear-water pond ecosystem divided into 16 enclosures (each 120 m3 and 1.6 m deep) including natural benthic and pelagic habitats and fish as top consumers (40 adult three-spine sticklebacks were introduced at the beginning of the experiment). Treatments included input of brown river water (23 mg/L in DOC) and heating (3° C above ambient temperature) in a factorial design: 4 enclosures were kept as controls (clear-cold), 4 enclosures were heated (clear-hot), 4 received river water (dark-cold) and 4 were both heated and received river water (dark-hot). Physical and chemical variables were monitored weekly meanwhile benthic, pelagic and ecosystems metabolism were estimated from free-water oxygen data and incubation studies. The 3° C difference in temperature between hot and cold enclosures was consistent during the study and DOC concentrations averaged 4 and 8 mg/L in clear water and dark enclosures, respectively; without any interaction effect between temperature and DOC concentration. Vertical light attenuation coefficient (Kd) showed significant differences between treatments with (0.62±0.40 m-1) and without river water (0.24±0.13 m-1). Total nitrogen concentrations ranged between 187 and 300 μg/L, with higher values in the dark-cold enclosures. The same pattern of higher values in dark-cold enclosures was found in phytoplankton chlorophyll a and primary production. Preliminary results show that gross benthic primary production (higher in clear-cold enclosures) largely exceeded phytoplankton production at the beginning of the experiment. Due to high respiration compared to gross primary production the net ecosystem production was in general negative in the pelagic habitat and did not show any effect of temperature or river water treatment. Our results suggest that input of river water may affect relatively shallow lake ecosystems differently compared to what is generally assumed based on studies of deeper systems.

  1. Factors controlling the establishment of Fremont cottonwood seedlings on the Upper Green River, USA

    USGS Publications Warehouse

    Cooper, David J.; Merritt, David M.; Andersen, Douglas C.; Chimner, Rodney A.

    1999-01-01

    Declines in cottonwood (Populus spp.) recruitment along alluvial reaches of large rivers in arid regions of the western United States have been attributed to modified flow regimes, lack of suitable substrate, insufficient seed rain, and increased interspecific competition. We evaluated whether and how these factors were operating during 1993–1996 to influence demographics of Fremont cottonwood (P. deltoides Marshall subsp. wislizenii (Watson) Eckenwalder) along reaches of the Green and Yampa Rivers near their confluence in northwestern Colorado. We examined seedling establishment, defined as survival through three growing seasons, at three alluvial reaches that differed primarily in the level of flow regulation: a site on the unregulated Yampa, an upper Green River site regulated by Flaming Gorge Dam, and a lower Green River site below the Green–Yampa confluence. Seed rain was abundant in all sites, and led to large numbers of germinants (first-year seedlings) appearing each year at all sites. The regulated flow in the upper Green River reach restricted germination to islands and cut banks that were later inundated or eroded; no seedlings survived there. Mortality at the lower Green River site was due largely to desiccation or substrate erosion; 23% of 1993 germinants survived their first growing season, but at most 2% survived through their second. At the Yampa River site, germinants appeared on vegetated and unvegetated surfaces up to 2.5 m above base flow stage, but survived to autumn only on bare surfaces at least 1.25 m above base flow stage, and where at least 10 of the upper 40 cm of the alluvium was fine-textured. Our studies of rooting depths and the stable isotopic composition of xylem water showed that seedlings in the most favorable locations for establishment at the Yampa site do not become phreatophytic until their third or fourth growing season. Further, the results of experimental field studies examining effects of shade and competition supported the hypothesis that insufficient soil moisture, possibly in combination with insufficient light, restricts establishment to unvegetated sites. Collectively, the demographic and experimental studies suggest that, in arid regions, soil water availability is at least as important as light level in limiting establishment of Fremont cottonwood seedlings. We hypothesize that in cases where arid land rivers experience large spring stage changes, recruitment is further constrained within bare areas to those sites that contain sufficient fine-textured alluvium, saturated during the spring flood, to provide the flood-derived soil moisture normally necessary for late-summer seedling survival.

  2. The Design and Analysis of Salmonid Tagging Studies in the Columbia Basin : Volume II: Experiment Salmonid Survival with Combined PIT-CWT Tagging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Ken

    1997-06-01

    Experiment designs to estimate the effect of transportation on survival and return rates of Columbia River system salmonids are discussed along with statistical modeling techniques. Besides transportation, river flow and dam spill are necessary components in the design and analysis otherwise questions as to the effects of reservoir drawdowns and increased dam spill may never be satisfactorily answered. Four criteria for comparing different experiment designs are: (1) feasibility, (2) clarity of results, (3) scope of inference, and (4) time to learn. In this report, alternative designs for conducting experimental manipulations of smolt tagging studies to study effects of river operationsmore » such as flow levels, spill fractions, and transporting outmigrating salmonids around dams in the Columbia River system are presented. The principles of study design discussed in this report have broad implications for the many studies proposed to investigate both smolt and adult survival relationships. The concepts are illustrated for the case of the design and analysis of smolt transportation experiments. The merits of proposed transportation studies should be measured relative to these principles of proper statistical design and analysis.« less

  3. Upper Washita River Experimental Watersheds: Physiography Data

    USDA-ARS?s Scientific Manuscript database

    Physiographic data such as digital elevation models (DEMs), soils, geology, stream channel network characteristics, and channel stability data are essential for understanding the complex hydrologic cycle and chemical transport processes of any given study area. This paper describes physiographic dat...

  4. The interaction between vegetation and channel dynamics based on experimental findings

    NASA Astrophysics Data System (ADS)

    Teske, R.; Van Dijk, W. M.; Van De Lageweg, W.; Kleinhans, M. G.

    2012-12-01

    Strong feedbacks exist between river channel dynamics, floodplain development and riparian vegetation. Several experimental studies showed how uniformly sown vegetation causes a shift from a braided river to a single-thread and sometimes meandering river. The objective of this study is to test what the effect of fluvially distributed seeds and vegetation settling is on channel pattern change and channel dynamics. The experiments were carried out in a flume of 3 m wide and 10 m long. We tested where the vegetation deposited in a braided and meandering river and how the morphology changed. We used a simple hydrograph of 0.25 hour high flow and 3.75 hour low flow, where alfalfa seeds were added during high flow. The bed sediment consisted of a poorly sorted sediment mixture ranging from fine sand to fine gravel. The evolution was recorded by a high-resolution laser-line scanner and a Digital Single Lens Reflex (DSLR) camera used for channel floodplain segmentation, water depth approximation and vegetation distribution. In an initially braided river, vegetation settled on the higher banks and stabilized the banks. In an initially meandering river, vegetation settled in the inner scrolls, and also on the outer banks when water level exceeded bankfull conditions. In agreement with earlier work, the outer bank was stabilized; erosion rate decreased and bends became sharper. The inner bend vegetation stabilized a part of the point bar and hydraulic resistance of the vegetation steered water in the channel and to the non-vegetated part of the inner bend. As result the meander bend became braided as water flows along the vegetation. Vegetation formed patches that grew over time and reduced channel dynamics. We conclude that self-settling vegetation decreased local bank erosion and that vegetated islands leads to a multi-thread system instead of single-threaded.

  5. One-hundred years of wildfire research: A legacy of the Priest River, Deception Creek, and Boise Basin Experimental Forests of Idaho [Chapter 21

    Treesearch

    Russell T. Graham; Theresa B. Jain; Kathy L. Graham; Robert Denner; Colin Hardy

    2014-01-01

    The 1910 fires, which burned more than 1.3 million ha of northern Rocky Mountain forests, provided a mission and management objectives for the newly created Forest Service. By 1911, the Priest River Experimental Station (Forest- PREF) was established in northern Idaho to help meet the needs of the Forest Service. Harry T. Gisborne, whose work was centered at PREF,...

  6. Thinning shock and response to fertilizer less than expected in young Douglas-fir stand at Wind River Experimental Forest.

    Treesearch

    Dean S. DeBell; Constance A. Harrington; John. Shumway

    2002-01-01

    Three thinning treatments (thinned to 3.7 by 3.7 m, thinned to 4.3 by 4.3 m, and an unthinned control treatment with nominal spacing averaging 2.6 by 2.6 m) were installed in a 10-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation growing on a low-quality site at the Wind River Experimental Forest in southwest Washington. Two...

  7. Turning the Tide: Estuaries Shaped by Channel-Shoal Interactions, Eco-engineers and Inherited Landscapes

    NASA Astrophysics Data System (ADS)

    Kleinhans, M. G.; Braat, L.; Leuven, J.; Baar, A. W.; van der Vegt, M.; Van Maarseveen, M. C. G.; Markies, H.; Roosendaal, C.; van Eijk, A.

    2015-12-01

    Estuaries exhibit correlations between inlet dimensions, tidal prism and intertidal area, but to what extent estuary planform shape and shoal patterns resulted from biomorphological processes or from inherited conditions such as coastal plain and drowned valley dimensions remains unclear. We explore the hypothesis that mud flats and vegetation as a self-formed lateral confinement have effects analogous to that of river floodplain on braided versus meandering river patterns. Here we use the Delft3D numerical model and a novel tidal flume setup, the Metronome, to create estuaries from idealized initial conditions, with and without mud supply at the fluvial boundary. Experimental mud was simulated by crushed nutshell. Both the numerical and experimental estuaries were narrower with increasing mud, and had a lower degree of channel braiding. The experimental estuaries developed meanders at the river boundary with floodplain developing on the pointbar whereas cohesionless cases were more dynamic.

  8. 78 FR 79622 - Endangered and Threatened Species: Designation of a Nonessential Experimental Population of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... Experimental Population of Central Valley Spring-Run Chinook Salmon Below Friant Dam in the San Joaquin River..., the National Marine Fisheries Service (NMFS), designate a nonessential experimental population of... experimental population for particular activities inside the experimental population's geographic range and...

  9. Inflammatory Effects of Woodsmoke Exposure among Wildland Firefighters Working at Prescribed Burns at the Savannah River Site, SC

    EPA Science Inventory

    Objectives: Wildland firefighters in the United States are occupationally exposed to high levels of woodsmoke. Results from experimental studies show that exposure to woodsmoke induces inflammation. Therefore, a study was conducted to investigate the effect of occupational woodsm...

  10. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida

    USGS Publications Warehouse

    Burgess, O.T.; Pine, William E.; Walsh, S.J.

    2013-01-01

    Floodplain habitats provide critical spawning and rearing habitats for many large-river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally.

  11. 78 FR 3381 - Endangered and Threatened Species: Designation of a Nonessential Experimental Population of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... Experimental Population of Central Valley Spring-Run Chinook Salmon Below Friant Dam in the San Joaquin River... Fisheries Service (NMFS), propose a rule to designate a nonessential experimental population of Central... nonessential experimental population for particular activities inside the experimental population's geographic...

  12. Regional thermal-inertia mapping from an experimental satellite ( Powder River basin, Wyoming).

    USGS Publications Warehouse

    Watson, K.

    1982-01-01

    A new experimental satellite has provided, for the first time, thermal data that should be useful in reconnaissance geologic exploration. Thermal inertia, a property of geologic materials, can be mapped from these data by applying an algorithm that has been developed using a new thermal model. A simple registration procedure was used on a pair of day and night images of the Powder River basin, Wyoming, to illustrate the method.-from Author

  13. Characterization of the Kootenai River Algae Community and Primary Productivity Before and After Experimental Nutrient Addition, 2004–2007 [Chapter 2, Kootenai River Algal Community Characterization, 2009 KTOI REPORT].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holderman, Charlie; Bonners Ferry, ID; Anders, Paul

    2009-07-01

    The Kootenai River ecosystem (spelled Kootenay in Canada) has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam on the river near Libby Montana, completed in 1972. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel downstream in Idaho and British Columbia (B.C.) severely reducing natural biological productivity and habitat diversity crucial to large river-floodplainmore » ecosystem function. Libby Dam greatly reduces sediment and nutrient transport to downstream river reaches, and dam operations cause large changes in the timing, duration, and magnitude of river flows. These and other changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to large scale loss of nutrients, experimental nutrient addition was initiated in the North Arm of Kootenay Lake in 1992, in the South Arm of Kootenay Lake in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes baseline chlorophyll concentration and accrual (primary productivity) rates and diatom and algal community composition and ecological metrics in the Kootenai River for four years, one (2004) before, and three (2005 through 2007) after nutrient addition. The study area encompassed a 325 km river reach from the upper Kootenay River at Wardner, B.C. (river kilometer (rkm) 445) downstream through Montana and Idaho to Kootenay Lake in B.C. (rkm 120). Sampling reaches included an unimpounded reach furthest upstream and four reaches downstream from Libby Dam affected by impoundment: two in the canyon reach (one with and one without nutrient addition), a braided reach, and a meandering reach. The study design included 14 sampling sites: an upstream, unimpounded reference site (KR-14), four control (non-fertilized) canyon sites downstream from Libby Dam, but upstream from nutrient addition (KR-10 through KR-13), two treatment sites referred to collectively as the nutrient addition zone (KR-9 and KR-9.1, located at and 5 km downstream from the nutrient addition site), two braided reach sites (KR-6 and KR-7), and four meander reach sites (KR-1 through KR-4). A series of qualitative evaluations and quantitative analyses were used to assess baseline conditions and effects of experimental nutrient addition treatments on chlorophyll, primary productivity, and taxonomic composition and metric arrays for the diatom and green algae communities. Insufficient density in the samples precluded analyses of bluegreen algae taxa and metrics for pre- and post-nutrient addition periods. Chlorophyll a concentration (mg/m{sup 2}), chlorophyll accrual rate (mg/m{sup 2}/30d), total chlorophyll concentration (chlorophyll a and b) (mg/m{sup 2}), and total chlorophyll accrual rate (mg/m{sup 2}/30d) were calculated. Algal taxa were identified and grouped by taxonomic order as Cyanophyta (blue-greens), Chlorophyta (greens), Bacillariophyta (diatoms), Chrysophyta (goldens), and dominant species from each sample site were identified. Algal densities (number/ml) in periphyton samples were calculated for each sample site and sampling date. Principal Component Analysis (PCA) was performed to reduce the dimension of diatom and algae data and to determine which taxonomic groups and metrics were contributing significantly to the observed variation. PCA analyses were tabulated to indicate eigenvalues, proportion, and cumulative percent variation, as well as eigenvectors (loadings) for each of the components. Biplot graphic displays of PCA axes were also generated to characterize the pattern and structure of the underlying variation. Taxonomic data and a series of biological and ecological metrics were used with PCA for diatoms and algae. Algal metrics included a suite of abundance, diversity, richness, dominance, and other measures, whereas additional trophic status and chemical limnology metrics, Van Dam indices and morphological groupings were employed in diatom PCAs. Analysis of Variance (ANOVA) was carried out using chlorophyll metrics and taxa and metric arrays for the diatom and green algae community data for comparing site differences from 2004 through 2007. Clear, statistically significant, biological responses from chlorophyll metrics, and taxa and metrics of the diatom and algal communities were revealed following experimental nutrient addition in the Kootenai River. Chlorophyll metric responses were more often significant and generally greater in magnitude than diatom and green algae taxa and metric responses.« less

  14. A toolbox for computing pebble shape and roundness indexes: experimental tests and recommendations for future applications.

    NASA Astrophysics Data System (ADS)

    Cassel, M.; Piegay, H.; Lave, J.

    2016-12-01

    Pebble rounding caused by attrition is, beside chemical dissolution, breakage, and grain size segregation, one of the key processes controlling bedload downstream fining in rivers. Downstream changes in pebble geometry is subject of consideration since Aristotle (Krynine, 1960) and its measurement represent a challenge since the end of 19th century, leading to a long standing debate (Blott and Pye, 2008). A toolbox developed by Roussillon et al. (2009) operate on automatic computation of several shape and roundness indexes from images of 2D projection plan of pebbles disposed on a one meter square red board. In order to promote the tool for future applications, we tested the effects of pebble position on board, of picture resolution and treatment on three shape and roundness indexes. We also compared the downstream patterns of these indexes on two pebble samples of the same lithology collected on the Progo River (Indonesia) based on field observations (i) and experimentation (ii). Shape and roundness were measured on (i) 8 sites distributed over a distance of 36 km along the river, and (ii) ten times on a set of particules collected on the Progo spring and transported in an annular flume over the same distance. This travel distance was monitored using passive low frequency RFID system. Results show that pebble position does not have a significant effect on shape and roundness indexes but these indexes are sensible to picture resolutions and treatments so that a clear protocol must be considered for avoiding any observer bias. Downstream changes in roundness indexes are very similar in field and experimental conditions, while abrasion environments are distinct. Discontinuities observed in downstream river pattern but not in experimental one underlined changes in Progo River pebble roundness are probably caused by sediment supplied from tributaries or bank erosion. These results highlight the toolbox potential for diagnosing river systems function.

  15. A methodology to generate high-resolution digital elevation model (DEM) and surface water profile for a physical model using close range photogrammetric (CRP) technique

    NASA Astrophysics Data System (ADS)

    Mali, V. K.; Kuiry, S. N.

    2015-12-01

    Comprehensive understanding of the river flow dynamics with varying topography in a real field is very intricate and difficult. Conventional experimental methods based on manual data collection are time consuming and prone to many errors. Recently, remotely sensed satellite imageries are at the best to provide necessary information for large area provided the high resolution but which are very expensive and untimely, consequently, attaining accurate river bathymetry from relatively course resolution and untimely imageries are inaccurate and impractical. Despite of that, these data are often being used to calibrate the river flow models, though these models require highly accurate morpho-dynamic data in order to predict the flow field precisely. Under this circumstance, these data could be supplemented through experimental observations in a physical model with modern techniques. This paper proposes a methodology to generate highly accurate river bathymetry and water surface (WS) profile for a physical model of river network system using CRP technique. For the task accomplishment, a number of DSLR Nikon D5300 cameras (mounted at 3.5 m above the river bed) were used to capture the images of the physical model and the flooding scenarios during the experiments. During experiment, non-specular materials were introduced at the inlet and images were taken simultaneously from different orientations and altitudes with significant overlap of 80%. Ground control points were surveyed using two ultrasonic sensors with ±0.5 mm vertical accuracy. The captured images are, then processed in PhotoScan software to generate the DEM and WS profile. The generated data were then passed through statistical analysis to identify errors. Accuracy of WS profile was limited by extent and density of non-specular powder and stereo-matching discrepancies. Furthermore, several factors of camera including orientation, illumination and altitude of camera. The CRP technique for a large scale physical model can significantly reduce the time and manual labour and avoids human errors in taking data using point gauge. Obtained highly accurate DEM and WS profile can be used in mathematical models for accurate prediction of river dynamics. This study would be very helpful for sediment transport study and can also be extended for real case studies.

  16. A methodology to generate high-resolution digital elevation model (DEM) and surface water profile for a physical model using close range photogrammetric (CRP) technique

    NASA Astrophysics Data System (ADS)

    Méndez Incera, F. J.; Erikson, L. H.; Ruggiero, P.; Barnard, P.; Camus, P.; Rueda Zamora, A. C.

    2014-12-01

    Comprehensive understanding of the river flow dynamics with varying topography in a real field is very intricate and difficult. Conventional experimental methods based on manual data collection are time consuming and prone to many errors. Recently, remotely sensed satellite imageries are at the best to provide necessary information for large area provided the high resolution but which are very expensive and untimely, consequently, attaining accurate river bathymetry from relatively course resolution and untimely imageries are inaccurate and impractical. Despite of that, these data are often being used to calibrate the river flow models, though these models require highly accurate morpho-dynamic data in order to predict the flow field precisely. Under this circumstance, these data could be supplemented through experimental observations in a physical model with modern techniques. This paper proposes a methodology to generate highly accurate river bathymetry and water surface (WS) profile for a physical model of river network system using CRP technique. For the task accomplishment, a number of DSLR Nikon D5300 cameras (mounted at 3.5 m above the river bed) were used to capture the images of the physical model and the flooding scenarios during the experiments. During experiment, non-specular materials were introduced at the inlet and images were taken simultaneously from different orientations and altitudes with significant overlap of 80%. Ground control points were surveyed using two ultrasonic sensors with ±0.5 mm vertical accuracy. The captured images are, then processed in PhotoScan software to generate the DEM and WS profile. The generated data were then passed through statistical analysis to identify errors. Accuracy of WS profile was limited by extent and density of non-specular powder and stereo-matching discrepancies. Furthermore, several factors of camera including orientation, illumination and altitude of camera. The CRP technique for a large scale physical model can significantly reduce the time and manual labour and avoids human errors in taking data using point gauge. Obtained highly accurate DEM and WS profile can be used in mathematical models for accurate prediction of river dynamics. This study would be very helpful for sediment transport study and can also be extended for real case studies.

  17. Redox transformation and reductive immobilization of Cr(VI) in the Columbia River hyporheic zone sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Fen; Liu, Yuanyuan; Zachara, John

    An experimental and modeling study was conducted to investigate the redox transformation and reductive immobilization of groundwater contaminant Cr in hyporheic zone (HZ) sediments from U.S. Department of Energy’s Hanford site, where groundwater Cr(VI) is migrating and discharging to the nearby Columbia River. Experimental results revealed that Cr(VI) can be reduced to immobile reduced Cr by the HZ sediments in the presence/absence of O2. Anaerobic pre-incubation of the sediments increased the effective rate of Cr reduction that was correlated with the increase in HCl-extractable Fe(II) content in the sediments. The reduced Cr was stable in exposure to O2 under field-relevantmore » pH (~7.5) and Mn-containing (~0.02% w/w) conditions. The Cr(VI) reduction rate showed a multi-rate behavior, apparently reflecting the presence of reductants with different reactivity in the sediments. The results from this study indicated that the HZ sediments can reductively immobilize Cr and the sediment redox capacity can be recharged through microbial activities. The results implied that HZ can play a role as a natural permeable redox barrier for removing groundwater Cr before it discharges into a river system.« less

  18. Experimental study to control the upstream migration of invasive alien fish species by submerged weir

    NASA Astrophysics Data System (ADS)

    Sakuma, Masami; Kunimatsu, Fumihiro; Tsuchiya, Taku; Kawamura, Makiko; Fujita, Hiroshi

    Largemouth bass and Bluegill, major invasive alien fish species in Japan, have been extending their habitat ranges over not only Lake Biwa and the lagoons but also surrounding waters connected to them through small rivers and canals. Their increasing number is bringing about the reduction in the number of native fish species. To prevent the spread of these alien species through small rivers and canals during breeding season of the native fish (crucian carp), this study experimentally examined the effect of a submerged weir on controlling upstream migration of the alien species and the native fish. As a result of the experiment, the ratio of the alien species migrating upstream decreased as the weir height rose, whereas the ratio did not show the same trend in the case of the native fish. The ratio of the alien species also decreased as the overflow velocity over the weir rose. On the other hand, the ratio of the native fish increased as the overflow velocity rose up to 1.0m/s and decreased thereafter. These results suggest that the submerged weir may control upstream migration of the alien species to surrounding waters through small rivers and canals without interfering with the reproductive migration of the native fish.

  19. Redox transformation and reductive immobilization of Cr(VI) in the Columbia River hyporheic zone sediments

    NASA Astrophysics Data System (ADS)

    Xu, Fen; Liu, Yuanyuan; Zachara, John; Bowden, Mark; Kennedy, David; Plymale, Andrew E.; Liu, Chongxuan

    2017-12-01

    An experimental and modeling study was conducted to investigate the redox transformation and reductive immobilization of groundwater contaminant Cr in hyporheic zone (HZ) sediments from U.S. DOE's Hanford Site, where groundwater Cr(VI) is migrating and discharging to the nearby Columbia River. Experimental results revealed that Cr(VI) can be reduced and immobilized by the HZ sediments in the presence/absence of O2. Anaerobic pre-incubation of the sediments increased the effective rate of Cr reduction that was correlated with the increase in HCl-extractable Fe(II) content in the sediments. The reduced Cr was stable when exposed to O2 under field-relevant pH (7.5) with and without dissolved Mn(II), which might be oxidized to form Mn(III/IV) oxides that may oxidize reduced Cr. The Cr(VI) reduction rate showed a multi-rate behavior, apparently reflecting the presence of reductants with different reactivity in the sediments. The results from this study indicated that the HZ sediments can reductively immobilize Cr and the sediment redox capacity can be recharged through microbial activities. The results implied that HZ can play a role as a natural permeable redox barrier for removing groundwater Cr before it discharges into a river system.

  20. Grand Canyon riverbed sediment changes, experimental release of September 2000 - a sample data set

    USGS Publications Warehouse

    Wong, Florence L.; Anima, Roberto J.; Galanis, Peter; Codianne, Jennifer; Xia, Yu; Bucciarelli, Randy; Hamer, Michael

    2003-01-01

    An experimental water release from the Glen Canyon Dam into the Colorado River above Grand Canyon was conducted in September 2000 by the U.S. Bureau of Reclamation. The U.S. Geological Survey (USGS) conducted sidescan sonar surveys between Glen Canyon Dam (mile -15) and Diamond Creek (mile 220), Arizona (mile designations after Stevens, 1998) to determine the sediment characteristics of the Colorado River bed before and after the release. The first survey (R3-00-GC, 28 Aug to 5 Sep 2000) was conducted before the release when the river was at its Low Summer Steady Flow (LSSF) of 8,000 cfs. The second survey (R4-00-GC, 10 to 18 Sep 2000) was conducted immediately after the September 2000 experimental release when the average daily flow was as high as 30,800 cfs as measured below Glen Canyon Dam (Figure 2). Riverbed sediment properties interpreted from the sidescan sonar images include sediment type and sandwaves; overall changes in these properties between the two surveys were calculated. Sidescan sonar data from the USGS surveys were processed for segments of the Colorado River from Glen Canyon Dam (mile -15) to Phantom Ranch (mile 87.7, Figure 3). The surveys targeted pools between rapids that are part of the Grand Canyon Monitoring and Research Center (GCMRC http://www.gcmrc.gov/) physical sciences study. Maps interpreted from the sidescan sonar images show the distribution of sediment types (bedrock, boulders, pebbles or cobbles, and sand) and the extent of sandwaves for each of the pre- and post-flow surveys. The changes between the two surveys were calculated with spatial arithmetric and had properties of fining, coarsening, erosion, deposition, and the appearance or disappearance of sandwaves.

  1. Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river

    USGS Publications Warehouse

    Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, Vanessa B.; Hautzinger, A.; McMullen, L.E.; Warner, A.

    2010-01-01

    Successful environmental flow prescriptions require an accurate understanding of the linkages among flow events, geomorphic processes and biotic responses. We describe models and results from experimental flow releases associated with an environmental flow program on the Bill Williams River (BWR), Arizona, in arid to semiarid western U.S.A. Two general approaches for improving knowledge and predictions of ecological responses to environmental flows are: (1) coupling physical system models to ecological responses and (2) clarifying empirical relationships between flow and ecological responses through implementation and monitoring of experimental flow releases. We modelled the BWR physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water levels and estimate flow through the river system under a range of scenarios, (2) one- and two-dimensional river hydraulics models to estimate stage-discharge relationships at the whole-river and local scales, respectively, and (3) a groundwater model to estimate surface- and groundwater interactions in a large, alluvial valley on the BWR where surface flow is frequently absent. An example of a coupled, hydrology-ecology model is the Ecosystems Function Model, which we used to link a one-dimensional hydraulic model with riparian tree seedling establishment requirements to produce spatially explicit predictions of seedling recruitment locations in a Geographic Information System. We also quantified the effects of small experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity and distribution, and on the dynamics of differentially flow-adapted benthic macroinvertebrate groups. Results of model applications and experimental flow releases are contributing to adaptive flow management on the BWR and to the development of regional environmental flow standards. General themes that emerged from our work include the importance of response thresholds, which are commonly driven by geomorphic thresholds or mediated by geomorphic processes, and the importance of spatial and temporal variation in the effects of flows on ecosystems, which can result from factors such as longitudinal complexity and ecohydrological feedbacks. ?? Published 2009.

  2. Development of Additional Hazard Assessment Models

    DTIC Science & Technology

    1977-03-01

    globules, their trajectory (the distance from the spill point to the impact point on the river bed), and the time required for sinking. Established theories ...chemicals, the dissolution rate is estimated by using eddy diffusivity surface renewal theories . The validity of predictions of these theories has been... theories and experimental data on aeration of rivers. * Describe dispersion in rivers with stationary area source and sources moving with the stream

  3. Northern Rivers Ecosystem Initiative: nutrients and dissolved oxygen - issues and impacts.

    PubMed

    Chambers, Patricia A; Culp, Joseph M; Glozier, Nancy E; Cash, Kevin J; Wrona, Fred J; Noton, Leigh

    2006-02-01

    Anthropogenic inputs of nitrogen (N), phosphorus (P) and oxygen-consuming material to aquatic ecosystems can change nutrient dynamics, deplete oxygen, and change abundance and diversity of aquatic plants and animals. The Northern Rivers Ecosystem Initiative required a research and assessment program to establish the contribution of pulp mill and sewage discharges to eutrophication and depressions in dissolved oxygen (DO) in the Athabasca and Wapiti rivers of northern Alberta, Canada and examine the adequacy of existing guidelines for protecting these systems. Analysis of long-term data showed that total N (TN) and total P (TP) concentrations in exposed river reaches exceeded concentrations in reference reaches by < or = 2 times for the Athabasca River, and by 9.6 (TP) and 2.6 (TN) times for the Wapiti River. Results from nutrient limitation experiments conducted in situ and in mesocosms showed that benthic algal production was nutrient sufficient downstream of pulp mill discharges but constrained in upper river reaches by insufficient P (Athabasca River) or N + P (Wapiti River). Dissolved oxygen (DO) concentrations in both rivers declined during winter such that median concentrations in the Athabasca River 945 km downstream of the headwaters were approximately 8 mg L(-1) in mid-February. Although water column DO rarely approached the guideline of 6.5 mg L(-1), DO studies undertaken in the Wapiti River showed that pore water DO often failed to meet this guideline and could not be predicted from water column DO. Results from this integrated program of monitoring and experimentation have improved understanding of the interactions between nutrients, DO and aquatic ecosystem productivity and resulted in recommendations for revisions to nutrient and DO guidelines for these northern rivers.

  4. Uranium plume persistence impacted by hydrologic and geochemical heterogeneity in the groundwater and river water interaction zone of Hanford site

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zachara, J. M.; Vermeul, V. R.; Freshley, M.; Hammond, G. E.

    2015-12-01

    The behavior of a persistent uranium plume in an extended groundwater- river water (GW-SW) interaction zone at the DOE Hanford site is dominantly controlled by river stage fluctuations in the adjacent Columbia River. The plume behavior is further complicated by substantial heterogeneity in physical and geochemical properties of the host aquifer sediments. Multi-scale field and laboratory experiments and reactive transport modeling were integrated to understand the complex plume behavior influenced by highly variable hydrologic and geochemical conditions in time and space. In this presentation we (1) describe multiple data sets from field-scale uranium adsorption and desorption experiments performed at our experimental well-field, (2) develop a reactive transport model that incorporates hydrologic and geochemical heterogeneities characterized from multi-scale and multi-type datasets and a surface complexation reaction network based on laboratory studies, and (3) compare the modeling and observation results to provide insights on how to refine the conceptual model and reduce prediction uncertainties. The experimental results revealed significant spatial variability in uranium adsorption/desorption behavior, while modeling demonstrated that ambient hydrologic and geochemical conditions and heterogeneities in sediment physical and chemical properties both contributed to complex plume behavior and its persistence. Our analysis provides important insights into the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water and groundwater interactions.

  5. The Study of Watershed Topography Characteristics in Vakhsh River Based on ZY3-DSM

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Chen, L.; Li, M.; Men, Z.

    2018-04-01

    The Vakhsh River is one of the major rivers in Tajikistan. The quantitative analysis of watershed topography and developmental characteristics in Vakhsh River catchment can reflect the morphological characteristics of the region, which is of great significance for revealing the quantitative relationship between the hydrological and the geomorphological process. In this paper, the D8 algorithm and the spatial analysis method were used to extract the river networks, the catchment boundary profile lines and the longitudinal valley profile lines of the four major tributaries in the Vakhsh River from the ZY3-DSM of 10 meters resolution. On this basis, five quantitative indices including the frequency of wave, amplitude of wave, gully density, the longitudinal slope and roundness rate were used to analyze the watershed landform and its development degree. According to the experimental results, the catchment have a high surface complexity and a mature landform. Yovonsu river catchment which is in the downstream of Vakhsh River is oval and has low terrain complexity with large frequency and small amplitude. Among the midstream and upstream, the Mukson River has developed into geriatric terrain that is the most mature and has the highest surface complex, while the Obikhingon River and the Kizilsu River have developed into a stable maternal terrain. In terms of topography, the boundary elevation of the Obikhingon is basically in accordance with the normal distribution, while the Kizilsu and the Muksu show a peak state with elevations of 4,000-5,000 m and 5,000-5,500 m, respectively.

  6. Thermal impact of a small alas-valley river in a continuous permafrost area - insights and issues raised from a field monitoring Site in Syrdakh (Central Yakutia)

    NASA Astrophysics Data System (ADS)

    Grenier, Christophe; Nicolas, Roux; Fedorov, Alexander; Konstantinov, Pavel; Séjourné, Antoine; Costard, François; Marlin, Christelle; Khristoforov, Ivan; Saintenoy, Albane

    2017-04-01

    Lakes are probably the most prominent surface water bodies in continuous permafrost areas. As a consequence, they are also the most studied features in these regions (e.g. Fedorov et al. 2014). They are indeed of great interest, not only for local populations that use the water resource they represent both in winter and summer, but also from a climatic point of view as they can be a specific source of green-house gases due to the relatively warmer environment they create, especially associated with their taliks (thawed zone surrounded by permafrost located beneath large enough lakes). From a hydrogeological perspective, such taliks can form complex groundwater networks, thus possibly connecting sub-permafrost groundwater with surface water in the present context of climate change. On the other hand, rivers, another important feature of permafrost landscapes providing similar challenges, have drawn less attention so that only a few studies focus on river interactions with permafrost (e.g. Costard et al. 2014, Grenier et al. 2013). However, the processes of heat transfer at stake between river and permafrost strongly differ from lake systems for several reasons. The geometries differ, the river water flow and thermal regimes and interactions with the lateral slopes (valley) are specific. Of particular importance is the fact that the water, in the case of rivers, is in motion leading to specific heat exchange phenomena between water and soil. (Roux et al., accepted) addressed this issue recently by means of an experimental study in a cold room and associated numerical simulations. The present study focuses on a real river-permafrost system with its full natural complexity. A small alas-valley in the vicinity of Yakutsk (Central Yakutia, Siberia) was chosen. Monitoring was started in October 2012 to study the thermal and hydrological interactions between a river and its underground in this continuous permafrost environment. Thermal sensors were installed inside the river, in the atmosphere and into boreholes in the permafrost, at different locations and various distances from the river and the upstream lake. Hydrological information was collected as well (e.g. water temperature, electrical conductivity, pH and isotopic profiles; river flow rates). Soil properties were studied in pits (e.g. thermal conductivity, soil humidity and temperature measurements). More recently GPR studies were conducted along river profiles complementing the dataset. This new study site is introduced and the major results are presented as well as the main issues raised and future perspectives.

  7. 76 FR 42658 - Endangered and Threatened Species: Authorizing Release of a Nonessential Experimental Population...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Experimental Population of Upper Columbia Spring-Run Chinook Salmon in the Okanogan River Basin Under the... nonessential experimental population of Upper Columbia (UC) spring-run Chinook salmon (Oncorhynchus tshawytscha... Act (ESA) of 1973, as amended. The geographic boundaries of the experimental population area would...

  8. 76 FR 35979 - Endangered and Threatened Wildlife and Plants; Establishment of a Nonessential Experimental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Nonessential Experimental Population of Bull Trout in the Clackamas River Subbasin, OR AGENCY: Fish and... Reservation of Oregon (CTWSRO), will establish a nonessential experimental population (NEP) of bull trout...) which allows for the designation of reintroduced populations of listed species as ``experimental...

  9. Advanced Tools for River Science: EAARL and MD_SWMS: Chapter 3

    USGS Publications Warehouse

    Kinzel, Paul J.

    2009-01-01

    Disruption of flow regimes and sediment supplies, induced by anthropogenic or climatic factors, can produce dramatic alterations in river form, vegetation patterns, and associated habitat conditions. To improve habitat in these fluvial systems, resource managers may choose from a variety of treatments including flow and/or sediment prescriptions, vegetation management, or engineered approaches. Monitoring protocols developed to assess the morphologic response of these treatments require techniques that can measure topographic changes above and below the water surface efficiently, accurately, and in a standardized, cost-effective manner. Similarly, modeling of flow, sediment transport, habitat, and channel evolution requires characterization of river morphology for model input and verification. Recent developments by the U.S. Geological Survey with regard to both remotely sensed methods (the Experimental Advanced Airborne Research LiDAR; EAARL) and computational modeling software (the Multi-Dimensional Surface-Water Modeling System; MD_SWMS) have produced advanced tools for spatially explicit monitoring and modeling in aquatic environments. In this paper, we present a pilot study conducted along the Platte River, Nebraska, that demonstrates the combined use of these river science tools.

  10. Satellite radar altimetry water elevations performance over a 200 m wide river: Evaluation over the Garonne River

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Frappart, F.; Leleu, A.-S.; Marieu, V.; Blumstein, D.; Desjonquères, Jean-Damien; Boy, F.; Sottolichio, A.; Valle-Levinson, A.

    2017-01-01

    For at least 20 years, nadir altimetry satellite missions have been successfully used to first monitor the surface elevation of oceans and, shortly after, of large rivers and lakes. For the last 5-10 years, few studies have demonstrated the possibility to also observe smaller water bodies than previously thought feasible (river smaller than 500 m wide and lake below 10 km2). The present study aims at quantifying the nadir altimetry performance over a medium river (200 m or lower wide) with a pluvio-nival regime in a temperate climate (the Garonne River, France). Three altimetry missions have been considered: ENVISAT (from 2002 to 2010), Jason-2 (from 2008 to 2014) and SARAL (from 2013 to 2014). Compared to nearby in situ gages, ENVISAT and Jason-2 observations over the lower Garonne River mainstream (110 km upstream of the estuary) have the smallest errors, with water elevation anomalies root mean square errors (RMSE) around 50 cm and 20 cm, respectively. The few ENVISAT upstream measurements have RMSE ranging from 80 cm to 160 cm. Over the estuary, ENVISAT and SARAL water elevation anomalies RMSE are around 30 cm and 10 cm, respectively. The most recent altimetry mission, SARAL, does not provide river elevation measurements for most satellite overflights of the river mainstream. The altimeter remains "locked" on the top of surrounding hilly areas and does not observe the steep-sided river valley, which could be 50-100 m lower. This phenomenon is also observed, for fewer dates, on Jason-2 and ENVISAT measurements. In these cases, the measurement is not "erroneous", it just does not correspond to water elevation of the river that is covered by the satellite. ENVISAT is less prone to get 'locked' on the top of the topography due to some differences in the instrument measurement parameters, trading lower accuracy for more useful measurements. Such problems are specific to continental surfaces (or near the coasts), but are not observed over the open oceans, which are flatter. To overcome this issue, an experimental instrument operating mode, called the DIODE/DEM tracking mode, has been developed by CNES (Centre National d'Etudes Spatiales) and has been tested during few Jason-2 cycles and during the first SARAL/AltiKA cycle. This tracking mode "forces" the instrument to observe a target of interest, i.e. water bodies. The example of the Garonne River shows, for one SARAL ground track, the benefit of the DIODE/DEM tracking mode for a steep-sided river reach, which is not detected using the nominal instrument operating mode. Yet, this mode relies on ancillary datasets (a priori global DEM and global land/water mask), which are critical to obtain river valley observation. The ultimately computed elevations along the satellite tracks, loaded on board, should have an absolute vertical accuracy around 10 m (or better). This case also shows, when the instrument is correctly observing the river valley, that the altimeter can detect water bodies narrower than 100 m (like an artificial canal). In agreement with recent studies, this work shows that altimeter missions can provide useful water elevation measurements over a 200 m wide river with RMSE as low as 50 cm and 20 cm, for ENVISAT and Jason-2 respectively. The seasonal cycle can be observed with the temporal sampling of these missions (35 days and 10 days, respectively), but short term events, like flood events, are most of the time not observed. It also illustrates that altimeter capability to observe a river is highly dependent of the surrounding topography, the observation configuration, previous measurements and the instrument design. Therefore, it is not possible to generalize at global scale the minimum river width that could be seen by altimeters. This study analyzes, for the first time, the potential of the experimental DIODE/DEM tracking mode to observe steep-sided narrow river valleys, which are frequently missed with nominal tracking mode. For such case, using the DIODE/DEM mode could provide water elevation measurements, as long as the on board DEM is accurate enough. This mode should provide many more valid measurements over steep-sided rivers than currently observed.

  11. In Situ Dynamics of F-Specific RNA Bacteriophages in a Small River: New Way to Assess Viral Propagation in Water Quality Studies.

    PubMed

    Fauvel, Blandine; Gantzer, Christophe; Cauchie, Henry-Michel; Ogorzaly, Leslie

    2017-03-01

    The occurrence and propagation of enteric viruses in rivers constitute a major public health issue. However, little information is available on the in situ transport and spread of viruses in surface water. In this study, an original in situ experimental approach using the residence time of the river water mass was developed to accurately follow the propagation of F-specific RNA bacteriophages (FRNAPHs) along a 3-km studied river. Surface water and sediment of 9 sampling campaigns were collected and analyzed using both infectivity and RT-qPCR assays. In parallel, some physico-chemical variables such as flow rate, water temperature, conductivity and total suspended solids were measured to investigate the impact of environmental conditions on phage propagation. For campaigns with low flow rate and high temperature, the results highlight a decrease of infectious phage concentration along the river, which was successfully modelled according to a first-order negative exponential decay. The monitoring of infectious FRNAPHs belonging mainly to the genogroup II was confirmed with direct phage genotyping and total phage particle quantification. Reported k decay coefficients according to exponential models allowed for the determination of the actual in situ distance and time necessary for removing 90 % of infectious phage particles. This present work provides a new way to assess the true in situ viral propagation along a small river. These findings can be highly useful in water quality and risk assessment studies to determine the viral contamination spread from a point contamination source to the nearest recreational areas.

  12. River self-organisation inhibits discharge control on waterfall migration.

    PubMed

    Baynes, Edwin R C; Lague, Dimitri; Attal, Mikaël; Gangloff, Aurélien; Kirstein, Linda A; Dugmore, Andrew J

    2018-02-05

    The action of rivers within valleys is fundamentally important in controlling landscape morphology, and how it responds to tectonic or climate change. The response of landscapes to external forcing usually results in sequential changes to river long profiles and the upstream migration of waterfalls. Currently, models of this response assume a relationship between waterfall retreat rate and drainage area at the location of the waterfall. Using an experimental study, we show that this assumption has limited application. Due to a self-regulatory response of channel geometry to higher discharge through increasing channel width, the bed shear stress at the lip of the experimental waterfall remains almost constant, so there was no observed change in the upstream retreat rate despite an order of magnitude increase in discharge. Crucially, however, the strength of the bedrock material exhibits a clear control on the magnitude of the mean retreat rate, highlighting the importance of lithology in setting the rate at which landscapes respond to external forcing. As a result existing numerical models of landscape evolution that simulate the retreat of waterfalls as a function of drainage area with a fixed erodibility constant should be re-evaluated to consider spatial heterogeneity in erodibility and channel self-organisation.

  13. Recent (1995-1998) Canadian research on contemporary processes of river erosion and sedimentation, and river mechanics

    NASA Astrophysics Data System (ADS)

    Ashmore, P.; Conly, F. M.; Deboer, D.; Martin, Y.; Petticrew, E.; Roy, A.

    2000-06-01

    Canadian research on contemporary erosion and sedimentation processes covers a wide range of scales, processes, approaches and environmental problems. This review of recent research focuses on the themes of sediment yield, land-use impact, fine-sediment transport, bed material transport and river morphology and numerical modelling of fluvial landscape development.Research on sediment yield and denudation has confirmed that Canadian rivers are often dominated by riparian sediment sources. Studies of the effects of forestry on erosion, in-stream sedimentation and habitat are prominent, including major field experimental studies in coastal and central British Columbia. Studies of fine-sediment transport mechanisms have focused on the composition of particles and the dynamics of flocculation. In fluvial dynamics there have been important contributions to problems of turbulence-scale flow structure and entrainment processes, and the characteristics of bedload transport in gravel-bed rivers. Although much of the work has been empirical and field-based, results of numerical modelling of denudational processes and landscape development also have begun to appear.The nature of research in Canada is driven by the progress of the science internationally, but also by the nature of the Canadian landscape, its history and resource exploitation. Yet knowledge of Canadian rivers is still limited, and problems of, for example, large pristine rivers or rivers in cold climates, remain unexplored. Research on larger scale issues of sediment transfer or the effects of hydrological change is now hampered by reductions in national monitoring programmes. This also will make it difficult to test theory and assess modelling results. Monitoring has been replaced by project- and issues-based research, which has yielded some valuable information on river system processes and opened opportunities for fluvial scientists. However, future contributions will depend on our ability to continue with fundamental fluvial science while fulfilling the management agenda.

  14. Application of QUAL2K Model to Assess Ecological Purification Technology for a Polluted River

    PubMed Central

    Zhu, Wenting; Niu, Qian; Zhang, Ruibin; Ye, Rui; Qian, Xin; Qian, Yu

    2015-01-01

    Industrialization and urbanization have caused water pollution and ecosystem degradation, especially in urban canals and rivers in China; accordingly, effective water quality improvement programs are needed. In this study, the Tianlai River in Jiangsu, China was taken as a research site, and a combination of ecological purification technologies consisting of biological rope, phytoremediation, and activated carbon were applied in a laboratory-scale study to examine degradation coefficients under dynamic water conditions. Coefficients were then input into the QUAL2K model to simulate various hypothetical scenarios and determine the minimum density of ecological purification combination and hydraulic retention time (HRT) to meet Grade V or IV of the China standard for surface water. The minimum densities for Grade V and IV were 1.6 times and 2 times the experimental density, while the minimum HRTs for Grade V and IV were 2.4 day and 3 day. The results of this study should provide a practical and efficient design method for ecological purification programs. PMID:25689997

  15. Release of Lariat Peanut

    USDA-ARS?s Scientific Manuscript database

    Lariat is a high-oleic runner-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) that has enhanced Sclerotinia blight and pod rot tolerance when compared to the cultivar Red River Runner. Lariat (experimental designation ARSOK-R35) is the result of a cross between cultivar Red River Ru...

  16. Geotextile reinforced bridge approach embankment : Lake River Bridge - Malin Highway , Klamath County, Oregon : final report.

    DOT National Transportation Integrated Search

    1997-08-01

    An experimental construction method was evaluated at the Lost River Bridge in Klamath County to reduce the discontinuity between the bridge and the roadway. The method included combining soil in six 300-mm lifts interlaced with geotextile reinforceme...

  17. Congruent Bifurcation Angles in River Delta and Tributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, Thomas S.; Shaw, John B.

    2017-11-01

    We show that distributary channels on river deltas exhibit a mean bifurcation angle that can be understood using theory developed in tributary channel networks. In certain cases, tributary network bifurcation geometries have been demonstrated to be controlled by diffusive groundwater flow feeding incipient bifurcations, producing a characteristic angle of 72∘. We measured 25 unique distributary bifurcations in an experimental delta and 197 bifurcations in 10 natural deltas, yielding a mean angle of 70.4∘±2.6∘ (95% confidence interval) for field-scale deltas and a mean angle of 68.3∘±8.7∘ for the experimental delta, consistent with this theoretical prediction. The bifurcation angle holds for small scales relative to channel width length scales. Furthermore, the experimental data show that the mean angle is 72∘ immediately after bifurcation initiation and remains relatively constant over significant time scales. Although distributary networks do not mirror tributary networks perfectly, the similar control and expression of bifurcation angles suggests that additional morphodynamic insight may be gained from further comparative study.

  18. Improvement of Operations and Maintenance Techniques Program. Literature Review and Technical Evaluation of Sediment Resuspension during Dredging

    DTIC Science & Technology

    1991-01-01

    the ambient PCB load and normal discharge, the input of PCB into Puget Sound via the Duwamish River was estimated to be 56 kg/year. Hilligardt, R...Sediment suspension studies were conducted before, during, and after clamshell dredging operations in the Patuxent River of southern Maryland. Samples...w 0: 0 z 1W -, w Z bo w U. I6 W cc u u0 z u LU -H LUU 0 02’ U) 4 ORc ,I /V4 ---D- . 0 U- C*, 0 0 - c 3/ow ’SS 54 61. Additional experimental

  19. Caesium-137 and strontium-90 temporal series in the Tagus River: experimental results and a modelling study.

    PubMed

    Miró, Conrado; Baeza, Antonio; Madruga, María J; Periañez, Raul

    2012-11-01

    The objective of this work consisted of analysing the spatial and temporal evolution of two radionuclide concentrations in the Tagus River. Time-series analysis techniques and numerical modelling have been used in this study. (137)Cs and (90)Sr concentrations have been measured from 1994 to 1999 at several sampling points in Spain and Portugal. These radionuclides have been introduced into the river by the liquid releases from several nuclear power plants in Spain, as well as from global fallout. Time-series analysis techniques have allowed the determination of radionuclide transit times along the river, and have also pointed out the existence of temporal cycles of radionuclide concentrations at some sampling points, which are attributed to water management in the reservoirs placed along the Tagus River. A stochastic dispersion model, in which transport with water, radioactive decay and water-sediment interactions are solved through Monte Carlo methods, has been developed. Model results are, in general, in reasonable agreement with measurements. The model has finally been applied to the calculation of mean ages of radioactive content in water and sediments in each reservoir. This kind of model can be a very useful tool to support the decision-making process after an eventual emergency situation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. H.J. Andrews Experimental Forest.

    Treesearch

    Art McKee; Pamela Druliner

    1998-01-01

    The H.J. Andrews Experimental Forest is a world renowned center for research and education about the ecology and management of forests and streams. Located about 50 miles (80 km) east of Eugene, Oregon, the Andrews Experimental Forest lies in the Blue River Ranger District of the Willamette National Forest. Established in 1948, the Experimental Forest is administered...

  1. [Study of the fluorescence characteristics of DOM from the Yangtze River and Jialing River around Chongqing's urban areas].

    PubMed

    Ji, Fang-ying; Li, Si; Zhou, Guang-ming; Yu, Dan-ni; Wang, Tu-jin; Cao, Lin; Tan, Xue-mei; Yang, Da-cheng; Zhou, Xiao-yi

    2010-01-01

    The fluorescence emission and excitation emission matrix (EEM) technologies were used to characterize the dissolved organic matter (DOM) in the water body of the Yangtze River and Jialing River around the Chongqing urban areas from April to August 2008. Concerning about the accidents of the Wenchuan's Earthquake in May and Tangjiashan Yansaihu's effects in June, and the high water period time in the summer in two months of July and August, from the EEM obtained from each sampling station and time, the composition, distribution and their changing features of the DOM in the two rivers were investigated as combined with the water samples' environmental parameters such as pH, DO, DOC with EEM's fingerprint features, f(450/500) etc; finally the bio-environment behavior effects of the three types of fluorescence peaks were elaborated, where humic-like, fulvic-like, and protein-like from the five sampling stations' EEMs during the five months were given detailed representation. From the experimental results obtained, the fluorescence peaks are mainly composed of two types of fluorophores: humic-like and protein-like in the two rivers around the Chongqing urban areas during the investigation in five months, the protein-like's peaks value in Jialing River is higher than the values in the Yangtze River, and all the fluorescence peaks in the two Rivers' water body decrease more or less after the two Rivers join in Chun Tan sampling station; the protein-like peak is notably higher after the "5 x 12" earthquake period time including May and June and high water period time, which mainly originated from terrestrial sources, but its intensities decreased observably while the water bodies of the two rivers joining together in the Chao Tianmen and Chun Tan's sampling station.

  2. Riparian Vegetation: Controls on Channel Planform in Noncohesive Beds

    NASA Astrophysics Data System (ADS)

    Tal, M.; Paola, C.; Gran, K.

    2001-12-01

    Riparian vegetation has strong consequences for the channel planform and dynamics. An understanding of this role is key to accurate modeling of river systems, and may provide answers to fundamental questions concerning stream dynamics as well as bridge the various approaches to modeling channel evolution. Vegetation on the flood plain works to constrain the flow of the river to a single channel by stabilizing banks and offering resistance to overbank flow. These controls were recently established through a set of controlled experiments at the St. Anthony Falls Laboratory. The runs were designed to determine how addition of vegetation affects channel form and flow dynamics. This was achieved by holding water discharge, sediment discharge, grain size, and slope constant, while making vegetation density the only variable between runs. Plants were grown while water discharge was half its channel-forming value. This work showed that as vegetation density increased there was a decrease in braiding intensity, lateral mobility, and width to depth ratios, and an increase in maximum scour hole depth, and channel relief. While producing braiding experimentally has proven simple, no one has yet produced true dynamic meanders (i.e. high-amplitude bends that grow, cut off, and grow again). Present experimental studies at St. Anthony Falls Laboratory aim to investigate the role of vegetation in the development of a meandering river in otherwise insufficiently cohesive sand that would favor a more stable braided river system. The experiments begin with an unseeded bed into which a straight channel has been carved. Each cycle comprises a period of low discharge during which the bed is seeded with alfalfa seeds. The discharge is raised to a higher discharge only after the plants have grown to a height of about 20 mm (approximately 7 days). The duration of the high-flow stage is such that not more than 10-20% of the channel width is eroded. In addition to offering insight as to the several possible states that a river might be in, the experimental studies are intended to provide an understanding of how vegetation stabilizes single-thread channels, identify the nondimensional parameters that measure the stabilizing effects of vegetation, and realize the role of discharge variation in allowing plant colonization.

  3. Experimental river delta size set by multiple floods and backwater hydrodynamics.

    PubMed

    Ganti, Vamsi; Chadwick, Austin J; Hassenruck-Gudipati, Hima J; Fuller, Brian M; Lamb, Michael P

    2016-05-01

    River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node-the location where the river course periodically and abruptly shifts-that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars.

  4. Experimental river delta size set by multiple floods and backwater hydrodynamics

    PubMed Central

    Ganti, Vamsi; Chadwick, Austin J.; Hassenruck-Gudipati, Hima J.; Fuller, Brian M.; Lamb, Michael P.

    2016-01-01

    River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node—the location where the river course periodically and abruptly shifts—that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars. PMID:27386534

  5. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    NASA Astrophysics Data System (ADS)

    Normatov, P.

    2014-09-01

    The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC) in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  6. Phase II : correlation between experimental and finite element analysis : Alaska bridge 255-Chulitna River bridge.

    DOT National Transportation Integrated Search

    2014-09-01

    In this study, we will monitor the behavior of the Alaska Chulitna Bridge for the specific purpose of assisting the DOT in performing an accurate : condition assessment of this bridge. : Based on the state-of-the-art SHM knowledge and technologies wi...

  7. Experimental evidence of rainfall driven knickpoints

    NASA Astrophysics Data System (ADS)

    Singh, A.; Tejedor, A.; Grimaud, J. L.; Foufoula-Georgiou, E.

    2017-12-01

    Formation of knickpoints is typically associated with a landscape's response to differential uplift causing a base-level fall that results in a steep region along a river's long profile. However, to the best of our knowledge, knickpoints have never been reported to form in landscapes subject to varying precipitation rate wherein uplift rate remains constant. Here we reveal evidence that knickpoints can indeed result from increasing precipitation rate, which reorganizes the production and delivery of sediment across a range of spatial and temporal scales, creating thus constraints and water-sediment flux disequilibria at local scales. We base our findings on analysis of high resolution topography data obtained from an experimental landscape conducted to study the effect of changing rainfall intensity on landscape evolution at short and long-time scales. Results from our study suggest that at the transient state of increasing precipitation, a scale-dependent behavior of erosion rates emerges that results in a regime shift in the transport processes in channels from supply-limited to sediment-flux dependent. This regime shift is caused by an increase in the sediment supply from the hillslopes, generating variability in water to sediment flux ratio (Qs/Qw) in channels of different sub-drainage basins which is further manifested in the longitudinal river profiles as abrupt changes in their gradients (knickpoints), advecting upstream on the river network as time proceeds.

  8. Impacts of multispecies parasitism on juvenile coho salmon (Oncorhynchus kisutch) in Oregon

    USGS Publications Warehouse

    Ferguson, Jayde A.; Romer, Jeremy; Sifneos, Jean C.; Madsen, Lisa; Schreck, Carl B.; Glynn, Michael; Kent, Michael L.

    2011-01-01

    We are studying the impacts of parasites on threatened stocks of Oregon coastal coho salmon (Oncorhynchus kisutch). In our previous studies, we have found high infections of digeneans and myxozoans in coho salmon parr from the lower main stem of West Fork Smith River (WFSR), Oregon. In contrast parr from tributaries of this river, and outmigrating smolts, harbor considerably less parasites. Thus, we have hypothesized that heavy parasite burdens in parr from this river are associated with poor overwintering survival. The objective of the current study was to ascertain the possible effects these parasites have on smolt fitness. We captured parr from the lower main stem and tributaries of WFSR and held them in the laboratory to evaluate performance endpoints of smolts with varying degrees of infection by three digeneans (Nanophyetus salmincola, Apophallus sp., and neascus) and one myxozoan (Myxobolus insidiosus). The parameters we assessed were weight, fork length, growth, swimming stamina, and gill Na+,K+-ATPase activity. We repeated our study on the subsequent year class and with hatchery reared coho salmon experimentally infected with N. salmincola. The most significant associations between parasites and these performance or fitness endpoints were observed in the heavily infected groups from both years. We found that all parasite species, except neascus, were negatively associated with fish fitness. This was corroborated for N. salmincola causing reduced growth with our experimental infection study. Parasites were most negatively associated with growth and size, and these parameters likely influenced the secondary findings with swimming stamina and ATPase activity levels.

  9. Adaptive Flow Management in Regulated Rivers: Successes and Challenges (Invited)

    NASA Astrophysics Data System (ADS)

    Robinson, C. T.; Melis, T. S.; Kennedy, T.; Korman, J.; Ortlepp, J.

    2013-12-01

    Experimental high flows are becoming common management actions in rivers affected by large dams. When implemented under clear objectives and goals, experimental flows provide opportunities for long-term ecological successes but also impose various ecological challenges as systems shift under environmental change or from human-related actions. We present case studies from long-term adaptive flow management programs on the River Spöl, Switzerland and the Colorado River, USA, both of which are regulated by high dams and flow through National Parks. The management goals in each system differ thus reflecting the different high flow practices implemented over time. Regulated flows in the Spöl reflect a compromise between hydropower needs and ecology (native brown trout fishery), whereas Glen Canyon Dam flows have mainly been directed towards maintenance of river beaches in Grand Canyon National Park with co-management of both nonnative rainbow trout in the tailwater immediately below the dam and downstream endangered native fish of Grand Canyon also an objective. Some 24 experimental floods have occurred on the Spöl over the last 13 years, resulting in a positive effect on the trout fishery and a zoobenthic assemblage having a more typical alpine stream composition. The system has experienced various shifts in assemblage composition over time with the last shift occurring 7 years after the initial floods. A major challenge occurred in spring 2013 with an accidental release of fine sediments from the reservoir behind Punt dal Gall Dam, causing high fish mortality and smothering of the river bottom. Results showed that the effect was pronounced near the dam and gradually lessened downriver to the lower reservoir. Zoobenthic assemblages displayed relatively high resistance to the event and some fish found refugia in the lower reservoir and larger side tributaries, thus projecting a faster recovery than initially thought. Below Glen Canyon dam, benefits to sandbars have been marginal since experimental constrained hydropower releases began in 1991 and controlled floods began in 1996 (7 have been released through 2012), while native fish populations have increased, although apparently not in response to flows. However, nonnative rainbow trout have been shown to increase in abundance repeatedly below Glen Canyon Dam in response to both controlled floods and more stable flows, both of which were originally proposed to benefit Grand Canyon beaches. Survival of trout fry following the 2008 spring flood was apparently tied to increased abundance of benthic invertebrates in the tailwater. Expansion of nonnative trout in response to high flows pose a potential threat to native fish downstream through competition for limited food and habitat, and through predation of juvenile native fish. Challenges are presented for each system in terms of flow implementation under hydropower needs (Spöl) and environmental change (Colorado). We close with perspectives on improving adaptive flow management actions in regulated rivers as learning-based, long-term ecological experiments.

  10. Impact of Soil Moisture Dynamics on ASAR Observed Backscatters and its Spatial Variability over the Upstream of the Heihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, Shuguo

    2013-01-01

    The so called change detection method is a promising way to acquire soil moisture (SM) dynamics dependent on time series of radar backscatter (σ0) observations. The current study is a preceded step for using this method to carry out SM inversion at basin scale, in order to investigate the applicability of the change detection method in the Heihe River Basin, and to inspect the sensitivity of SAR signals to soil moisture variations. At the meantime, a prior knowledge of SM dynamics and land heterogeneities that may contribute to backscatter observations can be obtained. The impact of land surface states on spatial and temporal σ0 variability measured by ASAR has been evaluated in the upstream of the Heihe River Basin, which was one of the foci experimental areas (FEAs) in Watershed Allied Telemetry Experimental Research (WATER). Based on the in situ measurements provided by an automatic meteorological station (AMS) established at the A’rou site and time series of ASAR observations focused on a 1 km2 area, the relationships between the temporal dynamics of σ0 with in situ SM variations, and land heterogeneities of the study area according to the characteristics of spatial variability of σ0, were identified. The in situ measurements of soil moisture and temperature show a very clear seasonal freeze/thaw cycle in the study site. The temporal σ0 evolvement is basically coherent with ground measurements.

  11. Pathway-based Analysis of Fish Transcriptomics Data across Effluent Gradients in Minnesota Rivers

    EPA Science Inventory

    As part of a larger effort to assess the health of streams and rivers in Minnesota, a series of caged fish experiments were conducted in three locations: Ely, Hutchinson, and Rochester. The experimental design placed caged fish (fathead minnows, Pimephales promelas; FHM) across ...

  12. 50 CFR 223.301 - Special rules-marine and anadromous fishes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... section comprise a nonessential, experimental population (NEP). (2) Take of this species that is allowed... 50 CFR 223.203(a). (4) Geographic extent of the nonessential experimental population of Middle Columbia River steelhead. (i) The geographic range of this experimental population is all accessible...

  13. Using multivariate techniques to assess the effects of urbanization on surface water quality: a case study in the Liangjiang New Area, China.

    PubMed

    Luo, Kun; Hu, Xuebin; He, Qiang; Wu, Zhengsong; Cheng, Hao; Hu, Zhenlong; Mazumder, Asit

    2017-04-01

    Rapid urbanization in China has been causing dramatic deterioration in the water quality of rivers and threatening aquatic ecosystem health. In this paper, multivariate techniques, such as factor analysis (FA) and cluster analysis (CA), were applied to analyze the water quality datasets for 19 rivers in Liangjiang New Area (LJNA), China, collected in April (dry season) and September (wet season) of 2014 and 2015. In most sampling rivers, total phosphorus, total nitrogen, and fecal coliform exceeded the Class V guideline (GB3838-2002), which could thereby threaten the water quality in Yangtze and Jialing Rivers. FA clearly identified the five groups of water quality variables, which explain majority of the experimental data. Nutritious pollution, seasonal changes, and construction activities were three key factors influencing rivers' water quality in LJNA. CA grouped 19 sampling sites into two clusters, which located at sub-catchments with high- and low-level urbanization, respectively. One-way ANOVA showed the nutrients (total phosphorus, soluble reactive phosphorus, total nitrogen, ammonium nitrogen, and nitrite), fecal coliform, and conductivity in cluster 1 were significantly greater than in cluster 2. Thus, catchment urbanization degraded rivers' water quality in Liangjiang New Area. Identifying effective buffer zones at riparian scale to weaken the negative impacts of catchment urbanization was recommended.

  14. An experimental test and models of drift and dispersal processes of pallid sturgeon (Scaphirhynchus albus) free embryos in the Missouri River

    USGS Publications Warehouse

    Braaten, P.J.; Fuller, D.B.; Lott, R.D.; Ruggles, M.P.; Brandt, T.F.; Legare, R.G.; Holm, R.J.

    2012-01-01

    Free embryos of wild pallid sturgeon Scaphirhynchus albus were released in the Missouri River and captured at downstream sites through a 180-km reach of the river to examine ontogenetic drift and dispersal processes. Free embryos drifted primarily in the fastest portion of the river channel, and initial drift velocities for all age groups (mean = 0.66–0.70 m s−1) were only slightly slower than mean water column velocity (0.72 m s−1). During the multi-day long-distance drift period, drift velocities of all age groups declined an average of 9.7% day−1. Younger free embryos remained in the drift upon termination of the study; whereas, older age groups transitioned from drifting to settling during the study. Models based on growth of free embryos, drift behavior, size-related variations in drift rates, and channel hydraulic characteristics were developed to estimate cumulative distance drifted during ontogenetic development through a range of simulated water temperatures and velocity conditions. Those models indicated that the average free embryo would be expected to drift several hundred km during ontogenetic development. Empirical data and model results highlight the long-duration, long-distance drift and dispersal processes for pallid sturgeon early life stages. In addition, results provide a likely mechanism for lack of pallid sturgeon recruitment in fragmented river reaches where dams and reservoirs reduce the length of free-flowing river available for pallid sturgeon free embryos during ontogenetic development.

  15. Science to Manage a Very Rare Fish in a Very Large River - Pallid Sturgeon in the Missouri River, U.S.A.

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; Colvin, M. E.; Marmorek, D.; Randall, M.

    2017-12-01

    The Missouri River Recovery Program (MRRP) seeks to revise river-management strategies to avoid jeopardizing the existence of three species: pallid sturgeon (Scaphirhynchus albus), interior least tern (Sterna antillarum)), and piping plover (Charadrius melodus). Managing the river to maintain populations of the two birds (terns and plovers) is relatively straightforward: reproductive success can be modeled with some certainty as a direct, increasing function of exposed sandbar area. In contrast, the pallid sturgeon inhabits the benthic zone of a deep, turbid river and many parts of its complex life history are not directly observable. Hence, pervasive uncertainties exist about what factors are limiting population growth and what management actions may reverse population declines. These uncertainties are being addressed by the MRRP through a multi-step process. The first step was an Effects Analysis (EA), which: documented what is known and unknown about the river and the species; documented quality and quantity of existing information; used an expert-driven process to develop conceptual ecological models and to prioritize management hypotheses; and developed quantitative models linking management actions (flows, channel reconfigurations, and stocking) to population responses. The EA led to development of a science and adaptive-management plan with prioritized allocation of investment among 4 levels of effort ranging from fundamental research to full implementation. The plan includes learning from robust, hypothesis-driven effectiveness monitoring for all actions, with statistically sound experimental designs, multiple metrics, and explicit decision criteria to guide management. Finally, the science plan has been fully integrated with a new adaptive-management structure that links science to decision makers. The reinvigorated investment in science stems from the understanding that costly river-management decisions are not socially or politically supportable without better understanding of how this endangered fish will respond. While some hypotheses can be evaluated without actually implementing management actions in the river, assessing the effectiveness of other forms of habitat restoration requires in-river implementation within a rigorous experimental design.

  16. Experimental floods cause ecosystem regime shift in a regulated river.

    PubMed

    Robinson, Christopher T; Uehlinger, Urs

    2008-03-01

    Reservoirs have altered the flow regime of most rivers on the globe. To simulate the natural flow regime, experimental floods are being implemented on regulated rivers throughout the world to improve their ecological integrity. As a large-scale disturbance, the long-term sequential use of floods provides an excellent empirical approach to examine ecosystem regime shifts in rivers. This study evaluated the long-term effects of floods (15 floods over eight years) on a regulated river. We hypothesized that sequential floods over time would cause a regime shift in the ecosystem. The floods resulted in little change in the physicochemistry of the river, although particulate organic carbon and particulate phosphorus were lower after the floods. The floods eliminated moss cover on bed sediments within the first year of flooding and maintained low periphyton biomass and benthic organic matter after the third year of flooding. Organic matter in transport was reduced after the third year of flooding, although peaks were still observed during rain events due to tributary inputs and side slopes. The floods reduced macroinvertebrate richness and biomass after the first year of floods, but density was not reduced until the third year. The individual mass of invertebrates decreased by about one-half after the floods. Specific taxa displayed either a loss in abundance, or an increase in abundance, or an increase followed by a loss after the third year. The first three flood years were periods of nonequilibrium with coefficients of variation in all measured parameters increasing two to five times from those before the floods. Coefficients of variation decreased after the third year, although they were still higher than before the floods. Analysis of concordance using Kendall's W confirmed the temporal changes observed in macroinvertebrate assemblage structure. An assessment of individual flood effects showed that later floods had approximately 30% less effect on macroinvertebrates than early floods of similar magnitude, suggesting that the new assemblage structure is more resilient to flood disturbance. We conclude that the floods caused an ecosystem regime shift that took three years to unfold. Additional long-term changes or shifts are expected as new taxa colonize the river from other sources.

  17. Thinning response in 110-year-old Douglas-fir

    Treesearch

    Richard L. Williamson

    1966-01-01

    A study was established in 1952 near Boundary Creek in the Panther Creek area on the Wind River experimental Forest near Carson, Wash. Site index averages 140, and aspect is westerly at elevations around 2,000 to 2,400 feet. Two minor drainages traverse the study area from east to west, creating various northwesterly and southwesterly aspects. The almost pure Douglas-...

  18. Mechanisms for surface contamination of soils and bottom sediments in the Shagan River zone within former Semipalatinsk Nuclear Test Site.

    PubMed

    Aidarkhanov, A O; Lukashenko, S N; Lyakhova, O N; Subbotin, S B; Yakovenko, Yu Yu; Genova, S V; Aidarkhanova, A K

    2013-10-01

    The Shagan River is the only surface watercourse within the former Semipalatinsk Test Site (STS). Research in the valley of the Shagan River was carried out to study the possible migration of artificial radionuclides with surface waters over considerable distances, with the possibility these radionuclides may have entered the Irtysh River. The investigations revealed that radioactive contamination of soil was primarily caused by the first underground nuclear test with soil outburst conducted at the "Balapan" site in Borehole 1004. The surface nuclear tests carried out at the "Experimental Field" site and global fallout made insignificant contributions to contamination. The most polluted is the area in the immediate vicinity of the "Atomic" Lake crater. Contamination at the site is spatial. The total area of contamination is limited to 10-12 km from the crater piles. The ratio of plutonium isotopes was useful to determine the source of soil contamination. There was virtual absence of artificial radionuclide migration with surface waters, and possible cross-border transfer of radionuclides with the waters of Shagan and Irtysh rivers was not confirmed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Resesrvoir sedimentation rates in the Little Washita River experimental watershed, Oklahoma

    USDA-ARS?s Scientific Manuscript database

    The Washita River Basin (WRB) was one of eleven pilot watershed projects selected for construction of flood control reservoirs around the country as a result of the Flood Control Act of 1936. These reservoirs were implemented to prevent and manage soil erosion and flooding. A total of 45 reservoirs ...

  20. Responses of experimental river corridors to engineered log jams

    USDA-ARS?s Scientific Manuscript database

    Physical models of the Big Sioux River, SD, were constructed to assess the impact on flow, drag, and bed erosion and deposition in response to the installation of two different types of engineered log jams (ELJs). A fixed-bed model focused on flow velocity and forces acting on an instrumented ELJ, a...

  1. Long-term affects of experimental flows on riverine biota below a reservoir

    NASA Astrophysics Data System (ADS)

    Robinson, Chris; Ortlepp, Johannes

    2010-05-01

    Large dams have altered the flow regime of most rivers on the globe with consequent effects on riverine biota. Experimental flows (multiple floods per year) have been used on the regulated Spöl River below Livigno Reservoir for over 9 years to enhance the ecological condition of the river. The flow program has improved the brown trout fishery in the river as indicated by an increased number of redds. Floods have reset periphyton assemblages from a moss-dominated streambed to one dominated by diatoms and patches of filamentous algae. Zoobenthic assemblages have shown dramatic shifts in benthic structure in line with predictions from altered state models. Ecosystem regime shifts have been characterized with increases in parameter variances followed by periods of stable states. The system appears to be entering a second zoobenthic regime shift after year 8, perhaps in response to biotic interactions due to changes in the fishery. The response patterns clearly show that a long-term perspective must be in place when assessing biotic responses to changes in physical habitat properties resulting from flow experiments.

  2. Landforms, Geology, and Soils of the MOFEP Study Area

    Treesearch

    Dennis Meinert; Tim Nigh; John Kabrick

    1997-01-01

    We summarize important landform, geological, and soil characteristics that affect the distribution of plants and animals at the MOFEP sites and that can potentially affect the observed response to MOFEP experimental treatments. The Missouri Ozark Forest Ecosystem Project (MOFEP) is located within the Current River Hills Subsection of the Ozark Highlands Section. The...

  3. Spatial patterns of recreational impact on experimental campsites

    Treesearch

    David N. Cole; Christopher A. Monz

    2004-01-01

    Management of camping impacts in protected areas worldwide is limited by inadequate understanding of spatial patterns of impact and attention to spatial management strategies. Spatial patterns of campsite impact were studied in two subalpine plant communities in the Wind River Mountains, Wyoming, USA (a forest and a meadow). Response to chronic disturbance and recovery...

  4. Population and biological parameters of selected fish species from the middle Xingu River, Amazon Basin.

    PubMed

    Camargo, M; Giarrizzo, T; Isaac, V J

    2015-08-01

    This study estimates the main biological parameters, including growth rates, asymptotic length, mortality, consumption by biomass, biological yield, and biomass, for the most abundant fish species found on the middle Xingu River, prior to the construction of the Belo Monte Dam. The specimens collected in experimental catches were analysed with empirical equations and length-based FISAT methods. For the 63 fish species studied, high growth rates (K) and high natural mortality (M) were related to early sexual maturation and low longevity. The predominance of species with short life cycles and a reduced number of age classes, determines high rates of stock turnover, which indicates high productivity for fisheries, and a low risk of overfishing.

  5. The essential value of long-term experimental data for hydrology and water management

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Doerthe; Carey, Sean K.; McNamara, James P.; Laudon, Hjalmar; Soulsby, Chris

    2017-04-01

    Observations and data from long-term experimental watersheds are the foundation of hydrology as a geoscience. They allow us to benchmark process understanding, observe trends and natural cycles, and are prerequisites for testing predictive models. Long-term experimental watersheds also are places where new measurement technologies are developed. These studies offer a crucial evidence base for understanding and managing the provision of clean water supplies, predicting and mitigating the effects of floods, and protecting ecosystem services provided by rivers and wetlands. They also show how to manage land and water in an integrated, sustainable way that reduces environmental and economic costs.

  6. Controls on sinuosity in the sparsely vegetated Fossálar River, southern Iceland

    NASA Astrophysics Data System (ADS)

    Ielpi, Alessandro

    2017-06-01

    Vegetation exerts strong controls on fluvial sinuosity, providing bank stability and buffering surface runoff. These controls are manifest in densely vegetated landscapes, whereas sparsely vegetated fluvial systems have been so far overlooked. This study integrates remote sensing and gauging records of the meandering to wandering Fossálar River, a relatively steep-sloped (< 2.5%) Icelandic river featuring well-developed point bars (79%-85% of total active bar surface) despite the lack of thick, arborescent vegetation. Over four decades, fluctuations in the sinuosity index (1.15-1.43) and vegetation cover (63%-83%) are not significantly correlated (r = 0.28, p > 0.05), suggesting that relationships between the two are mediated by intervening variables and uncertain lag times. By comparison, discharge regime and fluvial planform show direct correlation over monthly to yearly time scales, with stable discharge stages accompanying the accretion of meander bends and peak floods related to destructive point-bar reworking. Rapid planform change is aided by the unconsolidated nature of unrooted alluvial banks, with recorded rates of lateral channel-belt migration averaging 18 m/yr. Valley confinement and channel mobility also control the geometry and evolution of individual point bars, with the highest degree of spatial geomorphic variability recorded in low-gradient stretches where lateral migration is unimpeded. Point bars in the Fossálar River display morphometric values comparable to those of other sparsely vegetated rivers, suggesting shared scalar properties. This conjecture prompts the need for more sophisticated integrations between remote sensing and gauging records on modern rivers lacking widespread plant life. While a large volume of experimental and field-based work maintains that thick vegetation has a critical role in limiting braiding, thus favouring sinuosity, this study demonstrates the stronger controls of discharge regime and alluvial morphology on sparsely vegetated sinuous rivers.

  7. Effects of stakeholder involvement in river management

    NASA Astrophysics Data System (ADS)

    Buchecker, M.; Menzel, S.

    2012-04-01

    In the last decades, in many parts of Europe involving local stakeholders or the local public in river management has become a standard procedure. For many decision makers, the purpose of involving other interest groups is limited to achieving a sufficient local acceptance of the project, and accordingly they adopt minimal forms of involvement. Theoretical literature and first empirical studies, however, suggest that stakeholder involvement can have, if done in appropriate quality, have much more far-reaching benefits for a sustainable river management such as a better consensus, social learning and social capital building. But there is so far only little reliable evidence that and under which conditions such benefits or effects in fact result from stakeholder involvement processes. The reason for this is that such involvement processes represent very complex social interventions, and all"affordable"effect measurement methods have their weaknesses. In our project we wanted to find out which were the really robust social effects of stakeholder involvement in river management. We therefore evaluated a number of real Swiss case studies of participatory river management using three different approaches of effect measurements: a quasi-experimental approach using repeated standardized measurement of stakeholders' attitudes, a qualitative long-term ex-post measurement approach based on interviews with stakeholders of five participatory river projects, and a comparative analysis approach based on data of residents effect assessments of participatory river planning gathered in a Swiss national survey. The analysis of all three evaluation studies confirmed that stakeholder involvement in river management projects have substantive social effects. The comparison of the results of the three measurement approaches revealed that social learning and acceptance building were the most robust effects of stakeholder involvement, as they were confirmed by all the three measurement approaches. Social capital building, however, was not found to be a relevant effect in the long-term qualitative ex-post measurement of stakeholder processes in river management. The data suggested that social capital was "only" maintained or reproduced by the involvement process. The results will be discussed, and implications for the practice as well as for future research will be drawn.

  8. Experimental analysis of the impact of sluice regulation on water quality in the highly polluted Huai River Basin, China.

    PubMed

    Zuo, Qiting; Chen, Hao; Dou, Ming; Zhang, Yongyong; Li, Dongfeng

    2015-07-01

    Impact assessment of sluice regulation on water quality is one of the crucial tasks in the present river management. However, research difficulties remain because of insufficient in situ data and numerous influencing factors in aquatic environments. The Huaidian Sluice, the main control sluice of the Shaying River, China, was selected for this study. Three field experimental programs were designed and carried out to analyze spatial and temporal variations in water quality parameters under various sluice regulation conditions and to explore the impacts of regulation mechanisms on water quality. Monitoring data were used to simulate water quality under different scenarios by the water quality analysis simulation program (WASP). Results demonstrate that the influences of sluice regulation on permanganate index (CODMn) and ammonia nitrogen (NH4-N) concentrations (indicators of water quality) were complex and nonlinear and presented different trends of increase or decrease from different regulation modes. Gate openings of different widths and different flow rates affected CODMn and NH4-N concentrations differently. Monitoring results and numerical simulation results indicate that the sluice opening should be small. Flow discharge through the sluice should be greater than 10 m(3) s and less than 60 m(3) s to maintain low CODMn concentrations, and discharge should be low (e.g., 14 m(3) s) to maintain low NH4-N concentrations. This research provides an experimental basis for further research on the construction of water quality models and for the development of reasonable regulations on water quality and quantity.

  9. Shovelnose sturgeon spawning in relation to varying discharge treatments in a Missouri River tributary

    USGS Publications Warehouse

    Goodman, B.J.; Guy, C.S.; Camp, S.L.; Gardner, W.M.; Kappenman, K.M.; Webb, M.A.H.

    2013-01-01

    Many lotic fish species use natural patterns of variation in discharge and temperature as spawning cues, and these natural patterns are often altered by river regulation. The effects of spring discharge and water temperature variation on the spawning of shovelnose sturgeon Scaphirhynchus platorynchus have not been well documented. From 2006 through 2009, we had the opportunity to study the effects of experimental discharge levels on shovelnose sturgeon spawning in the lower Marias River, a regulated tributary to the Missouri River in Montana. In 2006, shovelnose sturgeon spawned in the Marias River in conjunction with the ascending, peak (134 m3/s) and descending portions of the spring hydrograph and water temperatures from 16°C to 19°C. In 2008, shovelnose sturgeon spawned in conjunction with the peak (118 m3/s) and descending portions of the spring hydrograph and during a prolonged period of increased discharge (28–39 m3/s), coupled with water temperatures from 11°C to 23°C in the lower Marias River. No evidence of shovelnose sturgeon spawning was documented in the lower Marias River in 2007 or 2009 when discharge remained low (14 and 20 m3/s) despite water temperatures suitable and optimal (12°C-24°C) for shovelnose sturgeon embryo development. A similar relationship between shovelnose sturgeon spawning and discharge was observed in the Teton River. These data suggest that discharge must reach a threshold level (28 m3/s) and should be coupled with water temperatures suitable (12°C-24°C) or optimal (16°C-20°C) for shovelnose sturgeon embryo development to provide a spawning cue for shovelnose sturgeon in the lower Marias River.

  10. River runoff estimates based on remotely sensed surface velocities

    NASA Astrophysics Data System (ADS)

    Grünler, Steffen; Stammer, Detlef; Romeiser, Roland

    2010-05-01

    One promising technique for river runoff estimates from space is the retrieval of surface currents on the basis of synthetic aperture radar along-track interferometry (ATI). The German satellite TerraSAR-X, which was launched in June 2007, will permit ATI measurements in an experimental mode. Based on numerical simulations, we present findings of a research project in which the potential of satellite measurements of various parameters with different temporal and spatial sampling characteristics is evaluated. A sampling strategy for river runoff estimates is developed. We address the achievable accuracy and limitations of such estimates for different local flow conditions at selected test site. High-resolution three-dimensional current fields in the Elbe river (Germany) from a numerical model are used as reference data set and input for simulations of a variety of possible measuring and data interpretation strategies to be evaluated. Addressing the problem of aliasing we removed tidal signals from the sampling data. Discharge estimates on the basis of measured surface current fields and river widths from TerraSAR-X are successfully simulated. The differences of the resulted net discharge estimate are between 30-55% for a required continuously observation period of one year. We discuss the applicability of the measuring strategies to a number of major rivers. Further we show results of runoff estimates by the retrieval of surface current fields by real TerraSAR-X ATI data (AS mode) for the Elbe river study area.

  11. Assessment of Water Quality in Asa River (Nigeria) and Its Indigenous Clarias gariepinus Fish

    PubMed Central

    Kolawole, Olatunji M.; Ajayi, Kolawole T.; Olayemi, Albert B.; Okoh, Anthony I.

    2011-01-01

    Water is a valued natural resource for the existence of all living organisms. Management of the quality of this precious resource is, therefore, of special importance. In this study river water samples were collected and analysed for physicochemical and bacteriological evaluation of pollution in the Unity Road stream segment of Asa River in Ilorin, Nigeria. Juvenile samples of Clarias gariepinus fish were also collected from the experimental Asa River and from the control Asa Dam water and were analysed for comparative histological investigations and bacterial density in the liver and intestine in order to evaluate the impact of pollution on the aquatic biota. The water pH was found to range from 6.32 to 6.43 with a mean temperature range of 24.3 to 25.8 °C. Other physicochemical parameters monitored including total suspended solids, total dissolved solids, biochemical oxygen demand and chemical oxygen demand values exceeded the recommended level for surface water quality. Results of bacteriological analyses including total heterotrophic count, total coliform and thermotolerant coliform counts revealed a high level of faecal pollution of the river. Histological investigations revealed no significant alterations in tissue structure, but a notable comparative distinction of higher bacterial density in the intestine and liver tissues of Clarias gariepinus from Asa River than in those collected from the control. It was inferred that the downstream Asa River is polluted and its aquatic biota is bacteriologically contaminated and unsafe for human and animal consumption. PMID:22163210

  12. Effects of forest cover and environmental variables on snow accumulation and melt

    Treesearch

    Mariana Dobre; William J. Elliot; Joan Q. Wu; Timothy E. Link; Ina S. Miller

    2011-01-01

    The goal of this study was to assess the effects of topography and forest cover resulting from different treatments on snow accumulation and melt in small watersheds in the western United States. A paired-watershed study was implemented at the Priest River Experimental Forest, Idaho, where 10 small watersheds with an average area of 4.5 ha were treated by: 1) control (...

  13. Mastication: A fuel reduction and site preparation alternative

    Treesearch

    Jeff Halbrook; Han-Sup Han; Russell T. Graham; Theresa B. Jain; Robert Denner

    2006-01-01

    During the fall of 2005, a study was conducted at Priest River Experimental Forest (PREF) in northern Idaho to investigate the economics of mastication used to treat activity and standing live fuels. In this study, a rotary head masticator was used to crush and chop activity fuels within harvest units on 37.07 acres. Production averaged 0.57 acres/hour (range 0.21-0.89...

  14. An integrated multiscale river basin observing system in the Heihe River Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.

    2015-12-01

    Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.

  15. Microbial responses to polycyclic aromatic hydrocarbon contamination in temporary river sediments: Experimental insights.

    PubMed

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Capri, Silvio; Casella, Patrizia; Fazi, Stefano; Marxsen, Juergen; Patrolecco, Luisa

    2016-01-15

    Temporary rivers are characterized by dry-wet phases and represent an important water resource in semi-arid regions worldwide. The fate and effect of contaminants have not been firmly established in temporary rivers such as in other aquatic environments. In this study, we assessed the effects of sediment amendment with Polycyclic Aromatic Hydrocarbons (PAHs) on benthic microbial communities. Experimental microcosms containing natural (Control) and amended sediments (2 and 20 mg PAHs kg(-1) were incubated for 28 days. The PAH concentrations in sediments were monitored weekly together with microbial community structural (biomass and phylogenetic composition by TGGE and CARD-FISH) and functional parameters (ATP concentration, community respiration rate, bacterial carbon production rate, extracellular enzyme activities). The concentration of the PAH isomers did not change significantly with the exception of phenanthrene. No changes were observed in the TGGE profiles, whereas the occurrence of Alpha- and Beta-Proteobacteria was significantly affected by the treatments. In the amended sediments, the rates of carbon production were stimulated together with aminopeptidase enzyme activity. The community respiration rates showed values significantly lower than the Control after 1 day from the amendment then recovering the Control values during the incubation. A negative trend between the respiration rates and ATP concentration was observed only in the amended sediments. This result indicates a potential toxic effect on the oxidative phosphorylation processes. The impoverishment of the energetic resources that follows the PAH impact may act as a domino on the flux of energy from prokaryotes to the upper level of the trophic chain, with the potential to alter the temporary river functioning.

  16. Experimental investigation of channel avulsion frequency on river deltas under rising sea levels

    NASA Astrophysics Data System (ADS)

    Silvestre, J.; Chadwick, A. J.; Steele, S.; Lamb, M. P.

    2017-12-01

    River deltas are low-relief landscapes that are socioeconomically important; they are home to over half a billion people worldwide. Many deltas are built by cycles of lobe growth punctuated by abrupt channel shifts, or avulsions, which often reoccur at a similar location and with a regular frequency. Previous experimental work has investigated the effect of hydrodynamic backwater in controlling channel avulsion location and timing on deltas under constant sea level conditions, but it is unclear how sea-level rise impacts avulsion dynamics. We present results from a flume experiment designed to isolate the role of relative sea-level rise on the evolution of a backwater-influenced delta. The experiment was conducted in the river-ocean facility at Caltech, where a 7m long, 14cm wide alluvial river drains into a 6m by 3m "ocean" basin. The experimental delta grew under subcritical flow, a persistent backwater zone, and a range of sea level rise rates. Without sea level rise, lobe progradation produced in-channel aggradation and periodic avulsions every 3.6 ± 0.9 hours, which corresponded to when channels aggraded to approximately one-half of their flow depth. With a modest rate of sea-level rise (0.25 mm/hr), we observed enhanced aggradation in the backwater zone, causing channels to aggrade more quickly and avulse more frequently (every 2.1 ± 0.6 hours). In future work, we expect further increases in the rate of relative sea-level rise to cause avulsion frequency to decrease as the delta drowns and the backwater zone retreats upstream. Experimental results can serve as tests of numerical models that are needed for hazard mitigation and coastal sustainability efforts on drowning deltas.

  17. A Global Classification System for Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Woods, R. A.

    2004-05-01

    It is a shocking state of affairs - there is no underpinning scientific taxonomy of catchments. There are widely used global classification systems for climate, river morphology, lakes and wetlands, but for river catchments there exists only a plethora of inconsistent, incomplete regional schemes. By proceeding without a common taxonomy for catchments, freshwater science has missed one of its key developmental stages, and has leapt from definition of phenomena to experiments, theories and models, without the theoretical framework of a classification. I propose the development of a global hierarchical classification system for physical aspects of river catchments, to help underpin physical science in the freshwater environment and provide a solid foundation for classification of river ecosystems. Such a classification scheme can open completely new vistas in hydrology: for example it will be possible to (i) rationally transfer experimental knowledge of hydrological processes between basins anywhere in the world, provided they belong to the same class; (ii) perform meaningful meta-analyses in order to reconcile studies that show inconsistent results (iii) generate new testable hypotheses which involve locations worldwide.

  18. Ichthyoplankton abundance and variance in a large river system concerns for long-term monitoring

    USGS Publications Warehouse

    Holland-Bartels, Leslie E.; Dewey, Michael R.; Zigler, Steven J.

    1995-01-01

    System-wide spatial patterns of ichthyoplankton abundance and variability were assessed in the upper Mississippi and lower Illinois rivers to address the experimental design and statistical confidence in density estimates. Ichthyoplankton was sampled from June to August 1989 in primary milieus (vegetated and non-vegated backwaters and impounded areas, main channels and main channel borders) in three navigation pools (8, 13 and 26) of the upper Mississippi River and in a downstream reach of the Illinois River. Ichthyoplankton densities varied among stations of similar aquatic landscapes (milieus) more than among subsamples within a station. An analysis of sampling effort indicated that the collection of single samples at many stations in a given milieu type is statistically and economically preferable to the collection of multiple subsamples at fewer stations. Cluster analyses also revealed that stations only generally grouped by their preassigned milieu types. Pilot studies such as this can define station groupings and sources of variation beyond an a priori habitat classification. Thus the minimum intensity of sampling required to achieve a desired statistical confidence can be identified before implementing monitoring efforts.

  19. Autonomous solutions for powering wireless sensor nodes in rivers

    NASA Astrophysics Data System (ADS)

    Kamenar, E.; Maćešić, S.; Gregov, G.; Blažević, D.; Zelenika, S.; Marković, K.; Glažar, V.

    2015-05-01

    There is an evident need for monitoring pollutants and/or other conditions in river flows via wireless sensor networks. In a typical wireless sensor network topography, a series of sensor nodes is to be deployed in the environment, all wirelessly connected to each other and/or their gateways. Each sensor node is composed of active electronic devices that have to be constantly powered. In general, batteries can be used for this purpose, but problems may occur when they have to be replaced. In the case of large networks, when sensor nodes can be placed in hardly accessible locations, energy harvesting can thus be a viable powering solution. The possibility to use three different small-scale river flow energy harvesting principles is hence thoroughly studied in this work: a miniaturized underwater turbine, a so-called `piezoelectric eel' and a hybrid turbine solution coupled with a rigid piezoelectric beam. The first two concepts are then validated experimentally in laboratory as well as in real river conditions. The concept of the miniaturised hydro-generator is finally embedded into the actual wireless sensor node system and its functionality is confirmed.

  20. 76 FR 28715 - Endangered and Threatened Species: Designation of a Nonessential Experimental Population for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... Butte Dam. This new facility will protect fish in Lake Billy Chinook from being entrained into turbines... as ``to harass, harm, pursue, hunt, shoot, wound, trap, capture, or collect, or attempt to engage in... upstream of the Wind River, Washington, and the Hood River, Oregon (exclusive), up to, and including, the...

  1. An experiment to control nonnative fish in the Colorado River, Grand Canyon, Arizona

    USGS Publications Warehouse

    Coggins,, Lewis G.; Yard, Michael D.

    2011-01-01

    The humpback chub (Gila cypha) is an endangered native fish found only in the Colorado River Basin. In Grand Canyon, most humpback chub are found in the Little Colorado River and its confluence with the Colorado River. For decades, however, nonnative rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta), which prey on and compete with native fish, have dominated the Grand Canyon fish community. Between 2003 and 2006, scientists with the U.S. Geological Survey and Arizona Game and Fish Department experimentally removed 23,266 nonnative fish from a 9.4-mile-long reach of the Colorado River near where it joins the Little Colorado River. During the experiment, rainbow trout were reduced by as much as 90% and native fish abundance apparently increased in the reach. Concurrent environmental changes and a decrease in rainbow trout throughout the river make it difficult to determine if the apparent increase in native fish was the result of the experiment.

  2. The reproductive success of lake herring in habitats near shipping channels and ice-breaking operations in the St. Marys River, Michigan, USA

    USGS Publications Warehouse

    Blouin, Marc A.; Kostich, M.M.; Todd, T.N.; Savino, J.F.

    1998-01-01

    A study of the reproductive success of lake herring (Coregonus artedi) in the St. Marys River was conducted in the winters and springs of 1994, 1995, and 1996. The St. Marys River connects Lake Superior to the lower Great Lakes making it an important route for ship traffic. Recent pressure by commercial carriers to extend the shipping season by breaking ice earlier in spring, has raised concerns over the possible adverse effects on lake herring reproduction in the river caused by increased turbidity associated with vessel passage. Lake herring spawn in fall and their eggs overwinter under ice cover on the bottom of the St. Marys River. Hatching occurs in the spring after ice-out when water temperatures rise. Specialized incubators were used to hold fertilized lake herring eggs at four experimental sites, chosen to represent the range of various bottom substrate types of the St. Marys River from boulder rock reefs to soft sediments. In winter, incubators were placed under the ice on the bottom of the river at three sites each year. After ice-out, sites were relocated, and the incubators were retrieved and opened to determine the number of live and dead lake herring eggs and larvae. Survival was consistent from year to year at each site with the lowest survival percentage found at the site with the softest sediments, directly adjacent to the St. Marys River channel and downstream of the mouth of the Charlotte River. River bottom type and geographic location were the most important factors in determining egg survival. Sampling for indigenous larval lake herring was done throughout the spring hatching season in the areas adjacent to the incubator sites using nets and a diver-operated suction sampler. Result indicate that a small population (3) of larval lake herring was present throughout the sampling areas during the springs of 1994, 1995, and 1996 in the St. Marys River.

  3. The dominance of dispersion in the evolution of bed material waves in gravel-bed rivers

    Treesearch

    Thomas E. Lisle; Yantao Cui; Gary Parker; James E. Pizzuto; Annjanette M. Dodd

    2001-01-01

    Abstract - Bed material waves are temporary zones of sediment accumulation created by large sediment inputs. Recent theoretical, experimental and field studies examine factors in fluencing dispersion and translation of bed material waves in quasi-uniform, gravel-bed channels. Exchanges of sediment between a channel and its floodplain are...

  4. Where and when to measure forest fire danger

    Treesearch

    G. Lloyd. Hayes

    1944-01-01

    This article presents the results of a study to determine the place, time, and number of measurements that should be made to obtain dependable ratings of "average-bad" fire conditions without an excessive number of stations or observations. The author concludes that under the conditions prevailing in the Priest River Experimental Forest in northern Idaho a...

  5. Light thinning in century-old Douglas-fir.

    Treesearch

    Robert W. Steele

    1948-01-01

    A stand-improvement study in century-old Douglas-fir at the Wind River Experimental Forest provides an example of a commercial thinning that gave a substantial intermediate harvest, salvaged considerable material that would have been lost through mortality, greatly increased the net growth rate, and improved the general vigor of the stand, leaving the forest in a more...

  6. Viral Oncolytic Therapeutics for Neoplastic Meningitis

    DTIC Science & Technology

    2014-09-01

    our animal vendor, Charles River Laboratories (CRL), to adopt their intrathecal catheterization service for this purpose. Cannulated animals from CRL...pilot “idea” study. Thus, both experimental approaches, catheterization did not allow us to obtain statistically significant therapeutic efficacy...fluid, which will help developing new approaches for delivery of therapies, in particular biopharmaceuticals, to the central nervous system and

  7. JPRS Report, China

    DTIC Science & Technology

    1989-11-17

    study of soil physical properties. At present, we have established field experimental plots in the loessial plain of the lower Yellow River, provided... effect on the military strength of countries all over the world. Under present conditions, science, technology, and economics are making unprec... effect deterrence, but are also producing profound changes in the methods of deterrence. Looking at the strategic situation worldwide, scientific

  8. Flow, turbulence, and drag associated with engineered log jams in a fixed-bed experimental channel

    USDA-ARS?s Scientific Manuscript database

    Engineered log jams (ELJs) have become attractive alternatives for river restoration and bank stabilization programs. Yet the effects of ELJs on turbulent flow and the fluid forces acting on the ELJs are not well known, and such information could inform design criteria. In this study, a fixed-bed ph...

  9. The key roles of four Experimental Forests in the LTSP International Research Program

    Treesearch

    Robert F. Powers; Robert Denner; John D. Elioff; Gary O. Fiddler; Deborah Page-Dumroese; Felix Ponder; Allan E. Tiarks; Peter E. Avers; Richard G. Cline; Nelson S. Loftus

    2014-01-01

    Four Experimental Forests were pivotal in piloting the long-term soil productivity (LTSP) cooperative research program - one of the most successful and extensive collaborative science efforts yet undertaken by the USDA Forest Service. Launched on the Palustris, Challenge, Marcell, and Priest River Experimental Forests, LTSP traces to a seminal discussion during a field...

  10. A multi-approach and multi-scale study on water quantity and quality changes in the Tapajós River basin, Amazon

    NASA Astrophysics Data System (ADS)

    Bezerra Nóbrega, Rodolfo Luiz; Lamparter, Gabriele; Hughes, Harold; Chenjerayi Guzha, Alphonce; Santos Silva Amorim, Ricardo; Gerold, Gerhard

    2018-04-01

    We analyzed changes in water quantity and quality at different spatial scales within the Tapajós River basin (Amazon) based on experimental fieldwork, hydrological modelling, and statistical time-trend analysis. At a small scale, we compared the river discharge (Q) and suspended-sediment concentrations (SSC) of two adjacent micro-catchments ( < 1 km2) with similar characteristics but contrasting land uses (forest vs. pasture) using empirical data from field measurements. At an intermediary scale, we simulated the hydrological responses of a sub-basin of the Tapajós (Jamanxim River basin, 37 400 km2), using a hydrological model (SWAT) and land-use change scenario in order to quantify the changes in the water balance components due to deforestation. At the Tapajós' River basin scale, we investigated trends in Q, sediments, hydrochemistry, and geochemistry in the river using available data from the HYBAM Observation Service. The results in the micro-catchments showed a higher runoff coefficient in the pasture (0.67) than in the forest catchment (0.28). At this scale, the SSC were also significantly greater during stormflows in the pasture than in the forest catchment. At the Jamanxim watershed scale, the hydrological modelling results showed a 2 % increase in Q and a 5 % reduction of baseflow contribution to total Q after a conversion of 22 % of forest to pasture. In the Tapajós River, however, trend analysis did not show any significant trend in discharge and sediment concentration. However, we found upward trends in dissolved organic carbon and NO3- over the last 20 years. Although the magnitude of anthropogenic impact has shown be scale-dependent, we were able to find changes in the Tapajós River basin in streamflow, sediment concentration, and water quality across all studied scales.

  11. Evaluating the Effects of the Kingston Fly Ash Release on Fish Reproduction: Spring 2009 - 2010 Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greeley Jr, Mark Stephen; Adams, Marshall; McCracken, Kitty

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits from the spill extended 4 miles upstream of the facility to Emory River mile 6 and downstream to Tennessee River mile 564 ({approx}8.5 miles downstream of the confluence of the Emory River with the Clinch River, and {approx}4 miles downstream of the confluence of the Clinch River with the Tennessee River). A byproduct of coal combustion, fly ash contains a varietymore » of metals and other elements which, at sufficient concentrations and in specific forms, can be harmful to biological systems. The ecological effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to come from elevated levels of certain metals in the ash, particularly selenium, on fish reproduction and fish early life stages (Lemly 1993; Besser and others 1996). The ovaries of adult female fish in a lake contaminated by coal ash were reported to have an increased frequency of atretic oocytes (dead or damaged immature eggs) and reductions in the overall numbers of developing oocytes (Sorensen 1988) associated with elevated body burdens of selenium. Larval fish exposed to selenium through maternal transfer of contaminants to developing eggs in either contaminated bodies of water (Lemly 1999) or in experimental laboratory exposures (Woock and others 1987, Jezierska and others 2009) have significantly increased incidences of developmental abnormalities. Contact of fertilized eggs and developing embryos to ash in water and sediments may also pose an additional risk to the early life stages of exposed fish populations through direct uptake of metals and other ash constituents (Jezierska and others 2009). The establishment and maintenance of fish populations is intimately associated with the ability of individuals within a population to reproduce. Reproduction is thus generally considered to be the most critical life function affected by environmental contamination. From a regulatory perspective, the issue of potential contaminant-related effects on fish reproduction from the Kingston fly ash spill has particular significance because the growth and propagation of fish and other aquatic life is a specific classified use of the affected river systems. To address the potential effects of fly ash from the Kingston spill on the reproductive health of exposed fish populations, ORNL has undertaken a series of studies in collaboration with TVA that include: (1) a combined field study of metal bioaccumulation in ovaries and other fish tissues (Adams and others 2012) and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill (the current report); (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (Greeley and others 2012); (3) additional laboratory experimentation focused on the potential effects of long-term exposures to fly ash on fish survival and reproductive competence (unpublished); and (4) a combined field and laboratory study examining the in vitro developmental success of embryos and larvae obtained from fish exposed in vivo for over two years to fly ash in the Emory and Clinch Rivers (unpublished). The current report focuses on the reproductive condition of adult female fish in reaches of the Emory and Clinch Rivers influenced by the fly ash spill at the beginning of the spring 2009 breeding season - the first breeding season immediately following the fly ash release - and during the subsequent spring 2010 breeding season. Data generated from this and related reproductive/early life stage studies provide direct input to ecological risk assessment efforts and complement and support other phases of the overall biomonitoring program associated with the fly ash spill.« less

  12. Ice detection systems : experimental feature : final report.

    DOT National Transportation Integrated Search

    1986-01-01

    In the fall of 1980, an experimental ice detection system was installed on the Fremont Bridge in Portland, Oregon. this bridge, which caries I-405 over the Willamette River, has a history of icing problem when the deck is wet and the temperature hove...

  13. Hydric potential of the river basin: Prądnik, Polish Highlands

    NASA Astrophysics Data System (ADS)

    Lepeška, Tomáš; Radecki-Pawlik, Artur; Wojkowski, Jakub; Walega, Andrzej

    2017-12-01

    Human society deals with floods, drought and water pollution. Facing those problems, the question how to prevent or at least to minimalize the adverse effects of water-related issues is asked of the landscape managers. In this way, any help given to landscape managers seems to be an additional useful tool. Within this paper, an approach leading to mitigation of water-related problems is presented that relates the retention of precipitation and the use of ecosystems as a tool for improving the quality, quantity of water resources and availability throughout the region. One approach is the determination of the landscape's hydric potential (LHP). This study examines one example of using this method within the conditions of Poland. The results of the research show that national data are entirely appropriate for implementation of the LHP method. Further, this approach revealed the classes of the hydric potential of the Prądnik river basin which was selected as the experimental territory. LHP results reflect the ecosystem attributes of the model river basin; areas of average LHP cover 63.26%, areas of high and limited hydric potential cover approximately 18.3% each. The spatial distribution of LHP means the results of this study provide a baseline for management of the river basin.

  14. Optimization and evaluation of a method to detect adenoviruses in river water

    EPA Pesticide Factsheets

    This dataset includes the recoveries of spiked adenovirus through various stages of experimental optimization procedures. This dataset is associated with the following publication:McMinn , B., A. Korajkic, and A. Grimm. Optimization and evaluation of a method to detect adenoviruses in river water. JOURNAL OF VIROLOGICAL METHODS. Elsevier Science Ltd, New York, NY, USA, 231(1): 8-13, (2016).

  15. Songbird nest survival is invariant to early-successional restoration treatments in a large river floodplain

    Treesearch

    Dirk E. Burhans; Brian G. Root; Terry L. Shaffer; Daniel C. Dey

    2010-01-01

    We monitored songbird nest survival in two reforesting, ∼50-ha former cropland sites along the Missouri River in central Missouri from 2001 to 2003. Sites were partitioned into three experimental units, each receiving one of three tree planting treatments. Nest densities varied among restoration treatments for four of five species, but overall nest survival...

  16. River bar vegetation mowing response in the Middle Rio Grande

    Treesearch

    Esteban Muldavin; Elizabeth Milford; Yvonne Chauvin

    1999-01-01

    The Bureau of Reclamation routinely mows vegetation on side bars along the Rio Grande to assist with river flow management. To address the question of how such mowing affects vegetation composition and structure, three bars in the middle Rio Grande near Albuquerque, New Mexico were selected in 1994 for an experimental mowing program. Three 50-foot-wide strips on each...

  17. Ecological risk assessment in a large river-reservoir. 8: Experimental study of the effects of polychlorinated biphenyls on reproductive success in mink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halbrook, R.S.; Aulerich, R.J.; Bursian, S.J.

    1999-04-01

    As a component of an ecological risk assessment of Poplar Creek (located on the Oak Ridge Reservation [ORR]) and the Clinch River (a large river-reservoir system), fish from Poplar Creek, the Clinch River, and Atlantic Ocean were fed to ranch mink to evaluate reproductive success. Five diets, each composed of 75% fish and 25% normal ranch mink chow, were prepared. Two diets served as reference diets and contained 75% Atlantic Ocean fish or 75% Clinch River fish collected above the ORR. The fish portion of the remaining three diets contained 25, 50, and 75% fish collected from Poplar Creek andmore » 50, 25, and 0% ocean fish, respectively. Five mink groups (eight females and two males each) were each fed one of the prepared diets for 196 days. Polychlorinated biphenyl concentrations were determined in diets and various mink tissues, ethoxyresorufin-O-deethylase (EROD) activity was determined in liver tissue, and reproductive success was evaluated. Concentrations of PCB were greatest in the diet composed of 75% Poplar Creek fish and in tissues from mink fed this diet and their offspring. There was a trend toward decreased adult female and kit weights and reduced mean litter size in mink fed diets containing 75% Poplar Creek fish; however, at 6 weeks of age, kit survival was similar among diet groups. Liver EROD activity significantly increased in adult female mink fed 50 and 75% Poplar Creek fish diets. Estimated dietary concentrations of PCBs were similar to or slightly lower than concentrations associated with adverse effects in experimentally dosed mink. Mercury (Hg) concentrations previously reported in these same mink were below that associated with adverse effects, and there was no indication of additive or synergistic effects from exposure to PCBs plus Hg. It is unlikely that population-level reproductive effects would be observed in mink consuming fish from Poplar Creek on the ORR.« less

  18. Estimation of evapotranspiration in an arid region by remote sensing—A case study in the middle reaches of the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Li, Xingmin; Lu, Ling; Yang, Wenfeng; Cheng, Guodong

    2012-07-01

    Estimating surface evapotranspiration is extremely important for the study of water resources in arid regions. Data from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (NOAA/AVHRR), meteorological observations and data obtained from the Watershed Allied Telemetry Experimental Research (WATER) project in 2008 are applied to the evaporative fraction model to estimate evapotranspiration over the Heihe River Basin. The calculation method for the parameters used in the model and the evapotranspiration estimation results are analyzed and evaluated. The results observed within the oasis and the banks of the river suggest that more evapotranspiration occurs in the inland river basin in the arid region from May to September. Evapotranspiration values for the oasis, where the land surface types and vegetations are highly variable, are relatively small and heterogeneous. In the Gobi desert and other deserts with little vegetation, evapotranspiration remains at its lowest level during this period. These results reinforce the conclusion that rational utilization of water resources in the oasis is essential to manage the water resources in the inland river basin. In the remote sensing-based evapotranspiration model, the accuracy of the parameter estimate directly affects the accuracy of the evapotranspiration results; more accurate parameter values yield more precise values for evapotranspiration. However, when using the evaporative fraction to estimate regional evapotranspiration, better calculation results can be achieved only if evaporative fraction is constant in the daytime.

  19. Computational modeling of river flow using bathymetry collected with an experimental, water-penetrating, green LiDAR

    NASA Astrophysics Data System (ADS)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.

    2009-12-01

    Airborne bathymetric Light Detection and Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly being deployed in fluvial environments. While the adaptation of this technology to rivers and streams would appear to be straightforward, currently technical challenges remain with regard to achieving high levels of vertical accuracy and precision when mapping bathymetry in shallow fluvial settings. Collectively these mapping errors have a direct bearing on hydraulic model predictions made using these data. We compared channel surveys conducted along the Platte River, Nebraska, and the Trinity River, California, using conventional ground-based methods with those made with the hybrid topographic/bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). In the turbid and braided Platte River, a bathymetric-waveform processing algorithm was shown to enhance the definition of thalweg channels over a more simplified, first-surface waveform processing algorithm. Consequently flow simulations using data processed with the shallow bathymetric algorithm resulted in improved prediction of wetted area relative to the first-surface algorithm, when compared to the wetted area in concurrent aerial imagery. However, when compared to using conventionally collected data for flow modeling, the inundation extent was over predicted with the EAARL topography due to higher bed elevations measured by the LiDAR. In the relatively clear, meandering Trinity River, bathymetric processing algorithms were capable of defining a 3 meter deep pool. However, a similar bias in depth measurement was observed, with the LiDAR measuring the elevation of the river bottom above its actual position, resulting in a predicted water surface higher than that measured by field data. This contribution addresses the challenge of making bathymetric measurements with the EAARL in different environmental conditions encountered in fluvial settings, explores technical issues related to reliably detecting the water surface and river bottom, and illustrates the impact of using LiDAR data and current processing techniques to produce above and below water topographic surfaces for hydraulic modeling and habitat applications.

  20. Tidal river sediments in the Washington, D.C. area. 111 Biological effects associated with sediment contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlekat, C.E.; McGee, B.L.; Boward, D.M.

    1994-06-01

    Sediment toxicity and benthic marcroinvertebrate community structure were measured as one component of a study conceived to determine the distribution and effect of sediment contamination in tidal freshwater portions of the Potomac and Anacostia rivers in the Washington, D.C., area. Samples were collected at 15 sites. Analyses included a partial life cycle (28 d) whole sediment test using the amphipod Hyalella azteca (Talitridae) and an assessment of benthic community structure. Survival and growth (as estimated by amphipod length) were experimental endpoints for the toxicity test. Significant mortality was observed in 5 to 10 sites in the lower Anacostia River basinmore » and at the main channel Potomac River site. Sublethal toxicity, as measured by inhibition of amphipod growth, was not observed. Toxicity test results were in general agreement with synoptically measured sediment contaminant concentrations. Porewater total ammonia (NH{sub 3} + NH{sub 4}{sup +}) appears to be responsible for the toxicity of sediments from the Potomac River, while correlation analysis and simultaneously extracted metals: acid volatile sulfide (SEM:AVA) results suggest that the toxicity associated with Anacostia River sediments was due to organic compounds. Twenty-eight macroinvertebrate taxa were identified among all sites, with richness varying from 5 to 17 taxa per site. Groups of benthic assemblages identified by group-average cluster analysis exhibited variable agreement with sediment chemical and sediment toxicity results. Integration of toxicological, chemical, and ecological components suggests that adverse environmental effects manifest in lower Anacostia River benthos result from chemical contamination of sediment. 37 refs., 2 figs., 7 tabs.« less

  1. Salinity of the Little Colorado River in Grand Canyon confers anti-parasitic properties on a native fish

    USGS Publications Warehouse

    Ward, David L.

    2012-01-01

    Water in the Little Colorado River within Grand Canyon is naturally high in salt (NaCl), which is known to prohibit development of external fish parasites such as Ich (Ichthyophthirius multifiliis). The naturally high salinity (>0.3%) of the Little Colorado River at baseflow may be one factor allowing survival and persistence of larval and juvenile humpback chub (Gila cypha) and other native fishes in Grand Canyon. We compared salinity readings from the Little Colorado River to those reported in the literature as being effective at removing protozoan parasites from fish. In laboratory tests, 10 juvenile roundtail chub (Gila robusta; 61–90 mm TL) were randomly placed into each of 12, 37-L aquaria filled with freshwater, water obtained from the Little Colorado River (0.3% salinity), or freshwater with table salt added until the salinity reached 0.3%. Roundtail chub was used as a surrogate for humpback chub in this study because the species is not listed as endangered but is morphologically and ecologically similar to humpback chub. All roundtail chub infected with Ich recovered and survived when placed in water from the Little Colorado River or water with 0.3% salinity, but all experimental fish placed in freshwater died because of Ich infection. The naturally high salinity of the Little Colorado River at baseflow (0.22%–0.36%), appears sufficiently high to interrupt the life cycle of Ich and may allow increased survival of larval and juvenile humpback chub relative to other areas within Grand Canyon.

  2. In Land of Cypress and Pine: An Environmental History of the Santee Experimental Forest, 1683-1937

    Treesearch

    Hayden R. Smith

    2012-01-01

    The Santee Experimental Forest is a 6,100-acre research facility located within the Francis Marion National Forest, SC. Situated within the Huger Creek watershed in the headwaters of the East Branch of the Cooper River, the Santee Experimental Forest supports research in forest ecology, silviculture, prescribed fire, forest hydrology, ecosystem restoration, and...

  3. Attributes of an alluvial river and their relation to water policy and management

    PubMed Central

    Trush, William J.; McBain, Scott M.; Leopold, Luna B.

    2000-01-01

    Rivers around the world are being regulated by dams to accommodate the needs of a rapidly growing global population. These regulatory efforts usually oppose the natural tendency of rivers to flood, move sediment, and migrate. Although an economic benefit, river regulation has come at unforeseen and unevaluated cumulative ecological costs. Historic and contemporary approaches to remedy environmental losses have largely ignored hydrologic, geomorphic, and biotic processes that form and maintain healthy alluvial river ecosystems. Several commonly known concepts that govern how alluvial channels work have been compiled into a set of “attributes” for alluvial river integrity. These attributes provide a minimum checklist of critical geomorphic and ecological processes derived from field observation and experimentation, a set of hypotheses to chart and evaluate strategies for restoring and preserving alluvial river ecosystems. They can guide how to (i) restore alluvial processes below an existing dam without necessarily resorting to extreme measures such as demolishing one, and (ii) preserve alluvial river integrity below proposed dams. Once altered by dam construction, a regulated alluvial river will never function as before. But a scaled-down morphology could retain much of a river's original integrity if key processes addressed in the attributes are explicitly provided. Although such a restoration strategy is an experiment, it may be the most practical solution for recovering regulated alluvial river ecosystems and the species that inhabit them. Preservation or restoration of the alluvial river attributes is a logical policy direction for river management in the future. PMID:11050220

  4. Lumber-grade recovery from 110-year-old Douglas-fir thinnings.

    Treesearch

    Norman P. Worthington

    1955-01-01

    What lumber-grade and yield recovery is possible from thinnings in low Site III, 110-year-old, young-growth Douglas -fir stand? A lumber-grade recovery study of sawtimber cut in recent thinning experiments at the Wind River Experimental Forest, Skamania County, Washington, gives some idea of the answer. The thinning experiments were designed to determine increment and...

  5. Response of individual Douglas-fir trees to release.

    Treesearch

    Donald L. Reukema

    1961-01-01

    To evaluate effects of different degrees of release on individual Douglas-fir trees, a study was started in 1952 in a 41-year-old, site IV stand at the Wind River Experimental Forest. A remeasurement at the end of four growing seasons showed that dominants respond more quickly and positively to the removal of competing trees than codominants or intermediates. A second...

  6. Snowmelt runoff and water yield along elevation and temperature gradients in California's southern Sierra Nevada

    Treesearch

    Carolyn T. Hunsaker; Thomas W. Whitaker; Roger C. Bales

    2012-01-01

    Differences in hydrologic response across the rain-snow transition in the southern Sierra Nevada were studied in eight headwater catchments – the Kings River Experimental Watersheds – using continuous precipitation, snowpack, and streamflow measurements. The annual runoff ratio (discharge divided by precipitation) increased about 0.1 per 300 m of mean catchment...

  7. Geochemical characteristics of Heavy metals of river sediment from the main rivers at Texas, USA.

    NASA Astrophysics Data System (ADS)

    Matsumoto, I.; Hoffman, D.; MacAlister, J.; Ishiga, H.

    2008-12-01

    Trinity River is one of the biggest rivers which flows through Dallas and Fort Worth two big cities of USA and are highly populated. Trinity river drains into the Gulf of Mexico. Sediment samples collected from various points along the upper and lower streams were subjected to content analysis and elution analysis (using liquate (flow) out test) on the heavy metals like Cd, CN, Pb, Cr, As, Hg, Ni, Zn and Cu from the river sediment for the purpose of environment assessment. A total of 22 sample points were identified from upper stream to lower stream and samples were collected such that almost the whole stream length of Trinity River is covered. Results show that heavy metal content through out the river stream is below the recommended limits posing no immediate environmental threat. However, the experimental results show clear impact of human population in bigger cities on heavy metal concentrations in the river sediments as compared to smaller cities with low human population. It could be seen from the analysis that all the heavy metals show relatively high content and high elution value in Dallas and Fort Worth. As we move away from the big cities, the value of content and elution of sediment decreased by natural dilution effect by the river. And we also present the data of the Colorado and San Antonio rivers.

  8. FASEB (Federation of American Societies for Experimental Biology) Summer Research on Neuronal Cell Cultures at Saxton’s River, Vermont on 12-17 August 1984.

    DTIC Science & Technology

    1984-08-17

    AD-i5 81@ FASEB (FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY ) SUMMER..CU) FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY BET...UNIT NUMBERS Robert W. Krauss, Executive Director I * LEO Federation of American Societies for Experimental, NR 685-003 * Biology , 9650 Rockville Pike...Bethesda, MD 20814 *.CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ’%Federation f American Societies for I Experimental Biology , 9650

  9. RiverCare communication strategy for reaching beyond

    NASA Astrophysics Data System (ADS)

    Cortes Arevalo, Juliette; den Haan, Robert Jan; Berends, Koen; Leung, Nick; Augustijn, Denie; Hulscher, Suzanne J. M. H.

    2017-04-01

    Effectively communicating river research to water professionals and researchers working in multiple disciplines or organizations is challenging. RiverCare studies the mid-term effects of innovative river interventions in the Netherlands to improve river governance and sustainable management. A total of 21 researchers working at 5 universities are part of the consortium, which also includes research institutes, consultancies, and water management authorities. RiverCare results do not only benefit Dutch river management, but can also provide useful insights to challenges abroad. Dutch partner organizations actively involved in RiverCare are our direct users. However, we want to reach water professionals from the Netherlands and beyond. To communicate with and disseminate to these users, we set up a communication strategy that includes the following approaches : (1) Netherlands Centre of River studies (NCR) website to announce activities post news, not limited to RiverCare; (2) A RiverCare newsletter that is published twice per year to update about our progress and activities; (3) A multimedia promotional providing a 'first glance' of RiverCare. It consists of four video episodes and an interactive menu; (4) An interactive knowledge platform to provide access, explain RiverCare results and gather feedback about the added value and potential use of these results; and (5) A serious gaming environment titled Virtual River where actors can play out flood scaling intervention and monitoring strategies to assess maintenance scenarios. The communication strategy and related approaches are being designed and developed during the project. We use participatory methods and systematic evaluation to understand communication needs and to identify needs for improvement. As a first step, RiverCare information is provided via the NCR website. The active collaboration with the NCR is important to extend communication efforts beyond the RiverCare consortium and after the program ends. The RiverCare newsletters are being distributed mainly through the NCR mailing list. As part of the multimedia product, four videos are in development as 'theaters of river research'. The first video presented our societal contribution to river research. Subsequent videos will be released approximately every six months. The knowledge platform is being designed as a combination of online services including: a content management system in which storylines are the main component; a data repository; and hyperlinks to online sites that present our results via short news articles. A storyline example has been prepared to explain research outputs instead of or in addition to more technical means such as scientific papers and reports. As for the serious gaming environment, a concept is being designed for experimentation in river and floodplain scenarios in regard to maintenance intervals and scaling of floodplains. Early results from the number of viewers of the NCR website, newsletter and first video show that dissemination efforts reach the NCR network but should also address other networks. Furthermore, the videos create interest and visibility in RiverCare. However, the audience should be challenged in different ways to look for additional information. Challenges of our research are to limit the overlap between the different communication approaches and to evaluate the effectiveness of the communication strategy.

  10. Occurrence and photodegradation of methylmercury in surface water of Wen-Rui-Tang River network, Wenzhou, China.

    PubMed

    Pan, Shuihong; Feng, Chuchu; Lin, Jialu; Cheng, Lidong; Wang, Chengjun; Zuo, Yuegang

    2017-04-01

    The spatial distribution and seasonal variations of methylmercury (MeHg) in Wen-Rui-Tang (WRT) River network were investigated by monitoring the MeHg concentrations in surface water samples collected from 30 sites across the river network over four seasons. Detection frequencies and concentrations of MeHg were generally higher in January, indicating that low sunlight irradiation, wind speed, and temperature conditions might enhance the persistence of MeHg in surface water. The MeHg levels varied with sampling locations, with the highest concentrations being observed in the industrial area especially around wastewater outfall, revealing that the mercury contamination in WRT River mainly comes from the industrial wastewater. Photodegradation of MeHg in WRT River surface water and the effects of natural constituents such as fulvic acid (FA), ferric ions (Fe 3+ ), nitrate (NO 3 - ), and dissolved oxygen on the MeHg photodegradation in aqueous solutions were studied under the simulated sunlight. The experimental data indicated that the indirect photodecomposition of MeHg occurred in WRT River surface water. Photodegradation of MeHg in FA solution was initiated by triplet 3 FA* or MeHg-FA* via electron transfer interaction under light irradiations. The Fe 3+ and NO 3 - can absorb light energy to produce ·OH and enhance the photochemical degradation of MeHg. The MeHg photodecompositions in FA, nitrate, and Fe 3+ solutions were markedly accelerated after removing the dissolved oxygen.

  11. Final report for Verglimit at hole-in-the-wall slide section : experimental feature evaluation.

    DOT National Transportation Integrated Search

    1989-06-01

    In 1983, experimental Verglimit overlays were placed on two Oregon bridges known to have icing problems. The performance of the test overlays, constructed on the Salmon River Bridge in Clackamas County and the Quartz Creek Bridge in Clatsop County, w...

  12. Applications of Experimental Suomi-NPP VIIRS Flood Inundation Maps in Operational Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Deweese, M. M.

    2017-12-01

    Flooding is the most costly natural disaster across the globe. In 2016 flooding caused more fatalities than any other natural disaster in the United States. The U.S. National Weather Service (NWS) is mandated to forecast rivers for the protection of life and property and the enhancement of the national economy. Since 2014, the NWS North Central River Forecast Center has utilized experimental near real time flood mapping products from the JPSS Suomi-NPP VIIRS satellite. These products have been demonstrated to provide reliable and high value information for forecasters in ice jam and snowmelt flooding in data sparse regions of the northern plains. In addition, they have proved valuable in rainfall induced flooding within the upper Mississippi River basin. Aerial photography and ground observations have validated the accuracy of the products. Examples are provided from numerous flooding events to demonstrate the operational application of this satellite derived information as a remotely sensed observational data source and it's utility in real time flood forecasting.

  13. Frontiers of Forestry Research - Priest River Experimental Forest, 1911-1976

    Treesearch

    Charles A. Wellner

    1976-01-01

    The Priest River Experiment Station was established in 1911 as the center for forest research in the productive forests of northern Idaho, western Montana, and northeastern Washington. Located out in the forest of northern Idaho, 15 miles from the nearest small town, it was to be the hub of forest research in this large forested area. Within a few years it became...

  14. Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery

    NASA Astrophysics Data System (ADS)

    Ma, W.; Ma, Y.; Hu, Z.; Su, B.; Wang, J.; Ishikawa, H.

    2009-06-01

    Surface fluxes are important boundary conditions for climatological modeling and the Asian monsoon system. Recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A Surface Energy Balance System (SEBS) method based on ASTER data and field observations has been proposed and tested for deriving net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E) over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the WATER (Watershed Allied Telemetry Experimental Research), located at the mid-to-upstream sections of the Heihe River, northwest China. The ASTER data of 3 May and 4 June in 2008 was used in this paper for the case of mid-to-upstream sections of the Heihe River Basin. To validate the proposed methodology, the ground-measured land surface heat fluxes (net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E)) were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in different months over the study area are in good accordance with the land surface status. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface heat fluxes using the ASTER data and filed observation over the study area.

  15. Drainage fracture networks in elastic solids with internal fluid generation

    NASA Astrophysics Data System (ADS)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Galland, Olivier; Renard, François; Meakin, Paul; Jamtveit, Bjørn; Dysthe, Dag K.

    2013-06-01

    Experiments in which CO2 gas was generated by the yeast fermentation of sugar in an elastic layer of gelatine gel confined between two glass plates are described and analyzed theoretically. The CO2 gas pressure causes the gel layer to fracture. The gas produced is drained on short length scales by diffusion and on long length scales by flow in a fracture network, which has topological properties that are intermediate between river networks and hierarchical-fracture networks. A simple model for the experimental system with two parameters that characterize the disorder and the intermediate (river-fracture) topology of the network was developed and the results of the model were compared with the experimental results.

  16. [Methanotrophic bacteria in cold seeps of the floodplains of northern rivers].

    PubMed

    Belova, S É; Oshkin, I Iu; Glagolev, M V; Lapshina, E D; Maksiutov, Sh Sh; Dedysh, S N

    2013-01-01

    Small mud volcanoes (cold seeps), which are common in the floodplains of northern rivers, are a potentially important, although poorly studied sources of atmospheric methane. Field research on the cold seeps of the Mukhrina River (Khanty-Mansiysk Autonomous okrug, Russia) revealed methane fluxes from these structures to be orders of magnitude higher than from equivalent areas of the mid-taiga bogs. Microbial communities developing around the seeps were formed under conditions of high methane concentrations, low temperatures (3-5 degrees C), and near-neutral pH. Molecular identification of methane-oxidizing bacteria from this community by analysis of the pmoA gene encoding particulate methane monooxygenase revealed both type I and type II methanotrophs (classes Gammaproteobacteria and Alphaproteobacteria, respectively), with predomination of type I methanotrophs. Among the latter, microorganisms related to Methylobacterpsychrophilus and Methylobacter tundripaludum, Crenothrix polyspora (a stagnant water dweller), and a number of methanotrophs belonging to unknown taxa were detected. Growth characteristics of two isolates were determined. Methylobactersp. CMS7 exhibited active growth at 4-10 degrees C, while Methylocystis sp. SB12 grew better at 20 degrees C. Experimental results confirmed the major role ofmethanotrophic gammaproteobacteria in controlling the methane emission from cold river seeps.

  17. Flow over bedforms in a large sand-bed river: A field investigation

    USGS Publications Warehouse

    Holmes, Robert R.; Garcia, Marcelo H.

    2008-01-01

    An experimental field study of flows over bedforms was conducted on the Missouri River near St. Charles, Missouri. Detailed velocity data were collected under two different flow conditions along bedforms in this sand-bed river. The large river-scale data reflect flow characteristics similar to those of laboratory-scale flows, with flow separation occurring downstream of the bedform crest and flow reattachment on the stoss side of the next downstream bedform. Wave-like responses of the flow to the bedforms were detected, with the velocity decreasing throughout the flow depth over bedform troughs, and the velocity increasing over bedform crests. Local and spatially averaged velocity distributions were logarithmic for both datasets. The reach-wise spatially averaged vertical-velocity profile from the standard velocity-defect model was evaluated. The vertically averaged mean flow velocities for the velocity-defect model were within 5% of the measured values and estimated spatially averaged point velocities were within 10% for the upper 90% of the flow depth. The velocity-defect model, neglecting the wake function, was evaluated and found to estimate thevertically averaged mean velocity within 1% of the measured values.  

  18. Cephalosporium Wilt of Elm in the Lower Mississippi Valley

    Treesearch

    T. H. Filer; F. I. McCracken; E. R. Toole

    1968-01-01

    Dead and dying American elms (Ulmus americana) and cedar elms (U. crassifolia) were observed on the Delta Experimental Forest, Stoneville, Mississippi, and in Desha County, Arkansas, near the Mississippi River (about 30 miles northwest of the experimental forest) during August 1967. The only fungus consistently isolated from these...

  19. Limiting the development of riparian vegetation in the Isère River: physical and numerical modelling study

    NASA Astrophysics Data System (ADS)

    Claude, Nicolas; El Kadi Abderrezzak, Kamal; Duclercq, Marion; Tassi, Pablo; Leroux, Clément

    2017-04-01

    The Isère River (France) has been strongly impacted during the 19th and 20th centuries by human activities, such as channelization, sediment dredging and damming. The hydrology and river morphodynamic have been significantly altered, thereby leading to riverbed incision, a decrease in submersion frequency of gravel bars and an intense development of riparian vegetation on the bars. The flood risk has increased due to the reduction of the flow conveyance of the river, and the ecological status of the river has been degraded. To face these issues, a research program involving EDF and French state authorities has been recently initiated. Modification of the current hydrology, mainly controlled by dams, and definition of a new bed cross-sectional profile, are expected to foster the submersion frequency and mobility of the bars, thus limiting the riparian development. To assess the performance of these mitigating solutions, a physical and numerical modelling study has been conducted, applied to a 2 km long reach of the Isère River. The experimental setup consists of an undistorted movable bed designed to ensure the similarity of the Froude number and initial conditions for sediment particle motion. The resulting physical model is 35 m long and 2.6 m wide, with sand mixture composed of three grain size classes. The numerical simulations performed with the Telemac Modelling System (www.opentelemac.org) show, for the current morphology, a limited sediment mobility and submersion for flow discharge lower than 400 m3/s, confirming that the actual conditions in the Isère River promote the development of riparian vegetation. Different new bed geometry profiles have been evaluated using the numerical model. Then two configurations, one based on the creation of deflecting bedforms in the thalweg and one based on the transformation of the long bars into small central bars, have been selected and modelled with the physical model.

  20. A Novel Selective Deep Eutectic Solvent Extraction Method for Versatile Determination of Copper in Sediment Samples by ICP-OES.

    PubMed

    Bağda, Esra; Altundağ, Huseyin; Tüzen, Mustafa; Soylak, Mustafa

    2017-08-01

    In the present study, a simple, mono step deep eutectic solvent (DES) extraction was developed for selective extraction of copper from sediment samples. The optimization of all experimental parameters, e.g. DES type, sample/DES ratio, contact time and temperature were performed with using BCR-280 R (lake sediment certified reference material). The limit of detection (LOD) and the limit of quantification (LOQ) were found as 1.2 and 3.97 µg L -1 , respectively. The RSD of the procedure was 7.5%. The proposed extraction method was applied to river and lake sediments sampled from Serpincik, Çeltek, Kızılırmak (Fadl and Tecer region of the river), Sivas-Turkey.

  1. Understanding Single-Thread Meandering Rivers with High Sinuosity on Mars through Chemical Precipitation Experiments

    NASA Astrophysics Data System (ADS)

    Lim, Y.; Kim, W.

    2015-12-01

    Meandering rivers are extremely ubiquitous on Earth, yet it is only recently that single-thread experimental channels with low sinuosity have been created. In these recent experiments, as well as in natural rivers, vegetation plays a crucial role in maintaining a meandering pattern by adding cohesion to the bank and inhibiting erosion. The ancient, highly sinuous channels found on Mars are enigmatic because presumably vegetation did not exist on ancient Mars. Under the hypothesis that Martian meandering rivers formed by chemical precipitation on levees and flood plain deposits, we conducted carbonate flume experiments to investigate the formation and evolution of a single-thread meander pattern without vegetation. The flow recirculating in the flume is designed to accelerate chemical reactions - dissolution of limestone using CO2 gas to produce artificial spring water and precipitation of carbonates to increase cohesion- with precise control of water discharge, sediment discharge, and temperature. Preliminary experiments successfully created a single-thread meandering pattern through chemical processes. Carbonate deposits focused along the channel sides improved the bank stability and made them resistant to erosion, which led to a stream confined in a narrow path. The experimental channels showed lateral migration of the bend through cut bank and point bar deposits; intermittent floods created overbank flow and encouraged cut bank erosion, which enhanced lateral migration of the channel, while increase in sediment supply improved lateral point bar deposition, which balanced erosion and deposition rates. This mechanism may be applied to terrestrial single-thread and/or meandering rivers with little to no vegetation or before its introduction to Earth and also provide the link between meandering river records on Mars to changes in Martian surface conditions.

  2. Some recent developments in the Wind River Douglas-fir plantation spacing tests.

    Treesearch

    Donald L. Reukema

    1959-01-01

    The effect of spacing on stand development is a subject that has been widely discussed. To test spacings ranging from 4x4 feet to 12x12 feet, a Douglas-fir plantation was established in 1925 at the Wind River Experimental Forest near Carson, Wash. This paper reports some results of a remeasurement made in 1957 (table 1) and compares these results with those of previous...

  3. Contributions of studies on experimental forests to hydrology and watershed management [Chapter 14

    Treesearch

    Gerald J. Gottfried; Peter F. Ffolliott; Kenneth N. Brooks; Randall K. Kolka; Carol B. Raish; Daniel G. Neary

    2014-01-01

    The link between healthy forests and watersheds and healthy streamflow and quality water is universally recognized. The major rivers of the USA originate in the forested mountains of the western and eastern USA and the glaciated regions of the Lake States and Great Plains and produce almost two-thirds of the nation’s clean water supply. Original logging and...

  4. Bedrock river erosion measurements and modelling along a river of the Frontal Himalaya

    NASA Astrophysics Data System (ADS)

    Lave, Jerome; Dubille, Matthieu

    2017-04-01

    River incision is a key process in mountains denudation and therefore in landscape evolution models. Despite its importance, most incision models for mountain rivers rely on simplified, or quite empirical relations, and generally only consider annual average values for water discharge and sediment flux. In contrast, very few studies consider mechanistic models at the timescale of a flood, and try to bridge the gap between experimental or theoretical approaches and long term river incision studies. In this contribution, we present observations made during 7 monsoon seasons on fluvial bedrock erosion along the Bakeya river across the Frontal Himalaya in Central Nepal. Along its lower gorge, this river incises alternation of indurated sandstone and less resistant claystone, at Holocene rates larger than 10mm/yr. More importantly, its upper drainage mostly drains through non-cohesive conglomerate which allows, in this specific setting, estimating the bedload characteristics and instantaneous fluxes, i.e. a pre-requisite to test mechanistic models of fluvial erosion. During the study period, we monitored and documented the channel bank erosion in order to understand the amplitude of the erosion processes, their occurrence in relation with hydrology, in order to test time-integrated models of erosion. Besides hydrologic monitoring, erosion measurements were threefold: (1) at the scale of the whole monsoon, plucking and block removal by repeated photo surveys of a 400m long channel reach, (2) detailed microtopographic surveys of channel bedrock elevation along a few sandstone bars to document their abrasion, (3) real time measurement of fluvial bedrock wear to document erosion timing using a new erosion sensor. Results indicate that: 1. Erosion is highly dependent on rock resistance, but on average block detachment and removal is a more efficient process than bedrock attrition, and operates at a rate that permit channel banks downcutting to keep pace with Holocene uplift rate. 2. Both block detachment and attrition processes clearly increase with fluvial shear stress, but non-linearly, in particular through the existence of a minimum threshold. As a result of which bank erosion occur during only a few hours per year during short and very high flood events, which questions the use of average discharge (or drainage area) in many bedrock erosion models. We then propose a semi-physical model of sandstone bars abrasion based on discharge history (HEC-RAS modelling), Rouse suspension model, and experimental measurements on dependency of abrasion rate vs impacting particle size. This model predicts well the timing and the amplitude of both real-time and monsoon average abrasion along the surveyed sandstone bars. This first validation of a model for bank erosion opens large perspective for future work on channel bottom incision modelling using physical models of erosion and their time- and gravel-size-integration, with the objective to introduce more physical rules in landscape evolution models.

  5. Water temperatures in select nearshore environments of the Colorado River in Grand Canyon, Arizona, during the Low Steady Summer Flow experiment of 2000

    USGS Publications Warehouse

    Vernieu, William S.; Anderson, Craig R.

    2013-01-01

    Water releases from Glen Canyon Dam, Arizona, are the primary determinant of streamflow, sediment transport, water quality, and aquatic and riparian habitat availability in the Colorado River downstream of the dam in Grand Canyon. The presence and operation of the dam have transformed the seasonally warm Colorado River into a consistently cold river because of hypolimnetic, or deep-water, releases from the penstock withdrawal structures on the dam. These releases have substantially altered the thermal regime of the downstream riverine environment. This, in turn, has affected the biota of the river corridor, particularly native and nonnative fish communities and the aquatic food web. In the spring and summer of 2000, a Low Steady Summer Flow experiment was conducted by the U.S. Geological Survey and the Bureau of Reclamation to evaluate the effects of the experimental flow on physical and biological resources of the Colorado River ecosystem downstream from Glen Canyon Dam to Lake Mead on the Arizona-Nevada border. This report describes the water temperatures collected during the experimental flow from 14 nearshore sites in the river corridor in Grand Canyon to assess the effects of steady releases on the thermal dynamics of nearshore environments. These nearshore areas are characterized by low-velocity flows with some degree of isolation from the higher velocity flows in the main channel and are hypothesized to be important rearing environments for young native fish. Water-temperature measurements were made at 14 sites, ranging from backwater to open-channel environments. Warming during daylight hours, relative to main-channel temperatures, was measured at all sites in relation to the amount of isolation from the main-channel current. Boat traffic, amount of direct solar radiation, and degree of isolation from the main-channel current appear to be the primary factors affecting the differential warming of the nearshore environment.

  6. Experimental Study of Nonassociated Flow and Instability of Frictional Materials. Attachment No. 1

    DTIC Science & Technology

    1993-04-01

    pressure range of 0.25 to 68.9 MPa. One-dimensional compression tests up to 900 MPa axial stress level were also performed. U Strain localization was studied... range of confining pressures. Vesic and Clough (1968) performed a series of drained, triaxial compression tests on Chattahoochee River sand at confining...realization resulted in many investigators developing cubical triaxial testing apparatus, in which the full range of the effect of the intermediate I principal

  7. Analysing the meandering rivers responses to the slope-changes, depending on their bankfull discharge - Case study in the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Petrovszki, Judit; Timár, Gábor; Molnár, Gábor

    2014-05-01

    The multi-variable connection between the channel slope, bankfull discharge and sinuosity values were analysed to get a mathematical formula, which describes the responses of the rivers, and gives the probable sinuosity values for every slope and discharge values. Timár (2003) merged two planar diagrams into a quasi 3D graph. One of them displayed how the river pattern changes, according to the slope and bankfull discharge values (Leopold and Wolmann, 1957; Ackers and Charlton, 1971); the other based on flume experiments, and gives a connection between the slope and sinuosity (Schumm and Khan, 1972). The result graph suggests that the slope-sinuosity connection also works along the natural rivers, for every discharge values. The aim of this work was to prove this relation, and describe it numerically. The sinuosity values were calculated along the natural, meandering river beds, using historical maps (2nd Military Survey of the Habsburg Empire, from the 19th century). The available slope and discharge values were imported from a database measured after the main river control works, at the beginning of the 20th century (Viczián, 1905). Analysing the reports of the river control works, the natural slope could be computed for every river sections. The mean discharges were also converted to bankfull discharges. Neither long time series, nor cross sectional areas were obtainable, so other method was used to generate the bankfull discharge. After the above mentioned corrections a quadratic polynomial surface was fitted onto these points with least squares regression. The cross section of this surface follows the theoretical slope-sinuosity graph, verifying that the flume experiments and natural rivers behave similarly. The differences between the fitted surface and the original points were caused by other river parameters, which also affect the natural rivers (e.g. the sediment discharge). Furthermore, this graph confirms the connection between the slope and sinuosity, so the sinuosity is a useable parameter to detect the changing slope. The research is made in the frame of project OTKA-NK83400 (SourceSink Hungary). The European Union and the European Social Fund also have provided financial support to the project under the grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003. References: Ackers, P., Charlton, F. G. (1971): The slope and resistance of small meandering channels. Inst. Civil Engineers Proc. Supp. XV, Paper 73625. Leopold, L. B., Wolman, M. G. (1957): River chanel patterns; braided, meandering and straight. USGS Prof. Paper 282B: 1-73. Schumm, S. A., Khan, H. R. (1972): Experimental study of channel patterns. Geol. Soc. Am. Bull. 83:1755-1770. Timár, G. (2003): Controls on channel sinuosity changes: a case study of the Tisza River, the Great Hungarian Plain. Quaternary Science Reviews 22: 2199-2207. Viczián E. (1905): Magyarország vízierői. Pallas, Budapest, 349 o.

  8. Morphodynamic modeling of erodible laminar channels.

    PubMed

    Devauchelle, Olivier; Josserand, Christophe; Lagrée, Pierre-Yves; Zaleski, Stéphane

    2007-11-01

    A two-dimensional model for the erosion generated by viscous free-surface flows, based on the shallow-water equations and the lubrication approximation, is presented. It has a family of self-similar solutions for straight erodible channels, with an aspect ratio that increases in time. It is also shown, through a simplified stability analysis, that a laminar river can generate various bar instabilities very similar to those observed in natural rivers. This theoretical similarity reflects the meandering and braiding tendencies of laminar rivers indicated by F. Métivier and P. Meunier [J. Hydrol. 27, 22 (2003)]. Finally, we propose a simple scenario for the transition between patterns observed in experimental erodible channels.

  9. Gain and loss of moisture in large forest fuels

    Treesearch

    Arthur P. Brackebusch

    1975-01-01

    Equations for predicting moisture in large fuels were developed from data gathered at Priest River Experimental Forest and Boise Basin Experimental Forest. The most important variables were beginning moisture content of the fuel, duration of precipitation, amount of precipitation, and the sum of the mean temperature of an observation period. Sensitivity and precision...

  10. The role of the hyporheic flow on sediment transport processes : an experimental approach using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Rousseau, Gauthier; Sklivaniti, Angeliki; Vito Papa, Daniel; Ancey, Christophe

    2017-04-01

    The study of river dynamics usually considers a turbulent stream on an impervious bed. However, it is known that part of the total discharge takes place through the erodible bed, especially for mountain rivers. This hyporheic flow (or subsurface flow) is likely to play an active role in the stability of the erodible bed. The question then arises: How does the hyporheic flow affect bed stability and thereby bed load transport? Monitoring hyporheic flow under natural conditions remains a key challenge. Laboratory experiments and new measurement techniques shed new light on this problem. Using PIV-LIF method (Particle Image Velocimetry - Laser Induced Fluorescence) we investigate hyporheic flows through erodible beds. The experiment is conducted in a 2-m-long and 6-cm-width flume with 2-mm-diameter glass beads and 4-mm-diameter natural pebbles under turbulent stream conditions. In parallel, we develop a simple analytical model that accounts for the interaction between the surface and subsurface flows at the bed interface. As the Reynolds number of the hyporheic flow is fairly high (10 to 100), inertia cannot be neglected. This leads us to use the Darcy-Forchheimer law instead of Darcy's law to model hyporheic flows. We show that this model is consistent with the PIV-LIF experimental results. Moreover, the PIV-LIF data show that hyporheic flows modify the velocity profile and turbulence. Our measurements and empirical model emphasize the exchange processes in coarse-grained river for incipient sediment motion.

  11. Temperature constraints on the Ginkgo flow of the Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Ho, Anita M.; Cashman, Katharine V.

    1997-05-01

    This study provides the first quantitative estimate of heat loss for a Columbia River Basalt Group flow. A glass composition-based geothermometer was experimentally calibrated for a composition representative of the 500-km-long Ginkgo flow of the Columbia River Basalt Group to measure temperature change during transport. Melting experiments were conducted on a bulk sample at 1 atm between 1200 and 1050 °C. Natural glass was sampled from the margin of a feeder dike near Kahlotus, Washington, and from pillow basalt at distances of 120 km (Vantage, Washington), 350 km (Molalla, Oregon), and 370 km (Portland, Oregon). Ginkgo basalt was also sampled at its distal end at Yaquina Head, Oregon (500 km). Comparison of the glass MgO content, K2O in plagioclase, and measured crystallinities in the experimental charges and natural samples tightly constrains the minimum flow temperature to 1085 ± 5 °C. Glass and plagioclase compositions indicate an upper temperature of 1095 ± 5 °C; thus the maximum temperature decrease along the flow axis of the Ginkgo is 20 °C, suggesting cooling rates of 0.02 0.04 °C/km. These cooling rates, substantially lower than rates observed in active and historic flows, are inconsistent with turbulent flow models. Calculated melt temperatures and viscosities of 240 750 Pa · s allow emplacement either as a fast laminar flow under an insulating crust or as a slower, inflated flow.

  12. Groundwater response to leakage of surface water through a thick vadose zone in the middle reaches area of Heihe River Basin, in China

    NASA Astrophysics Data System (ADS)

    Wang, X.-S.; Ma, M.-G.; Li, X.; Zhao, J.; Dong, P.; Zhou, J.

    2009-12-01

    The behavior of groundwater response to leakage of surface water in the middle reaches area of Heihe River Basin is significantly influenced by a thick vadose zone. The variation of groundwater level is a result of two recharge events corresponding to leakage of Heihe River and irrigation water with different delay time. A nonlinear leakage model is developed to calculate the monthly leakage of Heihe River in considering changes of streamflow, river stage and agricultural water utilization. Numerical modeling of variable saturated flow is carried out to investigate the general behaviors of leakage-recharge conversion through a thick vadose zone. It is found that the variable recharge can be approximated by simple reservoir models for both leakage under a river and leakage under an irrigation district but with different delay-time and recession coefficient. A triple-reservoir model of relationship between surface water, vadose zone and groundwater is developed. It reproduces the in situ water table movement during 1989-2006 with variable streamflow of Heihe River and agricultural water utilization. The model is applied to interpret groundwater dynamics during 2007-2008 that observed in the Watershed Airborne Telemetry Experimental Research (WATER).

  13. Groundwater response to leakage of surface water through a thick vadose zone in the middle reaches area of Heihe River Basin, in China

    NASA Astrophysics Data System (ADS)

    Wang, X.-S.; Ma, M.-G.; Li, X.; Zhao, J.; Dong, P.; Zhou, J.

    2010-04-01

    The behavior of groundwater response to leakage of surface water in the middle reaches area of Heihe River Basin is significantly influenced by a thick vadose zone. The groundwater regime is a result of two recharge events due to leakage of Heihe River and irrigation water with different delay time. A nonlinear leakage model is developed to calculate the monthly leakage of Heihe River in considering changes of streamflow, river stage and agricultural water utilization. Numerical modeling of variable saturated flow is carried out to investigate the general behaviors of leakage-recharge conversion through a thick vadose zone. It is found that the recharge pattern can be approximated by simple reservoir models of leakages under a river and under an irrigation district with different delay-time and recession coefficient. A triple-reservoir model of relationship between surface water, vadose zone and groundwater is developed. It reproduces the groundwater regime during 1989-2006 with variable streamflow of Heihe River and agricultural water utilization. The model is applied to interpret changes of groundwater level during 2007-2008 that observed in the Watershed Airborne Telemetry Experimental Research (WATER).

  14. Simulation of turbid underflows generated by the plunging of a river

    NASA Astrophysics Data System (ADS)

    Kassem, Ahmed; Imran, Jasim

    2001-07-01

    When the density of sediment-laden river water exceeds that of the lake or ocean into which it discharges, the river plunges to the bottom of the receiving water body and continues to flow as a hyperpycnal flow. These particle-laden underflows, also known as turbidity currents, can travel remarkable distances and profoundly influence the seabed morphology from shoreline to abyss by depositing, eroding, and dispersing large quantities of sediment particles. Here we present a new approach to investigating the transformation of a plunging river flow into a turbidity current. Unlike previous workers using experimental and numerical treatments, we consider the evolution of a turbidity current from a river as different stages of a single flow process. From initial commotion to final stabilization, the transformation of a river (open channel flow) into a density-driven current (hyperpycnal flow) is captured in its entirety by a numerical model. Successful implementation of the model in laboratory and field cases has revealed the dynamics of a complex geophysical flow that is extremely difficult to observe in the field or model in the laboratory.

  15. Experimental investigation and modelling approach of the impact of urban wastewater on a tropical river; a case study of the Nhue River, Hanoi, Viet Nam

    NASA Astrophysics Data System (ADS)

    Duc, Trinh Anh; Vachaud, Georges; Bonnet, Marie Paule; Prieur, Nicolas; Loi, Vu Duc; Anh, Le Lan

    2007-02-01

    SummaryAnalyses of water quality and flow regime in combination with laboratory studies and ecological modelling were used to assess the water quality impact of pollution from to To Lich River that drains through Hanoi City and greatly contaminates the Nhue River. With an average discharge of 26.2 m 3/s, the Nhue River receives about 5.8 m 3/s of untreated domestic water from the city's main open-air-sewer - the To Lich River. The studies during 2002-2003 showed high concentrations of BOD (70 mg O 2/l), DOC (15 mg C/l), coliform (2.4e 6 MNP/100 ml), total phosphorus (3.5 mg P/l), and total nitrogen (31.6 mg N/l) in the To Lich, while DO level was less than 1 mg O 2/l. Such high loads of untreated wastewater impacted water quality in the Nhue River where DO decreased at times to as low as 1 mg O 2/l. The accumulation of particulate organic matter and micro-organisms in the sediments of the Nhue represented substantial sources of nutrients and sinks for DO. They are also considerable production of dissolved carbon dioxide at concentrations up to two orders of magnitude higher than pressure. Such pressures ( EpCO 2) are expected in polluted environments, but the results presented here are new for Vietnam and much of developing countries. A number of factors linked to field monitoring and laboratory measurements clearly indicate the importance of autotrophic over heterotrophic biological processes and sediments. An ecological model for management purposes has been developed that reliably estimates of the pollutant loads. An opportunity was taken to examine the changing impacts and processes when the To Lich was diverted from the Nhue. The monitoring and modelling of this opportunity showed low dissolved oxygen levels even if the impact from the To Lich was lessened. Alternatives are proposed to alleviate problems of water quality in the Nhue. It is concluded that the treatment of the To Lich River's water is highly recommended; otherwise a reduction to one third of current wastewater discharge is needed to bring water quality back to the environmental standard.

  16. A Graphical Representation of Multiple Stressor Effects on River Eutrophication as Simulated by a Physics-Based River Quality Model

    NASA Astrophysics Data System (ADS)

    Hitt, O.; Hutchins, M.

    2016-12-01

    UK river waters face considerable future pressures, primarily from population growth and climate change. In understanding controls on river water quality, experimental studies have successfully identified response to single or paired stressors under controlled conditions. Generalised Linear Model (GLM) approaches are commonly used to quantify stressor-response relationships. To explore a wider variety of stressors physics-based models are used. Our objective is to evaluate how five different types of stressor influence the severity of river eutrophication and its impact on Dissolved Oxygen (DO) an integrated measure of river ecological health. This is done by applying a physics-based river quality model for 4 years at daily time step to a 92 km stretch in the 3445 km2 Thames (UK) catchment. To understand the impact of model structural uncertainty we present results from two alternative formulations of the biological response. Sensitivity analysis carried out using the QUESTOR model (QUality Evaluation and Simulation TOol for River systems) considered gradients of various stressors: river flow, water temperature, urbanisation (abstractions and sewage/industrial effluents), phosphate concentrations in effluents and tributaries and riparian tree shading (modifying the light input). Scalar modifiers applied to the 2009-12 time-series inputs define the gradients. The model has been run for each combination of the values of these 5 variables. Results are analysed using graphical methods in order to identify variation in the type of relationship between different pairs of stressors on the system response. The method allows for all outputs from each combination of stressors to be displayed in one graphic and so showing the results of hundreds of model runs simultaneously. This approach can be carried out for all stressor pairs, and many locations/determinands. Supporting statistical analysis (GLM) reinforces the findings from the graphical analysis. Analysis suggests that climate-driven variables (flow and river temperature) give strong explanation of variation in DO content. An indicator of low DO values typically seen in summer is chosen (10th percentile). Increasing temperature clearly has adverse effects lowering DO, and is illustrated in three example graphics.

  17. External dose reconstruction for the former village of Metlino (Techa River, Russia) based on environmental surveys, luminescence measurements, and radiation transport modelling.

    PubMed

    Hiller, M M; Woda, C; Bougrov, N G; Degteva, M O; Ivanov, O; Ulanovsky, A; Romanov, S

    2017-05-01

    In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals' residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa River Dosimetry System within a factor of two.

  18. How Do River Meanders Change with Sea Level Rise and Fall?

    NASA Astrophysics Data System (ADS)

    Scamardo, J. E.; Kim, W.

    2016-12-01

    River meander patterns are controlled by numerous factors, including variations in water discharge, sediment input, and base level. However, the effect of sea level rise and fall on meandering rivers has not been thoroughly quantified. This study examines geomorphic changes to meandering rivers as a result of sea level rise and fall. Twenty experimental runs using coarse-grained walnut shell sediment (D50= 500 microns) in a flume tank (2.4m x 0.6m x 0.1m) tested the optimal initial conditions for creating meandering rivers in a laboratory setting as well as variations in base level rise and fall rates. Geomorphic changes were recorded by camera images every 20 seconds for a duration of 4 hours per experiment. Seventeen experiments tested the effects of changes in initial base levels, water discharge between 200 and 400 mL/min, and sediment to water input ratios between 1:1000 and 1:250 while measuring sinuosity, channel geometry, and the timescale of the channel to reach a stable form. Sinuosity and channel activity increased with increasing water discharge, initial base level, and the sediment to water ratio to a point after which the activity decreased with increasing sediment input. Base-level change experiments used initial conditions of 400 mL/min, a 1:750 sediment to water input ratio, and a 6 cm initial base-level to induce river meanders for the initial 2 hours before base-level change occurred. Three separate experiments investigated the effects of increasing rates of sea level change: 0.07 cm/min, 0.1 cm/min, and 0.2 cm/min. Experimental sea level was decreased constantly from a high-stand of 6 cm to a low-stand of 2 cm back to the high-stand base-level in each experiment. The rates of change in the experiments scale roughly from central to glacial cycles. In all three experiments, sea level fall induced meander cut-off while sea level rise prompted greater rates of meander bend erosion and meander growth. Sinuosity increased by 12%, 13.5%, and 24%, respectively in the three experiments, with most sinuosity changes occurring in the downstream reach of the channel. These experiments could provide insight into long term effects of sea level change on modern meandering fluvial systems as well as provide a key to interpreting past fluvial changes in the stratigraphic record.

  19. Hydraulic shock waves in an inclined chute contraction

    NASA Astrophysics Data System (ADS)

    Jan, C.-D.; Chang, C.-J.

    2009-04-01

    A chute contraction is a common structure used in hydraulic engineering for typical reasons such as increase of bottom slope, transition from side channel intakes to tunnel spillways, reduction of chute width due to bridges, transition structures in flood diversion works, among others. One of the significant chute contractions in Taiwan is that used in the Yuanshantzu Flood Diversion Project of Keelung River. The diversion project is designed to divert flood water from upper Keelung River into East Sea with a capasity of 1,310 cubic meters per second for mitigating the flood damage of lower part of Keelung River basin in Northern Taiwan. An inclined chute contraction is used to connect Keelung River and a diversion turnel. The inlet and outlet works of the diversion project is located at Ruifang in the Taipei County of north Taiwan. The diameter of diversion tunnel is 12 meters and the total length of tunnel is 2,484 meters. The diversion project has been completed and successfully executed many times since 2004 to lower the water level of Keelung River in typhoon seasons for avioding flooding problems in the lower part of Keelung River basin. Flow in a chute contraction has complicated flow pattern due to the existence of shock waves in it. A simple and useful calculation procedure for the maximum height and its position of shock waves is essentially needed for the preliminary design stage of a chute contraction. Hydraulic shock waves in an inclined chute contraction were experimentally and numerically investigated in this study with the consideration of the effects of sidewall deflection angle, bottom inclination angle and Froude number of approaching flow. The flow pattern of hydraulic shock waves in a chute contraction was observed. The main issue of designing chute contraction is to estimate the height and position of maximum shock wave for the consideration of freeboards. Achieving this aim, the experimental data are adopted and analyzed for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave. The dimensionless relations for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave are obtained by regression analysis. These empirical regression relations, basically relating to the sidewall deflection angle, bottom angle and approach Froude number, are very useful for further practical engineering applications in chute contraction design for avoiding flow overtopping.

  20. Vulnerability assessment and application of bacterial technology on urban rivers for pollution eradication.

    PubMed

    Hashim, Sarfraz; Yuebo, Xie; Ahmad, Fiaz; Arslan, Chaudhry; Saifullah, Muhammad

    2015-01-01

    To protect against the environmental pollution, the present research was undertaken to enumerate the Bacterial Technologies (BTs) on the restoration of polluted urban rivers, that is, Fenghu-Song Yang River (FSR) and Xuxi River (XXR). Experimental research accounted for the physiochemical parameters (pH; temperature; dissolved oxygen (DO); chemical oxygen demand (COD); total phosphorus (TP); total nitrogen (TN); and ammonia nitrogen (NH3N)) before and after the BT operation. The results declared that the BT is efficient to restore the polluted rivers up to reliable condition. These results were analyzed by using multivariate statistical techniques (principal component analysis (PCA) and cluster analysis (CA)). These techniques interpreted the complex data sets and expressed the point source information about the water quality of these rivers at SA5, SA6, and SB3 under highly polluted regions. For better understanding, water quality index (WQI) was applied to compute the single numeric value. WQI results are evidence of the above results which prove the water quality of both rivers faced under outrageous condition (below 50 WQI scores) before the BT treatment, but, after the treatment, the rivers were restored from fair to good level (above 50 WQI scores) and overall output of these scores was quite similar to detect the point source of pollution. These results described an abrupt recovery of the urban rivers up to reliable condition for aquatic organism and clear effluents from the rivers.

  1. Estimation of global plastic loads delivered by rivers into the sea

    NASA Astrophysics Data System (ADS)

    Schmidt, Christian; Krauth, Tobias; Klöckner, Phillipp; Römer, Melina-Sophie; Stier, Britta; Reemtsma, Thorsten; Wagner, Stephan

    2017-04-01

    A considerable fraction of marine plastic debris likely originates from land-based sources. Transport of plastics by rivers is a potential mechanism that connects plastic debris generated on land with the marine environment. We analyze existing and experimental data of plastic loads in rivers and relate these to the amount of mismanaged plastic waste (MMPW) generated in the river catchments. We find a positive relationship between the plastic load in rivers and the amount of MMPW. Using our empirical MMPW-plastic river load-relationship we estimated the annual plastic load for 1494 rivers, ranging from small first order streams to large rivers, which have an outlet to the sea. We estimate that the global load of plastic debris delivered by rivers to the sea is 39000 tons per year with a large 95% prediction interval between 247 tons per year and 16.7 million tons per year, respectively. Our best estimate is considerably lower than the estimated total land-based inputs which range between 4.8-12.7 million tons anually (Jambeck et al. 2015). Approximately 75% of the total load is transported by the 10 top-ranked rivers which are predominantly located in Asia. These river catchments encompass countries with a large population and high economic growth but an insufficient waste infrastructure. Reducing the plastic loads in these rivers by 50% would reduce the global inputs by 37%. Of the total MMPW generated within river catchments, only a small fraction of about 0.05 % has been found to be mobile in rivers. Thus, either only a small fraction of MMPW enters the river systems, or a substantial fraction of plastic debris accumulates in river systems world wide. References: Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law (2015), Plastic waste inputs from land into the ocean, Science, 347(6223), 768-771, doi:10.1126/science.1260352.

  2. Response of white-footed mice (Peromyscus leucopus) to fire and fire surrogate fuel reduction treatments in a southern Appalachian hardwood forest

    Treesearch

    Cathryn H. Greenberg; David L. Otis; Thomas A. Waldrop

    2006-01-01

    An experiment conducted as part of the multidisciplinary National Fire and Fire Surrogate Study was designed to determine effects of three fuel reduction techniques on small mammals and habitat structure in the southern Appalachian mountains. Four experimental units, each >14-ha were contained within each of three replicate blocks at the Green River Game Land,...

  3. Stand-level gas-exchange responses to seasonal drought in very young versus old Douglas-fir forests of the Pacific Northwest, USA

    Treesearch

    Sonia Wharton; Matt Schroeder; Ken Bible; Matthias Falk; Kyaw Tha Paw U

    2009-01-01

    This study examines how stand age affects ecosystem mass and energy exchange response to seasonal drought in three adjacent Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests. The sites include two early seral (ES) stands (0 to 15 years old) and an old-growth (OG) (~450 to 500 years old) forest in the Wind River Experimental Forest,...

  4. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon

    USGS Publications Warehouse

    Cross, Wyatt F.; Baxter, Colden V.; Donner, Kevin C.; Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Hall, Robert O.; Wellard Kelly, Holly A.; Rogers, R. Scott

    2011-01-01

    Large dams have been constructed on rivers to meet human demands for water, electricity, navigation, and recreation. As a consequence, flow and temperature regimes have been altered, strongly affecting river food webs and ecosystem processes. Experimental high-flow dam releases, i.e., controlled floods, have been implemented on the Colorado River, USA, in an effort to reestablish pulsed flood events, redistribute sediments, improve conditions for native fishes, and increase understanding of how dam operations affect physical and biological processes. We quantified secondary production and organic matter flows in the food web below Glen Canyon dam for two years prior and one year after an experimental controlled flood in March 2008. Invertebrate biomass and secondary production declined significantly following the flood (total biomass, 55% decline; total production, 56% decline), with most of the decline driven by reductions in two nonnative invertebrate taxa, Potamopyrgus antipodarum and Gammarus lacustris. Diatoms dominated the trophic basis of invertebrate production before and after the controlled flood, and the largest organic matter flows were from diatoms to the three most productive invertebrate taxa (P. antipodarum, G. lacustris, and Tubificida). In contrast to invertebrates, production of rainbow trout (Oncorhynchus mykiss) increased substantially (194%) following the flood, despite the large decline in total secondary production of the invertebrate assemblage. This counterintuitive result is reconciled by a post-flood increase in production and drift concentrations of select invertebrate prey (i.e., Chironomidae and Simuliidae) that supported a large proportion of trout production but had relatively low secondary production. In addition, interaction strengths, measured as species impact values, were strongest between rainbow trout and these two taxa before and after the flood, demonstrating that the dominant consumer—resource interactions were not necessarily congruent with the dominant organic matter flows. Our study illustrates the value of detailed food web analysis for elucidating pathways by which dam management may alter production and strengths of species interactions in river food webs. We suggest that controlled floods may increase production of nonnative rainbow trout, and this information can be used to help guide future dam management decisions.

  5. Analysis of strontium metabolism in humans on the basis of the Techa river data

    NASA Technical Reports Server (NTRS)

    Tolstykh, E. I.; Kozheurov, V. P.; Vyushkova, O. V.; Degteva, M. O.; Neta, R. (Principal Investigator)

    1997-01-01

    Age and sex features of strontium metabolism have been analyzed on studies of the population residing on the banks of the Techa river which was contaminated by fission products during the years 1949-1956. Measurements of 90Sr body burden have been performed since 1974 using a whole-body counter, and these have made it possible to estimate age-specific long-term retention and elimination rates for men and women. Regarding the retention that correlated with the respective maturation ages, distinct sex differences have been observed for adolescents, whereas only postmenopausal women showed a sharp increase of their elimination rates. There were no differences concerning the reproductive ages. Our experimental findings have a clear physiological interpretation and can be used to develop metabolic models for bone-seeking radionuclides.

  6. Influence of Coliform Source on Evaluation of Membrane Filters

    PubMed Central

    Brodsky, M. H.; Schiemann, D. A.

    1975-01-01

    Four brands of membrane filters were examined for total and fecal coliform recovery performance by two experimental approaches. Using diluted EC broth cultures of water samples, Johns-Manville filters were superior to Sartorius filters for fecal coliform but equivalent for total coliform recovery. Using river water samples, Johns-Manville filters were superior to Sartorius filters for total coliform but equivalent for fecal coliform recovery. No differences were observed between Johns-Manville and Millipore or Millipore and Sartorius filters for total or fecal coliform recoveries using either approach, nor was any difference observed between Millipore and Gelman filters for fecal coliform recovery from river water samples. These results indicate that the source of the coliform bacteria has an important influence on the conclusions of membrane filter evaluation studies. PMID:1106318

  7. Laboratory Alluvial Rivers

    NASA Astrophysics Data System (ADS)

    Devauchelle, O.; Abramian, A.; Seizilles, G.; Lajeunesse, E.

    2015-12-01

    By which physical mechanisms does a river select its shape and size? We investigate this question using small laboratory rivers formed by laminar flows.In its simplest form, this experiment consists in a flow of glycerol over a uniform layer of plastic sediments. After a few hours, a channel forms spontaneously, and eventually reaches a stable geometry. This equilibrium state corresponds accurately to the force balance proposed by Henderson (1961).If we impose a sediment discharge at the inlet of the experiment, the river adjusts to this boundary condition by widening its channel. Observation suggests that this new equilibrium results from the balance between gravity, which pulls the entrained grains towards the center of the channel, and bedload diffusion, which returns them towards the banks. This balance explains why experimental rivers get wider and shallower as their sediment load increases.However, to test quantitatively this theory against observation, we need to evaluate independently the effect of transverse slope on bedload transport. We propose to use an instability generated by bedload diffusion to do so.

  8. "Wandering in the Desert": The Clinch River Breeder Reactor Debate in the U.S. Congress, 1972-1983.

    PubMed

    Camp, Michael

    2018-01-01

    The experimental Clinch River breeder reactor, approved by the U.S. Congress in 1970 for construction in East Tennessee, would have used plutonium instead of uranium. The project drew the ire of environmentalists who insisted that plutonium was too dangerous for commercial use, along with opponents of nuclear proliferation. Tennessee's representatives in Congress, however, desired the jobs that the project would create, and formed legislative coalitions to ensure continued appropriations for the project. Funding lasted until 1983, when fiscal conservatives, concerned about ballooning cost projections, joined with environmentalists to defund the breeder. Interpretations of U.S. nuclear policy in the 1980s have often revolved around the Three Mile Island meltdown's aftermath, but Clinch River was not affected by the incident. Instead, the Clinch River controversy revolved around other unrelated issues. The Clinch River story therefore offers a corrective to accounts that privilege national public opinion at the expense of other variables.

  9. Improving stream studies with a small-footprint green lidar

    USGS Publications Warehouse

    McKean, Jim; Isaak, Dan; Wright, Wayne

    2009-01-01

    Technology is changing how scientists and natural resource managers describe and study streams and rivers. A new generation of airborne aquatic-terrestrial lidars is being developed that can penetrate water and map the submerged topography inside a stream as well as the adjacent subaerial terrain and vegetation in one integrated mission. A leading example of these new cross-environment instruments is the Experimental Advanced Airborne Research Lidar (EAARL), a NASAbuilt sensor now operated by the U.S. Geological Survey (USGS) [Wright and Brock, 2002].

  10. A field reciprocal transplant experiment reveals asymmetric costs of migration between lake and river ecotypes of three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Kaufmann, J; Lenz, T L; Kalbe, M; Milinski, M; Eizaguirre, C

    2017-05-01

    Theory of local adaptation predicts that nonadapted migrants will suffer increased costs compared to local residents. Ultimately this process can result in the reduction of gene flow and culminate in speciation. Here, we experimentally investigated the relative fitness of migrants in foreign habitats, focusing on diverging lake and river ecotypes of three-spined sticklebacks. A reciprocal transplant experiment performed in the field revealed asymmetric costs of migration: whereas mortality of river fish was increased under lake conditions, lake migrants suffered from reduced growth relative to river residents. Selection against migrants thus involved different traits in each habitat but generally contributed to bidirectional reduction in gene flow. Focusing particularly on the parasitic environments, migrant fish differed from resident fish in the parasite community they harboured. This pattern correlated with both cellular phenotypes of innate immunity as well as with allelic variation at the genes of the major histocompatibility complex. In addition to showing the costs of migration in three-spined sticklebacks, this study highlights the role of asymmetric selection particularly from parasitism in genotype sorting and in the emergence of local adaptation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  11. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles, task 2 - FRP composite pile driving at the Richmond-Dresden bridge over the Kennebec River.

    DOT National Transportation Integrated Search

    2014-01-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP : composite piles for load-bearing in bridges. This report covers Task 2, FRP Composite Pile Driving at the : Richmond-Dresden Bridge over ...

  12. Invertebrates of The H.J. Andrews Experimental Forest, Western Cascades, Oregon: III. The Orthoptera (Grasshoppers and Crickets).

    Treesearch

    David C. Lightfoot

    1986-01-01

    An inventory of Orthoptera (grasshoppers and crickets) at the H.J. Andrews Experimental Forest, near Blue River, Oregon, was conducted to determine the species present and ecological relationships. A key for identification and an annotated list are presented. From qualitative assessments of successional habitat relationships, generalized species associations of forest...

  13. Factors affecting large peakflows on Appalachian watersheds: lessons from the Fernow Experimental Forest

    Treesearch

    James N. Kochenderfer; Mary Beth Adams; Gary W. Miller; David J. Helvey

    2007-01-01

    Data collected since 1951 on the Fernow Experimental Forest near Parsons, West Virginia, and at a gaging station on the nearby Cheat River since 1913 were used to evaluate factors affecting large peakflows on forested watersheds. Treatments ranged from periodic partial cuts to complete deforestation using herbicides. Total storm precipitation and average storm...

  14. Analytical improvements of hybrid LC-MS/MS techniques for the efficient evaluation of emerging contaminants in river waters: a case study of the Henares River (Madrid, Spain).

    PubMed

    Pérez-Parada, Andrés; Gómez-Ramos, María del Mar; Martínez Bueno, María Jesús; Uclés, Samanta; Uclés, Ana; Fernández-Alba, Amadeo R

    2012-02-01

    Instrumental capabilities and software tools of modern hybrid mass spectrometry (MS) instruments such as high-resolution mass spectrometry (HRMS), quadrupole time-of-flight (QTOF), and quadrupole linear ion trap (QLIT) were experimentally investigated for the study of emerging contaminants in Henares River water samples. Automated screening and confirmatory capabilities of QTOF working in full-scan MS and tandem MS (MS/MS) were explored when dealing with real samples. Investigations on the effect of sensitivity and resolution power influence on mass accuracy were studied for the correct assignment of the amoxicillin transformation product 5(R) amoxicillin-diketopiperazine-2',5' as an example of a nontarget compound. On the other hand, a comparison of quantitative and qualitative strategies based on direct injection analysis and off-line solid-phase extraction sample treatment were assayed using two different QLIT instruments for a selected group of emerging contaminants when operating in selected reaction monitoring (SRM) and information-dependent acquisition (IDA) modes. Software-aided screening usually needs a further confirmatory step. Resolving power and MS/MS feature of QTOF showed to confirm/reject most findings in river water, although sensitivity-related limitations are usually found. Superior sensitivity of modern QLIT-MS/MS offered the possibility of direct injection analysis for proper quantitative study of a variety of contaminants, while it simultaneously reduced the matrix effect and increased the reliability of the results. Confirmation of ethylamphetamine, which lacks on a second SRM transition, was accomplished by using the IDA feature. Hybrid MS instruments equipped with high resolution and high sensitivity contributes to enlarge the scope of targeted analytes in river waters. However, in the tested instruments, there is a margin of improvement principally in required sensitivity and data treatment software tools devoted to reliable confirmation and improved automated data processing.

  15. PolyWaTT: A polynomial water travel time estimator based on Derivative Dynamic Time Warping and Perceptually Important Points

    NASA Astrophysics Data System (ADS)

    Claure, Yuri Navarro; Matsubara, Edson Takashi; Padovani, Carlos; Prati, Ronaldo Cristiano

    2018-03-01

    Traditional methods for estimating timing parameters in hydrological science require a rigorous study of the relations of flow resistance, slope, flow regime, watershed size, water velocity, and other local variables. These studies are mostly based on empirical observations, where the timing parameter is estimated using empirically derived formulas. The application of these studies to other locations is not always direct. The locations in which equations are used should have comparable characteristics to the locations from which such equations have been derived. To overcome this barrier, in this work, we developed a data-driven approach to estimate timing parameters such as travel time. Our proposal estimates timing parameters using historical data of the location without the need of adapting or using empirical formulas from other locations. The proposal only uses one variable measured at two different locations on the same river (for instance, two river-level measurements, one upstream and the other downstream on the same river). The recorded data from each location generates two time series. Our method aligns these two time series using derivative dynamic time warping (DDTW) and perceptually important points (PIP). Using data from timing parameters, a polynomial function generalizes the data by inducing a polynomial water travel time estimator, called PolyWaTT. To evaluate the potential of our proposal, we applied PolyWaTT to three different watersheds: a floodplain ecosystem located in the part of Brazil known as Pantanal, the world's largest tropical wetland area; and the Missouri River and the Pearl River, in United States of America. We compared our proposal with empirical formulas and a data-driven state-of-the-art method. The experimental results demonstrate that PolyWaTT showed a lower mean absolute error than all other methods tested in this study, and for longer distances the mean absolute error achieved by PolyWaTT is three times smaller than empirical formulas.

  16. Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico

    USGS Publications Warehouse

    Brown, Erik Thorson; Stallard, Robert F.; Larsen, Matthew C.; Raisbeck, Grant M.; Yiou, Francoise

    1995-01-01

    We present a simple method for estimation of long-term mean denudation rates using in situ-produced cosmogenic 10Be in fluvial sediments. Procedures are discussed to account for the effects of soil bioturbation, mass wasting and attenuation of cosmic rays by biomass and by local topography. Our analyses of 10Be in quartz from bedrock outcrops, soils, mass-wasting sites and riverine sediment from the Icacos River basin in the Luquillo Experimental Forest, Puerto Rico, are used to characterize denudation for major landform elements in that basin. The 10Be concentration of a discharge-weighted average of size classes of river sediment corresponds to a long-term average denudation of ≈ 43 m Ma −1, consistent with mass balance results. 

  17. The response of male and female black poplar (Populus nigra L. subspecies betulifolia (Pursh) W. Wettst.) cuttings to different water table depths and sediment types: implications for flow management and river corridor biodiversity

    NASA Astrophysics Data System (ADS)

    Hughes, Francine M. R.; Barsoum, Nadia; Richards, Keith S.; Winfield, Mark; Hayes, Adrian

    2000-10-01

    Management of river flows has altered the pattern of flood arrival times and reduced their frequency and duration on many European floodplains. Floodplain tree species depend on floods both to provide new sites for their regeneration and to recharge water tables at various depths in the rooting zone. A reduction in floods is one factor that has led to loss of river corridor biodiversity, with early successional tree species from the Salicaceae being particularly adversely affected. Members of the Salicaceae are dioecious and it is possible that the males and females of these species have measurably different water table requirements, which might lead to spatial segregation of the sexes on a floodplain. This paper describes an investigation that was carried out into the response of male and female black poplar (Populus nigra L. subspecies betulifolia (Pursh) W. Wettst.) to different soil moisture conditions. An experiment was set up on an alluvial island in the River Great Ouse (UK) in which cuttings of male and female black poplar were grown in different sediment types with different water table levels. The experiment was carried out over two field seasons in 1997 and 1998. Results showed that females tended to prefer wetter and more nutrient-rich sites than males but that there was considerable overlap in their requirements. A complementary genetic study showed very little genetic variation in the experimental population, which may also partially explain the relatively low level of variation between the two sexes found in the study. It is suggested that some limited spatial segregation of the sexes does occur in response to soil moisture availability and that river flow management which aims to maintain or increase river corridor biodiversity may need to take this into account.

  18. Water balance analysis of the Morava River floodplain in the Kostice-Lanžhot transect using the WBCM-7 model.

    PubMed

    Kovář, Pavel; Heřmanovská, Darina; Hadaš, Pavel; Hrabalíková, Michaela; Pešková, Jitka

    2016-02-01

    The study area of the Morava River floodplain is situated between the rivers Morava and Kyjovka in the reach from Hodonín to Lanžhot. This experimental area was chosen because during the last 30 years, there has been a serious problem with the frequent occurrence of hydrological extremes, such as floods and droughts. Dry seasons have a very negative impact on the floodplain forest and have been caused mainly by regulation of the Morava River channel in the 1970s. Since flooding in the catastrophic year 1977, a part of this area has served as a polder for flood impact mitigation of the urbanised area of the town of Lanžhot. Management and farming practices have been heavily affected by the enormous economic and ecological damage due to long-term flooding of agricultural land. The purpose of this study is to assess the extent to which the precipitation in the growing season of the dry years 2003 and 2011 was deficient, in comparison with the normal year 2009, through a study of the actual evapotranspiration caused by the significant drought in the Morava floodplain. A similar but converse situation in the wet year 2010 was also analysed, with the aim to show the differences in the components of the water balance equation in the growing seasons of all the extreme years tested here. The daily data from the Kostice climatological station were processed using the WBCM-7 model, where the input parameters were calibrated by the fluctuation of the groundwater table in the control borehole.

  19. Double-diffusive layers in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Carniel, Sandro; Sclavo, Mauro; Kantha, Lakshmi; Prandke, Hartmut

    2008-01-01

    A microstructure profiler was deployed to make turbulence measurements in the upper layers of the southern Adriatic Sea in the Mediterranean during the Naval Research Laboratory (NRL) DART06A (Dynamics of the Adriatic in Real Time) winter cruise in March 2006. Measurements in the Po river plume along the Italian coast near the Gargano promontory displayed classic double-diffusive layers and staircase structures resulting from the relatively colder and fresher wintertime Po river outflow water masses overlying warmer and more saline water masses from the Adriatic Sea. We report here on the water mass and turbulence structure measurements made both in the double-diffusive interfaces and the adjoining mixed layers in the water columns undergoing double-diffusive convection (DDC). This dataset augments the relatively sparse observations available hitherto on the diffusive layer type of DDC. Measured turbulence diffusivities are consistent with those from earlier theoretical and experimental formulations, suggesting that the wintertime Po river plume is a convenient and easily accessible place to study double diffusive convective processes of importance to mixing in the interior of many regions of the global oceans.

  20. Preliminary panoramic study of river calm muscle using neodymium:yttrium-aluminum-garnet (Nd: YAG) laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Idris, N.; Lahna, K.; Usmawanda, T. N.; Herman; Ramli, M.; Hedwig, R.; Marpaung, A. M.; Kurniawan, K. H.

    2018-04-01

    A wide coverage spectral investigation on the muscle of river calm sample has been carried out using laser-induced breakdown spectroscopy for examining the overall profile of the emission spectra from the produced plasma. The basic apparatus of LIBS system used is a Nd-YAG laser and wide coverage optical multichannel analyzer (OMA) system. The river clam samples used is collected from Panga River in Aceh Jaya Regency, Aceh, Indonesia up streaming in a mountain of Gunong Ujeun, which is used as a location of the intensive traditional mining activity. Assuming that heavy metal accumulated in the clam muscle, LIBS experiments were carried out on the muscle of the calm. The sample used was fresh muscle sliced and attached to a copper plate. Plasma was generated by focusing the laser beam on the sample surface under air surrounding gas at 1 atmosphere. It is found that there are only major elements of host organic, namely C, H, O, N and the minor element of salts can be detected from fresh the clam sample when using a high pulse laser energy under air surrounding at high pressure of 1 atmosphere. There is no emission lines from any metal can be detected. Several experimental parameters were explored to study the panoramic dynamic of the emission spectra. It is found that the lower energy and the lower pressure is better for obtaining better emission spectra showing the possibility for determination of the analyte.

  1. Free zinc ion and dissolved orthophosphate effects on phytoplankton from Coeur d'Alene Lake, Idaho

    USGS Publications Warehouse

    Kuwabara, J.S.; Topping, B.R.; Woods, P.F.; Carter, J.L.

    2007-01-01

    Coeur d'Alene Lake in northern Idaho is fed by two major rivers: the Coeur d'Alene River from the east and the St. Joe River from the south, with the Spokane River as its outlet to the north. This phosphorus-limited lake has been subjected to decades of mining (primarily for zinc and silver) and other anthropogenic inputs. A 32 full-factorial experimental design was used to examine the interactive effects of free (uncomplexed) zinc ion and dissolved-orthophosphate concentrations on phytoplankton that were isolated from two sites along a longitudinal zinc-concentration gradient in Coeur d'Alene Lake. The two sites displayed different dominant taxa. Chlorella minutissima, a dominant species near the southern St. Joe River inlet, exhibited greater sensitivity to free Zn ions than Asterionella formosa, collected nearer the Coeur d'Alene River mouth with elevated dissolved-zinc concentrations. Empirical phytoplankton-response models were generated to describe phytoplankton growth in response to remediation strategies in the surrounding watershed. If dissolved Zn can be reduced in the water column from >500 nM (i.e., current concentrations near and down stream of the Coeur d'Alene River plume) to <3 nM (i.e., concentrations near the southern St. Joe River inlet) such that the lake is truly phosphorus limited, management of phosphorus inputs by surrounding communities will ultimately determine the limnologic state of the lake.

  2. Salmon Supplementation Studies in Idaho Rivers, 1996-1998 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reighn, Christopher A.; Lewis, Bert; Taki, Doug

    1999-06-01

    Information contained in this report summarizes the work that has been done by the Shoshone-Bannock Tribes Fisheries Department under BPA Project No. 89-098-3, Contract Number 92-BI-49450. Relevant data generated by the Shoshone-Bannock Tribe will be collated with other ISS cooperator data collected from the Salmon and Clearwater rivers and tributary streams. A summary of data presented in this report and an initial project-wide level supplementation evaluation will be available in the ISS 5 year report that is currently in progress. The Shoshone-Bannock Tribal Fisheries Department is responsible for monitoring a variety of chinook salmon (Oncorhynchus tshawytscha) production parameters as partmore » of the Idaho Supplementation Studies (BPA Project No. 89-098-3, Contract Number 92-BI-49450). Parameters include parr abundance in tributaries to the upper Salmon River; adult chinook salmon spawner abundance, redd counts, and carcass collection. A rotary screw trap is operated on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag chinook smolts. These traps are also used to monitor parr movement, and collect individuals for the State and Tribal chinook salmon captive rearing program. The SBT monitors fisheries parameters in the following six tributaries of the Salmon River: Bear Valley Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork. Chinook populations in all SBT-ISS monitored streams continue to decline. The South Fork Salmon River and Bear Valley Creek have the strongest remaining populations. Snorkel survey methodology was used to obtain parr population estimates for ISS streams from 1992 to 1997. Confidence intervals for the parr population estimates were large, especially when the populations were low. In 1998, based on ISS cooperator agreement, snorkeling to obtain parr population estimates was ceased due to the large confidence intervals. A rotary screw trap was operated on the West Fork Yankee Fork during the spring, summer, and fall of 1998 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997. Supplementation treatments have occurred on the South Fork Salmon River (IDFG), the East Fork Salmon River (EFSR), and the West Fork Yankee Fork of the Salmon River (WFYF). The EFSR received supplementation treatments yearly through 1995. There have been no treatments since 1995, and no significant future treatments from local broodstock are planned due to extremely poor escapement. The WFYF received a single presmolt treatment in 1994. There was an egg and adult release treatment in 1998 from the captive rearing program, not part of the original ISS study. Similarly, no significant future treatments are planned for the West Fork Yankee Fork due to extremely poor escapement. However, small scale experimental captive rearing and broodstock techniques are currently being tested with populations from the EFSR and WFYF. Captive rearing/broodstock techniques could potentially provide feedback for evaluation of supplementation. The other three SBT-ISS streams are control streams and do not receive supplementation treatments.« less

  3. Gas Supersaturation May Reduce the Survival of Yearling Chinook Salmon in the Lower Columbia River and Ocean Plume

    NASA Technical Reports Server (NTRS)

    Brosnan, Ian; Welch, David; Scott, Melinda Jacobs

    2015-01-01

    Unusually high flows in the Columbia River in 2011 raised total dissolved gas (TDG) levels in the river above the 120 percent legal limit imposed to prevent harmful impacts to aquatic organisms. This provided a unique opportunity to evaluate the effect on smolt survival. In-river (IR) migrating juvenile yearling Chinook released at Bonneville Dam with acoustic tags during periods when TDG exceeded 120 percent received estimated maximum exposures of 134 TDG. Subsequent daily survival rates in the lower river and plume were reduced by 0.06 per day (SE equals 0.01) and 0.15 per day (SE equals 0.05) relative to IR migrant fish released when TDG was less than 120 percent. Transported smolts (T) released 10-13 kilometers below Bonneville Dam had lower maximum exposure levels (126 percent) and experienced no difference in daily survival rates relative to unexposed smolts. River temperature levels and trends in turbidity and disease prevalence between releases of high and low exposure smolts were not consistent with the observed effects on survival rates. We conclude that smolts may suffer from chronic effects of elevated TDG exposure while migrating through the Columbia River and plume. Consideration should be given to measuring these survival losses in an explicit experimental framework that isolates possible confounding factors.

  4. Ecosystem-level consequences of migratory faunal depletion caused by dams

    USGS Publications Warehouse

    Freeman, Mary C.; Pringle, C.M.; Greathouse, E.A.; Freeman, B.J.; Limburg, K.E.; Waldman, J.R.

    2003-01-01

    Humans have been damming rivers for millennia, and our more ambitious efforts over the past century have arguably altered river ecosystems more extensively than any other anthropogenic activity. Effects of damming on river biota include decimation of migratory fauna (e.g., diadromous and potamodromous fishes and crustaceans), lost fisheries, and imperilment of obligate riverine taxa. Although effects of dams on biota have been widely documented, ecosystem-level consequences of faunal depletion caused by dams are only beginning to be appreciated. We discuss consequences to river ecosystems of altering distributions and abundances of migratory fauna, which often provide trophic subsidies and may strongly influence the structure of local habitats and communities. It is well documented that anadromous fishes can provide a major input of nutrients and energy to freshwater systems when spawning adults return from the sea. Other less-studied taxa that migrate between distinct portions of riverine systems (e.g., acipencerids, catostomids, and prochilodontids) may similarly provide trophic transfers within undammed river systems, in addition to modifying local communities and habitats through feeding and spawning activities. Experimental faunal exclusions have demonstrated strong potential effects of some amphidromous shrimps and potamodromous fishes on benthic organic matter and algal and invertebrate communities. Depletion of these animals above dams is likely to significantly affect ecosystem processes such as primary production and detrital processing. The decline of freshwater mussels isolated by dams from their migratory fish hosts has likely lowered stream productivity, nutrient retention and benthic stability. Greater focus on effects of dams on ecosystem processes, as mediated by faunal change, would improve our ability to assess the costs and benefits of future river management strategies.

  5. Sources and haloacetic acid/trihalomethane formation potentials of aquatic humic substances in the Wakarusa River and Clinton Lake near Lawrence, Kansas

    USGS Publications Warehouse

    Pomes, M.L.; Larive, C.K.; Thurman, E.M.; Green, W.R.; Orem, W.H.; Rostad, C.E.; Coplen, T.B.; Cutak, B.J.; Dixon, A.M.

    2000-01-01

    Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) in drinking water. AHS from the Wakarusa River and Clinton Lake originated from riparian forest vegetation, reflected respective effects of soil organic matter and aquatic algal/bacterial sources, and bore evidence of biological degradation and photodegradation. AHS from the Wakarusa River showed the effect of terrestrial sources, whereas Clinton Lake humicacid also reflected aquatic algal/bacterial sources. Greater amounts of carbon attributable to tannin-derived chemical structures may correspond with higher HAA5 and THM4 yields for Clinton Lake fulvic acid. Prior to appreciable leaf-fall from deciduous trees, the combined (humic and fulvic acid) THM4 formation potentials for the Wakarusa River approached the proposed EPA THM4 Stage I MCL of 80 ??g/L, and the combined THM4 formation potential for Clinton Lake slightly exceeded the proposed THM4 Stage II MCL of 40 ??g/L. Finally, AHS from Clinton Lake could account for most (>70%) of the THM4 concentrations in finished water from the Clinton Lake Water Treatment Plant based on September 23, 1996, THM4 results.Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) in drinking water. AHS from the Wakarusa River and Clinton Lake originated from riparian forest vegetation, reflected respective effects of soil organic matter and aquatic algal/bacterial sources, and bore evidence of biological degradation and photodegradation. AHS from the Wakarusa River showed the effect of terrestrial sources, whereas Clinton Lake humic acid also reflected aquatic algal/bacterial sources. Greater amounts of carbon attributable to tannin-derived chemical structures may correspond with higher HAA5 and THM4 yields for Clinton Lake fulvic acid. Prior to appreciable leaf-fall from deciduous trees, the combined (humic and fulvic acid) THM4 formation potentials for the Wakarusa River approached the proposed EPA THM4 Stage I MCL of 80 ??g/L, and the combined THM4 formation potential for Clinton Lake slightly exceeded the proposed THM4 Stage II MCL of 40 ??g/L. Finally, AHS from Clinton Lake could account for most (>70%) of the THM4 concentrations in finished water from the Clinton Lake Water Treatment Plant based on September 23, 1996, THM4 results.Gram quantities of aquatic humic substances were extracted from the Wakarusa River-Clinton Lake Reservoir system near Lawrence, KS, and concentrations of dissolved organic carbon (DOC) and the proportions of DOC accountable as aquatic humic substances were determined. In addition, the sources of the aquatic humic substances were defined, and the haloacetic acids/trihalomethanes formation potentials were assessed. The samples were collected over the period September 10-October 10, before any appreciable leaf-fall occurred from deciduous trees. Results showed that the humic substances produced considerable yields of haloacetic acids and trihalomethanes, with higher yields noted for fulvic acid from Clinton Lake. The aquatic humic substances were derived from sources outside and within the Wakarusa River and Clinton Lake and could yield sufficient trih

  6. Assessment of mercury in the Savannah River Site environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvartek, E.J.; Carlton, W.H.; Denham, M.

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities` gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city ofmore » Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard.« less

  7. A generalised model of secondary circulation for a wide range of geophysical flows from direct observations of natural turbidity currents

    NASA Astrophysics Data System (ADS)

    Azpiroz, M.; Cartigny, M.; Sumner, E. J.; Talling, P.; Parsons, D. R.; Clare, M. A.; Cooper, C.

    2017-12-01

    Turbidity currents transport sediment through submarine channel systems for hundreds of kilometres to form vast deposits of sediment in the deep sea called submarine fans. The largest submarine fans are fed by meandering channels suggesting that bends may enhance sediment transport distances. The interaction between meander bends and turbidity currents has been a topic of intense debate. Due to the absence of observations of deep-sea turbidity currents flowing through meander bends, our understanding has been based on experimental and numerical models. Measurements of geophysical flows demonstrate a common helical flow structure around meanders. Previous work has demonstrated that helical circulation in rivers is dominated by a single helix that rotates towards the inner bend at near-bed depths. In contrast, initial numerical and experimental models for turbidity currents found both river-like and river-reversed circulations. Saline flows in well-mixed estuaries show a river-like basal helical circulation, while stratified estuaries and saline flows are river-reversed. The existence of lateral stratification in stratified flows is thought to be the key factor in the change of direction of rotation. Stratification causes lateral pressure gradients that can govern the rotation of the flow helix. Turbidity currents are stratified due to their upwards-decreasing sediment load. It has therefore been proposed that stratified turbidity currents behave like stratified saline flow, but this hypothesis remains so far untested. Here we present the first observations of the helical flow in turbidity currents, which occurred within the deep-sea Congo Canyon. The measurements show a consistent river-reversed pattern downstream of the bend apex. Those results lead us to develop a new generalised model for a wide range of flows around meanders. Our conclusions have implications for understanding the flow erosional and depositional patterns, the evolution of channel systems and the architecture of the depositional record.

  8. The role of experimental forests in science and management

    Treesearch

    Theresa B. Jain

    2012-01-01

    Happy 100 years to the Priest River Experimental Forest (PREF)! PREF, which is managed by the Research and Development Branch of the USDA Forest Service, celebrated its centennial in September 2011. It was established in northern Idaho to provide useful information that would improve forest management in the western part of District One at a time when US forestry was...

  9. [An experimental study of the susceptibility of the snakehead Ophiocephalus argus to infestation by larvae of the tapeworm Diphyllobothrium latum].

    PubMed

    Khodakova, V I; Zholdasova, I M; Allaniiazova, T; Frolova, A A; Artamoshin, A S; Guseva, L N; Arystanov, E; Gitsu, G A

    1998-01-01

    Experiments were made to infect young Ophiocephalus argus, the fish of prey delivered from eastern Asia in the Amu-Dar'ya River basin, outside the area of the broad tapeworm Diphyllobothrium latum. The dalags were infected mainly by ingesting the local copepods Arctodiaptomus salinus, the experimentally invaded larvae of the broad tapeworm. The latter larvae were obtained from the development of eggs of the helminth isolated from strobilae from the patients treated in Perm Province. D. latum plerocercoids lived in the dalags nearly 3 weeks, then they died and lysed. Thus, the dalag cannot be a supplementary host of D. latum.

  10. The essential value of long-term experimental data for hydrology and water management

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Carey, S. K.; McNamara, J. P.; Laudon, H.; Soulsby, C.

    2017-12-01

    Observations and data from long-term experimental watersheds are the foundation of hydrology as a geoscience. They allow us to benchmark process understanding, observe trends and natural cycles, and are pre-requisites for testing predictive models. Long-term experimental watersheds also are places where new measurement technologies are developed. These studies offer a crucial evidence base for understanding and managing the provision of clean water supplies; predicting and mitigating the effects of floods, and protecting ecosystem services provided by rivers and wetlands. They also show how to manage land and water in an integrated, sustainable way that reduces environmental and economic costs. We present a number of compelling examples illustrating how hydrologic process understanding has been generated through comparing hypotheses to data, and how this understanding has been essential for managing water supplies, floods, and ecosystem services today.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baptista, António M.

    This work focuses on the numerical modeling of Columbia River estuarine circulation and associated modeling-supported analyses conducted as an integral part of a multi-disciplinary and multi-institutional effort led by NOAA's Northwest Fisheries Science Center. The overall effort is aimed at: (1) retrospective analyses to reconstruct historic bathymetric features and assess effects of climate and river flow on the extent and distribution of shallow water, wetland and tidal-floodplain habitats; (2) computer simulations using a 3-dimensional numerical model to evaluate the sensitivity of salmon rearing opportunities to various historical modifications affecting the estuary (including channel changes, flow regulation, and diking of tidalmore » wetlands and floodplains); (3) observational studies of present and historic food web sources supporting selected life histories of juvenile salmon as determined by stable isotope, microchemistry, and parasitology techniques; and (4) experimental studies in Grays River in collaboration with Columbia River Estuary Study Taskforce (CREST) and the Columbia Land Trust (CLT) to assess effects of multiple tidal wetland restoration projects on various life histories of juvenile salmon and to compare responses to observed habitat-use patterns in the mainstem estuary. From the above observations, experiments, and additional modeling simulations, the effort will also (5) examine effects of alternative flow-management and habitat-restoration scenarios on habitat opportunity and the estuary's productive capacity for juvenile salmon. The underlying modeling system is part of the SATURN1coastal-margin observatory [1]. SATURN relies on 3D numerical models [2, 3] to systematically simulate and understand baroclinic circulation in the Columbia River estuary-plume-shelf system [4-7] (Fig. 1). Multi-year simulation databases of circulation are produced as an integral part of SATURN, and have multiple applications in understanding estuary/plume variability, the role of the estuary and plume on salmon survival, and functional changes in the estuary-plume system in response to climate and human activities.« less

  12. Middle Term Achievements of Project 5322: Retrieval Of Key Eco-Hydrological Parameters From Remote Sensing In The Watershed Allied Telemetry Experimental Research (Water)

    NASA Astrophysics Data System (ADS)

    Li, Xin; Menenti, Massimo

    2010-10-01

    The general objective of project 5322 in the Dragon 2 programme is to quantitatively retrieve some key eco- hydrological parameters by using remote sensed data, especially from ESA, Chinese, and the Third Party Mission (TPM). To achieve this goal, a comprehensive observation experiment, Watershed Allied Telemetry Experimental Research (WATER) was carried out. WARER is a simultaneously airborne, satellite-borne, and ground-based remote sensing experiment took place in the Heihe River Basin, a typical inland river basin in the northwest of China. This paper introduces the background and implementation of WATER. Data have been obtained so far are described in details. After a period of data analysis for two years, numerous results have also been achieved. This paper presents some early results of WATER as well.

  13. Feasibility of processing the experimental breeder reactor-II driver fuel from the Idaho National Laboratory through Savannah River Site's H-Canyon facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoulas, V. E.

    Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium,more » and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.« less

  14. Experimental flights using a small unmanned aircraft system for mapping emergent sandbars

    USGS Publications Warehouse

    Kinzel, Paul J.; Bauer, Mark A.; Feller, Mark R.; Holmquist-Johnson, Christopher; Preston, Todd

    2015-01-01

    The US Geological Survey and Parallel Inc. conducted experimental flights with the Tarantula Hawk (T-Hawk) unmanned aircraft system (UAS ) at the Dyer and Cottonwood Ranch properties located along reaches of the Platte River near Overton, Nebraska, in July 2013. We equipped the T-Hawk UAS platform with a consumer-grade digital camera to collect imagery of emergent sandbars in the reaches and used photogrammetric software and surveyed control points to generate orthophotographs and digital elevation models (DEMS ) of the reaches. To optimize the image alignment process, we retained and/or eliminated tie points based on their relative errors and spatial resolution, whereby minimizing the total error in the project. Additionally, we collected seven transects that traversed emergent sandbars concurrently with global positioning system location data to evaluate the accuracy of the UAS survey methodology. The root mean square errors for the elevation of emergent points along each transect across the DEMS ranged from 0.04 to 0.12 m. If adequate survey control is established, a UAS combined with photogrammetry software shows promise for accurate monitoring of emergent sandbar morphology and river management activities in short (1–2 km) river reaches.

  15. Maximum Flow Efficiency in an Anabranching River, Magela Creek, Northern Australia

    NASA Astrophysics Data System (ADS)

    Jansen, J. D.; Nanson, G. C.

    2002-12-01

    In this field- and laboratory-based study, we demonstrate that the development of anabranching channels in some rivers increases the conveyance of sediment and water, compared with a single channel at the same flow discharge. That is, under certain conditions, anabranching channels exhibit greater sediment transporting capacity per unit available stream power. Anabranching is a globally widespread river pattern noted in diverse physiographic, hydrologic and sedimentologic environments, and recent efforts have sought to unravel controls on their origin and maintenance. It is widely held that most rivers form a single-channel in order to minimise boundary roughness while conveying water and sediment, but do all rivers show a tendency to develop a single channel? And if so, what factors lead to long-term anabranching? The observation that anabranching commonly develops in environments where water and sediment conveyance is maintained with little or no recourse to increasing energy slope prompted the hypothesis that rivers may adopt a multiple channel pattern in order to optimise their efficiency where they cannot otherwise increase slope. It is reasoned that development of a system of multiple channels reduces total flow width and raises mean flow depth, thereby maximising sediment transport per unit area of the channel bed and maintaining or enhancing water and sediment throughput. In testing the hypothesis we present: (1) results of a field experiment in which hydraulic variables and bedload discharge are measured and compared for single-channel versus multichannel reaches of the same river (Magela Creek, northern Australia); (2) comparison of these field results with bedload transport modelling via well known bedload equations; and (3) results of an experimental flume study comparing hydraulic variables and sediment flux in single-channel versus divided flow. Magela Creek is representative of several anabranching systems draining the Alligators Rivers Region of monsoonal northern Australia. We investigate the dynamics of flows up to four-times bankfull discharge and find that at high flowstage hydraulic variables interact in a complicated manner that precludes conventional hydraulic geometry analytical methods. The complex trends among hydraulic variables reflect the differential and stage-dependent interactions between bank vegetation and channel roughness. Abrupt decline in overbank velocity promotes proximal sedimentation in the form of vertically-accreting islands, levees and sand splays - mechanisms of sediment sequestration that may eventually lead to channel avulsion and creation of new channels. Given that river pattern reveals much about river dynamics, the prevalence of anabranching - particularly among the world's largest rivers - invites the speculation that a fundamental physical principle may underpin the widespread adoption of anabranching; it may be the most efficient means of transmitting large water and sediment discharges in alluvial rivers. However, just as different equilibrium states are expected to exist in braiding, meandering and straight rivers, we anticipate that other anabranching rivers may differ in their efficiency. Moreover, the development of sediment and water flux imbalances between anabranches is a highly likely outcome of their independent functioning. Channel atrophy coupled with in-channel sedimentation lies at the heart of channel avulsion and abandonment processes and therefore is central to the anabranching pattern.

  16. River Runoff Estimates on the Basis of Satellite-Derived Surface Currents and Water Levels

    NASA Astrophysics Data System (ADS)

    Gruenler, S.; Romeiser, R.; Stammer, D.

    2007-12-01

    One promising technique for river runoff estimates from space is the retrieval of surface currents on the basis of synthetic aperture radar along-track interferometry (ATI). The German satellite TerraSAR-X, which was launched in June 2007, permits current measurements by ATI in an experimental mode of operation. Based on numerical simulations, we present first findings of a research project in which the potential of satellite measurements of various parameters with different temporal and spatial sampling characteristics is evaluated and a dedicated data synthesis system for river discharge estimates is developed. We address the achievable accuracy and limitations of such estimates for different local flow conditions at selected test sites. High-resolution three- dimensional current fields in the Elbe river (Germany) from a numerical model of the German Federal Waterways Engineering and Research Institute (BAW) are used as reference data set and input for simulations of a variety of possible measuring and data interpretation strategies to be evaluated. For example, runoff estimates on the basis of measured surface current fields and river widths from TerraSAR-X and water levels from radar altimetry are simulated. Despite the simplicity of some of the applied methods, the results provide quite comprehensive pictures of the Elbe river runoff dynamics. Although the satellite-based river runoff estimates exhibit a lower accuracy in comparison to traditional gauge measurements, the proposed measuring strategies are quite promising for the monitoring of river discharge dynamics in regions where only sparse in-situ measurements are available. We discuss the applicability to a number of major rivers around the world.

  17. Contrasting impact of organic and inorganic nanoparticles and colloids on the behavior of particle-reactive elements in tropical estuaries: An experimental study

    NASA Astrophysics Data System (ADS)

    Merschel, Gila; Bau, Michael; Dantas, Elton Luiz

    2017-01-01

    Estuarine processes may affect the flux of dissolved organic carbon (DOC), iron and other particle-reactive elements such as the rare earth elements and yttrium (REY), into the ocean via salt-induced coagulation and subsequent removal of river-borne (nano-)particles and colloids. We experimentally assessed the impact of the admixture of seawater on DOC, Fe and REY associated with inorganic and organic nanoparticles and colloids (NPCs) present in tropical rivers, using Rio Solimões and Rio Negro, which are particularly rich in inorganic and organic NPCs, respectively, as river water endmembers. Similar to the conservative elements Sr, Rb and U, DOC behaves conservatively in all mixing experiments, whereas strong removal of Fe and REY (and preferential removal of light over heavy REY and of Ce relative to La and Pr) is confined to experiments with inorganic NPC-rich Rio Solimões water. This removal already occurs at very low salinity and is due to the aggregation of the inorganic NPCs. However, REY removal efficiency increases gradually with increasing salinity, which is in marked contrast to DOC-poor Arctic river waters from which REY removal at lowest salinity is significantly stronger. This suggests that the DOC concentrations in the water have a profound impact on the estuarine mixing behavior of particle-reactive elements. In marked contrast to the Rio Solimões mixing experiment, Fe and the REY in experiments with Rio Negro water behave similarly to DOC and mix conservatively with seawater, indicating that the organic NPCs, most of which are humic and fulvic acids, and their associated trace elements are much less susceptible to coagulation and estuarine removal than inorganic ones. Even at higher salinities, estuarine REY removal from inorganic NPC-rich Rio Solimões water significantly exceeds REY removal from organic NPC-rich Rio Negro water. Hence, the combination of higher element concentrations in and of less estuarine removal from organic NPC-rich rivers compared to inorganic NPC-rich rivers indicates that the former are a more important source of particle-reactive elements to the oceans than previously thought. This suggests that chemical complexation with organic ligands, such as humic and fulvic acids, may have a strong impact on the riverine flux and on the marine inventory of particle-reactive elements, and hence may play an important role for the isotopic composition of such elements in seawater.

  18. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    PubMed

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  19. Natural variability of biochemical biomarkers in the macro-zoobenthos: Dependence on life stage and environmental factors.

    PubMed

    Scarduelli, Lucia; Giacchini, Roberto; Parenti, Paolo; Migliorati, Sonia; Di Brisco, Agnese Maria; Vighi, Marco

    2017-11-01

    Biomarkers are widely used in ecotoxicology as indicators of exposure to toxicants. However, their ability to provide ecologically relevant information remains controversial. One of the major problems is understanding whether the measured responses are determined by stress factors or lie within the natural variability range. In a previous work, the natural variability of enzymatic levels in invertebrates sampled in pristine rivers was proven to be relevant across both space and time. In the present study, the experimental design was improved by considering different life stages of the selected taxa and by measuring more environmental parameters. The experimental design considered sampling sites in 2 different rivers, 8 sampling dates covering the whole seasonal cycle, 4 species from 3 different taxonomic groups (Plecoptera, Perla grandis; Ephemeroptera, Baetis alpinus and Epeorus alpicula; Tricoptera, Hydropsyche pellucidula), different life stages for each species, and 4 enzymes (acetylcholinesterase, glutathione S-transferase, alkaline phosphatase, and catalase). Biomarker levels were related to environmental (physicochemical) parameters to verify any kind of dependence. Data were statistically elaborated using hierarchical multilevel Bayesian models. Natural variability was found to be relevant across both space and time. The results of the present study proved that care should be paid when interpreting biomarker results. Further research is needed to better understand the dependence of the natural variability on environmental parameters. Environ Toxicol Chem 2017;36:3158-3167. © 2017 SETAC. © 2017 SETAC.

  20. Modelling the risk of mortality of Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) exposed to different turbidity conditions.

    PubMed

    Avelar, W E P; Neves, F F; Lavrador, M A S

    2014-05-01

    The provision of sediment in rivers, due to erosion processes that occur in the environment, consists of a major source of pollution and alteration of the physicochemical conditions of water resources. In addition, the increase in water turbidity may cause siltation, dramatically impacting aquatic communities. Specifically considering the bivalve Corbicula fluminea (Müller, 1774), the aim of this study was to analyse the effect of exposure to different turbidity conditions of sediments, as a risk factor for the animals. For this purpose, a docking device was designed to ensure water circulation in a closed system and to maintain the desired levels of turbidity. Although C. fluminea can generally tolerate environmental changes in aquatic systems, an intolerance to high turbidity levels was experimentally observed, expressed by the mortality rate of the animals when exposed to conditions above 150 nephelometric turbidity units (NTU). This value was similar to the one recorded at study sites in the rivers Pardo (Serrana-SP-Brazil) and Mogi Guaçu (Porto Ferreira-SP-Brazil) during the rainy season. Using a logistic regression model, the experimental results were analysed and the observed mortality rates indicate that the exposure of the animals to turbidity levels above 150 nephelometric turbidity units (NTU), for periods longer than 120 hours, may be considered a probable cause of mortality for the species.

  1. Morphodynamics structures induced by variations of the channel width

    NASA Astrophysics Data System (ADS)

    Duro, Gonzalo; Crosato, Alessandra; Tassi, Pablo

    2014-05-01

    In alluvial channels, forcing effects, such as a longitudinally varying width, can induce the formation of steady bars (Olesen, 1984). The type of bars that form, such as alternate, central or multiple, will mainly depend on the local flow width-to-depth ratio and on upstream conditions (Struiksma et al., 1985). The effects on bar formation of varying the channel width received attention only recently and investigations, based on flume experiments and mathematical modelling, are mostly restricted to small longitudinal sinusoidal variations of the channel width (e.g. Repetto et al., 2002; Wu and Yeh, 2005, Zolezzi et al., 2012; Frascati and Lanzoni, 2013). In this work, we analyze the variations in equilibrium bed topography in a longitudinal width-varying channel with characteristic scales of the Waal River (The Netherlands) using two different 2D depth-averaged morphodynamic models, one based on the Delft3D code and one on Telemac-Mascaret system. In particular, we explore the effects of changing the wavelength of sinusoidal width variations in a straight channel, focusing on the effects of the spatial lag between bar formation and forcing that is observed in numerical models and laboratory experiments (e.g. Crosato et al, 2011). We extend the investigations to finite width variations in which longitudinal changes of the width-to-depth ratio are such that they may affect the type of bars that become unstable (alternate, central or multiple bars). Numerical results are qualitatively validated with field observations and the resulting morphodynamic pattern is compared with the physics-based predictor of river bar modes by Crosato and Mosselman (2009). The numerical models are finally used to analyse the experimental conditions of Wu and Yeh (2005). The study should be seen as merely exploratory. The aim is to investigate possible approaches for future research aiming at assessing the effects of artificial river widening and narrowing to control bar formation in alluvial rivers. References Crosato A. and Mosselman E., 2009. Simple physics-based predictor for the number of river bars and the transition between meandering and braiding. Water Resources Research, 45, W03424, doi: 10.1029/2008WR007242. Crosato A., Mosselman E., Desta F.B. and Uijttewaal W.S.J., 2011. Experimental and numerical evidence for intrinsic nonmigrating bars in alluvial channels. Water Resources Research, AGU, 47(3), W03511, doi 10.1029/2010WR009714. Frascati A. and Lanzoni S., 2013. A mathematical model for meandering rivers with varying width. J. Geophys. Res.Earth Surf., 118, doi:10.1002/jgrf.20084. Olesen K.W., 1984. Alternate bars in and meandering of alluvial rivers. In: River Meandering, Proc. of the Conf. Rivers '83, 24-26 Oct. 1983, New Orleans, Louisiana, U.S.A., ed. Elliott C.M., pp. 873-884, ASCE, New York. ISBN 0-87262-393-9. Repetto R., Tubino, M. and Paola C., 2002. Planimetric instability of channels with variable width. J. Fluid Mech., 457, 79-109. Struiksma N., Olesen K.W., Flokstra C. and De Vriend H.J., 1985. Bed deformation in curved alluvial channels. J. Hydraul. Res., 23(1), 57- 79. Wu F.-C. and Yeh T.-H., 2005. Forced bars induced by variations of channel width: Implications for incipient bifurcation. J. Geophys. Res., 110, F02009, doi:10.1029/2004JF000160. Zolezzi, G., R. Luchi, and M. Tubino (2012), Modeling morphodynamic processes in meandering rivers with spatial width variations, Rev. Geophys., 50, RG4005, doi:10.1029/2012RG000392.

  2. Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries

    PubMed Central

    Abia, Akebe Luther King; James, Chris; Ubomba-Jaswa, Eunice; Benteke Momba, Maggy Ndombo

    2017-01-01

    Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9–35.8 times original values. Using Shields criterion, river-flow of 0.15–0.69 m3/s could cause bed particle entrainment; while ~1.57–7.23 m3/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality. PMID:28295001

  3. Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries.

    PubMed

    Abia, Akebe Luther King; James, Chris; Ubomba-Jaswa, Eunice; Benteke Momba, Maggy Ndombo

    2017-03-15

    Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9-35.8 times original values. Using Shields criterion, river-flow of 0.15-0.69 m³/s could cause bed particle entrainment; while ~1.57-7.23 m³/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality.

  4. Use of slow filtration columns to assess oxygen respiration, consumption of dissolved organic carbon, nitrogen transformations, and microbial parameters in hyporheic sediments.

    PubMed

    Mermillod-Blondin, F; Mauclaire, L; Montuelle, B

    2005-05-01

    Biogeochemical processes mediated by microorganisms in river sediments (hyporheic sediments) play a key role in river metabolism. Because biogeochemical reactions in the hyporheic zone are often limited to the top few decimetres of sediments below the water-sediment interface, slow filtration columns were used in the present study to quantify biogeochemical processes (uptakes of O2, DOC, and nitrate) and the associated microbial compartment (biomass, respiratory activity, and hydrolytic activity) at a centimetre scale in heterogeneous (gravel and sand) sediments. The results indicated that slow filtration columns recreated properly the aerobic-anaerobic gradient classically observed in the hyporheic zone. O2 and NO3- consumptions (256 +/- 13 microg of O2 per hour and 14.6 +/- 6.1 microg of N-NO3- per hour) measured in columns were in the range of values measured in different river sediments. Slow filtration columns also reproduced the high heterogeneity of the hyporheic zone with the presence of anaerobic pockets in sediments where denitrification and fermentation processes occurred. The respiratory and hydrolytic activities of bacteria were strongly linked with the O2 consumption in the experimental system, highlighting the dominance of aerobic processes in our river sediments. In comparison with these activities, the bacterial biomass (protein content) integrated both aerobic and anaerobic processes and could be used as a global microbial indicator in our system. Finally, slow filtration columns are an appropriate tool to quantify in situ rates of biogeochemical processes and to determine the relationship between the microbial compartment and the physico-chemical environment in coarse river sediments.

  5. Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks.

    PubMed

    Bayram, Adem; Kankal, Murat; Onsoy, Hizir

    2012-07-01

    Suspended sediment concentration (SSC) is generally determined from the direct measurement of sediment concentration of river or from sediment transport equations. Direct measurement is very costly and cannot be conducted for all river gauge stations. Therefore, correct estimation of suspended sediment amount carried by a river is very important in terms of water pollution, channel navigability, reservoir filling, fish habitat, river aesthetics and scientific interests. This study investigates the feasibility of using turbidity as a surrogate for SSC as in situ turbidity meters are being increasingly used to generate continuous records of SSC in rivers. For this reason, regression analysis (RA) and artificial neural networks (ANNs) were employed to estimate SSC based on in situ turbidity measurements. The SSC was firstly experimentally determined for the surface water samples collected from the six monitoring stations along the main branch of the stream Harsit, Eastern Black Sea Basin, Turkey. There were 144 data for each variable obtained on a fortnightly basis during March 2009 and February 2010. In the ANN method, the used data for training, testing and validation sets are 108, 24 and 12 of total 144 data, respectively. As the results of analyses, the smallest mean absolute error (MAE) and root mean square error (RMSE) values for validation set were obtained from the ANN method with 11.40 and 17.87, respectively. However these were 19.12 and 25.09 for RA. It was concluded that turbidity could be a surrogate for SSC in the streams, and the ANNs method used for the estimation of SSC provided acceptable results.

  6. Application of wavelet analysis for monitoring the hydrologic effects of dam operation: Glen canyon dam and the Colorado River at lees ferry, Arizona

    USGS Publications Warehouse

    White, M.A.; Schmidt, J.C.; Topping, D.J.

    2005-01-01

    Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the Colorado River in Grand Canyon. The wavelet power spectrum (WPS) of daily mean discharge provided a highly compressed and integrative picture of the post-dam elimination of pronounced annual and sub-annual flow features. The WPS of the continuous record showed the influence of diurnal and weekly power generation cycles, shifts in discharge management, and the 1996 experimental flood in the post-dam period. Normalization of the WPS by local wavelet spectra revealed the fine structure of modulation in discharge scale and amplitude and provides an extremely efficient tool with which to assess the relationships among hydrologic cycles and ecological and geomorphic systems. We extended our analysis to sections of the Snake River and showed how wavelet analysis can be used as a data mining technique. The wavelet approach is an especially promising tool with which to assess dam operation in less well-studied regions and to evaluate management attempts to reconstruct desired flow characteristics. Copyright ?? 2005 John Wiley & Sons, Ltd.

  7. Influence of pioneer vegetation on the morphodynamic evolution of a river bed

    NASA Astrophysics Data System (ADS)

    Schwarzwälder, Kordula; Cuchet, Matilde; Schlagenhauser, Mathias

    2016-04-01

    In a natural river the morphology and the evolution of the river bed is highly influenced by the vegetation in and along this river bed. To estimate these effects and influences, a pre-study was conducted in a lab-flume in the outside area of the Oskar-von-Miller-Institute of the TUM. In this flume an alternating flow regime with a change between floods and standard discharge was mimicking a natural flow regime. The experiment was started with an uniform and plane sand area were the flow regime should built a nature-like morphology. During the experiment, seeds of Alfalfa were added and the sprouting plants could influence the formation of the riverbed. The changes in the morphology were measured using photogrammetry and also a standard Kinect system. The results of the measurements shall be used as basis for a 3D numerical simulation. In addition we analyzed different plants and their sprouting behavior under different growing conditions to ensure the use of the most appropriate ones for this set-up. The experimental performance was based on the experiments of Tal and Paola 2010. Tal and Paola 2010: EARTH SURFACE PROCESSES AND LANDFORMS;Earth Surf. Process. Landforms 35, 1014-1028 (2010); Copyright Published online 9 February 2010 in Wiley InterScience; (www.interscience.wiley.com) DOI: 10.1002/esp.1908

  8. Rock fragment movement in shallow rill flow - A laboratory study

    NASA Astrophysics Data System (ADS)

    Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Gronz, Oliver; Remke, Alexander; Iserloh, Thomas; Brings, Christine; Casper, Markus; Ries, Johannes B.

    2014-05-01

    Studies concerning rill erosion mainly deal with the erosion and transport of fine material. The transport of rock fragments is examined mostly for mountain rivers. But there are important differences between the conditions and processes in rivers and in rills: (1) In most cases, the river cuts into a coarse substrate, where fine material is sparse, whereas rill erosion occurs on arable land. So the main part of the substrate is fine material and only single rock fragments influence the processes. (2) In rivers, the water depth is relatively high. There are a lot of studies about hydraulic parameters in such flows, but there is almost nothing known about hydraulic conditions in surface runoff events of a few centimeters. Additionally, little information exists about the rock fragment movement as a part of rill erosion processes on arable land. This knowledge should be increased because rock fragments cause non-stationary water turbulences in rills, which enhance the erosive force of flowing water. Field experiments can only show the fact that a certain rock fragment has moved: The starting point and the final position can be estimated. But the moving path and especially the initiation of the movement is not detectable under field conditions. Hence, we developed a laboratory setup to analyze the movement of rock fragments depending on rock fragment properties (size, form), slope gradient, flow velocity and surface roughness. By observing the rock fragments with cameras from two different angles we are able (1) to measure the rotation angles of a rock fragment during the experiment and (2) to deduce different rock fragment movement patterns. On this poster we want to present the experimental setup, developed within the scope of a master thesis, and the results of these experiments.

  9. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, C.L.

    As a result of operations at the Savannah River Site (SRS), over 50 radionuclides have been released to the atmosphere and to onsite streams and seepage basins. Now, many of these radionuclides are available to aquatic and/or terrestrial organisms for uptake and cycling through the food chain. Knowledge about the uptake and cycling of these radionuclides is now crucial in evaluating waste management and clean-up alternatives for the site. Numerous studies have been conducted at the SRS over the past forty years to study the uptake and distribution of radionuclides in the Savannah River Site environment. In many instances, bioconcentrationmore » factors have been calculated to quantify the uptake of a radionuclide by an organism from the surrounding medium (i.e., soil or water). In the past, it has been common practice to use bioconcentration factors from the literature because site-specific data were not readily available. However, because of the variability of bioconcentration factors due to experimental or environmental conditions, site-specific data should be used when available. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at the Savannah River Site (SRS). An extensive literature search yielded site-specific bioconcentration factors for cesium, strontium, cobalt, plutonium, americium, curium, and tritium. These eight radionuclides have been the primary radionuclides studied at SRS because of their long half lives or because they are major contributors to radiological dose from exposure. For most radionuclides, it was determined that the site-specific bioconcentration factors were higher than those reported in literature. This report also summarizes some conditions that affect radionuclide bioavailability to and bioconcentration by aquatic and terrestrial organisms.« less

  10. Comparison of Machine Learning methods for incipient motion in gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos

    2013-04-01

    Soil erosion and sediment transport of natural gravel bed streams are important processes which affect both the morphology as well as the ecology of earth's surface. For gravel bed rivers at near incipient flow conditions, particle entrainment dynamics are highly intermittent. This contribution reviews the use of modern Machine Learning (ML) methods implemented for short term prediction of entrainment instances of individual grains exposed in fully developed near boundary turbulent flows. Results obtained by network architectures of variable complexity based on two different ML methods namely the Artificial Neural Network (ANN) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) are compared in terms of different error and performance indices, computational efficiency and complexity as well as predictive accuracy and forecast ability. Different model architectures are trained and tested with experimental time series obtained from mobile particle flume experiments. The experimental setup consists of a Laser Doppler Velocimeter (LDV) and a laser optics system, which acquire data for the instantaneous flow and particle response respectively, synchronously. The first is used to record the flow velocity components directly upstream of the test particle, while the later tracks the particle's displacements. The lengthy experimental data sets (millions of data points) are split into the training and validation subsets used to perform the corresponding learning and testing of the models. It is demonstrated that the ANFIS hybrid model, which is based on neural learning and fuzzy inference principles, better predicts the critical flow conditions above which sediment transport is initiated. In addition, it is illustrated that empirical knowledge can be extracted, validating the theoretical assumption that particle ejections occur due to energetic turbulent flow events. Such a tool may find application in management and regulation of stream flows downstream of dams for stream restoration, implementation of sustainable practices in river and estuarine ecosystems and design of stable river bed and banks.

  11. Vortex-assisted surfactant-enhanced emulsification microextraction combined with LC-MS/MS for the determination of glucocorticoids in water with the aid of experimental design.

    PubMed

    Asati, Ankita; Satyanarayana, G N V; Patel, Devendra K

    2017-04-01

    An efficient and inexpensive method using vortex-assisted surfactant-enhanced emulsification microextraction (VASEME) based on solidification of floating organic droplet coupled with ultraperformance liquid chromatography-tandem mass spectrometry is proposed for the analysis of glucocorticoids in water samples (river water and hospital wastewater). VASEME was optimized by the experimental validation of Plackett-Burman design and central composite design, which has been co-related to experimental design. Plackett-Burman design showed that factors such as vortex time, surfactant concentration, and pH significantly affect the extraction efficiency of the method. Method validation was characterized by an acceptable calibration range of 1-1000 ng L -1 , and the limit of detection was in the range from 2.20 to 8.12 ng L -1 for glucocorticoids. The proposed method was applied to determine glucocorticoids in river water and hospital wastewater in Lucknow, India. It is reliable and rapid and has potential application for analysis of glucocorticoids in environmental aqueous samples. Graphical Abstract Low density based extraction of gluococorticoids by using design of experiment.

  12. USGS Workshop on Scientific Aspects of a Long-Term Experimental Plan for Glen Canyon Dam, April 10-11, 2007, Flagstaff, Arizona

    USGS Publications Warehouse

    ,

    2008-01-01

    Executive Summary Glen Canyon Dam is located in the lower reaches of Glen Canyon National Recreation Area on the Colorado River, approximately 15 miles upriver from Grand Canyon National Park (fig. 1). In 1992, Congress passed and the President signed into law the Grand Canyon Protection Act (GCPA; title XVIII, sec. 1801?1809, of Public Law 102-575), which seeks ?to protect, mitigate adverse impacts to, and improve the values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established.? The Glen Canyon Dam Adaptive Management Program (GCDAMP) was implemented as a result of the 1996 Record of Decision on the Operation of Glen Canyon Dam Final Environmental Impact Statement to ensure that the primary mandate of the GCPA is met through advances in information and resources management (U.S. Department of the Interior, 1995). On November 3, 2006, the Bureau of Reclamation (Reclamation) announced it would develop a long-term experimental plan environmental impact statement (LTEP EIS) for operational activities at Glen Canyon Dam and other management actions on the Colorado River. The purpose of the long-term experimental plan is twofold: (1) to increase the scientific understanding of the ecosystem and (2) to improve and protect important downstream resources. The proposed plan would implement a structured, longterm program of experimentation to include dam operations, potential modifications to Glen Canyon Dam intake structures, and other management actions such as removal of nonnative fish species. The development of the long-term experimental plan continues efforts begun by the GCDAMP to protect resources downstream of Glen Canyon Dam, including Grand Canyon, through adaptive management and scientific experimentation. The LTEP EIS will rely on the extensive scientific studies that have been undertaken as part of the adaptive management program by the U.S. Geological Survey?s (USGS) Grand Canyon Monitoring and Research Center (GCMRC), one of the four research stations within the USGS Southwest Biological Science Center. On April 10 and 11, 2007, at the behest of Reclamation, the GCMRC convened a workshop with scientific experts to identify one or more scientifically credible, long-term experimental options for Reclamation to consider for the LTEP EIS that would be consistent with the purpose and need for the plan. Workshop participants included government, academic, and private scientists with broad experience in the Colorado River in Grand Canyon and regulated rivers around the world. Resource managers and GCDAMP participants were also present on the second day of the workshop. In advance of the workshop, Reclamation and LTEP EIS cooperating agencies identified 14 core scientific questions. Workshop participants were asked to consider how proposed options would address these questions, which fall primarily into four areas: (1) conservation of endangered humpback chub (Gila cypha) and other high-priority biological resources, (2) conservation of sediment resources, (3) enhancement of recreational resources, and (4) preservation of cultural resources. A secondary objective of the workshop was the evaluation of four long-term experimental options developed by the GCDAMP Science Planning Group (SPG) (appendix B). The flow and nonflow treatments called for in the four experimental options were an important starting point for workshop discussions. At the beginning of the workshop, participants were provided with the final LTEP EIS scoping report prepared by Reclamation. Participants were also advised that Reclamation had committed to ?make every effortEto ensure that a new population of humpback chub is established in the mainstem or one or more of the tributaries within Grand Canyon? in the 1995 Operation of Glen Canyon Dam Final Environmental Impact Statement (U.S. Department of the Interior, 1995). This decision was consistent with the U.S. Fish and Wildlife Service?s 1995 bi

  13. Chain of commercialization of Podocnemis spp. turtles (Testudines: Podocnemididae) in the Purus River, Amazon basin, Brazil: current status and perspectives.

    PubMed

    Pantoja-Lima, Jackson; Aride, Paulo H R; de Oliveira, Adriano T; Félix-Silva, Daniely; Pezzuti, Juarez C B; Rebêlo, George H

    2014-01-27

    Consumption of turtles by natives and settlers in the Amazon and Orinoco has been widely studied in scientific communities. Accepted cultural customs and the local dietary and monetary needs need to be taken into account in conservation programs, and when implementing federal laws related to consumption and fishing methods. This study was conducted around the Purus River, a region known for the consumption and illegal trade of turtles. The objective of this study was to quantify the illegal turtle trade in Tapauá and to understand its effect on the local economy. This study was conducted in the municipality of Tapauá in the state of Amazonas, Brazil. To estimate turtle consumption, interviews were conducted over 2 consecutive years (2006 and 2007) in urban areas and isolated communities. The experimental design was randomized with respect to type of household. To study the turtle fishery and trade chain, we used snowball sampling methodology. During our study period, 100% of respondents reported consuming at least three species of turtles (Podocnemis spp.). Our estimates indicate that about 34 tons of animals are consumed annually in Tapauá along the margins of a major fishing river in the Amazon. At least five components related to the chain of commercialization of turtles on the Purus River are identified: Indigenous Apurinã and (2) residents of bordering villages (communities); (3) of local smugglers buy and sell turtles to the community in exchange for manufactured goods, and (4) regional smugglers buy in Tapauá, Lábrea, and Beruri to sell in Manaus and Manacapuru; Finally, (5) there are professional fishermen. We quantify the full impact of turtle consumption and advocate the conservation of the region's turtle populations. The Brazilian government should initiate a new turtle consumption management program which involves the opinions of consumers. With these measures the conservation of freshwater turtles in the Brazilian Amazon, is possible.

  14. Chain of commercialization of Podocnemis spp. turtles (Testudines: Podocnemididae) in the Purus River, Amazon basin, Brazil: current status and perspectives

    PubMed Central

    2014-01-01

    Background Consumption of turtles by natives and settlers in the Amazon and Orinoco has been widely studied in scientific communities. Accepted cultural customs and the local dietary and monetary needs need to be taken into account in conservation programs, and when implementing federal laws related to consumption and fishing methods. This study was conducted around the Purus River, a region known for the consumption and illegal trade of turtles. The objective of this study was to quantify the illegal turtle trade in Tapauá and to understand its effect on the local economy. Methods This study was conducted in the municipality of Tapauá in the state of Amazonas, Brazil. To estimate turtle consumption, interviews were conducted over 2 consecutive years (2006 and 2007) in urban areas and isolated communities. The experimental design was randomized with respect to type of household. To study the turtle fishery and trade chain, we used snowball sampling methodology. Results During our study period, 100% of respondents reported consuming at least three species of turtles (Podocnemis spp.). Our estimates indicate that about 34 tons of animals are consumed annually in Tapauá along the margins of a major fishing river in the Amazon. At least five components related to the chain of commercialization of turtles on the Purus River are identified: Indigenous Apurinã and (2) residents of bordering villages (communities); (3) of local smugglers buy and sell turtles to the community in exchange for manufactured goods, and (4) regional smugglers buy in Tapauá, Lábrea, and Beruri to sell in Manaus and Manacapuru; Finally, (5) there are professional fishermen. Conclusions We quantify the full impact of turtle consumption and advocate the conservation of the region’s turtle populations. The Brazilian government should initiate a new turtle consumption management program which involves the opinions of consumers. With these measures the conservation of freshwater turtles in the Brazilian Amazon, is possible. PMID:24467796

  15. Design for Flood Control, Wave Protection, and Prevention of Shoaling, Rogue River, Oregon. Hydraulic Model Investigation.

    DTIC Science & Technology

    1982-08-01

    Gold Beach docks; a turning basin 10 ft deep, 150 ft wide, and 600 ft long adjacent to the decks; and revetment on the north bank extending approximately...jetty. A ga was left in thetbroan or to ft lde sctaW to arbor fatt.itie. 4. bsrye pPbla oaists beftten the logu River Ij4ties; slag 1 ide 4 f 0 south... revetments are also rubble-mound structures. Experience and experimental research have shown that considerable wave energy passes through the

  16. Effects of experimental floods on riparian and aquatic ecosystems: Bill Williams River, Arizona

    NASA Astrophysics Data System (ADS)

    Shafroth, P. B.; Andersen, D. C.; Wilcox, A. C.; Kui, L.; Stella, J. C.

    2013-12-01

    Development of flow prescriptions for environmental purposes along rivers is relatively common, but implementation of these 'environmental flows' occurs infrequently. Implementation is critical for testing hypotheses relating flow regime to biotic response, which ultimately can inform adaptive flow management. We describe the development of flow prescriptions and evaluate responses of riparian vegetation, beaver dams, and associated aquatic habitat to experimental floods and intervening base flows associated with an environmental flow program on the Bill Williams River (BWR), in semiarid Arizona. First, we assessed effects of flow releases between 1993 and 2009 designed to favor the establishment and maintenance of native riparian trees (Populus and Salix) and disfavor an invasive, nonnative shrub (Tamarix spp.) downstream of Alamo Dam on the BWR. Our data are multi-scaled and include a several-decade assessment of changes to major vegetation types based on a time series of aerial photography, an assessment of species composition and abundance sampled in permanent vegetation quadrats, and targeted seedling surveys following experimental floods. Between 1993 and 2009, we observed significant increases in Populus and Salix forests and essentially no change in Tamarix. Experimental floods in 2006 and 2007 resulted in higher mortality of Tamarix seedlings than Salix. These results illustrate the potential for managing streamflow to influence riparian vegetation dynamics, including management of nonnative species. Second, we examined the role of beaver as ecosystem engineers in the BWR and linkages to flow releases between 2004 and 2013. Beaver convert lotic stream habitat to lentic through dam construction and maintenance during low flow periods, and the process is reversed when a flood or other event causes dam failure. We estimated the extent of lotic and beaver-created lentic (beaver pond) habitat along the BWR and related the likelihood of damage or destruction of beaver dams to the magnitude and duration of experimental floods. We obtained counts of beaver dams at various times from aerial photographs, aerial videography, and ground surveys. The ratio of lotic to lentic stream length was approximately 6 times greater following a large flood versus a 7 year period with no significant flood releases. Floods of different magnitudes and durations resulted in notably different levels of damage or removal of beaver dams. Finally, we sampled woody vegetation adjacent to the channel to estimate the effect of beaver herbivory, and noted high levels of mature tree mortality in one of our study reaches. Results of our previous and ongoing investigations are reported to land and water managers as part of an adaptive streamflow management process.

  17. Accelerated Leach Testing of GLASS: ALTGLASS Version 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivelpiece, Cory L.; Jantzen, Carol M.; Crawford, Charles L.

    The Accelerated Leach Testing of GLASS (ALTGLASS) database is a collection of data from short- and long-term product consistency tests (PCT, ASTM C1285 A and B) on high level waste (HLW) as well as low activity waste (LAW) glasses. The database provides both U.S. and international researchers with an archive of experimental data for the purpose of studying, modeling, or validating existing models of nuclear waste glass corrosion. The ALTGLASS database is maintained and updated by researchers at the Savannah River National Laboratory (SRNL). This newest version, ALTGLASS Version 3.0, has been updated with an additional 503 rows of datamore » representing PCT results from corrosion experiments conducted in the United States by the Savannah River National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and the Vitreous State Laboratory (SRNL, PNNL, ANL, VSL, respectively) as well as the National Nuclear Laboratory (NNL) in the United Kingdom.« less

  18. Three Experimental High-Flow Releases from Glen Canyon Dam, Arizona-Effects on the Downstream Colorado River Ecosystem

    USGS Publications Warehouse

    Melis, Theodore S.; Grams, Paul E.; Kennedy, Theodore A.; Ralston, Barbara E.; Robinson, Christopher T.; Schmidt, John C.; Schmit, Lara M.; Valdez, Richard A.; Wright, Scott A.

    2011-01-01

    Three high-flow experiments (HFEs) were conducted by the U.S. Department of the Interior at Glen Canyon Dam, Arizona, in March 1996, November 2004, and March 2008. Also known as artificial or controlled floods, these scheduled releases of water above the dam's powerplant capacity were designed to mimic pre-dam seasonal flooding on the Colorado River. The goal of the HFEs was to determine whether high flows could be used to benefit important downstream resources in Glen Canyon National Recreation Area and Grand Canyon National Park that have been affected by the existence and operation of Glen Canyon Dam. These downstream resources include native fish, particularly endangered humpback chub (Gila cypha), terrestrial and aquatic sandbar habitats, cultural sites, and recreational resources. This Fact Sheet summarizes HFE-related studies published since 1996 and outlines a possible strategy for implementing future HFEs.

  19. Remaining Sites Verification Package for the 100-F-54 Animal Farm Pastures, Waste Site Reclassification Form 2008-015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. M. Capron

    2008-04-17

    The 100-F-54 waste site, part of the 100-FR-2 Operable Unit, is the soil associated with the former pastures for holding domestic farm animals used in experimental toxicology studies. Evaluation of historical information resulted in identification of the experimental animal farm pastures as having potential residual soil contamination due to excrement from experimental animals. The 100-F-54 animal farm pastures confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminantmore » concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.« less

  20. Applied technology section. Monthly report, December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckner, M.R.

    1994-01-28

    This monthly report contains abstracts of the progress made in various projects from the applied technology section at the Savannah River Plant. Research areas include engineering modeling and simulation, applied physics, experimental thermal hydraulics, and packaging and transportation.

  1. Characteristics of suspended sediment and river discharge during the beginning of snowmelt in volcanically active mountainous environments

    NASA Astrophysics Data System (ADS)

    Mouri, Goro; Ros, Faizah Che; Chalov, Sergey

    2014-05-01

    To better understand instream suspended sediment delivery and transformation processes, we conducted field measurements and laboratory experiments to study the natural function of spatial and temporal variation, sediment particles, stable isotopes, particle size, and aspect ratio from tributary to mainstream flows of the Sukhaya Elizovskaya River catchment at the beginning of and during snowmelt. The Sukhaya Elizovskaya River is located in the Kamchatka Peninsula of Russia and is surrounded by active volcanic territory. The study area has a range of hydrological features that determine the extreme amounts of washed sediments. Sediment transported to the river channels in volcanic mountainous terrain is believed to be strongly influenced by climate conditions, particularly when heavy precipitation and warmer climate trigger mudflows in association with the melting snow. The high porosity of the channel bottom material also leads to interactions with the surface water, causing temporal variability in the daily fluctuations in water and sediment flow. Field measurements revealed that suspended sediment behaviour and fluxes decreased along the mainstream Sukhaya Elizovskaya River from inflows from a tributary catchment located in the volcanic mountain range. In laboratory experiments, water samples collected from tributaries were mixed with those from the mainstream flow of the Sukhaya Elizovskaya River to examine the cause of debris flow and characteristics of suspended sediment in the mainstream. These findings and the geological conditions of the tributary catchments studied led us to conclude that halloysite minerals likely comprise the majority of suspended sediments and play a significant role in phosphate adsorption. The experimental results were upscaled and verified using field measurements. Our results indicate that the characteristics of suspended sediment and river discharge in the Sukhaya Elizovskaya River can be attributed primarily to the beginning of snowmelt in volcanic tributaries of the lahar valley, suggesting a significant hydrological contribution of volcanic catchments to instream suspended sediment transport. Daily fluctuations in discharge caused by snowmelt with debris flow were observed in this measurement period, in which suspended sediment concentration is ~ 10 mg/l during nonflooding periods and ~ 1400 mg/l when flooding occurs. The oxygen and hydrogen isotope measurements, when compared with Japan, indicated that the Kamchatka region water is relatively lightweight, incorporating the effects of topography; and the water from the beginning of the snowmelt is relatively lightweight when compared with water from the end of the snowmelt. The trend line of isotopes from the beginning of the snowmelt was defined by a slope of 6.88 (n = 12; r2 = 0.97), significantly less than that of isotopes from the snowmelt (8.72). The sediment particles collected during the snowmelt were round in shape caused by the extreme flows and high discharge. The shape of the sediment particles collected at the beginning of the snowmelt, assumed to be fresh samples from the hillslope, was sharper caused by the relatively small discharge by moderate snowmelt. Finally, the relationship between river discharge and suspended sediment concentration was indicated. The results are compared with mountainous rivers of Japan and Malaysia. A new diagram is proposed to describe the relationship between suspended sediment concentration and river discharge.

  2. Cumberlandian Mollusk Conservation Program. Activity 3: identification of fish hosts. [Conradilla caelata; Quadrula intermedia; Epioblasma brevidens; Epioblasma capsaeformis; Epioblasma triquetra; Quadrula cylindrica; Carunculina moesta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, D.M.

    A key element of the Cumberlandian Mollusk Conservation Program undertaken by TVA in 1979 was the determination of fish hosts of Cumberlandian mussel species unique to the Tennessee River drainage and especially the species whose habitat would be inundated by completion of Columbia Dam on the Duck River, Tennessee. Principal emphasis was placed on the birdwing pearly mussel, Conradilla caelata and the Cumberland monkeyface, Quadrula intermedia - two federally listed endangered species with limited distributions outside the proposed inundation zone of the Duck River. Additional species studied included three species of the genus Epioblasma (E. brevidens, E. capsaeformis, and E.more » triquetra), Quadrula cylindrica, Villosa iris, and Carunculina moesta. Experimental glochidial infection of 55 fish species resulted in the establishment of the following mussel-fish host relationships: Conradilla caelata - Etheostoma zonale; Quadrule intermedia - Hybopsis dissimilis, Hybopsis insignis; Epioblasma brevidens - Etheostoma blennioides, Etheostoma maculatum, Etheostoma rufilineatum, Etheostoma simoterum, Percina caprodes, Cottus carolinae; Epioblasma capsaeformis - Etheostoma maculatum, Etheostoma rufilineatum, Percina sciera, Cottus carolinae; Epioblasma triquetra - Percina caprodes, Cottus carolinae; Quadrula cylindrica - Notropis galacturus, Notropis spilopterus, Hybopsis amblops; and Carunculina moesta - Lepomis cyanellus, Lepomis megalotis.« less

  3. Phytoplankton productivity, respiration, and nutrient uptake and regeneration in the Potomac River, August 1977 - August 1978

    USGS Publications Warehouse

    Cole, B.E.; Harmon, D.D.

    1981-01-01

    Rates of phytoplankton productivity, respiration, and nutrient uptake and regeneration are presented. These observations were made on the Potomac River estuary (POTE) during four cruises between August 1977 and August 1978. Four experimental methods were used: carbon uptake using carbon-14, carbon uptake and respiration by a pH method, productivity and respiration by the dissolved oxygen method, and nutrient (NH4+, NO3-, NO2-, PO4=, and SiO2=) uptake and regeneration by colorimetry. The experiments were made at sites representative of conditions in four principal reaches of the tidal Potomac River estuary: near the mouth, seaward of the summer nutrient and phytoplankton maximum, near the region of maximum phytoplankton standing stock , and near the maximum anthropogenic nutrient source. (USGS)

  4. Turning the tide: estuarine bars and mutually evasive ebb- and flood-dominated channels

    NASA Astrophysics Data System (ADS)

    Kleinhans, M. G.; Leuven, J.; van der Vegt, M.; Baar, A. W.; Braat, L.; Bergsma, L.; Weisscher, S.

    2015-12-01

    Estuaries have perpetually changing and interacting channels and shoals formed by ebb and flood currents, but we lack a descriptive taxonomy and forecasting model. We explore the hypotheses that the great variation of bar and shoal morphologies are explained by similar factors as river bars, namely channel aspect ratio, sediment mobility and limits on bar erosion and chute cutoff caused by cohesive sediment. Here we use remote sensing data and a novel tidal flume setup, the Metronome, to create estuaries or short estuarine reaches from idealized initial conditions, with and without mud supply at the fluvial boundary. Bar width-depth ratios in estuaries are similar to those in braided rivers. In unconfined (cohesionless) experimental estuaries, bar- and channel dynamics increase with increasing river discharge. Ebb- and flood-dominated channels are ubiquitous even in entirely straight sections. The apparent stability of ebb- and flood channels is partly explained by the inherent instability of symmetrical channel bifurcations as in rivers.

  5. Invertebrates of the H.J. Andrews Experimental Forest, western Cascades, Oregon II. an annotated checklist of caddisflies (Trichoptera)

    Treesearch

    N.H. Anderson; G.M. Cooper; D.G Denning

    1982-01-01

    At least 99 species, representing 14 families of Trichoptera, are recorded from the H.J. Andrews Experimental Forest, near Blue River, Oregon. The collecting sites include a wide diversity of environmental conditions in a 6000-hectare watershed of the western Cascade Range (from 400 to 1 630 meters in altitude and from 1st- to 7th-order streams).

  6. An Experimental Program Offering Junior College Remedial English Instruction Simultaneously to High School Seniors and Junior College Freshmen via Open Circuit Television. Final Report.

    ERIC Educational Resources Information Center

    Boettcher, Kenneth D.

    American River College (Calif.) devised an experimental program in remedial English intended to better prepare entering freshmen. It was given by open-circuit TV simultaneously to high school seniors and junior college freshmen in the hope that, in subsequent years, there would be fewer inadequately prepared freshmen and that more could enroll…

  7. Competitive Survival of Escherichia coli, Vibrio cholerae, Salmonella typhimurium and Shigella dysenteriae in Riverbed Sediments.

    PubMed

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2016-11-01

    Studies on the survival of bacterial enteric pathogens in riverbed sediments have mostly focused on individual organisms. Reports on the competitive survival of these pathogens in riverbed sediments under the same experimental setup are limited. We investigated the survival of Escherichia coli, Salmonella enterica ser. Typhimurium, Vibrio cholerae and Shigella dysenteriae in riverbed sediments of the Apies River. Experiments were performed in flow chambers containing three sediment types and connected to aquarium pumps immersed in river water to maintain continuous water circulation. Each chamber was inoculated with ~10 7  CFU/mL (final concentration) of each microorganism and kept at 4, 20 and 30 °C. Chambers were sampled on days 0, 1, 2, 7, 14 and 28. At 4 °C, only E. coli and S. typhimurium survived throughout the 28 experimental days. V. cholerae had the shortest survival time at this temperature and was not detected in any of the sediment chambers 24 h after inoculation. S. dysenteriae only survived until day 7. At an increased temperature of 20 °C, only S. dysenteriae was not detected on day 28 of the experiment. At 30 °C, V. cholerae and Salmonella survived longer (28 days) than E. coli (14 days) and S. dysenteriae (4 days). Vibrio cholerae was shown to have the highest T 90 values (32 days) in all sediment types at 20 and 30 °C. We conclude that the sediments of the Apies River present a favourable environment for the survival of indicator and pathogenic bacteria depending on the prevailing temperature.

  8. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming.

    PubMed

    Hood, James M; Benstead, Jonathan P; Cross, Wyatt F; Huryn, Alexander D; Johnson, Philip W; Gíslason, Gísli M; Junker, James R; Nelson, Daniel; Ólafsson, Jón S; Tran, Chau

    2018-03-01

    Climate warming is affecting the structure and function of river ecosystems, including their role in transforming and transporting carbon (C), nitrogen (N), and phosphorus (P). Predicting how river ecosystems respond to warming has been hindered by a dearth of information about how otherwise well-studied physiological responses to temperature scale from organismal to ecosystem levels. We conducted an ecosystem-level temperature manipulation to quantify how coupling of stream ecosystem metabolism and nutrient uptake responded to a realistic warming scenario. A ~3.3°C increase in mean water temperature altered coupling of C, N, and P fluxes in ways inconsistent with single-species laboratory experiments. Net primary production tripled during the year of experimental warming, while whole-stream N and P uptake rates did not change, resulting in 289% and 281% increases in autotrophic dissolved inorganic N and P use efficiency (UE), respectively. Increased ecosystem production was a product of unexpectedly large increases in mass-specific net primary production and autotroph biomass, supported by (i) combined increases in resource availability (via N mineralization and N 2 fixation) and (ii) elevated resource use efficiency, the latter associated with changes in community structure. These large changes in C and nutrient cycling could not have been predicted from the physiological effects of temperature alone. Our experiment provides clear ecosystem-level evidence that warming can shift the balance between C and nutrient cycling in rivers, demonstrating that warming will alter the important role of in-stream processes in C, N, and P transformations. Moreover, our results reveal a key role for nutrient supply and use efficiency in mediating responses of primary producers to climate warming. © 2017 John Wiley & Sons Ltd.

  9. Analytical and Experimental Study to Improve Computer Models for Mixing and Dilution of Soluble Hazardous Chemicals.

    DTIC Science & Technology

    1982-08-01

    Trajectory and Concentration of Various Plumes 59 IV.2 Tank and Cargo Geometry Assumed for Discharge Rate Calculation Using HACS Venting Rate Model 61...Discharge Rate Calculation Using HACS Venting Rate Model 62 IV.4 Original Test Plan for Validation of the Continuous Spill Model 66 IV.5 Final Test Plan...at t= 0. exEyEz = turbulent diffusivities. p = water density. Pc = chemical density. Symbols Used Only in Continuous-Spill Models for a Steady River b

  10. Reference Model MHK Turbine Array Optimization Study within a Generic River System.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Erick; Barco Mugg, Janet; James, Scott

    2011-12-01

    Increasing interest in marine hydrokinetic (MHK) energy has spurred to significant research on optimal placement of emerging technologies to maximize energy conversion and minimize potential effects on the environment. However, these devices will be deployed as an array in order to reduce the cost of energy and little work has been done to understand the impact these arrays will have on the flow dynamics, sediment-bed transport and benthic habitats and how best to optimize these arrays for both performance and environmental considerations. An "MHK-friendly" routine has been developed and implemented by Sandia National Laboratories (SNL) into the flow, sediment dynamicsmore » and water-quality code, SNL-EFDC. This routine has been verified and validated against three separate sets of experimental data. With SNL-EFDC, water quality and array optimization studies can be carried out to optimize an MHK array in a resource and study its effects on the environment. The present study examines the effect streamwise and spanwise spacing has on the array performance. Various hypothetical MHK array configurations are simulated within a trapezoidal river channel. Results show a non-linear increase in array-power efficiency as turbine spacing is increased in each direction, which matches the trends seen experimentally. While the sediment transport routines were not used in these simulations, the flow acceleration seen around the MHK arrays has the potential to significantly affect the sediment transport characteristics and benthic habitat of a resource. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd« less

  11. Synthetic River Valleys

    NASA Astrophysics Data System (ADS)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D treatments.

  12. Experimental Floods in a Time of Drought: The 2014 Pulse Flow in the Lower Colorado River, Arizona, USA, and Mexico

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Ramirez-Hernandez, J.; Ramirez, J.

    2015-12-01

    In March and April, 2014, an unprecedented experimental "pulse flow" with a total volume of over 100 million cubic meters (81,000 acre-feet) of water was released from Morelos Dam into the normally dry lower Colorado River below Yuma, Arizona, for the primary purpose of restoring native vegetation and habitat. Significant infiltration and attenuation of the flood peak occurred within the limitrophe reach that forms the US-Mexico border, with total volume reduced to 57 million cubic meters at the southerly international boundary at San Luis Rio Colorado, Sonora, Mexico (32 kilometers downstream). Groundwater levels in piezometers adjacent to the stream channel rose as much as 10 meters, and surface water/groundwater connection was established throughout the reach, despite depths-to-water greater than 15 meters prior to the pulse flow. Based on groundwater levels, a groundwater mound remained in the vicinity of the stream channel for several months but had largely dissipated into the regional groundwater system by fall 2014. Ultimately, a large amount of water was moved from storage in an upstream reservoir (Lake Mead), where it is potentially available to many users but where evaporation losses can be high, to the regional aquifer in the Yuma-Mexicali area, where the water could be available to local users but cannot be precisely quantified as it moves through the groundwater system. During a time of drought, tradeoffs between local vs. upstream storage, and reservoir vs. subsurface storage, will likely be increasingly important considerations in planning future experimental floods on the Colorado River.

  13. The Suwannee River Hydrologic Observatory: A Subtropical Coastal Plain Watershed in Transition

    NASA Astrophysics Data System (ADS)

    Graham, W. D.

    2004-12-01

    The Consortium of Universities for the Advancement of Hydrologic Sciences (CUAHSI) proposed to establish a network of 5-15 hydrologic observatories (HO's) across North America is to support fundamental research for the hydrologic science community into the next century. These HO's are projected to be 10,000 to 50,000 km2 and will include a broad range of hydrologic, climatic, bio-geochemical and ecosystem processes, including the critical linkages and couplings. This network is envisioned as the natural laboratory for experimental hydrology in support of scientific investigations focused on predictive understanding at a scale that will include both atmospheric- and ecosystem-hydrologic interaction, as well as the hydrologic response to larger-scale climate variation and change. A group of researchers from Florida and Georgia plan to propose the Suwannee River watershed as a Hydrologic Observatory. The Suwannee River flows through a diverse watershed relatively unimpacted by urbanization but in transition to more intense land-use practices. It thus provides excellent opportunities to study the effects of ongoing changes in land use and water supply on varied hydrological processes. Much background information is available on the hydrology, hydrogeology, geology, chemistry, and biology of the watershed. Several major on-going monitoring programs are supported by state and federal agencies. Four characteristics, discussed in greater detail below, make the Suwannee River watershed ideal for a Hydrologic Observatory: Unregulated and rural - The Suwannee River is one of few major rivers in the United States with largely unregulated flow through rural areas and is relatively unimpaired with regard to water quality, leading to its designation as one of twelve National Showcase Watersheds. At Risk and in Transition - Land use is trending toward increased urbanization and intensive agriculture with an apparent coupled increase in nutrient loads and decline in water quality. In addition, population growth is fueling increased groundwater withdrawals from the Floridan aquifer for local consumption affecting water supply. Inter-basin transfers from the lower Suwannee River to south Florida have been suggested as one solution to south Florida's growing water crisis. Three Distinct Hydrologic Regimes - The Suwannee River watershed comprises three distinct but linked hydrologic landscape units. The upper Suwannee River interacts with the surficial aquifer but is largely separated from the Floridan aquifer by a confining unit. The middle Suwannee River interacts with both surficial aquifers and the unconfined karstic Floridan aquifer. The lower Suwannee River discharges to a deltaic estuary as surface water along with diffuse submarine groundwater discharge. Extensive Existing Data Infrastructure - Some discharge data exists from the turn of the 19th century to the present. More recently, the USDA Agricultural Research Service through the Southeast Watershed Research Laboratory (SEWRL) has monitored the Little River watershed in Georgia at the headwaters of the Suwannee River since 1965, and the Suwannee River Water Management District (SRWMD) has monitored the Suwannee River watershed in Florida since 1972. Other groups (USGS, Suwannee River Partnership, and individual university investigators) have long worked on specific, local geological, hydrological, and biological problems within the watershed. Contributing Organizations: University of Florida, Florida State University, University of South Florida, University of Central Florida, University of Georgia, USGS, USDA, and SRWMD

  14. Molecular signatures of biogeochemical transformations in dissolved organic matter from ten World Rivers

    NASA Astrophysics Data System (ADS)

    Riedel, Thomas; Zark, Maren; Vähätalo, Anssi; Niggemann, Jutta; Spencer, Robert; Hernes, Peter; Dittmar, Thorsten

    2016-09-01

    Rivers carry large amounts of dissolved organic matter (DOM) to the oceans thereby connecting terrestrial and marine element cycles. Photo-degradation in conjunction with microbial turnover is considered a major pathway by which terrigenous DOM is decomposed. To reveal globally relevant patterns behind this process, we performed photo-degradation experiments and year-long bio-assays on DOM from ten of the largest world rivers that collectively account for more than one-third of the fresh water discharge to the global ocean. We furthermore tested the hypothesis that the terrigenous component in deep ocean DOM may be far higher than biomarker studies suggest, because of the selective photochemical destruction of characteristic biomolecules from vascular plants. DOM was molecularly characterized by a combination of non-targeted ultrahigh-resolution mass spectrometry and quantitative molecular tracer analyses. We show that the reactivity of DOM is globally related to broad catchment properties. Basins that are dominated by forest and grassland export more photo-degradable DOM than other rivers. Chromophoric compounds are mainly vascular plant-derived polyphenols, and partially carry a pyrogenic signature from vegetation fires. These forest and grassland dominated rivers lost up to 50% of dissolved organic carbon (DOC) during irradiation, and up to 85% of DOC was lost in total if subsequently bio-incubated for one year. Basins covered by cropland, on the other hand, export DOM with a higher proportion of photo-resistant and bio-available DOM which is enriched in nitrogen. In these rivers, 30% or less of DOC was photodegraded. Consistent with previous studies, we found that riverine DOM resembled marine DOM in its broad molecular composition after extensive degradation, mainly due to almost complete removal of aromatics. More detailed molecular fingerprinting analysis (based on the relative abundance of >4000 DOM molecular formulae), however, revealed clear differences between degraded riverine and deep-sea DOM (molecular Bray-Curtis dissimilarity of 50%). None of our experimental treatments enhanced the molecular similarity between the rivers and the deep ocean. We conclude that terrigenous DOM retains a specific molecular signature during photo-degradation on much longer time scales than previously assumed and that substantial, thus far unknown, molecular transformations occur prior to downward convection into the deep oceanic basins.

  15. Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends

    NASA Astrophysics Data System (ADS)

    Riley, J. D.; Rhoads, B. L.

    2007-12-01

    The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed and channel morphology were also surveyed with a digital fathometer to document geomorphic change. Preliminary analysis of the velocity data reveals the presence of a well-defined shear layer between the converging flows and secondary circulation in the main channel. The tributary channel appears to oppose high velocity flow directed toward the outer bank by centrifugal acceleration through the meander bend of the main channel, thereby diminishing erosion along the cut bank and possibly stabilizing the meander bend channel. The flow structure and channel morphology of the study sites are compared to consider the effect of spatial scale and geometric characteristics on confluent-meander bend dynamics.

  16. Establishing of monitoring network on Kosovo Rivers: preliminary measurements on the four main rivers (Drini i Bardhë, Morava e Binqës, Lepenc and Sitnica).

    PubMed

    Gashi, Fatbardh; Frančišković-Bilinski, Stanislav; Bilinski, Halka; Troni, Naser; Bacaj, Mustafë; Jusufi, Florim

    2011-04-01

    The main goal of this work was to suggest to authorities concerned a monitoring network on main rivers of Kosovo. We aim to suggest application of WFD (Water Framework Directive) in Kosovo as soon as possible. Our present chemical research could be the first step towards it, giving an opportunity to plan the monitoring network in which pollution locations will be highlighted. In addition to chemical, future ecological studies could be performed. Waters of the rivers Drini i Bardhë, Morava e Binçës, Lepenc and Sitnica, which are of supra-regional interest, are investigated systematically along the river course. Sediments of these rivers were also investigated at the same monitoring points and results have recently been published by us. In this paper we present results of mass concentrations of eco-toxic metals: Cu(II), Pb(II), Cd(II), Zn(II) and Mn(II) in waters of four main rivers of Kosovo, using Anodic Stripping Voltammetry (ASV), Atomic Absorption Spectrophotometry (AAS) and Ultraviolet-Visible (UV-VIS) Spectrometry. Also some physico-chemical parameters are determined: water temperature, electrical conductivity, pH, alkalinity, total hardness and temporary hardness. Results of concentrations of eco-toxic metals in water are compared with concentrations found in sediments at the same locations. Statistical methods are applied to determine anomalous regions Classification of waters at each sampling station of our work was tentatively performed based on metal indicators, using Croatian standards. Our results are showing that concentrations of Zn in all waters are low and pose no risk for living organisms. Exception is water at S5 station, where concentration is above permanent toxic level. Concentrations of Pb and Mn are high at D5 station on Drini i Bardhë River (14 km from boarder to Albania) and at all stations along Sitnica River. Cadmium in high concentrations which is above permanent toxic level is measured in water only at two stations, one (M1) on Morava e Binçës River and the other (S5) on Sitnica River (56 km from boarder to Serbia). Comparison with available results from the past shows that water pollution with respect to toxic elements decreased since 1989, what is explained with closing of heavy industry since then. Continuation of water and sediment monitoring using more than one experimental technique is highly recommended, particularly at locations S2 and S5 with anomalous concentrations of toxic elements, as well as establishing of permanent network of monitoring stations by Kosovo authorities. Remediation of sediments at polluted locations in Sitnica River would be desirable.

  17. Underwater Fiber Reinforced Polymer (FRP) Wrap Experimental Project

    DOT National Transportation Integrated Search

    2018-01-30

    In 2017, The Maine Department of Transportation in collaboration with the Kenway Corporation and Construction Divers Inc. (CDI), completed a rehabilitation project on the Rices Bridge (#2715) over the York River in York, Maine. The project was to add...

  18. Experimental salinity alleviation at Malaga Bend of the Pecos River, Eddy County, New Mexico

    USGS Publications Warehouse

    Havens, John S.; Wilkins, D.W.

    1979-01-01

    Upward-leaking brine, from a confined aquifer at the base of the Rustler Formation, mixes with fresher water in a shallow aquifer , resulting in discharge to the Pecos River in southern Eddy County, New Mexico, of about 0.5 cubic feet per second of saturated brine. Pumping brine from the aquifer at a rate greater than 0.5 cubic feet per second lowered the potentiometric head in the confined aquifer. From July 22, 1963, through December 1968, approximately 3,878 acre-feet of brine had been pumped into the Northeast Depression. The depression leaked brine to the Pecos River. Water downgradient of the depression increased in specific conductance ranging from 1,500 to 99,400 milligrams per liter chloride and water levels near the depression increased over 3 feet from 1963 to 1968. For water years 1952-63, the Pecos River gained about 240 tons per day of chloride in the reach from Malaga gaging station to Pierce Canyon Crossing. The average chloride gain to the Pecos River from July 1963 to August 1966 was 167 tons per day; the 1967-68 gain increased to 256 tons per day after a major flood in August 1966. (USGS)

  19. Sources and fate of bioavailable dissolved organic nitrogen in the Neuse River Estuary, North Carolina

    NASA Astrophysics Data System (ADS)

    Paerl, H. W.; Peierls, B. L.; Hounshell, A.; Osburn, C. L.

    2015-12-01

    Eutrophication is a widespread problem affecting the structure and function of estuaries and is often linked to anthropogenic nitrogen (N) enrichment, since N is the primary nutrient limiting algal production. Watershed management actions typically have ignored dissolved organic nitrogen (DON) loading because of its perceived refractory nature and instead focused on inorganic N as targets for loading reductions. A fluorescence-based model indicated that anthropogenic sources of DON near the head of the microtidal Neuse River Estuary (NRE), NC were dominated by septic systems and poultry waste. A series of bioassays were used to determine the bioavailability of river DON and DON-rich sources to primary producers and whether those additions promoted the growth of certain phytoplankton taxa, particularly harmful species. Overall, at time scales up to two to three weeks, estuarine phytoplankton and bacteria only showed limited responses to additions of high molecular weight (HMW, >1 kDa) river DON. When increases in productivity and biomass did occur, they were quite small compared with the response to inorganic N. Low molecular weight (LMW) river DON, waste water treatment plant effluent, and poultry litter extract did have a positive effect on phytoplankton and bacterial production, indicating a bioavailable fraction. High variability of bulk DON concentration suggested that bioavailable compounds added in the experimental treatments were low in concentration and turned over quite rapidly. Some phytoplankton taxa, as measured by diagnostic photopigments, appeared to be selectively enhanced by the HMW and specific source DON additions, although the taxa could not be positively identified as harmful species. Preliminary tests show that labile autochthonous organic matter may act as a primer for the mineralization of the HMW DON. These and other, longer-term bioavailability studies will be needed to adequately address the fate of watershed DON in estuarine ecosystems.

  20. Engineering properties of concrete with partial utilization of used foundry sand.

    PubMed

    Manoharan, Thiruvenkitam; Laksmanan, Dhamothiran; Mylsamy, Kaliyannan; Sivakumar, Pandian; Sircar, Anirbid

    2018-01-01

    Solid wastes generated from manufacturing industries are increasing at an alarming rate and it is consistently increasing. One such industrial solid waste is Used Foundry Sand (UFS). On the other hand, fine aggregates involved in the concrete are generally river sand, which is scarce, high cost and excavation of the river sand that promote environmental degradation. So, there is an urge to find some alternative solution to dispose UFS and to limit the use of river sand. In this research work, river sand was partially replaced by UFS. The percentage replacements were 0, 5, 10, 15, 20 and 25 wt% respectively. Experimental investigations were carried out to evaluate the mechanical, durability and micro-structural properties of M20 concrete at the age of 7, 28 and 91 day. XRD (X-ray Diffraction), EDX (Energy Dispersive X-ray) and optical-microscopic imaging analysis were performed to identify the presence of various compounds and micro cracks in the concrete with UFS. Comparative studies on control mix against trial mix were carried out. It was found that compression strength, flexural strength and modulus of elasticity were approximately constant up to 20 wt% UFS and decreased with further addition. Whereas, split tensile strength was increased after 20 wt% addition but it affects the other properties of concrete. The durability test results showed that the resistance of concrete against abrasion and rapid chloride permeability of the concrete mixture containing UFS up to 20 wt% were almost similar to the values of control mix. The findings suggest that UFS can effectively replace river sand. However, it is recommended that the replacement should not exceed 20 wt%. Copyright © 2017. Published by Elsevier Ltd.

  1. Survival of infectious Poliovirus-1 in river water compared to the persistence of somatic coliphages, thermotolerant coliforms and Poliovirus-1 genome.

    PubMed

    Skraber, S; Gassilloud, B; Schwartzbrod, L; Gantzer, C

    2004-07-01

    The microbiological quality of water is currently assessed by search for fecal bacteria indicators. There is, however, a body of knowledge demonstrating that bacterial indicators are less resistant to environmental factors than human pathogenic viruses and therefore underestimate the viral risk. As river water is often used as a resource for drinking water production, it is particularly important to obtain a valid estimation of the health hazard, including specific viral risk. This work was conducted to compare the survival of infectious Poliovirus-1 used as a pathogenic virus model to the persistence of, on the one hand, thermotolerant coliforms commonly used as indicators and on the other hand, to somatic coliphages and Poliovirus-1 genome considered as potential indicators. We studied the behavior of infectious Poliovirus-1 and the three (potential) indicators of viral contamination in river water at three different temperatures (4 degrees C,18 degrees C and 25 degrees C). This experiment was performed twice with river water sampled at two different periods, once in winter and once in summer. Our results showed that the survival of thermotolerant coliforms can be 1.5-fold lower than infectious Poliovirus-1. In contrast, under all our experimental conditions, somatic coliphages and Poliovirus-1 genome persisted longer than infectious Poliovirus-1, surviving, respectively, 2-6-fold and about 2-fold longer than infectious Poliovirus-1. According to our results exclusively based on survival capacity, somatic coliphages and viral genome, unlike thermotolerant coliforms appear to be better indicators of viral contamination in river water. Moreover, the disappearance of viral genome is well-correlated to that one of infectious virus irrespective of the conditions tested.

  2. Tracers Show Ecohydrologic Influences on Runoff Generation Components at the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, J.; Peng, A.; Gu, W.; Wang, W.; Gao, F.

    2017-12-01

    In order to learn more about the critical zone ecohydrological dynamics at the Qinghai-Tibet Plateau, a research on the identification of runoff components using tracers was carried out in the Niyang River upstream, a tributary of the Yalung Zangbo River. In this study, four basins with the areas of 182, 216, 243, 213 km2 which are embed in a larger basin were sampled at altitudes between 3667 to 6140 m. The types of land use in the basins mainly include forest land, grassland and glacier. River water and precipitation were sampled monthly, while spring water, glacial ice, soil, and plants were sampled seasonally. Soil and plant samples were taken along the valleys with spatial interval of about 5 km. Soil and plant waters were extracted via cryogenic vacuum distillation method, and then analyzed for isotopes and ions. Preliminary results show that the δD and δ18O of the precipitation water spread approximately along the LMWL of the Namucuo Lake near Lasa city, which varied according to altitude. Stem water δD and δ18O from different elevations and tree species also varied regularly, albeit with no apparent relationship to recent precipitation. It appears that trees utilized fissure water and soil water formed by precipitation. Future efforts will involve (1) an expanded sampling strategy across basins, and (2) a series of experiments on the Hydrohill catchment in the Chuzhou Experimental Facility, whereby an improved understanding of K+, Na+, Ca2+ and Mg2+ export dynamics could aid in much better description and modeling of Niyang River runoff composition and generation. This research is funded by the NSFC project 91647111 and 91647203, which are included in the Runoff Change and its Adaptive Management in the Major Rivers in Southwestern China Major Research Plan.

  3. Enhancement of particle aggregation in the presence of organic matter during neutralization of acid drainage in a stream confluence and its effect on arsenic immobilization.

    PubMed

    Arce, Guillermo; Montecinos, Mauricio; Guerra, Paula; Escauriaza, Cristian; Coquery, Marina; Pastén, Pablo

    2017-08-01

    Acid drainage (AD) is an important environmental concern that impacts water quality. The formation of reactive Fe and Al oxyhydroxides during the neutralization of AD at river confluences is a natural attenuation process. Although it is known that organic matter (OM) can affect the aggregation of Fe and Al oxyhydroxides and the sorption of As onto their surfaces, the role of OM during the neutralization of AD at river confluences has not been studied. Field and experimental approaches were used to understand this role, using the Azufre River (pH 2) - Caracarani River (pH 8.6) confluence (northern Chile) as model system. Field measurements of organic carbon revealed a 10-15% loss of OM downstream the confluence, which was attributed to associations with Fe and Al oxyhydroxides that settle in the river bed. Laboratory mixtures of AD water with synthetic Caracarani waters under varying conditions of pH, concentration and type of OM revealed that OM promoted the aggregation of Fe oxyhydroxides without reducing As sorption, enhancing the removal of As at slightly acidic conditions (pH ∼4.5). At acidic conditions (pH ∼3), aggregation of OM - metal complexes at high OM concentrations could become the main removal mechanism. One type of OM promoted bimodal particle size distributions with larger mean sizes, possibly increasing the settling velocity of aggregates. This work contributes to a better understanding of the role of OM in AD affected basins, showing that the presence of OM during processes of neutralization of AD can enhance the removal of toxic elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Report of the River Master of the Delaware River for the Period December 1, 2002-November 30, 2003

    USGS Publications Warehouse

    Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.

    2009-01-01

    A Decree of the Supreme Court of the United States, entered in 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 50th Annual Report of the River Master of the Delaware River. It covers the 2003 River Master report year; that is, the period from December 1, 2002 to November 30, 2003. During the report year, precipitation in the upper Delaware River Basin was 13.40 inches (131 percent) greater than the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was above the long-term median on December 1, 2002. Reservoir storage increased rapidly in mid-March 2003 and all the reservoirs filled and spilled. The reservoirs remained nearly full for the remainder of the report year. Delaware River operations throughout the report year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 10 days during the report year. Releases were made at experimental conservation rates - or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs - on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a semi-monthly basis.

  5. Use of artificial stream mesocosms to investigate mercury uptake in the South River, Virginia, USA.

    PubMed

    Brent, Robert N; Berberich, David A

    2014-02-01

    Mercury is a globally distributed pollutant that biomagnifies in aquatic food webs. In the United States, 4,769 water bodies fail to meet criteria for safe fish consumption due to mercury bioaccumulation. Although the majority of these water bodies are affected primarily by atmospheric deposition of mercury, legacy contamination from mining or industrial activities also contribute to fish consumption advisories for mercury. The largest mercury impairment in Virginia, a 130-mile stretch of the South and South Fork Shenandoah rivers, is posted with a fish-consumption advisory for mercury contamination that originated from mercuric sulfate discharges from a textile facility in Waynesboro, Virginia, between 1929 and 1950. Although discharges of mercury to the river ceased >60 years ago, mercury levels in fish remain greater than levels safe for human consumption. This is due to the continued cycling of historic mercury in the river and its eventual uptake and biomagnification through aquatic food webs. This study investigated the relative importance of waterborne versus sediment-borne mercury in controlling biological uptake of mercury into the aquatic food web. Twelve artificial stream channels were constructed along the contaminated South River in Crimora, Virginia, and the uncontaminated North River in nearby Port Republic, Virginia, to provide four experimental treatments: a control with no Hg exposure, a Hg in sediment exposure, a Hg in water exposure, and a Hg in sediment and water exposure. After 6 weeks of colonization and growth, algae in each treatment was collected and measured for mercury accumulation. Mercury accumulation in water-only exposures was four times greater than in sediment-only exposures and was equivalent to accumulation in treatments with combined water and sediment exposure. This indicates that mercury in the water column is much more important in controlling biological uptake than mercury in near-field sediments. As a result, future remediation efforts need to focus on strategies that either remove mercury from the water column or decrease flux to the water column.

  6. Measuring Paleolandscape Relief in Alluvial River Systems from the Stratigraphic Record

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Trampush, S. M.; Chamberlin, E.; Greenberg, E.

    2017-12-01

    Aggradational alluvial river systems sometimes generate relief in the vicinity of their channel belts (i.e. alluvial ridges) and it has been proposed that this process may define important thresholds in river avulsion. The compensation scale can be used to estimate the maximum relief across a landscape and can be connected to the maximum scale of autogenic organization in experimental and numerical systems. Here we use the compensation scale - measured from outcrops of Upper Cretaceous and Paleogene fluvial deposits - to estimate the maximum relief that characterized ancient fluvial landscapes. In some cases, the compensation scale significantly exceeds the maximum channel depth observed in a deposit, suggesting that aggradational alluvial systems organize to sustain more relief than might be expected by looking only in the immediate vicinity of the active channel belt. Instead, these results indicate that in some systems, positive topographic relief generated by multiple alluvial ridge complexes and/or large-scale fan features may be associated with landscape-scale autogenic organization of channel networks that spans multiple cycles of channel avulsion. We compare channel and floodplain sedimentation patterns among the studied ancient fluvial systems in an effort to determine whether avulsion style, channel migration, or floodplain conditions influenced the maximum autogenic relief of ancient landscapes. Our results emphasize that alluvial channel networks may be organized at much larger spatial and temporal scales than previously realized and provide an avenue for understanding which types of river systems are likely to exhibit the largest range of autogenic dynamics.

  7. The relative contribution of near-bed vs. intragravel horizontal transport to fine sediment accumulation processes in river gravel beds

    NASA Astrophysics Data System (ADS)

    Casas-Mulet, Roser; Lakhanpal, Garima; Stewardson, Michael J.

    2018-02-01

    Understanding flow-sediment interactions is important for comprehending river functioning. Fine sediment accumulation processes, in particular, have key implications for ecosystem health. However, the amount of fines generated by intragravel flows and later accumulated in gravel streambeds may have been underestimated, as the hydraulic-related driving transport mechanisms in play are not clearly identified. Specifically, the relative contribution of fines from upper vs. lower sediment layers in gravel beds is not well understood. By recreating flooded and dewatered conditions in an experimental flume filled with natural sediment, we estimated such contributions by observing and collecting intragravel transported fines that were later accumulated into a void in the middle of the sediment matrix. Near-bed transport in the upper sediment layers (named Brinkman load) during flooded conditions accounted for most (90%) of the accumulated fines. Intragravel transport in the lower sediment layers (named Interstitial load) was the sole source of transport and accumulation during dewatered conditions with steeper hydraulic gradients. Interstitial load accounted for 10% of the total transport during flooded conditions. Although small, such estimations demonstrate that hydraulic-gradient transport in the lower sediment layers occurs in spite of the contradicting analytical assessments. We provide a case study to challenge the traditional approaches of assessing intragravel transport, and a useful framework to understand the origin and relative contribution of fine sediment accumulation in gravel beds. Such knowledge will be highly useful for the design of monitoring programs aiding river management, particularly in regulated rivers.

  8. Monitoring and Research of the Colorado River Ecosystem: When Is Enough Enough?

    NASA Astrophysics Data System (ADS)

    Schmidt, J. C.

    2014-12-01

    The Glen Canyon Dam Adaptive Management Program (GCDAMP) is a well-funded ( $10 million/yr.) river rehabilitation program with long-term monitoring and research focused on 400 km of the Colorado River in Glen, Marble, and Grand Canyons downstream from Lake Powell. More than 15 years of substantive science concerning hydrology, hydraulics, sediment transport, geomorphology, aquatic and fish ecology, riparian ecology, and socio-economics has yielded significant insights that guide experimental river management initiatives, such as a new protocol to annually release sediment-triggered controlled floods; administratively called the High Flow Experimental Protocol (HFEP). Implementation of the HFEP requires nearly real-time monitoring of sediment delivery from key sand producing tributaries, transport in and calculation of sand mass balance in segments of the Colorado River, and defined uncertainty of those processes and conditions (see: http://www.gcmrc.gov/). The HFEP aims to rebuild sandbars within the active channel, but many stakeholders remain focused on other aquatic ecosystem, riparian ecosystem, archaeological resources, or cultural values that are linked in complex ways to active channel conditions. Tension exists within the GCDAMP about how funding is allocated for innovative data collection, analysis, and publication strategies that allow implementation of the HFEP, and to also measure derivative resource conditions about which some stakeholders have concern. Monitoring and research initiatives that attempt to incorporate traditional cultural values also have high uncertainty when resource condition is linked with the simple implementation paradigm of the HFEP. Thus, the GCDAMP is faced with the complex challenge of allocating sufficient resources to monitor active channel processes and characteristics, resolve remaining scientific uncertainties, and develop new strategies for incorporating science insights into engineering and policy decisions, while also monitoring terrestrial resources supported by stakeholders but only indirectly linked with dam operations. The challenge of balancing these scientific and adaptive management objectives is substantial.

  9. Geochemical effects of deep-well injection of the Paradox Valley brine into Paleozoic carbonate rocks, Colorado, U.S.A.

    USGS Publications Warehouse

    Rosenbauer, R.J.; Bischoff, J.L.; Kharaka, Y.K.

    1992-01-01

    Brine seepage into the Dolores River from ground water in Paradox Valley, Colorado constitutes a major source of salt to the Colorado River. Plants are enderway to remove this source of salt by drawing down the Paradox Valley brine (PVB) and forcibly injecting it into a deep disposal well (4.8 km). Experiments were conducted to determine the effects of deep-well injection of PVB. The results show that PVB is near saturation with anhydrite at 25??C, and that heating results in anhydrite precipitation. The amount and the rate at which anhydrite forms is temperature, pressure, and substrate dependent. Paradox Valley brine heated in the presence of Precambrian rocks from the drill core produces the same amount of anhydrite as PVB heated alone, but at a greatly accelerated rate. A 30% dilution of PVB with Dolores River water completely eliminates anhydrite precipitation when the fluid is heated with the Precambrian rocks. Interaction of PVB and Leadville Limestone is characterized by dolomitization of calcite by brine Mg which releases Ca to solution. This added Ca reacts with SO4 to form increased amounts of anhydrite. A 20% dilution of PVB by Dolores River water has no effect on dolomitization and reduces the amount of anhydrite only slightly. A 65% dilution of PVB by Dolores River water still does not prevent dolomitization but does suppress anhydrite formation. Computer modeling of PVB by programs utilizing the Pitzer ion-interaction parameters is in general agreement with the experimental results. Ion-activity products calculated by both SOLMINEQ and PHRQPITZ are close to equilibrium with both anhydrite and dolomite whenever these phases are present experimentally, although the calculations over-estimate by a factor of 2 the degree of saturation. Some discrepancies in the calculated results between the two programs are due largely to differences in mineral solubility data. ?? 1992.

  10. Calibration and performance of a real-time gamma-ray spectrometry water monitor using a LaBr3(Ce) detector

    NASA Astrophysics Data System (ADS)

    Prieto, E.; Casanovas, R.; Salvadó, M.

    2018-03-01

    A scintillation gamma-ray spectrometry water monitor with a 2″ × 2″ LaBr3(Ce) detector was characterized in this study. This monitor measures gamma-ray spectra of river water. Energy and resolution calibrations were performed experimentally, whereas the detector efficiency was determined using Monte Carlo simulations with EGS5 code system. Values of the minimum detectable activity concentrations for 131I and 137Cs were calculated for different integration times. As an example of the monitor performance after calibration, a radiological increment during a rainfall episode was studied.

  11. Dynamic field testing of the Route 58 Meherrin River bridge.

    DOT National Transportation Integrated Search

    1996-01-01

    Dynamic response has long been recognized as one of the significant factors affecting the service life and safety of bridge structures, and considerable research, both analytical and experimental, has been devoted to this area of behavior. In the des...

  12. Applied technology section. Monthly report, March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckner, M.R.

    1994-04-20

    This is a monthly report giving the details on research currently being conducted at the Savannah River Technology Center. The following are areas of the research, engineering modeling and simulation, applied statistics, applied physics,experimental thermal hydraulics,and packaging and transportation.

  13. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    PubMed Central

    Ji, Youjun; Zhang, Linzhi; Yue, Jiannan

    2014-01-01

    Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199

  14. Science to support adaptive habitat management: Overton Bottoms North Unit, Big Muddy National Fish and Wildlife Refuge, Missouri [Volumes 1-6

    USGS Publications Warehouse

    Jacobson, Robert B.

    2006-01-01

    Extensive efforts are underway along the Lower Missouri River to rehabilitate ecosystem functions in the channel and flood plain. Considerable uncertainty inevitably accompanies ecosystem restoration efforts, indicating the benefits of an adaptive management approach in which management actions are treated as experiments, and results provide information to feed back into the management process. The Overton Bottoms North Unit of the Big Muddy National Fish and Wildlife Refuge is a part of the Missouri River Fish and Wildlife Habitat Mitigation Project. The dominant management action at the Overton Bottoms North Unit has been excavation of a side-channel chute to increase hydrologic connectivity and to enhance shallow, slow current-velocity habitat. The side-channel chute also promises to increase hydrologic gradients, and may serve to alter patterns of wetland inundation and vegetation community growth in undesired ways. The U.S. Geological Survey's Central Region Integrated Studies Program (CRISP) undertook interdisciplinary research at the Overton Bottoms North Unit in 2003 to address key areas of scientific uncertainty that were highly relevant to ongoing adaptive management of the site, and to the design of similar rehabilitation projects on the Lower Missouri River. This volume presents chapters documenting the surficial geologic, topographic, surface-water, and ground-water framework of the Overton Bottoms North Unit. Retrospective analysis of vegetation community trends over the last 10 years is used to evaluate vegetation responses to reconnection of the Overton Bottoms North Unit to the river channel. Quasi-experimental analysis of cottonwood growth rate variation along hydrologic gradients is used to evaluate sensitivity of terrestrial vegetation to development of aquatic habitats. The integrated, landscape-specific understanding derived from these studies illustrates the value of scientific information in design and management of rehabilitation projects.

  15. Estimation of Uncertainties in Stage-Discharge Curve for an Experimental Himalayan Watershed

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Sen, S.

    2016-12-01

    Various water resource projects developed on rivers originating from the Himalayan region, the "Water Tower of Asia", plays an important role on downstream development. Flow measurements at the desired river site are very critical for river engineers and hydrologists for water resources planning and management, flood forecasting, reservoir operation and flood inundation studies. However, an accurate discharge assessment of these mountainous rivers is costly, tedious and frequently dangerous to operators during flood events. Currently, in India, discharge estimation is linked to stage-discharge relationship known as rating curve. This relationship would be affected by a high degree of uncertainty. Estimating the uncertainty of rating curve remains a relevant challenge because it is not easy to parameterize. Main source of rating curve uncertainty are errors because of incorrect discharge measurement, variation in hydraulic conditions and depth measurement. In this study our objective is to obtain best parameters of rating curve that fit the limited record of observations and to estimate uncertainties at different depth obtained from rating curve. The rating curve parameters of standard power law are estimated for three different streams of Aglar watershed located in lesser Himalayas by maximum-likelihood estimator. Quantification of uncertainties in the developed rating curves is obtained from the estimate of variances and covariances of the rating curve parameters. Results showed that the uncertainties varied with catchment behavior with error varies between 0.006-1.831 m3/s. Discharge uncertainty in the Aglar watershed streams significantly depend on the extent of extrapolation outside the range of observed water levels. Extrapolation analysis confirmed that more than 15% for maximum discharges and 5% for minimum discharges are not strongly recommended for these mountainous gauging sites.

  16. Wind effect on salt transport variability in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Sandeep, K. K.; Pant, V.

    2017-12-01

    The Bay of Bengal (BoB) exhibits large spatial variability in sea surface salinity (SSS) pattern caused by its unique hydrological, meteorological and oceanographical characteristics. This SSS variability is largely controlled by the seasonally reversing monsoon winds and the associated currents. Further, the BoB receives substantial freshwater inputs through excess precipitation over evaporation and river discharge. Rivers like Ganges, Brahmaputra, Mahanadi, Krishna, Godavari, and Irawwady discharge annually a freshwater volume in range between 1.5 x 1012 and 1.83 x 1013 m3 into the bay. A major volume of this freshwater input to the bay occurs during the southwest monsoon (June-September) period. In the present study, a relative role of winds in the SSS variability in the bay is investigated by using an eddy-resolving three dimensional Regional Ocean Modeling System (ROMS) numerical model. The model is configured with realistic bathymetry, coastline of study region and forced with daily climatology of atmospheric variables. River discharges from the major rivers are distributed in the model grid points representing their respective geographic locations. Salt transport estimate from the model simulation for realistic case are compared with the standard reference datasets. Further, different experiments were carried out with idealized surface wind forcing representing the normal, low, high, and very high wind speed conditions in the bay while retaining the realistic daily varying directions for all the cases. The experimental simulations exhibit distinct dispersal patterns of the freshwater plume and SSS in different experiments in response to the idealized winds. Comparison of the meridional and zonal surface salt transport estimated for each experiment showed strong seasonality with varying magnitude in the bay with a maximum spatial and temporal variability in the western and northern parts of the BoB.

  17. Ecological relevance of biomarkers in monitoring studies of macro-invertebrates and fish in Mediterranean rivers.

    PubMed

    Colin, Nicole; Porte, Cinta; Fernandes, Denise; Barata, Carlos; Padrós, Francesc; Carrassón, Maite; Monroy, Mario; Cano-Rocabayera, Oriol; de Sostoa, Adolfo; Piña, Benjamín; Maceda-Veiga, Alberto

    2016-01-01

    Mediterranean rivers are probably one of the most singular and endangered ecosystems worldwide due to the presence of many endemic species and a long history of anthropogenic impacts. Besides a conservation value per se, biodiversity is related to the services that ecosystems provide to society and the ability of these to cope with stressors, including climate change. Using macro-invertebrates and fish as sentinel organisms, this overview presents a synthesis of the state of the art in the application of biomarkers (stress and enzymatic responses, endocrine disruptors, trophic tracers, energy and bile metabolites, genotoxic indicators, histopathological and behavioural alterations, and genetic and cutting edge omic markers) to determine the causes and effects of anthropogenic stressors on the biodiversity of European Mediterranean rivers. We also discuss how a careful selection of sentinel species according to their ecological traits and the food-web structure of Mediterranean rivers could increase the ecological relevance of biomarker responses. Further, we provide suggestions to better harmonise ecological realism with experimental design in biomarker studies, including statistical analyses, which may also deliver a more comprehensible message to managers and policy makers. By keeping on the safe side the health status of populations of multiple-species in a community, we advocate to increase the resilience of fluvial ecosystems to face present and forecasted stressors. In conclusion, this review provides evidence that multi-biomarker approaches detect early signs of impairment in populations, and supports their incorporation in the standardised procedures of the Water Frame Work Directive to better appraise the status of European water bodies. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Linking hysteresis patterns and variations in suspended sediment sources in a highly urbanized river: a case of the River Aire, UK

    NASA Astrophysics Data System (ADS)

    Vercruysse, Kim; Grabowski, Robert

    2017-04-01

    The natural sediment balance of rivers is often disturbed as a result of increased fine sediment influx from soil erosion and/or modifications to the river channel and floodplains, causing numerous problems related to ecology, water quality, flood risk and infrastructure. It is of great importance to understand fine sediment dynamics in rivers in order to manage the problems appropriately. However, despite decades of research, our understanding of fine sediment transport is not yet sufficient to fully explain the spatial and temporal variability in sediment concentrations in rivers. To this end, the study aims to investigate the importance of sediment source variations to explain hysteresis patterns in suspended sediment transport. A sediment fingerprinting technique based on infrared spectrometry was applied in the highly urbanized River Aire catchment in northern England to identify the dominant sources of suspended sediment. Three types of potential sediment source samples were collected: soil samples from pasture in three lithological areas (limestone, millstone grit and coal measures), eroding riverbanks and urban street dust. All source samples were analyzed with Diffuse Reflectance Infrared Fourier Transform spectrometry (DRIFTS). Discriminant analysis demonstrated that the source materials could be discriminated based on their respective infrared spectra. Infrared spectra of experimental mixtures were then used to develop statistical models to estimate relative source contributions from suspended sediment samples. Suspended sediment samples were collected during a set of high flow events between 2015 and 2016, showing different hysteresis patterns between suspended sediment concentration and discharge. The fingerprinting results suggest that pasture from the limestone area is the dominant source of fine sediment. However, significant variations in source contributions during and between events are present. Small events, in terms of discharge, are marked by relatively high contributions of urban street dust, while high stream flows correspond with higher sediment contributions from riverbanks and pasture. Seasonal variations in the dominant sources are also present. The results emphasize the importance of capturing sediment source variations to gain better insights into the drivers of fine sediment transport over various timescales.

  19. Hydrogeology and water quality of the shallow aquifer system at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia

    USGS Publications Warehouse

    Bell, C.F.

    1996-01-01

    In October 1993, the U.S. Geological Survey began a study to characterize the hydrogeology of the shallow aquifer system at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia, which is located on the Potomac River in the Coastal Plain Physiographic Province. The study provides a description of the hydrogeologic units, directions of ground-water flow, and back-ground water quality in the study area to a depth of about 100 feet. Lithologic, geophysical, and hydrologic data were collected from 28 wells drilled for this study, from 3 existing wells, and from outcrops. The shallow aquifer system at the Explosive Experimental Area consists of two fining-upward sequences of Pleistocene fluvial-estuarine deposits that overlie Paleocene-Eocene marine deposits of the Nanjemoy-Marlboro confining unit. The surficial hydrogeologic unit is the Columbia aquifer. Horizontal linear flow of water in this aquifer generally responds to the surface topography, discharging to tidal creeks, marshes, and the Potomac River, and rates of flow in this aquifer range from 0.003 to 0.70 foot per day. The Columbia aquifer unconformably overlies the upper confining unit 12-an organic-rich clay that is 0 to 55 feet thick. The upper confining unit conformably overlies the upper confined aquifer, a 0- to 35-feet thick unit that consists of interbedded fine-grained to medium-grained sands and clay. The upper confined aquifer probably receives most of its recharge from the adjacent and underlying Nanjemoy-Marlboro confining unit. Water in the upper confined aquifer generally flows eastward, northward, and northeastward at about 0.03 foot per day toward the Potomac River and Machodoc Creek. The Nanjemoy-Marlboro confining unit consists of glauconitic, fossiliferous silty fine-grained sands of the Nanjemoy Formation. Where the upper confined system is absent, the Nanjemoy-Marlboro confining unit is directly overlain by the Columbia aquifer. In some parts of the Explosive Experimental Area, horizontal hydraulic conductivities of the Nanjemoy-Marlboro confining unit and the Columbia aquifer are similar (from 10-4 to 10-2 foot per day), and these units effectively combine to form a thick (greater than 50 feet) aquifer. The background water quality of the shallow aquifer system is characteristic of ground waters in the Virginia Coastal Plain Physiographic Province. Water in the Columbia aquifer is a mixed ionic type, has a median pH of 5.9, and a median total dissolved solids of 106 milligrams per liter. Water in the upper confined aquifer and Nanjemoy-Marlboro confining unit is a sodium- calcium-bicarbonate type, and generally has higher pH, dissolved solids, and alkalinity than water in the Columbia aquifer. Water in the upper confined aquifer and some parts of the Columbia aquifer is anoxic, and it has high concentrations of dissolved iron, manganese, and sulfide.

  20. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    NASA Astrophysics Data System (ADS)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  1. Archaeological site stabilization in the Tennessee River Valley: Phase 3, Research Paper No. 7, Tennessee Valley Authority Publications in Anthropology No. 49

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fay, P.M.

    1987-01-01

    Destruction of archaeological properties within the Tennessee River system, particularly along its main stem, has been a problem almost since TVA was established. In an attempt to stop the loss of massive portions of our cultural resources, the TVA contracted in 1983 to establish a program of site stabilization using experimental techniques. This report is the first installation of observations on the site protection measures placed during 1983. This report also contains pertinent observations on preserved sites not within TVA holdings. 20 refs., 25 figs.

  2. Quantifying the in-channel retention of cohesive sediments during artificial flood events using FTIR-DRIFT spectrometry

    NASA Astrophysics Data System (ADS)

    Kurtenbach, A.; Gallé, T.; Buis, K.; de Sutter, R.; Troch, P.; Eisold, B.; Bierl, R.; Symader, W.

    2010-05-01

    Cohesive sediments control river ecosystem quality both as a transport medium for contaminants and as clogging material of stream bottom habitats. However, experimental field studies with fine-grained sediments in fluvial systems are rather scarce owing to the lack of adequate tracers and detection methods. As a result, current modelling approaches only insufficiently describe hydrodynamic transport and depositional behaviour of fine-grained sediments in rivers. We adopted two strategies to specifically study cohesive sediment dynamics in natural systems under defined boundary conditions. First, artificial floods were generated in the Olewiger Bach basin (24 km²), a mid-mountain gravel bed river, in order to characterise the in-channel fine sediment dynamics on their own. The advantage of these artificial flood waves lies in the selective control on some governing processes by experimental design. Second, fine sediment transport and deposition during these controlled reservoir releases were analysed by introducing the clay mineral kaolinite as a fine particle tracer, whose concentration was measured by Fourier transform infrared spectroscopy (FTIR) in diffuse reflectance mode (DRIFT). The DRIFT technique offers some important advantages such as the ability to assess both mineral and organic structures in aquatic particles, good sensitivity and high throughput (Gallé et al. 2004). Our laboratory tests confirm that FTIR-DRIFT spectrometry is capable of detecting the kaolinite tracer even in low percentage solid concentrations. The mass balance of the injected kaolinite for near bank-full artificial floods showed that, in spite of the very fine material and the non-stationary boundary conditions, over 50 percent of the tracer could be retained over a flow length of only 500 m. By combining fine particulate and natural dissolved tracers (e.g. dissolved organic carbon, DOC) we were able to identify the hyporheic zone as a potential short-term retention and storage zone for the introduced kaolinite. Thus, hyporheic exchange and/or deposition losses in riverine dead and channel periphery zones are significant determinants for the mass balance of cohesive particles during floods. Within a multidisciplinary research group, accentuating the relevance and interaction of hydraulic, groundwater, biogeochemical and ecological processes, we will model the kaolinite retention dynamics. This will be performed with the STRIVE-package (STReam-RIVer Ecosystem) developed in the modelling platform "FEMME" (http://www.nioo.knaw.nl/projects/femme). FEMME (a Flexible Environment for Mathematically Modelling the Environment) takes care of the basic necessities for dynamic ecological modelling along with other facilities (calibration, validation, sensitivity analysis, output formulation etc.). It supports a modular structure, facilitating an easy implementation or exchange of submodels to build ecosystem models of different complexity. STRIVE is such a package devoted to model stream or river ecosystems by linking different submodels (e.g. hydraulic and solute/particle transport modules, hyporheic zone module, groundwater module etc.) to integrate and study process interactions and the role of lateral exchanges with adjacent subsystems. A brief overview concerning this modelling environment and its adaptation on the Olewiger Bach system will be outlined. References Gallé, T., Van Lagen, B., Kurtenbach, A., Bierl, R. (2004): An FTIR-DRIFT Study on River Sediment Particle Structure: Implications for Biofilm Dynamics and Pollutant Binding. - Environmental Science and Technology, 38, 4496-4502.

  3. Quantifying variability in delta experiments

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Berg, S. R.; McElroy, B. J.

    2017-12-01

    Large populations of people and wildlife make their homes on river deltas, therefore it is important to be able to make useful and accurate predictions of how these landforms will change over time. However, making predictions can be a challenge due to inherent variability of the natural system. Furthermore, when we extrapolate results from the laboratory to the field setting, we bring with it random and systematic errors of the experiment. We seek to understand both the intrinsic and experimental variability of river delta systems to help better inform predictions of how these landforms will evolve. We run exact replicates of experiments with steady sediment and water discharge and record delta evolution with overhead time lapse imaging. We measure aspects of topset progradation and channel dynamics and compare these metrics of delta morphology between the 6 replicated experimental runs. We also use data from all experimental runs collectively to build a large dataset to extract statistics of the system properties. We find that although natural variability exists, the processes in the experiments must have outcomes that no longer depend on their initial conditions after some time. Applying these results to the field scale will aid in our ability to make forecasts of how these landforms will progress.

  4. A Framework for Sediment Particle Tracking via Radio Frequency IDentification (RFID)

    NASA Astrophysics Data System (ADS)

    Tsakiris, Achilleas; Papanicolaou, Thanos; Abban, Benjamin

    2016-04-01

    The study of sedimentary and morphodynamic processes in riverine environments has recently been shifting from the traditional Eulerian, static perspective to a Lagrangian perspective, which considers the movement characteristics of the individual transported particles, such as their travel and resting distance and time. The Lagrangian framework, in turn allows to better study processes such as bedload particle diffusion, erosion and deposition within a river reach, to more accurately predict bedload fluxes especially through the use of stochastic Discrete Particle models. A technology that goes hand-in-hand with this Lagrangian perspective is Radio Frequency IDentification (RFID), which has been recently applied for tracking the movement of tagged sediment particles within the river continuum. RFID allows the wireless, bidirectional exchange of information between a base station, known as the reader, with a typically large number of transponders (or tags) via an (excitation) antenna. RFID allows essentially the unique, wireless detection and identification of a transponder over a distance. The goal of this study is to further enhance the utility of RFID in riverine applications by developing a framework that allows extracting the 3D location of RFID tagged sediment particles in nearly real-time. To address the goal of this coupled theoretical and experimental study, a semi-theoretical approach based on antenna inductive coupling was combined with experimental measurements for developing a relationship that provides an estimate of the distance between a tagged particle and the antenna using the Return Signal Strength Indication (RSSI). The RSSI quantifies the magnetic energy transmitted from the transponder to the antenna. The RFID system used in this study was a passive, Low-Frequency (LF) system, which ensured that the LF radio waves could penetrate through the river bed material. The RSSI of the signal transmitted from each transponder was measured with an oscilloscope during a set of experiments, where the distance and angle of transponders placed in various media (e.g., water, sand and gravel) representative of river beds were systematically varied. The measurements were used to validate a semi-theoretical relationship that yields the RSSI as a function of the distance and orientation between the transponder axis and the antenna loop plane as well as the type of medium surrounding the transponder. The derived semi-theoretical relationship provides a kernel for developing a real-time, 3D tracking system for RFID tagged particles. In doing so, future work aims to further enhance the RFID reader, in order to support multiple antennas. This enhancement will allow estimating the tagged particle coordinates by supplying the distances to each antenna evaluated from the RSSI measurements to a triangulation algorithm.

  5. Scientific computations section monthly report, November 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckner, M.R.

    1993-12-30

    This progress report from the Savannah River Technology Center contains abstracts from papers from the computational modeling, applied statistics, applied physics, experimental thermal hydraulics, and packaging and transportation groups. Specific topics covered include: engineering modeling and process simulation, criticality methods and analysis, plutonium disposition.

  6. A review of hydrological and chemical stressors in the Adige catchment and its ecological status.

    PubMed

    Chiogna, Gabriele; Majone, Bruno; Cano Paoli, Karina; Diamantini, Elena; Stella, Elisa; Mallucci, Stefano; Lencioni, Valeria; Zandonai, Fabiana; Bellin, Alberto

    2016-01-01

    Quantifying the effects of multiple stressors on Alpine freshwater ecosystems is challenging, due to the lack of tailored field campaigns for the contemporaneous measurement of hydrological, chemical and ecological parameters. Conducting exhaustive field campaigns is costly and hence most of the activities so far have been performed addressing specific environmental issues. An accurate analysis of existing information is therefore useful and necessary, to identify stressors that may act in synergy and to design new field campaigns. We present an extended review of available studies and datasets concerning the hydrological, chemical and ecological status of the Adige, which is the second longest river and the third largest river basin in Italy. The most relevant stressors are discussed in the light of the information extracted from a large number of studies. The detailed analysis of these studies identified that hydrological alterations caused by hydropower production are the main source of stress for the freshwater ecosystems in the Adige catchment. However, concurrent effects with other stressors, such as the release of pollutants from waste water treatment plants or from agricultural and industrial activities, have not been explored at depth, so far. A wealth of available studies address a single stressor separately without exploring their concurrent effect. It is concluded that a combination of extended experimental field campaigns, focusing on the coupled effects of multiple stressors, and modeling activities is highly needed in order to quantify the impact of the multifaceted human pressures on freshwater ecosystems in the Adige river. Copyright © 2015. Published by Elsevier B.V.

  7. The establishment of experimental watershed in Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Chi; Tsung, Shun-Chung; Wang, Hau-Wei; Chen, Cheng-Hsin; Chang, Ya-Chi; Ho, Jui-Yi; Lee, Shih-Chiang; Hong, Jian-Hao

    2015-04-01

    The rainfall distribution in Taiwan is non-uniform in space and unsteady in time. The water level in the river usually rises rapidly due to the steep slope gradient in the upland area of the watershed. In addition, urbanization and high rainfall intensity result in an increase in surface runoff and decrease the time of concentration. All of these lead to flooding-related disasters and influence people's lives. Thus, the establishment of a more complete hydro-information will increase our understanding of the characteristics of watersheds, prevent disasters, and mitigate damages. To overcome these deficiencies, the Water Resources Agency (WRA), Ministry of Economic Affairs has identified Yilan and Dianbao River Basin to develop a long-term monitoring, then Taiwan Typhoon and Flood Research Institute is responsible for this project. The monitoring sites had been installed in 2012. The sensors for monitoring include rainfall gauge, water level sensor, water surface velocity sensor and pressure-type water depth sensor. Totally, there are 73 sites in the experimental watershed, including the sites installed by the Central Weather Bureau and the Water Resources Agency. Over 30 million data have been collected and validated. Most of data have been passed the processes and considered reliable data. Then, three types of models are applied including rainfall-runoff, river routing and two-dimensional flood models. The simulation results can properly fit the monitored data in these selected events and indicates these models are proper for the experimental watersheds and suitable used for real-time warning. Finally, for purpose of hydrological monitoring and disaster mitigation, a website has been created to show the monitoring data. The users can login and browse the real time monitoring data and figure of temporal data in the past 24 hours and get the information for flood mitigation and emergent evacuation.

  8. [Prevalence of metacercariae of Clonorchis sinensis in wild freshwater fishes from Nenjiang River around Qiqihaer City].

    PubMed

    Liu, Ji-xin; Sun, Yan-hong; Zhang, Hao; Li, Chao-pin

    2014-08-01

    From May to November 2013, a total of 1175 wild freshwater fishes were collected from the rivers of Chuoer, Yalu, Wuyuer, Alun, and Yin in Nenjiang River basin Qiqihaer City, and examined for metacercariae by direct compression method. The metacercariae were collected by artificial digestion method. Forty Kunming mice were infected with 30-40 metacercariae of Clonorchis sinensis. The mice were sacrificed 36 days after infection, and the adult worms were collected from bile duct, and observed under microscope. The results showed that a total of 1 175 fishes, belonging to nine species were taken from the Nenjiang basin of Qiqihaer region. The infection rate of Clonorchis sinensis metacercariae was 51.2% (602/1 175). All the species were infected besides Silurus asotus, and the highest prevalence (82.7%, 91/149) was found in Longnose gudgeon and the lowest (7.1%, 6/84) in Perccottus glenii. Among the rivers, the highest prevalence of metacercariae was in Wuyuer River. (65.7%, 218/332), and the lowest was in Alun River and Yin River (24.1%, 67/278) (P<0.05). Each part of the body in the Carassius auratus and Pseudorasbora parva were susceptible for metacercariae. The main infection site in Longnose gudgeon was the fish scales, and C. sinensis metacercaria was first discovered in the brain tissue of Phoxinus lagowskii. The experimental results showed that the adult worms of C. sinensis were found in the hepatic bile duct of the mice, with an infection rate of 85.0% (34/40). The suckers, digestive system and reproductive system of C. sinensis were visible clearly.

  9. Combining Mechanistic Approaches for Studying Eco-Hydro-Geomorphic Coupling

    NASA Astrophysics Data System (ADS)

    Francipane, A.; Ivanov, V.; Akutina, Y.; Noto, V.; Istanbullouglu, E.

    2008-12-01

    Vegetation interacts with hydrology and geomorphic form and processes of a river basin in profound ways. Despite recent advances in hydrological modeling, the dynamic coupling between these processes is yet to be adequately captured at the basin scale to elucidate key features of process interaction and their role in the organization of vegetation and landscape morphology. In this study, we present a blueprint for integrating a geomorphic component into the physically-based, spatially distributed ecohydrological model, tRIBS- VEGGIE, which reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. We present a preliminary design of the integrated modeling framework in which hillslope and channel erosion processes at the catchment scale, will be coupled with vegetation-hydrology dynamics. We evaluate the developed framework by applying the integrated model to Lucky Hills basin, a sub-catchment of the Walnut Gulch Experimental Watershed (Arizona). The evaluation is carried out by comparing sediment yields at the basin outlet, that follows a detailed verification of simulated land-surface energy partition, biomass dynamics, and soil moisture states.

  10. Scour around vertical wall abutment in cohesionless sediment bed

    NASA Astrophysics Data System (ADS)

    Pandey, M.; Sharma, P. K.; Ahmad, Z.

    2017-12-01

    At the time of floods, failure of bridges is the biggest disaster and mainly sub-structure (bridge abutments and piers) are responsible for this failure of bridges. It is very risky if these sub structures are not constructed after proper designing and analysis. Scour is a natural phenomenon in rivers or streams caused by the erosive action of the flowing water on the bed and banks. The abutment undermines due to river-bed erosion and scouring, which generally recognized as the main cause of abutment failure. Most of the previous studies conducted on scour around abutment have concerned with the prediction of the maximum scour depth (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005). Dey and Barbhuiya (2005) proposed a relationship for computing maximum scour depth near an abutment, based on laboratory experiments, for computing maximum scour depth around vertical wall abutment, which was confined to their experimental data only. However, this relationship needs to be also verified by the other researchers data in order to support the reliability to the relationship and its wider applicability. In this study, controlled experimentations have been carried out on the scour near a vertical wall abutment. The collected data in this study along with data of the previous investigators have been carried out on the scour near vertical wall abutment. The collected data in this study along with data of the previous have been used to check the validity of the existing equation (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005) of maximum scour depth around the vertical wall abutment. A new relationship is proposed to estimate the maximum scour depth around vertical wall abutment, it gives better results all relationships.

  11. Chlorophyll a and inorganic suspended solids in backwaters of the upper Mississippi River system: Backwater lake effects and their associations with selected environmental predictors

    USGS Publications Warehouse

    Rogala, James T.; Gray, Brian R.

    2006-01-01

    The Long Term Resource Monitoring Program (LTRMP) uses a stratified random sampling design to obtain water quality statistics within selected study reaches of the Upper Mississippi River System (UMRS). LTRMP sampling strata are based on aquatic area types generally found in large rivers (e.g., main channel, side channel, backwater, and impounded areas). For hydrologically well-mixed strata (i.e., main channel), variance associated with spatial scales smaller than the strata scale is a relatively minor issue for many water quality parameters. However, analysis of LTRMP water quality data has shown that within-strata variability at the strata scale is high in off-channel areas (i.e., backwaters). A portion of that variability may be associated with differences among individual backwater lakes (i.e., small and large backwater regions separated by channels) that cumulatively make up the backwater stratum. The objective of the statistical modeling presented here is to determine if differences among backwater lakes account for a large portion of the variance observed in the backwater stratum for selected parameters. If variance associated with backwater lakes is high, then inclusion of backwater lake effects within statistical models is warranted. Further, lakes themselves may represent natural experimental units where associations of interest to management may be estimated.

  12. Non-equilibrium flow and sediment transport distribution over mobile river dunes

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Naqshband, S.; McElroy, B. J.

    2017-12-01

    Flow and sediment transport are key processes in the morphodynamics of river dunes. During floods in several rivers (e.g., the Elkhorn, Missouri, Niobrara, and Rio Grande), dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This morphological evolution of dunes to upper stage plane bed is the strongest bed-form adjustment during non-equilibrium flows and is associated with a significant change in hydraulic roughness and water levels. Detailed experimental investigations, however, have mostly focused on fixed dunes limited to equilibrium flow and bed conditions that are rare in natural channels. Our understanding of the underlying sedimentary processes that result into the washing out of dunes is therefore very limited. In the present study, using the Acoustic Concentration and Velocity Profiler (ACVP), we were able to quantify flow structure and sediment transport distribution over mobile non-equilibrium dunes. Under these non-equilibrium flow conditions average dune heights were decreasing while dune lengths were increasing. Preliminary results suggest that this morphological behaviour is due to a positive phase lag between sediment transport maximum and topographic maximum leading to a larger erosion on the dune stoss side compared to deposition on dune lee side.

  13. Student Experiments on the Effects of Dam Removal on the Elwha River

    NASA Astrophysics Data System (ADS)

    Sandland, T. O.; Grack Nelson, A. L.

    2006-12-01

    The National Center for Earth Surface Dynamics (NCED) is an NSF funded Science and Technology Center devoted to developing a quantitative, predictive science of the ecological and physical processes that define and shape rivers and river networks. The Science Museum of Minnesota's (SMM) Earthscapes River Restoration classes provide k-12 students, teachers, and the public opportunities to explore NCED concepts and, like NCED scientists, move from a qualitative to a quantitative-based understanding of river systems. During a series of classes, students work with an experimental model of the Elwha River in Washington State to gain an understanding of the processes that define and shape river systems. Currently, two large dams on the Elwha are scheduled for removal to restore salmon habitat. Students design different dam removal scenarios to test and make qualitative observations describing and comparing how the modeled system evolves over time. In a following session, after discussing the ambiguity of the previous session's qualitative data, student research teams conduct a quantitative experiment to collect detailed measurements of the system. Finally, students interpret, critique, and compare the data the groups collected and ultimately develop and advocate a recommendation for the "ideal" dam removal scenario. SMM is currently conducting a formative evaluation of River Restoration classes to improve their educational effectiveness and guide development of an educator's manual. As of August 2006, pre- and post-surveys have been administered to 167 students to gauge student learning and engagement. The surveys have found the program successful in teaching students why scientists use river models and what processes and phenomena are at work in river systems. Most notable is the increase in student awareness of sediment in river systems. A post-visit survey was also administered to 20 teachers who used the models in their classrooms. This survey provided feedback about teachers' experience with the program and will help inform the development of a future educator's manual. All teachers found the program to be effective at providing opportunities for students to make qualitative observations and most (95%) found the program effective at providing students opportunities to make quantitative measurements. A full summary of evaluation results will be shared at the meeting.

  14. Prevalence and susceptibility of infection to Myxobolus cerebralis, and genetic differences among populations of Tubifex tubifex.

    PubMed

    Beauchamp, Katherine A; Gay, Melanie; Kelley, Garry O; El-Matbouli, Mansour; Kathman, R Deedee; Nehring, R Barry; Hedrick, Ronald P

    2002-08-29

    The prevalence of infection and susceptibility of the aquatic oligochaete Tubifex tubifex to Myxobolus cerebralis, was examined in 2 studies on the upper Colorado River, Colorado, USA, where whirling disease occurs in wild trout populations. In the first study, the prevalence of infection ranged from 0.4 to 1.5%, as determined by counting the number of T. tubifex releasing triactinomyxons of M. cerebralis directly following their collection from the field. The susceptibility of those T. tubifex not releasing triactinomyxons was assessed by the number of these oligochaetes releasing triactinomyxons 3 mo following experimental exposures to spores of M. cerebralis. The prevalence of infection following experimental exposures of these T. tubifex ranged from 4.2 to 14.1%. In a second study, all T. tubifex collected at 2 different times directly from the 2 field sites in Colorado were exposed to spores of M. cerebralis. Individual oligochaetes representing those groups of T. tubifex releasing and those groups not releasing triactinomyxons at 3 mo were screened with molecular genetic markers. T. tubifex populations found at the 2 study sites consisted of 4 genetically distinct lineages that varied with respect to their susceptibility to experimental exposure to M. cerebralis. Lineages I and III contained the most oligochaetes susceptible to M. cerebralis and were the most prominent lineages at Windy Gap Reservoir, a site of high infectivity for wild rainbow trout on the upper Colorado River. In contrast, at the Breeze Bridge site which is below Windy Gap Reservoir and where M. cerebralis infections are less severe in wild trout, oligochaetes in lineages V and VI that are resistant to M. cerebralis were more prominent. These results suggest that certain habitats, such as Windy Gap Reservoir, are conducive to large and more homogenous populations of susceptible T. tubifex lineages that may serve as point sources of infection for M. cerebralis. Although not a direct objective of this study, there was no evidence of M. cerebralis infections among any oligochaetes other than those that would be classified as T. tubifex by standard morphological characteristics.

  15. Mapping Robinia pseudoacacia forest health in the Yellow River delta by using high-resolution IKONOS imagery and object-based image analysis

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Lu, Kaiyu; Pu, Ruiliang

    2016-10-01

    The Robinia pseudoacacia forest in the Yellow River delta of China has been planted since the 1970s, and a large area of dieback of the forest has occurred since the 1990s. To assess the condition of the R. pseudoacacia forest in three forest areas (i.e., Gudao, Machang, and Abandoned Yellow River) in the delta, we combined an estimation of scale parameters tool and geometry/topology assessment criteria to determine the optimal scale parameters, selected optimal predictive variables determined by stepwise discriminant analysis, and compared object-based image analysis (OBIA) and pixel-based approaches using IKONOS data. The experimental results showed that the optimal segmentation scale is 5 for both the Gudao and Machang forest areas, and 12 for the Abandoned Yellow River forest area. The results produced by the OBIA method were much better than those created by the pixel-based method. The overall accuracy of the OBIA method was 93.7% (versus 85.4% by the pixel-based) for Gudao, 89.0% (versus 72.7%) for Abandoned Yellow River, and 91.7% (versus 84.4%) for Machang. Our analysis results demonstrated that the OBIA method was an effective tool for rapidly mapping and assessing the health levels of forest.

  16. Lower Charles River Bathymetry: 108 Years of Fresh Water

    NASA Astrophysics Data System (ADS)

    Yoder, M.; Sacarny, M.

    2017-12-01

    The Lower Charles River is a heavily utilized urban river that runs between Cambridge and Boston in Massachusetts. The recreational usage of the river is dependent on adequate water depths, but there have been no definitive prior studies on the sedimentation rate of the Lower Charles River. The river transitioned from tidal to a freshwater basin in 1908 due to the construction of the (old) Charles River Dam. Water surface height on the Lower Charles River is maintained within ±1 foot through controlled discharge at the new Charles River Dam. The current study area for historical comparisons is from the old Charles River Dam to the Boston University Bridge. This study conducted a bathymetric survey of the Lower Charles River, digitized three prior surveys in the study area, calculated volumes and depth distributions for each survey, and estimated sedimentation rates from fits to the volumes over time. The oldest chart digitized was produced in 1902 during dam construction deliberations. The average sedimentation rate is estimated as 5-10 mm/year, which implies 1.8-3.5 feet sedimentation since 1908. Sedimentation rates and distributions are necessary to develop comprehensive management plans for the river and there is evidence to suggest that sedimentation rates in the shallow upstream areas are higher than the inferred rates in the study area.

  17. Registration of 'Lariat' peanut

    USDA-ARS?s Scientific Manuscript database

    'Lariat' is a high-oleic runner-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) that has enhanced Sclerotinia blight and pod rot tolerance when compared to the cultivar Red River Runner. 'Lariat' (experimental designation ARSOK-R35) is the result of a cross between cultivar Red Rive...

  18. Upper Washita River experimental watersheds: Data screening procedure for data quality assurance

    USDA-ARS?s Scientific Manuscript database

    The presence of non-stationary condition in long term hydrologic observation networks are associated with natural and anthropogenic stressors or network operation problems. Detection and identification of network operation drivers is fundamental in hydrologic investigation due to changes in systemat...

  19. Research notes : two-rail steel-backed timber guardrail : Crown Point Highway , Multnomah Country , Oregon.

    DOT National Transportation Integrated Search

    1995-05-01

    The Oregon Department of Transportation (ODOT) installed a two-rail steel-backed timber guardrail along a section of the Historic Columbia River Highway, formerly known as the Crown Point Highway, in March 1992 as an experimental features project. Th...

  20. Permafrost Degradation and Stream Metabolism in the Arctic: The effect of thaw slump sedimentation on biological productivity and water quality in the Selawik River, Northwest Alaska

    NASA Astrophysics Data System (ADS)

    Calhoun, J. P.; Crosby, B. T.

    2011-12-01

    The Selawik River in northwest Alaska, drains ~12,500 km^2 of tree line spruce forest, upland tundra and lowland wetlands. Along the river corridor, high concentrations of fine sediment from a large, young, active retrogressive thaw slump alter the physical and ecological form and function of the stream. This disturbance impacts the entire downstream river corridor, affecting the viability of fish habitat and quality drinking water that subsistence-based native communities depend on. In anticipated warming scenarios, it can be expected that there will be an increase in both the frequency and magnitude of these permafrost degradation features, increasing the extent to which local villages and ecosystems are affected. Our study aims to improve our physical understanding of this system in order to provide biologists, land managers and city officials improved predictive capabilities. Whole stream metabolism (WSM) combines nutrient cycling and organic matter processing to provide an integrated measure of stream health. We utilized a suite of water quality data including temperature, dissolved oxygen, turbidity, pH, pressure, and conductance to calculate WSM values at two experimental reaches up and downstream of the slump over the past three summers. The immediate effects are large magnitude diurnal increases in turbidity, suppressed dissolved oxygen values, and strong attenuation of photosynthetically active radiation (PAR) with depth. We found from 2010 data that, on average, the waters downstream from the slump were 23 times more turbid, had roughly half the dissolved oxygen, and had 4.7 and 2.7 times lower gross primary production (GPP) and ecosystem respiration (ER) respectively. In the summer of 2011, we collected measurements of terrestrial PAR, subsurface PAR, dissolved oxygen and turbidity at multiple river depths at 5 experimental locations. Though turbidity varied roughly by two orders of magnitude and terrestrial PAR increased 850 times between solar midnight and noon, the turbidity suppressed the PAR reaching the bed to almost remove any diurnal signal. The ecological impacts of geomorphic features associated with thawing permafrost is of concern to local populations who rely on their local ecosystems for subsistence, and researchers and land managers interested in the potential impacts of these features under future climate scenarios. Future changes in air temperature and length of the warm season in the Arctic stand to present favorable conditions for generation of more thaw-driven mass wasting processes and subsequent changes to the landscape and its ecosystems.

  1. Simulated growth and production of endangered Snake River Sockeye Salmon: Assessing management strategies for the nursery lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luecke, C.; Wurtsbaugh, W.A.; Budy, P.

    1996-06-01

    This document examines the potential of employing a series of lake management strategies to enhance production of endangered Snake River sockeye salmon (Oncorhynchus nerka) in its historical nursery lakes in central Idaho. A combination of limnological sampling, experimentation, and simulation modeling was used to assess effects of lake fertilization and kokanee reduction on growth and survival of juvenile sockeye salmon. Juvenile sockeye salmon from a broodstock of this endangered species are being introduced into the lakes from 1995 to 1998. Results of our analyses indicated that several lakes were suitable for receiving broodstock progeny. Field experimentation and simulation modeling indicatedmore » that lake fertilization, coupled with a program of kokanee reduction, provided the management option most likely to enhance the survival of stocked juvenile sockeye salmon. Simulation models that encompass physiological requirements, ecological interactions, and life-history consequences could be used as templates to help develop recovery plans for other endangered fishes. 4 figs., 2 tabs.« less

  2. Uncertainties in selected river water quality data

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.

    2007-02-01

    Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise from natural or anthropogenic causes. Empirical quality of river water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected river water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2005). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties, measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerably to the overall uncertainty of river water quality data. Temporal autocorrelation of river water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments (500-3000 km2) reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For suspended sediments none of the methods investigated produced very reliable load estimates when weekly concentrations data were used. Uncertainties associated with loads estimates based on infrequent samples will decrease with increasing size of rivers.

  3. Experimental and field investigations on uprooting of riparian vegetation

    NASA Astrophysics Data System (ADS)

    Calvani, Giulio; Francalanci, Simona; Solari, Luca; Gumiero, Bruna

    2017-04-01

    The morphology of a river reach is the result of many processes involving the motion of sediment (erosion, transport and deposition), the hydrological regime and the development and growth of vegetation. River evolution in the presence of vegetation depends on establishment of pioneer woody riparian seedlings on bars, and consequently on either their survival or death. Flooding events can cause young vegetation mortality by uprooting (Corenblit et al., 2007). These processes, despite their important implications on river morphodynamics, have been poorly investigated in the past. Most of previous research focused on the mechanism of root breakage and on measuring the vegetation resistance to uprooting in the vertical direction, while few works considered the effect of flow direction on the uprooting process (Bywater-Reyes et al., 2015). In this work, we focused on vegetation uprooting due to flow and to bed erosion. We considered two different types of vegetation: Avena Sativa, grown from seeds in external boxes, was used to investigate instantaneous uprooting, and Salix Purpurea, collected in the field, for delayed uprooting (namely type I and type II mechanisms, according to Edmaier et al., 2011). The experiments were carried out in a 5 m long flume in the Hydraulic Laboratory in Florence. A 2 m long mobile bed was build inside the flume, and vegetation was arranged according to several configurations on it. Both types of vegetation were subject to constant discharges to investigate the effects of a general bed degradation in modifying the occurrence of uprooting. We also performed some experiments with Avena Sativa located in a fixed bed and subjected to an increasing flow discharge in order to simulate instantaneous uprooting due to the action of hydrodynamic forces. We measured flow velocity, flow discharge and water depth and characterized vegetation by stem and root diameter, height and root length. The experimental results have been interpreted in terms of a balance between drag and resisting forces acting on the single plant. In order to compare experimental results with real river conditions, we also performed field measurements of Salix Purpurea resistance to uprooting on a lateral bar in the Ombrone Pistoiese river. Ongoing research is focused on i) the definition of threshold criteria for the prediction of vegetation uprooting, ii) interpretation, by means of numerical modelling, of vegetation removal on a lateral bar in the Ombrone Pistoiese river during a flood that occurred on 19th November 2016. References Bywater-Reyes, Sharon, Andrew C Wilcox, John C Stella, and Anne F Lightbody. 2015. 'Flow and Scour Constraints on Uprooting of Pioneer Woody Seedlings'. Water Resources Research 51 (11): 9190-9206. Corenblit, Dov, Eric Tabacchi, Johannes Steiger, and Angela M Gurnell. 2007. 'Reciprocal Interactions and Adjustments between Fluvial Landforms and Vegetation Dynamics in River Corridors: A Review of Complementary Approaches'. Earth-¬-Science Reviews 84(1): 56-86. Edmaier, K, P Burlando, and P Perona. 2011. 'Mechanisms of Vegetation Uprooting by Flow in Alluvial Non- Cohesive Sediment'. Hydrology and Earth System Sciences 15(5): 1615-1627.

  4. Dynamic aspects of large woody debris in river channels

    NASA Astrophysics Data System (ADS)

    Vergaro, Alexandra; Caporali, Enrica; Becchi, Ignazio

    2015-04-01

    Large Woody Debris (LWD) are an integral component of the fluvial environment. They represent an environmental resource, but without doubt they represent also a risk factor for the amplification that could give to the destructive power of a flood event. While countless intervention in river channels have reintroduced wood in rivers with restoration and banks protection aims, during several flash flood events LWD have had a great part in catastrophic consequences, pointing out the urgency of an adequate risk assessment procedure. At present wood dynamics in rivers is not systematically considered within the procedures for the elaboration of hazard maps resulting in loss of prediction accuracy and underestimation of hazard impacts. The assessment inconsistency comes from the complexity of the question: several aspects in wood processes are not yet well known and the superposition of different physical phenomena results in great difficulty to predict critical scenarios. The presented research activity has been aimed to improve management skills for the assessment of the hydrologic risk associated to the presence of large woody debris in rivers, improving knowledge about LWD dynamic processes and proposing effective tools for monitoring and mapping river catchments vulnerability. Utilizing critical review of the published works, field surveys and experimental investigations LWD damaging potential has been analysed to support the identification of the exposed sites and the redaction of hazard maps, taking into account that a comprehensive procedure has to involve: a) Identification of the critical cross sections; b) Evaluation of wood availability in the river catchment; c) Prediction of hazard scenarios through the estimation of water discharge, wood recruitment and entrainment, wood transport and destination. Particularly, a survey sheets form for direct measurements has been implemented and tested in field to provide an investigation instruments for wood and river reach monitoring. The sheets have been settled down to answer to several information requests involved in all steps of a risk assessment procedure, and to provide useful indications for a better comprehension of the dynamics of wood in rivers. Based on a critical analysis of the current state of the art an improved theoretical mechanistic model of LWD entrainment has been proposed and tested with flume experiments, considering this feature a crucial aspect in wood dynamics. The entrainment condition is traditionally physically based on the stationary equilibrium of gravity, buoyancy, friction and hydrodynamic forces acting on the body partially submerged in a flow field. In this work no any force has been neglected a priori and an original interpretation of some aspects of the problem has been adduced taking cues from different disciplines The proposed approach is able to provide a threshold parameter, showing relative small experimental scatter, and to discriminate between entrainment modes (sliding, rolling, floating). The provided correlation, for each particular configuration of the debris (shape and orientation), establish the threshold value for the proposed entrainment criterion that allows determining, for a discharge with a certain recurrence interval, the probability of motion and the relative entrainment mode.

  5. Responses of benthic bacteria to experimental drying in sediments from Mediterranean temporary rivers.

    PubMed

    Amalfitano, Stefano; Fazi, Stefano; Zoppini, Annamaria; Barra Caracciolo, Anna; Grenni, Paola; Puddu, Alberto

    2008-02-01

    In the semiarid Mediterranean regions, water scarcity represents a common physiological stress for microbial communities residing in river sediments. However, the effect of drying has not yet adequately been evaluated when analyzing riverine microbiological processes. The bacterial community structure (abundance, biomass, composition) and functioning (carbon production, live cell percentage) were assessed during experimental desiccation in microcosms with sediments from different Mediterranean temporary rivers (Tagliamento, Krathis, Mulargia, Pardiela). Our results showed that the overall responses to drying of the bacterial community were independent from sediment origin and strictly related to water content. During desiccation, a prompt decline (up to 100%) of the initial bacterial carbon production was followed by a slower decrease in abundance and biomass, with an overall reduction of 74% and 78%, respectively. By the end of the experiment, live cells were still abundant but depressed in their main metabolic functions, thus resulting in a drastic increase in the community turnover time. Only 14% of the initial live cell biomass was available in dry sediments to immediately start the reactivation of the aquatic microbial food web after the arrival of new water. Community composition analysis showed a relative increase in alpha- and beta-Proteobacteria, when passing from wet to dry conditions. Our results suggest that the occurrence of drought events could affect carbon cycling through the freshwater microbial compartment, by temporarily limiting microbial mineralization and altering bacterial community structure.

  6. Application of science-based restoration planning to a desert river system.

    PubMed

    Laub, Brian G; Jimenez, Justin; Budy, Phaedra

    2015-06-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  7. Application of Science-Based Restoration Planning to a Desert River System

    NASA Astrophysics Data System (ADS)

    Laub, Brian G.; Jimenez, Justin; Budy, Phaedra

    2015-06-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  8. Application of science-based restoration planning to a desert river system

    USGS Publications Warehouse

    Laub, Brian G.; Jimenez, Justin; Budy, Phaedra

    2015-01-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  9. Accumulation and release of 241Am by a macrophyte of the Yenisei River (Elodea canadensis).

    PubMed

    Bolsunovsky, A; Zotina, T; Bondareva, L

    2005-01-01

    The source of radioactive contamination of the Yenisei River floodplain, including contamination with transuranic elements, is the Mining-and-Chemical Combine of the Russian Ministry of Atomic Energy, which has for many years been producing weapons-grade plutonium. Transuranic elements have been detected not only in the soil and sediment of the river but also in the biomass of aquatic plants. This work is an investigation of accumulation and release of 241Am by a submerged macrophyte of the Yenisei River (Elodea canadensis) in laboratory experiments. In 2000-2003, laboratory experiments were carried out with biomass of E. canadensis Mich. and filtered river water. The samples were collected from the Yenisei River upstream of the discharge of the Combine's radioactive effluent. The experiments showed that 241Am is accumulated by Elodea biomass: the activity concentration of 241Am can reach 3280+/-240 Bq/g, with the concentration factor for 241Am 16 600+/-2200l/kg. Results of chemical fractionation have proved that in the course of 241Am accumulation by Elodea biomass, 241Am tightly bound to biomass increases from 11% to 27% of the total 241Am in the biomass. Release of 241Am from the decaying Elodea biomass has been evaluated experimentally. By the end of the experiment (lasting up to 127 days), the Elodea plants had lost up to 65% of their initial 241Am activity and the rate of 241Am release into the water environment reached 23 Bq/day.

  10. Yakima River Species Interactions Studies, Annual Report 1993.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearsons, Todd N.

    Species interactions research was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. Data have been collected prior to supplementation to characterize the rainbow trout population, predict the potential interactions that may occur as a result of supplementation, and develop methods to monitor interactions. Major topics of this report are associated with the life history of rainbow trout, interactions experimentation, and methods for sampling. This report is organized into nine chapters with a general introduction preceding the first chapter and a general discussion following themore » last chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1 and December 31, 1993 in the upper Yakima basin above Roza Dam, however these data were compared to data from previous years to identify preliminary trends and patterns. Major preliminary findings from each of the chapters included in this report are described.« less

  11. "Projeto Rios" (Rivers Project) a methodology of classroom of the future (northern Portugal)

    NASA Astrophysics Data System (ADS)

    Almeida, Ana

    2013-04-01

    The rivers and the surrounding land drained by them are very important wildlife habitats. The water itself provides the environment for plants and animals, while the banks and nearby land support creatures such as otters, water lizards, dragonflies and a variety of water-loving plants. Using a different teaching strategy, on the latest three years, students of the eighth grade of the EB 2.3 Agrela school have been implementing the project "Nós e o Leça" (We and the river Leça). This initiative is part of a nationwide project in Portugal, the "Projeto Rios", which is a tool that aims the adoption and monitoring of a 500 meter river section, promoting society's awareness for the problems and the need of protection and recovery of the riparian systems. These students adopted a section of the Leça River, which is the one that is passing nearby our school. Throughout the mentioned school years, the children made field trips for characterization, knowledge and observation of some happenings on the section adopted, with the aid of a complete kit of materials (galoshes, loupes, tweezers, trays, fishnets, tape measure, tape of pH...). Token fields for identifications of plants and animals and specific data sheets/questionnaires, were also used and fulfilled. While in the river, it is done the collection of macro invertebrates to conclude about the water quality of the section under study. Youth also detect disturbances in the balance of the riverine ecosystem, either naturally occurring or of human origin. Aiming the sustained development and the citizenship education, the students performed a final action for improvement, which consisted in the uprooting of an invasive plant, in this case "the herb-of-fortune" and also gathering the "trash" founded along the adopted stretch of the river. Back to the classroom, we selected photographs and the collected data is treated and discussed to produce information (summaries, reports, tables, charts,...) which will be published in a placard at school, in the school website and in local parish council. With this project we promote scientific curiosity and implements to the experimental scientific method, with the collection and recording of data and its discussion. Also, it appears that the happiness, the well-being, the interest, the spirit of cooperation and commitment shown by the students was a constant in all outputs and performed work. The young people were very receptive to all proposals and they were the first to saying "We want to go to the river". They have the responsibility of the vigilance and protection of their selected river section and they will realize that the future will be so much better if we preserve our natural heritage, as rivers are.

  12. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C.

    Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities (in situcolonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to “cross-feeding” with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection duringin situcolonization would dictate the responsemore » to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCEThe influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were “cross-fed” with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors.« less

  13. Spatiotemporal variation of river temperature as a predictor of groundwater/surface-water interactions in an arid watershed in China

    NASA Astrophysics Data System (ADS)

    Yao, Yingying; Huang, Xiang; Liu, Jie; Zheng, Chunmiao; He, Xiaobo; Liu, Chuankun

    2015-08-01

    Interactions between groundwater and surface water in arid regions are complex, and recharge-discharge processes are often influenced by the hydrological regime, climate and geology. Traditional methods such as hydraulic gradient measuring by piezometers, differential discharge gauging and conservative tracer experiments, are often inadequate to capture the spatial and temporal variation of exchange rates. In this study, the distribution and the size of the overall groundwater inflow zone (GIZ) and the hyporheic inflow zone (HIZ) in the middle Heihe River Basin, northwest China, are characterized, and the relative inflow flux is estimated by high-resolution temperature measurements. Distributed temperature sensing (DTS) was used to measure the mixing temperatures of a 5-km reach of streambed with a spatial resolution of 0.5 m. The sampling interval was 0.25 m, and the temporal interval was 15 and 10 min at Pingchuan and Banqiao experimental sites, respectively. Two separate measurement periods in Pingchuan (Ping1, Ping2) captured different meteorological and stream-flow conditions. The results show that the number and the size range of the individual HIZs are greater than those of GIZs. Groundwater upwelling (GIZ) causes a larger decrease in river-water temperature with less inflow flux compared with the HIZ. The distribution pattern of HIZs and GIZs is influenced by the hydrodynamics of the river and the hydraulic permeability of the riverbed. High-resolution temperature variation based on DTS is an effective predictor of distributed inflows from groundwater upwelling and hyporheic exchange in an arid region.

  14. Bed Load Variability and Morphology of Gravel Bed Rivers Subject to Unsteady Flow: A Laboratory Investigation

    NASA Astrophysics Data System (ADS)

    Redolfi, M.; Bertoldi, W.; Tubino, M.; Welber, M.

    2018-02-01

    Measurement and estimation of bed load transport in gravel bed rivers are highly affected by its temporal fluctuations. Such variability is primarily driven by the flow regime but is also associated with a variety of inherent channel processes, such as flow turbulence, grain entrainment, and bed forms migration. These internal and external controls often act at comparable time scales, and are therefore difficult to disentangle, thus hindering the study of bed load variability under unsteady flow regime. In this paper, we report on laboratory experiments performed in a large, mobile bed flume where typical hydromorphological conditions of gravel bed rivers were reproduced. Data from a large number of replicated runs, including triangular and square-wave hydrographs, were used to build a statistically sound description of sediment transport processes. We found that the inherent variability of bed load flux strongly depends on the sampling interval, and it is significantly higher in complex, wandering or braided channels. This variability can be filtered out by computing the mean response over the experimental replicates, which allows us to highlight two distinctive phenomena: (i) an overshooting (undershooting) response of the mean bed load flux to a sudden increase (decrease) of discharge, and (ii) a clockwise hysteresis in the sediment rating curve. We then provide an interpretation of these findings through a conceptual mathematical model, showing how both phenomena are associated with a lagging morphological adaptation to unsteady flow. Overall, this work provides basic information for evaluating, monitoring, and managing gravel transport in morphologically active rivers.

  15. A Spatial Correlation Model of Permeability on the Columbia River Plateau

    NASA Astrophysics Data System (ADS)

    Jayne, R., Jr.; Pollyea, R. M.

    2017-12-01

    This study presents a spatial correlation model of regional scale permeability variability within the Columbia River Basalt Group (CRBG). The data were compiled from the literature, and include 893 aquifer test results from 598 individual wells. In order to quantify the spatial variation of permeability within the CRBG, three experimental variograms (two horizontal and one vertical) are calculated and then fit with a linear combination of mathematical models. The horizontal variograms show there is a 4.5:1 anisotropy ratio for the permeability correlation structure with a long-range correlation of 35 km at N40°E. The km-scale range of these variograms suggests that there is regional control on permeability within the CRBG. One plausible control on the permeability distribution is that rapid crustal loading during CRBG emplacement ( 80% over 1M years) resulted in an isostatic response where the Columbia Plateau had previously undergone subsidence. To support this hypothesis, we calculate a 200 m moving average of all permeability values with depth. This calculation shows that permeability generally follows a systematic decay until 1,100 m depth, beyond which the 200 m moving average permeability increases 3 orders of magnitude. Since basalt fracture networks govern permeability on Columbia River Plateau, this observation is consistent with basal flexure causing tensile stress that counteract lithostatic loading, thus maintaining higher than expected permeability at depth within the Columbia River Basalt Group. These results may have important implications for regional CRBG groundwater management, as well as engineered reservoirs for carbon capture and sequestration and nuclear waste storage.

  16. Chasing Carbon Down the Colorado River: Mid-Stream Challenges to Engaging Undergraduates in Field-Based Research

    NASA Astrophysics Data System (ADS)

    Hartnett, H. E.

    2011-12-01

    Many undergraduates express strong interests in research and in interdisciplinary sciences and yet, when it comes down to learning interdisciplinary material they are either unprepared for or overwhelmed by the complex interactions and relationships inherent in studying biogeochemical systems. My NSF-CAREER project "Transformation and transport of Organic Carbon in the Colorado River-Reservoir System" (EAR #0846188) combines field research with state-of-the-art analytical techniques to explore the source, fate and transport of terrestrial and riverine organic carbon in a heavily managed river system. In an effort to get undergraduates involved in research where they can really get their feet wet, I have been engaging undergraduates in a variety of field research projects that examine carbon biogeochemistry in the Colorado River watershed. The goal is to provide opportunities for students in Chemistry and in the Earth Sciences to directly experience the complexity of an environmental system, and to begin to ask manageable research questions that can be answered through field and lab work. These students are involved either as undergraduate research assistants, or as participants in my Field Geochemistry course which is offered through both the Dept. of Chemistry and the School of Earth and Space Exploration. There have been some unexpected challenges to getting these field-research projects started, but students are now successfully developing independent questions related to the larger scientific goals of the project and executing experimental and analytical research projects. To date, the PI has mentored 6 undergraduates and 2 graduate students as part of this project.

  17. Of Mice, Cattle, and Humans: The Immunology and Treatment of River Blindness

    PubMed Central

    Allen, Judith E.; Adjei, Ohene; Bain, Odile; Hoerauf, Achim; Hoffmann, Wolfgang H.; Makepeace, Benjamin L.; Schulz-Key, Hartwig; Tanya, Vincent N.; Trees, Alexander J.; Wanji, Samuel; Taylor, David W.

    2008-01-01

    River blindness is a seriously debilitating disease caused by the filarial parasite Onchocerca volvulus, which infects millions in Africa as well as in South and Central America. Research has been hampered by a lack of good animal models, as the parasite can only develop fully in humans and some primates. This review highlights the development of two animal model systems that have allowed significant advances in recent years and hold promise for the future. Experimental findings with Litomosoides sigmodontis in mice and Onchocerca ochengi in cattle are placed in the context of how these models can advance our ability to control the human disease. PMID:18446236

  18. Removal of Chalk River unidentified deposit (CRUD) radioactive waste by enhanced electrokinetic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Won-Seok; Nam, Seongsik; Chang, Seeun

    Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less

  19. Removal of Chalk River unidentified deposit (CRUD) radioactive waste by enhanced electrokinetic process

    DOE PAGES

    Kim, Won-Seok; Nam, Seongsik; Chang, Seeun; ...

    2017-08-13

    Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less

  20. 50 CFR 17.85 - Special rules-invertebrates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... regulations or in violation of the applicable State fish and wildlife laws or regulations or the Act. (iv) You... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Experimental Populations § 17.85 Special rules—invertebrates. (a) Seventeen mollusks in the Tennessee River. The species in the...

  1. 50 CFR 17.85 - Special rules-invertebrates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... regulations or in violation of the applicable State fish and wildlife laws or regulations or the Act. (iv) You... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Experimental Populations § 17.85 Special rules—invertebrates. (a) Seventeen mollusks in the Tennessee River. The species in the...

  2. 50 CFR 17.85 - Special rules-invertebrates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... regulations or in violation of the applicable State fish and wildlife laws or regulations or the Act. (iv) You... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Experimental Populations § 17.85 Special rules—invertebrates. (a) Seventeen mollusks in the Tennessee River. The species in the...

  3. 114. Photographic copy of historic photo, June 16, 1932 (original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. Photographic copy of historic photo, June 16, 1932 (original print filed in Record Group 115, National Archives, Washington, D.C.). OWYHEE DAM-CATWALK AT 2500 FOOT ELEVATION, AND COOLING SYSTEM FOR HOOVER DAM EXPERIMENTAL WORK. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  4. Impacts of urbanization on river flow frequency: A controlled experimental modeling-based evaluation approach

    USDA-ARS?s Scientific Manuscript database

    Changes in land use are likely to cause a non-linear response in watershed hydrology. Specifically, small increases in urban expansion may greatly increase surface runoff while decreasing infiltration, impacting aquifer recharge and changing streamflow regimes. Quantifying the effects of urbanizatio...

  5. A simplified experimental model for clearance of some pathogenic bacteria using common bacterivorous ciliated spp. in Tigris river

    NASA Astrophysics Data System (ADS)

    Ali, Talib Hassan; Saleh, Dhuha Saad

    2014-03-01

    Bacteria-specific uptake rates of three different protozoan taxa on a pure and mixed bacterial community was studied by means of a simplified and functionally reproducible experimental model. The bacterial species Shigella flexneri, Escherichia coli and Salmonella typhi were isolated and classified from stool samples of patients suffering from diarrhea. Paramecium caudatum, Tetrahymena pyriformis and Halteria grandinella, free living ciliate Protozoans, were isolated and identified from Tigris river water. Pure and mixed ( E. coli + S. typhi), ( E. coli + Sh. flexneri) bacterial cultures were used with each ciliate genera to evaluate the following: predator duplication rate, prey reduction rate, clearance rate and net grazing rate. We used selective lactose fermentation phenomena of enteric bacteria on MacConkey medium for the quantification of bacteria cultural characteristics. The final bacteria concentration was reduced by growing protozoa of 98-99.9 % compared to protozoa-free controls. It showed that Tetrahymena pyriformis had the highest duplication rate (4.13 time/day) in both types of cultures (pure and mixed), followed by Paramecium caudatum and Halteria grandinella, respectively. Paramecium caudatum had the highest rate of ingestion in both types of cultures (26 × 103 bacteria/organism/hr) and yielded the longest time required for 90 % bacterial reduction in a pure suspension of S. typhi (166 h). Clearance rates of pathogenic bacteria by ciliates ranged between 106 nanoliter/organism/h by P. caudatum to S. typhi and 1.92 nanoliter/organism/h seen in T. pyriformis in ( E. coli + S. typhi) mixed culture. We used aquatic experimental microcosms under controlled conditions to explore bacteria-dependent ciliate growth and examined whether these ciliates could discriminate between equally sized bacterial preys in a mixture.

  6. Extraction of Peace River bitumen using supercritical ethane

    NASA Astrophysics Data System (ADS)

    Rose, Jeffrey Lawrence

    2000-10-01

    As the supply of conventional crude oil continues to decline, petroleum companies are looking for alternative hydrocarbon sources. The vast reserves of heavy oil and bitumen located in northern Alberta are among the alternatives. The challenge facing engineers is to develop a process for recovering this oil which is economic, efficient and environmentally acceptable. Supercritical fluid extraction is one method being investigated which could potentially meet all of these criteria. In this study, Peace River bitumen was extracted using supercritical ethane. The bitumen was mixed with sand and packed into a semi-batch extractor. Ethane contacted the bitumen/sand mixture and the fraction of the bitumen soluble in the ethane was removed and subsequently collected in a two phase separator. The flow of ethane was such that the experiments were governed by equilibrium and not mass transfer. Experimental temperatures and pressures were varied in order to observe the effect of these parameters on the mass and composition of the extracted material. The extraction yields increased as the temperature decreased and pressure increased. Samples were collected at various time intervals to measure changes in the properties of the extracted bitumen over the duration of the process. As the extraction proceeded, the samples became heavier and more viscous. The bitumen feed was characterised and the experimental data was then modelled using the Peng-Robinson equation of state. The characterisation process involved the distillation of the bitumen into five fractions. The distillation curve and density of each fraction was measured and this data was used in conjunction with correlations to determine the critical properties of the bitumen. Interaction parameters in the equation of state were then optimised until the predicted composition of extracted bitumen matched the experimental results.

  7. Human impacts on fluvial systems - A small-catchment case study

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth

    2010-05-01

    Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological/ecomorphological effects of various river engineering structures (i.e. dams, weirs, river bank- and river bed protection works) on river bed sediment composition and on limnic habitats are evaluated. First results reveal that 'land use' is a dominant factor concerning river bed sediment composition and limnic habitat conditions. Further outcomes will be presented on European Geosciences Union General Assembly, 2010.

  8. Modeling air concentration over macro roughness conditions by Artificial Intelligence techniques

    NASA Astrophysics Data System (ADS)

    Roshni, T.; Pagliara, S.

    2018-05-01

    Aeration is improved in rivers by the turbulence created in the flow over macro and intermediate roughness conditions. Macro and intermediate roughness flow conditions are generated by flows over block ramps or rock chutes. The measurements are taken in uniform flow region. Efficacy of soft computing methods in modeling hydraulic parameters are not common so far. In this study, modeling efficiencies of MPMR model and FFNN model are found for estimating the air concentration over block ramps under macro roughness conditions. The experimental data are used for training and testing phases. Potential capability of MPMR and FFNN model in estimating air concentration are proved through this study.

  9. Validation of methodology for determination of the mercury methylation potential in sediments using radiotracers.

    PubMed

    Zizek, Suzana; Ribeiro Guevara, Sergio; Horvat, Milena

    2008-04-01

    Experiments to determine the mercury methylation potential were performed on sediments from two locations on the river Idrijca (Slovenia), differing in ambient mercury concentrations. The tracer used was the radioactive isotope (197)Hg. The benefit of using this tracer is its high specific activity, which enables spikes as low as 0.02 ng Hg(2+) g(-1) of sample to be used. It was therefore possible to compare the efficiency of the methylation potential experiments over a range of spike concentrations from picogram to microgram levels. The first part of the work aimed to validate the experimental blanks and the second part consisted of several series of incubation experiments on two different river sediments using a range of tracer additions. The results showed high variability in the obtained methylation potentials. Increasing Hg(2+) additions gave a decrease in the percentage of the tracer methylated during incubation; in absolute terms, the spikes that spanned four orders of magnitude (0.019-190 pg g(-1) of sediment slurry) resulted in MeHg formation between 0.01 and 0.1 ng MeHg g(-1) in Podroteja and Kozarska Grapa. Higher spikes resulted in slightly elevated MeHg production (up to a maximum of 0.27 ng g(-1)). The values of methylation potential were similar in both sediments. The results imply that the experimental determination of mercury methylation potential strongly depends on the experimental setup itself and the amount of tracer added to the system under study. It is therefore recommended to use different concentrations of tracer and perform the experiments in several replicates. The amount of mercury available for methylation in nature is usually very small. Therefore, adding very low amounts of tracer in the methylation potential studies probably gives results that have a higher environmental relevance. It is also suggested to express the results obtained in absolute amounts of MeHg produced and not just as the percentage of the added tracer.

  10. Influence of Waste Tyre Crumb Rubber on Compressive Strength, Static Modulus of Elasticity and Flexural Strength of Concrete

    NASA Astrophysics Data System (ADS)

    Haridharan, M. K.; Bharathi Murugan, R.; Natarajan, C.; Muthukannan, M.

    2017-07-01

    In this paper, the experimental investigations was carried out to find the compressive strength, static modulus of elasticity and flexural strength of concrete mixtures, in which natural sand was partially replaced with Waste Tyre Crumb Rubber (WTCR). River sand was replaced with five different percentages (5%, 10%, 15%, 20% and 25%) of WTCR by volume. The main objective of the experimental investigation is to find the relationship between static modulus of elasticity and flexural strength with compressive strength of concrete with WTCR. The experimentally obtainedstatic modulus of elasticity and flexural strength results comparing with the theoretical values (various country codes recommendations).

  11. Bathymetry and Near-River Topography of the Naches and Yakima Rivers at Union Gap and Selah Gap, Yakima County, Washington, August 2008

    USGS Publications Warehouse

    Mastin, M.C.; Fosness, R.L.

    2009-01-01

    Yakima County is collaborating with the Bureau of Reclamation on a study of the hydraulics and sediment-transport in the lower Naches River and in the Yakima River between Union Gap and Selah Gap in Washington. River bathymetry and topographic data of the river channels are needed for the study to construct hydraulic models. River survey data were available for most of the study area, but river bathymetry and near-river topography were not available for Selah Gap, near the confluence of the Naches and Yakima Rivers, and for Union Gap. In August 2008, the U.S. Geological Survey surveyed the areas where data were not available. If possible, the surveys were made with a boat-mounted, single-beam echo sounder attached to a survey-grade Real-Time Kinematic (RTK) global positioning system (GPS). An RTK GPS rover was used on a walking survey of the river banks, shallow river areas, and river bed areas that were impenetrable to the echo sounder because of high densities of macrophytes. After the data were edited, 95,654 bathymetric points from the boat survey with the echo sounder and 1,069 points from the walking survey with the GPS rover were used in the study. The points covered 4.6 kilometers on the Yakima River and 0.6 kilometers on the Naches River. GPS-surveyed points checked within 0.014 to 0.047 meters in the horizontal direction and -0.036 to 0.078 meters in the vertical direction compared to previously established survey control points

  12. The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)

    NASA Astrophysics Data System (ADS)

    Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.

    2016-06-01

    Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.

  13. Temporal-spatial variation of DOC concentration, UV absorbance and the flux estimation in the Lower Dagu River, China

    NASA Astrophysics Data System (ADS)

    Xi, Min; Kong, Fanlong; Li, Yue; Kong, Fanting

    2017-12-01

    Dissolved organic carbon (DOC) is an important component for both carbon cycle and energy balance. The concentration, UV absorbance, and export flux of DOC in the natural environment dominate many important transport processes. To better understand the temporal and spatial variation of DOC, 7 sites along the Lower Dagu River were chosen to conduct a comprehensive measurement from March 2013 to February 2014. Specifically, water samples were collected from the Lower Dagu River between the 26th and 29th of every month during the experimental period. The DOC concentration (CDOC) and UV absorbance were analyzed using a total organic carbon analyzer and the ultraviolet-visible absorption spectrum, and the DOC export flux was estimated with a simple empirical model. The results showed that the CDOC of the Lower Dagu River varied from 1.32 to 12.56 mg/L, consistent with global rivers. The CDOC and UV absorbance showed significant spatial variation in the Dagu River during the experiential period because of the upstream natural processes and human activities in the watershed. The spatial variation is mainly due to dam or reservoir constructions, riverside ecological environment changes, and non-point source or wastewater discharge. The seasonal variation of CDOC was mainly related to the source of water DOC, river runoff, and temperature, and the UV absorbance and humification degree of DOC had no obvious differences among months ( P<0.05). UV absorbance was applied to test the CDOC in Lower Dagu River using wave lengths of 254 and 280 nm. The results revealed that the annual DOC export flux varied from 1.6 to 3.76 × 105 g C/km2/yr in a complete hydrological year, significantly lower than the global average. It is worth mentioning that the DOC export flux was mainly concentrated in summer (˜90% of all-year flux in July and August), since the runoff in the Dagu River took place frequently in summer. These observations implied environment change could bring the temporal-spatial variation of DOC and the exports, which would further affect the land-ocean interactions in the Lower Dagu River and the global carbon cycle.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liaomore » 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects to animal populations could occur directly (e.g., from strike mortality of individuals) or indirectly (e.g., if the loss of prey species to strike reduces food for predators). Although actively swimming or passively drifting animals may collide with any of the physical structures associated with hydrokinetic devices, turbine rotors are the most likely sources for risk of strike or significant collision (DOE 2009). It is also possible that during a close encounter with a HK device no physical contact will be made between the device and the organism, either because the animal avoids the device by successfully changing its direction of movement, or by successfully evading any moving parts of the device. Oak Ridge National Laboratory (ORNL) has been funded by the US Department of Energy (DOE) Waterpower Program to evaluate strike potential and consequences for Marine and Hydrokinetic (MHK) technologies in rivers and estuaries of the United States. We will use both predictive models and laboratory/field experiments to evaluate the likelihood and consequences of strike at HK projects in rivers. Efforts undertaken at ORNL address three objectives: (1) Assess strike risk for marine and freshwater organisms; (2) Develop experimental procedures to assess the risk and consequences of strike; and (3) Conduct strike studies in experimental flumes and field installations of hydrokinetic devices. During the first year of the study ORNL collected information from the Federal Energy Regulatory Commission (FERC) MHK database about geographical distribution of proposed hydrokinetic projects (what rivers or other types of systems), HK turbine design (horizontal axis, vertical axis, other), description of proposed axial turbine (number of blades, size of blades, rotation rate, mitigation measures), and number of units per project. Where site specific information was available, we compared the location of proposed projects rotors within the channel (e.g., along cutting edge bank, middle of thalweg, near bottom or in midwater) to the general locations of fish in the river (shoreline, bottom/midwater/surface of channel) to ascertain potential interactions. In addition, we are collaborating and communicating with scientists at other national laboratories and industry who are also developing information useful to this task. For example, other studies being funded by DOE include evaluations of different in-current (hydrokinetic) turbine designs for their effects on rates and severity of blade strike and likelihood of cavitation. This report summarizes activities completed during the first year of a three-year study.« less

  15. Assessment of Long-Term Changes in River Stage of the Lowermost Mississippi River

    NASA Astrophysics Data System (ADS)

    Joshi, S.; Xu, Y. J.

    2016-02-01

    Long-term changes in river stage can reflect dynamics of river beds. Such changes in the lower reach of a river entering the sea can also indicate sea level rise and land subsidence. The lowermost Mississippi River has experienced changes in its stages over the past several decades which, however, have not been studied yet. Comprehensive analysis of long-term changes in stages of this river can aid in understanding its route downstream and differentiate between sediment erosion and deposition mechanics at several of its sites. In this study, we utilize long-term records on river stages along a 320-km reach of the lowermost Mississippi River from the Old River Control Structure to New Orleans in order to assess the channel dynamics of the highly engineered river. Eight locations along the reach are selected, including Red River Landing, Bayou Sara, St. Francisville, Baton Rouge, Dolandsonville, College Point, Bonnet Carre, and Carrolton. River stages at the locations are analyzed under the low-, medium-, and high-flow conditions over the past three decades. Changes in slope of the river stages between these locations are determined based on difference in their river stages and length of their reach. Preliminary results from this study show that the river stages drop systematically as the river moves downstream. The drop is very low from Red River Landing to Baton Rouge; it suddenly increases from Baton Rouge to the next site at Bonnet Carre, then decreases for the next few sites up to Carrolton. We also found that some river reaches experienced deposition while other river reaches had erosion during the past decades. This paper will present major findings in long term changes in lowermost Mississippi river stages and their slopes. It will also discuss implications of these findings for sediment accumulation and possible river diversion locations.

  16. Impact of Yangtze River Water Transfer on the Water Quality of the Lixia River Watershed, China

    PubMed Central

    Ma, Xiaoxue; Wang, Lachun; Wu, Hao; Li, Na; Ma, Lei; Zeng, Chunfen; Zhou, Yi; Yang, Jun

    2015-01-01

    To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO), chemical oxygen demand (COD), potassium permanganate index (CODMn), ammonia nitrogen (NH4 +-N), electrical conductivity (EC), and water transparency (WT)) were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi) and single-factor (Si) evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4 +-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed. PMID:25835525

  17. The relation between invertebrate drift and two primary controls, discharge and benthic densities, in a large regulated river

    USGS Publications Warehouse

    Kennedy, Theodore A.; Yackulic, Charles B.; Cross, Wyatt F.; Grams, Paul E.; Yard, Michael D.; Copp, Adam J.

    2014-01-01

    1. Invertebrate drift is a fundamental process in streams and rivers. Studies from laboratory experiments and small streams have identified numerous extrinsic (e.g. discharge, light intensity, water quality) and intrinsic factors (invertebrate life stage, benthic density, behaviour) that govern invertebrate drift concentrations (# m−3), but the factors that govern invertebrate drift in larger rivers remain poorly understood. For example, while large increases or decreases in discharge can lead to large increases in invertebrate drift, the role of smaller, incremental changes in discharge is poorly described. In addition, while we might expect invertebrate drift concentrations to be proportional to benthic densities (# m−2), the benthic–drift relation has not been rigorously evaluated. 2. Here, we develop a framework for modelling invertebrate drift that is derived from sediment transport studies. We use this framework to guide the analysis of high-resolution data sets of benthic density and drift concentration for four important invertebrate taxa from the Colorado River downstream of Glen Canyon Dam (mean daily discharge 325 m3 s−1) that were collected over 18 months and include multiple observations within days. Ramping of regulated flows on this river segment provides an experimental treatment that is repeated daily and allowed us to describe the functional relations between invertebrate drift and two primary controls, discharge and benthic densities. 3. Twofold daily variation in discharge resulted in a >10-fold increase in drift concentrations of benthic invertebrates associated with pools and detritus (i.e. Gammarus lacustris and Potamopyrgus antipodarum). In contrast, drift concentrations of sessile blackfly larvae (Simuliium arcticum), which are associated with high-velocity cobble microhabitats, decreased by over 80% as discharge doubled. Drift concentrations of Chironomidae increased proportional to discharge. 4. Drift of all four taxa was positively related to benthic density. Drift concentrations of Gammarus, Potamopyrgus and Chironomidae were proportional to benthic density. Drift concentrations of Simulium were positively related to benthic density, but the benthic–drift relation was less than proportional (i.e. a doubling of benthic density only led to a 40% increase in drift concentrations). 5. Our study demonstrates that invertebrate drift concentrations in the Colorado River are jointly controlled by discharge and benthic densities, but these controls operate at different timescales. Twofold daily variation in discharge associated with hydropeaking was the primary control on within-day variation in invertebrate drift concentrations. In contrast, benthic density, which varied 10- to 1000-fold among sampling dates, depending on the taxa, was the primary control on invertebrate drift concentrations over longer timescales (weeks to months).

  18. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  19. Bioaccumulation and toxicity of zinc in the green alga, Cladophora glomerata.

    PubMed

    McHardy, B M; George, J J

    1990-01-01

    The bioaccumulation and toxicity of zinc in Cladophora glomerata from two populations in the River Roding, Essex, UK, were examined in experimental laboratory flowing-water channels. Plants were subjected to zinc concentrations ranging from 0 to 4.0 mg litre(-1) at current velocities of 20-33 cm s(-1) for up to 3 h. Zinc in algal tissue was then quantified and toxicity was assessed by the ability of the alga to grow in a recovery medium after the experimental treatment. There was little difference in zinc bioaccumulation between Cladophora from the site showing mild organic pollution and that from the site subjected to considerable inputs from urban and motorway runoff. Uptake of zinc increased with increasing concentration in the test solution and was linear and proportional up to 0.4 mg litre(-1). Three stages of uptake were identified with the most dramatic accumulation occurring in the first 10 min. Experimental concentration factors ranged from 1.9-5.2 x 10(3), which were in agreement with those previously obtained in the field. Cellular damage was evident in Cladophora subjected to 0.4 mg litre(-1) zinc, and this increased with increasing zinc concentration, thus leading to the conclusion that, at times, the levels of zinc found in the river could be potentially damaging.

  20. Quantifying and Predicting Three-Dimensional Heterogeneity in Transient Storage Using Roving Profiling

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Reaver, N.; Hensley, R. T.; Cohen, M. J.

    2017-12-01

    Hydraulic transport is an important component of nutrient spiraling in streams. Quantifying conservative solute transport is a prerequisite for understanding the cycling and fate of reactive solutes, such as nutrients. Numerous studies have modeled solute transport within streams using the one-dimensional advection, dispersion and storage (ADS) equation calibrated to experimental data from tracer experiments. However, there are limitations to the information about in-stream transient storage that can be derived from calibrated ADS model parameters. Transient storage (TS) in the ADS model is most often modeled as a single process, and calibrated model parameters are "lumped" values that are the best-fit representation of multiple real-world TS processes. In this study, we developed a roving profiling method to assess and predict spatial heterogeneity of in-stream TS. We performed five tracer experiments on three spring-fed rivers in Florida (USA) using Rhodamine WT. During each tracer release, stationary fluorometers were deployed to measure breakthrough curves for multiple reaches within the river. Teams of roving samplers moved along the rivers measuring tracer concentrations at various locations and depths within the reaches. A Bayesian statistical method was used to calibrate the ADS model to the stationary breakthrough curves, resulting in probability distributions for both the advective and TS zone as a function of river distance and time. Rover samples were then assigned a probability of being from either the advective or TS zone by comparing measured concentrations to the probability distributions of concentrations in the ADS advective and TS zones. A regression model was used to predict the probability of any in-stream position being located within the advective versus TS zone based on spatiotemporal predictors (time, river position, depth, and distance from bank) and eco-geomorphological feature (eddies, woody debris, benthic depressions, and aquatic vegetation). Results confirm that TS is spatially variable as a function of spatiotemporal and eco-geomorphological features. A substantial number of samples with nearly equivalent chances of being from the advective or TS zones suggests that the distinction between zones is often poorly defined.

  1. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which,more » at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the current technical manuscript); (3) additional laboratory experimentation focused on the potential effects of long-term exposures to fly ash on fish survival and reproductive competence; and (4) a combined field and laboratory study examining the in vitro developmental success of embryos and larvae obtained from fish exposed in vivo for over two years to fly ash in the Emory and Clinch Rivers. These fish reproduction and early life-stage studies are being conducted in conjunction with a broader biological monitoring program administered by TVA that includes a field study of the condition of larval fish in the Emory and Clinch Rivers along with assessments of water quality, sediment composition, ecotoxicological studies, terrestrial wildlife studies, and human and ecological risk assessment. Information and data generated from these studies will provide direct input into risk assessment efforts and will also complement and help support other phases of the overall biomonitoring program. Fish eggs, in general, are known to be capable of concentrating heavy metals and other environmental contaminants from water-borne exposures during embryonic development (Jezierska and others 2009), and fathead minnow embryos in particular have been shown to concentrate methylmercury (Devlin 2006) as well as other chemical toxicants. This technical report focuses on the responses of fathead minnow embryos to simple contact exposures to fly ash in laboratory toxicity tests adapted from a standard fathead minnow (Pimephales promelas) 7-d embryo-larval survival and teratogenicity test (method 1001.0 in EPA 2002) with mortality, hatching success, and the incidences of developmental abnormalities as measured endpoints.« less

  2. A note on acoustic measurements of turbulence, suspended sediment, and bed forms in mobile bed experiments

    USDA-ARS?s Scientific Manuscript database

    One of the challenges of hydraulic experimentation is designing experiments that are complex enough to capture relevant processes while retaining the simplicity necessary for useful, accurate measurements. The intricacy of the interactions between turbulent flows and mobile beds in rivers and stream...

  3. Little River Experimental Watershed, Georgia: National Institute of Food and Agriculture - Conservation Effects Assessment Project

    USDA-ARS?s Scientific Manuscript database

    In September 2007, USDA’s Cooperative State Research, Education, and Extension Service (CSREES), now the National Institute of Food and Agriculture (NIFA), and the Natural Resources Conservation Service (NRCS) jointly funded two integrated research and outreach grants to conduct a synthesis of resul...

  4. Management of a river recreation resource: the Lower Kananaskis River--a case study

    Treesearch

    Kimberley Rae; Paul F.J. Eagles

    2008-01-01

    This study examined recreational use of the Lower Kananaskis River in Southwestern Alberta, Canada. Surveys and participant observations helped develop a better understanding of current use levels and interviews with key policy leaders explored management issues and concerns. Users suggested the need for improvements to river infrastructure both on and off the river....

  5. Determination of total arsenic using a novel Zn-ferrite binding gel for DGT techniques: Application to the redox speciation of arsenic in river sediments.

    PubMed

    Gorny, Josselin; Lesven, Ludovic; Billon, Gabriel; Dumoulin, David; Noiriel, Catherine; Pirovano, Caroline; Madé, Benoît

    2015-11-01

    A new laboratory-made Zn-ferrite (ZnFe2O4) binding gel is fully tested using Diffusive Gradient in Thin films (DGT) probes to measure total As [including inorganic As(III) and As(V), as well as MonoMethyl Arsenic Acid (MMAA(V)) and DiMethyl Arsenic Acid (DMAA(V))] in river waters and sediment pore waters. The synthesis of the binding gel is easy, cheap and its insertion into the acrylamide gel is not problematic. An important series of triplicate tests have been carried out to validate the use of the Zn-ferrite binding gel in routine for several environmental matrixes studies, in order to test: (i) the effect of pH on the accumulation efficiency of inorganic As species; (ii) the reproducibility of the results; (iii) the accumulation efficiency of As species; (iv) the effects of the ionic strength and possible competitive anions; and (v) the uptake and the elution efficiency of As species after accumulation in the binding gel. All experimental conditions have been reproduced using two other existing binding gels for comparison: ferrihydrite and Metsorb® HMRP 50. We clearly demonstrate that the Zn-ferrite binding gel is at least as good as the two other binding gels, especially for pH values higher than 8. In addition, by taking into consideration the diffusion rates of As(III) and As(V) in the gel, combining the 3-mercaptopropyl [accumulating only As(III)] with the Zn-ferrite binding gels allows for performing speciation studies. An environmental study along the Marque River finally illustrates the ability of the new binding gel to be used for field studies. Copyright © 2015. Published by Elsevier B.V.

  6. Determination of traveltimes in the lower San Joaquin River basin, California, from dye-tracer studies during 1994-1995

    USGS Publications Warehouse

    Kratzer, Charles R.; Biagtan, Rhoda N.

    1997-01-01

    Dye-tracer studies were done in the lower San Joaquin River Basin in February 1994, June 1994, and February 1995. Dye releases were made in the Merced River (February 1994), Salt Slough (June 1994), Tuolumne River (February 1995), and Dry Creek (February 1995). The traveltimes determined in the studies aided the interpretation of pesticide data collected during storm sampling and guided sample collection during a Lagrangian pesticide study. All three studies used rhodamine WT 20-percent dye solution, which was released as a slug in midstream. The mean traveltime determined in the dye studies were compared to estimates based on regression equations of mean stream velocity as a function of streamflow. Dye recovery, the ratio of the calculated dye load at downstream sites to the initial amount of dye released, was determined for the 1994 studies and a dye-dosage formula was evaluated for all studies. In the February 1994 study, mean traveltime from the Merced River at River Road to the San Joaquin River near Vernalis (46.8 river miles) was 38.5 hours, and to the Delta-Mendota Canal at Tracy pumps (84.3 river miles) was 90.4 hours. In the June 1994 study, mean traveltime from Salt Slough at Highway 165 to Vernalis (64.0 river miles) was 80.1 hours. In the February 1995 study, the mean traveltime from the Tuolumne River at Roberts Ferry to Vernalis (51.5 river miles) was 35.8 hours. For the 1994 studies, the regression equations provided suitable estimates of travel-time, with ratios of estimated traveltime to mean dye traveltime of 0.94 to 1.08. However, for the 1995 dye studies, the equations considerably underestimated traveltime, with ratios of 0.49 to 0.73.In the February 1994 study, 70 percent of the dye released was recovered at Vernalis and 35percent was recovered at the Delta-Mendota Canal at Tracy pumps. In the June 1994 study, recovery was 61 percent at Patterson, 43 percent just upstream of the Tuolumne River confluence, and 37 percent at Vernalis. The dye-dosage formula overestimated the dye required for a given downstream concentration for the 1994 studies by ratios of 1.07 to 2.12. The ratios for the February 1995 studies were 0.67 to 0.95 for the Tuolumne River and 1.21 for Dry Creek. In all studies, the estimates improved with length of dye study.

  7. Watershed Allied Telemetry Experimental Research

    NASA Astrophysics Data System (ADS)

    Li, Xin; Li, Xiaowen; Li, Zengyuan; Ma, Mingguo; Wang, Jian; Xiao, Qing; Liu, Qiang; Che, Tao; Chen, Erxue; Yan, Guangjian; Hu, Zeyong; Zhang, Lixin; Chu, Rongzhong; Su, Peixi; Liu, Qinhuo; Liu, Shaomin; Wang, Jindi; Niu, Zheng; Chen, Yan; Jin, Rui; Wang, Weizhen; Ran, Youhua; Xin, Xiaozhou; Ren, Huazhong

    2009-11-01

    The Watershed Allied Telemetry Experimental Research (WATER) is a simultaneous airborne, satellite-borne, and ground-based remote sensing experiment aiming to improve the observability, understanding, and predictability of hydrological and related ecological processes at a catchment scale. WATER consists of the cold region, forest, and arid region hydrological experiments as well as a hydrometeorology experiment and took place in the Heihe River Basin, a typical inland river basin in the northwest of China. The field campaigns have been completed, with an intensive observation period lasting from 7 March to 12 April, from 15 May to 22 July, and from 23 August to 5 September 2008: in total, 120 days. Twenty-five airborne missions were flown. Airborne sensors including microwave radiometers at L, K, and Ka bands, imaging spectrometer, thermal imager, CCD, and lidar were used. Various satellite data were collected. Ground measurements were carried out at four scales, that is, key experimental area, foci experimental area, experiment site, and elementary sampling plot, using ground-based remote sensing instruments, densified network of automatic meteorological stations, flux towers, and hydrological stations. On the basis of these measurements, the remote sensing retrieval models and algorithms of water cycle variables are to be developed or improved, and a catchment-scale land/hydrological data assimilation system is being developed. This paper reviews the background, scientific objectives, experiment design, filed campaign implementation, and current status of WATER. The analysis of the data will continue over the next 2 years, and limited revisits to the field are anticipated.

  8. Effects of channel constriction on upstream steering of flow around Locke Island, Columbia River, Washington

    NASA Astrophysics Data System (ADS)

    Loy, G. E.; Furbish, D. J.; Covey, A.

    2010-12-01

    Landsliding of the White Bluffs along the Columbia River in Washington State has constricted the width of the river on one side of Locke Island, a two-kilometer long island positioned in the middle of the channel. Associated changes in flow are thought to be causing relatively rapid erosion of Locke Island on the constricted side. This island is of cultural significance to Native American tribes of south-central Washington, so there are social as well as scientific reasons to understand how the alteration of stream channel processes resulting from the landsliding might be influencing observed erosion rates. Simple hydrodynamic calculations suggest that the constriction on one side of the island creates an upstream backwater effect. As a consequence a cross-stream pressure gradient upstream of the island results in steering of flow around the island into the unobstructed thread. This diversion of water decreases the discharge through the constriction. Therefore, flow velocities within the constriction are not necessarily expected to be higher than those in the unobstructed thread, contrary to initial reports suggesting that higher velocities within the constriction are the main cause of erosion. We set up streamtable experiments with lapse rate imaging to illustrate the backwater effects of the channel constriction and the associated cross-stream steering of flow around a model island. Our experiments are scaled by channel roughness and slope rather than geometrically, as the main focus is to understand the mechanical behavior of flow in this type of island-landslide system. In addition, we studied the stream velocities and flow steering as well as the magnitude of the backwater effect in both the constricted and unobstructed channels using tracer particles in the time-lapse images. These experimental data are compared with calculated upstream backwater distances determined from the known water-surface slope, flow depth, total discharge, and bed roughness. Furthermore, this experimental work will inform subsequent numerical modeling of flow and field-based measurements at Locke Island.

  9. Nonnative fish control in the Colorado River in Grand Canyon, Arizona: An effective program or serendipitous timing?

    USGS Publications Warehouse

    Coggins,, Lewis G.; Yard, Michael D.; Pine, William E.

    2011-01-01

    The federally endangered humpback chub Gila cypha in the Colorado River within Grand Canyon is currently the focus of a multiyear program of ecosystem-level experimentation designed to improve native fish survival and promote population recovery as part of the Glen Canyon Dam Adaptive Management Program. A key element of this experiment was a 4-year effort to remove nonnative fishes from critical humpback chub habitat, thereby reducing potentially negative interactions between native and nonnative fishes. Over 36,500 fish from 15 species were captured in the mechanical removal reach during 2003–2006. The majority (64%) of the catch consisted of nonnative fish, including rainbow trout Oncorhynchus mykiss (19,020), fathead minnow Pimephales promelas (2,569), common carp Cyprinus carpio (802), and brown trout Salmo trutta (479). Native fish (13,268) constituted 36% of the total catch and included flannelmouth suckers Catostomus latipinnis (7,347), humpback chub (2,606), bluehead suckers Catostomus discobolus (2,243), and speckled dace Rhinichthys osculus (1,072). The contribution of rainbow trout to the overall species composition fell steadily throughout the study period from a high of approximately 90% in January 2003 to less than 10% in August 2006. Overall, the catch of nonnative fish exceeded 95% in January 2003 and fell to less than 50% after July 2005. Our results suggest that removal efforts were successful in rapidly shifting the fish community from one dominated numerically by nonnative species to one dominated by native species. Additionally, increases in juvenile native fish abundance within the removal reach suggest that removal efforts may have promoted greater survival and recruitment. However, drought-induced increases in river water temperature and a systemwide decrease in rainbow trout abundance concurrent with our experiment made it difficult to determine the cause of the apparent increase in juvenile native fish survival and recruitment. Experimental efforts continue and may be able to distinguish among these factors and to better inform future management actions.

  10. Analytical model for local scour prediction around hydrokinetic turbine foundations

    NASA Astrophysics Data System (ADS)

    Musa, M.; Heisel, M.; Hill, C.; Guala, M.

    2017-12-01

    Marine and Hydrokinetic renewable energy is an emerging sustainable and secure technology which produces clean energy harnessing water currents from mostly tidal and fluvial waterways. Hydrokinetic turbines are typically anchored at the bottom of the channel, which can be erodible or non-erodible. Recent experiments demonstrated the interactions between operating turbines and an erodible surface with sediment transport, resulting in a remarkable localized erosion-deposition pattern significantly larger than those observed by static in-river construction such as bridge piers, etc. Predicting local scour geometry at the base of hydrokinetic devices is extremely important during foundation design, installation, operation, and maintenance (IO&M), and long-term structural integrity. An analytical modeling framework is proposed applying the phenomenological theory of turbulence to the flow structures that promote the scouring process at the base of a turbine. The evolution of scour is directly linked to device operating conditions through the turbine drag force, which is inferred to locally dictate the energy dissipation rate in the scour region. The predictive model is validated using experimental data obtained at the University of Minnesota's St. Anthony Falls Laboratory (SAFL), covering two sediment mobility regimes (clear water and live bed), different turbine designs, hydraulic parameters, grain size distribution and bedform types. The model is applied to a potential prototype scale deployment in the lower Mississippi River, demonstrating its practical relevance and endorsing the feasibility of hydrokinetic energy power plants in large sandy rivers. Multi-turbine deployments are further studied experimentally by monitoring both local and non-local geomorphic effects introduced by a twelve turbine staggered array model installed in a wide channel at SAFL. Local scour behind each turbine is well captured by the theoretical predictive model. However, multi-turbine configurations introduce subtle large-scale effects that deepen local scour within the first two rows of the array and develop spatially as a two-dimensional oscillation of the mean bed downstream of the entire array.

  11. [Study on the content and carbon isotopic composition of water dissolved inorganic carbon from rivers around Xi'an City].

    PubMed

    Guo, Wei; Li, Xiang-Zhong; Liu, Wei-Guo

    2013-04-01

    In this study, the content and isotopic compositions of water dissolved inorganic carbon (DIC) from four typical rivers (Chanhe, Bahe, Laohe and Heihe) around Xi'an City were studied to trace the possible sources of DIC. The results of this study showed that the content of DIC in the four rivers varied from 0.34 to 5.66 mmol x L(-1) with an average value of 1.23 mmol x L(-1). In general, the content of DIC increased from the headstream to the river mouth. The delta13C(DIC) of four rivers ranged from -13.3 per thousand to -7.2 per thousand, with an average value of -10.1 per thousand. The delta13C(DIC) values of river water were all negative (average value of -12.6 per thousand) at the headstream of four rivers, but the delta13C(DIC) values of downstream water were more positive (with an average value of -9.4 per thousand). In addition, delta13C(DIC) of river water showed relatively negative values (the average value of delta13C(DIC) was -10.5 per thousand) near the estuary of the rivers. The variation of the DIC content and its carbon isotope suggested that the DIC sources of the rivers varied from the headstream to the river mouth. The negative delta13C(DIC) value indicated that the DIC may originate from the soil CO2 at the headstream of the rivers. On the other hand, the delta13C(DIC) values of river water at the middle and lower reaches of rivers were more positive, and it showed that soil CO2 produced by respiration of the C4 plants (like corn) and soil carbonates with positive delta13C values may be imported into river water. Meanwhile, the input of pollutants with low delta13C(DIC) values may result in a decrease of delta13C(DIC) values in the rivers. The study indicated that the DIC content and carbon isotope may be used to trace the sources of DIC in rivers around Xi'an City. Our study may provide some basic information for tracing the sources of DIC of rivers in the small watershed area in the Loess Plateau of China.

  12. Spatial variation of dissolved organic matter composition and characteristics in an urbanized watershed

    NASA Astrophysics Data System (ADS)

    Hsieh, C.; Li, M.

    2013-12-01

    Dissolved organic matter (DOM) is a chemically complex mixture of organic polymers that plays an important role in river ecosystems and originates from various sources. Some DOMs are autochthonous originating through phytoplankton and microbial activity in situ. On the other hand, some DOMs are allochthonous which are transported to river from the surrounding watershed by natural or anthropogenic activities. The studies of DOM in river are usually conducted at the watershed scale; however, factors of local spatial scale affecting DOM composition also need to take into consideration for the study of DOM in an urbanized watershed. Through increasing urbanization, changes in a watershed occur not only in land use patterns but also in river channel characteristics. The objective of this study is to investigate effects of different river channel characteristics and patterns on changes in DOM source and composition. In this study, we chose three tributaries of Tamsui river in Taiwan according to its land use pattern and river channel characteristics. At each sub-basin, river water samples were sampled from three study sites. River water DOM was measured by using optical measurements of UV absorption and fluorescence spectroscopy. Water samples were also collected for laboratory analysis of different water quality parameters. From our study sites, they are from three sub-basins which are in the similar physical environments but with different river channel types: the highly channelized Keelung river, the less channelized Xindian river, and less channelized Dahan river with five human-made wetlands. From the upstream to the urbanized downstream, composition of DOM showed variation among different sampled sites. In all three sub-basins, the trends of 5-day biochemical oxygen demand (BOD5) and suspended solids (SS) are also different. The changes in DOM source and composition as well as different water quality parmaters occur at the local spatial-scale depended on their river channel characters in urbanized watersheds. Based on our result, it indicates river channel characters which can have effects on biogeochemical processes of DOM. This knowledge can help us in understanding biogeochemical processes controlled or manipulated by anthropogenic activities at different spatial scales, and help us to make an integrative river health management in a watershed.

  13. Summary of Migration and Survival Data from Radio-Tagged Juvenile Coho Salmon in the Trinity River, Northern California, 2008

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal; Juhnke, Steve; Stutzer, Greg

    2009-01-01

    The survival of hatchery-origin juvenile coho salmon from the Trinity River Hatchery was estimated as they migrated seaward through the Trinity and Klamath Rivers. The purpose of the study was to collect data for comparison to a similar study in the Klamath River and provide data to the Trinity River Restoration Program. A total of 200 fish fitted with radio transmitters were released into the Trinity River near the hatchery (river kilometer 252 from the mouth of the Klamath River) biweekly from March 19 to May 28, 2008. Fish from the earliest release groups took longer to pass the first detection site 10 kilometers downstream of the hatchery than fish from the later release groups, but travel times between subsequent sites were often similar among the release groups. The travel times of individuals through the 239 kilometer study area ranged from 15.5 to 84.6 days with a median of 43.3 days. The data and models did not support differences in survival among release groups, but did support differences among river reaches. The probability of survival in the first 53 kilometers was lower than in the reaches farther downstream, which is similar to trends in juvenile coho salmon in the Klamath River. The lowest estimated survival in this study was in the first 10 kilometers from release in the Trinity River (0.676 SE 0.036) and the highest estimated survival was in the final 20 kilometer reach in the Klamath River (0.987 SE 0.013). Estimated survivals of radio-tagged juvenile coho salmon from release to Klamath River kilometer 33 were 0.639 per 100 kilometers for Trinity River fish and 0.721 per 100 kilometers for Klamath River fish.

  14. Occurrence of pesticides in five rivers of the Mississippi Embayment Study Unit, 1996-98

    USGS Publications Warehouse

    Coupe, Richard H.

    2000-01-01

    The occurrence and temporal distribution of more than 80 pesticides and pesticide metabolites were determined in five rivers of the Mississippi Embayment National Water-Quality Assessment study unit from February 1996 through January 1998. More than 230 samples were collected and analyzed during the 2-year study. The five rivers sampled included three rivers with small, primarily agricultural watersheds; one river with a small urban watershed in Memphis, Tennessee; and one large river with mixed land use (row-crop agriculture, pasture, forest, and urban). Pesticides, usually herbicides, were frequently detected in water samples from every river. Insecticides were frequently detected (chlorpyrifos and diazinon in all samples) only in the river that drains the urban watershed. The occurrence of pesticides in surface water varied among the agricultural watersheds as well as between the agricultural and urban watersheds. The pesticides detected in the rivers that drain the agricultural watersheds were related to the major crop types cultivated in the watershed?corn is mostly grown in the northern part of the study unit, whereas cotton and rice are mostly grown in the southern part. The occurrence of pesticides in the Yazoo River, which drains the mixed land-use watershed, was similar to pesticide occurrence in the rivers that drain smaller agricultural watersheds, although concentrations were lower in the Yazoo River. Likewise, simazine, which was detected in all urban stream samples, was also detected in all Yazoo River samples, but in lower concentrations. The aquatic-life criteria for diazinon and chlorpyrifos was exceeded in 24 of 25 and 12 of 25 urban river samples, respectively, but only once or twice in agricultural and mixed-use watershed samples. Atrazine exceeded the aquatic-life criterion in about 20 percent of the samples from each river, particularly in the spring following pesticide application.

  15. The abiotic environment of the interstitial of a small Swiss river in the foothills of the Alps and its influence on gravel spawning brown trout (Salmo trutta L.)

    NASA Astrophysics Data System (ADS)

    Schindler, Yael; Michel, Christian; Holm, Patricia; Alewell, Christine

    2010-05-01

    The hyporheic zone can be characterized by multiple abiotic parameters (e.g. bulk density, texture, temperature, oxygen, ammonium, nitrate) which are all influenced directly or indirectly by the exchange processes between surface water and groundwater. These processes can vary both in time and space and are mainly driven by river discharge, ground water level and flow patterns. The input of fine sediment particles can change water-riverbed interactions through river bed clogging potentially affecting the embryonal development and survival of gravel spawning fish, such as brown trout (Salmo trutta L.). With our investigations we aim to understand these complex interactions spatially and temporally on a relevant small scale, i.e. within individual artificial brown trout redds. We designed an experimental field setup to directly investigate i) the influence of the abiotic river and redd environment on brown trout embryo development and ii) the hydrological dynamics affecting the abiotic environment in artificial brown trout. Additionally, our setup allows investigating the temporal dynamics of i) fine-sediment infiltration into the artificial redds and ii) embryo survival to two distinct developmental stages (i.e. eyed stage and hatch) The experiment was conducted in three sites of a typical Swiss river (Enziwigger, Canton of Luzern) with a strongly modified morphology. Individual sites represented a high, medium and low fine-sediment load. In each site, six artificial redds (18 in total) were built and data were collected during the entire incubation phase. Redds were located in places where natural spawning of brown trout is present. We adapted multiple established methods to the smaller scale of our river to study the dynamics of the most relevant abiotic parameters potentially affecting embryo development: Oxygen content and temperature was monitored continuously in different depths, fine sediment (bedload, suspended sediment load and its input in the river bed) was measured weekly and water samples for DOC and nitrogen components analysis were collected regularly. In addition, all redds were equipped with mini piezometers to measure the hydraulic gradient through the redds. Finally, water stage and turbidity were monitored continuously. Results of the first spawning season will be presented. Dynamic of abiotic parameters and their influence on spawning of brown trout will be discussed.

  16. Report for the River Master of the Delaware River for the Period December 1, 2001-November 30, 2002

    USGS Publications Warehouse

    Krejmas, Bruce E.; Paulachok, Gary N.; Carswell, William J.

    2006-01-01

    A Decree of the United States Supreme Court in 1954 established the position of Delaware River Master within the U.S. Geological Survey. In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 49th Annual Report of the River Master of the Delaware River. It covers the 2002 River Master report year, that is, the period from December 1, 2001, to November 30, 2002. During the report year, precipitation in the upper Delaware River Basin was 2.73 in. greater than the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was at a record low level on December 1, 2001. Reservoir storage increased steadily from mid-winter until late June. Storage declined steadily from early July to mid-October then increased through the end of the year. Delaware River operations were conducted at reduced levels from December 1, 2001, to May 25, 2002, when drought emergency conditions prevailed, and as prescribed by the Decree from May 26, 2002, to November 30, 2002. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the terms of the Decree or with the reduced limits in effect during drought emergency conditions. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 101 days during the report year. Releases were made at experimental conservation rates-or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs-on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and during drought emergency conditions, with the terms of the 'Interstate Water Management Recommendations of the Parties to the Decree' (DRBC Resolution 83-13), and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected by electronic instruments at four sites, and data on water temperature and specific conductance were collected at one site. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a semimonthly basis.

  17. Statistical downscaling for winter streamflow in Douro River

    NASA Astrophysics Data System (ADS)

    Jesús Esteban Parra, María; Hidalgo Muñoz, José Manuel; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz Fortis, Sonia; Castro Díez, Yolanda

    2015-04-01

    In this paper we have obtained climate change projections for winter flow of the Douro River in the period 2071-2100 by applying the technique of Partial Regression and various General Circulation Models of CMIP5. The streamflow data base used has been provided by the Center for Studies and Experimentation of Public Works, CEDEX. Series from gauing stations and reservoirs with less than 10% of missing data (filled by regression with well correlated neighboring stations) have been considered. The homogeneity of these series has been evaluated through the Pettit test and degree of human alteration by the Common Area Index. The application of these criteria led to the selection of 42 streamflow time series homogeneously distributed over the basin, covering the period 1951-2011. For these streamflow data, winter seasonal values were obtained by averaging the monthly values from January to March. Statistical downscaling models for the streamflow have been fitted using as predictors the main atmospheric modes of variability over the North Atlantic region. These modes have been obtained using winter sea level pressure data of the NCEP reanalysis, averaged for the months from December to February. Period 1951-1995 was used for calibration, while 1996-2011 period was used in validating the adjusted models. In general, these models are able to reproduce about 70% of the variability of the winter streamflow of the Douro River. Finally, the obtained statistical models have been applied to obtain projections for 2071-2100 period, using outputs from different CMIP5 models under the RPC8.5 scenario. The results for the end of the century show modest declines of winter streamflow in this river for most of the models. Keywords: Statistical downscaling, streamflow, Douro River, climate change. ACKNOWLEDGEMENTS This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  18. Integrating understanding of biophysical processes governing larval fish dispersal with basin-scale management decisions: lessons from the Missouri River, USA

    NASA Astrophysics Data System (ADS)

    Erwin, S. O.; Jacobson, R. B.; Fischenich, C. J.; Bulliner, E. A., IV; McDonald, R.; DeLonay, A. J.; Braaten, P.; Elliott, C. M.; Chojnacki, K.

    2017-12-01

    Management of the Missouri River—the longest river in the USA, with a drainage basin covering one sixth of the conterminous USA—is increasingly driven by the need to understand biophysical processes governing the dispersal of 8-mm long larval pallid sturgeon. In both the upper and lower basin, survival of larval sturgeon is thought to be a bottleneck limiting populations, but because of different physical processes at play, different modeling frameworks and resolutions are required to link management actions with population-level responses. In the upper basin, a series of impoundments reduce the length of river for the drifting larval sturgeon to complete their development. Downstream from the mainstem dams, recruitment is most likely diminished by channelization and reduced floodplain connectivity that limit the benthic habitat available for larval sturgeon to settle and initiate feeding. We present a synthesis of complementary field studies, laboratory observations, and numerical simulations that evaluate the physical processes related to larval dispersal of sturgeon in the Missouri River basin. In the upper basin, we use one-dimensional advection-dispersion models, calibrated with field experiments conducted in 2016-2017 using surrogate particles and tracers, to evaluate reservoir management alternatives. Results of field experimentation and numerical modeling show that proposed management alternatives in the upper basin may be limited by insufficient lengths of flowing river for drifting larvae to fully develop into their juvenile lifestage. In the intensively engineered lower basin, we employ higher resolution measurements and models to evaluate potential for channel reconfiguration and flow alteration to promote successful interception of drifting larvae into supportive benthic habitats for the initiation of feeding and transition to the juvenile life stage. We illustrate how refined understanding of small-scale biophysical process has been incorporated into the basin-scale management framework, thereby prompting a shift in restoration actions and design.

  19. Characterizing Sediment Supply to Rivers: Effects of Lithology, Climate, Weathering and Erosion on Rock-fragment Abundance in Granitic, Hillslope Soils

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Marshall, J. A.; Sklar, L. S.; Granger, D. E.

    2008-12-01

    River incision sets the pace of landscape evolution and so is crucial to linkages among climate, tectonics and topography. Theoretical and experimental studies indicate that bedrock river incision should be regulated by both the quantity and caliber of sediment supply, which together affect the availability and persistence of bed-scouring tools in the channel. Rates of sediment supply are now quantified routinely using cosmogenic- radionuclide-based (CRN) measurements of hillslope erosion rates. Although grain-size data are also measured routinely (e.g., as part of state and federal soil surveys), they are not widely available for soils with well-constrained rates of erosion and weathering. As a result, there is much to learn about how weathering and erosion interrelate to regulate grain-size distributions in hillslope soils. Moreover, we lack a strong empirical basis for investigating how the rate and caliber of sediment supply affect bedrock river incision in natural systems. Here we compare new grain-size data with existing CRN-based rates of erosion and weathering for a series of granitic soils at two climatically diverse sites in the Sierra Nevada, California. Our results indicate that the percentage of coarse material---which presumably becomes the bedload that abrades and lowers channels---varies significantly across each site. At the colder, wetter site, differences in grain size and soil depth are substantial, despite little variability in erosion rates; coarse material abundance appears to increase with the density of bedrock outcrops, which increases with hillslope gradients, according to previous work. At the hotter, drier site, where rates of erosion and weathering vary by 10-fold, soil thickness and texture and the abundance of outcrops do not vary systematically across the landscape. We speculate that the differences in soil development across our two sites partly reflect effects of small differences in the ratio of biotite to hornblende in the parent rock. We discuss implications for constraining the rate and caliber of sediment supply to rivers.

  20. Quantifying the multiple, environmental benefits of reintroducing the Eurasian Beaver

    NASA Astrophysics Data System (ADS)

    Brazier, Richard; Puttock, Alan; Graham, Hugh; Anderson, Karen; Cunliffe, Andrew; Elliott, Mark

    2016-04-01

    Beavers are ecological engineers with an ability to modify the structure and flow of fluvial systems and create complex wetland environments with dams, ponds and canals. Consequently, beaver activity has potential for river restoration, management and the provision of multiple environmental ecosystem services including biodiversity, flood risk mitigation, water quality and sustainable drinking water provision. With the current debate surrounding the reintroduction of beavers into the United Kingdom, it is critical to monitor the impact of beavers upon the environment. We have developed and implemented a monitoring strategy to quantify the impact of reintroducing the Eurasian Beaver on multiple environmental ecosystem services and river systems at a range of scales. First, the experimental design and preliminary results will be presented from the Mid-Devon Beaver Trial, where a family of beavers has been introduced to a 3 ha enclosure situated upon a first order tributary of the River Tamar. The site was instrumented to monitor the flow rate and quality of water entering and leaving the site. Additionally, the impacts of beavers upon riparian vegetation structure, water/carbon storage were investigated. Preliminary results indicate that beaver activity, particularly the building of ponds and dams, increases water storage within the landscape and moderates the river response to rainfall. Baseflow is enhanced during dry periods and storm flow is attenuated, potentially reducing the risk of flooding downstream. Initial analysis of water quality indicates that water entering the site (running off intensively managed grasslands upslope), has higher suspended sediment loads and nitrate levels, than that leaving the site, after moving through the series of beaver ponds. These results suggest beaver activity may also act as a means by which the negative impact of diffuse water pollution from agriculture can be mitigated thus providing cleaner water in rivers downstream. Secondly, the River Otter Beaver Trial will be discussed. In 2015 Natural England granted a five year licence to monitor beavers living wild upon the River Otter, Devon. The River Otter, ca. 280 km2, is a dynamic, spatey system with downstream areas exhibiting poor ecological status, primarily due to sediment and phosphorus loading, which both impact on fish numbers. The impacts of Eurasian Beaver upon English river systems are currently poorly understood, with the outcome of this pilot study having significant implications for river restoration and management. This project, the first of its kind in England, is monitoring the impacts of beavers upon the River Otter catchment with three main scientific objectives: (1) Characterise the existing structure of the River Otter riparian zone and quantify any changes during the 2015-2019 period; (2) Quantify the impact of beaver activity on water flow at a range of scales in the Otter catchment; (3) Evaluate the impact of beaver activity on water quality. Finally, lessons learnt from these monitoring programs will be discussed in light of the need for more natural solutions to flood and diffuse pollution management. We conclude that whilst our work demonstrates multiple positive benefits of Beaver reintroduction, considerably more, scale-appropriate monitoring is required before such results could be extrapolated to landscape scales.

  1. Flooding impacts on responses of a riparian consumer to cross-ecosystem subsidies.

    PubMed

    Greenwood, Michelle J; McIntosh, Angus R

    2008-06-01

    Landscape-driven processes impact the magnitude and direction of cross-ecosystem resource subsidies, but they may also control consumers' numerical and functional responses by altering habitat availability. We investigated effects of the interaction between habitat availability and subsidy level on populations of a riparian fishing spider, Dolomedes aquaticus, using a flood disturbance gradient in the Waimakariri River catchment, New Zealand. D. aquaticus predominantly eat aquatic prey as they hunt from the water surface. However, D. aquaticus biomass peaked at rivers with intermediate flood disturbance, rather than at less flood-prone rivers where the biomass of aquatic insect prey was markedly higher. Flooding positively influenced spider habitat quality, and an experimental manipulation at stable rivers indicated that unembedded cobbles, preferred D. aquaticus habitat, were a limiting factor, preventing response to the increased prey resource at stable sites. Potential terrestrial prey abundance was low, did not vary across the disturbance gradient, and is likely to have been a much smaller component of the fishing spiders' diet than aquatic insect prey. Thus landscape-driven factors not only controlled the magnitude of resource subsidies, but also influenced the ability of consumers to respond to them by altering the physical nature of the ecosystem boundary.

  2. Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy.

    PubMed

    Chen, Yuyu; Ebenstein, Avraham; Greenstone, Michael; Li, Hongbin

    2013-08-06

    This paper's findings suggest that an arbitrary Chinese policy that greatly increases total suspended particulates (TSPs) air pollution is causing the 500 million residents of Northern China to lose more than 2.5 billion life years of life expectancy. The quasi-experimental empirical approach is based on China's Huai River policy, which provided free winter heating via the provision of coal for boilers in cities north of the Huai River but denied heat to the south. Using a regression discontinuity design based on distance from the Huai River, we find that ambient concentrations of TSPs are about 184 μg/m(3) [95% confidence interval (CI): 61, 307] or 55% higher in the north. Further, the results indicate that life expectancies are about 5.5 y (95% CI: 0.8, 10.2) lower in the north owing to an increased incidence of cardiorespiratory mortality. More generally, the analysis suggests that long-term exposure to an additional 100 μg/m(3) of TSPs is associated with a reduction in life expectancy at birth of about 3.0 y (95% CI: 0.4, 5.6).

  3. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy

    PubMed Central

    Chen, Yuyu; Ebenstein, Avraham; Greenstone, Michael; Li, Hongbin

    2013-01-01

    This paper's findings suggest that an arbitrary Chinese policy that greatly increases total suspended particulates (TSPs) air pollution is causing the 500 million residents of Northern China to lose more than 2.5 billion life years of life expectancy. The quasi-experimental empirical approach is based on China’s Huai River policy, which provided free winter heating via the provision of coal for boilers in cities north of the Huai River but denied heat to the south. Using a regression discontinuity design based on distance from the Huai River, we find that ambient concentrations of TSPs are about 184 μg/m3 [95% confidence interval (CI): 61, 307] or 55% higher in the north. Further, the results indicate that life expectancies are about 5.5 y (95% CI: 0.8, 10.2) lower in the north owing to an increased incidence of cardiorespiratory mortality. More generally, the analysis suggests that long-term exposure to an additional 100 μg/m3 of TSPs is associated with a reduction in life expectancy at birth of about 3.0 y (95% CI: 0.4, 5.6). PMID:23836630

  4. A pilot study of river flow prediction in urban area based on phase space reconstruction

    NASA Astrophysics Data System (ADS)

    Adenan, Nur Hamiza; Hamid, Nor Zila Abd; Mohamed, Zulkifley; Noorani, Mohd Salmi Md

    2017-08-01

    River flow prediction is significantly related to urban hydrology impact which can provide information to solve any problems such as flood in urban area. The daily river flow of Klang River, Malaysia was chosen to be forecasted in this pilot study which based on phase space reconstruction. The reconstruction of phase space involves a single variable of river flow data to m-dimensional phase space in which the dimension (m) is based on the optimal values of Cao method. The results from the reconstruction of phase space have been used in the forecasting process using local linear approximation method. From our investigation, river flow at Klang River is chaotic based on the analysis from Cao method. The overall results provide good value of correlation coefficient. The value of correlation coefficient is acceptable since the area of the case study is influence by a lot of factors. Therefore, this pilot study may be proposed to forecast daily river flow data with the purpose of providing information about the flow of the river system in urban area.

  5. Feasibility of estimate sediment yield in the non-sediment monitoring station area - A case study of Alishan River watershed,Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, ChiaChi; Chan, HsunChuan; Jia, YaFei; Zhang, YaoXin

    2017-04-01

    Due to the steep topography, frail geology and concentrated rainfall in wet season, slope disaster occurred frequently in Taiwan. In addition, heavy rainfall induced landslides in upper watersheds. The sediment yield on the slopeland affects the sediment transport in the river. Sediment deposits on the river bed reduce the river cross section and change the flow direction. Furthermore, it generates risks to residents' lives and property in the downstream. The Taiwanese government has been devoting increasing efforts on the sedimentary management issues and on reduction in disaster occurrence. However, due to the limited information on the environmental conditions in the upper stream, it is difficult to set up the sedimentary monitoring equipment. This study used the upper stream of the Qingshuei River, the Alishan River, as a study area. In August 2009, Typhoon Morakot caused the sedimentation of midstream and downstream river courses in the Alishan River. Because there is no any sediment monitoring stations within the Alishan River watershed, the sediment yield values are hard to determine. The objective of this study is to establish a method to analyze the event-landslide sediment transport in the river on the upper watershed. This study numerically investigated the sediment transport in the Alishan River by using the KINEROS 2 model developed by the United States Department of Agriculture and the CCHE1D model developed by the National Center for Computational Hydroscience and Engineering. The simulated results represent the morphology changes in the Alishan River during the typhoon events. The results consist of a critical strategy reference for the sedimentary management for the Alishan River watershed.

  6. Geomorphic change and sediment transport during a small artificial flood in a transformed post-dam delta: The Colorado River delta, United States and Mexico

    USGS Publications Warehouse

    Mueller, Erich R.; Schmidt, John C.; Topping, David J.; Shafroth, Patrick B.; Rodríguez-Burgueño, Jesús Eliana; Ramírez-Hernández, Jorge; Grams, Paul E.

    2017-01-01

    The Colorado River delta is a dramatically transformed landscape. Major changes to river hydrology and morpho-dynamics began following completion of Hoover Dam in 1936. Today, the Colorado River has an intermittent and/or ephemeral channel in much of its former delta. Initial incision of the river channel in the upstream ∼50 km of the delta occurred in the early 1940s in response to spillway releases from Hoover Dam under conditions of drastically reduced sediment supply. A period of relative quiescence followed, until the filling of upstream reservoirs precipitated a resurgence of flows to the delta in the 1980s and 1990s. Flow releases during extreme upper basin snowmelt in the 1980s, flood flows from the Gila River basin in 1993, and a series of ever-decreasing peak flows in the late 1990s and early 2000s further incised the upstream channel and caused considerable channel migration throughout the river corridor. These variable magnitude post-dam floods shaped the modern river geomorphology. In 2014, an experimental pulse-flow release aimed at rejuvenating the riparian ecosystem and understanding hydrologic dynamics flowed more than 100 km through the length of the delta’s river corridor. This small artificial flood caused localized meter-scale scour and fill of the streambed, but did not cause further incision or significant bank erosion because of its small magnitude. Suspended-sand-transport rates were initially relatively high immediately downstream from the Morelos Dam release point, but decreasing discharge from infiltration losses combined with channel widening downstream caused a rapid downstream reduction in suspended-sand-transport rates. A zone of enhanced transport occurred downstream from the southern U.S.-Mexico border where gradient increased, but effectively no geomorphic change occurred beyond a point 65 km downstream from Morelos Dam. Thus, while the pulse flow connected with the modern estuary, deltaic sedimentary processes were not restored, and relatively few new open surfaces were created for establishment of native riparian vegetation. Because water in the Colorado River basin is completely allocated, exceptional floods from the Gila River basin are the most likely mechanism for major changes to delta geomorphology for the foreseeable future.

  7. Vortex model of open channel flows with gravel beds

    NASA Astrophysics Data System (ADS)

    Belcher, Brian James

    Turbulent structures are known to be important physical processes in gravel-bed rivers. A number of limitations exist that prohibit the advancement and prediction of turbulence structures for optimization of civil infrastructure, biological habitats and sediment transport in gravel-bed rivers. This includes measurement limitations that prohibit characterization of size and strength of turbulent structures in the riverine environment for different case studies as well as traditional numerical modeling limitations that prohibit modeling and prediction of turbulent structure for heterogeneous beds under high Reynolds number flows using the Navier-Stokes equations. While these limitations exist, researchers have developed various theories for the structure of turbulence in boundary layer flows including large eddies in gravel-bed rivers. While these theories have varied in details and applicable conditions, a common hypothesis has been a structural organization in the fluid which links eddies formed at the wall to coherent turbulent structures such as large eddies which may be observed vertically across the entire flow depth in an open channel. Recently physics has also seen the advancement of topological fluid mechanical ideas concerned with the study of vortex structures, braids, links and knots in velocity vector fields. In the present study the structural organization hypothesis is investigated with topological fluid mechanics and experimental results which are used to derive a vortex model for gravel-bed flows. Velocity field measurements in gravel-bed flow conditions in the laboratory were used to characterize temporal and spatial structures which may be attributed to vortex motions and reconnection phenomena. Turbulent velocity time series data were measured with ADV and decomposed using statistical decompositions to measure turbulent length scales. PIV was used to measure spatial velocity vector fields which were decomposed with filtering techniques for flow visualization. Under the specific conditions of a turbulent burst the fluid domain is organized as a braided flow of vortices connected by prime knot patterns of thin-cored flux tubes embedded on an abstract vortex surface itself having topology of a Klein bottle. This model explains observed streamline patterns in the vicinity of a strong turbulent burst in a gravel-bed river as a coherent structure in the turbulent velocity field. KEY WORDS: Open channel flow, turbulence, gravel-bed rivers, coherent structures, velocity distributions

  8. Water storage capacity of the natural river valley - how sedge communities influence it. Case study of Upper Biebrza Basin (Poland) based on ALS and TLS data

    NASA Astrophysics Data System (ADS)

    Brach, Marcin; Chormański, Jarosław

    2014-05-01

    The exact determination of water storage capacity in river valley is an important issue for hydrologists, ecologist and flood modellers. In case of natural river valley, the dense and complexity vegetation of the natural ecosystems can influence the proper identification of the water storage. Methods considered to be sufficient in other cases (urbanized, agricultural) may not produce correct results. Sedge communities in natural river valleys form characteristic tussocks, built from the species roots, other organic material and silt or mud. They are formed due to partial flooding during the inundation, so the plants can survive in hard, anaerobic conditions. They can growth even up to 0.5 meters, which is not so visible due to very dense vegetation in the valleys. These tussocks form a microtopography or a river valley. Currently, the most commonly used technology to register the terrain topography is an Airborne Laser Scanning (ALS), but in the case of the tussocks and the dense vegetation it generates high errors on elevation in the areas of the sedges (Carex appropinquata). This study concerns the Upper Biebrza Valley which is located in the northeastern Poland. For purpose of our work we used Terrestrial Laser Scanner (TLS) technology to determine microtopography of selected fields. Before measurements, the green part of the sedge was cut in selected measurements fields. It make possible to register only tussocks shape. Next, step was collection of the airborne ALS data of the valley with density of 8 points/sq m. The experimental field was divided on two sub-fields: one was cut and scanned using TLS before ALS collection, while the second after. Data collected as ALS and the TLS were then compared. The accuracy of the ALS data depends on the land cover of an area, while TLS accuracy is around 2 millimeters (when georeferenced it depends on the accuracy of reference points - in our case it was made using GPS RTK which gave us accuracy of few centimeters). The analysis shown that differences between ALS measurements and TLS on leaf free area is on average of 5 centimeters, while on areas which were not mowed it grows up to 0,5 m. Thanks to this studies we were able to determine water storage possibilities of valley while considering the tussocks shape.

  9. Technique for controlling spread of limnotic oncomelania

    NASA Astrophysics Data System (ADS)

    Li, Damei; Wang, Xiangsan; Lai, Yonggen

    2003-09-01

    Schistosomiasis is a parasitic disease mostly found in areas along the Changjiang River of China. The disease is spread solely through an intermediary named oncomelania, so its spread of schistosomiasis can be controlled by properly designing water intakes which prevent oncomelania from entering farming land or residential areas. This paper reports a successful design process and a new oncomelania-free intake device. The design of the new intake is based on a sound research program in which extensive experimental studies were carried out to gain knowledge of oncomelania eco-hydraulic behavior and detailed flow field information through CFD simulation.

  10. Remote Sensing Application of the Geophysical Changes in the Coastlines and Rivers of Zambales, Philippines

    NASA Astrophysics Data System (ADS)

    Paz-Alberto, Annie Melinda; Sison, Melissa Joy M.; Bulaong, Edmark Pablo; Pakaigue, Marietta A.

    2016-06-01

    Geophysical changes in river outlet, river upstream and coastlines near the rivers of Bucao and Santo Tomas in Zambales, Philippines were analyzed using the Google Earth's historical satellite imageries from 2004 to 2013. Data in 2015 were gathered from in situ field measurements ground validation. The study aimed to measure and determine changes in the width of river outlet, width of river bank upstream and shifting of coastline. Results revealed that there was a decrease and increase in the width size of the Bucao and Santo Tomas river outlets, respectively during the study period. Geophysical changes occurred in the two rivers due to the continuous supply of lahar as an after effect of the Mount Pinatubo eruption in 1991. Coastline positions near the two rivers also changed. The highest rate of erosion along the coastal area was prevalently observed near the river outlet of both rivers. Moreover, accretion was observed in the coastline of Santo Tomas and erosion phenomenon was observed in the North and South coastlines of Bucao River. The shifting was caused by natural processes such as erosion, sedimentation and natural calamities as well as anthropogenic processes such as reclamation/quarrying. Occurrence of erosion and sedimentation played active roles in the changes of coastlines during the study period. Furthermore, the upstream of the Bucao river changed physically due to deposits of lahar present in the upstream which are being discharged directly and continuously going down to the river. Generally, the width of the Bucao River upstream decreased its size because of the accumulated sediment in the riverbank. On the other hand, the observed erosion is caused by high velocity of river during heavy rains and typhoons. The width of the Santo Tomas river bank upstream did not change due to the construction of concrete dikes which prevent the lahar-filled river from breaching the embankment and flooding the agricultural, residential and commercial areas near the river.

  11. A refined electrofishing technique for collecting Silver Carp: Implications for management

    USGS Publications Warehouse

    Bouska, Wesley W.; Glover, David C.; Bouska, Kristen; Garvey, James E.

    2017-01-01

    Detecting nuisance species at low abundance or in newly established areas is critical to developing pest management strategies. Due to their sensitivity to disturbance and erratic jumping behavior, Silver Carp Hypophthalmichthys molitrix can be difficult to collect with traditional sampling methods. We compared catch per unit effort (CPUE) of all species from a Long Term Resource Monitoring (LTRM) electrofishing protocol to an experimental electrofishing technique designed to minimize Silver Carp evasion through tactical boat maneuvering and selective application of power. Differences in CPUE between electrofishing methods were detected for 2 of 41 species collected across 2 years of sampling at 20 sites along the Illinois River. The mean catch rate of Silver Carp using the experimental technique was 2.2 times the mean catch rate of the LTRM electrofishing technique; the increased capture efficiency at low relative abundance emphasizes the utility of this method for early detection. The experimental electrofishing also collected slightly larger Silver Carp (mean: 510.7 mm TL versus 495.2 mm TL), and nearly four times as many Silver Carp independently jumped into the boat during experimental transects. Novel sampling approaches, such as the experimental electrofishing technique used in this study, should be considered to increase probability of detection for aquatic nuisance species.

  12. Estimating the sources and transport of nutrients in the Waikato River Basin, New Zealand

    USGS Publications Warehouse

    Alexander, Richard B.; Elliott, Alexander H.; Shankar, Ude; McBride, Graham B.

    2002-01-01

    We calibrated SPARROW (Spatially Referenced Regression on Watershed Attributes) surface water‐quality models using measurements of total nitrogen and total phosphorus from 37 sites in the 13,900‐km2 Waikato River Basin, the largest watershed on the North Island of New Zealand. This first application of SPARROW outside of the United States included watersheds representative of a wide range of natural and cultural conditions and water‐resources data that were well suited for calibrating and validating the models. We applied the spatially distributed model to a drainage network of nearly 5000 stream reaches and 75 lakes and reservoirs to empirically estimate the rates of nutrient delivery (and their levels of uncertainty) from point and diffuse sources to streams, lakes, and watershed outlets. The resulting models displayed relatively small errors; predictions of stream yield (kg ha−1 yr−1) were typically within 30% or less of the observed values at the monitoring sites. There was strong evidence of the accuracy of the model estimates of nutrient sources and the natural rates of nutrient attenuation in surface waters. Estimated loss rates for streams, lakes, and reservoirs agreed closely with experimental measurements and empirical models from New Zealand, North America, and Europe as well as with previous U.S. SPARROW models. The results indicate that the SPARROW modeling technique provides a reliable method for relating experimental data and observations from small catchments to the transport of nutrients in the surface waters of large river basins.

  13. Thermal modelling approaches to enable mitigation measures implementation for salmonid gravel stages in hydropeaking rivers

    NASA Astrophysics Data System (ADS)

    Casas-Mulet, R.; Alfredsen, K. T.

    2016-12-01

    The dewatering of salmon spawning redds can lead to early life stages mortality due to hydropeaking operations, with higher impact on the alevins stages as they have lower tolerance to dewatering than the eggs. Targeted flow-related mitigations measures can reduce such mortality, but it is essential to understand how hydropeaking change thermal regimes in rivers and may impact embryo development; only then optimal measures can be implemented at the right development stage. We present a set of experimental approaches and modelling tools for the estimation of hatch and swim-up dates based on water temperature data in the river Lundesokna (Norway). We identified critical periods for gravel-stages survival and through comparing hydropeaking vs unregulated thermal and hydrological regimes, we established potential flow-release measures to minimise mortality. Modelling outcomes were then used assess the cost-efficiency of each measure. The combinations of modelling tools used in this study were overall satisfactory and their application can be useful especially in systems where little field data is available. Targeted measures built on well-informed modelling approaches can be pre-tested based on their efficiency to mitigate dewatering effects vs. the hydropower system capacity to release or conserve water for power production. Overall, environmental flow releases targeting specific ecological objectives can provide better cost-effective options than conventional operational rules complying with general legislation.

  14. Recovery and Determination of Adsorbed Technetium on Savannah River Site Charcoal Stack Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahoda, Kristy G.; Engelmann, Mark D.; Farmer, Orville T.

    2008-03-01

    Experimental results are provided for the sample analyses for technetium (Tc) in charcoal samples placed in-line with a Savannah River Site (SRS) processing stack effluent stream as a part of an environmental surveillance program. The method for Tc removal from charcoal was based on that originally developed with high purity charcoal. Presented is the process that allowed for the quantitative analysis of 99Tc in SRS charcoal stack samples with and without 97Tc as a tracer. The results obtained with the method using the 97Tc tracer quantitatively confirm the results obtained with no tracer added. All samples contain 99Tc at themore » pg g-1 level.« less

  15. Chemical composition, stratigraphy, and depositional environments of the Black River Group (Middle Ordovician), southwestern Ohio.

    USGS Publications Warehouse

    Stith, David A.

    1981-01-01

    The chemical composition and stratigraphy of the Black River Group in southwestern Ohio were studied. Chemical analyses were done on two cores of the Black River from Adams and Brown Counties, Ohio. These studies show that substantial reserves of high-carbonate rock are present in the Black River at depths of less than 800 ft, in proximity to Cincinnati and the Ohio River. Stratigraphic studies show that the Black River Group has eight marker beds in its middle and upper portions and three distinct lithologic units in its lower portion; these marker beds and units are present throughout southwestern Ohio. The Black River Group correlates well with the High Bridge Group of Kentucky. Depositional environments of the Black River are similar to those of the High Bridge and to present-day tidal flats in the Bahamas.-Author

  16. Population characteristics and assessment of overfishing for an exploited paddlefish population in the lower Tennessee River

    USGS Publications Warehouse

    Scholten, G.D.; Bettoli, P.W.

    2005-01-01

    Paddlefish Polyodon spathula (n = 576) were collected from Kentucky Lake, Kentucky-Tennessee, with experimental gill nets in 2003-2004 to assess population characteristics and the potential for commercial overfishing. Additional data were collected from 1,039 paddlefish caught by commercial gillnetters in this impoundment. Since the most recent study in 1991, size and age structure have been reduced and annual mortality has tripled. In the 1991 study, 37% of the fish collected were older than the maximum age we observed (age 11), and in 2003 annual mortality for paddlefish age 7 and older was high (A = 68%). Natural mortality is presumably low (<10%) for paddlefish; therefore, exploitation in recent years is high. Estimates of total annual mortality were negatively related to river discharge in the years preceding each estimate. The number of paddlefish harvested since 1999 was also negatively related to river discharge because gill nets cannot be easily deployed when discharge exceeds approximately 850 m3/s. Large females spawn annually because all females longer than 1,034 mm eye-fork length (EFL) were gravid. No mature females were protected by the current 864-mm minimum EFL limit. At a low natural mortality rate, higher size limits when exploitation was high (40-70%) increased simulated flesh yields by 10-20%. Even at low levels of exploitation (21%), spawning potential ratios (SPRs) under the current 864-mm minimum EFL size limit fell below 20%. If the size limit was raised to 1,016 mm EFL, the population could withstand up to 62% exploitation before the SPR falls below 20%. An analysis of annual mortality caps indicated that the best way to increase the average size of harvested fish is to increase the minimum size limit. Recruitment overfishing probably occurs during drought years; however, variation in river discharge has prevented the population from being exploited at unsustainable rates in the past. ?? Copyright by the American Fisheries Society 2005.

  17. Assessing Freshwater Ecosystem Service Risk over Ecological, Socioeconomic, and Cultural Gradients: Problem Space Characterization and Methodology

    NASA Astrophysics Data System (ADS)

    Harmon, T. C.; Villamizar, S. R.; Conde, D.; Rusak, J.; Reid, B.; Astorga, A.; Perillo, G. M.; Piccolo, M. C.; Zilio, M.; London, S.; Velez, M.; Hoyos, N.; Escobar, J.

    2014-12-01

    Freshwater ecosystems and the services they provide are under increasing anthropogenic pressure at local (e.g., irrigation diversions, wastewater discharge) and global scales (e.g., climate change, global trading). The impact depends on an ecosystem's sensitivity, which is determined by its geophysical and ecological settings, and the population and activities in its surrounding watershed. Given the importance of ecosystem services, it is critical that we improve our ability to identify and understand changes in aquatic ecosystems, and translate them to risk of service loss. Furthermore, to inspire changes in human behavior, it is equally critical that we learn to communicate risk, and pose risk mitigation strategies, in a manner acceptable to a broad spectrum of stakeholders. Quantifying the nature and timing of the risk is difficult because (1) we often fail to understand the connection between anthropogenic pressures and the timing and extent of ecosystem changes; and (2) the concept of risk is inherently coupled to human perception, which generally differs with cultural and socio-economic conditions. In this study, we endeavor to assess aquatic ecosystem risks across an international array of six study sites. The challenge is to construct a methodology capable of capturing the marked biogeographical, socioeconomic, and cultural differences among the sites, which include: (1) Muskoka River watershed in humid continental Ontario, Canada; (2) Lower San Joaquin River, an impounded snow-fed river in semi-arid Central California; (3) Ciénaga Grande de Santa Marta, a tropical coastal lagoon in Colombia; (4) Senguer River basin in the semi-arid part of Argentina; (5) Laguna de Rocha watershed in humid subtropical Uruguay; and (6) Palomas Lake complex in oceanic Chilean Patagonia. Results will include a characterization of the experimental gradient over the six sites, an overview of the risk assessment methodology, and preliminary findings for several of the sites.

  18. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    NASA Astrophysics Data System (ADS)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling process, (3) deriving and using informative priors in sediment fingerprinting context and (4) transparency of the process and replication of model results by other users.

  19. Streamflow statistics for unregulated and regulated conditions for selected locations on the Upper Yellowstone and Bighorn Rivers, Montana and Wyoming, 1928-2002

    USGS Publications Warehouse

    Chase, Katherine J.

    2014-01-01

    Major floods in 1996 and 1997 intensified public debate about the effects of human activities on the Yellowstone River. In 1999, the Yellowstone River Conservation District Council was formed to address conservation issues on the river. The Yellowstone River Conservation District Council partnered with the U.S. Army Corps of Engineers to carry out a cumulative effects study on the main stem of the Yellowstone River. The cumulative effects study is intended to provide a basis for future management decisions within the watershed. Streamflow statistics, such as flow-frequency data calculated for unregulated and regulated streamflow conditions, are a necessary component of the cumulative effects study. The U.S. Geological Survey, in cooperation with the Yellowstone River Conservation District Council and the U.S. Army Corps of Engineers, calculated low-flow frequency data and general monthly and annual statistics for unregulated and regulated streamflow conditions for the Upper Yellowstone and Bighorn Rivers for the 1928–2002 study period; these data are presented in this report. Unregulated streamflow represents flow conditions during the 1928–2002 study period if there had been no water-resources development in the Yellowstone River Basin. Regulated streamflow represents estimates of flow conditions during the 1928–2002 study period if the level of water-resources development existing in 2002 was in place during the entire study period.

  20. Magnitude and frequency analysis on river width widening caused by Typhoon Morakot in the Kaoping River watershed, Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jan, C. D.; Wang, Y. C.

    2014-12-01

    Active evolving rivers are some of the most dynamic and sensitive parts of landscapes. From geologic and geomorphic perspectives, a stable river channel can adjust its width, depth, and slope to prevent significant aggradation or degradation caused by external triggers, e.g., hydrologic events caused by typhoon storms. In particular, the processes of lateral riverbank erosion play a majorly important role in forming horizontal river geomorphology, dominating incised river widens and meanders. Sediment materials produced and mobilized from riverbanks can also be substantial sediment supplying into river channel networks, affecting watershed sediment yield. In Taiwan, the geological and climatic regimes usually combine to generate severely lateral erosion and/or riverbed deposition along river channels, causing the significant change in river width. In the August of 2009, Typhoon Morakot brought severe rainfall of about 2000 mmin Southern Taiwan during three days at the beginning of Aug. 5, leading to significant changes in geomorphic system. Here we characterized river width widening (including Cishan, Laonong, and Ilao Rivers) in the Kaoping River watershed after Typhoon Morakot disturbance interpreted through a power law. On the basis of a temporal pair (2008 and 2009) of Formosat-II (Formosa satellite II) images analysis, the river channels were digitalized within geographic information system (GIS), and river widths were extracted per 100 m along the rivers, then differentiating the adjustment of river width before and after Typhoon Morkot. The river width adjusted from -83 m (contracting) to 1985 m (widening), with an average of 170 m. The noncumulative frequency-magnitude distribution for river width adjustment caused by Typhoon Morakot in the study area satisfies a power-law relation with a determined coefficient (r2) of 0.95, over the range from 65 m to 2373m in the study area. Moreover, the value of the power-law exponent is equal to -2.09. This pattern suggests that river channel widening caused by large, infrequent hydrologic episodes has self-organized criticality. This study can provide useful information to river and watershed management, thereby refining the prevention and mitigation of hazard risks due to the effect of river width widening.

  1. Tank Model Application for Runoff and Infiltration Analysis on Sub-Watersheds in Lalindu River in South East Sulawesi Indonesia

    NASA Astrophysics Data System (ADS)

    Wirdhana Ahmad, Sitti

    2017-05-01

    Improper land management often causes flood, this is due to uncontrolled runoff. Runoff is affected by the management of the land cover. The phenomena also occurred in South East Sulawesi, Indonesia. This study aims to analyze the flow rate of water in watershed of Lalindu River in North Konawe, South East Sulawesi by using a Tank Model. The model determined the magnitude of the hydrologic runoff, infiltration capacity and soil water content several land uses were evaluated in the study area. The experimental and calculation results show that the runoff in the forest is 2,639.21 mm/year, in the reed is 2,517.05 mm/year, in the oil palm with a slope more than 45% is 2,715.36 mm/year, and in the oil palm with slopes less than 45% is 2,709.59 mm/year. Infiltration in the forest is 30.70 mm/year, in the reed is 7.51 mm/year, in the palm oil with a slope more than 45% is 24.13 mm/year and in the palm oil with slopes less than 45% is 29.67 mm/year. Runoff contributes to stream flow for water availability.

  2. Impact of variable river water stage on the simulation of groundwater-river interactions over the Upper Rhine Graben hydrosystem

    NASA Astrophysics Data System (ADS)

    Habets, F.; Vergnes, J.

    2013-12-01

    The Upper Rhine alluvial aquifer is an important transboundary water resource which is particularly vulnerable to pollution from the rivers due to anthropogenic activities. A realistic simulation of the groundwater-river exchanges is therefore of crucial importance for effective management of water resources, and hence is the main topic of the NAPROM project financed by the French Ministry of Ecology. Characterization of these fluxes in term of quantity and spatio-temporal variability depends on the choice made to represent the river water stage in the model. Recently, a couple surface-subsurface model has been applied to the whole aquifer basin. The river stage was first chosen to be constant over the major part of the basin for the computation of the groundwater-river interactions. The present study aims to introduce a variable river water stage to better simulate these interactions and to quantify the impact of this process over the simulated hydrological variables. The general modeling strategy is based on the Eau-Dyssée modeling platform which couples existing specialized models to address water resources and quality in regional scale river basins. In this study, Eau-Dyssée includes the RAPID river routing model and the SAM hydrogeological model. The input data consist in runoff and infiltration coming from a simulation of the ISBA land surface scheme covering the 1986-2003 period. The QtoZ module allows to calculate river stage from simulated river discharges, which is then used to calculate the exchanges between aquifer units and river. Two approaches are compared. The first one uses rating curves derived from observed river discharges and river stages. The second one is based on the Manning's formula. Manning's parameters are defined with geomorphological parametrizations and topographic data based on Digital Elevation Model (DEM). First results show a relatively good agreement between observed and simulated river water height. Taking into account a variable river stage seems to increase the amount of water exchanged between groundwater and river. Systematic biases are nevertheless found between simulated and observed mean river stage elevation. They show that the primary source of errors when simulating river stage - and hence groundwater-river interactions - is the uncertainties associated with the topographic data used to define the riverbed elevation. Thus, this study confirms the need to access to more accurate DEM for estimating riverbed elevation and studying groundwater-river interactions, at least at regional scale.

  3. Assessing applicability of SWAT calibrated at multiple spatial scales from field to stream

    USDA-ARS?s Scientific Manuscript database

    The capability of SWAT for simulating long-term hydrology and water quality was evaluated using data collected in subwatershed K of the Little River Experimental watershed located in South Atlantic Coastal Plain of the USA. The SWAT model was calibrated to measurements made at various spatial scales...

  4. Rejection of cowbird eggs by crissal thrashers

    Treesearch

    Deborah M. Finch

    1982-01-01

    Although the "dwarf" race of the Brown-headed Cowbird (Molothrus ater obscurus) is sympatric with the Crissal Thrasher (Toxostoma dorsale) in the lower Colorado River valley, I observed no parasitism in 15 thrasher nests. To determine whether or not the absence of cowbird eggs was caused by egg rejection, I experimentally parasitized nine thrasher nests....

  5. JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.

    DTIC Science & Technology

    1991-01-17

    Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,

  6. Upper Washita River experimental watersheds: Multiyear stability of soil water content profiles

    USDA-ARS?s Scientific Manuscript database

    Scaling in situ soil water content time series data to a large spatial domain is a key element of watershed environmental monitoring and modeling. The primary method of estimating and monitoring large-scale soil water content distributions is via in situ networks. It is critical to establish the s...

  7. Production, respiration, and overall carbon balance in an old-growth Pseudotsuga-Tsuga forest ecosystem

    Treesearch

    Mark E. Harmon; Ken Bible; Michael G. Ryan; David C. Shaw; H. Chen; Jeffrey Klopatek; Xia Li

    2004-01-01

    Ground-based measurements of stores, growth, mortality, litterfall, respiration, and decomposition were conducted in an old-growth forest at Wind River Experimental Forest, Washington. These measurements were used to estimate: Gross (GPP) and Net Primary Production (NPP); autotrophic (Ra) and heterotrophic (Rh) respiration; and Net Ecosystem Production (NEP). Monte...

  8. Spatial variations in water quality of river Ganga with respect to land uses in Varanasi.

    PubMed

    Sharma, Shikha; Roy, Arijit; Agrawal, Madhoolika

    2016-11-01

    Water quality of a river is a function of surrounding environment and land use due to its connectivity with land, resulting in pollutants finding their way through land. This necessitates a spatially explicit study of river ecology. The paper presents a pioneer study to establish and explore the linkage between land use and water quality of river Ganga in Varanasi district. The land use land cover (LULC) map of 20 km of river stretch for buffer radii of 1000 m in Varanasi revealed that riparian vegetation is negligible in the district. The hierarchical cluster analysis of LULC data suggested that there are two major land use categories, viz., urban and agriculture. The land use wise principal component analysis (PCA) suggested that urbanized areas are major contributor of metals, whereas agricultural land contributes organic matter into the river. The Spearman correlation study revealed that with rising urbanization, the pollutant load into the river increased compared to that from agricultural land use. The statistical analysis of the data clearly concluded that water quality of river Ganga at Varanasi was a function of adjacent land use. The study provides an insight anticipating the Indian government to embrace the relationship of land use to river water quality while formulating policies for the upcoming River Regulation Zone.

  9. Do management actions to restore rare habitat benefit native fish conservation? Distribution of juvenile native fish among shoreline habitats of the Colorado River

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Gerig, Brandon; Pine, William E.; Korman, Josh; Finch, Colton

    2015-01-01

    Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi-species hierarchical models to estimate habitat-specific abundances and densities of juvenile humpback chub, bluehead suckerCatostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River. 

  10. Reproductive physiology of Missouri River gravid pallid sturgeon and shovelnose sturgeon during the 2005 and 2006 spawning seasons: Chapter C in Factors affecting the reproduction, recruitment, habitat, and population dynamics of pallid sturgeon and shovelnose sturgeon in the Missouri River

    USGS Publications Warehouse

    Papoulias, Diana M.; Annis, Mandy L.; Delonay, Aaron J.; Tillitt, Donald E.

    2007-01-01

    In a natural, unaltered river, the location and timing of sturgeon spawning will be dictated by the prevailing environmental conditions to which the sturgeon have adapted. A goal of the Comprehensive Sturgeon Research Program (CSRP; see chap. A) at the U.S. Geological Survey Columbia Environmental Research Center is to identify where, when, and under what conditions shovelnose sturgeon (Scaphirhynchus platorynchus) and pallid sturgeon (S. albus) spawn in the altered Missouri River so that those conditions necessary for spawning success can be defined. One approach to achieving this goal is to exploit what is known about fish reproductive physiology to develop and apply a suite of diagnostic indicators of readiness to spawn. In 2005 and 2006, gravid shovelnose sturgeon and a limited number of pallid sturgeon were fitted with transmitters and tracked on their spawning migration. A suite of physiological indicators of reproductive state such as reproductive hormones and oocyte development were measured. These same measurements were made on tissues collected from additional fish, presumably migrating to spawn, that were not tagged or tracked. The data presented here indicating the sturgeons’ readiness to spawn are to be evaluated together with their behavior and the environmental conditions. The U.S. Army Corps of Engineers (ACOE) Sturgeon Response to Flow Modification (SRFM; see chap. A) study, initiated in 2006, provides additional opportunities to experimentally evaluate the sturgeon reproductive response indicators relative to changes in flow. In this chapter, we report progress made on identifying and developing the physiological indicators and summarize 2 years’ worth of indicator data collected thus far.

  11. Is there enough sand? Evaluating the fate of Grand Canyon sandbars

    USGS Publications Warehouse

    Wright, S.A.; Schmidt, J.C.; Meles, T.S.; Topping, D.J.; Rubin, D.M.

    2008-01-01

    Large dams have the potential to dramatically alter the flow regime, geomorphology, and aquatic ecosystem of downstream river reaches. Development of flow release regimes in order to meet multiple objectives is a challenge facing dam operators, resource managers, and scientists. Herein, we review previous work and present new analyses related to the effects of Glen Canyon Dam on the downstream reach of the Colorado River in Marble and Grand Canyons. The dam traps the entire incoming sediment load in Lake Powell and modulates the hydrologic regime by, for example, eliminating spring snowmelt floods, resulting in changes in the geomorphology of the river downstream. The primary geomorphic impact has been the erosion of sandbars along the banks of the river. Recognition of this impact has led to many scientific studies and a variety of experimental operations of Glen Canyon Dam with the goal of rebuilding the eroding sandbars. These efforts have thus far been generally unsuccessful and the question remains as to whether or not the dam can be operated such that sandbars can be rebuilt and maintained over extended periods with the existing sediment supply. We attempt to answer this question by evaluating a dam operation that may be considered a "best-case scenario" for rebuilding and maintaining eroded sandbars. Our analysis suggests that this best-case scenario may indeed have viability for rebuilding sandbars, and that the initial rate at which sandbars could be rebuilt is comparable to the rate at which sandbars have been eroded since dam construction. The question remains open as to the viability of operations that deviate from the best-case scenario that we have defined.

  12. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentile, Carmelo; Luzi, Guido

    2014-05-27

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions,more » with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.« less

  13. Multiscale Modeling of Radioisotope Transfers in Watersheds, Rivers, Reservoirs and Ponds of Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Zheleznyak, M.; Kivva, S.; Nanba, K.; Wakiyama, Y.; Konoplev, A.; Onda, Y.; Gallego, E.; Papush, L.; Maderych, V.

    2015-12-01

    The highest densities of the radioisotopes in fallout from the Fukushima Daiichi NPP in March 2011 were measured at the north eastern part of Fukushima Prefecture. The post-accidental aquatic transfer of cesium -134/137 includes multiscale processes: wash-off from the watersheds in solute and with the eroded soil, long-range transport in the rivers, deposition and resuspension of contaminated sediments in reservoirs and floodplains. The models of EU decision support system RODOS are used for predicting dynamics of 137Cs in the Fukushima surface waters and for assessing efficiency of the remediation measures. The transfer of 137Cs through the watershed of Niida River was simulated by DHSVM -R model that includes the modified code of the distributed hydrological and sediment transport model DHSVM (Lettenmayer, Wigmosta et al.) and new module of radionuclide transport. DHSMV-R was tested by modelling the wash-off from the USLE experimental plots in Fukushima prefecture. The model helps to quantify the influence of the differentiators of Fukushima and Chernobyl watersheds, - intensity of extreme precipitation and steepness of watershed, on the much higher values of the ratio "particulated cesium /soluted cesium" in Fukushima rivers than in Chernobyl rivers. Two dimensional model COASTOX and three dimensional model THREETOX are used to simulate the fate of 137Cs in water and sediments of reservoirs in the Manogawa River, Otagawa River, Mizunashigawa River, which transport 137Cs from the heavy contaminated watersheds to the populated areas at the Pacific coast. The modeling of the extreme floods generated by typhoons shows the resuspension of the bottom sediments from the heavy contaminated areas in reservoirs at the mouths of inflowing rivers at the peaks of floods and then re-deposition of 137Cs downstream in the deeper areas. The forecasts of 137Cs dynamics in bottom sediments of the reservoirs were calculated for the set of the scenarios of the sequences of the high floods of the next years. MOIRA -LAKE model of long term radioisotopes transfer in water, bottom sediment and fish was used for the assessments of the efficiency of the bottom sediment dredging for the remediation of the irrigation ponds at Okuma town.

  14. Landscape level influence: aquatic primary production in the Colorado River of Glen and Grand canyons

    NASA Astrophysics Data System (ADS)

    Yard, M. D.; Kennedy, T.; Yackulic, C. B.; Bennett, G. E.

    2012-12-01

    Irregular features common to canyon-bound regions intercept solar incidence (photosynthetic photon flux density [PPFD: μmol m-2 s-1]) and can affect ecosystem energetics. The Colorado River in Grand Canyon is topographically complex, typical of most streams and rivers in the arid southwest. Dam-regulated systems like the Colorado River have reduced sediment loads, and consequently increased water transparency relative to unimpounded rivers; however, sediment supply from tributaries and flow regulation that affects erosion and subsequent sediment transport, interact to create spatial and temporal variation in optical conditions in this river network. Solar incidence and suspended sediment loads regulate the amount of underwater light available for aquatic photosynthesis in this regulated river. Since light availability is depth dependent (Beer's law), benthic algae is often exposed to varying levels of desiccation or reduced light conditions due to daily flow regulation, additional factors that further constrain aquatic primary production. Considerable evidence suggests that the Colorado River food web is now energetically dependent on autotrophic production, an unusual condition since large river foodwebs are typically supported by allochthonous carbon synthesized and transported from terrestrial environments. We developed a mechanistic model to account for these regulating factors to predict how primary production might be affected by observed and alternative flow regimes proposed as part of ongoing adaptive management experimentation. Inputs to our model include empirical data (suspended sediment and temperature), and predictive relationships: 1) solar incidence reaching the water surface (topographic complexity), 2) suspended sediment-light extinction relationships (optical properties), 3) unsteady flow routing model (stage-depth relationship), 4) channel morphology (photosynthetic area), and 5) photosynthetic-irradiant response for dominant algae (Cladophora glomerata and associated epiphytes). Initial findings suggest that aquatic primary production varies spatially and temporally in response to natural processes occurring at varying spatial scales and that flow regulation per se has only a minor effect on primary production. All of these physical drivers combined are likely to structure the abundance, distribution, and interaction of aquatic biota found in this ecosystem.

  15. The experimental flow to the Colorado River delta: Effects on carbon mobilization in a dry watercourse

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas S.; Butman, David; Raymond, Peter A.; Ward, Nicholas D.; Kates, Rory J. S.; Flessa, Karl W.; Zamora, Hector; Arellano, Ana R.; Ramirez, Jorge; Rodriguez, Eliana

    2017-03-01

    Here we report on the effects of an experimental flood on the carbon cycling dynamics in the dry watercourse of the Colorado River in Mexico. We observed post-flood differences in the degree of decay, age, and concentration of dissolved organic carbon (DOC), as well as dissolved CH4 and CO2 concentrations throughout the study site. Our results indicate that this flooded waterway was a limited source of CH4 and CO2 to the atmosphere during the event and that DOC age increased with time of flooding. Based on our findings, we suggest that the interplay between storage and mobilization of carbon and greenhouse gases in arid and semiarid regions is potentially sensitive to changing climate conditions, particularly hydrologic variability. Changes in the radiocarbon age of DOC throughout the flooding event suggest that organic matter (OM) that had been stored for long periods (e.g., millennial) was mobilized by the flooding event along with CO2. The OM residing in the dry riverbed that was mobilized into floodwaters had a signature reflective of degraded vascular plant OM and microbial biomass. Whether this microbial OM was living or dead, our findings support previous work in soils and natural waters showing that microbial OM can remain stable and stored in ecosystems for long time periods. As human appropriation of water resources continues to increase, the episodic drying and rewetting of once natural riverbeds and deltas may fundamentally alter the processing and storage of carbon in such systems.

  16. Hydropower Production and Fish Habitat Suitability: Impact and Effectiveness of Environmental Flow Prescriptions

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Pugliese, Alessio; Galeati, Giorgio; Castellarin, Attilio

    2017-04-01

    The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally computed from empirical methodologies, which are seldom based on site-specific studies, and may not be representative of local ecological and hydraulic conditions. Here we present the results of a quantitative analysis on the effectiveness of two alternative environmental flow scenarios prescribed in Central Italy (time-invariant experimental and empirically-based flow release versus time-variant hydrogeomorphologically-based flow release) and their impact on hydropower production and fish habitat suitability. The latter is examined by means of several models of habitat suitability curve, which is a well-known approach capable of analysing fluvial species preferences as a function of key eco-hydraulic features, such as water depth, flow velocity and river substrate. The results show an evident loss of hydropower production moving from the time-invariant experimental flow release to the hydrogeomorphological one (nearly 20% at the annual scale). Concerning the effects in terms of fish habitat suitability, our outcomes are less obvious, since they are species- and life stage-specific. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.

  17. Hydropower Production and Fish Habitat Suitability: Impact and Effectiveness of Environmental Flow Prescriptions

    NASA Astrophysics Data System (ADS)

    Castellarin, A.; Galeati, G.; Ceola, S.; Pugliese, A.; Ventura, M.; Montanari, A.

    2017-12-01

    The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally computed from empirical methodologies, which are seldom based on site-specific studies, and may not be representative of local ecological and hydraulic conditions. Here we present the results of a quantitative analysis on the effectiveness of two alternative environmental flow scenarios prescribed in Central Italy (time-invariant experimental and empirically-based flow release versus time-variant hydrogeomorphologically-based flow release) and their impact on hydropower production and fish habitat suitability. The latter is examined by means of several models of habitat suitability curve, which is a well-known approach capable of analysing fluvial species preferences as a function of key eco-hydraulic features, such as water depth, flow velocity and river substrate. The results show an evident loss of hydropower production moving from the time-invariant experimental flow release to the hydrogeomorphological one (nearly 20% at the annual scale). Concerning the effects in terms of fish habitat suitability, our outcomes are less obvious, since they are species- and life stage-specific. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.

  18. Behavioral responses of freshwater mussels to experimental dewatering

    USGS Publications Warehouse

    Galbraith, Heather S.; Blakeslee, Carrie J.; Lellis, William A.

    2015-01-01

    Understanding the effects of flow alteration on freshwater ecosystems is critical for predicting species responses and restoring appropriate flow regimes. We experimentally evaluated the effects of 3 dewatering rates on behavior of 6 freshwater mussel species in the context of water-removal rates observed in 21 Atlantic Coast rivers. Horizontal movement differed significantly among species and dewatering rates, but a significant species × dewatering interaction suggested that these factors influence movement in complex ways. Species differences in movement were evident only in controls and under slow dewatering rates, but these differences disappeared at moderate and fast dewatering rates. Burrowing behavior did not differ with respect to species identity or dewatering rate. The proportion of individuals that became stranded did not differ among species, but most individuals became stranded under low and moderate dewatering, and all individuals became stranded under fast dewatering. Mortality after stranding differed strongly among species along a gradient from 25% inPyganodon cataracta to 92% in Alasmidonta marginata. Together, these results suggest that species behavior may differ under gradual dewatering, but all species in our study are poorly adapted for rapid dewatering. Most of the 21 rivers we assessed experienced dewatering events comparable to our moderate rate, and several experienced events comparable to our fast rate. Dewatering events that exceed the movement or survival capability of most mussel species can be expected to result in assemblage-wide impacts. Consequently, the rate of water level change may be important in refining target flow conditions for restoration.

  19. Effects of initial climatic conditions on growth and accumulation of fluoride and nitrogen in leaves of two tropical tree species exposed to industrial air pollution.

    PubMed

    Furlan, Cláudia Maria; Domingos, Marisa; Salatino, Antonio

    2007-03-15

    Saplings of Tibouchina pulchra and Psidium guajava, cultivated under standardized soil conditions, were placed in two sites at Cubatão (state of São Paulo, southeast Brazil) to study the effects of air pollution on growth, biomass allocation and foliar nitrogen and fluoride concentrations. Thirty-six potted plants were maintained over two periods of one year (Jul/00 to Jun/01; Dec/00 to Nov/01) at each of two experimental sites with distinct levels of air pollution: Pilões River Valley (PV) with vegetation virtually unaffected by air pollution; and Mogi River Valley (MV) severely affected by pollutants released mainly by chemical, fertilizer, iron and steel industries. For both species, saplings growing at MV showed alterations of growth and biomass allocation, as well as increased leaf concentrations of nitrogen and fluoride. Comparing both experimental periods, the one starting in winter (the driest season in Southeastern Brazil) seemed to affect the saplings more severely, the differences of the measured parameters between MV and PV being higher than in the second period. Multivariate analysis revealed two groups of data: one representing the MV and the other the PV saplings. For both species, saplings growing at MV showed differences in chemical composition, growth and biomass allocation, compared with the PV saplings. The results suggested that seasonal conditions of the first months of sapling exposure (summer or winter) modulate the intensity of responses to pollution stress.

  20. Rivers on Titan - numerical modelling of sedimentary structures

    NASA Astrophysics Data System (ADS)

    Misiura, Katarzyna; Czechowski, Leszek

    2016-07-01

    On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan [1]. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. Similar, parallel simulations for rivers deltas are presented in [2]. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. Results and Conclusions The results of our simulation show the differences in behaviour of the flow and of the sedimentation on Titan and on the Earth. Our preliminary results indicate that suspended load is the main way of transport in simulated Titan's conditions. We also indicate that braided rivers appears for larger range of slope on Titan (e.g. S=0.01-0.04) than on Earth (e.g. S=0.004-0.009). Also, for the same type of river, the grain size on Titan is at least 10 times larger than on Earth (1 cm for Titan versus 1 mm for the Earth). It is very interesting that on Titan braided rivers appear even for very little discharge (e.g. Q=30m3/s) and for very large grain size (e.g. 10 cm). In the future we plan the experimental modelling in sediment basin to confirm results from computer modelling. Acknowledgements We are very grateful to Yaoxin Zhang and Yafei Jia from National Center for Computational Hydroscience and Engineering for providing their program - CCHE2D. References [1] Misiura, K., Czechowski, L., 2015. Numerical modelling of sedimentary structures in rivers on Earth and Titan. Geological Quarterly, 59(3): 565-580. [2] Witek, P., Czechowski, L., 2015. Dynamical modeling of river deltas on Titan and Earth. Planet. Space. Sci., 105: 65-79.

  1. Particle size and chemical control of heavy metals in bed sediment from the Rouge River, southeast Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, K.S.; Cauvet, D.; Lybeer, M.

    1999-04-01

    Anthropogenic activities related to 100 years of industrialization in the metropolitan Detroit area have significantly enriched the bed sediment of the lower reaches of the Rouge River in Cr, Cu, Fe, Ni, Pb, and Zn. These enriched elements, which may represent a threat to biota, are predominantly present in sequentially extracted reducible and oxidizable chemical phases with small contributions from residual phases. In size-fractionated samples trace metal concentrations generally increase with decreasing particle size, with the greatest contribution to this increase from the oxidizable phase. Experimental results obtained on replicate samples of river sediment demonstrate that the accuracy of themore » sequential extraction procedure, evaluated by comparing the sums of the three individual fractions, is generally better than 10%. Oxidizable and reducible phases therefore constitute important sources of potentially available heavy metals that need to be explicitly considered when evaluating sediment and water quality impacts on biota.« less

  2. Designing the Alluvial Riverbeds in Curved Paths

    NASA Astrophysics Data System (ADS)

    Macura, Viliam; Škrinár, Andrej; Štefunková, Zuzana; Muchová, Zlatica; Majorošová, Martina

    2017-10-01

    The paper presents the method of determining the shape of the riverbed in curves of the watercourse, which is based on the method of Ikeda (1975) developed for a slightly curved path in sandy riverbed. Regulated rivers have essentially slightly and smoothly curved paths; therefore, this methodology provides the appropriate basis for river restoration. Based on the research in the experimental reach of the Holeška Brook and several alluvial mountain streams the methodology was adjusted. The method also takes into account other important characteristics of bottom material - the shape and orientation of the particles, settling velocity and drag coefficients. Thus, the method is mainly meant for the natural sand-gravel material, which is heterogeneous and the particle shape of the bottom material is very different from spherical. The calculation of the river channel in the curved path provides the basis for the design of optimal habitat, but also for the design of foundations of armouring of the bankside of the channel. The input data is adapted to the conditions of design practice.

  3. Laboratory measurements of radiance and reflectance spectra of a dilute biosolid industrial waste product

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Witte, W. G.; Whitlock, C. H.; Gurganus, E. A.

    1979-01-01

    Experimental measurements were made of upwelled spectral signatures of various concentrations of industrial waste products mixed with water in a large water tank. Radiance and reflectance spectra for a biosolid waste product (sludge) mixed with conditioned tap water and natural river water are reported. Results of these experiments indicate that reflectance increases with increasing concentration of the sludge at practically all wavelengths for concentration of total suspended solids up to 117 ppm in conditioned tap water and 171 ppm in natural river water. Significant variations in the spectra were observed and may be useful in defining spectral characteristics for this waste product. No significant spectral differences were apparent in the reflectance spectra of the two experiments, especially for wavelengths greater than 540 nm. Reflectance values, however, were generally greater in natural river water for wavelengths greater than 540 nm. Reflectance may be considered to increase linearly with concentration of total suspended solids from 5 to 171 ppm at all wavelengths without introducing errors larger than 10 percent.

  4. Zooplankton Linkages between Rivers and Great Lakes: Case Study from the St. Louis River

    EPA Science Inventory

    In this case study, we characterized the spatial and seasonal distribution and abundance of zooplankton within the hydrologically complex drowned river mouth of the St. Louis River, the second largest tributary to Lake Superior and an important fish nursery. We hypothesize that z...

  5. An Ecological Study of the Lagoons Surrounding the John F. Kennedy Space Center, Brevard County, Florida. Volume I; Experimental Results and Conclusions

    NASA Technical Reports Server (NTRS)

    Nevin, T. A.; Lasater, J. A.; Clark, K. B.; Kalajian, E. H.; Dubbelday, P. S.

    1976-01-01

    The studies reported here are the result of a three year effort to define the major biological, microbiological, chemical and geological characteristics of the water of the Indian River lagoon around the Kennedy Space Center and to determine the movements of those waters within and between the various basins. This work was the result of a jointly funded agreement between the Florida Institute of Technology and John F. Kennedy Space Center, NASA under NASA Grant NGR 10-015-008, dated April 11, 1972. This cost sharing grant was renewed for each of two successive years. Sampling operations were terminated August 31, 1975.

  6. Residence times of transient riverbank exchanges traced by dissolved gases

    NASA Astrophysics Data System (ADS)

    Popp, A. L.; Brennwald, M. S.; Kipfer, R.

    2016-12-01

    Ecosystem functioning of streams heavily depends on nutrient and pollutant fluxes between the stream and the adjacent groundwater. To study potential reactions, we have to estimate the residence time of water exchanges through the streambed and bank sediment. These exchanges within the hyporheic zone have already been thoroughly investigated. However, most previous studies assumed steady-state conditions, despite the fact that the magnitude and timing of riverbank exchanges are highly dynamic. In this study, we estimate residence times of riverbank exchange under transient conditions at a restored river reach in Switzerland. In the stream and in two adjacent observation wells (in 1 m distance to the stream), we continuously analyzed dissolved gas concentrations (O2, N2, O2, Ar, He, Kr, Ne) with a portable mass spectrometer for five months on a 30 m river reach. Additionally, we continuously measured electric conductivity, water tables, and water and air temperatures at all sampling points. At the observation wells we also employed slug tests to estimate the hydraulic conductivity of the investigated stream reach. The obtained time series of tracer data reveals how residence times depend on changes in the hydraulic connectivity of the stream and the adjacent groundwater. Changes in the hydraulic state are induced by (i) different groundwater pumping rates of nearby groundwater abstraction wells, (ii) increased river discharge and (iii) subsequent changes in the hydraulic conductivity of the streambed as a result of unclogging the streambed after floods. Our results contribute to existing knowledge in this research area by identifying non-stationary processes such as the unclogging of the riverbed after flood events. In order to test our hypotheses, our next step is to use our experimental data to constrain a numerical model.

  7. Factors influencing bank geomorphology and erosion of the Haw River, a high order river in North Carolina, since European settlement.

    PubMed

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2-3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows.

  8. Effects of Fluctuating River flow on Groundwater/Surface Water Mixing in the Hyporheic Zone of a Regulated, Large Cobble Bed River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Geist, David R.; Dresel, P. Evan

    2006-10-31

    Physicochemical relationships in the boundary zone between groundwater and surface water (i.e., the hyporheic zone) are controlled by surface water hydrology and the hydrogeologic properties of the riverbed. We studied how sediment permeability and river discharge altered the vertical hydraulic gradient (VHG) and water quality of the hyporheic zone within the Hanford Reach of the Columbia River. The Columbia River at Hanford is a large, cobble-bed river where water level fluctuates up to 2 m daily because of hydropower generation. Concomitant with recording river stage, continuous readings were made of water temperature, specific conductance, dissolved oxygen, and water level ofmore » the hyporheic zone. The water level data were used to calculate VHG between the river and hyporheic zone. Sediment permeability was estimated using slug tests conducted in piezometers installed into the river bed. The response of water quality measurements and VHG to surface water fluctuations varied widely among study sites, ranging from no apparent response to co-variance with river discharge. At some sites, a hysteretic relationship between river discharge and VHG was indicated by a time lag in the response of VHG to changes in river stage. The magnitude, rate of change, and hysteresis of the VHG response varied the most at the least permeable location (hydraulic conductivity (K) = 2.9 x 10-4 cms-1), and the least at the most permeable location (K=8.0 x 10-3 cms-1). Our study provides empirical evidence that sediment properties and river discharge both control the water quality of the hyporheic zone. Regulated rivers, like the Columbia River at Hanford, that undergo large, frequent discharge fluctuations represent an ideal environment to study hydrogeologic processes over relatively short time scales (i.e., days to weeks) that would require much longer periods of time to evaluate (i.e., months to years) in un-regulated systems.« less

  9. Factors Influencing Bank Geomorphology and Erosion of the Haw River, a High Order River in North Carolina, since European Settlement

    PubMed Central

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2–3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows. PMID:25302956

  10. The Clinch River study--An investigation of the fate of radionuclides released to a surface stream

    USGS Publications Warehouse

    Pickering, R.J.; Carrigan, P.H.; Parker, F.L.

    1965-01-01

    The Clinch River Study is a multiagency effort to evaluate the physical, chemical, and biological effects of the release to de Clinch River of low-level radioactive wastes from the Oak Ridge National Laboratory. The major radionuclides released are ruthenium-106, cesium-137, cobalt-60, and strontium-90. Hydrologic and biologic studies have indicated that the radiation doses in the river are well below maximum acceptable levels. Radionuclide concentrations in river water have been measured at seven sampling stations on the Clinch and Tennessee Rivers. Mass-balance calculations for 44 weeks of sampling indicate that losses of radionuclides from the water phase to the river-bottom sediments represent only a very small part of the total radioactivity released to the river. A study of the Clinch River bottom-sediment cores collected in 1962 has disclosed a recurring pattern of variation in radioactivity with depth which may reflect past events in waste-disposal operations at the laboratory. Current investigations are expected to provide information about the chemical forms in which the major radionuclides exist and the mechanisms by which they were incorporated in the sediments.

  11. A breeze-driven current on sloped littoral waters

    NASA Astrophysics Data System (ADS)

    Tohidi, A.; Jamali, M.

    2017-12-01

    Various natural phenomena, e. g. uniform/non-uniform solar radiation and diurnal cycles, affect water circulation patterns through aquatic canopies, that is (usually shallow) shorelines of the rivers, lakes, and lagoons. Amongst these factors is vegetation that, plays a crucial role in conserving and dispersing the nutrients, oxygen, temperature, and generally regulating the life and interactions of organisms with each other (ecology) in aquatic canopies. So far, however, very little attention has been paid to the effects of very low, breeze-like, winds over the water surface in these vegetated regions. In this exploratory study, the evolution of a breeze-driven gravity current traveling up the slope towards the shorelines is shown, experimentally. The flow is characterized using Particle Image Velocimetry (PIV) technique. In addition, a detailed dimensional analysis of the parameter space of the phenomenon is conducted. The results strongly corroborate the experimental observations.

  12. Unusual dominance by desert pupfish (Cyprinodon macularius) in experimental ponds within the Salton Sea Basin

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; Anderson, Thomas W.

    2011-01-01

    In October 2006, months after shallow experimental ponds in the Salton Sea Basin were filled with water from the Alamo River and Salton Sea, fish were observed in several ponds, although inlets had been screened to exclude fish. During October 2007November 2009, nine surveys were conducted using baited minnow traps to document species and relative abundance of fish. Surveys yielded 3,620 fish representing five species. Desert pupfish (Cyprinodon macularius), the only native species encountered, was the most numerous and comprised >93% of the catch. Nonnative species included western mosquitofish (Gambusia affinis, 4.1%), sailfin molly (Poecilia latipinna, 2.8%), and tilapia (a mixture of hybrid Mozambique tilapia Oreochromis mossambicus ?? O. urolepis and redbelly tilapia Tilapia zillii, <0.1%). Dominance by desert pupfish, which persisted over our 2 years of study, was unusual because surveys conducted in nearby agricultural drains yielded relatively few desert pupfish.

  13. Survival and multiplication of Legionella pneumophila in municipal drinking water systems.

    PubMed Central

    States, S J; Conley, L F; Kuchta, J M; Oleck, B M; Lipovich, M J; Wolford, R S; Wadowsky, R M; McNamara, A M; Sykora, J L; Keleti, G

    1987-01-01

    Studies were conducted to investigate the survival and multiplication of Legionella spp. in public drinking water supplies. An attempt was made, over a period of several years, to isolate legionellae from a municipal system. Sampling sites included the river water supply, treatment plant, finished water reservoir system, mains, and distribution taps. Despite the use of several isolation techniques, Legionella spp. could not be detected in any of the samples other than those collected from the river. It was hypothesized that this was due to the maintenance of a chlorine residual throughout the system. To investigate the potential for Legionella growth, additional water samples, collected from throughout the system, were dechlorinated, pasteurized, and inoculated with Legionella pneumophila. Subsequent growth indicated that many of these samples, especially those collected from areas affected by an accumulation of algal materials, exhibited a much greater ability to support Legionella multiplication than did river water prior to treatment. Chemical analyses were also performed on these samples. Correlation of chemical data and experimental growth results indicated that the chemical environment significantly affects the ability of the water to support multiplication, with turbidity, organic carbon, and certain metals being of particular importance. These studies indicate that the potential exists for Legionella growth within municipal systems and support the hypothesis that public water supplies may contaminate the plumbing systems of hospitals and other large buildings. The results also suggest that useful methods to control this contamination include adequate treatment plant filtration, maintenance of a chlorine residual throughout the treatment and distribution network, and effective covering of open reservoirs. PMID:3606101

  14. Reconnaissance Report for Upper Mississippi River Navigation Study. (Revised)

    DTIC Science & Technology

    1992-09-01

    Contaminants may include ammonia, arsenic, cadmium , chlordane, chromium, copper, dioxins, lead, nickel, nitrogen, PCBs, phosphorus, zinc, various...al 1981 Rock River, Upper Mississippi River, Little Wabash River, Lower Wabash River Units (I, III-north, aid VIII). In Predictive Models in Illinois

  15. A SEDIMENT TOXICITY EVALUATION OF THREE LARGE RIVER SYSTEMS

    EPA Science Inventory

    Sediment toxicity samples were collected from selected sites on the Ohio River, Missouri River and upper Mississippi River as part of the 2004 and 2005 Environmental Monitoring and Assessment Program-Great Rivers Ecosystems Study (EMAP-GRE). Samples were collected by compositing...

  16. Solid transport in mountain rivers: monitoring techniques and long term assessment as flood prevention tools

    NASA Astrophysics Data System (ADS)

    Longoni, Laura; Brambilla, Davide; Ivanov, Vladislav; Messa, Giacomo; Veronelli, Andrea; Radice, Alessio; Papini, Monica

    2017-04-01

    Floods are calamitous phenomena with an ever-increasing frequency around the globe, that often result in socio-economic damage and casualties. The role of the solid fraction in the river dynamic has been widely debated in the last decade and its importance is recognized as critical and not negligible in flood simulations as it has been evidenced that the severity of an event is often the result of the coupling of a flood wave with elevated solid transport rates. Nevertheless, assessing the quantity of sediment mobilized in a particular event is not feasible without a long term analysis of the river's dynamics and its morphological evolution since it is defined by past events. This work is focused on the techniques to improve knowledge about sediment production and transport through hydrological networks as a necessary component of a wise flood prevention planning. In particular, a multidisciplinary approach that combines hydraulic and geological knowledge is required in order to understand the evolution of the river sediment and how it will influence the following critical event. The methods are presented through a case study in Italy where a series of different approaches have been integrated to gain a comprehensive understanding of the problem: the sediment movement has been studied by a Eulerian as well as a Lagrangian approaches while hydraulic properties of the stream have been measured. The research started with an attempt to monitor sediment movements: in June 2016 300 sample pebbles, equipped with RFID (Radio Frequency IDentification) transponders, have been deployed in the river and tracked after every major rainfall event. The obtained data-set has been combined with a morphological analysis and a river flow discharge computed through PIV (Particle Image Velocimetry) method in order to identify the relation between a given rainfall event and sediment transport. Moreover, critical sediment size has been estimated from field data using three approaches: two experimental performed in situ and one analytical using hydraulic modelling. A good correlation between the results of these approaches has been obtained, while the results of the solid transport analysis suggest that the migration of sediments appears to be affected to a large extent by the river bed morphology in addition to the physical properties of the pebbles. Finally, a control section has been set up in a sedimentation basin which limits the further sediment migration to the downstream end of the river. Therefore, it was considered the perfect point to measure the final solid discharge of an event. Several bathymetric campaigns have been carried out to assess the gross quantity of material discharged in the pool. The use of a wireless Eco sounder has been tested along with a conventional GPR (Ground Penetrating Radar) in order to investigate the applicability of a low-cost tool for bathymetry survey in a fast and reliable way.

  17. Impacts of Colville River dynamics on river navigability near Nuiqsut, Alaska: 1955-present

    NASA Astrophysics Data System (ADS)

    Whitley, M. A.; Panda, S. K.; Prakash, A.; Brinkman, T. J.

    2016-12-01

    Climate-driven changes in river systems are challenging access to ecosystem services such as access to traditional hunting grounds and other subsistence food sources on the North Slope of Alaska. This work studies the dynamics of the Colville River and assesses the impacts on traditional harvest practices and subsistence travel of the Native community of Nuiqsut. Recent reports from Nuiqsut residents indicate accelerated changes in the environment, limiting river travel and their ability to harvest subsistence food. This study explores how channel migration, gravel bars, and bank erosion have evolved since the 1950s, and their impact on water depth and navigability. In an area of ice-rich permafrost, warmer summer temperatures exacerbate lateral bank erosion, resulting in river siltation. The study focuses on selected key areas south of Nuiqsut that have shown significant change in river geomorphology. Since 1955, some areas proximate to ice wedge exposures show channel migration in excess of 1 km. Panchromatic aerial photography acquired by US Geological Surveys in the mid 1950s, color infrared aerial photography from 1979 and 1982 acquired by the Alaska High Altitude Photography (AHAP) mission, and high resolution satellite images from Digital Globe, Inc. were used in this study. We mapped water, vegetation, and gravel/non-vegetated classes to identify risk areas for river navigability. River bathymetry was also mapped using a multispectral ratio-based water depth retrieval algorithm to identify problem sites for boat travel. Remote sensing products and analyses were validated with field data for mapping risk areas along the river. This study has the potential to be implemented on a larger scale for predictive mapping to aid river navigation. Findings from this study will provide insight whether recent changes are anomalies, or if they are part of a directional trend that will require local adaptation.

  18. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    NASA Astrophysics Data System (ADS)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  19. Effects of recreational flow releases on natural resources of the Indian and Hudson Rivers in the Central Adirondack Mountains, New York, 2004-06

    USGS Publications Warehouse

    Baldigo, Barry P.; Mulvihill, C.I.; Ernst, A.G.; Boisvert, B.A.

    2011-01-01

    The U.S. Geological Survey (USGS), the New York State Department of Environmental Conservation (NYSDEC), and Cornell University carried out a cooperative 2-year study from the fall of 2004 through the fall of 2006 to characterize the potential effects of recreational-flow releases from Lake Abanakee on natural resources in the Indian and Hudson Rivers. Researchers gathered baseline information on hydrology, temperature, habitat, nearshore wetlands, and macroinvertebrate and fish communities and assessed the behavior and thermoregulation of stocked brown trout in study reaches from both rivers and from a control river. The effects of recreational-flow releases (releases) were assessed by comparing data from affected reaches with data from the same reaches during nonrelease days, control reaches in a nearby run-of-the-river system (the Cedar River), and one reach in the Hudson River upstream from the confluence with the Indian River. A streamgage downstream from Lake Abanakee transmitted data by satellite from November 2004 to November 2006; these data were used as the basis for developing a rating curve that was used to estimate discharges for the study period. River habitat at most study reaches was delineated by using Global Positioning System and ArcMap software on a handheld computer, and wetlands were mapped by ground-based measurements of length, width, and areal density. River temperature in the Indian and Hudson Rivers was monitored continuously at eight sites during June through September of 2005 and 2006; temperature was mapped in 2005 by remote imaging made possible through collaboration with the Rochester Institute of Technology. Fish communities at all study reaches were surveyed and characterized through quantitative, nearshore electrofishing surveys. Macroinvertebrate communities in all study reaches were sampled using the traveling-kick method and characterized using standard indices. Radio telemetry was used to track the movement and persistence of stocked brown trout (implanted with temperature-sensitive transmitters) in the Indian and Hudson Rivers during the summer of 2005 and in all three rivers during the summer of 2006. The releases had little effect on river temperatures, but increased discharges by about one order of magnitude. Regardless of the releases, river temperatures at all study sites commonly exceeded the threshold known to be stressful to brown trout. At most sites, mean and median water temperatures on release days were not significantly different, or slightly lower, than water temperatures on nonrelease days. Most differences were very small and, thus, were probably not biologically meaningful. The releases generally increased the total surface area of fast-water habitat (rapids, runs, and riffles) and decreased the total surface area of slow-water habitat (pools, glides, backwater areas, and side channels). The total surface areas of wetlands bordering the Indian River were substantially smaller than the surface areas bordering the Cedar River; however, no channel geomorphology or watershed soil and topographic data were assessed to determine whether the releases or other factors were mainly responsible for observed differences. Results from surveys of resident biota indicate that the releases generally had a limited effect on fish and macroinvertebrate communities in the Indian River and had no effect on communities in the Hudson River. Compared to fish data from Cedar River control sites, the impoundment appeared to reduce total density, biomass, and richness in the Indian River at the first site downstream from Lake Abanakee, moderately reduce the indexes at the other two sites on the Indian River, and slightly reduce the indexes at the first Hudson River site downstream from the confluence with the Indian River. The densities of individual fish populations at all Indian River sites were also reduced, but related effects on fish populations in the Hudson River were less evident. Altho

  20. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor.

    PubMed

    Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C; Arntzen, Evan; Kennedy, David W; Larget, Bret R; Roden, Eric E

    2017-08-15

    Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities ( in situ colonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to "cross-feeding" with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection during in situ colonization would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCE The influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were "cross-fed" with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors. Copyright © 2017 American Society for Microbiology.

  1. High flow and riparian vegetation along the San Miguel River, Colorado

    USGS Publications Warehouse

    Friedman, J.M.; Auble, G.T.

    2000-01-01

    Riparian ecosystems are characterized by abundance of water and frequent flow related disturbance. River regulation typically decreases peak flows, reducing the amount of disturbance and altering the vegetation. The San Miguel River is one of the last relatively unregulated rivers remaining in the Colorado River Watershed. One goal of major landowners along the San Miguel including the Bureau of Land Management and The Nature Conservancy is to maintain their lands in a natural condition. Conservation of an entire river corridor requires an integrated understanding of the variability in ecosystems and external influences along the river. Therefore, the Bureau of Land Management and others have fostered a series of studies designed to catalogue that variability, and to characterize the processes that maintain the river as a whole. In addition to providing information useful to managers, these studies present a rare opportunity to investigate how a Colorado river operates in the absence of regulation.

  2. River meander modeling of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    USGS Publications Warehouse

    Lant, Jeremiah G.; Boldt, Justin A.

    2018-01-16

    Natural river channels continually evolve and change shape over time. As a result, channel evolution or migration can cause problems for bridge structures that are fixed in the flood plain. A once-stable bridge structure that was uninfluenced by a river’s shape could be encroached upon by a migrating river channel. The potential effect of the actively meandering Wabash River on the Interstate 64 Bridge at the border with Indiana near Grayville, Illinois, was studied using a river migration model called RVR Meander. RVR Meander is a toolbox that can be used to model river channel meander migration with physically based bank erosion methods. This study assesses the Wabash River meandering processes through predictive modeling of natural meandering over the next 100 years, climate change effects through increased river flows, and bank protection measures near the Interstate 64 Bridge.

  3. [Characteristics of Total Nitrogen and Total Phosphorus Pollution and Eutrophication Assessment of Secondary River in Urban Chongqing].

    PubMed

    Qing, Xu-yao; Ren, Yu-fen; Lü, Zhi-qiang; Wang, Xiao-ke; Pang, Rong; Deng, Rui; Meng, Ling; Ma, Hui-ya

    2015-07-01

    To understand the secondary river quality in Chongqing urban area, six typical secondary rivers were chosen to investigate the pollution characteristics of total nitrogen and total phosphorus and to evaluate the water eutrophication level according to the monitoring data of water physicochemical characteristics and chlorophyll content from April 2013 to March 2014. The study results showed that: the six rivers mentioned above have been seriously polluted by TN and TP, with the monthly mean values of TN and TP far exceeding the universally accepted threshold values of water eutrophication. Water eutrophicaton appraisal result indicated that all rivers in each season were in a state of eutrophication, and the eutrophication level could be arranged in the order of Panxi River > Qingshui River > Tiaodeng River > Huaxi River > Funiu River > Chaoyang River. The seasonal changes in TN and TP of secondary rivers were significant, with high concentrations of TN and TP in spring and winter, and lower concentrations in summer and autumn. TN and TP of the rivers showed a trend of increasing from the upstream to the downstream in each season. Pollutant concentration accumulated gradually along rivers and the maximum accumulation rate reached 1. 25 mg . (L . km) -1. Therefore, further study on urban secondary river pollution characteristics is of great significance to urban water pollution control.

  4. Anthropogenic impact on biogenic substance distribution and bacterial community in sediment along the Yarlung Tsangpo River on Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Wang, C.; Peifang, W.; Wang, X.; Hou, J.; Miao, L.

    2017-12-01

    Lotic river system plays an important part in water-vapor transfer and biogenic substances migration and transformation. Anthropogenic activities, including wastewater discharging and river damming, have altered river ecosystem and continuum. However, as the longest alpine river in China and suffered from increasing anthropogenic activities, the Yarlung Tsangpo River has been rarely studied. Recently, more attention has also been paid to the bacteria in river sediment as they make vital contributions to the biogeochemical nutrient cycling. Here, the distribution of biogenic substances, including nitrogen, phosphorus, silicon and carbon, was explored in both water and sediment of the Yarlung Tsangpo River. By using the next generation 16S rRNA sequencing, the bacterial diversity and structure in river sediment were presented. The results indicated that the nutrient concentrations increased in densely populated sites, revealing that biogenic substance distribution corresponded with the intensity of anthropogenic activity along the river. Nitrogen, phosphorus, silicon and carbon in water and sediment were all retained by the Zangmu Dam which is the only dam in the mainstream of the river. Moreover, the river damming decreased the biomass and diversity of bacteria in sediment, but no significant alteration of community structure was observed upstream and downstream of the dam. The most dominant bacteria all along the river was Proteobacteria. Meanwhile, Verrucomicrobia and Firmicutes also dominated the community composition in upstream and downstream of the river, respectively. In addition, total organic carbon (TOC) was proved to be the most important environmental factor shaping the bacterial community in river sediment. Our study offered the preliminary insights into the biogenic substance distribution and bacterial community in sediment along an alpine river which was affected by anthropogenic activities. In the future, more studies are needed to reveal the relationship between anthropogenic activity, biogenic substance cycling and bacterial community, especially along the alpine rivers.

  5. Characterizing worldwide patterns of fluvial geomorphology and hydrology with the Global River Widths from Landsat (GRWL) database

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.

    2015-12-01

    The width of a river reflects complex interactions between river water hydraulics and other physical factors like bank erosional resistance, sediment supply, and human-made structures. A broad range of fluvial process studies use spatially distributed river width data to understand and quantify flood hazards, river water flux, or fluvial greenhouse gas efflux. Ongoing technological advances in remote sensing, computing power, and model sophistication are moving river system science towards global-scale studies that aim to understand the Earth's fluvial system as a whole. As such, a global spatially distributed database of river location and width is necessary to better constrain these studies. Here we present the Global River Width from Landsat (GRWL) Database, the first global-scale database of river planform at mean discharge. With a resolution of 30 m, GRWL consists of 58 million measurements of river centerline location, width, and braiding index. In total, GRWL measures 2.1 million km of rivers wider than 30 m, corresponding to 602 thousand km2 of river water surface area, a metric used to calculate global greenhouse gas emissions from rivers to the atmosphere. Using data from GRWL, we find that ~20% of the world's rivers are located above 60ºN where little high quality information exists about rivers of any kind. Further, we find that ~10% of the world's large rivers are multichannel, which may impact the development of the new generation of regional and global hydrodynamic models. We also investigate the spatial controls of global fluvial geomorphology and river hydrology by comparing climate, topography, geology, and human population density to GRWL measurements. The GRWL Database will be made publically available upon publication to facilitate improved understanding of Earth's fluvial system. Finally, GRWL will be used as an a priori data for the joint NASA/CNES Surface Water and Ocean Topography (SWOT) Satellite Mission, planned for launch in 2020.

  6. Time-of-travel study in the Sebasticook River basin, Maine

    USGS Publications Warehouse

    Parker, Gene W.

    1981-01-01

    Time of travel was determined for four reaches of the Sebasticook River, two on the East Branch Sebasticook River and two on the main stem of the Sebasticook River. Reach A included 7.8 miles of the East Branch Sebasticook River from Dexter to Corinna, Maine. Reach B included 8 miles of the East Branch Sebasticook River from Newport to its mouth, and one mile of the Sebasticook River to Peltoma bridge near Pittsfield, Maine. Reach C included 3.5 miles of the Sebasticook River from Hartland to West Palmyra, Maine. Reach D included 31.4 miles of the Sebasticook River from Pittsfield to Winslow, Maine. Using a 20-percent solution of rhodamine WT, three dye tracer study runs were made in each reach. Water samples were collected at 11 sites in the study area. The samples were then analyzed for dye concentrations. Time-of-travel data for each subreach are depicted in a series of illustrations and summarized in tabular form. Examples are given to illustrate the use of the data presented. (USGS)

  7. Processing and evaluation of riverine waveforms acquired by an experimental bathymetric LiDAR

    NASA Astrophysics Data System (ADS)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.

    2010-12-01

    Accurate mapping of fluvial environments with airborne bathymetric LiDAR is challenged not only by environmental characteristics but also the development and application of software routines to post-process the recorded laser waveforms. During a bathymetric LiDAR survey, the transmission of the green-wavelength laser pulses through the water column is influenced by a number of factors including turbidity, the presence of organic material, and the reflectivity of the streambed. For backscattered laser pulses returned from the river bottom and digitized by the LiDAR detector, post-processing software is needed to interpret and identify distinct inflections in the reflected waveform. Relevant features of this energy signal include the air-water interface, volume reflection from the water column itself, and, ideally, a strong return from the bottom. We discuss our efforts to acquire, analyze, and interpret riverine surveys using the USGS Experimental Advanced Airborne Research LiDAR (EAARL) in a variety of fluvial environments. Initial processing of data collected in the Trinity River, California, using the EAARL Airborne Lidar Processing Software (ALPS) highlighted the difficulty of retrieving a distinct bottom signal in deep pools. Examination of laser waveforms from these pools indicated that weak bottom reflections were often neglected by a trailing edge algorithm used by ALPS to process shallow riverine waveforms. For the Trinity waveforms, this algorithm had a tendency to identify earlier inflections as the bottom, resulting in a shallow bias. Similarly, an EAARL survey along the upper Colorado River, Colorado, also revealed the inadequacy of the trailing edge algorithm for detecting weak bottom reflections. We developed an alternative waveform processing routine by exporting digitized laser waveforms from ALPS, computing the local extrema, and fitting Gaussian curves to the convolved backscatter. Our field data indicate that these techniques improved the definition of pool areas dominated by weak bottom reflections. These processing techniques are also being tested for EAARL surveys collected along the Platte and Klamath Rivers where environmental conditions have resulted in suppressed or convolved bottom reflections.

  8. Hypoxia, Blackwater and Fish Kills: Experimental Lethal Oxygen Thresholds in Juvenile Predatory Lowland River Fishes

    PubMed Central

    Small, Kade; Kopf, R. Keller; Watts, Robyn J.; Howitt, Julia

    2014-01-01

    Hypoxia represents a growing threat to biodiversity in freshwater ecosystems. Here, aquatic surface respiration (ASR) and oxygen thresholds required for survival in freshwater and simulated blackwater are evaluated for four lowland river fishes native to the Murray-Darling Basin (MDB), Australia. Juvenile stages of predatory species including golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, Murray cod Maccullochella peelii, and eel-tailed catfish Tandanus tandanus were exposed to experimental conditions of nitrogen-induced hypoxia in freshwater and hypoxic blackwater simulations using dried river red gum Eucalyptus camaldulensis leaf litter. Australia's largest freshwater fish, M. peelii, was the most sensitive to hypoxia but given that we evaluated tolerances of juveniles (0.99±0.04 g; mean mass ±SE), the low tolerance of this species could not be attributed to its large maximum attainable body mass (>100,000 g). Concentrations of dissolved oxygen causing 50% mortality (LC50) in freshwater ranged from 0.25±0.06 mg l−1 in T. tandanus to 1.58±0.01 mg l−1 in M. peelii over 48 h at 25–26°C. Logistic models predicted that first mortalities may start at oxygen concentrations ranging from 2.4 mg l−1 to 3.1 mg l−1 in T. tandanus and M. peelii respectively within blackwater simulations. Aquatic surface respiration preceded mortality and this behaviour is documented here for the first time in juveniles of all four species. Despite the natural occurrence of hypoxia and blackwater events in lowland rivers of the MDB, juvenile stages of these large-bodied predators are vulnerable to mortality induced by low oxygen concentration and water chemistry changes associated with the decomposition of organic material. Given the extent of natural flow regime alteration and climate change predictions of rising temperatures and more severe drought and flooding, acute episodes of hypoxia may represent an underappreciated risk to riverine fish communities. PMID:24728094

  9. Hypoxia, blackwater and fish kills: experimental lethal oxygen thresholds in juvenile predatory lowland river fishes.

    PubMed

    Small, Kade; Kopf, R Keller; Watts, Robyn J; Howitt, Julia

    2014-01-01

    Hypoxia represents a growing threat to biodiversity in freshwater ecosystems. Here, aquatic surface respiration (ASR) and oxygen thresholds required for survival in freshwater and simulated blackwater are evaluated for four lowland river fishes native to the Murray-Darling Basin (MDB), Australia. Juvenile stages of predatory species including golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, Murray cod Maccullochella peelii, and eel-tailed catfish Tandanus tandanus were exposed to experimental conditions of nitrogen-induced hypoxia in freshwater and hypoxic blackwater simulations using dried river red gum Eucalyptus camaldulensis leaf litter. Australia's largest freshwater fish, M. peelii, was the most sensitive to hypoxia but given that we evaluated tolerances of juveniles (0.99 ± 0.04 g; mean mass ±SE), the low tolerance of this species could not be attributed to its large maximum attainable body mass (>100,000 g). Concentrations of dissolved oxygen causing 50% mortality (LC50) in freshwater ranged from 0.25 ± 0.06 mg l(-1) in T. tandanus to 1.58 ± 0.01 mg l(-1) in M. peelii over 48 h at 25-26 °C. Logistic models predicted that first mortalities may start at oxygen concentrations ranging from 2.4 mg l(-1) to 3.1 mg l(-1) in T. tandanus and M. peelii respectively within blackwater simulations. Aquatic surface respiration preceded mortality and this behaviour is documented here for the first time in juveniles of all four species. Despite the natural occurrence of hypoxia and blackwater events in lowland rivers of the MDB, juvenile stages of these large-bodied predators are vulnerable to mortality induced by low oxygen concentration and water chemistry changes associated with the decomposition of organic material. Given the extent of natural flow regime alteration and climate change predictions of rising temperatures and more severe drought and flooding, acute episodes of hypoxia may represent an underappreciated risk to riverine fish communities.

  10. Wetland management and rice farming strategies to decrease methylmercury bioaccumulation and loads from the Cosumnes River Preserve, California

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; Fleck, Jacob; Windham-Myers, Lisamarie; McQuillen, Harry; Heim, Wes

    2014-01-01

    We evaluated mercury (Hg) concentrations in caged fish (deployed for 30 days) and water from agricultural wetland (rice fields), managed wetland, slough, and river habitats in the Cosumnes River Preserve, California. We also implemented experimental hydrological regimes on managed wetlands and post-harvest rice straw management techniques on rice fields in order to evaluate potential Best Management Practices to decrease methylmercury bioaccumulation within wetlands and loads to the Sacramento-San Joaquin River Delta. Total Hg concentrations in caged fish were twice as high in rice fields as in managed wetland, slough, or riverine habitats, including seasonal managed wetlands subjected to identical hydrological regimes. Caged fish Hg concentrations also differed among managed wetland treatments and post-harvest rice straw treatments. Specifically, Hg concentrations in caged fish decreased from inlets to outlets in seasonal managed wetlands with either a single (fall-only) or dual (fall and spring) drawdown and flood-up events, whereas Hg concentrations increased slightly from inlets to outlets in permanent managed wetlands. In rice fields, experimental post-harvest straw management did not decrease Hg concentrations in caged fish. In fact, in fields in which rice straw was chopped and either disked into the soil or baled and removed from the fields, fish Hg concentrations increased from inlets to outlets and were higher than Hg concentrations in fish from rice fields subjected to the more standard post-harvest practice of simply chopping rice straw prior to fall flood-up. Finally, aqueous methylmercury (MeHg) concentrations and export were highly variable, and seasonal trends in particular were often opposite to those of caged fish. Aqueous MeHg concentrations and loads were substantially higher in winter than in summer, whereas caged fish Hg concentrations were relatively low in winter and substantially higher in summer. Together, our results highlight the importance of habitat, seasonal processes, and wetland management practices on Hg cycling and ecological risk in aquatic ecosystems.

  11. WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER

    EPA Science Inventory

    Water quality changes along hyporheic flow paths may have
    important effects on river water quality and aquatic habitat. Previous
    studies on the Willamette River, Oregon, showed that river water follows
    hyporheic flow paths through highly porous deposits created by river...

  12. Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rinella, F.A.; McKenzie, S.W.; Wille, S.A.

    1981-01-01

    During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)

  13. Dynamic network expansion, contraction, and connectivity in the river corridor of mountain stream network

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.

    2017-12-01

    River networks are broadly recognized to expand and contract in response to hydrologic forcing. Additionally, the individual controls on river corridor dynamics of hydrologic forcing and geologic setting are well recognized. However, we currently lack tools to integrate our understanding of process dynamics in the river corridor and make predictions at the scale of river networks. In this study, we develop a perceptual model of the river corridor in mountain river networks, translate this into a reduced-complexity mechanistic model, and implement the model in a well-studied headwater catchment. We found that the river network was most sensitive to hydrologic dynamics under the lowest discharges (Qgauge < 1 L s-1). We also demonstrate a discharge-dependence on the dominant controls on network expansion, contraction, and river corridor exchange. Finally, we suggest this parsimonious model will be useful to managers of water resources who need to estimate connectivity and flow initiation location along the river corridor over broad, unstudied catchments.

  14. Nutrient Chemistry and Microbial Activity in the Upper Mississippi River Basin: Stoichiometry and Downstream Patterns

    EPA Science Inventory

    Nutrients, carbon, and silica have been used to track changes in water quality in the major rivers of the world. Most studies focus on the mouths of rivers and adjacent coastal waters. Studies on the Mississippi River have concluded that N enrichment and stable or declining Si co...

  15. Hydrology and water quality in the Green River and surrounding agricultural areas near Green River in Emery and Grand Counties, Utah, 2004-05

    USGS Publications Warehouse

    Gerner, S.J.; Spangler, L.E.; Kimball, B.A.; Wilberg, D.E.; Naftz, D.L.

    2006-01-01

    Water from the Colorado River and its tributaries is used for municipal and industrial purposes by about 27 million people and irrigates nearly 4 million acres of land in the Western United States. Water users in the Upper Colorado River Basin consume water from the Colorado River and its tributaries, reducing the amount of water in the river. In addition, application of water to agricultural land within the basin in excess of crop needs can increase the transport of dissolved solids to the river. As a result, dissolved-solids concentrations in the Colorado River have increased, affecting downstream water users. During 2004-05, the U.S. Geological Survey, in cooperation with the Natural Resources Conservation Service, investigated the occurrence and distribution of dissolved solids in water from the agricultural areas near Green River, Utah, and in the adjacent reach of the Green River, a principle tributary of the Colorado River.The flow-weighted concentration of dissolved solids diverted from the Green River for irrigation during 2004 and 2005 was 357 milligrams per liter and the mean concentration of water collected from seeps and drains where water was returning to the river during low-flow conditions was 4,170 milligrams per liter. The dissolved-solids concentration in water from the shallow part of the ground-water system ranged from 687 to 55,900 milligrams per liter.Measurable amounts of dissolved solids discharging to the Green River are present almost exclusively along the river banks or near the mouths of dry washes that bisect the agricultural areas. The median dissolved-solids load in discharge from the 17 drains and seeps visited during the study was 0.35 ton per day. Seasonal estimates of the dissolved-solids load discharging from the study area ranged from 2,800 tons in the winter to 6,400 tons in the spring. The estimate of dissolved solids discharging from the study area annually is 15,700 tons.Water samples collected from selected sites within the Green River agricultural areas were analyzed for naturally occurring isotopes of strontium and boron, which can be useful for differentiating dissolved-solids sources. Substantial variations in the delta strontium-87 and delta boron-11 values among the sites were measured. Canal and river samples had relatively low concentrations of strontium and the most positive (heavier) isotopic ratios, while drains and seeps had a wide range of strontium concentrations and isotopic ratios that generally were less positive (lighter). Further study of the variation in strontium and boron concentrations and isotope ratios may provide a means to distinguish end members and discern processes affecting dissolved solids within the Green River study area; however, the results from isotope data collected during this study are inconclusive.Flow and seepage losses were estimated for the three main canals in the study area for May 2 to October 4 in any given year. This period coincides with the frost-free period in the Green River area. Estimated diversion from the Green River into the Thayn, East Side, and Green River Canals is 6,600, 6,070, and 19,900 acre-feet, respectively. The estimated seepage loss to ground water from the Thayn, East Side, and Green River Canals during the same period is 1,550, 1,460, and 4,710 acre-feet, respectively.

  16. Passive optical remote sensing of Congo River bathymetry using Landsat

    NASA Astrophysics Data System (ADS)

    Ache Rocha Lopes, V.; Trigg, M. A.; O'Loughlin, F.; Laraque, A.

    2014-12-01

    While there have been notable advances in deriving river characteristics such as width, using satellite remote sensing datasets, deriving river bathymetry remains a significant challenge. Bathymetry is fundamental to hydrodynamic modelling of river systems and being able to estimate this parameter remotely would be of great benefit, especially when attempting to model hard to access areas where the collection of field data is difficult. One such region is the Congo Basin, where due to past political instability and large scale there are few studies that characterise river bathymetry. In this study we test whether it is possible to use passive optical remote sensing to estimate the depth of the Congo River using Landsat 8 imagery in the region around Malebo Pool, located just upstream of the Kinshasa gauging station. Methods of estimating bathymetry using remotely sensed datasets have been used extensively for coastal regions and now more recently have been demonstrated as feasible for optically shallow rivers. Previous river bathymetry studies have focused on shallow rivers and have generally used aerial imagery with a finer spatial resolution than Landsat. While the Congo River has relatively low suspended sediment concentration values the application of passive bathymetry estimation to a river of this scale has not been attempted before. Three different analysis methods are tested in this study: 1) a single band algorithm; 2) a log ratio method; and 3) a linear transform method. All three methods require depth data for calibration and in this study area bathymetry measurements are available for three cross-sections resulting in approximately 300 in-situ measurements of depth, which are used in the calibration and validation. The performance of each method is assessed, allowing the feasibility of passive depth measurement in the Congo River to be determined. Considering the scarcity of in-situ bathymetry measurements on the Congo River, even an approximate estimate of depths from these methods will be of considerable value in its hydraulic characterisation.

  17. Geocode of River Networks in Global Plateaus

    NASA Astrophysics Data System (ADS)

    Ni, J.; Wang, Y.; Wang, T.

    2017-12-01

    As typical hierarchical systems, river networks are of great significance to aquatic organisms and its diversity. Different aspects of river networks have been investigated in previous studies such as network structure, formation cause, material transport, nutrient cycle and habitat variation. Nevertheless, river networks function as biological habitat is far from satisfactory in plateau areas. This paper presents a hierarchical method for habitat characterization of plateau river networks with the geocode extracted from abiotic factors including historical geologic period, climate zone, water source and geomorphic process at different spatial scales. As results, characteristics of biological response with vertical differentiation within typical plateau river networks are elucidated. Altitude, climate and landform are of great influence to habitat and thereby structure of aquatic community, while diverse water source and exogenic action would influence biological abundance or spatiotemporal distribution. Case studies are made in the main stream of the Yellow River and the Yangtze River, respectively extended to the river source to Qinghai-Tibet Plateau, which demonstrate high potentials for decision making support to river protection, ecological rehabilitation and sustainable management of river ecosystems.

  18. Pawcatuck and Woonasquatucket River Basins and Narragansett Bay Local Drainage Area. Main Report.

    DTIC Science & Technology

    1981-10-01

    building and housing codes are recommended. Flood warning systems, urban renewal, tax incentives, and public open space acquisition will also help...RIVER GROUP WATERSHEDLD LOCAL DRAINAGE PD, WOONASQUATUCKET - MOSI4ASSUCK - PROVIDENCE RIVERS SUB-BASIN PD2 BLACKSTONE RIVER SUB-BASIN orPD 3 TENMiLE...of the Taunton River Basin in Massachusetts, 1979 PNB Water Supply Study, January 1979 Big River Reservoir Project, July 1981 Blackstone River

  19. Transport behaviour of xenobiotic micropollutants in surface waters - an experimental assessment

    NASA Astrophysics Data System (ADS)

    Schwientek, Marc; Kuch, Bertram; Rügner, Hermann; Dobramysl, Lorenz; Grathwohl, Peter

    2013-04-01

    Xenobiotics are substances that do not exist in natural systems but are increasingly produced by industrial processes and introduced into the environment. While many of these compounds are eliminated in waste water treatment plants, some are only barely degraded and are discharged into receiving water bodies. Often little is known about their acute or chronic toxicity and even less about their persistence or transport behaviour in aquatic systems. In the present study, the stability and turnover of selected micropollutants along a 7.5 km long segment of the River Ammer in Southwest Germany was investigated (catchment area 134 km²). This stream carries a proportion of treated wastewater which is clearly above the average in German rivers, mainly supplied by a major waste water treatment plant at the upstream end of the studied stream segment. An experimental mass balance approach was chosen where in- and outflow of water and target compounds into and out of the balanced stream segment was measured during base flow conditions. To cover a complete diurnal cycle of wastewater input, pooled samples were collected every 2 h over a sampling period of 24 h. A comparison of bulk mass fluxes showed that carbamazepine, a pharmaceutical, and phosphorous flame retardants, such as TCPP, behave conservative under the given conditions. Some retention was observed for the disinfectant product Triclosan and some polycyclic musk fragrances (e.g., HHCB). TAED, a bleaching activator used in detergents, was completely eliminated along the stream segment. The outcome of the experiment demonstrates the very different persistence of some widely-used micropollutants in aquatic systems. However, the mechanisms involved in their attenuation as well as the fate of the most persistent compounds still remain subject to further research.

  20. Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation.

    PubMed

    Sakkas, Vasilios A; Islam, Md Azharul; Stalikas, Constantine; Albanis, Triantafyllos A

    2010-03-15

    The use of chemometric methods such as response surface methodology (RSM) based on statistical design of experiments (DOEs) is becoming increasingly widespread in several sciences such as analytical chemistry, engineering and environmental chemistry. Applied catalysis, is certainly not the exception. It is clear that photocatalytic processes mated with chemometric experimental design play a crucial role in the ability of reaching the optimum of the catalytic reactions. The present article reviews the major applications of RSM in modern experimental design combined with photocatalytic degradation processes. Moreover, the theoretical principles and designs that enable to obtain a polynomial regression equation, which expresses the influence of process parameters on the response are thoroughly discussed. An original experimental work, the photocatalytic degradation of the dye Congo red (CR) using TiO(2) suspensions and H(2)O(2), in natural surface water (river water) is comprehensively described as a case study, in order to provide sufficient guidelines to deal with this subject, in a rational and integrated way. (c) 2009 Elsevier B.V. All rights reserved.

  1. Preliminary results of hydrogeologic investigations Humboldt River Valley, Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1964-01-01

    Most of the ground water of economic importance and nearly all the ground water closely associated with the flow o# the Humboldt River in the. 40-mile reach near Winnemucca, Nev., are in unconsolidated sedimentary deposits. These deposits range in age from Pliocene to Recent and range in character from coarse poorly sorted fanglomerate to lacustrine strata of clay, silt, sand, and gravel. The most permeable deposit consists of sand and gravel of Lake Lahontan age--the so-called medial gravel unit--which is underlain and overlain by fairly impermeable silt and clay also of Lake Lahontan age. The ultimate source of nearly all the water in the study area is precpitation within the drainage basin of the Humboldt River. Much of this water reaches the study, area as flow or underflow of the Humboldt River and as underflow from other valleys tributary to the study area. Little if any flow from the tributary streams in the study area usually reaches the Humboldt River. Most of the tributary streamflow within the study area evaporates or is transpired by vegetation, but a part percolates downward through unconsolidated deposits of the alluvial fans flanking the mountains and move downgradient as ground-water underflow toward the Humboldt River. Areas that contribute significant amounts of ground-water underflow to. the valley of the Humboldt River within the study area are (1) the valley of the Humboldt River upstream from the study area, (2) the Pole Creek-Rock Creek area, (3) Paradise Valley, and (4) Grass Valley and the northwestern slope of the Sonoma Range. The total average underflow from these areas in the period 1949-61 was about 14,000-19,000 acre-feet per year. Much of this underflow discharged into the Humboldt River within the study area and constituted a large part of the base flow of the river. Streamflow in the Humboldt River increases substantially in the early spring, principally because of runoff to the river in the reaches upstream from the study area. The resulting increase of the stage of the river causes the river to lose large amounts of water by infiltration to the ground-water reservoir in the study area. In addition, there is much recharge to the ground-water reservoir in the spring and early summer as a result of seepage losses from irrigation ditches and the downward percolation of some of the excess water applied for irrigation. The average net increase of ground water in storage in the deposits beneath and adjacent to the flood plain of the Humboldt River during the spring and early summer is about 10,000 acre-feet.

  2. Student-Designed River Study.

    ERIC Educational Resources Information Center

    Turkall, Sheila Florian

    1996-01-01

    Describes an integrated student-designed investigation in which students explore different aspects of the Chagrin River including the river ecosystem, velocity and average depth, river flooding, water quality, and economic and political factors. (JRH)

  3. Aquatic Trophic Productivity model: A decision support model for river restoration planning in the Methow River, Washington

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan

    2016-05-19

    In this report, we outline the structure of a stream food-web model constructed to explore how alternative river restoration strategies may affect stream fish populations. We have termed this model the “Aquatic Trophic Productivity model” (ATP). We present the model structure, followed by three case study applications of the model to segments of the Methow River watershed in northern Washington. For two case studies (middle Methow River and lower Twisp River floodplain), we ran a series of simulations to explore how food-web dynamics respond to four distinctly different, but applied, strategies in the Methow River watershed: (1) reconnection of floodplain aquatic habitats, (2) riparian vegetation planting, (3) nutrient augmentation (that is, salmon carcass addition), and (4) enhancement of habitat suitability for fish. For the third case study, we conducted simulations to explore the potential fish and food-web response to habitat improvements conducted in 2012 at the Whitefish Island Side Channel, located in the middle Methow River.

  4. Constructing river stage-discharge rating curves using remotely sensed river cross-sectional inundation areas and river bathymetry

    NASA Astrophysics Data System (ADS)

    Pan, Feifei; Wang, Cheng; Xi, Xiaohuan

    2016-09-01

    Remote sensing from satellites and airborne platforms provides valuable data for monitoring and gauging river discharge. One effective approach first estimates river stage from satellite-measured inundation area based on the inundation area-river stage relationship (IARSR), and then the estimated river stage is used to compute river discharge based on the stage-discharge rating (SDR) curve. However, this approach is difficult to implement because of a lack of data for constructing the SDR curves. This study proposes a new method to construct the SDR curves using remotely sensed river cross-sectional inundation areas and river bathymetry. The proposed method was tested over a river reach between two USGS gauging stations, i.e., Kingston Mines (KM) and Copperas Creek (CC) along the Illinois River. First a polygon over each of two cross sections was defined. A complete IARSR curve was constructed inside each polygon using digital elevation model (DEM) and river bathymetric data. The constructed IARSR curves were then used to estimate 47 river water surface elevations at each cross section based on 47 river inundation areas estimated from Landsat TM images collected during 1994-2002. The estimated water surface elevations were substituted into an objective function formed by the Bernoulli equation of gradually varied open channel flow. A nonlinear global optimization scheme was applied to solve the Manning's coefficient through minimizing the objective function value. Finally the SDR curve was constructed at the KM site using the solved Manning's coefficient, channel cross sectional geometry and the Manning's equation, and employed to estimate river discharges. The root mean square error (RMSE) in the estimated river discharges against the USGS measured river discharges is 112.4 m3/s. To consider the variation of the Manning's coefficient in the vertical direction, this study also suggested a power-law function to describe the vertical decline of the Manning's coefficient with the water level from the channel bed lowest elevation to the bank-full level. The constructed SDR curve with the vertical variation of the Manning's coefficient reduced the RMSE in the estimated river discharges to 83.9 m3/s. These results indicate that the method developed and tested in this study is effective and robust, and has the potential for improving our ability of remote sensing of river discharge and providing data for water resources management, global water cycle study, and flood forecasting and prevention.

  5. Weak Learner Method for Estimating River Discharges using Remotely Sensed Data: Central Congo River as a Testbed

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, H.; Yu, H.; Beighley, E.; Durand, M. T.; Alsdorf, D. E.; Hwang, E.

    2017-12-01

    River discharge is a prerequisite for an understanding of flood hazard and water resource management, yet we have poor knowledge of it, especially over remote basins. Previous studies have successfully used a classic hydraulic geometry, at-many-stations hydraulic geometry (AMHG), and Manning's equation to estimate the river discharge. Theoretical bases of these empirical methods were introduced by Leopold and Maddock (1953) and Manning (1889), and those have been long used in the field of hydrology, water resources, and geomorphology. However, the methods to estimate the river discharge from remotely sensed data essentially require bathymetric information of the river or are not applicable to braided rivers. Furthermore, the methods used in the previous studies adopted assumptions of river conditions to be steady and uniform. Consequently, those methods have limitations in estimating the river discharge in complex and unsteady flow in nature. In this study, we developed a novel approach to estimating river discharges by applying the weak learner method (here termed WLQ), which is one of the ensemble methods using multiple classifiers, to the remotely sensed measurements of water levels from Envisat altimetry, effective river widths from PALSAR images, and multi-temporal surface water slopes over a part of the mainstem Congo. Compared with the methods used in the previous studies, the root mean square error (RMSE) decreased from 5,089 m3s-1 to 3,701 m3s-1, and the relative RMSE (RRMSE) improved from 12% to 8%. It is expected that our method can provide improved estimates of river discharges in complex and unsteady flow conditions based on the data-driven prediction model by machine learning (i.e. WLQ), even when the bathymetric data is not available or in case of the braided rivers. Moreover, it is also expected that the WLQ can be applied to the measurements of river levels, slopes and widths from the future Surface Water Ocean Topography (SWOT) mission to be launched in 2021.

  6. Particle-tracking investigation of the retention of sucker larvae emerging from spawning grounds in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Wherry, Susan A.; Simon, David C.; Markle, Douglas F.

    2014-01-01

    This study had two objectives: (1) to use the results of an individual-based particle-tracking model of larval sucker dispersal through the Williamson River delta and Upper Klamath Lake, Oregon, to interpret field data collected throughout Upper Klamath and Agency Lakes, and (2) to use the model to investigate the retention of sucker larvae in the system as a function of Williamson River flow, wind, and lake elevation. This is a follow-up study to work reported in Wood and others (2014) in which the hydrodynamic model of Upper Klamath Lake was combined with an individual-based, particle-tracking model of larval fish entering the lake from spawning areas in the Williamson River. In the previous study, the performance of the model was evaluated through comparison with field data comprising larval sucker distribution collected in 2009 by The Nature Conservancy, Oregon State University (OSU), and the U.S. Geological Survey, primarily from the (at that time) recently reconnected Williamson River Delta and along the eastern shoreline of Upper Klamath Lake, surrounding the old river mouth. The previous study demonstrated that the validation of the model with field data was moderately successful and that the model was useful for describing the broad patterns of larval dispersal from the river, at least in the areas surrounding the river channel immediately downstream of the spawning areas and along the shoreline where larvae enter the lake. In this study, field data collected by OSU throughout the main body of Upper Klamath Lake, and not just around the Williamson River Delta, were compared to model simulation results. Because the field data were collected throughout the lake, it was necessary to include in the simulations larvae spawned at eastern shoreline springs that were not included in the earlier studies. A complicating factor was that the OSU collected data throughout the main body of the lake in 2011 and 2012, after the end of several years of larval drift collection in the Williamson River by the U.S. Geological Survey. Those larval drift data provided necessary boundary-condition information for the earlier studies, but there were no measured boundary conditions for larval input into model simulations during the years of this study (2011−12). Therefore, we developed a method to estimate a time series of larval drift in the Williamson River, and of the emergence of larvae from the gravel at the eastern shoreline springs, that captured the approximate timing of the larval pulse of the Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) and the relative magnitude of the pulses by species and spawning location. The method is not able to predict larval drift on any given day, but it can reasonably predict the approximate temporal progression of the larval drift through the season, based on counts of adult suckers returning to spawn. The accuracy in the timing of the larval pulses is not better than about plus or minus 5 days. Model results and field data were consistent in the basic progression of both catch per unit effort (CPUE) and larval length through time. The model simulation results also duplicated some of the characteristics of the spatial patterns of density in the field data, notably the tendency for high larval densities closer to the eastern and western shorelines. However, the model simulations could not explain high densities in the northern part of the lake or far into Ball Bay, locations that are far from the source of larvae in the Williamson River or eastern shoreline springs (as measured along the predominant transport pathways simulated in the model). This suggests the possibility of unaccounted-for spawning areas in the northern part of the lake and also that the period during which larvae are transported passively by the currents is shorter than the 46 days simulated in the model. Similarly, the progression of larval lengths in the field data is not a simple progression from smaller to larger fish away from sources in the river and springs, as simulated by the particle-tracking model; the smallest fish were caught at different times near the Williamson River, in the northwestern part of the lake, and in the southernmost part of the lake. This again suggests that fish may be spawning at places other than the river and eastern springs, that our understanding of larval transport is incomplete, or both. The model was used to run 96 numerical “experiments” in which lake elevation, river discharge, and wind forcing were varied systematically in order to investigate the sensitivity of particle retention to each variable, and with particular emphasis on the idea of managing lake elevation to control emigration. The estimates of particle retention cannot be equated directly to retention of fish larvae, primarily because there was no mortality included in the simulations, but the relative comparison of retention and emigration around the matrix of experimental conditions provided several “big picture” results: - Variables that cannot be controlled—winds and discharge—had the largest effect on retention. For example, at the lowest river discharge (20 cubic meters per second), simulated retention was high regardless of wind or lake elevation, whereas at the highest river discharge (100 cubic meters per second), retention was low regardless of wind or lake elevation. - When river discharge and wind were held constant, a higher elevation delayed the onset of the most rapid exit of particles by 1 (from the springs) to 4 (from the river) days, but did not determine overall retention. Only under the combination of conditions consisting of low discharge (50 cubic meters per second or less) and strong wind reversals for several days was there a consistent effect of lake elevation on overall retention several weeks into the simulation, and, under those conditions, retention was at the high end of the possible range regardless of lake elevation. - Under most combinations of conditions tested, after particles had been in the system for several days, the complex interaction between wind, elevation, and river discharge resulted in particle pathways, and therefore retention, being highly variable and unpredictable, at which point controlling lake elevation could not produce a predictable result. Therefore, on the basis of the model predictions, managing lake elevation probably is not a way to reliably provide any particular level of retention.

  7. Streamflow statistics for unregulated and regulated conditions for selected locations on the Yellowstone, Tongue, and Powder Rivers, Montana, 1928-2002

    USGS Publications Warehouse

    Chase, Katherine J.

    2013-01-01

    Major floods in 1996 and 1997 on the Yellowstone River in Montana intensified public debate over the effects of human activities on the Yellowstone River. In 1999, the Yellowstone River Conservation District Council was formed to address conservation issues on the river. The Yellowstone River Conservation District Council partnered with the U.S. Army Corps of Engineers to conduct a cumulative-effects study on the main stem of the Yellowstone River. The cumulative-effects study is intended to provide a basis for future management decisions in the watershed. Streamflow statistics, such as flow-frequency and flow-duration data calculated for unregulated and regulated streamflow conditions, are a necessary component of the cumulative effects study. The U.S. Geological Survey, in cooperation with the Yellowstone River Conservation District Council and the U.S. Army Corps of Engineers, calculated streamflow statistics for unregulated and regulated conditions for the Yellowstone, Tongue, and Powder Rivers for the 1928–2002 study period. Unregulated streamflow represents flow conditions that might have occurred during the 1928–2002 study period if there had been no water-resources development in the Yellowstone River Basin. Regulated streamflow represents estimates of flow conditions during the 1928–2002 study period if the level of water-resources development existing in 2002 was in place during the entire study period. Peak-flow frequency estimates for regulated and unregulated streamflow were developed using methods described in Bulletin 17B. High-flow frequency and low-flow frequency data were developed for regulated and unregulated streamflows from the annual series of highest and lowest (respectively) mean flows for specified n-day consecutive periods within the calendar year. Flow-duration data, and monthly and annual streamflow characteristics, also were calculated for the unregulated and regulated streamflows.

  8. Tritium behavior on a cultivated plot in the 1994 chronic HT release experiment at Chalk River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguchi, H.; Yokoyama, S.; Kinouchi, N.

    1995-10-01

    The behavior of HT and HTO in air and surface soil has been studied extensively in the chronic HT release experiment carried out at Chalk River during the summer of 1994. HTO concentrations in air moisture and soil water collected in a cultivated plot showed similar time-variations, increasing rapidly during the first and second days and becoming gradual after the first 3-4 days. The air HTO concentration decreased during and following rainfall but recovered within a day. The rainfall reduced the HTO concentrations in ridge soil water but little in furrows. Time histories of HTO concentrations in air moisture andmore » soil water suggest that the system was near steady-state within a continuous HT release period of 12 days, in spite of the presence of rain during the period. The air HTO concentrations on clear days showed diurnal cycles that were higher during daytime than at night. The experimental field had a very complex soil regime with respect to HT deposits. The deposits to soil surface varied depending on soil conditions. 12 refs., 5 figs.« less

  9. The Effect of Hatchery Release Strategy on Marine Migratory Behaviour and Apparent Survival of Seymour River Steelhead Smolts (Oncorhynchus mykiss)

    PubMed Central

    Balfry, Shannon; Welch, David W.; Atkinson, Jody; Lill, Al; Vincent, Stephen

    2011-01-01

    Early marine migratory behaviour and apparent survival of hatchery-reared Seymour River steelhead (Oncorhynchus mykiss) smolts was examined over a four year period (2006–2009) to assess the impact of various management strategies on improving early marine survival. Acoustically tagged smolts were released to measure their survival using estuary and coastal marine receivers forming components of the Pacific Ocean Shelf Tracking (POST) array. Early marine survival was statistically indistinguishable between releases of summer run and winter run steelhead races, night and day releases, and groups released 10 days apart. In 2009, the survival of summer run steelhead released into the river was again trialed against groups released directly into the ocean at a distance from the river mouth. Apparent survival was improved significantly for the ocean released groups. The health and physiological status of the various release groups were monitored in years 2007–2009, and results indicate that the fish were in good health, with no clinical signs of disease at the time of release. The possibility of a disease event contributing to early marine mortality was further examined in 2009 by vaccinating half of the released fish against common fish diseases (vibriosis, furunculosis). The results suggest that marine survival may be enhanced using this approach, although not to the extent observed when the smolts were transported away from the river mouth before release. In summary, direct experimental testing of different release strategies using the POST array to measure ocean survival accelerated the scientific process by allowing rapid collection of data which enabled the rejection of several existing theories and allowed tentative identification of several new alternative approaches that might improve early marine survival of Seymour River steelhead. PMID:21468320

  10. [Distribution and sources of polycyclic aromatic hydrocarbons in sediments from rivers of Pearl River Delta and its nearby South China Sea].

    PubMed

    Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian; Zeng, Yong-Ping; Sheng, Guo-Ying; Fu, Jia-Mo

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are measured in surface sediments from rivers and estuary of Pearl River Delta and its nearby South China Sea. Total PAH concentration varied from 255.9 - 16 670.3 ng/g and a moderate to low level compare to relevant areas worldwide. The order of PAHs concentration in sediments was: rivers of Pearl River Delta > estuary > South China Sea, and the most significant PAH contamination was at Guangzhou channel of Zhujiang river. A decrease trend for PAHs concentration with distance from estuary to open sea can be sees in South China Sea. Coal and biomass combustion is the major source of PAHs in nearshore of South China Sea, and petroleum combustion is the main source of pyrolytic PAHs in rivers and estuary of Pearl River Delta according to PAHs diagnostic ratios. Petroleum PAHs are revealed have a high contribution to PAHs in Xijiang River, estuary and some stations in Zhujiang River. A comparison of data from study in 1997 with data from present study indicates that there is no clear change in the PAH concentration over time but the source of PAHs in Pearl River Delta have been change from a main coal combustion to petroleum combustion and being reflect in the sediments in rivers and estuary of Pearl River Delta where there have high sedimentation rate.

  11. Geochemistry of the dissolved loads of the Liao River basin in northeast China under anthropogenic pressure: Chemical weathering and controlling factors

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Liu, Cong-Qiang; Zhao, Zhi-Qi; Li, Si-Liang; Lang, Yun-Chao; Li, Xiao-Dong; Hu, Jian; Liu, Bao-Jian

    2017-05-01

    This study focuses on the chemical and Sr isotopic compositions of the dissolved load of the rivers in the Liao River basin, which is one of the principal river systems in northeast China. Water samples were collected from both the tributaries and the main channel of the Liao River, Daling River and Hun-Tai River. Chemical and isotopic analyses indicated that four major reservoirs (carbonates (+gypsum), silicates, evaporites and anthropogenic inputs) contribute to the total dissolved solutes. Other than carbonate (+gypsum) weathering, anthropogenic inputs provide the majority of the solutes in the river water. The estimated chemical weathering rates (as TDS) of silicate, carbonate (+gypsum) and evaporites are 0.28, 3.12 and 0.75 t/km2/yr for the main stream of the Liao River and 7.01, 25.0 and 2.80 t/km2/yr for the Daliao River, respectively. The associated CO2 consumption rates by silicate weathering and carbonate (+gypsum) weathering are 10.1 and 9.94 × 103 mol/km2/yr in the main stream of the Liao River and 69.0 and 80.4 × 103 mol/km2/yr in the Hun-Tai River, respectively. The Daling River basin has the highest silicate weathering rate (TDSsil, 3.84 t/km2/yr), and the Hun-Tai River has the highest carbonate weathering rate (TDScarb, 25.0 t/km2/yr). The Raoyang River, with an anthropogenic cation input fraction of up to 49%, has the lowest chemical weathering rates, which indicates that human impact is not a negligible parameter when studying the chemical weathering of these rivers. Both short-term and long-term study of riverine dissolved loads are needed to a better understanding of the chemical weathering and controlling factors.

  12. Nutrient Enrichment Study Data from the Upper, Middle, and Lower Sections of the Non-Tidal Delaware River, 2009

    USGS Publications Warehouse

    Brightbill, Robin A.; Limbeck, Robert; Silldorff, Erik; Eggleston, Heather L.

    2011-01-01

    The Delaware River Basin Commission is charged with establishing water-quality objectives for the tidal and non-tidal portions of the Delaware River, which include developing nutrient standards that are scientifically defensible. The U.S. Geological Survey, in cooperation with the Delaware River Basin Commission and the Academy of Natural Sciences, studied the effects of nutrient enrichment in the upper, middle, and lower sections of the non-tidal Delaware River. Algal samples were collected from the natural habitat using rock scrapes and from the artificial nutrient enrichment samplers, Matlock periphytometers. The knowledge gained from this study is to be used in helping determine appropriate nutrient criteria for the Delaware River in the oligotrophic, mesotrophic, and eutrophic sections of the river and is a first step toward gathering data that can be used in selecting nutrient effect levels or criteria thresholds for aquatic-life use protection. This report describes the methods for data collection and presents the data collected as part of this study.

  13. A new framework for assessing river ecosystem health with consideration of human service demand.

    PubMed

    Luo, Zengliang; Zuo, Qiting; Shao, Quanxi

    2018-06-01

    In order to study river health status from harmonic relationship between human and natural environment, a river health evaluation method was proposed from the aspects of ecosystem integrity and human service demand, and the understanding of river health connotation. The proposed method is based on the harmony theory and two types of river health assessment methods (the forecasting model and index evaluation). A new framework for assessing river water health was then formed from the perspective of harmony and dynamic evolution between human service demand and river ecosystem integrity. As a case study, the method and framework were applied to the Shaying River Basin, a tributary of the most polluted Huaihe River Basin in China. The health status of the river's ecosystem and its effect on the mainstream of Huaihe River were evaluated based on water ecological experiment. The results indicated that: (1) the water ecological environment in Shaying River was generally poor and showed a gradual changing pattern along the river. The river health levels were generally "medium" in the upstream but mostly "sub-disease" in the midstream and downstream, indicating that the water pollution in Shaying River were mainly concentrated in the midstream and downstream; (2) the water pollution of Shaying River had great influence on the ecosystem of Huaihe River, and the main influencing factors were TN, followed by TP and COD Mn ; (3) the natural attribute of river was transferring toward to the direction of socialization due to the increasing human activities. The stronger the human activity intervention is, the faster the transfer will be and the more river's attributes will match with human service demand. The proposed framework contributes to the research in water ecology and environment management, and the research results can serve as an important reference for basin management in Shaying River and Huaihe River. Copyright © 2018. Published by Elsevier B.V.

  14. How has climate change altered network connectivity in a mountain stream network?

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.; Johnson, S.

    2017-12-01

    Connectivity along river networks is broadly recognized as dynamic, with seasonal and event-based expansion and contraction of the network extent. Intermittently flowing streams are particularly important as they define a crucial threshold for continuously connected waters that enable migration by aquatic species. In the Pacific northwestern U.S., changes in atmospheric circulation have been found to alter rainfall patterns and result in decreased summer low-flows in the region. However, the impact of this climate dynamic on network connectivity is heretofore unstudied. Thus, we ask: How has connectivity in the riparian corridor changed in response to observed changes in climate? In this study we take the well-studied H.J. Andrews Experimental Forest as representative of mountain river networks in the Pacific northwestern U.S. First, we analyze 63 years of stream gauge information from a network of 11 gauges to document observed changes in timing and magnitude of stream discharge. We found declining magnitudes of seasonal low-flows and shifting seasonality of water export from the catchment, both of which we attribute to changes in precipitation timing and storage as snow vs. rainfall. Next, we use these discharge data to drive a reduced-complexity model of the river network to simulate network connectivity over 63 years. Model results show that network contraction (i.e., minimum network extent) has decreased over the past 63 years. Unexpectedly, the increasing winter peak flows did not correspond with increasing network expansion, suggesting a geologic control on maximum flowing network extent. We find dynamic expansion and contraction of the network primarily occurs during period of catchment discharge less than about 1 m3/s at the outlet, whereas the network extent is generally constant for discharges from 1 to 300 m3/s. Results of our study are of interest to scientists focused on connectivity as a control on ecological processes both directly (e.g., fish migration) and indirectly (e.g., stream temperature modeling). Additionally, our results inform management and regulatory needs such as estimating connectivity for entire river networks as a basis for regulation, and identifying the complexity of a shifting baseline in identifying a regulatory basis.

  15. qPCR (quantitative polymerase chain reaction) for the quantification of bacteriophages in stream water samples to investigate hydrological processes: a proof-of-concept study in the Huewelerbach experimental catchment (Luxembourg)

    NASA Astrophysics Data System (ADS)

    Antonelli, Marta; Narayanan Balasubramanian, Mukundh; Ogorzaly, Leslie; Pfister, Laurent

    2016-04-01

    Albeit recent technological developments (e.g. field deployable instruments operating at high temporal frequencies), experimental hydrology is a discipline that remains measurement limited. From this perspective, trans-disciplinary approaches may create valuable opportunities to enlarge the amount of tools available for investigating hydrological processes. Bacteriophages have been widely used in hydrology as biological tracer for investigating colloid transport and contamination of ground water systems. However, there are only a few studies focusing on the employability of bacteriophages as surface water tracers (i.e. phage transport, system functioning). Here, we present a proof-of-concept study carried out in the Huewelerbach catchment in Luxembourg in December 2015. The aim of this study was to investigate how viral particles can be used to detect hydrological connectivity between the riparian zone/river bank and the stream during rainfall events. Moreover, this study is one of the first attempts for applying the qPCR (quantitative polymerase chain reaction) technique for the quantification of bacteriophages in stream water samples to investigate hydrological processes. This technique is very sensitive and has a large dynamic range - enhancing ease and speed of phage detection. We used two different male-specific coliphages (GA phage, genogroup II and SP phage, genogroup IV). Two litres of GA phage were injected directly in the stream as a slug injection and two litres of SP phage were poured next to the river bank (alluvial deposition) close to the injection point. We also added NaCl (200 g) to both phage suspensions. We collected stream water samples 100 m and 500 m downstream (i.e. catchment outlet) of the injection point for one week. Phages were concentrated through ultracentrifugation of 100 ml of water sample followed by quantification via qPCR. Conductivity in stream water was monitored for the entire duration of the experiment. Discharge was monitored both immediately upstream of the injection point and at the catchment outlet. Preliminary results show that at the catchment outlet, the GA-phage injected in stream displayed almost complete mass recovery (~93 %), in contrast to the partial recovery (~12%) of the SP phage that was introduced on the river bank. Additionally, the amount of GA phages detected 100 m downstream of the injection point evolved back to its background level after six days. We could not observe a similar evolution for the SP phage. At the outlet, the amount of both phages did not return to background levels after six days. This can be due to a combined action of the occurrence of preferential flowpaths and the behaviour of colloids. During the monitored rain event we observed a dilution effect on both phages and a slight increase of the quantity of SP phage right after the peak of discharge. This finding suggests a release of viral particles from the river bank. Overall, we have demonstrated with this proof-of-concept study the value of phages as eco-hydrological tracer.

  16. Expected Performance of the Upcoming Surface Water and Ocean Topography Mission Measurements of River Height, Width, and Slope

    NASA Astrophysics Data System (ADS)

    Wei, R.; Frasson, R. P. M.; Williams, B. A.; Rodriguez, E.; Pavelsky, T.; Altenau, E. H.; Durand, M. T.

    2017-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) mission will measure river widths and water surface elevations of rivers wider than 100 m. In preparation for the SWOT mission, the Jet Propulsion Laboratory built the SWOT hydrology simulator with the intent of generating synthetic SWOT overpasses over rivers with realistic error characteristics. These synthetic overpasses can be used to guide the design of processing methods and data products, as well as develop data assimilation techniques that will incorporate the future SWOT data into hydraulic and hydrologic models as soon as the satellite becomes operational. SWOT simulator uses as inputs water depth, river bathymetry, and the surrounding terrain digital elevation model to create simulated interferograms of the study area. Next, the simulator emulates the anticipated processing of SWOT data by attempting to geolocate and classify the radar returns. The resulting cloud of points include information on water surface elevation, pixel area, and surface classification (land vs water). Finally, we process the pixel clouds by grouping pixels into equally spaced nodes located at the river centerline. This study applies the SWOT simulator to six different rivers: Sacramento River, Tanana River, Saint Lawrence River, Platte River, Po River, and Amazon River. This collection of rivers covers a range of size, slope, and planform complexity with the intent of evaluating the impact of river width, slope, planform complexity, and surrounding topography on the anticipated SWOT height, width, and slope error characteristics.

  17. Characterization of forest crops with a range of nutrient and water treatments using AISA Hyperspectral Imagery.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Binglei; Im, Jungho; Jensen, John, R.

    2012-07-01

    This research examined the utility of Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for estimating the biomass of three forest crops---sycamore, sweetgum and loblolly pine--planted in experimental plots with a range of fertilization and irrigation treatments on the Savannah River Site near Aiken, South Carolina.

  18. The Entiat Experimental Forest: a unique opportunity to examine hydrologic response to wildfire.

    Treesearch

    Richard D. Woodsmith; Kellie B. Vache; Jeffrey J. McDonnell; Jan Seibert; J. David Helvey

    2007-01-01

    Water is generally regarded as the most important natural resource in the interior Columbia River basin (ICRB). Public agencies managing forested headwater source areas are under increasing pressure to document water quantity and quality, and the effects of background and anthropogenic disturbances that influence them. Fire is widely recognized as the primary...

  19. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments

    Treesearch

    Jungho Im; John R. Jensen; Mark Coleman; Eric Nelson

    2009-01-01

    Hyperspectral remote sensing research was conducted to document the biophysical and biochemical characteristics of controlled forest plots subjected to various nutrient and irrigation treatments. The experimental plots were located on the Savannah River Site near Aiken, SC. AISA hyperspectral imagery were analysed using three approaches, including: (1) normalized...

  20. Experimental use of Line-X coated steel pipe piles, Clay Hill Bridge (#2157) replacement project over the Mousam River, Route 9/Western Avenue, Kennebunk, Maine.

    DOT National Transportation Integrated Search

    2013-02-01

    Steel pipe piles used by MaineDOT for bridge construction are typically coated with a fusion-bonded epoxy (FBE). FBE is a powder-based coating with properties similar to traditional : epoxies. Its name is derived from the process by which it adheres ...

  1. Diameter growth of plantation-grown Douglas-fir trees under varying degrees of release.

    Treesearch

    Kenneth W. Krueger

    1959-01-01

    As an ever-increasing number of young Douglas-fir stands in the Pacific Northwest come under intensive management, development of better tree-marking techniques based on sound scientific principles becomes essential. For this reason, two experiments have been established at the Wind River Experimental Forest near Carson, Wash., to measure the effect of different...

  2. Changing hydrology under a changing climate for a Coastal Plain Watershed

    USDA-ARS?s Scientific Manuscript database

    Analysis of climate data from the Little River Experimental Watershed near Tifton, Georgia, in the South Atlantic Coastal Plain of the U.S.A. indicate air temperatures will increase (0.15 to 0.41°C decade-1) along with a slight increase in total annual precipitation in the 21st century. The greates...

  3. The Dnieper River Aquatic System Radioactive Contamination; Long-tern Natural Attenuation And Remediation History

    NASA Astrophysics Data System (ADS)

    Voitsekhovych, Oleg; Laptev, Genadiy; Kanivets, Vladimir; Konoplev, Alexey

    2013-04-01

    Near 27 year passed after the Chernobyl Accident, and the experience gained to study radionuclide behavior in the aquatic systems and to mitigate water contamination are still pose of interest for scientists, society and regulatory austerities. There are different aspects of radionuclide transport in the environment were studied since the Chernobyl fallout in 1986 covered the river catchments, wetlands, river, lakes/reservoirs and reached the Black Sea. The monitoring time series data set and also data on the radionuclides behavior studies in the water bodies (river, lakes and the Black Sea) are available now in Ukraine and other affected countries. Its causation analyses, considering the main geochemical, physical and chemical and hydrological process, governing by radionuclide mobility and transport on the way from the initially contaminated catchments, through the river-reservoir hydrological system to the Black Sea can help in better understanding of the main factors governing be the radionuclide behavior in the environment. Radionuclide washout and its hydrological transport are determined speciation of radionuclides as well as soil types and hydrological mode and also geochemistry and landscape conditions at the affected areas. Mobility and bioavailability of radionuclides are determined by ratio of radionuclide chemical forms in fallout and site-specific environmental characteristics determining rates of leaching, fixation/remobilization as well as sorption-desorption of mobile fraction (its solid-liquid distribution). In many cases the natural attenuation processes governing by the above mentioned processes supported by water flow transportation and sedimentation played the key role in self-rehabilitation of the aquatic ecosystems. The models developed during post-Chernobyl decade and process parameters studies can help in monitoring and remediation programs planed for Fukusima Daichi affected watersheds areas as well. Some most important monitoring data collection results and experience gained during post-Chernobyl decades at the Dnieper River aquatic system are presented (catchments, river and reservoirs). This experience show that only information on radionuclide deposition levels is not enough for accurate predictions on radionuclide wash-out and transport in the hydrological systems. Data on speciation in fallout, rates of transformation processes and site-specific environmental characteristics determining these rates are needed. Information on radionuclide chemical forms, their transformation in other words mobility and bioavailability should be taken into account when rehabilitation and decontamination strategies are developed on local or regional scale. Number of inadequate water protection measures carried out during initial post-accidental period took place because lack of preparedness, data and decision making support tools were in use, Environmental radiation monitoring network has not been developed and huge impact of social stressing and inadequate risk perception took place. Many experimental data, models developed and experience for safe management at the contaminated watersheds and water bodies can be useful and in particular those, who dealing with consequences of Fucusima accident 2011. The paper gives extended overview and describes experience of authors in justification and evaluation of the remedial actions applied after Chernobyl accident with focus on most important lessons learned and potentially utilized in future.

  4. Hydraulic and geomorphic monitoring of experimental bridge scour mitigation at selected bridges in Utah, 2003-05

    USGS Publications Warehouse

    Kenney, Terry A.; McKinney, Tim S.

    2006-01-01

    Unique bridge scour mitigation designs using concrete A-Jacks were developed by the Utah Department of Transportation and installed at the Colorado River Bridge at State Road 191 and the Green River Bridge at State Road 19. The U.S. Geological Survey monitored stream reaches at these sites by collecting streambed-topography and water-velocity data from 2003 through 2005. These data were acquired annually from a moving boat with an acoustic Doppler current profiler and a differential global positioning system. Raw unordered data were processed and readied for interpolation into organized datasets with DopplerMacros, a set of computer programs. Processed streambed topography data were geostatistically interpolated by using Ordinary Kriging, and inverse distance weighting interpolation was used in the development of the two-dimensional velocity datasets. These organized datasets of topography and velocity were developed for each survey of the two bridge sites. A comparison of the riverbed topography data for each survey was done. An increase in bed elevation related to the installation of the A-Jacks scour countermeasures is evident at the Colorado River Bridge at State Road 191. The three topographic datasets acquired after the installation at the Green River Bridge at State Road 19 show few changes.

  5. Potential compensation of hydrological extremes in headwaters: case study of upper Vltava River basin, Šumava Mts., Czechia

    NASA Astrophysics Data System (ADS)

    Kocum, Jan; Janský, Bohumír.; Česák, Julius

    2010-05-01

    Increasing frequency of catastrophic flash floods and extreme droughts in recent years results in an urgent need of solving of flood protection questions and measures leading to discharge increase in dry periods. Flattening of discharge call for the use of untraditional practices as a suitable complement to classical engineering methods. These measures could be represented by gradual increase of river catchment retention capacity in headstream areas. Very favorable conditions for this research solution are concentrated to the upper part of Otava River basin (Vltava River left tributary, Šumava Mts., southwestern Czechia) representing the core zone of a number of extreme floods in Central Europe and the area with high peat land proportion. A number of automatic ultrasound and hydrostatic pressure water level gauges, climatic stations and precipitation gauges and utilization of modern equipment and methods were used in chosen experimental catchments to assess the landscape retention potential and to find out rainfall-runoff relations in this area. Successively, the detailed analysis of peat land hydrological function was carried out. The peat bogs influence on runoff conditions were assessed by thorough comparison of runoff regimes in subcatchments with different peat land proportion. The peat bog influence on hydrological process can be considered also with respect to its affecting of water quality. Therefore, hydrological monitoring was completed by ion, carbon (TOC) and oxygen isotopes balance observing within periods of high or low discharges in order to precise runoff phases separation by means of anion deficiency. Pedological survey of different soil types and textures was carried out to precise the estimation of its water capacity. Detailed analyses of extreme runoff ascending and descending phases and minimum discharges in profiles closing several subcatchments with different physical-geographic conditions show higher peak flow frequency and their shorter reaction to causal amount of precipitation in the case of highly peaty areas, therefore more distinct runoff variability of streams draining peat land localities. These findings were affirmed by geochemical approach laboratory outcomes within the meaning of significant contribution of runoff from peat lands to the total runoff during extreme flood situations. An important component of rainfall-runoff process in source areas of czech rivers represented by snow conditions was analyses very in detail by means of monitoring of snow cover height and its water equivalent in chosen experimental catchments. Outcomes of this study should markedly help with significant precising of estimation of water storage retained in a snow cover. Consecutive runoff simulations using mathematical techniques would then improve a hydrological forecast. In terms of present dyking of former channels draining peat land represented by so called peat bog revitalization partial findings refer to positive effect during mean runoff situations but their considerably negative influence on runoff process in cases of extremely high discharges. In order to achieve retention potential enhancement in source areas of czech rivers an evaluation of possible former accumulative reservoirs (used for wood floating in former times) restoration which could function for example as dry (green) polders should be considered. The system of such small storage bins could function as an alternative and supplement to greater dam reservoirs. Possible spaces for water retention are measured by geodetic total station and modelled by suitable methods in GIS software. Existing outcomes advert to the fact that the effectiveness of such reservoir system would not have to be neglecting. By implementation of these unforceable measures realized in river headstream areas it could be contributed to reduction of peak flows and to increase of water resources during extreme droughts in future.

  6. Design and implementation of expert decision system in Yellow River Irrigation

    NASA Astrophysics Data System (ADS)

    Fuping, Wang; Bingbing, Lei; Jie, Pan

    2018-03-01

    How to make full use of water resources in the Yellow River irrigation is a problem needed to be solved urgently. On account of the different irrigation strategies in various growth stages of wheat, this paper proposes a novel irrigation expert decision system basing on fuzzy control technique. According to the control experience, expert knowledge and MATLAB simulation optimization, we obtain the irrigation fuzzy control table stored in the computer memory. The controlling irrigation is accomplished by reading the data from fuzzy control table. The experimental results show that the expert system can be used in the production of wheat to achieve timely and appropriate irrigation, and ensure that wheat growth cycle is always in the best growth environment.

  7. Characterization of riverbed sediments hydraulic conductivity using slug tests and electrical resistivity tomography and induced polarization tomogrpahy.

    NASA Astrophysics Data System (ADS)

    Nguyen, F.; Benoit, S.; Gommers, K.; Ghysels, G.; Hermans, T.; Huysmans, M.

    2017-12-01

    Hydraulic conductivity of river sediments ranges from values smaller than 10-9 m/s to values higher than 10-2 m/s, with a dominance in values between 10-7 m/s and 10-3 m/s. Both horizontal hydraulic conductivity and vertical hydraulic conductivity show spatial variation in a riverbed. The spatial variation in hydraulic conductivity is due to the influence of the sedimentary and geomorphological environment as well as the method of determination, including scale, size and imprecision of the applied method. The characterization of the spatial variability of hydraulic conductivity in riverbeds is important because of its effect on the interaction between river and groundwater. These river - groundwater interactions influence water resource management, water quality and functioning of the riparian ecosystem. It is necessary in the simulation of 3D flow between river and aquifer near the interface and thus, it also determines contaminant transport and biogeochemical modelling in this riparian or hyporheic zone. Different processes occur in this specific zone such as transport, degradation, transformation, precipitation and sorption of substances, all dependent on hydraulic conductivity. Several methods exist to determine the hydraulic conductivity in river beds, both direct and indirect methods, from field to laboratory experiments or numerical modelling, but the uncertainty on obtained K values is often large because of the large variability of K. In the recent years, research has been performed on the usefulness of geophysical methods on rivers, in particular Electrical Resistivity Tomography (ERT) and Induced Polarization (IP). The implementation of ERT and IP in rivers provides a continuous image of the resistivity and chargeability of the subsurface, respectively, and can be used in several applications as proxies for hydraulic conductivity. This work reports and investigate a correlation between hydraulic conductivity measured by slug tests at an experimental site, and electrical resistivity, chargeability and normalized chargeability for riverbeds sediments.

  8. Irrigation and streamflow depletion in Columbia River basin above The Dalles, Oregon

    USGS Publications Warehouse

    Simons, Wilbur Douglas

    1953-01-01

    The Columbia River is the largest stream in western United States. Above The Dalles, Oregon, it drains an area of 237,000 square miles, of which 39,000 square miles is in Canada. This area is largely mountainous and lies between the Rocky Mountains and the Cascade Range. The Kootenai, Pend Oreille, and Snake Rivers are the principal tributaries. Precipitation varies from 7 inches near Kennewick, Wash. to over 100 inches in some of the mountainous regions. Most of the runoff occurs in the spring and summer months as a result of melting snow. Precipitation is generally light during the summer months, and irrigation is necessary for sustained crop production. Historical data indicate that irrigation in the Columbia River basin began prior to 1840 at the site of missions established near Walla Walla, Wash. and Lewiston, Idaho. During the next half century the increase in irrigated area was slow and by 1890 included only 506,000 acres. The period 1890 to 1910 was marked by phenomenal increase to a total of 2,276,000 acres in 1910. Since that time there has been more gradual addition to a total of 4,004,S00 acres of irrigated land in 1946 in the Columbia River basin above The Dalles, Oreg. Of this total 918,000 acres were located in the Columbia Basin above the mouth of the Snake River; 2,830,000 acres in the Snake River basin, and the balance, 256,000 acres below the mouth of the Snake River. Values of net consumptive use were determined or estimated for various tributary basins of the Columbia River basin and compared to available experimental data. These values were then used to compute the average depletion which could be directly attributed to irrigation. The yield of a drainage basin was considered to be the rum of the ob- served runoff and the estimated depletion. For purposes of comparison, the depletion was expressed both in terms of acre-feet and as a percentage of the yield of the basin. This percentage depletion varied from less than 1 percent for many tributary basins to 53 percent for the portion of the Snake River basin between Heise and King Hill, Idaho. For the Columbia River near The Dalles, Oreg., the average depletion during the period 1921 through 1945, amounted to 4,7 percent of the yield and the depletion represented by the 1946 stage of irrigation development amounted to 5.3 percent of the long-term yield.

  9. 76 FR 54453 - Request for Comments on the Notice of Intent To Prepare a Draft Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Investigation Study (Previously Advertised as the Skagit River Flood Damage Reduction Study), Skagit County, WA... advertised as the Skagit River Flood Damage Reduction Study), Skagit County, Washington. This extension will... Investigation Study (previously advertised as the Skagit River Flood Damage Reduction Study), Skagit County...

  10. Numerical modelling of sedimentary structures in rivers on Titan and Earth

    NASA Astrophysics Data System (ADS)

    Misiura, Katarzyna; Czechowski, Leszek

    2016-04-01

    On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. 2. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. 3. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. 4. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. 5. Results and Conclusions The results of our simulation show the differences in behaviour of the flow and of sedimentation on Titan and on the Earth. Our preliminary results indicate that suspended load is the main way of transport in simulated Titan's conditions. We also indicate that braided rivers appears for larger range of slope on Titan (e.g. S=0.01-0.04) than on Earth (e.g. S=0.004-0.009). Also, for the same type of river, the grain size on Titan is at least 10 times larger than on Earth (1 cm for Titan versus 1 mm for the Earth). It is very interesting that on Titan braided rivers appear even for very little discharge (e.g. Q=30m3/s) and for very large grain size (e.g. 10 cm). In the future we plan the experimental modelling in sediment basin to confirm results from computer modelling. Acknowledgements We are very grateful to Yaoxin Zhang and Yafei Jia from National Center for Computational Hydroscience and Engineering for providing their program - CCHE2D. References [1] Misiura, K., Czechowski, L., 2015. Numerical modelling of sedimentary structures in rivers on Earth and Titan. Geological Quarterly, 59(3): 565-580.

  11. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    NASA Astrophysics Data System (ADS)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  12. Public support for river restoration. A mixed-method study into local residents' support for and framing of river management and ecological restoration in the Dutch floodplains.

    PubMed

    Buijs, Arjen E

    2009-06-01

    In many European countries, accommodating water has become the dominant paradigm in river management. In the Netherlands, extensive river restoration projects are being implemented, many of which draw serious opposition from the public. To investigate the causes of such opposition, a comprehensive study of public attitudes towards river restoration was conducted in three floodplains, both before and after river restoration. The study combined quantitative questionnaires (N=562) with open interviews (N=29). This paper describes how local residents perceive the effects of river restoration on landscape quality and how residents and protest groups use landscape quality in combination with other arguments to strategically frame river management policies. Results show that measurement of the perceived outcomes of nature restoration needs to be complemented by a more dynamic type of research, focusing on the social processes of the framing of restoration plans. Theoretically, the paper aims to contribute to the development of a rigorous research strategy to study framing processes in environmental management, using a mixed-methods approach. In general, local residents are supportive of river restoration projects. Although restoration may diminish feelings of attachment to an area, for most people this negative effect is compensated by the positive effects on scenic beauty and perceived protection from flooding. However, these positive effects may become contested because of the active framing of river restoration by protest groups. Residents use three distinct frames to give meaning to river restoration projects: (i) an attachment frame, focusing on cultural heritage and place attachment (ii) an attractive nature frame, focusing on nature as attractive living space and the intrinsic value of nature (iii) a rurality frame, focusing on rural values, agriculture and cultural heritage. Resistance to river restoration plans stems from the attachment and rurality frames. People using these frames challenge safety arguments for river restoration and highlight potential threats to sense of place and to agriculture. In the areas surveyed, the project initiator's focus on biodiversity and safety did not resonate very well among the local community, because of their diverging views on nature. Practical implications of the study include the need to incorporate public perception into river restoration projects and the potential for project initiators to form strategic alliances with local residents to promote ecological restoration in combination with river restoration.

  13. Optimization of the scheme for natural ecology planning of urban rivers based on ANP (analytic network process) model.

    PubMed

    Zhang, Yichuan; Wang, Jiangping

    2015-07-01

    Rivers serve as a highly valued component in ecosystem and urban infrastructures. River planning should follow basic principles of maintaining or reconstructing the natural landscape and ecological functions of rivers. Optimization of planning scheme is a prerequisite for successful construction of urban rivers. Therefore, relevant studies on optimization of scheme for natural ecology planning of rivers is crucial. In the present study, four planning schemes for Zhaodingpal River in Xinxiang City, Henan Province were included as the objects for optimization. Fourteen factors that influenced the natural ecology planning of urban rivers were selected from five aspects so as to establish the ANP model. The data processing was done using Super Decisions software. The results showed that important degree of scheme 3 was highest. A scientific, reasonable and accurate evaluation of schemes could be made by ANP method on natural ecology planning of urban rivers. This method could be used to provide references for sustainable development and construction of urban rivers. ANP method is also suitable for optimization of schemes for urban green space planning and design.

  14. Ecological restoration and effect investigation of a river wetland in a semi-arid region, China

    NASA Astrophysics Data System (ADS)

    Xu, S.; Jiang, X.; Liu, Y.; Fu, Y.; Zhao, Q.

    2015-05-01

    River wetlands are heavily impacted by human intervention. The degradation and loss of river wetlands has made the restoration of river ecosystems a top priority. How to rehabilitate rivers and their services has been a research focus. The main goal of it is to restore the river wetland ecosystems with ecological methods. The Gudong River was selected as a study site in Chaoyang city in this study. Based on the analysis of interference factors in the river wetland degradation, a set of restoration techniques were proposed and designed for regional water level control, including submerged dikes, ecological embankments, revegetation and dredging. The restoration engineering has produced good results in water quality, eco-environment, and landscape. Monthly reports of the Daling River show that the water quality of Gudong River was better than Grade III in April 2013 compared with Grade V in May 2012. The economic benefit after restoration construction is 1.71 million RMB per year, about 1.89 times that before. The ratio of economic value, social value and eco-environmental value is 1:4:23.

  15. Hydrogeology and Simulated Effects of Ground-Water Withdrawals in the Big River Area, Rhode Island

    USGS Publications Warehouse

    Granato, Gregory E.; Barlow, Paul M.; Dickerman, David C.

    2003-01-01

    The Rhode Island Water Resources Board is considering expanded use of ground-water resources from the Big River area because increasing water demands in Rhode Island may exceed the capacity of current sources. This report describes the hydrology of the area and numerical simulation models that were used to examine effects of ground-water withdrawals during 1964?98 and to describe potential effects of different withdrawal scenarios in the area. The Big River study area covers 35.7 square miles (mi2) and includes three primary surface-water drainage basins?the Mishnock River Basin above Route 3, the Big River Basin, and the Carr River Basin, which is a tributary to the Big River. The principal aquifer (referred to as the surficial aquifer) in the study area, which is defined as the area of stratified deposits with a saturated thickness estimated to be 10 feet or greater, covers an area of 10.9 mi2. On average, an estimated 75 cubic feet per second (ft3/s) of water flows through the study area and about 70 ft3/s flows out of the area as streamflow in either the Big River (about 63 ft3/s) or the Mishnock River (about 7 ft3/s). Numerical simulation models are used to describe the hydrology of the area under simulated predevelopment conditions, conditions during 1964?98, and conditions that might occur in 14 hypothetical ground-water withdrawal scenarios with total ground-water withdrawal rates in the area that range from 2 to 11 million gallons per day. Streamflow depletion caused by these hypothetical ground-water withdrawals is calculated by comparison with simulated flows for the predevelopment conditions, which are identical to simulated conditions during the 1964?98 period but without withdrawals at public-supply wells and wastewater recharge. Interpretation of numerical simulation results indicates that the three basins in the study area are in fact a single ground-water resource. For example, the Carr River Basin above Capwell Mill Pond is naturally losing water to the Mishnock River Basin. Withdrawals in the Carr River Basin can deplete streamflows in the Mishnock River Basin. Withdrawals in the Mishnock River Basin deplete streamflows in the Big River Basin and can intercept water flowing to the Flat River Reservoir North of Hill Farm Road in Coventry, Rhode Island. Withdrawals in the Big River Basin can deplete streamflows in the western unnamed tributary to the Carr River, but do not deplete streamflows in the Mishnock River Basin or in the Carr River upstream of Capwell Mill Pond. Because withdrawals deplete streamflows in the study area, the total amount of ground water that may be withdrawn for public supply depends on the minimum allowable streamflow criterion that is applied for each basin.

  16. Understanding the fluvial loss of carbon from the UK - implications for terrestrial carbon, greenhouse gases and water quality.

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Howden, N. J. K.

    2016-12-01

    We have developed a number of methods to estimate the fate of fluvial organic matter through UK catchments. Here we include dissolved organic matter (DOM), particulate organic matter (POC), and dissolved gases to estimate losses from the terrestrial biosphere; in-stream losses and production (including the role of water and waste treatment); and export to the continental shelf and atmsophere. We use multiple approaches, including: mass balance studies, modelling and experimentation. Mass balance studies suggest that the UK terrestrial biosphere losses 5 Mtonnes C/yr (21.8 tonnes C/km2/yr) in the proportion of 7:22:4 (POC:DOC:diss. CO2). The mass balance studies suggest 3.5 Mtonnes C/yr (15.2 tonnes C/km2/yr) is lost to the atmosphere in the proportion 8:75:17 (POC:DOC:diss. CO2); UK rivers have short residence times (typically 1-2 days) and so the diurnal cycle becomes critical. Experiments show that turnover rates are close to zero overnight but that these can be periods of DOM production from turnover of POM and that the presence of POM may inhibit turnover of DOM; The development and modelling using physically-explicit rate laws showed that the loss of DOC was between 24 and 37% - lower than that estimated from mass balance studies, but that the loss rate of TOC (DOC + POC) was between 57 and 80% - close to that estimated from mass balance studies; The turnover of organic particles within rivers means that any notion that soil erosion leads to net carbon drawdown is entirely negated and the emission factor for gross soil erosion is estimated to be between 0.11 and 0.66 tonnes CO2eq/yr for every 1 tonne of gross erosion; and, Studies of molecular change of DOM and POM along rivers shows that, while POM represents an admixture of its sources (soils and vegetation), the DOM which enters rivers as highly oxidised becomes more reduced in channel. The release of greenhouse gases from UK rivers is now estimated to be between 15,800 - 33,000 ktonnes CO2eq/yr equivalent to between 67 and 131 tonnes CO2eq/km2/yr with fluvial organic matter between 12,328 and 15,922 ktonnes CO2eq/yr in the proportion 5:86:8 - N2O:CO2:CH4. The emissions factor for 1 tonne of organic carbon entering the UK fluvial network has a median value of 3.01 tonnes CO2eq/yr with a 5th to 95th percentile range of 2.60 to 3.59 tonnes CO2eq/yr.

  17. Thermal study of the Missouri River in North Dakota using infrared imagery

    USGS Publications Warehouse

    Crosby, Orlo A.

    1971-01-01

    The study indicates a marked decrease in water temperature in the Missouri River prior to early fall and a moderate increase in temperature in late fall because of the Lake Sakakawea impoundment. At the present time, thermal additions generated by the powerplants have little effect on the temperature regimen of the Missouri River at high rates of river discharge.

  18. Water quality of Cisadane River based on watershed segmentation

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  19. Navigable rivers facilitated the spread and recurrence of plague in pre-industrial Europe

    PubMed Central

    Yue, Ricci P. H.; Lee, Harry F.; Wu, Connor Y. H.

    2016-01-01

    Infectious diseases have become a rising challenge to mankind in a globalizing world. Yet, little is known about the inland transmission of infectious diseases in history. In this study, we based on the spatio-temporal information of 5559 plague (Yersinia pestis) outbreaks in Europe and its neighboring regions in AD1347–1760 to statistically examine the connection between navigable rivers and plague outbreak. Our results showed that 95.5% of plague happened within 10 km proximity of navigable rivers. Besides, the count of plague outbreak was positively correlated with the width of river and negatively correlated with the distance between city and river. This association remained robust in different regression model specifications. An increase of 100 m in the width of river and a shortening of 1 km distance between city and river resulted in 9 and 0.96 more plague outbreaks in our study period, respectively. Such relationship shows a declining trend over our study period due to the expansion of city and technological advancement in overland transportation. This study elucidates the key role of navigable river in the dissemination of plague in historical Europe. PMID:27721393

  20. Simulated flow and solute transport, and mitigation of a hypothetical soluble-contaminant spill for the New River in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1993-01-01

    This report presents the results of a study by the U.S. Geological Survey (USGS), in cooperation with the National Park Service, to investigate the transport and factors affecting mitigation of a hypothetical spill of a soluble contaminant into the New River in the New River Gorge National River, West Virginia. The study reach, 53 miles of the lower New River between Hinton and Fayette, is characterized as a pool-and-riffle stream that becomes narrower, steeper, and deeper in the downstream direction. A USGS unsteady-flow model, DAFLOW (Diffusion Analogy FLOW), and a USGS solute-transport model, BLTM (Branch Lagrangian Transport Model), were applied to the study reach. Increases in discharge caused decreases in peak concentration and traveltime of peak concentration. Decreases in discharge caused increases in peak concentration and traveltime of peak concentration. This study indicated that the effects of an accidental spill could be mitigated by regulating discharge from Bluestone Dam. Knowledge of the chemical characteristics of the spill, location and time of the spill, and discharge of the river can aid in determining a mitigation response.

Top