Science.gov

Sample records for river flood plain

  1. Flood hydrology and methylmercury availability in coastal plain rivers.

    PubMed

    Bradley, Paul M; Journey, Celeste A; Chapelle, Francis H; Lowery, Mark A; Conrads, Paul A

    2010-12-15

    Mercury (Hg) burdens in top-predator fish differ substantially between adjacent South Carolina Coastal Plain river basins with similar wetlands coverage. In the Congaree River, floodwaters frequently originate in the Blue Ridge and Piedmont regions, where wetlands coverage and surface water dissolved methylmercury (MeHg) concentrations are low. Piedmont-driven flood events can lead to downward hydraulic gradients in the Coastal Plain riparian wetland margins, inhibiting MeHg transport from wetland sediments, and decreasing MeHg availability in the Congaree River habitat. In the adjacent Edisto River basin, floodwaters originate only within Coastal Plain sediments, maintaining upward hydraulic gradients even during flood events, promoting MeHg transport to the water column, and enhancing MeHg availability in the Edisto River habitat. These results indicate that flood hydrodynamics contribute to the variability in Hg vulnerability between Coastal Plain rivers and that comprehensive regional assessment of the relationship between flood hydrodynamics and Hg risk in Coastal Plain streams is warranted.

  2. Flood hydrology and methylmercury availability in Coastal Plain rivers

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste; Chapelle, Francis H.; Lowery, Mark A.; Conrads, Paul A.

    2010-01-01

    Mercury (Hg) burdens in top-predator fish differ substantially between adjacent South Carolina Coastal Plain river basins with similar wetlands coverage. In the Congaree River, floodwaters frequently originate in the Blue Ridge and Piedmont regions, where wetlands coverage and surface water dissolved methylmercury (MeHg) concentrations are low. Piedmont-driven flood events can lead to downward hydraulic gradients in the Coastal Plain riparian wetland margins, inhibiting MeHg transport from wetland sediments, and decreasing MeHg availability in the Congaree River habitat. In the adjacent Edisto River basin, floodwaters originate only within Coastal Plain sediments, maintaining upward hydraulic gradients even during flood events, promoting MeHg transport to the water column, and enhancing MeHg availability in the Edisto River habitat. These results indicate that flood hydrodynamics contribute to the variability in Hg vulnerability between Coastal Plain rivers and that comprehensive regional assessment of the relationship between flood hydrodynamics and Hg risk in Coastal Plain streams is warranted.

  3. Nutrient yield of the Apalachicola River flood plain, Florida; water-quality assessment plan

    USGS Publications Warehouse

    Mattraw, H.C.; Elder, John F.

    1980-01-01

    The Apalachicola River in northwestern Florida is the location of one of four current U.S. Geological Survey National River Quality Assessments. The investigation of the Apalachicola River and flood plain is designed to quantify the organic detritus and nutrient yield to the productive, estuarine Apalachicola Bay. The extensive riverine flood plain is subject to seasonal flooding which transports large quantities of accumulated, decaying leaf litter from the flood plain into the river and ultimately into Apalachicola Bay. The Apalachicola River Quality Assessment has four major objectives; (1) Determine the accumulation of organic substances and trace elements in benthic organisms and fine-grained sediments; (2) Define the distribution of the major tree communities on the flood plain; (3) Assess the role of leaf fall and decomposition on nutrient yield; and (4) Identify and quantify major sources and pathways of nutrients to the river. Extensive emphasis is given to investigation approaches and techniques to facilitate technology transfer to similar wetland ecosystems. (USGS)

  4. Flood Plain Lakes Along the Elbe River - a Forgotten Risk

    NASA Astrophysics Data System (ADS)

    Heise, Susanne

    2014-05-01

    Flood Plain Lakes Along the Elbe River - a Forgotten Risk Introduction: Along the German part of the Elbe River, more than 1000 "side structures" form potential sinks of contaminated sediment. They are mostly remains of previous river courses which have been cut off by natural causes or anthropogenic alterations of the river (oxbow lakes), or are floodplain lakes that were formed during high water conditions. These water bodies sometimes have a small opening towards the Elbe, or are hydrodynamically connected only in situations of high discharges. High discharges in the Elbe River, however, are mainly responsible for transporting historic contaminants along with suspended matter from former historic sources in the middle Elbe downstream. As these may settle when the current dies down at the end of a high discharge period, side structures have been under suspicion to have accumulated contaminated material over the last decades. Until this study was conducted, nothing was known about erodibility and contamination of sediment in these lakes even though they could have a large impact on the Elbe River itself: A preliminary investigation showed that the total surface of side structures in the Elbe floodplain adds up to about 50 km2. In case that deposited sediment is contaminated and only the upper 20 cm are prone to resuspension and transport during flooding, 10 Mio m3 of contaminated sediment could potentially be added to the contaminant load during a high water event. This study was carried out to evaluate the risk from these side structures for the environmental quality of the Elbe River. Methods: 15 side structures were investigated. Sediment cores were taken on 1 to 3 locations per water body in order to obtain the following information: • Depth of sediment layer • Erodibility of surface sediment, measured immediately after sampling - using the "Gust Microcosm", • Eroded mass at over-critical shear stress, measured in the lab by eroding a sediment core for

  5. Backwater at bridges and densely wooded flood plains, Yockanookany River near Thomastown, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1979-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on Yockanookany River near Thomastown, Miss. Water depths, velocities, and discharges through bridge openings on Yockanookany River near Thomastown, Miss., for floods of April 12, 1969, January 2, 1970, and March 15, 1975, are shown, together with peak water-surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on a graph. (Kosco-USGS)

  6. Flood information for flood-plain planning

    USGS Publications Warehouse

    Bue, Conrad D.

    1967-01-01

    Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.

  7. Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA

    USGS Publications Warehouse

    O'Connor, J. E.; Jones, M.A.; Haluska, T.L.

    2003-01-01

    Observations from this study and previous studies on the Queets River show that channel and flood-plain dynamics and morphology are affected by interactions between flow, sediment, and standing and entrained wood, some of which likely involve time frames similar to 200–500-year flood-plain half-lives. On the upper Quinault River and Queets River, log jams promote bar growth and consequent channel shifting, short-distance avulsions, and meander cutoffs, resulting in mobile and wide active channels. On the lower Quinault River, large portions of the channel are stable and flow within vegetated flood plains. However, locally, channel-spanning log jams have caused channel avulsions within reaches that have been subsequently mobile for several decades. In all three reaches, log jams appear to be areas of conifer germination and growth that may later further influence channel and flood-plain conditions on long time scales by forming flood-plain areas resistant to channel migration and by providing key members of future log jams. Appreciation of these processes and dynamics and associated temporal and spatial scales is necessary to formulate effective long-term approaches to managing fluvial ecosystems in forested environments.

  8. Extent and frequency of inundation of Schuylkill River flood plain from Conshohocken to Philadelphia, Pennsylvania

    USGS Publications Warehouse

    Alter, A.T.

    1966-01-01

    Information on flood conditions plays an important part in the development and use of river valleys. This report presents maps, profiles, and flood-frequency relations developed from past flood experience on the Schuylkill River from Conshohocken to Philadelphia, Pa. The maps and profiles are used to define the areal extent and depth of flooding of the August 24, 1933, and August 19, 1955, floods. The flood of October 4, 1869, which is the greatest flood known on the lower Schuylkill River, is presented on the flood profile and on the ten cross sections. The area inundated by the 1869 flood is not defined because insufficient data are available and because hydrologic and hydraulic conditions have undoubtedly changed to such an extent that such a definition would have little present significance. The basic flood data were prepared to aid individuals, organizations, and governmental agencies in making sound decisions for the safe and economical development of the lower Schuylkill River valley. Recommendations for land use, or suggestions for limitations of land use, are not made in this report.The responsibility for planning for the optimum land use in the flood plain and the implementation of flood-plain regulations to achieve such optimum use rests with the State and local interests. The preparation of this report was undertaken after consultation with representatives of the Philadelphia City Planning Commission and the Montgomery County Planning Commission who expressed the need for flood-plain information and their willingness to consider floodplain regulations.The area covered by this report extends downstream along the Schuylkill River from Plymouth Dam in Conshohocken to the mouth of Wissahickon Creek in Philadelphia. Flooding along Wissahickon Creek is not included in the report. The reach studied extends from 13.0 miles to 21.0 miles upstream from the river mouth. All river distances used in the report are river miles upstream from the mouth of the

  9. Evidence of floods on the Potomac River from anatomical abnormalities in the wood of flood-plain trees

    USGS Publications Warehouse

    Yanosky, Thomas M.

    1983-01-01

    Ash trees along the Potomac River flood plain near Washington, D.C., were studied to determine changes in wood anatomy related to flood damage, and anomalous growth was compared to flood records for April 15 to August 31, 1930-79. Collectively, anatomical evidence was detected for 33 of the 34 growing-season floods during the study period. Evidence of 12 floods prior to 1930 was also noted, including catastrophic ones in 1889 and 1924. Trees damaged after the transition from earlywood to latewood growth typically formed ' flood rings ' of enlarged vessels within the latewood zone. Trees damaged near the beginning of the growth year developed flood rings within, or contiguous with, the earlywood. Both patterns are assumed to have developed when flood-damaged trees produced a second crop of leaves. Trees damaged by high-magnitude floods developed well formed flood rings along the entire height and around the entire circumference of the stem. Small floods were generally associated wtih diffuse or discontinuous anomalies restricted to stem apices. Frequency of flood rings was positively related to flood magnitude, and time of flood generation during the tree-growth season was estimated from the radial position of anomalous growth relative to annual ring width. Reconstructing tree heights in a year of flood-ring formation gives a minimum stage estimate along local stream reaches. Some trees provided evidence of numerous floods. Those with the greatest number of flood rings grew on frequently flooded surfaces subject to flood-flow velocities of at least 1 m/s, and more typically greater than 2 m/s. Tree size, more than age, was related to flood-ring formation. Trees kept small by frequent flood damage had more flood rings than taller trees of comparable age. (USGS)

  10. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    USGS Publications Warehouse

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    Despite these effects of human disturbances, many of the fundamental physical processes forming the Sprague River fluvial systems over the last several thousand years still function. In particular, flows are unregulated, sediment transport processes are active, and overbank flooding allows for floodplain deposition and erosion. Therefore, restoration of many of the native physical conditions and processes is possible without substantial physical manipulation of current conditions for much of the Sprague River study area. An exception is the South Fork Sprague River, where historical trends are not likely to reverse until it attains a more natural channel and flood-plain geometry and the channel aggrades to the extent that overbank flow becomes common.

  11. Method Study of Flood Hazard Analysis for Plain River Network Area, Taihu Basin, China

    NASA Astrophysics Data System (ADS)

    HAN, C.; Liu, S.; Zhong, G.; Zhang, X.

    2015-12-01

    Flood is one of the most common and serious natural calamities. Taihu Basin is located in delta region of the Yangtze River in East China (see Fig. 1). Because of the abundant rainfall and low-lying terrain, the area frequently suffers from flood hazard which have caused serious casualty and economic loss. In order to reduce the severe impacts of floods events, numerous polder areas and hydraulic constructions (including pumps, water gates etc.) were constructed. Flood Hazard Map is an effective non-structural flood mitigation tool measures. Numerical simulation of flood propagation is one of the key technologies of flood hazard mapping. Because of the complexity of its underlying surface characteristics, numerical simulation of flood propagation was faced with some special problems for the plain river network area in Taihu Basin. In this paper, a coupled one and two dimensional hydrodynamic model was established. Densely covered and interconnected river networks, numerous polder areas and complex scheduling hydraulic constructions were generalized in the model. The model was proved to be believable and stable. Based on the results of the simulation of flood propagation, flood hazard map was compiled.

  12. Flood Plain Information Colorado River-Onion Creek to Montopolis Bridge, Austin, Texas

    DTIC Science & Technology

    1976-09-01

    about 7.5 percent of the State’s total. The bulk of this population is located in the cities of Austin, San Angelo , Midland, Odessa, Big Spring, and...of upstream reservoirs. San Angelo Lake on the North Concho River and Hords Creek Lake on Hords Creek are existing Corps of Engineers projects. Twin...sections of the river and flood plains at selected locations are shown on Plate 17. Stream characteristics, topographic maps , aerial mosaics, and valley

  13. Flood plains of the South Branch Shiawassee River, Livingston County, Michigan

    USGS Publications Warehouse

    Stoimenoff, L.E.

    1975-01-01

    This report presents the results of a flood-plain study of approximately 1.9 mi (3.1 km) of the South Branch Shiawassee River in Livingston County. This reach of stream s in a currently unincorporated area about 40 mi (64 km) northwest of Detroit. Although little development has taken place, the potential for development is great due to urban spread from the Detroit Metropolitan area. To implement local flood-plain management plans, areas subject to flooding must be defined. This report is intended to provide that information. The report has been prepared in cooperation with the Livingston County Planning Commission and the Michigan Department of Natural ResourcesThe reach of river mapped extends from the south boundary of section 3, T.2 N., R.4 E., to the west bund land f Interstate Highway 96. Six maps at a scale of 1:2400 (1 in – 200 ft or 1 cm = 24 m) were prepared; the areas covered by each map are shown on figure 1. The flood-plain maps show the area that would be inundated by a flood that has an average recurrence interval of once in 100 years; for brevity such a flood is termed the “100-year flood”.

  14. Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida

    USGS Publications Warehouse

    Leitman, H.M.; Sohm, J.E.; Franklin, M.A.

    1982-01-01

    The Apalachicola River is part of a 50,800-square-kilometer drainage basin in northwest Florida, Alabama, and Georgia. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam and flows 171 kilometers to Apalachicola Bay in the Gulf of Mexico. Its flood plain supports 450 square kilometers of bottom-land hardwood and tupelco-cypress forests. The most common trees, constituting 62 percent of the total basal area, were five wet-site species; water tupelo, Ogeeche tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak. Five forest types were defined based on species predominance by basal area. Biomass increased downstream and was greatest in forests growing on permanently saturated soils. Water and tree relations varied with river location because range in water-level fluctuation and topographic relief in the flood plain diminished downstream. Heights of natural riverbank levees and size and distribution of breaks in levees had a major controlling effect on flood-plain hydrology. Depth of water, duration of inundation and saturation, and river location, but not water velocity, were very highly correlated with forest types. (USGS)

  15. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil

    USGS Publications Warehouse

    Dunne, T.; Mertes, L.A.K.; Meade, R.H.; Richey, J.E.; Forsberg, B.R.

    1998-01-01

    Sediment transport through the Brazilian sector of the Amazon River valley, a distance of 2010 km, involves exchanges between the channel and the flood plain that in each direction exceed the annual flux of sediment out of the river at O??bidos (???1200 Mt yr-1). The exchanges occur through bank erosion, bar deposition, settling from diffuse overbank flow, and sedimentation in flood-plain channels. We estimated the magnitude of these exchanges for each of 10 reaches of the valley, and combined them with calculations of sediment transport into and out of the reaches based on sediment sampling and flow records to define a sediment budget for each reach. Residuals in the sediment budget of a reach include errors of estimation and erosion or deposition within the channel. The annual supply of sediment entering the channel from bank erosion was estimated to average 1570 Mt yr-1 (1.3 ?? the O??bidos flux) and the amount transferred from channel transport to the bars (380 Mt yr-1) and the flood plain (460 Mt yr-1 in channelized flow; 1230 Mt yr-1 in diffuse overbank flow) totaled 2070 Mt yr-1 (1.7 ?? the O??bidos flux). Thus, deposition on the bars and flood plain exceeded bank erosion by 500 Mt yr-1 over a 10-16 yr period. Sampling and calculation of sediment loads in the channel indicate a net accumulation in the valley floor of approximately 200 Mt yr-1 over 16 yr, crudely validating the process-based calculations of the sediment budget, which in turn illuminate the physical controls on each exchange process. Another 300-400 Mt yr-1 are deposited in a delta plain downstream of O??bidos. The components of the sediment budget reflect hydrologie characteristics of the valley floor and geomorphic characteristics of the channel and flood plain, which in turn are influenced by tectonic features of the Amazon structural trough.

  16. Flood-plain study of the Upper Iowa River in the vicinity of Decorah, Iowa

    USGS Publications Warehouse

    Christiansen, Daniel E.; Eash, David A.

    2008-01-01

    The city of Decorah, Iowa, has experienced severe flooding from the Upper Iowa River resulting in property damage to homes and businesses. Streamflow data from two U.S. Geological Survey (USGS) streamflow-gaging stations, the Upper Iowa River at Decorah, Iowa (station number 05387500), located upstream from the College Drive bridge; and the Upper Iowa River near Decorah, Iowa (station number 05388000), at the Clay Hill Road bridge (locally known as the Freeport bridge) were used in the study. The three largest floods on the Upper Iowa River at Decorah occurred in 1941, 1961, and 1993, for which the estimated peak discharges were 27,200 cubic feet per second (ft3/s), 20,200 ft3/s, and 20,500 ft3/s, respectively. Flood-discharge information can be obtained from the World Wide Web at URL (uniform resource locator) http://waterdata.usgs.gov/nwis/. In response to the need to provide the City of Decorah and other flood-plain managers with an assessment of the risks of flooding to properties and facilities along an 8.5-mile (mi) reach of the Upper Iowa River, the USGS, in cooperation with the City of Decorah, initiated a study to map 100- and 500-year flood-prone areas.

  17. Occurrence and variability of mining-related lead and zinc in the Spring River flood plain and tributary flood plains, Cherokee County, Kansas, 2009--11

    USGS Publications Warehouse

    Juracek, Kyle E.

    2013-01-01

    Historical mining activity in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of cadmium, lead, and zinc to the environment. To provide some of the information needed to support remediation efforts in the Cherokee County, Kansas, superfund site, a 4-year study was begun in 2009 by the U.S. Geological Survey that was requested and funded by the U.S. Environmental Protection Agency. A combination of surficial-soil sampling and coring was used to investigate the occurrence and variability of mining-related lead and zinc in the flood plains of the Spring River and several tributaries within the superfund site. Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment. Lead and zinc contamination was assessed with reference to probable-effect concentrations (PECs), which represent the concentrations above which adverse aquatic biological effects are likely to occur. The general PECs for lead and zinc were 128 and 459 milligrams per kilogram, respectively. The TSMD-specific PECs for lead and zinc were 150 and 2,083 milligrams per kilogram, respectively. Typically, surficial soils in the Spring River flood plain had lead and zinc concentrations that were less than the general PECs. Lead and zinc concentrations in the surficial-soil samples were variable with distance downstream and with distance from the Spring River channel, and the largest lead and zinc concentrations usually were located near the channel. Lead and zinc concentrations larger than the general or TSMD-specific PECs, or both, were infrequent at depth in the Spring River flood plain. When present, such contamination typically was confined to the upper 2 feet of the core and frequently was confined to the upper 6 inches. Tributaries with few or no lead- and zinc-mined areas in the basin—Brush Creek

  18. Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida

    USGS Publications Warehouse

    Leitman, Helen M.; Sohm, James E.; Franklin, Marvin A.

    1984-01-01

    The Apalachicola River in northwest Florida is part of a three-State drainage basin encompassing 50,800 km 2 in Alabama, Georgia, and Florida. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam from which it flows 171 km to Apalachicola Bay in the Gulf of Mexico. Its average annual discharge at Chattahoochee, Fla., is 690 m3/s (1958-80) with annual high flows averaging nearly 3,000 m3/s. Its flood plain supports 450 km 2 of bottom-land hardwood and tupelo-cypress forests. The Apalachicola River Quality Assessment focuses on the hydrology and productivity of the flood-plain forest. The purpose of this part of the assessment is to address river and flood-plain hydrology, flood-plain tree species and forest types, and water and tree relations. Seasonal stage fluctuations in the upper river are three times greater than in the lower river. Analysis of long-term streamflow record revealed that 1958-79 average annual and monthly flows and flow durations were significantly greater than those of 1929-57, probably because of climatic changes. However, stage durations for the later period were equal to or less than those of the earlier period. Height of natural riverbank levees and the size and distribution of breaks in the levees have a major controlling effect on flood-plain hydrology. Thirty-two kilometers upstream of the bay, a flood-plain stream called the Brothers River was commonly under tidal influence during times of low flow in the 1980 water year. At the same distance upstream of the bay, the Apalachicola River was not under tidal influence during the 1980 water year. Of the 47 species of trees sampled, the five most common were wet-site species constituting 62 percent of the total basal area. In order of abundance, they were water tupelo, Ogeechee tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak

  19. Flood-plain areas of the Mississippi River, mile 866.8 to mile 888.0, Minnesota

    USGS Publications Warehouse

    Carlson, George H.; Gue, Lowell C.

    1980-01-01

    Profiles of the regional flood, 500-year flood, and flood-protection elevation have been developed for a 21-mile reach of the Mississippi River. Areas flooded by the regional flood and by the 500-year flood were delineated by photogrammetric mapping techniques and are shown on seven large-scale map sheets. Over 1,300 acres of flood plain are included in the cities of Anoka, Champlin, Coon Rapids, Dayton, Ramsey and Elk River, and in unincorporated areas of Wright County. The flood-outline maps and flood profiles comprise data needed by local units of government to adopt, enforce, and administer flood-plain management regulations along the Mississippi River throughout the study reach. Streamflow data from two gaging stations provided the basis for definition of the regional and 500-year floods. Cross-section data obtained at 83 locations were used to develop a digital computer model of the river. Flood elevation and discharge data from the 1965 flood provided a basis for adjusting the computer model. Information relating the history of floods, formation of ice jams, and duration of flood elevations at Anoka and at Elk River are included.

  20. Production and decomposition of forest litter fall on the Apalachicola River flood plain, Florida

    USGS Publications Warehouse

    Elder, J.F.; Cairns, D.J.

    1982-01-01

    Measurements of litter fall (leaves and other particulate organic material) and leaf decomposition were made on the Apalachicola River flood plain in 1979-80. Litter fall was collected monthly in five different forest types in swamp and levee areas. Leaves from 42 species of trees and other plants accounted for 58 percent of total litter fall. The remaining 42 percent was nonleaf material. Average litter fall was 800 grams per square meter per year in the flood plain. Tupelo (Nyssa), baldcypress (Taxodium), and ash (Fraxinus), all swamp-adapted trees, produce over 50 percent of the leaf fall. Common levee species such as sweetgum (Liquidambar styraciflua) and diamond-leaf oak (Quercus laurifolia) are also major contributors to total flood-plain litter fall. Annual flooding of the river provides an important mechanism for mobilization of the litter-fall products. Leaf decomposition rates were greatly reduced in dry environments. Carbon loss was nearly linear over a 6-month period, but nitrogen and phosphorus loss was exponential and nearly complete within 1 month. (USGS)

  1. Effects of alternative Missouri River management plans on ground-water levels in the lower Missouri River flood plain

    USGS Publications Warehouse

    Kelly, Brian P.

    2000-01-01

    In 1998, the U.S. Army Corps of Engineers (USACE) proposed eight Alternative River Management Plans (ARMPs) for managing reservoir levels and water-release rates for the Missouri River. The plans include the Current Water Control Plan (CWCP), Conservation 18, 31, and 44 (C18, C31, and C44) that provide different levels of water conservation in the reservoirs during droughts, Fish and Wildlife 10, 15, and 20 (FW10, FW15, and FW20) that vary water-release rates to provide additional fish and wildlife benefits, and Mississippi River 66 (M66) that maintains a 66,000 cubic feet per second discharge at St. Louis to provide navigation support for the Mississippi River. Releases from Gavin?s Point Dam affect both the lower 1,305 kilometers of the Missouri River and ground-water levels in the lower Missouri River flood plain. Changes in the magnitude and timing of ground-water-level fluctuations in response to changes in river management could impact agriculture, urban development, and wetland hydrology along the lower Missouri River flood plain. This study compared simulated ground-water altitude and depth to ground water for the CWCP in the Missouri River alluvial aquifer near the Kansas City area between 1970 and 1980 with each ARMP, determined the average change in simulated ground-water level for selected river-stage flood pulses at selected distances from the river, and compared simulated flood pulse, ground-water responses with actual flood pulse, and ground-water responses measured in wells located at three sites along the lower Missouri River flood plain.For the model area, the percent total shallow ground-water area (depth to ground water less than 0.3048 meter) is similar for each ARMP because of overall similarities in river flow between ARMPs. The percent total shallow ground-water area for C18 is the most similar to CWCP followed by C31, M66, C44, FW10, FW15, and FW20. ARMPs C18, C31, C44, and M66 do not cause large changes in the percent shallow ground

  2. Wintering birds in riverine tree communities: Yakima River flood plain

    SciTech Connect

    Rickard, W.H.

    1982-04-01

    For 20 years there has been little change in wintering bird species composition or their relative abundance in a Yakima River riverine tree community. Clandestine tree cutting has opened the community to the point where it is not acceptable as a daytime roost for the Great Horned Owl. In 1981-1982 the Robin was the most abundant bird observed. It was not observed in surveys conducted 10 and 20 years ago. 4 refs., 1 fig., 2 tabs.

  3. Ice jam-caused fluvial gullies and scour holes on northern river flood plains

    NASA Astrophysics Data System (ADS)

    Smith, Derald G.; Pearce, Cheryl M.

    2002-01-01

    Two anomalous fluvial landforms, gullies and scour holes, eroded into flood plains bordering meandering and braiding river channels have not been previously reported. We observed these features along the Milk River in southern Alberta, Canada, and northern Montana, USA, which has a history of frequent (50% probability of recurrence) and high-magnitude (12% probability of recurrence greater than bankfull) ice jam floods. Gullies have palmate and narrow linear shapes with open-ends downvalley and measure up to 208 m long×139 m wide×3.5 m deep (below bankfull). Channel ice jams reroute river water across meander lobes and cause headward gully erosion where flow returns to the main channel. Erosion of the most recent gully was observed during the record 1996 ice breakup flood and ice jams. Scour holes (bowl-shaped, closed depressions), eroded by water vortices beneath and between grounded ice jam blocks, measure up to 91 m long×22 m wide×4.5 m deep. Ice jam-caused gullies may be precursors to the formation of U-shaped oxbow lakes and multiple channels, common in many northern rivers.

  4. Sele coastal plain flood risk due to wave storm and river flow interaction

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub

  5. Hydrology, vegetation, and soils of four north Florida River flood plains with an evaluation of state and federal wetland determinations

    USGS Publications Warehouse

    Light, H.M.; Darst, M.R.; MacLaughlin, M.T.; Sprecher, S.W.

    1993-01-01

    A study of hydrologic conditions, vegetation, and soils was made in wetland forests of four north Florida streams from 1987 to 1990. The study was conducted by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Regulation to support State and Federal efforts to improve wetland delineation methodology in flood plains. Plant communities and soils were described and related to topographic position and long-term hydrologic conditions at 10 study plots located on 4 streams. Detailed appendixes give average duration, frequency, and depth of flooding; canopy, subcanopy, and ground-cover vegetation; and taxonomic classification, series, and profile descriptions of soils for each plot. Topographic relief, range in stage, and depth of flooding were greatest on the alluvial flood plain of the Ochlockonee River, the largest of the four streams. Soils were silty in the lower elevations of the flood plain, and tree communities were distinctly different in each topographic zone. The Aucilla River flood plain was dominated by levees and terraces with very few depressions or low backwater areas. Oaks dominated the canopy of both lower and upper terraces of the Aucilla flood plain. Telogia Creek is a blackwater stream that is a major tributary of the Ochlockonee River. Its low, wet flood plain was dominated by Wyssa ogeche (Ogeechee tupelo) trees, had soils with mucky horizons, and was inundated by frequent floods of very short duration. The St. Marks River, a spring-fed stream with high base flow, had the least topographic relief and lowest range in stage of the four streams. St. Marks soils had a higher clay content than the other streams, and limestone bedrock was relatively close to the surface. Wetland determinations of the study plots based on State and Federal regulatory criteria were evaluated. Most State and Federal wetland determinations are based primarily on vegetation and soil characteristics because hydrologic records are usually not

  6. Production and decomposition of forest litter fall on the Apalachicola River flood plain, Florida: Chapter B, Apalachicola River quality assessment

    USGS Publications Warehouse

    Elder, John F.; Cairns, Duncan J.

    1982-01-01

    Measurements of litter fall (leaves and other particulate organic material) and leaf decomposition were made on the bottom-land hardwood swamp of the Apalachicola River flood plain in 1979-80. Litter fall was collected monthly from nets located in 16 study plots. The plots represented five forest types in the swamp and levee areas of the Apalachicola River flood plain. Forty-three species of trees, vines, and other plants contributed to the total litter fall, but more than 90 percent of the leaf material originated from 12 species. Nonleaf material made up 42 percent of the total litter fall. Average litter fall was determined to be 800 grams per square meter per year, resulting in an annual deposition of 3.6 ? 105 metric tons of organic material in the 454-square-kilometer flood plain. The levee communities have less tree biomass but greater tree diversity than do swamp communities. The levee vegetation, containing less tree biomass, produces slightly more litter fall per unit of ground surface area than does the swamp vegetation. The swamps are dominated by three genera: tupelo (Nyssa), cypress (Taxodium) and ash (Fraxinus). These genera account for more than 50 percent of the total leaf fall in the flood plain, but they are the least productive, on a weight-perbiomass basis, of any of the 12 major leaf producers. Decomposition rates of leaves from five common floodplain tree species were measured using a standard leaf-bag technique. Leaf decomposition was highly species dependent. Tupelo (Nyssa spp.) and sweetgum (Liquidambar styraciflua) leaves decomposed completely in 6 months when flooded by river water. Leaves of baldcypress (Taxodium distichum) and diamond-leaf oak (Quercus laurifolia) were much more resistant. Water hickory (Carya aquatica) leaves showed intermediate decomposition rates. Decomposition of all species was greatly reduced in dry environments. Carbon and biomass loss rates from the leaves were nearly linear over a 6-month period, but nitrogen

  7. Cache la Poudre River Basin, Larimer - Weld Counties, Colorado. Volume 4. Flood Plain Analysis, Fossil Creek.

    DTIC Science & Technology

    1981-10-01

    BASIN LARIMER-WELD COUNTIES COLORADO VOLUME I FLOOD HAZARD, DAM SAFETY, AND FLOOD WARNING VOLUME II HYDROLOGY VOLUME III FLOOD PLAIN ANALYSIS, SHEEP...presented in four separate volumes. Vol- ume I considers basin flood hazards, dam safety, and flood warning. Volume II presents the detailed...has its source near the south end of Horsetooth Reservoir and flows in a generally eastward direction to its confluence with the Cache la Poudre

  8. Anthropic Modification of The Alluvial Plain and Flood Control In Some Marchean Rivers (central Italy).

    NASA Astrophysics Data System (ADS)

    Farabollini, P.; Materazzi, M.

    The fluvial axis of the marchean rivers display an essentially sinuate character, whereas in its terminal portion, where it runs through a wide valley, it assumes an anastomosed form. In the initial portion, where it runs inside the Umbro-Marchean calcareous ridge, the regime is prevalently stream like, while in the arenaceous and clayey hilly belt, it follows a more regular trend. In the middle-lower portion, and especially in summer, the hydrological regime is significantly influenced by the water drawn off for hydroelectric and irrigation purposes. The particular hydrographic and orographic setting of the study territory and the considerable amount of anthropic activity, both in the past and present, are responsible for the frequent and disastrous flooding and flash flooding phenomena that, during intense rainfall, affected vast areas of the middle-terminal portion of the alluvial plain. An analysis of the flooding events of the last years has in fact led to the observation that flooding and flash flooding phenomena, and the damage deriving from them, are connected especially with mistaken management of the territory and subordinately with abundant rainfalls in a short span of time. This includes the following factors: insufficient, or complete absence of works for maintaining natural levees and river beds; the obstruction of watercourses due to building with no respect for adequate hydraulic criteria; an excessive narrowing or straightening of the main river axis, above all in those portions near the mouth; runoff difficulties in the works connecting the main hydrographic network with the secondary one; insufficient disposal capacity or efficiency of the rain water outlet network; insufficient measures, or a lack of planning of measures and/or works for emergency protection systems; widespread situations of hydrogeological accident and slope instability, accentuated by the progressive abandoning of agriculture and repeated occurrence of forest fires. In

  9. Determination of the 100-year flood plain on Upper Three Runs and selected tributaries, and the Savannah River at the Savannah River site, South Carolina, 1995

    USGS Publications Warehouse

    Lanier, T.H.

    1996-01-01

    The 100-year flood plain was determined for Upper Three Runs, its tributaries, and the part of the Savannah River that borders the Savannah River Site. The results are provided in tabular and graphical formats. The 100-year flood-plain maps and flood profiles provide water-resource managers of the Savannah River Site with a technical basis for making flood-plain management decisions that could minimize future flood problems and provide a basis for designing and constructing drainage structures along roadways. A hydrologic analysis was made to estimate the 100-year recurrence- interval flow for Upper Three Runs and its tributaries. The analysis showed that the well-drained, sandy soils in the head waters of Upper Three Runs reduce the high flows in the stream; therefore, the South Carolina upper Coastal Plain regional-rural-regression equation does not apply for Upper Three Runs. Conse- quently, a relation was established for 100-year recurrence-interval flow and drainage area using streamflow data from U.S. Geological Survey gaging stations on Upper Three Runs. This relation was used to compute 100-year recurrence-interval flows at selected points along the stream. The regional regression equations were applicable for the tributaries to Upper Three Runs, because the soil types in the drainage basins of the tributaries resemble those normally occurring in upper Coastal Plain basins. This was verified by analysis of the flood-frequency data collected from U.S. Geological Survey gaging station 02197342 on Fourmile Branch. Cross sections were surveyed throughout each reach, and other pertinent data such as flow resistance and land-use were col- lected. The surveyed cross sections and computed 100-year recurrence-interval flows were used in a step-backwater model to compute the 100-year flood profile for Upper Three Runs and its tributaries. The profiles were used to delineate the 100-year flood plain on topographic maps. The Savannah River forms the southwestern border

  10. BIOCHEM-ORCHESTRA: a tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems.

    PubMed

    Vink, J P M; Meeussen, J C L

    2007-08-01

    The chemical speciation model BIOCHEM was extended with ecotoxicological transfer functions for uptake of metals (As, Cd, Cu, Ni, Pb, and Zn) by plants and soil invertebrates. It was coupled to the object-oriented framework ORCHESTRA to achieve a flexible and dynamic decision support system (DSS) to analyse natural or anthropogenic changes that occur in river systems. The DSS uses the chemical characteristics of soils and sediments as input, and calculates speciation and subsequent uptake by biota at various scenarios. Biotic transfer functions were field-validated, and actual hydrological conditions were derived from long-term monitoring data. The DSS was tested for several scenarios that occur in the Meuse catchment areas, such as flooding and sedimentation of riverine sediments on flood plains. Risks are expressed in terms of changes in chemical mobility, and uptake by flood plain key species (flora and fauna).

  11. Flood-inundation maps for a nine-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Lake County Stormwater Management Commission and the Villages of Lincolnshire and Riverwoods. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Des Plaines River at Lincolnshire, Illinois (station no. 05528100). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05528100. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The NWS forecasted peak-stage information, also shown on the Des Plaines River at Lincolnshire inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine seven water-surface profiles for flood stages at roughly 1-ft intervals referenced to the streamgage datum and ranging from the 50- to 0.2-percent annual exceedance probability flows. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from

  12. Flood-plain and channel aggradation of selected bridge sites in the Iowa and Skunk River basins, Iowa

    USGS Publications Warehouse

    Eash, D.A.

    1996-01-01

    Flood-plain and channel-aggradation rates were estimated at 10 bridge sites on the Iowa River upstream of Coralville Lake and at two bridge sites in the central part of the Skunk River Basin. Four measurement methods were used to quantify aggradation rates: (1) a dendrogeomorphic method that used tree-age data and sediment-deposition depths, (2) a bridge-opening cross-section method that compared historic and recent cross sections of bridge openings, (3) a stage-discharge rating-curve method that compared historic and recent stages for the 5-year flood discharge and the average discharge, and (4) nine sediment pads that were installed on the Iowa River flood plain at three bridge sites in the vicinity of Marshalltown. The sediment pads were installed prior to overbank flooding in 1993. Sediments deposited on the pads as a result of the 1993 flood ranged in depth from 0.004 to 2.95 feet. Measurement periods used to estimate average aggradation rates ranged from 1 to 98 years and varied among methods and sites. The highest aggradation rates calculated for the Iowa River Basin using the dendrogeomorphic and rating- curve measurement methods were for the State Highway 14 crossing at Marshalltown, where these highest rates were 0.045 and 0.124 feet per year, respectively. The highest aggradation rates calculated for the Skunk River Basin were for the U.S. Highway 63 crossing of the South Skunk River near Oskaloosa, where these highest rates were 0.051 and 0.298 feet per year, respectively.

  13. Relation of sediment load and flood-plain formation to climatic variability, Paria River drainage basin, Utah and Arizona

    USGS Publications Warehouse

    Graf, J.B.; Webb, R.H.; Hereford, R.

    1991-01-01

    Flood-plain alluviation began about 1940 at a time of decreasing magnitude and frequency of floods in winter, summer, and fall. No floods with stages high enough to inundate the flood plain have occurred since 1980, and thus no flood-plain alluviation has occurred since then. The decrease in magnitude and frequency of floods appears to have resulted from a decrease in frequency of large storms, particularly dissipating tropical cyclones, and not from a decrease in annual or seasonal precipitation. -from Authors

  14. Flood Plain Information, Delhi New York, West Branch Delaware River and Little Delaware River.

    DTIC Science & Technology

    1974-06-01

    1,383.9 1,382.4 1,391.3 Little Delaware River Back River Road 0.15 1,346.4 1,346.9 1,352.1 College Golf Course Footbridge 0.28 1,349.4 1,350.0 1,353.2...College Golf Course Footbridge 0.36 1,353.7 1,353.6 1,356.1 Bridge by USGS Gaging Station 1.79 1,395.9 1,396.9 1,403.6 N.Y. Rte. 28 5.93 1,533.9

  15. Recent sedimentation and surface-water flow patterns on the flood plain of the North Fork Forked Deer River, Dyer County, Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Diehl, T.H.

    1993-01-01

    Sedimentation in the 19th and 20th centuries has had a major effect on surface-water drainage conditions along a 7-mile section of the North, Fork Forked Deer River flood plain, Dyer County, Tenn. During the century prior to 1930, 5 to 12 feet of sediment were deposited over much of the flood plain, resulting in channel obstruction and widespread flooding. The estimated bankfull capacity of the natural channel before it was channelized in 19 16 was comparable to the base flow of the river during the 1980's. Ditching of the river between 191i6 and 1;9,21 was followed by reductions in sedimentation rates over parts of the flood plain. However, the effects of sedimentation have persisted. Occlusions along the natural channel of the river have divided this stream reach into a series of sloughs. These sloughs continue to fill with sediment and are surrounded by ponds that have expanded since 1941. Degradation of the North Fork Forked Deer ditch may eventually reduce ponding over much of the flood plain. Active incision of headcuts in both banks of the ditch is enhancing the drainage of widespread ponded areas. These headcuts likely will have limited effect on drainage of most tributaries. The highest recent sedimentation rates, in places more than 0.2 foot per year, are concentrated near the flood-plain margin along tributary streams. In conjunction with beaver dams and debris, ongoing sedimentation has blocked flow in several tributaries, posing a flood hazard to agricultural land near the flood-plain margin. The occluded tributaries likely will continue to overflow unless they are periodically dredged or their sediment loads are reduced.

  16. Floods in the Raccoon River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1980-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains requires information on floods. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the Raccoon River and some of its tributaries. Ir covers the Raccoon River, the North Raccoon River to the northern boundary of Sac County and the lower reaches of the Middle and South Raccoon Rivers.

  17. Digital geospatial presentation of geoelectrical and geotechnical data for the lower American River and flood plain, east Sacramento, California

    USGS Publications Warehouse

    Ball, Lyndsay B.; Burton, Bethany L.; Powers, Michael H.; Asch, Theodore H.

    2015-01-01

    To characterize the extent and thickness of lithologic units that may have differing scour potential, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, has performed several geoelectrical surveys of the lower American River channel and flood plain between Cal Expo and the Rio Americano High School in east Sacramento, California. Additional geotechnical data have been collected by the U.S. Army Corps of Engineers and its contractors. Data resulting from these surveys have been compiled into similar database formats and converted to uniform geospatial datums and projections. These data have been visualized in a digital three-dimensional framework project that can be viewed using freely available software. These data facilitate a comprehensive analysis of the resistivity structure underlying the lower American River corridor and assist in levee system management.

  18. Effects of proposed highway embankment modifications on water-surface elevations in the lower Pearl River flood plain near Slidell, Louisiana

    USGS Publications Warehouse

    Gilbert, J.J.; Schuck-Kolben, R. E.

    1987-01-01

    Major flooding in the lower Pearl River basin in recent years has caused extensive damage to homes and highways in the area. In 1980 and 1983, Interstate Highway 10 and U.S. Highway 190 were overtopped. In 1983, the Interstate Highway 10 crossing was seriously damaged by the flood. The U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, Office of Highways, used a two-dimensional finite-element surface-water flow model to evaluate the effects the proposed embankment modifications at Interstate Highway 10 and U.S. Highway 90 on the water-surface elevations in the lower Pearl River flood plain near Slidell, Louisiana. The proposed modifications that were considered for the 1983 flood are: (1) Removal of all highway embankments, the natural condition, (2) extension of the West Pearl River bridge by 1,000 feet at U.S. Highway 90, (3) construction of a new 250-foot bridge opening in the U.S. Highways 190 and 90, west of the intersection of the highways. The proposed highway bridge modifications also incorporated lowering of ground-surface elevations under the new bridges to sea level. The modification that provided the largest reduction in backwater, about 35 percent, was a new bridge in Interstate Highway 10. The modification of the West Pearl River bridge at U.S. Highway 90 and replacement of the bridge in U.S. Highway 190 provide about a 25% reduction in backwater each. For the other modification conditions that required structural modifications, maximum backwater computed on the west side of the flood plain ranges from 0.0 to 0.8 foot and on the east side from 0.0 to 0.6 foot. Results show that although backwater is greater on the west side of the flood plain than on the east side, upstream of highway embankments, backwater decreases more rapidly in the upstream direction on the west side of the flood plain than on the east side. Analysis of the proposed modifications indicates that backwater would still occur on

  19. Soil characteristics of the vadose zone in the flood plain of the Tarim River

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Overflow from rivers plays an important role in ecological conservation. The desert-oasis ecotone in the Tarim River Basin of Northwest China, for example, relies upon overflow from the river to support a diversity of soil, vegetation, and wildlife. There is, however, limited information on soil tex...

  20. Floods in the English River basin, Iowa

    USGS Publications Warehouse

    Heinitz, A.J.; Riddle, D.E.

    1981-01-01

    Information describing floods is essential for proper planning, design, and operation of bridges and other structures on or over streams and their flood plains. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the English River and some of its tributaries. It covers the English River, the North English River to near Guernsey, the south Eaglish River to Barnes City and the lower reaches of the Biddle English and Deep Rivers

  1. Sediment capture in flood plains of the Mississippi River: A case study in Cat Island National Wildlife Refuge, Louisiana

    NASA Astrophysics Data System (ADS)

    Smith, M.; Bentley, S. J., Sr.

    2015-03-01

    To plan restoration of the Mississippi River Delta, it is imperative to know how much sediment the Mississippi River currently provides. Recent research has demonstrated that between Tarbert Landing and St Francisville on the Mississippi, as much as 67 million metric tons (Mt) per year is lost from river transport, of which ~16 Mt is muddy suspended sediment. So where does this sediment go? Two pathways for loss have been proposed: riverbed storage, and overbank deposition in regions that lack manmade levées. Cat Island National Wildlife Refuge, on the unleveed Mississippi River east bank near St Francisville, Louisiana, consists of undisturbed bottomland forest that is inundated most years by river flooding. To determine fluvial sediment accumulation rates (SAR) from flooding, pushcores 40-50 cm long were collected then dated by Pb-210 and Cs-137 geochronology. Preliminary data suggests that muddy sediment accumulation is 10-13% of muddy suspended sediment lost from river transport along this river reach.

  2. Aspects of organic matter transport and processing within Savannah River Plant streams and the Savannah River flood plain swamp

    SciTech Connect

    Hauer, F.R.

    1985-06-01

    The studies were directed toward understanding; (1) the transport dynamics, storage, and retention of organic matter, (2) the processing of leaf material that enters the streams and swamp habitats of the SRP, and (3) how these factors are influenced by current or previous reactor operations at the SRP. Suspended particulate organic matter, benthic organic matter, and in-stream wood were investigated along selected reaches of Steel Creek from April 1983 to April 1984. Concentrations of organic seston ranged from 0.4 to 5.7 mg l/sup -1/. Steel Creek transported significantly higher concentrations of particulate organic matter than did either Meyers Branch or the waters at the swamp site. Seston and dissolved organic matter were investigated on Four Mile Creek, a thermal stream on the SRP, within three different reactor cycles; reactor not operating (cold flow), reactor operating in early portion of cycle (early hot flow), and reactor operating in late portion of cycle (late hot flow). Significantly higher concentrations of particulate organic matter were transported at all study sites during hot flow than during cold flow. Particulate organic matter and dissolved organic matter concentrations were investigated at twelve sampling sites to quantify input and output dynamics of organic matter to the flood plain swamp. Samples were taken biweekly from February 1983 to March 1984. Dissolved organic matter concentrations ranged from 1.3 to 9.9 mg l/sup -1/ and particulate organic matter concentrations ranged from 0.3 to 5.1 mg l/sup -1/. Leaf decomposition of three bottomland tree species was studied at six stream and four swamp sites under various temperature regimes.

  3. Floods in the Skunk River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.; Wiitala, Sulo Werner

    1978-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains require information on floods. This report provides information on flood stages and discharges, flood magnitudes and frequency, and flood profiles for the Skunk River and some of its tributaries. It covers the Skunk -- South Skunk Rivers to Ames, and the lower reaches of tributaries as flows: Squaw Creek, 8.2 miles; Indian Creek, 11.6 miles; North Skunk River, 83.2 miles; Cedar Creek, 55.8 miles; and Big Creek, 21.7 miles.

  4. Flood Plain Information, Toms River, Union Branch Ridgeway Branch, and Long Swamp Creek, Ocean County, New Jersey.

    DTIC Science & Technology

    1972-06-01

    UNORMAL STREAM N. J. FLOODWAY DESIGN FLOOD (NJFDF) I PROFILES in the Flod Pain /nformation Report~shw elevoti-~o A c W0 0 forthe entire study area TO...INFORMATION TOMS RIVER OCEAN COUNTY, N.J. FLOODED AREAS JUNE 1972 L E j ",’.PLATE6 ui DOVEI zA XC RV! crCN.J. FL 0ESIG M+II MILI ZE CRC GROI G.S. TOW 1

  5. Flooding on Russia's Lena River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nearly every year in the late spring, ice blocks the flow of water at the mouth of the Lena River in northeastern Russia and gives rise to floods across the Siberian plains. This year's floods can be seen in this image taken on June 2, 2002, by the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra satellite. The river runs down the left side of the image, and its delta is shrouded in ice (red) at the top of the image. Normally, the river would resemble a thin black line in MODIS imagery. The river, which is Russia's longest, flows 2,641 miles (4,250 kilometers) south to north through Siberia and into the Laptev Sea. In the winter, the river becomes nearly frozen. In the spring, however, water upstream thaws earlier than water at the mouth of the river. As the southern end of the river begins to melt, blocks of ice travel downstream to the still frozen delta, pile up, and often obstruct the flow of water. Flooding doesn't always occur on the same parts of the river. The floods hit further south last year. If the flooding grows severe enough, explosive charges are typically used to break up the ice jams. In these false-color images land areas are a dull, light green or tan, and water is black. Clouds appear pink, and ice comes across as bright red. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  6. Physical and chemical data on sediments deposited in the Missouri and the Mississippi River flood plains during the July through August 1993 flood

    USGS Publications Warehouse

    Schalk, Gregg K.; Holmes, Jr., Robert R.; Johnson, Gary P.

    1998-01-01

    Because sediments deposited by the 1993 floods on the Missouri and Mississippi rivers were thought to contain elevated concentrations of nutrients and trace elements, sediment deposits were sampled at 25 floodplain locations. The samples were analyzed for particle size, water content, volatile solids, nutrients, carbon, selected trace elements, pesticides, and semivolatile organic compounds. Preflood soil samples were analyzed for particle size only. Procedures for selecting sites, techniques developed for sampling, laboratory and analytical methods, and quality assurance methods also are described.

  7. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44...

  8. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44...

  9. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44...

  10. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44...

  11. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44...

  12. Integrated Assessment Methodologies For Land Use Changes and Flood Plain Restoration As Alternative Flood Protection Strategies In The River Basins of Rhine and Meuse

    NASA Astrophysics Data System (ADS)

    Brouwer, Roy; van Ek, Remco; Bouma, Jetske

    Water policy and management decisions become increasingly better informed. Often a large number of studies is carried out before a decision is taken. In the Netherlands, some of these studies, such as environmental impact assessment, are obligatory by law if serious environmental impacts are expected. However, an integrated assessment based on these separate studies is lacking. In this study, an attempt was made to combine and where possible integrate procedures and methods from environmental, social and economic impact assessment. The main objective of the study is to assess, separately and in combination, the ecological, social and economic consequences of land use changes and floodplain restoration as alternative flood protection strategies in the river basins of the rivers Rhine and Meuse in the Netherlands. Based on scenarios of climate change, land subsidence and sea level rise over the next fifty years the associated hy drological changes are translated into the corresponding ecological, economic and social impacts, using a combination of expert judgement and advanced modelling techniques. These impacts are assessed and evaluated with the help of integrated assessment methods such as cost-benefit and multi-criteria analysis in order to support decision-making towards the implementation of new policy regarding flood protection. The outcome of the integrated assessment is related to other water policy objectives, including restoration of the resilience of water systems and nature conservation.

  13. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  14. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  15. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  16. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  17. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  18. Flooding on Elbe River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Heavy rains in Central Europe over the past few weeks have led to some of the worst flooding the region has witnessed in more than a century. The floods have killed more than 100 people in Germany, Russia, Austria, Hungary, and the Czech Republic and have led to as much as $20 billion in damage. This false-color image of the Elbe River and its tributaries was taken on August 20, 2002, by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. The floodwaters that inundated Dresden, Germany, earlier this week have moved north. As can be seen, the river resembles a fairly large lake in the center of the image just south of the town of Wittenberg. Flooding was also bad further downriver in the towns of Maqgdeburge and Hitzacker. Roughly 20,000 people were evacuated from their homes in northern Germany. Fifty thousand troops, border police, and technical assistance workers were called in to combat the floods along with 100,000 volunteers. The floodwaters are not expected to badly affect Hamburg, which sits on the mouth of the river on the North Sea. Credit:Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  19. Flood Plain Information Brandywine Creek, Chester County, Pennsylvania.

    DTIC Science & Technology

    1972-03-01

    potential and flood hazards is important in land use planning and for management decisions concerning floodplain utilization. These projections of...the Federal Insurance Administration of the Federal Emergency Management Agency, Flood Insurance Studies generally provide different types of flood... management decisions concerning flood plain utilization. It includes a history of flooding along Brandywine Creek and identifies those areas that are

  20. Spatio-temporal variability of CH4 fluxes and environmental drivers on a modern flood plain of the Siberian Lena River Delta

    NASA Astrophysics Data System (ADS)

    Rößger, Norman; Wille, Christian; Kutzbach, Lars

    2016-04-01

    In the course of the amplified climate change in the Arctic, methane emissions may considerably increase due to more suitable production conditions comprising enhanced temperatures, greater abundance of moisture and increased availability of the carbon stock to microorganisms. Since methane exhibits a much higher global warming potential than carbon dioxide, a comprehensive understanding of its spatio-temporal dynamics as well as its key controls is of great importance. We study the carbon turnover with a focus on methane on the modern flood plain of Samoylov Island in the Lena River Delta (72°22'N, 126°28'E) using the eddy covariance technique. The heterogeneous area around the flux tower (footprint) is characterised by annual flooding, a variety of non-cryoturbated permafrost-affected soils with different degrees of organic matter accumulation, a tundra vegetation dominated by shrubs and sedges and a slightly undulating relief forming elevated, well drained areas und wet, partially inundated depressions. The measurements ran between June 2014 and September 2015 when methane fluxes were determined using a LICOR 7700 open-path CH4 analyser. The main emissions occurred between June and September determined by spring thaw and refreezing in autumn. The highest methane emissions took place in early August reaching up to 0.03 μmol m-2 s-1. Over the season, the mean methane flux amounted to 0.012 μmol m-2 s-1. This average is based on a large variability of methane fluxes which is to be attributed to the complexity of the footprint. The methane sources are unevenly distributed; thus, the capture of methane fluxes is highly dependent on atmospheric conditions such as stratification and wind direction. Explaining the variability in methane fluxes is based on three modelling approaches: step-wise regression, neural network and deterministic modelling using exponential relationships for flux drivers. For the identification of suitable flux drivers, a comprehensive data

  1. Flood-plain delineation for Occoquan River, Wolf Run, Sandy Run, Elk Horn Run, Giles Run, Kanes Creek, Racoon Creek, and Thompson Creek, Fairfax County, Virginia

    USGS Publications Warehouse

    Soule, Pat LeRoy

    1978-01-01

    Water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia, having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that portion of Cameron Run above Lake Barcroft. Maps having a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet were used for base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. This report is one of a series and presents a discussion of techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for the Occoquan River and its tributaries within Fairfax County and those streams on Mason Neck within Fairfax County tributary to the Potomac River. (Woodard-USGS)

  2. Improvement of water resources management through the use of satellites flood plain delineation

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Rango, A.

    1974-01-01

    The delineation of flood-prone areas is an important activity in several parts of the world. Conventional methods map the topography surrounding the river via ground surveys and supplementary aerophotography. The conventional method costs approximately $2,000 per river-kilometer, is laborious and time-consuming. ERTS information can supplement this method by two complementary techniques: (1) the dynamic method images the floods as they occur, exploiting the fact that visible evidence of inundation remains for a substantial period after the high waters have receded; (2) the static method utilizes the fact that several flood plains have been found recognizable on ERTS imagery from distinctive, permanent indicators left by previous floods. For areas whose full development is still in the future, the dynamic method allows the gradual buildup with time of a flood plain map, by simply correlating existing ERTS imagery. The static method allows in several areas, a first-cut indication, of proneness to floods.

  3. Sampling benthic macroinvertebrates in a large flood-plain river: Considerations of study design, sample size, and cost

    USGS Publications Warehouse

    Bartsch, L.A.; Richardson, W.B.; Naimo, T.J.

    1998-01-01

    Estimation of benthic macroinvertebrate populations over large spatial scales is difficult due to the high variability in abundance and the cost of sample processing and taxonomic analysis. To determine a cost-effective, statistically powerful sample design, we conducted an exploratory study of the spatial variation of benthic macroinvertebrates in a 37 km reach of the Upper Mississippi River. We sampled benthos at 36 sites within each of two strata, contiguous backwater and channel border. Three standard ponar (525 cm(2)) grab samples were obtained at each site ('Original Design'). Analysis of variance and sampling cost of strata-wide estimates for abundance of Oligochaeta, Chironomidae, and total invertebrates showed that only one ponar sample per site ('Reduced Design') yielded essentially the same abundance estimates as the Original Design, while reducing the overall cost by 63%. A posteriori statistical power analysis (alpha = 0.05, beta = 0.20) on the Reduced Design estimated that at least 18 sites per stratum were needed to detect differences in mean abundance between contiguous backwater and channel border areas for Oligochaeta, Chironomidae, and total invertebrates. Statistical power was nearly identical for the three taxonomic groups. The abundances of several taxa of concern (e.g., Hexagenia mayflies and Musculium fingernail clams) were too spatially variable to estimate power with our method. Resampling simulations indicated that to achieve adequate sampling precision for Oligochaeta, at least 36 sample sites per stratum would be required, whereas a sampling precision of 0.2 would not be attained with any sample size for Hexagenia in channel border areas, or Chironomidae and Musculium in both strata given the variance structure of the original samples. Community-wide diversity indices (Brillouin and 1-Simpsons) increased as sample area per site increased. The backwater area had higher diversity than the channel border area. The number of sampling sites

  4. Controls on river morphology in the Ganga Plain

    NASA Astrophysics Data System (ADS)

    Dingle, Elizabeth; Sinclair, Hugh; Attal, Mikael; Milodowski, David; Singh, Vimal

    2016-04-01

    The Ganga Plain represents a large proportion of the current foreland basin to the Himalaya. The Himalayan-sourced waters irrigate the Plain via major river networks that support ~7% of the global population. However, some of these rivers are also the source of devastating floods. The tendency for some of these rivers to flood is directly linked to their large scale morphology. Systematic variations in the large scale morphology of the river systems are recognised across the extent of the Ganga foreland basin. In general, the rivers that drain the east Ganga Plain have channels that are perched at a higher elevation relative to their floodplain, leading to more frequent channel avulsion and flooding. In contrast, those further west have channels that are incised into the floodplain and are historically less prone to flooding. Understanding the controls on these contrasting river forms is fundamental to determining the sensitivity of these systems to projected climate change and the growing water resource demands across the Plain. Here, we present a new basin scale approach to quantifying floodplain and channel topography that identifies the degree to which channels are super-elevated or entrenched relative to their adjacent floodplain. We explore the probable controls on these observations through an analysis of basin subsidence rates, sediment grain size data and sediment supply from the main river systems that traverse the Plain (Yamuna, Ganga, Karnali, Gandak and Kosi rivers). Subsidence rates are approximated by combining basement profiles derived from seismic data with known convergence velocities; results suggest a more slowly subsiding basin in the west than the east. Grain size fining rates are also used as a proxy of relative subsidence rates along the strike of the basin; the results also indicate higher fining rates (and hence subsidence rates for given sediment supply) in the east. By integrating these observations, we propose that higher subsidence

  5. The artificial and natural isotopes distribution in sedge (Carex L.) biomass from the Yenisei River flood-plain: Adaptation of the sequential elution technique.

    PubMed

    Kropacheva, Marya; Melgunov, Mikhail; Makarova, Irina

    2017-02-01

    The study of migration pathways of artificial isotopes in the flood-plain biogeocoenoses, impacted by the nuclear fuel cycle plants, requires determination of isotope speciations in the biomass of higher terrestrial plants. The optimal method for their determination is the sequential elution technique (SET). The technique was originally developed to study atmospheric pollution by metals and has been applied to lichens, terrestrial and aquatic bryophytes. Due to morphological and physiological differences, it was necessary to adapt SET for new objects: coastal macrophytes growing on the banks of the Yenisei flood-plain islands in the near impact zone of Krasnoyarsk Mining and Chemical Combine (KMCC). In the first version of SET, 20 mM Na2EDTA was used as a reagent at the first stage; in the second version of SET, it was 1 M CH3COONH4. Four fractions were extracted. Fraction I included elements from the intercellular space and those connected with the outer side of the cell wall. Fraction II contained intracellular elements; fraction III contained elements firmly bound in the cell wall and associated structures; fraction IV contained insoluble residue. Adaptation of SET has shown that the first stage should be performed immediately after sampling. Separation of fractions III and IV can be neglected, since the output of isotopes into the IV fraction is at the level of error detection. The most adequate version of SET for terrestrial vascular plants is the version using 20 mM Na2EDTA at the first stage. Isotope (90)Sr is most sensitive to the technique changes. Its distribution depends strongly on both the extractant used at stage 1 and duration of the first stage. Distribution of artificial radionuclides in the biomass of terrestrial vascular plants can vary from year to year and depends significantly on the age of the plant.

  6. Flood frequency analysis of Ganga river at Haridwar and Garhmukteshwar

    NASA Astrophysics Data System (ADS)

    Kamal, Vikas; Mukherjee, Saumitra; Singh, P.; Sen, R.; Vishwakarma, C. A.; Sajadi, P.; Asthana, H.; Rena, V.

    2016-02-01

    The Ganga River is a major river of North India and is known for its fertile alluvium deposits formed due to floods throughout the Indo-Gangetic plains. Flood frequency analysis has been carried out through various approaches for the Ganga River by many scientists. With changes in river bed brought out by anthropogenic changes the intensity of flood has also changed in the last decade, which calls for further study. The present study is in a part of the Upper Indo-Ganga plains subzone 1(e). Statistical distributions applied on the discharge data at two stations found that for Haridwar lognormal and for Garhmukteshwar Gumbel EV1 is applicable. The importance of this study lies in its ability to predict the discharge for a return period after a suitable distribution is found for an area.

  7. Guide for selecting Manning's roughness coefficients for natural channels and flood plains

    USGS Publications Warehouse

    Arcement, George J.; Schneider, Verne R.

    1989-01-01

    Although much research has been done on Manning's roughness coefficient, n, for stream channels, very little has been done concerning the roughness values for densely vegetated flood plains. The n value is determined from the values of the factors that affect the roughness of channels and flood plains. In densely vegetated flood plains, the major roughness is caused by trees, vines, and brush. The n value for this type of flood plain can be determined by measuring the vegetation density of the flood plain. Photographs of flood-plain segments where n values have been verified can be used as a comparison standard to aid in assigning n values to similar flood plains.

  8. River diversions, avulsions and captures in the Tortuguero coastal plain

    NASA Astrophysics Data System (ADS)

    Galve, Jorge Pedro; Alvarado, Guillermo; Pérez Peña, José Vicente; Azañón, José Miguel; Mora, Mauricio; Booth-Rea, Guillermo

    2016-04-01

    documented before the Limón earthquake in 1991. (4) The Sucio, North Chirripó and Toro Amarillo rivers form a channel that takes an abnormal direction towards the NW instead of taking their natural direction towards the Caribbean Sea in the E. This anomalous behaviour is conditioned by the existence of a megafan recently recognized by using topographic data from the SRTM mission. The developed analysis is the first step towards improving the knowledge about the processes behind the observed anomalies. Current research is analyzing the role of active vulcanism and tectonics on Tortuguero rivers behaviour. This has implications on the consequences of torrent-related hazards (flash floods and lahars) that may divert river channels and change the landscape of the coastal plain in only one event.

  9. 44 CFR 60.3 - Flood plain management criteria for flood-prone areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plain management criteria for flood-prone areas. 60.3 Section 60.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood...

  10. 44 CFR 60.3 - Flood plain management criteria for flood-prone areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plain management criteria for flood-prone areas. 60.3 Section 60.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood...

  11. 44 CFR 60.3 - Flood plain management criteria for flood-prone areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plain management criteria for flood-prone areas. 60.3 Section 60.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood...

  12. 44 CFR 60.3 - Flood plain management criteria for flood-prone areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood plain management criteria for flood-prone areas. 60.3 Section 60.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood...

  13. 44 CFR 60.3 - Flood plain management criteria for flood-prone areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood plain management criteria for flood-prone areas. 60.3 Section 60.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood...

  14. Streamflow regulation and multi-level flood plain formation: channel narrowing on the aggrading Green River in the eastern Uinta Mountains, Colorado and Utah

    NASA Astrophysics Data System (ADS)

    Grams, Paul E.; Schmidt, John C.

    2002-05-01

    The style and degree of channel narrowing in aggrading reaches downstream from large dams is dependent upon the dominant geomorphic processes of the affected river, the magnitude of streamflow regulation, and the post-dam sediment transport regime. We measured different magnitudes of channel adjustment on the Green River downstream from Flaming Gorge Dam, UT, USA, that are related to these three factors. Bankfull channel width decreased by an average of about 20% in the study area. In reaches with abundant debris fans and eddy deposited sand bars, the amount of channel narrowing was proportional to the decrease in specific stream power. The fan-eddy-dominated reach with the greatest decrease in stream power narrowed by 22% while the reach with the least decrease in stream power narrowed by 11%. In reaches with the same magnitude of peak flow reduction, meandering reaches narrowed by 15% to 22% and fan-eddy-dominated reaches narrowed by 11% to 12%. Specific stream power was not significantly affected by flow regulation in the meandering reaches. In the diverse array of reach characteristics and deposit types found in the study area, all pre- and post-dam deposits are part of a suite of topographic surfaces that includes a terrace that was inundated by rare pre-dam floods, an intermediate bench that was inundated by rare post-dam floods, and a post-dam floodplain that was inundated by the post-dam mean annual flood. Analysis of historical photographs and tree-ring dating of Tamarix sp. shows that the intermediate bench and post-dam floodplain are post-dam landforms in each reach type. Although these two surfaces occur at different levels, they are forming simultaneously during flows of different magnitude. And while the relative elevation and sedimentologic characteristics of the deposits differ between meandering reaches and reaches with abundant debris fans and eddies, both reach types contain deposits at all of these topographic levels. The process of channel

  15. Development of Flood GIS Database of River Indus using RS and GIS Techniques

    NASA Astrophysics Data System (ADS)

    Siddiqui, Z.; Farooq, M.; Shah, S.

    Remote sensing and Geographic Information System (GIS) are information technologies that furnish a broad range of tools to assist in preparing for the next flood and for obtaining vital information about the flood plain. This type of information is used to improve flood forecasting and preparedness, monitoring flood conditions, assess flood damage, relief efforts, flood control etc. Severe floods of varied magnitudes have occurred in the river Indus and its tributaries viz; Jhelum, Chenab, Ravi and Sutlej during the past three decades covering the Indus flood plain from Cheshma Barrage in the province of Punjab to downstream of Kotri Barrage in the souh of Sindh province of Pakistan. Digital mapping of different floods in the Indus Basin was carried out using both MSS and TM data of Landsat yielding flood maps. These maps depict flood extent and other relevant information in the flood plain. In order to create comprehensive GIS database, various hydrologic information such as rainfall, river discharge, canal withdrawal, embankment, breach etc. were incorporated. Flood database provide comprehensive information both in separate layer and combination of multiple layers pertaining to floods that occurred in the past three decades . GIS database on flood provides easy access to updated in-situ geographic information to planners and irrigation engineers concerned with overall river Indus operation and management system. GIS database of Indus floods can als o be used to improve the efficiency of decision making and management by collecting, organizing and integrating geographic, environmental and socio-economic spatial data and information.

  16. Elk River Watershed - Flood Study

    NASA Astrophysics Data System (ADS)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  17. Modeling Flood Plain Hydrology and Forest Productivity of Congaree Swamp, South Carolina

    USGS Publications Warehouse

    Doyle, Thomas W.

    2009-01-01

    An ecological field and modeling study was conducted to examine the flood relations of backswamp forests and park trails of the flood plain portion of Congaree National Park, S.C. Continuous water level gages were distributed across the length and width of the flood plain portion - referred to as 'Congaree Swamp' - to facilitate understanding of the lag and peak flood coupling with stage of the Congaree River. A severe and prolonged drought at study start in 2001 extended into late 2002 before backswamp zones circulated floodwaters. Water levels were monitored at 10 gaging stations over a 4-year period from 2002 to 2006. Historical water level stage and discharge data from the Congaree River were digitized from published sources and U.S. Geological Survey (USGS) archives to obtain long-term daily averages for an upstream gage at Columbia, S.C., dating back to 1892. Elevation of ground surface was surveyed for all park trails, water level gages, and additional circuits of roads and boundaries. Rectified elevation data were interpolated into a digital elevation model of the park trail system. Regression models were applied to establish time lags and stage relations between gages at Columbia, S.C., and gages in the upper, middle, and lower reaches of the river and backswamp within the park. Flood relations among backswamp gages exhibited different retention and recession behavior between flood plain reaches with greater hydroperiod in the lower reach than those in the upper and middle reaches of the Congaree Swamp. A flood plain inundation model was developed from gage relations to predict critical river stages and potential inundation of hiking trails on a real-time basis and to forecast the 24-hour flood In addition, tree-ring analysis was used to evaluate the effects of flood events and flooding history on forest resources at Congaree National Park. Tree cores were collected from populations of loblolly pine (Pinus taeda), baldcypress (Taxodium distichum), water

  18. Floods of April 1952 in the Missouri River basin

    USGS Publications Warehouse

    Wells, J.V.B.

    1955-01-01

    The floods of April 1952 in the Milk River basin, along the Missouri River from the mouth of the Little Missouri River to the mouth of the Kansas River, and for scattered tributaries of the Missouri River in North and South Dakota were the greatest ever observed. The damage amounted to an estimated $179 million. The outstanding featur6 of the floods was the extraordinary peak discharge generated in the Missouri River at and downstream from Bismarck, N. Dak., on April 6 when a large ice jam upstream from the city was suddenly released. Inflow from flooding tributaries maintained the peak discharge at approximately the same magnitude in the transit of the flood across South Dakota; downstream from Yankton, S. Dak., attenuation of the peak discharge was continuous because of natural storage in the wide flood plains. The outstanding characteristic of floods in the Milk River basin was their duration--the flood crested at Havre, Mont., on April 3 and at Nashua, Mont.. on April 18. The floods were caused by an abnormally heavy accumulation of snow that was converted into runoff in a few days of very warm weather at the end of March. The heaviest water content of the snow pack at breakup was in a narrow arc extending through Aberdeen, S. Dak., Pierre, S. Dak.. and northwestward toward the southwest corner of North Dakota. The water content in part of this concentrated cover exceeded 6 inches. The winter of 1951-52, which followed a wet cold fall that made the ground impervious, was one of the most severe ever experienced in South Dakota and northern Montana. Depths of snow and low temperatures combined to produce, at the end of March, one of the heaviest snow covers in the history of the Great Plains. The Missouri River ice was intact upstream from Chamberlain, S. Dak., at the end of March, and the breakup of the ice with inflow of local runoff was one of the spectacular features of the flood. Runoff from the Yellowstone River combining with the flood pouring from the

  19. Delineation of flooding within the upper Mississippi River Basin, flood of August 1-3, 1993, in St. Louis and vicinity, Missouri

    USGS Publications Warehouse

    Alexander, Terry W.

    1998-01-01

    A five-sheet hydrologic investigations atlas provides flood-peak elevation data and delineates the areal extent of flooding of the Missouri, the Mississippi, and the Meramec Rivers and the River des Peres in St. Louis and vicinity from August 1 through 3, 1993. The August 1993 flood is compared with the Federal Emergency Management Agency's (FEMA) 100- and 500-year flood profiles.This atlas is one of a series of USGS reports that documents the 1993 flooding in the upper Mississippi River Basin. The information presented here will improve the technical base on which flood-plain management decisions can be made.

  20. Contrasting channel response to floods on the middle Gila River, Arizona

    NASA Astrophysics Data System (ADS)

    Huckleberry, Gary

    1994-12-01

    Floods of January and February 1993 in Arizona resulted in the most dramatic channel widening on the middle Gila River since 1905. An earlier flood in October 1983 had a larger instantaneous discharge but resulted in little channel change. The 1993 flood was of greater volume and duration, factors important in destabilizing flood-plain vegetation and eroding bank material. The 1983 flood was produced by a dissipating eastern Pacific tropical storm, whereas the 1993 flood was produced by a series of cold fronts from the northern Pacific Ocean supplied with subtropical moisture from a split jet stream. Meridional global circulation patterns enhance the frequency of winter storms that produce sustained flooding in Arizona and are more likely to result in channel widening and flood-plain instability on main trunk streams like the Gila River.

  1. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Flood-plain and wetlands... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3...

  2. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Flood-plain and wetlands... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3...

  3. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Flood-plain and wetlands... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3...

  4. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Flood-plain and wetlands... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3...

  5. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... integrate the spirit and intent of E.O. 11988 Sections 2(a) and 2(c) into agency planning and... volatile, toxic, or water-reactive materials. (2) Technical assistance. NRCS provides leadership, through... in § 650.6 of this part and will comply with section 2(a)(4) of E.O. 11988. Flood-plain...

  6. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... integrate the spirit and intent of E.O. 11988 Sections 2(a) and 2(c) into agency planning and... volatile, toxic, or water-reactive materials. (2) Technical assistance. NRCS provides leadership, through... in § 650.6 of this part and will comply with section 2(a)(4) of E.O. 11988. Flood-plain...

  7. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... integrate the spirit and intent of E.O. 11988 Sections 2(a) and 2(c) into agency planning and... volatile, toxic, or water-reactive materials. (2) Technical assistance. NRCS provides leadership, through... in § 650.6 of this part and will comply with section 2(a)(4) of E.O. 11988. Flood-plain...

  8. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... integrate the spirit and intent of E.O. 11988 Sections 2(a) and 2(c) into agency planning and... volatile, toxic, or water-reactive materials. (2) Technical assistance. NRCS provides leadership, through... in § 650.6 of this part and will comply with section 2(a)(4) of E.O. 11988. Flood-plain...

  9. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... integrate the spirit and intent of E.O. 11988 Sections 2(a) and 2(c) into agency planning and... volatile, toxic, or water-reactive materials. (2) Technical assistance. NRCS provides leadership, through... in § 650.6 of this part and will comply with section 2(a)(4) of E.O. 11988. Flood-plain...

  10. Geothermal features of Snake River plain, Idaho

    SciTech Connect

    Blackwell, D.D.

    1987-08-01

    The Snake River plain is the track of a hot spot beneath the continental lithosphere. The track has passed through southern Idaho as the continental plate has moved over the hot spot at a rate of about 3.5 cm/yr. The present site of the hot spot is Yellowstone Park. As a consequence of the passage, a systematic sequence of geologic and tectonic events illustrates the response of the continental lithosphere to this hotspot event. The three areas that represent various time slices in the evolution are the Yellowstone Plateau, the Eastern Snake River plain downwarp, and the Western Snake River plain basin/Owhyee Plateau. In addition to the age of silicic volcanic activity, the topographic profile of the Snake River plain shows a systematic variation from the high elevations in the east to lowest elevations on the west. The change in elevation follows the form of an oceanic lithosphere cooling curve, suggesting that temperature change is the dominant effect on the elevation.

  11. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    SciTech Connect

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; Molins, Sergi; Bill, Markus; Conrad, Mark E.; Dong, Wenming; Faybishenko, Boris; Tokunaga, Tetsu K.; Wan, Jiamin; Williams, Kenneth H.; Yabusaki, Steven B.

    2016-02-01

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Model simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.

  12. Peculiarities of Environment Pollution as a Special Type of Radioactive Waste: Field Means for Comprehensive Characterization of Soil and Bottom Sediments and their Application in the Survey at the Flood plain of Techa River - 13172

    SciTech Connect

    Ivanov, Oleg; Danilovich, Alexey; Potapov, Victor; Stepanov, Vyacheslav; Smirnov, Sergey; Volkovich, Anatoly

    2013-07-01

    Contamination of natural objects - zone alarm fallout, zones and flood plains near production sites (the result of technological accidents and resource extraction) occupy large areas. Large area and volume of contaminated matter, moderate specific activity (as low - medium-level wastes) make such objects specific types of radioactive waste. These objects exist for a long time, now they are characterized by a bound state of nuclides with the matrix. There is no cost-effective ways to remove these waste, the only solution for the rehabilitation of such areas is their isolation and regular monitoring through direct and indirect measurements. The complex of instruments was developed to field mapping of contamination. It consists of a portable spectrometric collimated detector, collimated spectrometric borehole detector, underwater spectrometer detector, spectrometer for field measurements of the specific activity of Sr-90, connected to a portable MCA 'Colibry (Hummingbird)'. The complex was used in settlements of Bryansk region, rivers Techa and Yenisei. The effectiveness of the developed complex considered by the example of characterization of the reservoir 10 (artificial lake) in Techinsky cascade containing a huge amount of radioactive waste. The developed field means for comprehensive characterization of soil and bottom sediments contamination are very effective for mapping and monitoring of environment contamination after accidents. Especially in case of high non-uniformity of fallout and may be very actual in Fukushima area. (authors)

  13. Sediment characteristics of an extreme flood: 1993 upper Mississippi River valley

    NASA Astrophysics Data System (ADS)

    Gomez, Basil; Mertes, L. A. K.; Phillips, J. D.; Magilligan, F. J.; James, L. A.

    1995-11-01

    The 1993 Mississippi River flood was notable for its high magnitude, long duration, summer occurrence, and low sediment discharge. A field survey of a 70-km-long reach in the vicinity of Quincy, Illinois, revealed that the event was characterized by <4 mm of vertical accretion on leveed and unleveed parts of the flood plain. Regional patterns of overbank suspended sediment transport and deposition were discerned from Landsat Thematic Mapper imagery. This >100 yr flood had remarkably little sedimentological or geomorphological impact on the flood plain within the study reach because the transport effectiveness of floods in large drainage basins is influenced by event sequencing in the same manner as floods in small watersheds, and the cohesive flood-plain soils were not susceptible to erosion.

  14. Flood Deposition Analysis of Northern California's Eel River (Flood- DANCER)

    NASA Astrophysics Data System (ADS)

    Ahlgren, S.; Bauman, P. D.; Dillon, R. J.; Gallagher, N.; Jamison, M. E.; King, A.; Lee, J.; Siwicke, K. A.; Harris, C. K.; Wheatcroft, R. A.; Borgeld, J. C.; Goldthwait, S. A.

    2006-12-01

    Characterizing and quantifying the fate of river born sediment is critical to our understanding of sediment supply and erosion in impacted coastal areas. Strata deposited in coastal zones provide an invaluable record of recent and historical environmental events. The Eel River in northern California has one of the highest sediment yields of any North American river and has preserved evidence of the impact of recent flood events. Previous research has documented sediment deposits associated with Eel River flood events in January 1995, March 1995, and January 1997. These deposits were found north of the river mouth on the mid shelf in water depths from 50-100 m. Sediment strata were up to 5-10 cm thick and were composed of fine to very fine grained silts and clays. Until recently, no model had been able to correctly reproduce the sediment deposits associated with these floods. In 2005, Harris et al. developed a model that accurately represents the volume and location of the flood deposit associated with the January 1997 event. However, rigorous assessment of the predictive capability of this model requires that a new flood of the Eel River be used as a test case. During the winter of 2005-06 the Eel River rose above flood stage reaching discharge similar to the flood of January 1995 which resulted in flood sedimentation on the Eel River shelf. A flood-related deposit 1-5 cm thick was found in water depths of 60-90 m approximately 20-35 km north of the river mouth. Flood deposits were recognized in box cores collected in the months following the flood. As in previously studied events, flood- related strata near the sediment surface were recognized in core x-radiographs, resistivity and porosity profiles, and were composed of fine to very fine grained silts and clays. In addition, surface flood sediments were associated with lower concentrations of benthic foraminifera compared with deeper sediments. The January 2006 flood deposit was similar in thickness to the

  15. Costs of Placing Fill in a Flood Plain.

    DTIC Science & Technology

    1975-05-01

    Computation 5 Engineering. Enviromental and Legal Aspects of Filling 6 STUDY CONCLUSIONS 8 APPENDIX "Guidelines for Filling Floodplains," Bauer Engineering...Various attempts have been made to estimate an economic value of the ecosystem and from this the economic loss or gain due to its modification. Whether...or not an economic value is estimated, the changes - quantitative and qualitative - should be recognized. An examination of several flood plain

  16. Flooding of the Ob River, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A mixture of heavy rainfall, snowmelt, and ice jams in late May and early June of this year caused the Ob River and surrounding tributaries in Western Siberia to overflow their banks. The flooding can be seen in thess image taken on June 16, 2002, by the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra satellite. Last year, the river flooded farther north. Normally, the river resembles a thin black line, but floods have swollen the river considerably. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  17. Extent and frequency of floods on Delaware River in vicinity of Belvidere, New Jersey

    USGS Publications Warehouse

    Farlekas, George M.

    1966-01-01

    A stream overflowing its banks is a natural phenomenon. This natural phenomenon of flooding has occurred on the Delaware River in the past and will occur in the future. T' o resulting inundation of large areas can cause property damage, business losses and possible loss of life, and may result in emergency costs for protection, rescue, and salvage work. For optimum development of the river valley consistent with the flood risk, an evaluation of flood conditions is necessary. Basic data and the interpretation of the data on the regimen of the streams, particularly the magnitude of floods to be expected, the frequency of their occurrence, and the areas inundated, are essential for planning and development of flood-prone areas.This report presents information relative to the extent, depth, and frequency of floods on the Delaware River and its tributaries in the vicinity of Belvidere, N.J. Flooding on the tributaries detailed in the report pertains only to the effect of backwater from the Delaware River. Data are presented for several past floods with emphasis given to the floods of August 19, 1955 and May 24, 1942. In addition, information is given for a hypothetical flood based on the flood of August 19, 1955 modified by completed (since 1955) and planned flood-control works.By use of relations presented in this report the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Delaware River under study. Flood data and the evaluation of the data are presented so that local and regional agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U.S. Geological Survey regard this program of flood-plain inundation studies as a positive step toward flood-damage prevention. Flood-plain inundation studies, when followed by appropriate land-use regulations, are a valuable and economical supplement to physical works for flood

  18. 44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plain management criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance... National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood...

  19. 44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood plain management criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance... National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood...

  20. 44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plain management criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance... National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood...

  1. 44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plain management criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance... National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood...

  2. 44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood plain management criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance... National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood...

  3. ANALYSIS ON RECENT FLOOD EVENTS AND TREE VEGETATION COLLAPSES IN KAKO RIVER

    NASA Astrophysics Data System (ADS)

    Michioku, Kohji; Miyamoto, Hitoshi; Kanda, Keiichi; Ohchi, Yohei; Aga, Kazuho; Morioka, Jyunji; Uotani, Takuya; Yoshida, Kazuaki; Yoshimura, Satoshi

    Forestation on flood plains is a world-wide engineering issue in middle to downstream reaches in many rivers. This brings not only degradation of flow conveyance capacity but also irreversible changes of ecological system in rivers. In order to obtain information on tree vegetation behavior during flood events, field data of flow fields and tree vegetation collapse were collected in Kako River, where willows are heavily vegetated on the flood plain. After starting a H-ADCP flow measurement in 2009, small to medium size flood events frequently occurred, which enables us not only to verify an analytical model to reproduce flow fields in and out of vegetations but also to examine tree vegetation collapses after flooding. The analytical solutions on velocity profiles as well as flow force acting on trees were in good agreement with the H-ADCP measurements and tree damages, respectively.

  4. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management...

  5. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management...

  6. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management...

  7. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management...

  8. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management...

  9. Forest and flooding with special reference to the White River and Ouachita River basins, Arkansas

    USGS Publications Warehouse

    Bedinger, M.S.

    1979-01-01

    The observed response of trees to hydrologic stress and distribution of trees in relation to habitat indicate that flooding, ground-water level, soil moisture, soil factors, and drainage characteristics exert a strong influence on bottomland forest species distribution. The dominant hydrologic factor influencing the distribution of bottomland tree species is flooding. Individual tree species are distributed as a function of frequency and duration of flooding. In the lower White and Ouachita River basins, the flood plains consist of a series of terraces, progressively higher terraces having less frequent flooding and less duration of flooding, and a significantly different composition of forest tree species. The sites studied can be divided into four basic groups and several subgroups on the basis of flood characteristics. On Group I (water hickory-overcup oak) sites, flooded near annually 32 to 40 percent of the time, the dominant species are water hickory and overcup oak. On Group II (nuttall oak) sites, flooded near annually 10 to 21 percent of the time, a more varied flora exists including nuttall oak, willow oak, sweetgum, southern hackberry, and American elm. The third group (Group III or shagbark hickory-southern red oak) of sites is flooded at intervals from 2 to 12 years. This group includes southern red oak, shagbark hickory, and black gum. The presence of blackjack oak in addition to Group III species marks Group IV (not flooded in historic time). (Kosco-USGS)

  10. Flood trends and river engineering on the Mississippi River system

    USGS Publications Warehouse

    Pinter, N.; Jemberie, A.A.; Remo, J.W.F.; Heine, R.A.; Ickes, B.S.

    2008-01-01

    Along >4000 km of the Mississippi River system, we document that climate, land-use change, and river engineering have contributed to statistically significant increases in flooding over the past 100-150 years. Trends were tested using a database of >8 million hydrological measurements. A geospatial database of historical engineering construction was used to quantify the response of flood levels to each unit of engineering infrastructure. Significant climate- and/or land use-driven increases in flow were detected, but the largest and most pervasive contributors to increased flooding on the Mississippi River system were wing dikes and related navigational structures, followed by progressive levee construction. In the area of the 2008 Upper Mississippi flood, for example, about 2 m of the flood crest is linked to navigational and flood-control engineering. Systemwide, large increases in flood levels were documented at locations and at times of wing-dike and levee construction. Copyright 2008 by the American Geophysical Union.

  11. Flood-risk management strategies for an uncertain future: living with Rhine River floods in The Netherlands?

    PubMed

    Klijn, Frans; van Buuren, Michaël; van Rooij, Sabine A M

    2004-05-01

    Social pressure on alluvial plains and deltas is large, both from an economic point of view and from a nature conservation point of view. Gradually, flood risks increase with economic development, because the expected damage increases, and with higher dikes, because the flooding depth increases. Global change, changing social desires, but also changing views, require a revision of flood-risk management strategies for the long term. These should be based on resilience as opposed to the resistence strategy of heightening dikes. Resilience strategies for flood-risk management imply that the river is allowed to temporarily flood large areas, whereas the flood damage is minimized by adapting land use. Such strategies are thus based on risk management and 'living with floods' instead of on hazard control. For The Netherlands, one of the most densely populated deltas in the world, alternative resilience strategies have been elaborated and assessed for their hydraulic functioning and 'sustainability criteria'.

  12. A Flood Detection and Mapping Algorithm Using MODIS Data: Assessment of Extreme Flooding Events in Eastern Ganga Plains (2000-2015)

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Patel, S.; Prasad, A. K.; Sarkar, B. C.

    2015-12-01

    Flood, a hydrological extreme, is a dominant and frequent phenomena over the eastern Ganga Plains comprising of alluvial plains of Bihar and adjoining Nepal Himalaya. Flood affects major parts of Bihar where Gandak and Koshi are the major tributaries of Ganga River causing inundation during the monsoon season. Due to heavy rainfall in the Eastern Himalaya and adjoining regions, the river discharge increases several folds causing severe flood in plains. Moderate Resolution Imaging Spectroradiometer (MODIS) derived data at 250 m resolution (year 2000-2015) have been used to identify flood water and calculate daily water fraction (water cover) using model adopted from previous studies. During the monsoon season, cloud cover in daily images is found to be extremely high leading to lot of gaps in the form of missing data. To account for missing grid cell values, an adaptive polynomial filter (Savitzky-Golay) have been used to fit the time series of daily data for each grid cell. The missing values in daily images have been filled with calculated values to create daily time series of flood water. Landsat data at 30 m grid resolution have been used to verify flood water detection algorithm used in this study. Time series analysis of satellite derived data reveal a strong spatial and temporal variation in the extent, duration and frequency (inter-annual and intra-annual) of flooding event over the study region. Statistical analysis of IDF (intensity, duration, and frequency) and trend have been carried out to identify regions which show greater flood risk. Reoccurrence interval and length of flooding event in the study region is found to be high compared to other river basins in the western India. Based on the historical occurrence of flood, the study area have been classified into different flood hazard zones where flood mitigation and management need to be prioritized. MODIS based flood monitoring and mapping model used in this study can be used for monitoring and

  13. Floods of June 1965 in South Platte River basin, Colorado

    USGS Publications Warehouse

    Matthai, Howard Frederick

    1969-01-01

    Heavy, intense rains in three areas on three different days caused outstanding floods on many streams in the South Platte River basin from Plum Creek, just south of Denver, downstream to the Colorado-Nebraska State line. The flood-producing storms followed a relatively wet period, and rainfall of as much as 14 inches in a few hours was reported. The storms occurred over the Greeley-Sterling area on June 14-15, over the Plum Creek and Cherry Creek basins on June 16, and over the headwaters of Kiowa and Bijou Creeks on June 17 after heavy rains on June 15. The flood crest did not pass Julesburg, in the northeast corner of Colorado, until June 20. Previous record high discharges on many tributaries with drainage areas on the plains were exceeded, sometimes severalfold. The six principal tributaries carrying snowmelt runoff were contributing, but not significant, factors in the floods. The attenuation of the peak flow by channel storage as the flood passed through Denver was considerable; yet the peak discharge of 40,300 cfs (cubic feet per second) of the South Platte River at Denver was 1.8 times the previously recorded high of 22,000 cfs in a period of record starting in 1889. The 1965 peak would have been still higher except that all flow from Cherry Creek was stored in Cherry Creek Reservoir. Six persons were drowned, and two other deaths were attributed to the storms. The total damage amounted to $508.2 million, and about 75 percent of this occurred in the Denver metropolitan area. Descriptions of the storms and floods, detailed streamflow records, and information on damages, flood profiles, inundated areas, and flood frequency are included in this report. Several comparisons of the magnitude of the flood are made, and all indicate that an outstanding hydrologic event occurred.

  14. Surface complexation modeling of groundwater arsenic mobility: Results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam

    NASA Astrophysics Data System (ADS)

    Jessen, Søren; Postma, Dieke; Larsen, Flemming; Nhan, Pham Quy; Hoa, Le Quynh; Trang, Pham Thi Kim; Long, Tran Vu; Viet, Pham Hung; Jakobsen, Rasmus

    2012-12-01

    Three surface complexation models (SCMs) developed for, respectively, ferrihydrite, goethite and sorption data for a Pleistocene oxidized aquifer sediment from Bangladesh were used to explore the effect of multicomponent adsorption processes on As mobility in a reduced Holocene floodplain aquifer along the Red River, Vietnam. The SCMs for ferrihydrite and goethite yielded very different results. The ferrihydrite SCM favors As(III) over As(V) and has carbonate and silica species as the main competitors for surface sites. In contrast, the goethite SCM has a greater affinity for As(V) over As(III) while PO43- and Fe(II) form the predominant surface species. The SCM for Pleistocene aquifer sediment resembles most the goethite SCM but shows more Si sorption. Compiled As(III) adsorption data for Holocene sediment was also well described by the SCM determined for Pleistocene aquifer sediment, suggesting a comparable As(III) affinity of Holocene and Pleistocene aquifer sediments. A forced gradient field experiment was conducted in a bank aquifer adjacent to a tributary channel to the Red River, and the passage in the aquifer of mixed groundwater containing up to 74% channel water was observed. The concentrations of As (<0.013 μM) and major ions in the channel water are low compared to those in the pristine groundwater in the adjacent bank aquifer, which had an As concentration of ˜3 μM. Calculations for conservative mixing of channel and groundwater could explain the observed variation in concentration for most elements. However, the mixed waters did contain an excess of As(III), PO43- and Si which is attributed to desorption from the aquifer sediment. The three SCMs were tested on their ability to model the desorption of As(III), PO43- and Si. Qualitatively, the ferrihydrite SCM correctly predicts desorption for As(III) but for Si and PO43- it predicts an increased adsorption instead of desorption. The goethite SCM correctly predicts desorption of both As(III) and PO43

  15. 44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plain management... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties...

  16. 44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plain management... National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.4 Flood plain management criteria for mudslide (i.e., mudflow)-prone areas....

  17. Flood tracking chart, Amite River Basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence E.; McCallum, Brian E.; Brazelton, Sebastian R.; Anderson, Mary L.; Ensminger, Paul A.

    1998-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  18. Flood tracking chart, Amite River basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence; McCallum, Brian E.; Brazelton, Sebastian R.

    1996-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  19. Flooding Capability for River-based Scenarios

    SciTech Connect

    Smith, Curtis L.; Prescott, Steven; Ryan, Emerald; Calhoun, Donna; Sampath, Ramprasad; Anderson, S. Danielle; Casteneda, Cody

    2015-10-01

    This report describes the initial investigation into modeling and simulation tools for application of riverine flooding representation as part of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluations. The report provides examples of different flooding conditions and scenarios that could impact river and watershed systems. Both 2D and 3D modeling approaches are described.

  20. The Bosna River floods in May 2014

    NASA Astrophysics Data System (ADS)

    Vidmar, Andrej; Globevnik, Lidija; Koprivšek, Maja; Sečnik, Matej; Zabret, Katarina; Đurović, Blažo; Anzeljc, Darko; Kastelic, Janez; Kobold, Mira; Sušnik, Mojca; Borojevič, Darko; Kupusović, Tarik; Kupusović, Esena; Vihar, Anja; Brilly, Mitja

    2016-10-01

    In May 2014, extreme floods occurred in the lower Sava River basin, causing major damage, with catastrophic consequences. Based on the data gathered, the weather situation in Bosnia and Herzegovina's (BiH) Bosna River basin was analysed and the hydrological conditions were provided, including the results of the probability analysis of the size of the recorded precipitation and flow rates. According to the observed data, extremely high precipitation intensities produced specific discharges of 1.0 m3 s-1 km-2. A hydrological model of the Bosna River basin was developed using HBV light for the purposes of reconstructing and forecasting such events more effectively. All analyses confirmed that the May 2014 event was an extreme extraordinary event whose return period greatly exceeds 100 years. The study is the basis for further flood safety measures and flood forecast development in the Bosna River basin.

  1. Floods in the Skagit River basin, Washington

    USGS Publications Warehouse

    Stewart, James E.; Bodhaine, George Lawrence

    1961-01-01

    According to Indian tradition, floods of unusually great magnitude harassed the Skagit River basin about 1815 and 1856. The heights of these floods were not recorded at the time; so they are called historical floods. Since the arrival of white men about 1863, a number of large and damaging floods have been witnessed and recorded. Data concerning and verifying the early floods, including those of 1815 and 1856, were collected prior to 1923 by James E. Stewart. He talked with many of the early settlers in the valley who had listened to Indians tell about the terrible floods. Some of these settlers had referenced the maximum stages of floods they had witnessed by cutting notches at or measuring to high-water marks on trees. In order to verify flood stages Stewart spent many weeks finding and levelling to high-water marks such as drift deposits, sand layers in coves, and silt in the bark of certain types of trees. Gaging stations have been in operation at various locations on the Skagit River and its tributaries since 1909, so recorded peak stages are available at certain sites for floods occurring since that date. All peak discharge data available for both historical and recorded floods have been listed in this report. The types of floods as to winter and summer, the duration of peaks, and the effect of reservoirs are discussed. In 1899 Sterling Dam was constructed at the head of Gages Slough near Sedro Woolley. This was the beginning of major diking in the lower reaches of the Skagit River. Maps included in the report show the location of most of the dike failures that have occurred during the last 73 years and the area probably inundated by major floods. The damage resulting from certain floods is briefly discussed. The report is concluded with a brief discussion of the U.S. Geological Survey method of computing flood-frequency curves as applied to the Skagit River basin. The treatment of single-station records and a means of combining these records for expressing

  2. Propagation and composition of the flood wave on the upper Mississippi River, 1993

    USGS Publications Warehouse

    Moody, John A.

    1995-01-01

    The flood wave on the upper Mississippi River started downstream near St. Paul, Minnesota, in June 1993. The maximum discharge propagated downstream at about 50 kilometers per day and was 5 to 7 times the mean daily discharge at streamgaging sites on the river. The propagation speed of the flood wave was influenced more by hydrologic factors such as tributary inflow and flood-plain storage than by hydraulic factors. The maximum discharge at St. Louis, Missouri (29,700 m3/s) occurred on August 1, 1993; but because of flood-plain storage resulting from levee failures and seepage through and under levees downstream, the maximum discharge at Thebes, Illinois, (27,700 m>3/s) did not occur until August 7 which was about 4 days later than normal.

  3. Delineation of flooding within the upper Mississippi River Basin, flood of July 10 and 27, 1993, in Kansas City Missouri, and Kansas City, Kansas, and vicinity

    USGS Publications Warehouse

    Perry, Charles A.; Clement, Ralph W.; Studley, Seth E.

    1997-01-01

    During spring and summer 1993, record flooding inundated many of the stream and river valleys in the upper Mississippi and the Missouri River Basins. The flooding was the result of widespread and numerous intense thunderstorms that, together with saturated soils, produced large volumes of runoff. The magnitude of flooding exceeded the 100-year discharge values (1-percent chance of exceedance in any given year) at many streamflow-gaging stations in Illinois, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, and Wisconsin. The flooding was unusual because of its long duration and widespread severe damage. The Mississippi and the Missouri Rivers were above flood stage for more than 1 month at several locations along their lengths. Millions of acres of agricultural and urban lands were inundated for weeks, and unofficial damage estimates exceeded $10 billion in the flooded States (Parrett and others, 1993),During summer 1993, large parts of Kansas City, Missouri, and Kansas City, Kansas, and vicinity were flooded from overflows of the Missouri and the Kansas Rivers and numerous smaller tributaries, This report provides flood-peak elevation data and delineates the arcalcktent of the 1993 floods in the Kansas City metropolitan area for July 10 and 27, 1993 (fig. 1A, sheet 1: B, sheet 2: C, sheet 3). The 1993 flood elevations and extent of flooding are compared with flood-plain boundaries defined by Flood Insurance Studies conducted by the Federal Emergency Management Agency (FEMA) for cities and counties in the area (U.S. Department of Housing and Urban Development, 1975–95).This report is one of a series of U.S. Geological Survey (USGS) investigations that document the effects of the 1993 flooding of the upper Mississippi and the Missouri River Basins and that improve the technical base from which flood-plain management decisions can be made by other agencies.

  4. Channel narrowing and vegetation development following a great plains flood

    USGS Publications Warehouse

    Friedman, J.M.; Osterkamp, W.R.; Lewis, W.M.

    1996-01-01

    Streams in the plains of eastern Colorado are prone to intense floods following summer thunderstorms. Here, and in other semiarid and arid regions, channel recovery after a flood may take several decades. As a result, flood history strongly influences spatial and temporal variability in bottomland vegetation. Interpretation of these patterns must be based on understanding the long-term response of bottomland morphology and vegetation to specific floods. A major flood in 1965 on Plum Creek, a perennial sandbed stream, removed most of the bottomland vegetatiqn and transformed the single-thread stream into a wider, braided channel. Channel narrowing began in 1973 and continues today. In 1991, we determined occurrences of 150 vascular plant species in 341 plots (0.5 m2) along a 7-km reach of Plum Creek near Louviers, Colorado. We related patterns of vegetation to elevation, litter cover, vegetative cover, sediment particle size, shade, and year of formation of the underlying surface (based on age of the excavated root flare of the oldest woody plants). Geomorphic investigation determined that Plum Creek fluvial surfaces sort into five groups by year of formation: terraces of fine sand formed before 1965; terraces of coarse sand deposited by the 1965 flood; stable bars formed by channel narrowing during periods of relatively high bed level (1973-1986); stable bars similarly formed during a recent period of low bed level (1987-1990); and the present channel bed (1991). Canonical correspondence analysis indicates a strong influence of elevation and litter cover, and lesser effects of vegetative cover, shade, and sediment particle size. However, the sum of all canonical eigenvalues explained by these factors is less than that explained by an analysis including only the dummy variables that define the five geomorphically determined age groups. The effect of age group is significant even when all five other environmental variables are specified as covariables. Therefore, the

  5. Snake River Plain FORGE Site Characterization Data

    SciTech Connect

    Robert Podgorney

    2016-04-18

    The site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. This collection includes data on seismic events, groundwater, geomechanical models, gravity surveys, magnetics, resistivity, magnetotellurics (MT), rock physics, stress, the geologic setting, and supporting documentation, including several papers. Also included are 3D models (Petrel and Jewelsuite) of the proposed site. Data for wells INEL-1, WO-2, and USGS-142 have been included as links to separate data collections. These data have been assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL). Other contributors include the National Renewable Energy Laboratory (NREL), Lawrence Livermore National Laboratory (LLNL), the Center for Advanced Energy Studies (CEAS), the University of Idaho, Idaho State University, Boise State University, University of Wyoming, University of Oklahoma, Energy and Geoscience Institute-University of Utah, US Geothermal, Baker Hughes Campbell Scientific Inc., Chena Power, US Geological Survey (USGS), Idaho Department of Water Resources, Idaho Geological Survey, and Mink GeoHydro.

  6. Characterization of geomorphic units in the alluvial valleys and channels of Gulf Coastal Plain rivers in Texas, with examples from the Brazos, Sabine, and Trinity Rivers, 2010

    USGS Publications Warehouse

    Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in

  7. Flood Forecasting in River System Using ANFIS

    SciTech Connect

    Ullah, Nazrin; Choudhury, P.

    2010-10-26

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  8. Flood Forecasting in River System Using ANFIS

    NASA Astrophysics Data System (ADS)

    Ullah, Nazrin; Choudhury, P.

    2010-10-01

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  9. Overlaps among phenological phases in flood plain forest ecosystem

    NASA Astrophysics Data System (ADS)

    Bartošová, Lenka; Bauer, Zdeněk; Trnka, Miroslav; Možný, Martin; Štěpánek, Petr; Žalud, Zdeněk

    2015-04-01

    There is a growing concern that climate change has significant impacts on species phenology, seasonal population dynamics, and thus interaction (a)synchrony between species. Species that have historically undergone life history events on the same seasonal calendar may lose synchrony and therefore lose the ability to interact as they have in the past. In view of the match/mismatch hypothesis, the different extents or directions of the phenological shifts among interacting species may have significant implications for community structure and dynamics. That's why our principal goal of the study is to determine the phenological responses within the ecosystem of flood plain forest and analyzed the phenological overlapping among each phenological periods of given species. The phenological observations were done at flood-plain forest experimental site during the period 1961-2012. The whole ecosystem in this study create 17 species (15 plants and 2 bird species) and each species is composed of 2 phenological phases. Phenological periods of all species of ecosystem overlap each other and 43 of these overlapping were chosen and the length, trend and correlation with temperature were elaborated. The analysis of phenophases overlapping of chosen species showed that the length of overlay is getting significantly shorter in 1 case. On the other hand the situation when the length of overlaps is getting significantly longer arose in 4 cases. Remaining overlaps (38) of all phenological periods among various species is getting shorter or longer but with no significance or have not changed anyhow. This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248. and of projects no. LD13030 supporting participation of the Czech Republic in the COST action ES1106.

  10. 44 CFR 60.2 - Minimum compliance with flood plain management criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Minimum compliance with flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations §...

  11. 44 CFR 60.2 - Minimum compliance with flood plain management criteria.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Minimum compliance with flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations §...

  12. 44 CFR 60.2 - Minimum compliance with flood plain management criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Minimum compliance with flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations §...

  13. 44 CFR 60.2 - Minimum compliance with flood plain management criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Minimum compliance with flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations §...

  14. 44 CFR 60.2 - Minimum compliance with flood plain management criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Minimum compliance with flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations §...

  15. Alternating flood and drought hazards in the Drava Plain, Hungary

    NASA Astrophysics Data System (ADS)

    Lóczy, Dénes; Dezsö, József; Gyenizse, Péter; Ortmann-Ajkai, Adrienne

    2016-04-01

    Our research project covers the assessment of archive data and monitoring present-day water availability in the floodplain of the Hungarian Drava River. Historically flood hazard has been prevalent in the area. Recently, however, flood and drought hazards occur with equal frequency. Potential floodwater storage is defined from the analyses of soil conditions (grain size, porosity, water conductivity etc.) and GIS-based volumetric estimations of storage capacities in oxbows (including communication with groundwater). With the remarkable rate of river channel incision (2.4 m per century) and predictable climate change trends (increased annual mean temperature and decreased summer precipitation), the growing frequency and intensification of drought hazard is expected. For the assessment of drought hazard the impacts of hydrometeorological events, groundwater table dynamics and capillary rise are modelled, the water demands of natural vegetation and agricultural crops are studied. The project is closely linked to the ongoing Old Drava Programme, a comprehensive government project, which envisions floodplain rehabilitation through major transformations in water governance and land use of the region, and has numerous implications for regional development. Authors are grateful for financial support from the Hungarian National Scientific Research Fund (OTKA, contacts nos K 104552 and K 108755) as well as from the Visegrad Fund (31210058). The contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

  16. Global drivers of future river flood risk

    NASA Astrophysics Data System (ADS)

    Winsemius, Hessel C.; Aerts, Jeroen C. J. H.; van Beek, Ludovicus P. H.; Bierkens, Marc F. P.; Bouwman, Arno; Jongman, Brenden; Kwadijk, Jaap C. J.; Ligtvoet, Willem; Lucas, Paul L.; van Vuuren, Detlef P.; Ward, Philip J.

    2016-04-01

    Understanding global future river flood risk is a prerequisite for the quantification of climate change impacts and planning effective adaptation strategies. Existing global flood risk projections fail to integrate the combined dynamics of expected socio-economic development and climate change. We present the first global future river flood risk projections that separate the impacts of climate change and socio-economic development. The projections are based on an ensemble of climate model outputs, socio-economic scenarios, and a state-of-the-art hydrologic river flood model combined with socio-economic impact models. Globally, absolute damage may increase by up to a factor of 20 by the end of the century without action. Countries in Southeast Asia face a severe increase in flood risk. Although climate change contributes significantly to the increase in risk in Southeast Asia, we show that it is dwarfed by the effect of socio-economic growth, even after normalization for gross domestic product (GDP) growth. African countries face a strong increase in risk mainly due to socio-economic change. However, when normalized to GDP, climate change becomes by far the strongest driver. Both high- and low-income countries may benefit greatly from investing in adaptation measures, for which our analysis provides a basis.

  17. Inverse algorithms for 2D shallow water equations in presence of wet dry fronts: Application to flood plain dynamics

    NASA Astrophysics Data System (ADS)

    Monnier, J.; Couderc, F.; Dartus, D.; Larnier, K.; Madec, R.; Vila, J.-P.

    2016-11-01

    The 2D shallow water equations adequately model some geophysical flows with wet-dry fronts (e.g. flood plain or tidal flows); nevertheless deriving accurate, robust and conservative numerical schemes for dynamic wet-dry fronts over complex topographies remains a challenge. Furthermore for these flows, data are generally complex, multi-scale and uncertain. Robust variational inverse algorithms, providing sensitivity maps and data assimilation processes may contribute to breakthrough shallow wet-dry front dynamics modelling. The present study aims at deriving an accurate, positive and stable finite volume scheme in presence of dynamic wet-dry fronts, and some corresponding inverse computational algorithms (variational approach). The schemes and algorithms are assessed on classical and original benchmarks plus a real flood plain test case (Lèze river, France). Original sensitivity maps with respect to the (friction, topography) pair are performed and discussed. The identification of inflow discharges (time series) or friction coefficients (spatially distributed parameters) demonstrate the algorithms efficiency.

  18. The Effects of the Saluda Dam on the Surface-Water and Ground-Water Hydrology of the Congaree National Park Flood Plain, South Carolina

    USGS Publications Warehouse

    Conrads, Paul A.; Feaster, Toby D.; Harrelson, Larry G.

    2008-01-01

    The Congaree National Park was established '... to preserve and protect for the education, inspiration, and enjoyment of present and future generations an outstanding example of a near-virgin, southern hardwood forest situated in the Congaree River flood plain in Richland County, South Carolina' (Public Law 94-545). The resource managers at Congaree National Park are concerned about the timing, frequency, magnitude, and duration of flood-plain inundation of the Congaree River. The dynamics of the Congaree River directly affect ground-water levels in the flood plain, and the delivery of sediments and nutrients is constrained by the duration, extent, and frequency of flooding from the Congaree River. The Congaree River is the southern boundary of the Congaree National Park and is formed by the convergence of the Saluda and Broad Rivers 24 river miles upstream from the park. The streamflow of the Saluda River has been regulated since 1929 by the operation of the Saluda Dam at Lake Murray. The U.S. Geological Survey, in cooperation with the National Park Service, Congaree National Park, studied the interaction between surface water in the Congaree River and ground water in the flood plain to determine the effect Saluda Dam operations have on water levels in the Congaree National Park flood plain. Analysis of peak flows showed the reduction in peak flows after the construction of Lake Murray was more a result of climate variability and the absence of large floods after 1930 than the operation of the Lake Murray dam. Dam operations reduced the recurrence interval of the 2-year to 100-year peak flows by 6.1 to 17.6 percent, respectively. Analysis of the daily gage height of the Congaree River showed that the dam has had the effect of lowering high gage heights (95th percentile) in the first half of the year (December to May) and raising low gage heights (5th percentile) in the second half of the year (June to November). The dam has also had the effect of increasing the 1

  19. Flooding on California's Russian River: Role of atmospheric rivers

    USGS Publications Warehouse

    Ralph, F.M.; Neiman, P.J.; Wick, G.A.; Gutman, S.I.; Dettinger, M.D.; Cayan, D.R.; White, A.B.

    2006-01-01

    Experimental observations collected during meteorological field studies conducted by the National Oceanic and Atmospheric Administration near the Russian River of coastal northern California are combined with SSM/I satellite observations offshore to examine the role of landfalling atmospheric rivers in the creation of flooding. While recent studies have documented the characteristics and importance of narrow regions of strong meridional water vapor transport over the eastern Pacific Ocean (recently referred to as atmospheric rivers), this study describes their impact when they strike the U.S. West Coast. A detailed case study is presented, along with an assessment of all 7 floods on the Russian River since the experimental data were first available in October 1997. In all 7 floods, atmospheric river conditions were present and caused heavy rainfall through orographic precipitation. Not only do atmospheric rivers play a crucial role in the global water budget, they can also lead to heavy coastal rainfall and flooding, and thus represent a key phenomenon linkingweather and climate. Copyright 2006 by the American Geophysical Union.

  20. Application of remote sensing data to land use and land cover assessment in the Tubarao River coastal plain, Santa Catarina, Brazil

    NASA Technical Reports Server (NTRS)

    1982-01-01

    By means of aerial photography and MSS-LANDSAT data a land use/land cover classification was applied to the Tubarao River coastal plain. The following classes were identified: coal related areas, permanently flooded wetlands, periodically flooded wetlands, agricultural lands, bare soils, water bodies, urban areas, forestlands.

  1. The Bosna River floods in May 2014

    NASA Astrophysics Data System (ADS)

    Vidmar, A.; Globevnik, L.; Koprivšek, M.; Sečnik, M.; Zabret, K.; Ðurović, B.; Anzeljc, D.; Kastelic, J.; Kobold, M.; Sušnik, M.; Borojevič, D.; Kupusović, T.; Kupusović, E.; Vihar, A.; Brilly, M.

    2015-10-01

    In May 2014, extreme floods occurred in the lower Sava River basin, causing major damage, with catastrophic consequences. Based on the data gathered, the weather situation in Bosnia and Herzegovina's (BiH) Bosna River basin was analysed and the hydrological conditions were provided, including the results of the probability analysis of the size of the recorded precipitation and flow rates. A hydrological model of the Bosna River basin was developed using HBV-light for the purposes of reconstructing and forecasting such events more effectively. All analyses confirmed that the May 2014 event was an extreme event whose returning period greatly exceeds 100 years.

  2. Increasing river floods: fiction or reality?

    PubMed

    Blöschl, Günter; Gaál, Ladislav; Hall, Julia; Kiss, Andrea; Komma, Jürgen; Nester, Thomas; Parajka, Juraj; Perdigão, Rui A P; Plavcová, Lenka; Rogger, Magdalena; Salinas, José Luis; Viglione, Alberto

    2015-01-01

    There has been a surprisingly large number of major floods in the last years around the world, which suggests that floods may have increased and will continue to increase in the next decades. However, the realism of such changes is still hotly discussed in the literature. This overview article examines whether floods have changed in the past and explores the driving processes of such changes in the atmosphere, the catchments and the river system based on examples from Europe. Methods are reviewed for assessing whether floods may increase in the future. Accounting for feedbacks within the human-water system is important when assessing flood changes over lead times of decades or centuries. It is argued that an integrated flood risk management approach is needed for dealing with future flood risk with a focus on reducing the vulnerability of the societal system. WIREs Water 2015, 2:329-344. doi: 10.1002/wat2.1079 For further resources related to this article, please visit the WIREs website.

  3. Snake River Plain FORGE Well Data for USGS-142

    SciTech Connect

    Robert Podgorney

    2015-11-23

    Well data for the USGS-142 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, and photos of rhyolite core samples. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  4. The use of stable isotope to evaluate water mixing and water use by flood plain trees along the Garonne valley

    USGS Publications Warehouse

    Lambs, L.; Loubiat, M.; Richardson, W.

    2003-01-01

    Before the confluence of the Tarn, the Garonne valley was the driest area in the entire south-west of France, due to the relatively low rainfall and low summer discharge of the Garonne River and its tributaries. The natural abundance of the stable isotope of oxygen (18O) and ionic charge of surface and ground water were used to estimate the water source for the Garonne River and phreatic subsurface water. We also measured these constituents in the sap of trees at several flood plain sites to better understand the source of water used by these trees. 18O signatures and conductivity in the Garonne River indicated that the predominance of water was from high altitude surface runoff from the Pyrenees Mountains. Tributary inputs had little effect on isotopic identity, but had a small effect on the conductivity. The isotopic signature and ionic conductivity of river water (??18O: -9.1??? to -9.0???, conductivity: 217-410??S/cm) was distinctly different from groundwater (??18O: -7.1??? to -6.6???, conductivity: 600-900??S/cm). Isotopic signatures from the sap of trees on the flood plain showed that the water source was shallow subsurface water (1m). Trees at both locations maintained sap with ionic charges much greater (2.3-3.7x) than that of source water. The combined use of 18O signatures and ionic conductivity appears to be a potent tool to determine water sources on geographic scales, and source and use patterns by trees at the local forest scale. These analyses also show promise for better understanding of the effects of anthropogenic land-use and water-use changes on flood plain forest dynamics.

  5. The geomorphology of the Mississippi River chenier plain

    USGS Publications Warehouse

    Penland, S.; Suter, J.R.

    1989-01-01

    The chenier plain of the Mississippi River is a shore-parallel zone of alternating transgressive clastic ridges separated by progradational mudflats. The term chenier is derived from the cajun term chene for oak, the tree species that colonizes the crests of the higher ridges. The Mississippi River chenier plain stretches 200 km from Sabine Pass, Texas, to Southwest Point, Louisiana and ranges between 20 and 30 km wide, with elevations of 2-6 m. The timing and the process of formation could be re-evaluated in the light of new chronostratigraphic findings in the Mississippi River delta plain. The stratigraphic relationship between the Teche and Lafourche delta complexes and Ship Shoal offshore indicates that these delta complexes belong to different delta plains that developed at different sealevels. It appears that the Teche delta complex is associated with the late Holocene delta plain which developed 7000 to 3000 yrs B.P. when sealevel stood 5-6 m lower than present. A regional transgression occurred between approximately 3000 BP and 2500 yrs B.P., leading to the transgressive submergence of the late Holocene delta plain, producing the regional Teche shoreline. The timing of this transgression conforms to the age of the most landward ridge in the chenier plain, the Little Chenier-Little Pecan Island trend, which dates at about 2500 yrs B.P. This ridge trend was originally interpreted as representing the Teche delta complex switching event with the landward Holocene/Pleistocene contact representing the high stand shoreline. The implication of this new interpretation is that the Little Chenier-Little Pecan Island trend represents the high stand shoreline, a continuation of the Teche shoreline separating the late Holocene and Recent delta plains, and that the Holocene/Pleistocene contact represents the leading edge of the marshes transgressing onto the Prairie Terrace. Significant mudflat progradation seems to require a westerly position of the Mississippi River

  6. Backwater at bridges and densely wooded flood plains, Tallahala Creek at Waldrup, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1978-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated that backwater and discharges computed by standard indirect methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on Tallahala Creek at Waldrup, Miss. Water depths, velocities, and discharges through bridge openings on Tallahala Creek at Waldrup, Miss., for floods of April 14, 1969, February 21, 1971, and April 13, 1974, were measured together with peak water surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on graphs. (Woodard-USGS)

  7. Using Braid Plain Ecology and Geomorphology to Inform Bank Erosion Management along a Braided River, Matanuska River, Alaska

    NASA Astrophysics Data System (ADS)

    Curran, J. H.; McTeague, M. L.

    2010-12-01

    Braided rivers are inherently dynamic but quantifying the nature and implications of this dynamism can contribute to more comprehensive understanding of these systems and management of the river corridor. Bank erosion along the glacial, braided Matanuska River in southcentral Alaska has challenged generations of officials and generated a host of proposed solutions such as riprapped banks, dikes, gravel mining, and trenching. Increasingly, assessment of the technical feasibility of these methods has been accompanied by consideration of ecological factors and nonstructural solutions. The Matanuska River is braided over 85 percent of its course and clearwater side channels in abandoned braid plain areas provide as much as 90 percent of the spawning habitat in the basin for chum and sockeye salmon (Oncorhynchus keta and O. nerka). An assessment of braid plain vegetation, bank erosion rates, effects of a large flood, and distribution of clearwater side channels establishes a scientific basis for ecological and geomorphological considerations and recently helped guide development of a management plan for the river corridor. A historical analysis of braid plain features, marginal positions, and vegetation patterns from 1949, 1962, and 2006 orthophotographs showed that the 2006 braid plain was 43 percent vegetated and had an average age of 16 years. Only about 4 percent of the braid plain contained vegetated islands and over 60 percent of these were young and sparsely vegetated, implying that a suite of active channels migrated frequently across the braid plain and that vegetation did not appreciably limit channel movement. Rates of erosion to the braid plain margins averaged 0.3 m/yr from 1949 to 2006 but erosion was localized, with 64 percent of the erosion at only 8 percent of the banks. Cumulative bank change was twice as great along banks consisting of Holocene fluvial deposits (fans and terraces) identified during Geographic Information System (GIS) mapping than on

  8. Flood Plain Information, Little Black Creek, Towns of Gates, Chili and Ogden, Monroe County, New York.

    DTIC Science & Technology

    1975-08-01

    flood proofing of existing st actures which may become a part of a unified flood plain management ( FPM ) liogram., Accession For INIS GRA&I DTIC ~TAB 0l...black and white" DTIC E!LECTE JUN 24 1981 D SECURITY CL ASSIPIC ATION 0OF THIS P AGE(When Data FEntered) TABLE OF CONTENTS Page No. PREFACE... FPM ) program. Other FPM program studies -- those of environment attributes and the current and future land use role of the flood plain as part of its

  9. The Hydroclimatology of Extreme Flooding in the Lower Mississippi River

    NASA Astrophysics Data System (ADS)

    Smith, James; Baeck, Mary Lynn

    2015-04-01

    The 1927 flood in the lower Mississippi River was the most destructive flood in American history, inundating more than 68,000 square kilometers of land, resulting in approximately 500 fatalities and leaving more than 700,000 people homeless. Despite the prominence of the 1927 flood, hard details on the flood, and the storms that produced the flood, are sparse. We examine the hydrometeorology, hydroclimatolgy and hydrology of the 1927 flood in the lower Mississippi River through empirical analyses of rainfall and streamflow records and through downscaling simulations of the storms that were responsible for cata-strophic flooding. We use 20th Century Reanalysis fields as boundary conditions and initial conditions for downscaling simulations with the Weather Research and Forecasting (WRF) model. We place the hydrometeorological analyses of the 1927 storms in a hydroclimatolog-ical context through analyses of the 20th Century Reanalysis fields. Analyses are designed to assess the physical processes that control the upper tail of flooding in the lower Missis-sippi River. We compare the 1927 flood in the Lower Mississippi River to floods in 2011, 1937 and 1973 that represent the most extreme flooding in the Lower Mississippi River. Our results show that extreme flooding is tied to anomalous water vapor transport linked to strength and position of the North Atlantic Subtropical High. More generally, the results are designed to provide insights to the hydroclimatology of flooding in large rivers.

  10. Geohazards (floods and landslides) in the Ndop plain, Cameroon volcanic line

    NASA Astrophysics Data System (ADS)

    Wotchoko, Pierre; Bardintzeff, Jacques-Marie; Itiga, Zénon; Nkouathio, David Guimolaire; Guedjeo, Christian Suh; Ngnoupeck, Gerald; Dongmo, Armand Kagou; Wandji, Pierre

    2016-07-01

    The Ndop Plain, located along the Cameroon Volcanic Line (CVL), is a volcano-tectonic plain, formed by a series of tectonic movements, volcanic eruptions and sedimentation phases. Floods (annually) and landslides (occasionally) occur with devastating environmental effects. However, this plain attracts a lot of inhabitants owing to its fertile alluvial soils. With demographic explosion in the plain, the inhabitants (143,000 people) tend to farm and inhabit new zones which are prone to these geohazards. In this paper, we use field observations, laboratory analyses, satellite imagery and complementary methods using appropriate software to establish hazard (flood and landslide) maps of the Ndop Plain. Natural factors as well as anthropogenic factors are considered. The hazard maps revealed that 25% of the area is exposed to flood hazard (13% exposed to high flood hazard, 12% to moderate) and 5% of the area is exposed to landslide hazard (2% exposed to high landslide hazard, 3% to moderate). Some mitigation measures for floods (building of artificial levees, raising foundations of buildings and the meticulous regulation of the flood guards at Bamendjing Dam) and landslides (slope terracing, planting of trees, and building retaining walls) are proposed.

  11. Hydrologic Controls On Methylmercury Availability In Coastal Plain Rivers

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Brigham, M. E.; Burns, D. A.; Button, D. T.; Lutz, M. A.; Marvin-DiPasquale, M. C.; Riva-Murray, K.; Journey, C.

    2011-12-01

    Methylmercury (MeHg) in streams is often attributed to methylation in up-gradient wetland areas, with episodic flood events maximizing wetland-stream hydrologic connectivity and dominating MeHg supply to the stream habitat. A number of studies have demonstrated that Coastal Plain streams in the southeastern United States are particularly vulnerable to high MeHg bioaccumulation and have attributed this vulnerability to wetland abundance and strong hydrologic connectivity between wetland areas and adjacent stream aquatic habitat. Because characteristically coarse-grained Coastal Plain sediments favor vertical infiltration with little surface runoff, flood events attributable to Coastal Plain precipitation are driven by rising groundwater, promoting efficient transport of MeHg from wetland/floodplain source areas to the stream habitat and increasing in-stream availability. Several observations at McTier Creek, South Carolina, however, suggest that good hydrologic connectivity and efficient MeHg transport in Coastal Plain systems are not limited to flood conditions. Close correspondence between stream and shallow-groundwater water levels at McTier indicate good hydrologic connectivity exists prior to flood conditions. Dissolved MeHg concentrations do not increase under flood conditions. Thus, we assessed the flux of water and dissolved mercury (Hg) species (FMeHg and total Hg (FTHg)) from surface water and groundwater sources in a short reach at McTier Creek during separate events in April and July 2009, to determine the importance of shallow groundwater Hg transport from floodplain areas to the stream under non-flood conditions. Mass balance assessments indicated that, under non-flood conditions, the primary supply of water, FMeHg, and FTHg within the reach (excluding upstream surface-water influx) was groundwater discharge, rather than tributary transport from wetlands, in-stream MeHg production, or atmospheric deposition. The results indicate efficient transport of

  12. Flood risk of natural and embanked landscapes on the Ganges-Brahmaputra tidal delta plain

    NASA Astrophysics Data System (ADS)

    Auerbach, L. W.; Goodbred, S. L., Jr.; Mondal, D. R.; Wilson, C. A.; Ahmed, K. R.; Roy, K.; Steckler, M. S.; Small, C.; Gilligan, J. M.; Ackerly, B. A.

    2015-02-01

    The Ganges-Brahmaputra river delta, with 170 million people and a vast, low-lying coastal plain, is perceived to be at great risk of increased flooding and submergence from sea-level rise. However, human alteration of the landscape can create similar risks to sea-level rise. Here, we report that islands in southwest Bangladesh, enclosed by embankments in the 1960s, have lost 1.0-1.5 m of elevation, whereas the neighbouring Sundarban mangrove forest has remained comparatively stable. We attribute this elevation loss to interruption of sedimentation inside the embankments, combined with accelerated compaction, removal of forest biomass, and a regionally increased tidal range. One major consequence of this elevation loss occurred in 2009 when the embankments of several large islands failed during Cyclone Aila, leaving large areas of land tidally inundated for up to two years until embankments were repaired. Despite sustained human suffering during this time, the newly reconnected landscape received tens of centimetres of tidally deposited sediment, equivalent to decades’ worth of normal sedimentation. Although many areas still lie well below mean high water and remain at risk of severe flooding, we conclude that elevation recovery may be possible through controlled embankment breaches.

  13. Holocene sand shoals offshore of Mississippi River delta plain, Louisiana

    SciTech Connect

    Penland, S.; McBride, R.A. ); Suter, J.R. ); Williams, S.J. ); Kindinger, J.L. ); Boyd, R. )

    1989-09-01

    Offshore of the Mississippi River delta plain lies a series of Holocene sand shoals marking the position of ancient submerged shorelines. These ancient shorelines represent stillstand positions during which the Holocene transgression drove sea level across the former lowstand subaerial erosion surface of the Mississippi River delta plain. Short periods of rapid sea level rise led to the transgressive submergence of these sandy shorelines. Two shoreline trends can be recognized at the {minus}10-m and {minus}20-m isobaths on the continental shelf.

  14. Flood study of the Suncook River in Epsom, Pembroke, and Allenstown, New Hampshire, 2009

    USGS Publications Warehouse

    Flynn, Robert H.

    2010-01-01

    On May 15, 2006, a breach in the riverbank caused an avulsion in the Suncook River in Epsom, NH. The breach in the riverbank and subsequent avulsion changed the established flood zones along the Suncook River; therefore, a new flood study was needed to reflect this change and aid in flood recovery and restoration. For this flood study, the hydrologic and hydraulic analyses for the Suncook River were conducted by the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency. This report presents water-surface elevations and profiles determined using the U.S. Army Corps of Engineers one-dimensional Hydrologic Engineering Center River Analysis System model, also known as HEC-RAS. Steady-state water-surface profiles were developed for the Suncook River from its confluence with the Merrimack River in the Village of Suncook (in Allenstown and Pembroke, NH) to the upstream corporate limit of the town of Epsom, NH (approximately 15.9 river miles). Floods of magnitudes that are expected to be equaled or exceeded once on the average during any 2-, 5-, 10-, 25-, 50-, 100-, or 500-year period (recurrence interval) were modeled using HEC-RAS. These flood events are referred to as the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year floods and have a 50-, 20-, 10-, 4-, 2-, 1-, and 0.2-percent chance, respectively, of being equaled or exceeded during any year. The 10-, 50-, 100-, and 500-year flood events are important for flood-plain management, determination of flood-insurance rates, and design of structures such as bridges and culverts. The analyses in this study reflect flooding potentials that are based on existing conditions in the communities of Epsom, Pembroke, and Allenstown at the time of completion of this study (2009). Changes in the 100-year recurrence-interval flood elevation from the 1979 flood study were typically less than 2 feet with the exception of a location 900 feet upstream from the avulsion that, because of backwater from the dams in the

  15. MODEL FOR SIMULATING FLOODS IN RIVERS.

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    1985-01-01

    A one-dimensional model capable of simulating flood wave propagation in a river or network of channels is presented. The computer model is programmed to provide maximum flexibility in the adaptation of channel geometry, the specification of conveyance properties, and the treatment of boundary conditions. An equation transformation procedure is employed in the model to minimize computer storage and execution time requirements by reducing the order of the resultant coefficient matrices. Based on a four-point implicit finite-difference approximation of the governing, nonlinear, flow equations, the model can be used to simulate the wide range of flow conditions typically encountered in various natural waterbody systems. Two particular applications are presented to demonstrate the computational features and capabilities of the model in the simulation of flood wave propagation.

  16. Effects of a test flood on fishes of the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Valdez, R.A.; Hoffnagle, T.L.; McIvor, C.C.; McKinney, T.; Leibfried, W.C.

    2001-01-01

    A beach/habitat-building flow (i.e., test flood) of 1274 m3/s, released from Glen Canyon Dam down the Colorado River through Grand Canyon, had little effect on distribution, abundance, or movement of native fishes, and only short-term effects on densities of some nonnative species Shoreline and backwater catch rates of native fishes, including juvenile humpback chub (Gila cypha), flannelmouth suckers (Catostomus latipinnis), and bluehead suckers (C. discobolus), and all ages of speckled dace (Rhinichthys osculus), were not significantly different before and after the flood. Annual spring spawning migrations of flannelmouth suckers into the Paria River and endangered humpback chub into the Little Colorado River (LCR) took place during and after the flood, indicating no impediment to fish migrations. Pre-spawning adults staged in large slack water pools formed at the mouths of these tributaries during the flood. Net movement and habitat used by nine radio-tagged adult humpback chub during the flood were not significantly different from prior observations. Diet composition of adult humpback chub varied, but total biomass did not differ significantly before, during, and after the flood, indicating opportunistic feeding for a larger array of available food items displaced by the flood. Numbers of nonnative rainbow trout (Oncorhynchus mykiss) <152 mm total length decreased by ???8% in electrofishing samples from the dam tailwaters (0-25 km downstream of the dam) during the flood. Increased catch rates in the vicinity of the LCR (125 km downstream of the dam) and Hell's Hollow (314 km downstream of the dam) suggest that these young trout were displaced downstream by the flood, although displacement distance was unknown since some fish could have originated from local populations associated with intervening tributaries. Abundance, catch rate, body condition, and diet of adult rainbow trout in the dam tailwaters were not significantly affected by the flood, and the flood

  17. Flood Hazard Assessment of the coastal lowland in the Kujukuri Plain of Chiba Prefecture, Japan, using GIS and multicriteria decision analysis

    NASA Astrophysics Data System (ADS)

    CHEN, Huali; Tokunaga, Tomochika; Ito, Yuka; Sawamukai, Marie

    2014-05-01

    Floods, the most common natural disaster in the world, cause serious loss of life and economic damage. Flood is one of the disasters in the coastal lowland along the Kujukuri Plain, Chiba Prefecture, Japan. Many natural and human activities have changed the surface environment of the Plain. These include agricultural development, urban and industrial development, change of the drainage patterns of the land surface, deposition and/or erosion of the river valleys, and so on. In addition, wide spread occurrence of land subsidence has been caused by the abstraction of natural gas dissolved in groundwater. The locations of the groundwater extraction include nearby the coast, and it may increase the flood risk. Hence, it is very important to evaluate flood hazard by taking into account the temporal change of land elevation caused by land subsidence, and to develop hazard maps for protecting surface environment and land-use planning. Multicriteria decision analysis (MCDA) provides methodology and techniques for analyzing complex decision problems, which often involve incommensurable data or criteria. Also, Geographical Information System (GIS) is the powerful tool since it manages large amount of spatial data involved in MCDA. The purpose of this study is to present a flood hazard model using MCDA techniques with GIS support in a region where primary data are scare. The model incorporates six parameters: river system, topography, land-use, flood control project, passing flood from coast, and precipitation. Main data sources used are 10 meter resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30,000 scale river watershed map, and precipitation data from precipitation observation stations around the study area. River system map was created by merging the river order, the line density, and the river sink point density layers. Land-use data were derived from Landsat-TM images. A final hazard map for 2004, as an example, was

  18. "Prophetic vision, vivid imagination": The 1927 Mississippi River flood

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Baeck, Mary Lynn

    2015-12-01

    The 1927 flood in the Lower Mississippi River was the most destructive flood in American history, inundating more than 70,000 km2 of land, resulting in approximately 500 fatalities and leaving more than 700,000 people homeless. Despite the prominence of the 1927 flood, details on the flood, and the storms that produced the flood, are sparse. We examine the hydrometeorology and hydroclimatology of the 1927 flood in the Lower Mississippi River through downscaling simulations of the storms that were responsible for catastrophic flooding and through empirical analyses of rainfall and streamflow records. We use Twentieth Century Reanalysis fields as boundary conditions and initial conditions for downscaling simulations using the Weather Research and Forecasting (WRF) model. We place the hydrometeorological analyses of the 1927 storms in a hydroclimatological context through analyses of the Twentieth Century Reanalysis fields. Analyses are designed to assess the physical processes that control the upper tail of flooding in the Lower Mississippi River. We compare the 1927 flood in the Lower Mississippi River to floods in 1937 and 2011 that represent the most extreme flooding in the Lower Mississippi River.

  19. New depositional model for Mississippi River delta plain

    SciTech Connect

    Penland, S.; Kosters, E.C.; Suter, J.R.

    1987-05-01

    The current Mississippi River delta plain model depicts a single Holocene delta plain consisting of six delta complexes sequentially deposited over the last 7000 years by the classic delta switching process. In order of increasing age, these complexes are the Atchafalaya, Balize, Lafourche, St. Bernard, Teche, and Maringouin. Between 1981 and 1986, the Louisiana Geological Survey has acquired more than 10,000 km of high-resolution seismic profiles, 248 offshore vibracores, 397 onshore vibracores, 234 soil borings, and 226 new radiocarbon dates throughout south Louisiana. Analysis of this data set led to the development of a new, more precise stratigraphic model which depicts the Mississippi delta plain as actually two individual, imbricated shelf-phase delta plains deposited at different sea level stillstands. Termed the Modern and Late Holocene, these two delta plains are separated by a ravinement surface several hundred kilometers in extent that can be traced updip to a relict-transgressive shoreline, termed the Penchant Shoreline. The Late Holocene delta plain consists of a set of delta complexes 15-20 m thick deposited during a sea level stillstand 6 m below the present, 4500-7000 y.B.P. This unit consists of the exposed Maringouin and Teche delta complexes offshore of south-central Louisiana and an unnamed delta complex buried by the Modern delta plain in southeast Louisiana. A relative sea level rise between 2800-4500 y.B.P. to about present sea level led to the transgressive submergence of the Late Holocene delta plain, generating Trinity Shoal, Ship Shoal, and the Penchant Shoreline, which represents the subsurface eastern extension of the Vermilion Bay shoreline. The 10-15-m thick Modern delta plain began building seaward of the penchant Shoreline about 2800 y.B.P.

  20. Snake River Plain FORGE Well Data for INEL-1

    DOE Data Explorer

    Robert Podgorney

    1979-03-01

    Well data for the INEL-1 well located in eastern Snake River Plain, Idaho. This data collection includes caliper logs, lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, full color logs, fracture analysis, photos, and rock strength parameters for the INEL-1 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  1. Snake River Plain FORGE Well Data for WO-2

    DOE Data Explorer

    Robert Podgorney

    1991-07-29

    Well data for the WO-2 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, and rock strength parameters for the WO-2 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  2. Flooding of the Ob and Irtysh Rivers, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This pair of true- and false-color images shows flooding along the Ob' (large east-west running river) and Irtysh (southern tributary of the Ob') on July 7, 2002. In the false-color image, land surfaces are orange-gold and flood waters are black or dark blue. Fires are marked with red dots in both images. Rivers

  3. An advanced method for flood risk analysis in river deltas, applied to societal flood fatality risk in the Netherlands

    NASA Astrophysics Data System (ADS)

    de Bruijn, K. M.; Diermanse, F. L. M.; Beckers, J. V. L.

    2014-10-01

    This paper discusses a new method for flood risk assessment in river deltas. Flood risk analysis of river deltas is complex, because both storm surges and river discharges may cause flooding and the effect of upstream breaches on downstream water levels and flood risk must be taken into account. This paper presents a Monte Carlo-based flood risk analysis framework for policy making, which considers both storm surges and river flood waves and includes effects from hydrodynamic interaction on flood risk. It was applied to analyse societal flood fatality risk in the Rhine-Meuse delta.

  4. Flood characteristics of the Buffalo River at Tyler Bend, Arkansas

    USGS Publications Warehouse

    Neely, Braxtel L.

    1987-01-01

    The Buffalo River is located in the Ozark Mountains in north-central Arkansas. Tyler Bend is on the Buffalo River about 1.5 miles upstream from U.S. Highway 65. The National Park Service is developing several recreational park sites along this scenic river. The magnitude, frequency, duration and velocities of floods are primary factors needed for establishing guidelines for developing facilities and managing park sites. The Park Service plans to develop park facilities at Tyler Bend and needs flood information at this site. This report provides information on the 100-, 75-, 50-, 30-, 20-, 10-, and 5-year floods on the Buffalo River at Tyler Bend. It was prepared by the U.S. Geological Survey in cooperation with the National Park Service and is based on data collected during the December 1982 flood, gaging station data for the Buffalo River near St. Joe, Arkansas and a Statewide flood-frequency report. (Lantz-PTT)

  5. Flood Study of Warren Brook in Alstead and Cold River in Alstead, Langdon, and Walpole, New Hampshire, 2005

    USGS Publications Warehouse

    Flynn, Robert H.

    2006-01-01

    This report presents water-surface elevations and profiles as determined using the U.S. Army Corps of Engineers (USACE) one-dimensional Hydrologic Engineering Center River Analysis System, also known as HEC-RAS. Steady flow water-surface profiles were developed for two stream reaches: the Cold River from its confluence with the Connecticut River in Walpole, through Alstead to the McDermott Bridge in Langdon, NH, and Warren Brook from its confluence with the Cold River to Warren Lake in Alstead, NH. Flood events of a magnitude, which are expected to be equaled or exceeded once on the average during any 10-, 50-, 100-, or 500-year period (recurrence interval), were modeled using HEC-RAS as these flood events are recognized as being significant for flood-plain management, determination of flood insurance rates, and design of structures such as bridges and culverts. These flood events are referred to as the 10-, 50-, 100-, and 500-year floods and have a 10-, 2-, 1-, and 0.2-percent chance, respectively, of being equaled or exceeded during any year. The recurrence intervals represent the long-term average between floods of a specific magnitude. The risk of experiencing rare floods at short intervals or within the same year increases when periods greater than one year are considered. The analyses in this study reflect the flooding potentials based on conditions existing in the communities of Walpole, Alstead and Langdon at the time of completion of this study.

  6. Simulations of Flooding on Pea River and Whitewater Creek in the Vicinity of the Proposed Elba Bypass at Elba, Alabama

    USGS Publications Warehouse

    Hedgecock, T. Scott

    2003-01-01

    A two-dimensional finite-element surface-water model was used to study the effects of proposed modifications to the State Highway 203 corridor (proposed Elba Bypass/relocated U.S. Highway 84) on water-surface elevations and flow distributions during flooding in the Pea River and Whitewater Creek Basins at Elba, Coffee County, Alabama. Flooding was first simulated for the March 17, 1990, flood, using the 1990 flood-plain conditions to calibrate the model to match measured data collected by the U.S. Geological Survey and the U.S. Army Corps of Engineers after the flood. After model calibration, the effects of flooding were simulated for four scenarios: (1) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, highway, and levee conditions; (2) floods having the 50- and 100-year recurrence intervals for the existing flood-plain and levee conditions with the State Highway 203 embankment and bridge removed; (3) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, and highway conditions with proposed modifications (elevating) to the levee; and (4) floods having the 50- and 100-year recurrence intervals for the proposed conditions reflecting the Elba Bypass and modified levee. The simulation of floodflow for the Pea River and Whitewater Creek flood of March 17, 1990, in the study reach compared closely to flood profile data obtained after the flood. The flood of March 17, 1990, had an estimated peak discharge of 58,000 cubic feet per second at the gage (just below the confluence) and was estimated to be between a 50-year and 100-year flood event. The estimated peak discharge for Pea River and Whitewater Creek was 40,000 and 42,000 cubic feet per second, respectively. Simulation of floodflows for the 50-year flood (51,400 cubic feet per second) at the gage for existing flood-plain, bridge, highway, and levee conditions indicated that about 31 percent of the peak flow was conveyed by the State

  7. Slab-controlled Tectonomagmatism of the Pacific Northwest: A Holistic view of Columbia River, High Lava Plains, and Snake River Plain/Yellowstone Volcanism

    NASA Astrophysics Data System (ADS)

    James, D. E.; Fouch, M. J.; Long, M. D.; Druken, K. A.; Wagner, L. S.; Chen, C.; Carlson, R. W.

    2012-12-01

    We interpret post-20 Ma tectonomagmatism across the U.S. Pacific Northwest in the context of subduction related processes. While mantle plume models have long enjoyed favor as an explanation for the post 20-Ma magmatism in the region, conceptually their support has hinged almost entirely on two major features: (1) Steens/Columbia River flood basalt volcanism (plume head); and (2) The Snake River Plain/Yellowstone hotspot track (plume tail). Recent work, synthesized in this presentation, suggests that these features are more plausibly the result of mantle dynamical processes driven by southerly truncation of the Farallon/Juan de Fuca subduction zone and slab detachment along the evolving margin of western North America (Long et al., 2012; James et al., 2011). Plate reconstructions indicate that shortening of the subduction zone by the northward migration of the Mendocino triple junction resulted in a significant increase in the rate of trench retreat and slab rollback ca 20 Ma. Both numerical modeling and physical tank experiments in turn predict large-scale mantle upwelling and flow around the southern edge of the rapidly retreating slab, consistent both with the observed Steens/Columbia River flood volcanism and with the strong E-W mantle fabric observed beneath the region of the High Lava Plains of central and eastern Oregon. The High Lava Plains and Snake River Plain time-progressive volcanism began concurrently about 12 Ma, but along highly divergent tracks and characterized by strikingly different upper mantle structure. Crustal and upper mantle structure beneath the High Lava Plains exhibits evidence typical of regional extension; i.e. thin crust, flat and sharp Moho, and an uppermost mantle with low velocities but otherwise largely devoid of significant vertical structure. In contrast, the Snake River Plain exhibits ultra-low mantle velocities to depths of about 180 km along the length of the hotspot track. Seismic images of the upper mantle in the depth

  8. Backwater Flooding in San Marcos, TX from the Blanco River

    NASA Technical Reports Server (NTRS)

    Earl, Richard; Gaenzle, Kyle G.; Hollier, Andi B.

    2016-01-01

    Large sections of San Marcos, TX were flooded in Oct. 1998, May 2015, and Oct. 2015. Much of the flooding in Oct. 1998 and Oct. 2015 was produced by overbank flooding of San Marcos River and its tributaries by spills from upstream dams. The May 2015 flooding was almost entirely produced by backwater flooding from the Blanco River whose confluence is approximately 2.2 miles southeast of downtown. We use the stage height of the Blanco River to generate maps of the areas of San Marcos that are lower than the flood peaks and compare those results with data for the observed extent of flooding in San Marcos. Our preliminary results suggest that the flooding occurred at locations more than 20 feet lower than the maximum stage height of the Blanco River at San Marcos gage (08171350). This suggest that the datum for either gage 08171350 or 08170500 (San Marcos River at San Marcos) or both are incorrect. There are plans for the U.S. Army Corps of Engineers to construct a Blanco River bypass that will divert Blanco River floodwaters approximately 2 miles farther downstream, but the $60 million price makes its implementation problematic.

  9. Colorado River Basin Hover Dam - Review of Flood Control Regulation.

    DTIC Science & Technology

    1982-07-01

    AD-A132 464 COLORADO RIVER BASIN HOVER DAM - REVIEW OF FLOOD1f CONTROL REGULATION(U) ARMY ENGINEER DISTRICT LOS ANGELES CALIF JUL- 82 UNCLAIFIEDF/G3...Lower Colorado River Regional Office of the Bureau of Reclamation and the Los Angeles District, Corps of Engineers . The detailed investigations... Engineers , Regarding Flood Control Operation of Hoover Dam and Lake Mead, Colorado River , Nevada- Arizona; and, in addition, agency views and responses

  10. A Dendrochronological Analysis of Mississippi River Flood Events

    NASA Astrophysics Data System (ADS)

    Therrell, M. D.; Bialecki, M. B.; Peters, C.

    2012-12-01

    We used a novel tree-ring record of anatomically anomalous "flood rings" preserved in Oak (Quercus sp.) trees growing downstream of the Mississippi and Ohio River confluence to identify spring (MAM) flood events on the lower Mississippi River from C.E. 1694-2009. Our chronology includes virtually all of the observed high-magnitude spring floods of the 20th century as well as similar flood events in prior centuries occurring on the Mississippi River adjacent to the Birds Point-New Madrid Floodway. A response index analysis indicates that over half of the floods identified caused anatomical injury to well over 50% of the sampled trees and many of the greatest flood events are recorded by more than 80% of the trees at the site including 100% of the trees in the great flood of 1927. Twenty-five of the 40 floods identified as flood rings in the tree-ring record, occur during the instrumental observation period at New Madrid, Missouri (1879-2009), and comparison of the response index with average daily river stage height values indicates that the flood ring record can explain significant portions of the variance in both stage height (30%) and number of days in flood (40%) during spring flood events. The flood ring record also suggests that high-magnitude spring flooding is episodic and linked to basin-scale pluvial events driven by decadal-scale variability of the Pacific/North American pattern (PNA). This relationship suggests that the tree-ring record of flooding may also be used as a proxy record of atmospheric variability related to the PNA and related large-scale forcing.

  11. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Flood-plain and wetlands management. 120.172 Section 120.172 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Policies Applying to All Business Loans Requirements Imposed Under Other Laws and Orders §...

  12. An analysis on the relationship between land subsidence and floods at the Kujukuri Plain in Chiba Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Chen, H.; Sawamukai, M.; Su, T.; Tokunaga, T.

    2015-11-01

    Surface environments at the Kujukuri Plain in Chiba Prefecture, Japan, in 1970, 2004, and 2013, were analyzed and compared to discuss the possible impact of land subsidence on the occurrence of floods. The study area has been suffered from land subsidence due to ground deformation from paleo-earthquakes, tectonic activities, and human-induced subsidence by groundwater exploitation. Meteorological data, geomorphological data including DEM obtained from the airborne laser scanning (1-m spatial resolution), leveling data, and the result of our assessment map (Chen et al., 2015) were used in this study. Clear relationship between floods and land subsidence was not recognized, while geomorphological setting, urbanization, and change of precipitation pattern were found to contribute to the floods. The flood prone-area is distributed on the characteristic geomorphological setting such as floodplain and back swamp. It was revealed that the urban area has been expanded on these geomorphological setting in recent years. The frequency of hourly precipitation was also shown to be increased in the past ca. 40 years, and this could induce rapid freshet and overflow of small- and medium-sized rivers and sewerage lines. The distribution of depression areas was increased from 2004 to 2013. This change could be associated with the ground deformation after the Tohoku earthquake (Mw = 9.0) in 2011.

  13. An advanced method for flood risk analysis in river deltas, applied to societal flood fatality risks in the Netherlands

    NASA Astrophysics Data System (ADS)

    de Bruijn, K. M.; Diermanse, F. L. M.; Beckers, J. V. L.

    2014-02-01

    This paper discusses the new method developed to analyse flood risks in river deltas. Risk analysis of river deltas is complex, because both storm surges and river discharges may cause flooding and since the effect of upstream breaches on downstream water levels and flood risks must be taken into account. A Monte Carlo based flood risk analysis framework for policy making was developed, which considers both storm surges and river flood waves and includes hydrodynamic interaction effects on flood risks. It was applied to analyse societal flood fatality risks (the probability of events with more than N fatalities) in the Rhine-Meuse delta.

  14. Flood detection and mapping of the Thailand Central plain using RADARSAT and MODIS under a sensor web environment

    NASA Astrophysics Data System (ADS)

    Auynirundronkool, Kridsakron; Chen, Nengcheng; Peng, Caihua; Yang, Chao; Gong, Jianya; Silapathong, Chaowalit

    2012-02-01

    Flooding in general is insignificant event worldwide and also in Thailand. The Central plain, the Northern plain and the northeast of Thailand are frequently flooded areas, caused by yearly monsoons. The Thai government has extra expenditure to provide disaster relief and for the restoration of flood affected structures, persons, livestock, etc. Current flood detection in real time or near real time has become a challenge in the flood emergency response. In this paper, an automatic instant time flood detection approach consisting of a data retrieval service, flood sensor observation service (SOS), flood detection web processing service (WPS) under a sensor web environment, is presented to generate dynamically real-time flood maps. A scenario of a RADARSAT and MODIS sensor web data service for flood detection cover of the Thailand Central plain is used to test the feasibility of the proposed framework. MODIS data are used to overview the wide area, while RADARSAT data are used to classify the flood area. The proposed framework using the transactional web coverage service (WCS-T) for instant flood detection processes dynamic real-time remote sensing observations and generates instant flood maps. The results show that the proposed approach is feasible for automatic instant flood detection.

  15. Manual versus digital Landsat analysis for modeling river flooding

    NASA Technical Reports Server (NTRS)

    Philipson, W. R.; Hafker, W. R.

    1981-01-01

    The comparative value of manual versus digital image analysis for determining flood boundaries is being examined in a study of the use of Landsat data for modeling flooding of the Black River, in northern New York. The work is an extension of an earlier study in which Black River flooding was assessed through visually interpreted, multi-date Landsat band 7 images. Based on the results to date, it appears that neither color-additive viewing nor digital analysis of Landsat data provide improvement in accuracy over visual analysis of band 7 images, for delineating the boundaries of flood-affected areas.

  16. Distinctive upper mantle anisotropy beneath the High Lava Plains and Eastern Snake River Plain, Pacific Northwest, USA

    NASA Astrophysics Data System (ADS)

    Wagner, Lara S.; Long, Maureen D.

    2013-10-01

    The Pacific Northwest (PNW) has experienced voluminous intraplate volcanism over the past ˜17 Ma, beginning with the Steens/Columbia River flood basalts and continuing with the still-ongoing volcanism in the High Lava Plains (HLP) and eastern Snake River Plain (SRP). Here we present two complementary datasets (SKS splitting and Rayleigh wave phase velocity anisotropy) that place constraints on the anisotropic structure of the upper mantle beneath the HLP and SRP regions. Beneath the HLP, SKS phases reveal dominantly E-W fast splitting directions and large (up to ˜2.7 s) delay times, with pronounced lateral variations in δt. Lateral and depth variability in the strength of anisotropy beneath the HLP is also evident from Rayleigh wave dispersion. Beneath the SRP, SKS splitting delay times are much smaller (˜0.5 s), and surface wave observations suggest a region of upper mantle anisotropy (˜50-150 km depth) with a geometry that deviates significantly from the generally plate motion parallel fast directions observed just outside of the SRP. Beneath the HLP, the geometry of the anomalously strong anisotropy is similar to the anisotropy in the deeper parts of the upper mantle, resulting in constructive interference and large SKS splitting delay times. Beneath the SRP, the geometry of the anomalous anisotropic region in the shallow mantle is different, resulting in destructive interference and reduced SKS splitting delay times. We discuss several possible explanations for these observations, including variations in olivine lattice-preferred orientation (LPO) strength, transitions in olivine fabric type, and a contribution from aligned partial melt.

  17. High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis

    2016-12-01

    We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.

  18. Tracking sedimentation from the historic A.D. 2011 Mississippi River flood in the deltaic wetlands of Louisiana, USA

    USGS Publications Warehouse

    Khan, Nicole S.; Horton, Benjamin P.; McKee, Karen L.; Jerolmack, Douglas; Falcini, Federico; Enache, Mihaela D.; Vane, Christopher H.

    2013-01-01

    Management and restoration of the Mississippi River deltaic plain (southern United States) and associated wetlands require a quantitative understanding of sediment delivery during large flood events, past and present. Here, we investigate the sedimentary fingerprint of the 2011 Mississippi River flood across the Louisiana coast (Atchafalaya Delta, Terrebonne, Barataria, and Mississippi River Delta basins) to assess spatial patterns of sedimentation and to identify key indicators of sediment provenance. The sediment deposited in wetlands during the 2011 flood was distinguished from earlier deposits based on biological characteristics, primarily absence of plant roots and increased presence of centric (planktonic) diatoms indicative of riverine origin. By comparison, the lithological (bulk density, organic matter content, and grain size) and chemical (stable carbon isotopes of bulk organic matter) properties of flood sediments were nearly identical to the underlying deposit. Flood sediment deposition was greatest in wetlands near the Atchafalaya and Mississippi Rivers and accounted for a substantial portion (37% to 85%) of the annual accretion measured at nearby monitoring stations. The amount of sediment delivered to those basins (1.1–1.6 g cm−2) was comparable to that reported previously for hurricane sedimentation along the Louisiana coast (0.8–2.1 g cm−2). Our findings not only provide insight into how large-scale river floods influence wetland sedimentation, they lay the groundwork for identifying previous flood events in the stratigraphic record.

  19. Characterization of the regional variability of flood regimes within the Omo-Gibe River Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Yared, Adanech; Demissie, Solomon S.; Sivapalan, Murugesu; Viglione, Alberto; MacAlister, Charlotte

    2014-05-01

    Hydrological variability and seasonality is one of the Ethiopia's primary water resource management challenges. Variability is most obviously manifest in endemic, devastating droughts and floods. While the level of flooding is quite often extremely high and destroys human beings and property, in many cases flooding is of vital importance because the community benefits from flood recession agriculture. This is the case of the lower Omo plain whose agriculture is based on the regularity of the inundations due to flooding of the Omo Gibe River. The big flood in 2006, which caused death for more than 300 people and 2000 cattle, poses a dilemma. Flooding must be controlled and regulated in a way that the damages are reduced as much as possible but the flooding-related benefits are not lost. To this aim, characterization and understanding of hydrological variability of the Omo Gibe River basin is fundamental. The goal of this work is to extract the maximal amount of information on the hydrological variability and specially on the flooding regime from the few data available in the region. Because most of the basin is ungauged, hydrological information is reconstructed using the data from 9 gauged catchments. A daily water balance model has been developed, calibrated and validated for 9 gauged catchments and, subsequently, the parameters have been correlated to catchment characteristics in order to establish a functional relationship that allows to apply the model to ungauged catchments. Daily streamflow has been predicted for 15 ungauged catchments, which are assumed to comprehensively represent the hydrological variability of the Omo-Gibe River Basin. Even though both northern and southern catchments are affected by a strong seasonality of precipitation, with most of the rain falling in less than 3 months, most of the northern catchments are humid, while in the southern part of the Omo-Gibe River basin, the catchments are either humid, dry sub humid, semiarid or arid. As

  20. Physical and Economic Feasibility of Nonstructural Flood Plain Management Measures,

    DTIC Science & Technology

    1978-03-01

    North Carolina (4), it is commonplace for homeowners experiencing frequent flooding to relocate damageable property within the structure. Protecting...convenience to shopping or work for residences, or dependence on business activity for commercial structures. Industrial plants may be dependent upon...costs for moving up to 50 miles from the acquired property; reimbursement for business or farm items not moved; remibursement of reasonable expenses

  1. Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin

    NASA Astrophysics Data System (ADS)

    Sayama, T.; Tatebe, Y.; Iwami, Y.; Tanaka, S.

    2015-07-01

    The Thailand floods in 2011 caused unprecedented economic damage in the Chao Phraya River basin. To diagnose the flood hazard characteristics, this study analyses the hydrologic sensitivity of flood runoff and inundation to rainfall. The motivation is to address why the seemingly insignificant monsoon rainfall, or 1.2 times more rainfall than for past large floods, including the ones in 1995 and 2006, resulted in such devastating flooding. To quantify the hydrologic sensitivity, this study simulated long-term rainfall-runoff and inundation for the entire river basin (160 000 km2). The simulation suggested that the flood inundation volume was 1.6 times more in 2011 than for the past flood events. Furthermore, the elasticity index suggested that a 1 % increase in rainfall causes a 2.3 % increase in runoff and a 4.2 % increase in flood inundation. This study highlights the importance of sensitivity quantification for a better understanding of flood hazard characteristics; the presented basin-wide rainfall-runoff-inundation simulation was an effective approach to analyse the sensitivity of flood runoff and inundation at the river basin scale.

  2. Flooding of the Ob and Irtysh Rivers, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite shows the cause and effect of the large-scale seasonal flooding experienced on rivers throughout Siberia each year. Because many Siberian rivers flow from south to north, they flood regularly in the spring as meltwater from southern latitudes backs up against the still-frozen northern reaches of the rivers.These images show the Ob' River on the western edge of the Central Siberian Plateau. The images from June 20, 2002, show the mouth of the Ob' River (large river at left) where it empties into Kara Sea. In the false-color image, Vegetation appears in bright green, water appears dark blue or black, and ice appears bright blue. The ice is still choking the river's outlet to the sea.The effect of this ice block on the more southern stretches of the river can be seen in the images captured on June 17. In the false-color image, water is black, vegetation is in shades of gold and green, and clouds are pale orange. In the northernmost portion of the Ob' visible in this image (the Ob' runs southeast to northwest in the image), what is normally a fine mesh of braided streams and branches of the river channel has become almost a lake in places. The flood waters have engorged the river to 52 kilometers (32 miles) wide in places. Rivers can back up for hundreds of miles, and cause devastating flooding for towns and villages along the banks. Often, explosives are dropped into ice jams in an effort to free the river and give the flood waters a chance to escape. The spring and summer floods of 2002 have proven to be quite severe and perhaps as many as 100,000 people have been affected across the country. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  3. A participatory approach of flood vulnerability assessment in the Banat Plain, Romania

    NASA Astrophysics Data System (ADS)

    Balteanu, Dan; Costache, Andra; Sima, Mihaela; Dumitrascu, Monica; Dragota, Carmen; Grigorescu, Ines

    2014-05-01

    The Banat Plain (western Romania) is a low, alluvial plain affected by neotectonic subsidence movements, being a critical region in terms of exposure to floods. The latest extreme event was the historic floods occcured in the spring of 2005, which caused significant economic damage in several rural communities. The response to 2005 floods has highlighted a number of weaknesses in the management of hazards, such as the deficiencies of the early warning system, people awareness or the inefficiency of some mitigation measures, besides the past structural measures which are obsolete. For a better understanding of the local context of vulnerability and communities resilience to floods, the quantitative assessment of human vulnerability to floods was supplemented with a participatory research, in which there were involved five rural settlements from the Banat Plain (comprising 15 villages and a population of over 12,000 inhabitants). Thus, in the spring of 2013, a questionnaire-based survey was conducted in approx. 100 households of the affected communities and structured interviews were held with local authorities, in the framework of VULMIN project, funded by the Ministry of National Education. The questionnaire was designed based on a pilot survey conducted in 2005, several months after the flood, and was focused on two major issues: a) perception of the local context of vulnerability to environmental change and extreme events; b) perception of human vulnerability to floods (personal experience, post-disaster rehabilitation, awareness, worrying and opinion on the measures aimed to prevent and mitigate the effects of flooding). The results were correlated with a number of specific variables of the households included in the sample, such as: household structure; income source; income level; location of the dwelling in relation to floodplains. In this way, we were able to draw general conclusions about the way in which local people perceive the extreme events, such as

  4. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    USGS Publications Warehouse

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve

  5. Flood-inundation maps for White River at Petersburg, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2015-08-20

    The availability of these maps along with Internet information regarding current stage from the USGS streamgage at White River at Petersburg, Ind., and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  6. Plains cottonwood's last stand: can it survive invasion of Russian olive onto the Milk River, Montana floodplain?

    PubMed

    Pearce, C M; Smith, D G

    2001-11-01

    Russian olive (Elaeagnus angustifolia L.) was introduced in 1950 onto one site on the Milk River floodplain, northern Montana, 10 km downstream from the Canada/United States border. To analyze dispersal of Russian olive from the point source between 1950 and 1999, we compared distribution, numbers, size structure, and mortality of Russian olive and plains cottonwood (Populus deltoides Marsh:) on an unregulated reach of the Milk River floodplain in southeastern Alberta and north-central Montana. Within 50 years, Russian olive in this reach has moved upriver into Alberta and downriver to the Fresno Reservoir. It is now present on 69 of the 74 meander lobes sampled, comprising 34%, 62%, and 61% of all Russian olive and plains cottonwood seedlings, saplings, and trees, respectively. On some meander lobes, Russian olive has colonized similar elevations on the floodplain as plains cottonwood and is oriented in rows paralleling the river channel, suggesting that recruitment may be related to river processes. Breakup ice had killed 400 Russian olive saplings and trees and damaged >1000 others on 30 of the meander lobes in 1996. Nevertheless, Russian olive now outnumbers cottonwood on many sites on the Milk River floodplain because its seeds can be dispersed by wildlife (particularly birds) and probably by flood water and ice rafts; seeds are viable for up to 3 years and germination can take place on bare and well-vegetated soils; and saplings and trees are less palatable to livestock and beaver than plains cottonwood. Without control, Russian olive could be locally dominant on the Milk River floodplain in all age classes within 10 years and replace plains cottonwood within this century.

  7. Sediment transport and deposition in the lower Missouri River during the 2011 flood

    USGS Publications Warehouse

    Alexander, Jason S.; Jacobson, Robert B.; Rus, David L.

    2013-01-01

    Hermann, Missouri. Measurements made in early January, when SSC was low, indicate that suspended sediment mostly was composed of bed material, but by mid-February, runoff from the plains caused PW to increase at most streamgages. Total suspended-sediment discharge (SSD) during water year 2011 at the selected streamgages in the lower Missouri River ranged from approximately 29 to 64 million tons. Total estimated SSD had the lowest exceedance frequencies in the reaches between Gavins Point Dam and Nebraska City, Nebraska, but exceedance frequencies increased substantially downstream. In 2011, total SSD with low exceedance frequencies were reported at Sioux City, Iowa, Omaha, Nebraska, and Nebraska City, Nebraska, despite moderate-to-high exceedance frequencies for annual average SSC, indicating that the duration of high-magnitude flooding was the primary driver of total SSD. Comparison of median SSC for samples from water year 2011 with samples in the 20 years prior indicated that median SSC for high-action streamflows (streamflows likely to produce a stage exceeding the National Weather Service’s “action stage”) in 2011 were lower than those typical for high-action streamflows. Multiple-comparison analysis indicated that median SSC values for low-action streamflows (streamflows likely to produce stages lower than the National Weather Service’s “action stage”) and high-action streamflows sampled in 2011 at 4 of 6 streamgages were not significantly distinguishable from median SSC values for low-action streamflows in the previous 20 years. Longitudinal comparison of streamflow and SSD exceedance frequencies for 2011 with corresponding frequencies for 2008 and 1993 indicated the important role of tributary contributions to total SSD in the lower Missouri River. In 1993 and 2008, tributaries were the primary source of floodwater in the lower Missouri River, which resulted in a 20-fold increase in total SSD from Sioux City, Iowa, to Hermann, Missouri. In 2011

  8. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    USGS Publications Warehouse

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  9. Flooding of the Ob and Irtysh Rivers, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This pair of true- and false-color images shows flooding along the Ob' (large east-west running river) and Irtysh (southern tributary of the Ob') on July 7, 2002. In the false-color image, land surfaces are orange-gold and flood waters are black or dark blue. Fires are marked with red dots in both images. Rivers Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  10. Boise geothermal system, western Snake River plain, Idaho

    SciTech Connect

    Wood, S.H.; Burnham, W.L.

    1984-07-01

    The Boise geothermal system lies in an area of high heat flow along the northern margin of the western Snake River plain. Exploratory drilling for petroleum and geothermal water, seismic reflection profiling, and regional gravity data permit construction of a detailed structure section across the western plain. A faulted acoustic basement of volcanic rocks lies at depths of 2400 to 6000 ft (730-1830 m) beneath late Cenozoic lacustrine and fluvial deposits in the center of the plain. Volcanic rocks of the acoustic basement are typically basalt out in the plain, but the acoustic basement along the north margin in the vicinity of Boise is largely silicic volcanic rock. Geologic mapping and geothermal well data have provided information on the late Cenozoic geologic units and structures important to the understanding of the Boise geothermal system. The main geothermal aquifer is a sequence of rhyolite layers and minor arkosic and tuffaceous sediment of the Miocene Idavada Volcanics. The aquifer is confined by a sequence of impermeable basaltic tuffs. The aquifer has sufficient fracture permeability to yield 150/sup 0/-170/sup 0/F (65/sup 0/-76.6/sup 0/C) hot water for space heating at a rate of 600 to 1200 gpm from wells drilled in the metropolitan area, north of the Boise River. In this area the rhyolite lies at a depth of 900-2000 ft (274-610 m). Artesian pressure typically lifts water to an elevation of about 2760 ft (840 m). A conceptual model of recharge assumes percolation driven by the topographic head to a depth of more than 7000 ft (2135 m) beneath the granitic highlands northeast of the city. Heated water convects upward through northwest-trending range-front faults.

  11. Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin

    NASA Astrophysics Data System (ADS)

    Sayama, T.; Tatebe, Y.; Iwami, Y.; Tanaka, S.

    2014-11-01

    Thailand floods in 2011 caused an unprecedented economic damage in the Chao Phraya River basin. To diagnose the flood hazard characteristics, this study analyzes the hydrologic sensitivity of flood runoff and inundation to rainfall. The motivation is to address why the seemingly insignificant monsoon rainfall, or 1.2 times more rainfall than past large floods including the ones in 1995 and 2006, resulted in such a devastating flooding. To quantify the hydrologic sensitivity, this study simulated a long-term rainfall-runoff and inundation for the entire river basin (160 000 km2). The simulation suggested that the flood inundation volume in 2011 was 1.6 times more than past flood events. Furthermore the elasticity index suggested that 1% increase in rainfall causes 2.3% increase in runoff and 4.2% increase in flood inundation. This study highlights the importance of sensitivity quantification for better understanding of flood hazard characteristics; and the presented approach is effective for the analysis at large river basins.

  12. Modeling the Impact of Biogeochemical Hotspots and Hot Moments on Subsurface Carbon Fluxes from a Flood Plain Site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Spycher, N.; Steefel, C. I.; King, E.; Conrad, M. E.

    2015-12-01

    Biogeochemical hotspots and hot moments are known to account for a high percentage of carbon and nutrient cycling within flood plain environments. To quantify the impact of these hotspots and hot moments on the carbon cycle, a 2D reactive transport model was developed for the saturated-unsaturated zone of a flood plain site in Rifle, CO. Previous studies have identified naturally reduced zones (NRZs) in the saturated zone of the Rifle site to be hotspots and important regions for subsurface biogeochemical cycling. Wavelet analysis of geochemical concentrations at the site suggested that hydrologic and temperature variations are hot moments and exert an important control on biogeochemical conditions in the Rifle aquifer. Here, we describe the development of a reactive transport model that couples hydrologic and biogeochemical processes to microbial functional distributions inferred from site-specific 'omic' data. The model includes microbial contributions from heterotrophic and chemolithoautotrophic processes. We use Monod based formulations to represent biomass formation and consider energy partitioning between catabolic and anabolic processes. We use this model to explore community emergence at the Rifle site and further constrain the extent and rates of nutrient uptake as well as abiotic and biotic reactions using stable carbon isotopes. Results from 2D model simulations with only abiotic reactions predict lower CO2 partial pressures in the unsaturated zone and severely underpredict (~200%) carbon fluxes to the river compared to simulations with chemolithoautotrophic pathways. δ13C-CO2 profiles also point to biotic sources for the locally observed high CO2 concentrations above NRZs. Results further indicate that groundwater carbon fluxes from the Rifle site to the river are underestimated by almost 180% (to 3.3 g m-2 d-1) when temperature fluctuations are ignored in the simulations. Preliminary results demonstrate the emergence of denitrifiers at specific depths

  13. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    NASA Astrophysics Data System (ADS)

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D'Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-11-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In spring 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3,500m3s-1 of water to the Atchafalaya River Basin. Here we use field-calibrated satellite data to quantify differences in inundation and sediment-plume patterns between the Mississippi and Atchafalaya River. We assess the impact of these extreme outflows on wetland sedimentation, and use in situ data collected during the historic flood to characterize the Mississippi plume's hydrodynamics and suspended sediment. We show that a focused, high-momentum jet emerged from the leveed Mississippi, and delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area, and sediment was trapped within the coastal current. The largest sedimentation, of up to several centimetres, occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Sediment accumulation was lowest along the shoreline between the two river sources. We conclude that river-mouth hydrodynamics and wetland sedimentation patterns are mechanistically linked, providing results that are relevant for plans to restore deltaic wetlands using artificial diversions.

  14. Optical data processing and projected applications of the ERTS-1 imagery covering the 1973 Mississippi River Valley floods

    USGS Publications Warehouse

    Deutsch, Morris; Ruggles, Fred

    1974-01-01

    Flooding along the Mississippi River and some of its tributaries was detected by the multispectral scanner (MSS) on the Earth Resources Technology Satellite (ERTS-1) on at least three orbits during the spring of 1973. The ERTS data provided the first opportunity for mapping the regional extent of flooding at the time of the imagery. Special optical data processing techniques were used to produce a variety of multispectral color composites enhancing flood-plain details. One of these, a 2-color composite of near infrared bands 6 and 7, was enlarged and registered to 1:250,000-scale topographic maps and used as the basis for preparation of flood image maps. Two specially filtered 3-color composites of MSS bands 5, 6, and 7 and 4, 5, and 7 were prepared to aid in the interpretation of the data. The extent of the flooding was vividly depicted on a single image by 2-color temporal composites produced on the additive-color viewer using band 7 flood data superimposed on pre-flood band 7 images. On May 24, when the floodwaters at St. Louis receded to bankfull stage, imagery was again obtained by ERTS. Analysis of temporal data composites of the pre-flood and post-flood band 7 images indicate that changes in surface reflectance characteristics caused by the flooding can be delineated, thus making it possible to map the overall area flooded without the necessity of a real-time system to track and image the peak flood waves. Regional planning and disaster relief agencies such as the Corps of Engineers, Office of Emergency Preparedness, Soil Conservation Service, interstate river basin commissions and state agencies, as well as private lending and insurance institutions, have indicated strong potential applications for ERTS image-maps of flood-prone areas.

  15. [Biodegradation Coefficients of Typical Pollutants in the Plain Rivers Network].

    PubMed

    Feng, Shuai; Li, Xu-yongl; Deng, Jian-cai

    2016-05-15

    Biodegradation is a significant part of pollutant integrated degradation, the process rate of which is represented by the biodegradation coefficient. To investigate the biodegradation law of typical pollutants in the plain rivers network located in the upstream of the Lake Taihu, experiments were conducted in site in September 2015, one order kinetics model was used to measure the biodegradation coefficients for permanganate index, ammonia, total nitrogen and total phosphorus, and influencing factors of the biodegradation coefficients were also analyzed. The results showed that the biodegradation coefficients for permanganate index, ammonia, total nitrogen and total phosphorus were 0.008 3-0.126 4 d⁻¹, 0.002 1-0.213 8 d⁻¹, 0.002 1-0.090 5 d⁻¹ and 0.011 0- 0.152 8 d⁻¹, respectively. The influencing factors of the biodegradation coefficients for permanganate index were permanganate index and pH; those for ammonia were ammonia concentration and pH; those for total nitrogen were inorganic nitrogen concentration, total dissolved solid concentration and nitrite concentration; and those for total phosphorus were background concentration and pH. The research results were of important guiding significance for pollutants removal and ecological restoration of the plain rivers network located in the unstream of the Lake Taihu.

  16. Flood tracking chart for the Illinois River basin

    USGS Publications Warehouse

    Avery, Charles F.; Holmes, Jr., Robert R.; Sharpe, Jennifer B.

    1998-01-01

    This Flood Tracking Chart for the Illinois River Basin in Illinois can be used to record and compare the predicted or current flood-crest stage to past flood-crest information. This information can then be used by residents and emergency-response personnel to make informed decisions concerning the threat of flooding to life and property. The chart shows a map of the Illinois River Basin (see below), the location of real-time streamflow-gaging stations in the basin, graphs of selected historical recorded flood-crest stages at each of the stations, and sea-level conversion (SLC) factors that allow conversion of the current or predicted flood-crest stage to elevation above sea level. Each graph represents a streamflow-gaging station and has a space to record the most current river stage reported for that station by the U.S. Geological Survey (USGS). The National Weather Service (NWS) predicts flood crests for many of the stations shown on this chart.

  17. Flood-inundation maps for a 15-mile reach of the Kalamazoo River from Marshall to Battle Creek, Michigan, 2010

    USGS Publications Warehouse

    Hoard, C.J.; Fowler, K.K.; Kim, M.H.; Menke, C.D.; Morlock, S.E.; Peppler, M.C.; Rachol, C.M.; Whitehead, M.T.

    2010-01-01

    Digital flood-inundation maps for a 15-mile reach of the Kalamazoo River from Marshall to Battle Creek, Michigan, were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Environmental Protection Agency to help guide remediation efforts following a crude-oil spill on July 25, 2010. The spill happened on Talmadge Creek, a tributary of the Kalamazoo River near Marshall, during a flood. The floodwaters transported the spilled oil down the Kalamazoo River and deposited oil in impoundments and on the surfaces of islands and flood plains. Six flood-inundation maps were constructed corresponding to the flood stage (884.09 feet) coincident with the oil spill on July 25, 2010, as well as for floods with annual exceedance probabilities of 0.2, 1, 2, 4, and 10 percent. Streamflow at the USGS streamgage at Marshall, Michigan (USGS site ID 04103500), was used to calculate the flood probabilities. From August 13 to 18, 2010, 35 channel cross sections, 17 bridges and 1 dam were surveyed. These data were used to construct a water-surface profile for the July 25, 2010, flood by use of a one-dimensional step-backwater model. The calibrated model was used to estimate water-surface profiles for other flood probabilities. The resulting six flood-inundation maps were created with a geographic information system by combining flood profiles with a 1.2-foot vertical and 10-foot horizontal resolution digital elevation model derived from Light Detection and Ranging data.

  18. Dissemination of satellite-based river discharge and flood data

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Brakenridge, G. R.; van Praag, E.; de Groeve, T.; Slayback, D. A.; Cohen, S.

    2014-12-01

    In collaboration with NASA Goddard Spaceflight Center and the European Commission Joint Research Centre, the Dartmouth Flood Observatory (DFO) daily measures and distributes: 1) river discharges, and 2) near real-time flood extents with a global coverage. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations', and observed time series cover 1998 to the present. The advantages over in-situ gauged discharges are: a) easy access to remote or due to political reasons isolated locations, b) relatively low maintenance costs to maintain a continuous observational record, and c) the capability to obtain measurements during floods, hazardous conditions that often impair or destroy in-situ stations. Two MODIS instruments aboard the NASA Terra and Aqua satellites provide global flood extent coverage at a spatial resolution of 250m. Cloud cover hampers flood extent detection; therefore we ingest 6 images (the Terra and Aqua images of each day, for three days), in combination with a cloud shadow filter, to provide daily global flood extent updates. The Flood Observatory has always made it a high priority to visualize and share its data and products through its website. Recent collaborative efforts with e.g. GeoSUR have enhanced accessibility of DFO data. A web map service has been implemented to automatically disseminate geo-referenced flood extent products into client-side GIS software. For example, for Latin America and the Caribbean region, the GeoSUR portal now displays current flood extent maps, which can be integrated and visualized with other relevant geographical data. Furthermore, the flood state of satellite-observed river discharge sites are displayed through the portal as well. Additional efforts include implementing Open Geospatial Consortium (OGC) standards to incorporate Water Markup Language (WaterML) data exchange mechanisms to further facilitate the distribution of the satellite

  19. Flood forecasting and alert system for Arda River basin

    NASA Astrophysics Data System (ADS)

    Artinyan, Eram; Vincendon, Beatrice; Kroumova, Kamelia; Nedkov, Nikolai; Tsarev, Petko; Balabanova, Snezhanka; Koshinchanov, Georgy

    2016-10-01

    The paper presents the set-up and functioning of a flood alert system based on SURFEX-TOPODYN platform for the cross-border Arda River basin. The system was built within a Bulgarian-Greek project funded by the European Territorial Cooperation (ETC) Programme and is in operational use since April 2014. The basin is strongly influenced by Mediterranean cyclones during the autumn-winter period and experiences dangerous rapid floods, mainly after intensive rain, often combined with snow melt events. The steep mountainous terrain leads to floods with short concentration time and high river speed causing damage to settlements and infrastructure. The main challenge was to correctly simulate the riverflow in near-real time and to timely forecast peak floods for small drainage basins below 100 km2 but also for larger ones of about 1900 km2 using the same technology. To better account for that variability, a modification of the original hydrological model parameterisation is proposed. Here we present the first results of a new model variant which uses dynamically adjusted TOPODYN river velocity as function of the computed partial streamflow discharge. Based on historical flooding data, river sections along endangered settlements were included in the river flow forecasting. A continuous hydrological forecast for 5 days ahead was developed for 18 settlements in Bulgaria and for the border with Greece, thus giving enough reaction time in case of high floods. The paper discusses the practical implementation of models for the Arda basin, the method used to calibrate the models' parameters, the results of the calibration-validation procedure and the way the information system is organised. A real case of forecasted rapid floods that occurred after the system's finalisation is analysed. One of the important achievements of the project is the on-line presentation of the forecasts that takes into account their temporal variability and uncertainty. The web presentation includes a

  20. Flood Plain Aggradation Rates Based on Tree-Ring Growth-Suppression Dates

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.

    2003-12-01

    When woody riparian plants are partially buried subsequent tree rings of the buried stems resemble those of roots. Annual rings in a buried stem are narrower and have larger vessels then those in unburied sections of the same stem. We have used this phenomenon to date flood plain sediments exposed in trenches, along two ephemeral streams in New Mexico (Rio Puerco and Chaco Wash) where the sediments are predominantly silt and very fine sand and the plants are predominantly tamarisk and willow. Cross dating down the stem allows dating of the first growth-season following burial by thick beds, and constrains the age of all stratigraphic units deposited since germination of the tree. We observed that the anatomical reaction to burial increases with bed thickness and cumulative deposition. Beds that are thicker than 30 cm can be dated to the year of the deposition event. Beds 10 to 30 cm thick can usually be dated to within several years. The period of deposition of multiple very thin beds can be constrained to the decade. Results can be improved by analyzing multiple stems from one tree and multiple trees linked together by the stratigraphy. Along our study streams, sites far from the channel tend to have moderate and relatively steady point-aggradation rates. Levees next to the channel tend to have the thickest deposits per flood and variable long-term rates, which can differ from the whole flood plain aggradation rates by several fold. Cross-sectionally averaged flood plain aggradation has been as large as a meter per decade along our study streams.

  1. Flood hazard assessment of the Hoh River at Olympic National Park ranger station, Washington

    USGS Publications Warehouse

    Kresch, D.L.; Pierson, T.C.

    1987-01-01

    Federal regulations require buildings and public facilities on Federal land to be located beyond or protected from inundation by a 100-year flood. Flood elevations, velocities and boundaries were determined for the occurrence of a 100-year flood through a reach, approximately 1-mi-long, of the Hoh River at the ranger station complex in Olympic National Park. Flood elevations, estimated by step-backwater analysis of the 100-year flood discharge through 14 channel and flood-plain cross sections of the Hoh River, indicate that the extent of flooding in the vicinity of buildings or public facilities at the ranger station complex is likely to be limited mostly to two historic meander channels that lie partly within loop A of the public campground and that average flood depths of about 2 feet or less would be anticipated in these channels. Mean flow velocities at the cross sections, corresponding to the passage of a 100-year flood, ranged from about 5 to over 11 ft/sec. Flooding in the vicinity of either the visitors center or the residential and maintenance areas is unlikely unless the small earthen dam at the upstream end of Taft Creek were to fail. Debris flows with volumes on the order of 100 to 1,000 cu yards could be expected to occur in the small creeks that drain the steep valley wall north of the ranger station complex. Historic debris flows in these creeks have generally traveled no more than about 100 yards out onto the valley floor. The potential risk that future debris flows in these creeks might reach developed areas within the ranger station complex is considered to be small because most of the developed areas within the complex are situated more than 100 yards from the base of the valley wall. Landslides or rock avalanches originating from the north valley wall with volumes potentially much larger than those for debris flows could have a significant impact on the ranger station complex. The probability that such landslides or avalanches may occur is

  2. Modelling of tidally affected river reaches with data assimilation for flood warning purposes: An example on the River Dee, UK

    NASA Astrophysics Data System (ADS)

    Smith, P. J.; Beven, K.; Horsburgh, K.; Cullen, J.

    2012-04-01

    On rivers where the flow regime is influenced by a tidal signal the provision of accurate forecasts requires the careful coupling of predictive models for both the tidal signal and the rainfall driven river system. This paper discusses such a coupled modelling system constructed for the River Dee (UK). A series of parsimonious, physically interpretable time series models are used to represent the dynamics of the river water level at several gauging sites on the flood plain. These gauges are used operationally to help in determining the issuing of flood warnings. The simplified models are coupled and cast into a state space form. The assimilation of the observed water levels at the gauge sites to inform future forecasts is then a non-linear filter a solution to which is readily approximated. Assessment of the model forecasts against the observed data is carried out using a number of existing metrics. These suggest the model forecasts are a useful guide to the future water level. The representation of the forecast and its uncertainty to the operational staff is considered. A prototype of the sequential decision making process; based on the relative cost of 'true' or 'false' warnings; and designed to help guide the catchment manager in issuing warnings is presented.

  3. Was all that Los Angeles River flood control concrete necessary?

    NASA Astrophysics Data System (ADS)

    Patzert, W. C.; Regalado, S. S.; LaDochy, S.; Ramirez, P. C.; Willis, J. K.

    2014-12-01

    In 1938, heavy rains over the Los Angeles Basin resulted in widespread and costly flooding of the Los Angeles River floodplain. In response to the resultant damage, 51 miles of the River was concreted from the San Fernando Valley to the Pacific Ocean. Today proposals to modify the river to capture more water and to restore it to a more natural state have been approved. Through comparison of rainfall data, we test whether channelization can adequately handle the extreme flooding events occurring since 1938. Between February 27th to March 3rd 1938, two major storms resulted in 14.1 inches of rain in Pasadena, CA leading to the flooding of the Los Angeles River, 115 fatalities, the destruction of 5,601 buildings, and to $627 million (2011 dollars) in damages. Downtown Los Angeles averages 15 inches of precipitation a year, while the San Gabriel Mountains, where most of the Los Angeles River watershed rainfall is collected, typically receive more than 40 inches of rain annually. Eight record storms, each with rainfall totals over 11 inches, since the 1938 flood could have created devastating deluges were it not for channelization. Presently, at full stage the channelized Los Angeles River can accommodate a discharge of 129,000 cfs. During the 1938 flood event the discharge peaked at 68,000 cfs above Arroyo Seco and 79,000 cfs below Firestone Blvd. A similar storm event today would have led to increased discharge due to urbanization. Since 1938, the greatest discharge recorded at the same stations was 52,200 and 74,400 cfs during the February 16th 1980 storm. Although damage was substantial during this storm, river channelization prevented fatalities and much damage. To date, the channelization of the Los Angeles River has been successful in flood control. However, our research shows that southern California precipitation is becoming more intense which may result in increased flooding. Any future modifications to the river must be prepared to handle the extreme flooding

  4. Snagging and Clearing for Flood Control, Snake River, Minnesota.

    DTIC Science & Technology

    1979-07-01

    range from a high of 1080F to a low of -490F. Frost-free days, as observed at the University of Minnesota Experiment Station at Crookston, Minnesota...American plum, and black willow (Salix nigra). Further away from the river a shrub layer is present consisting of chokecherry, raspberry (Rubus strigosus...flood-prone areas or erection of emergency * flood protection. 6.04 The National Weather Service currently provides area officials and local news

  5. Flood characteristics for the New River in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.; Cunningham, M.K.

    1994-01-01

    The frequency and magnitude of flooding of the New River in the New River Gorge National River was studied. A steady-state, one-dimensional flow model was applied to the study reach. Rating curves, cross sections, and Manning's roughness coefficients that were used are presented in this report. Manning's roughness coefficients were evaluated by comparing computed elevations (from application of the steady-state, one-dimensional flow model) to rated elevations at U.S. Geological Survey (USGS) streamflow-gaging stations and miscellaneous-rating sites. Manning's roughness coefficients ranged from 0.030 to 0.075 and varied with hydraulic depth. The 2-, 25-, and 100-year flood discharges were esti- mated on the basis of information from flood- insurance studies of Summers County, Fayette County, and the city of Hinton, and flood-frequency analysis of discharge records for the USGS streamflow-gaging stations at Hinton and Thurmond. The 100-year discharge ranged from 107,000 cubic feet per second at Hinton to 150,000 cubic feet per second at Fayette.

  6. The Great Flood of 1993 on the Upper Mississippi River - 10 years later

    USGS Publications Warehouse

    Johnson, Gary P.; Holmes, Jr., Robert R.; Waite, Loyd A.

    2003-01-01

    Ten years ago, the upper Mississippi River Basin in the Midwestern United States experienced the costliest flood in the history of the United States. The flood came to be known as “ The Great Flood of 1993.”

  7. Heavy metal contaminations in the groundwater of Brahmaputra flood plain: an assessment of water quality in Barpeta District, Assam (India).

    PubMed

    Haloi, Nabanita; Sarma, H P

    2012-10-01

    A study was conducted to evaluate the heavy metal contamination status of groundwater in Brahmaputra flood plain Barpeta District, Assam, India. The Brahmaputra River flows from the southern part of the district and its many tributaries flow from north to south. Cd, Fe, Mn, Pb, and Zn are estimated by using atomic absorption spectrometer, Perkin Elmer AA 200. The quantity of heavy metals in drinking water should be checked time to time; as heavy metal accumulation will cause numerous problems to living being. Forty groundwater samples were collected mainly from tube wells from the flood plain area. As there is very little information available about the heavy metal contamination status in the heavily populated study area, the present work will help to be acquainted with the suitability of groundwater for drinking applications as well as it will enhance the database. The concentration of iron exceeds the WHO recommended levels of 0.3 mg/L in about 80% of the samples, manganese values exceed 0.4 mg/L in about 22.5% of the samples, and lead values also exceed limit in 22.5% of the samples. Cd is reported in only four sampling locations and three of them exceed the WHO permissible limit (0.003 mg/L). Zinc concentrations were found to be within the prescribed WHO limits. Therefore, pressing awareness is needed for the betterment of water quality; for the sake of safe drinking water. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).

  8. Floods on Duck River in the vicinity of Centerville, Tennessee

    SciTech Connect

    Not Available

    1984-07-01

    This flood hazard information report describes the extent and severity of the flood potential along a selected reach of the Duck River in the vicinity of Centerville, Tennessee. The report was prepared in response to a request by the town for up-to-date information regarding the flood potential along the studied stream reach in order to better administer its floodplain management program. This report does not propose plans or the solution of identified flood problems along the studied stream reach. Rather, the information and technical data contained herein are intended to provide a sound basis for informed decisions regarding the wise use of flood-prone lands within the town of Centerville and the surrounding portion of Hickman County. 3 references, 8 figures, 6 tables.

  9. Flooding in the Mississippi River Basin in Minnesota, spring 2001

    USGS Publications Warehouse

    Mitton, Gregory B.

    2001-01-01

    During spring 2001 there was much flooding in the Mississippi River Basin in Minnesota. Greater than normal precipitation starting with late fall rains in 2000, greater than normal snowfalls, a delayed snowmelt, and record rains in April, all contributed to the flooding. Parts of the southern one-half of Minnesota had streamflows of magnitudes not seen in more than 30 years. Approximately 50 counties were declared disaster areas with greater than 34 million dollars in total reported flood damage (S. Neudahl, Department of Public Safety, Division of Emergency Management, oral commun. July 9, 2001).

  10. Groundwater flood of a river terrace in southwest Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Gotkowitz, Madeline B.; Attig, John W.; McDermott, Thomas

    2014-09-01

    Intense rainstorms in 2008 resulted in wide-spread flooding across the Midwestern United States. In Wisconsin, floodwater inundated a 17.7-km2 area on an outwash terrace, 7.5 m above the mapped floodplain of the Wisconsin River. Surface-water runoff initiated the flooding, but results of field investigation and modeling indicate that rapid water-table rise and groundwater inundation caused the long-lasting flood far from the riparian floodplain. Local geologic and geomorphic features of the landscape lead to spatial variability in runoff and recharge to the unconfined sand and gravel aquifer, and regional hydrogeologic conditions increased groundwater discharge from the deep bedrock aquifer to the river valley. Although reports of extreme cases of groundwater flooding are uncommon, this occurrence had significant economic and social costs. Local, state and federal officials required hydrologic analysis to support emergency management and long-term flood mitigation strategies. Rapid, sustained water-table rise and the resultant flooding of this high-permeability aquifer illustrate a significant aspect of groundwater system response to an extreme precipitation event. Comprehensive land-use planning should encompass the potential for water-table rise and groundwater flooding in a variety of hydrogeologic settings, as future changes in climate may impact recharge and the water-table elevation.

  11. Flooding of the Taz, Pur, and Yenisey Rivers, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Each spring and summer, rivers across Siberia experience flooding as the waters in the south begin to melt and run before the ice has retreated from the northern limits. The ice causes jams which are sometimes loosened up using explosives. This pair of MODIS images from June 18, 2002, shows flooding on the Pur (left), Taz (center), and Yenisey (right) Rivers in central Siberia. In the false-color image, ice and snow are red, clouds are white, water is black, and vegetation is green. Bare soil is brown. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  12. Neogene paleogeography of western Snake River plain, Idaho and Oregon

    SciTech Connect

    Porter, M.L.; Middleton, L.T.

    1984-04-01

    Analysis of Miocene through Pleistocene siliciclastic and volcaniclastic sequences in the western Snake River Plain of Idaho and Oregon allows detailed paleogeographic reconstruction of sedimentation associated with the development of a rapidly subsiding continental basin. Extensional tectonism was accompanied by voluminous outpourings of basaltic and silicic volcanic material. These in turn were reworked basinward by marginal alluvial fan-braided stream networks into basin-center fluviolacustrine systems. Episodic influxes of both felsic and basaltic tephra are recorded in fossiliferous lacustrine silt and claystones of the Poison Creek and Chalk Hills Formations, radiometrically bracketed between 12.5 to 5 m.y.B.P. Basinward-fining facies indicate deposition in the large lacustrine complex fed by at least 2 major fluvial systems. Complex interfingering of coarse-grained strandline deposits with offshore fine-grained sediments suggests repeated expansion and contraction of the lake system and record the dynamic interplay between basin tectonism and sedimentation.

  13. Taenia spp. infections in wildlife in the Bangweulu and Kafue flood plains ecosystems of Zambia.

    PubMed

    Muma, J B; Gabriël, S; Munyeme, M; Munang'andu, H M; Victor, B; Dorny, P; Nalubamba, K S; Siamudaala, V; Mwape, K E

    2014-09-15

    Taenia spp. have an indirect life cycle, cycling between a definitive and an intermediate host with zoonotic species causing public health problems in many developing countries. During the course of 2 separate surveys in Zambia (2004 and 2009), the presence of Taenia larval stages (cysticerci) was examined in Kafue lechwe (Kobus leche kafuensis), Black lechwe (Kobus leche smithermani) and other wildlife species from the Kafue and Bangweulu flood plains. Examinations involved post-mortem inspection and serum specific antigen detection. The recovered cysts from seven carcasses were characterised using PCR and DNA sequence analysis. The overall proportion of infection in wildlife on post-mortem examination was 19.0% (95% CI: 9.1-29.0%). The proportion of infected wildlife based on post-mortem examinations in the Kafue flood plains was estimated at 28.6% (95% CI: 13.3-43.9%), while the seroprevalence was estimated at 25.0% (95% CI: 2.9-47.1%). The seroprevalence for cattle in the Kafue flood plains was estimated at 61.5% (95% CI: 42.0-81.0%) while that of Kafue lechwe in the same ecosystem was estimated at 66.6% (95% CI: 45.6-85.7%). Infection rates were higher in Kafue lechwe than in Black lechwe suggesting differences in the exposure patterns. The sequencing results indicated that none of the recovered cysts were either Taenia solium or Taenia saginata. We therefore conclude they most likely belong to a less studied (wildlife) Taenia species that requires further characterisation.

  14. CORN BELT PLAIN RIVER AND STREAMS PROJECT - 3 BIOCRITERIA PRODUCTS

    EPA Science Inventory

    This effort resulted in eight products, as follows: 1) Development of Index of Biotic Integrity Expectations for the Ecoregions of Indiana I. Central Corn Belt Plain; 2) Ibid. II. Huron-Erie Lake Plain; 3) Ibid III. Northern Indiana Till Plain; 4) Ibid .IV.Eastern Corn Belt Plain...

  15. Predicting Trigger Level for Ice Jam Flooding of the lower Mohawk River using LiDAR and GIS

    NASA Astrophysics Data System (ADS)

    Foster, J.; Marsellos, A.; Garver, J.

    2011-12-01

    Ice jams are an annual occurrence along the Mohawk River in upstate New York. The jams commonly result in significant flooding especially when the progress of the ice is impeded by obstructions to the channel and flood plain. To minimize flooding hazards it is critical to know the trigger level of flooding so that we can better understand chronic jam points and simulate flooding events as jams occur as the lower Mohawk. A better understanding of jamming and trigger points may facilitate measures to reduce flooding and avoid the costly damage associated with these hazards. To determine the flood trigger level for one segment of the lower Mohawk we used Air-LiDAR elevation data to construct a digital elevation model to simulate a flooding event. The water flood simulation using a LiDAR elevation model allows accurate water level measurements for determining trigger levels of ice dam flooding. The study area comprises three sections of the lower Mohawk River from the (Before location) to the (After location), which are constrained by lock stations centered at the New York State Canal System Lock 9 (E9 Lock) and the B&M Rail Bridge at the Schenectady International (SI) Plant. This area is notorious for ice jams including one that resulted in a major flooding event on January 25th, 2010 which resulted in flood levels at 74.4 m in the upper portion of the second section of the study area (Lock 9) and at 73.4 m in the lower portion (SI plant). Minimum and maximum elevation levels were found to determine the values at which up stream water builds up and when flooding occurs. From these values, we are able to predict the flooding as the ice jam builds up and breaks as it progresses downstream. Similar methodology is applied to find the trigger points for flooding along other sections of the Mohawk River constrained by lock stations, and it may provide critical knowledge as to how to better manage the hazard of flooding due to ice jams.

  16. On the stationarity of Floods in west African rivers

    NASA Astrophysics Data System (ADS)

    NKA, B. N.; Oudin, L.; Karambiri, H.; Ribstein, P.; Paturel, J. E.

    2014-12-01

    West Africa undergoes a big change since the years 1970-1990, characterized by very low precipitation amounts, leading to low stream flows in river basins, except in the Sahelian region where the impact of human activities where pointed out to justify the substantial increase of floods in some catchments. More recently, studies showed an increase in the frequency of intense rainfall events, and according to observations made over the region, increase of flood events is also noticeable during the rainy season. Therefore, the assumption of stationarity on flood events is questionable and the reliability of flood evolution and climatic patterns is justified. In this work, we analyzed the trends of floods events for several catchments in the Sahelian and Sudanian regions of Burkina Faso. We used thirteen tributaries of large river basins (Niger, Nakambe, Mouhoun, Comoé) for which daily rainfall and flow data were collected from national hydrological and meteorological services of the country. We used Mann-Kendall and Pettitt tests to detect trends and break points in the annual time series of 8 rainfall indices and the annual maximum discharge records. We compare the trends of precipitation indices and flood size records to analyze the possible causality link between floods size and rainfall pattern. We also analyze the stationary of the frequency of flood exceeding the ten year return period level. The samples were extracted by a Peak over threshold method and the quantification of change in flood frequency was assessed by using a test developed by Lang M. (1995). The results exhibit two principal behaviors. Generally speaking, no trend is detected on catchments annual maximum discharge, but positive break points are pointed out in a group of three right bank tributaries of the Niger river that are located in the sahelian region between 300mm to 650mm. These same catchments show as well an increase of the yearly number of flood greater than the ten year flood since

  17. Flood Induced Increases in Aeolian Transport Along the Missouri River

    NASA Astrophysics Data System (ADS)

    Benthem, A. J.; Strong, L.; Schenk, E.; Skalak, K.; Hupp, C. R.; Galloway, J.

    2014-12-01

    In 2011, heavy winter snow melt combined with extensive spring rains caused the Missouri River to experience the most extensive flooding since the river was dammed in the 1950s. Large sections of the river banks, islands, and floodplains experienced weeks of prolonged inundation, resulting in extensive sand deposition as up to1 km inland from the established channel. Though locally variable, deposits of up to 3m of loose sand were deposited on the floodplain and extensive areas of shrub, grasslands, and agricultural fields were completely buried or had vegetation washed away in the inundation zone. The flooding also created a number of new unvegetated islands which provide important habitat for endangered species including the Piping Plover (Charadrius melodus). These newly created sand surfaces are unconsolidated and have very little vegetation to prevent aeolian transport. Strong sustained regional winds of up to 20m/s (45mph) cause substantial sediment fluxes which modify landscape topography, shift river morphology, and increase regional dust levels. Our study monitors and quantifies the increase in aeolian transport that occurred following flooding along the Garrison Reach, a 110 km section of free flowing Missouri River in North Dakota. In 2012 and 2013 we measured sand transport and accumulation rates using Leatherman style sand traps and erosion pins to at 9 sites of varying vegetation densities. We apply these flux rates to a high resolution remote sensing vegetation map to estimate the total flux of sand for this segment of the river. We also quantify total available new sand for transport using repeat Light Detection and Ranging (LiDAR) coverage from before and after the flood and examine the relationship between sand deposition and the rate of reestablishment of vegetation. All of these results are used to estimate the scale of flood induced aeolian processes and predict where they may continue to influence the landscape.

  18. Aquifer recharge from infiltration basins in a highly urbanized area: the river Po Plain (Italy)

    NASA Astrophysics Data System (ADS)

    Masetti, M.; Nghiem, S. V.; Sorichetta, A.; Stevenazzi, S.; Santi, E. S.; Pettinato, S.; Bonfanti, M.; Pedretti, D.

    2015-12-01

    Due to the extensive urbanization in the Po Plain in northern Italy, rivers need to be managed to alleviate flooding problems while maintaining an appropriate aquifer recharge under an increasing percentage of impermeable surfaces. During the PO PLain Experiment field campaign in July 2015 (POPLEX 2015), both active and under-construction infiltration basins have been surveyed and analyzed to identify appropriate satellite observations that can be integrated to ground based monitoring techniques. A key strategy is to have continuous data time series on water presence and level within the basin, for which ground based monitoring can be costly and difficult to be obtained consistently.One of the major and old infiltration basin in the central Po Plain has been considered as pilot area. The basin is active from 2003 with ground based monitoring available since 2009 and supporting the development of a calibrated unsaturated-saturated two-dimensional numerical model simulating the infiltration dynamics through the basin.A procedure to use satellite data to detect surface water change is under development based on satellite radar backscatter data with an appropriate incidence angle and polarization combination. An advantage of satellite radar is that it can observe surface water regardless of cloud cover, which can be persistent during rainy seasons. Then, the surface water change is correlated to the reservoir water stage to determine water storage in the basin together with integrated ground data and to give quantitative estimates of variations in the local water cycle.We evaluated the evolution of the infiltration rate, to obtain useful insights about the general recharge behavior of basins that can be used for informed design and maintenance. Results clearly show when the basin becomes progressively clogged by biofilms that can reduce the infiltration capacity of the basin by as much as 50 times compared to when it properly works under clean conditions.

  19. Estimated flood-inundation mapping for the Lower Blue River in Kansas City, Missouri, 2003-2005

    USGS Publications Warehouse

    Kelly, Brian P.; Rydlund, Jr., Paul H.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the city of Kansas City, Missouri, began a study in 2003 of the lower Blue River in Kansas City, Missouri, from Gregory Boulevard to the mouth at the Missouri River to determine the estimated extent of flood inundation in the Blue River valley from flooding on the lower Blue River and from Missouri River backwater. Much of the lower Blue River flood plain is covered by industrial development. Rapid development in the upper end of the watershed has increased the volume of runoff, and thus the discharge of flood events for the Blue River. Modifications to the channel of the Blue River began in late 1983 in response to the need for flood control. By 2004, the channel had been widened and straightened from the mouth to immediately downstream from Blue Parkway to convey a 30-year flood. A two-dimensional depth-averaged flow model was used to simulate flooding within a 2-mile study reach of the Blue River between 63rd Street and Blue Parkway. Hydraulic simulation of the study reach provided information for the design and performance of proposed hydraulic structures and channel improvements and for the production of estimated flood-inundation maps and maps representing an areal distribution of water velocity, both magnitude and direction. Flood profiles of the Blue River were developed between Gregory Boulevard and 63rd Street from stage elevations calculated from high water marks from the flood of May 19, 2004; between 63rd Street and Blue Parkway from two-dimensional hydraulic modeling conducted for this study; and between Blue Parkway and the mouth from an existing one-dimensional hydraulic model by the U.S. Army Corps of Engineers. Twelve inundation maps were produced at 2-foot intervals for Blue Parkway stage elevations from 750 to 772 feet. Each map is associated with National Weather Service flood-peak forecast locations at 63rd Street, Blue Parkway, Stadium Drive, U.S. Highway 40, 12th Street, and the Missouri River

  20. Flooding the Colorado River Delta: A Landscape-Scale Experiment

    NASA Astrophysics Data System (ADS)

    Flessa, Karl W.; Glenn, Edward P.; Hinojosa-Huerta, Osvel; Parra-Rentería, Carlos A.; Ramírez-Hernández, Jorge; Schmidt, John C.; Zamora-Arroyo, Francisco A.

    2013-12-01

    A large pulse of water is planned to be released into the dry Colorado River channel in Mexico. This engineered experimental spring flood, which will flow from Lake Mead and pass through downstream reservoirs, is the culmination of decades of applied research. The pulse flow is a rare opportunity for research at the landscape scale [Glenn et al., 2013].

  1. Vulnerability of schools to floods in Nyando River catchment, Kenya.

    PubMed

    Ochola, Samuel O; Eitel, Bernhard; Olago, Daniel O

    2010-07-01

    This paper assesses the vulnerability of schools to floods in the Nyando River catchment (3,600 km(2)) in western Kenya and identifies measures needed to reduce this vulnerability. It surveys 130 schools in the lower reaches, where flooding is a recurrent phenomenon. Of the primary schools assessed, 40% were vulnerable, 48% were marginally vulnerable and 12% were not vulnerable. Of the secondary schools, 8% were vulnerable, 73% were marginally vulnerable and 19% were not vulnerable. Vulnerability to floods is due to a lack of funds, poor building standards, local topography, soil types and inadequate drainage. The Constituencies Development Fund (CDF), established in 2003, provides financial support to cover school construction and reconstruction costs; CDF Committees are expected to adopt school building standards. In an effort to promote safe and resilient construction and retrofitting to withstand floods, this paper presents vulnerability reduction strategies and recommendations for incorporating minimum standards in the on-going Primary School Infrastructure Programme Design.

  2. 78 FR 36092 - Safety Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal from Mile Marker 302.6 to Mile Marker 302.8 from 7 a.m. to...

  3. 77 FR 60044 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... Including Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast... Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on...

  4. 75 FR 64147 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Ship and Sanitary Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal between Mile Marker 291.0 and Mile Marker 296.1 from 4 p.m....

  5. 77 FR 20295 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal from Mile Marker 295.7 to Mile Marker 297.0 at various...

  6. 78 FR 4071 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... Including Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast... Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on...

  7. 76 FR 2829 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal from Mile Marker 296.1 to Mile Marker 296.7 daily from 7...

  8. 75 FR 73966 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal from Mile Marker 296.1 to Mile ] Marker 296.7 daily from 7...

  9. 77 FR 35854 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal from Mile Marker 296.1 to Mile Marker 296.7 at various...

  10. 77 FR 25595 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal from Mile Marker 296.1 to Mile Marker 296.7 at various...

  11. 78 FR 65874 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Including Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast... Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on...

  12. 78 FR 17099 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... including Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast... Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on...

  13. 78 FR 49684 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Including Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast... Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on...

  14. 76 FR 78161 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal from Mile Marker 296.1 to Mile Marker 296.7 at various...

  15. 77 FR 65478 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... including Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast... Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on...

  16. 76 FR 65609 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal from Mile Marker 296.1 to Mile Marker 296.7 at various...

  17. 78 FR 36091 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal from Mile Marker 296.1 to Mile Marker 296.7 at various...

  18. 75 FR 64673 - Safety Zone, Brandon Road Lock and, Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Ship and Sanitary Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal from Mile Marker 296.1 to Mile Marker 296.7 from 6 a.m....

  19. 78 FR 40635 - Safety Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal from Mile Marker 296.1 to Mile Marker 296.7 at specified...

  20. 75 FR 52462 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago... Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel on all waters of the Chicago Sanitary and Ship Canal from Mile Marker 296.1 to Mile Marker 296.7 from 7 a.m....

  1. A framework for global river flood risk assessments

    NASA Astrophysics Data System (ADS)

    Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.

    2012-08-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate. The framework estimates hazard at high resolution (~1 km2) using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood routing model, and importantly, a flood extent downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case-study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard and damage estimates has been performed using the Dartmouth Flood Observatory database and damage estimates from the EM-DAT database and World Bank sources. We discuss and show sensitivities of the estimated risks with regard to the use of different climate input sets, decisions made in the downscaling algorithm, and different approaches to establish impact models.

  2. Geochronology and Geomorphology of the Pioneer Archaeological Site (10BT676), Upper Snake River Plain, Idaho

    SciTech Connect

    Keene, Joshua L.

    2015-04-01

    The Pioneer site in southeastern Idaho, an open-air, stratified, multi-component archaeological locality on the upper Snake River Plain, provides an ideal situation for understanding the geomorphic history of the Big Lost River drainage system. We conducted a block excavation with the goal of understanding the geochronological context of both cultural and geomorphological components at the site. The results of this study show a sequence of five soil formation episodes forming three terraces beginning prior to 7200 cal yr BP and lasting until the historic period, preserving one cultural component dated to ~3800 cal yr BP and multiple components dating to the last 800 cal yr BP. In addition, periods of deposition and stability at Pioneer indicate climate fluctuation during the middle Holocene (~7200-3800 cal yr BP), minimal deposition during the late Holocene, and a period of increased deposition potentially linked to the Little Ice Age. In addition, evidence for a high-energy erosion event dated to ~3800 cal yr BP suggest a catastrophic flood event during the middle Holocene that may correlate with volcanic activity at the Craters of the Moon lava fields to the northwest. This study provides a model for the study of alluvial terrace formations in arid environments and their potential to preserve stratified archaeological deposits.

  3. Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA

    USGS Publications Warehouse

    Noe, G.B.; Hupp, C.R.

    2005-01-01

    Net nutrient accumulation rates were measured in riverine floodplains of the Atlantic Coastal Plain in Virginia, Maryland, and Delaware, USA. The floodplains were located in watersheds with different land use and included two sites on the Chickahominy River (urban), one site on the Mattaponi River (forested), and five sites on the Pocomoke River (agricultural). The Pocomoke River floodplains lie along reaches with natural hydrogeomorphology and on reaches with restricted flooding due to channelization and levees. A network of feldspar clay marker horizons was placed on the sediment surface of each floodplain site 3-6 years prior to sampling. Sediment cores were collected from the material deposited over the feldspar clay pads. This overlying sediment was separated from the clay layer and then dried, weighed, and analyzed for its total carbon (C), nitrogen (N), and phosphorus (P) content. Mean C accumulation rates ranged from 61 to 212 g??m-2??yr-1, N accumulation rates ranged from 3.5 to 13.4 g??m -2??yr-1, and P accumulation rates ranged from 0.2 to 4.1 g??m-2??yr-1 among the eight floodplains. Patterns of intersite variation in mineral sediment and P accumulation rates were similar to each other, as was variation in organic sediment and C and N accumulation rates. The greatest sediment and C, N, and P accumulation rates were observed on Chickahominy River floodplains downstream from the growing metropolitan area of Richmond, Virginia. Nutrient accumulation rates were lowest on Pocomoke River floodplains that have been hydraulically disconnected from the main channel by channelization and levees. Sediment P concentrations and P accumulation rates were much greater on the hydraulically connected floodplain immediately downstream of the limit of channelization and dense chicken agriculture of the upper Pocomoke River watershed. These findings indicate that (1) watershed land use has a large effect on sediment and nutrient retention in floodplains, and (2) limiting

  4. Space-Time-Isotopic Trends of Snake River Plain Basalts

    NASA Astrophysics Data System (ADS)

    Jean, M. M.; Hanan, B. B.; Shervais, J. W.

    2010-12-01

    The Snake River Plain (SRP) volcanic province is an 800 km track of basalt extending from the Owyhee Plateau to its current terminus, the Yellowstone Plateau. It is one of several late-Tertiary magmatic terranes that also include the Cascades magmatic arc, the Columbia River basalts, and the Oregon Plateau basalts; all of which are adjacent to the Basin and Range Province extensional system (Hughes and McCurry, 2002). This province represents the track of the Yellowstone plume and consists of basalt that is compositionally similar to ocean-island basalt. This basalt overlies a series of rhyolitic eruptive centers (overlapping caldera complexes, ignimbrites, and caldera-filling eruptions) that signal the arrival of the plume head (Christiansen, 2001) and herald the onset of plume-related rhyolitic and basaltic volcanism (Pierce et al., 2002). Observed within the SRP are two basalt types: the dominant low-K olivine tholeiites and less common high-K alkaline basalts. We report new Sr-, Nd-, and Pb-isotopic analyses of these two basalt types from all three SRP provinces: eastern, central, and western. Low-K tholeiites are enriched in 143Nd/144Nd and 86Sr/87Sr and forms a quasi-linear array in Pb-isotope space, along with Craters of the Moon and eastern SRP basalts. High-K lavas are found largely in the western plain, and have a uniquely different isotopic signature. They are depleted in 143Nd/144Nd and 86Sr/87Sr, relative to the low-K tholeiites, and plot closer to the BSE component of Zindler and Hart (1986). They also share the same Pb-isotopic space with high-K basalts from Smith Prairie (Boise River Group 2 of Vetter and Shervais, 1992). One low-K tholeiite - Eureka North, plots with these high alkali basalts. Mass balance models have demonstrated an increasing plume component from the Yellowstone caldera in the east to the craton edge in the west. The lavas analyzed in this study conform remarkably to this model. The mass fraction of plume component in western

  5. Do weirs influence a river's hydrosedimentological response to flood events?

    NASA Astrophysics Data System (ADS)

    Bulcock, Amelia; Whitfield, Elizabeth; Lopez Tarazon, Jose; Whitfield, R. Greg

    2015-04-01

    Weirs are the most common anthropogenic pressures in British river systems. The agenda for catchment-scale restoration of river systems, largely driven by the EU Water Framework Directive (WFD - 2000/60/EC), has led to a recognition that many of these structures may need to be removed to re-establish more 'natural' processes to river systems. These physical barriers impact rivers severely, modifying hydrology (i.e. creating artificial flow regimes), sediment flux (i.e. interrupting the sediment transfer through river systems), and channel forms at different scales (i.e. changing downstream erosion and deposition patterns). They also alter greatly the natural fluvial processes, hence making the regulated rivers behave significantly different to natural unmodified river channels. However, the above impacts, and the majority of accepted models for response to weir installation/removal, are conceptual and based on empirical observations. In fact, the impact of weirs on rivers hydro-geomorphology and sediment transport is largely unconstrained and poorly understood. Further to this, even less knowledge and research surrounds the impacts of weirs on individual flood events. The current study aims to use empirical observations of river flow (i.e. water monitoring), sediment transport (both suspended and bedload) and sedimentology (i.e. bed stability, sediment entrainment, long-term planform changes/evolution) together with climatic, hydrological and sedimentological modeling to improve the understanding of weirs' affectation on the river's hydro-geomorphology at several timescales (i.e. from singular flood events to annual/centurial scales). A step beyond the present project is to use the data and the knowledge that will be gained to better address/model the geomorphic adjustment of rivers following weir removal.

  6. Development of a Flood-Warning System and Flood-Inundation Mapping for the Blanchard River in Findlay, Ohio

    USGS Publications Warehouse

    Whitehead, Matthew T.; Ostheimer, Chad J.

    2009-01-01

    Digital flood-inundation maps of the Blanchard River in Findlay, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Findlay, Ohio. The maps, which correspond to water levels at the USGS streamgage at Findlay (04189000), were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. The USGS reestablished one streamgage and added another on the Blanchard River upstream of Findlay. Additionally, the USGS established one streamgage each on Eagle and Lye Creeks, tributaries to the Blanchard River. The stream-gage sites were equipped with rain gages and multiple forms of telemetry. Data from these gages can be used by emergency management personnel to determine a course of action when flooding is imminent. Flood profiles computed by means of a step-backwater model were prepared and calibrated to a recent flood with a return period exceeding 100 years. The hydraulic model was then used to determine water-surface-elevation profiles for 11 flood stages with corresponding streamflows ranging from approximately 2 to 100 years in recurrence interval. The simulated flood profiles were used in combination with digital elevation data to delineate the flood-inundation areas. Maps of Findlay showing flood-inundation areas overlain on digital orthophotographs are presented for the selected floods.

  7. Bimodal basalt-rhyolite magmatism in the central and western Snake River Plain, Idaho and Oregon

    USGS Publications Warehouse

    McCurry, M.; Bonnichsen, B.; White, C.; Godchaux, M.M.; Hughes, S.S.

    1997-01-01

    The purpose of this trip is to examine Miocene to Pleistocene basalt and rhyolite flows, ignimbrites and hypabyssal intrusions in a transect from the western Snake River Plain graben across the older part of the Snake River Plain "hot-spot-track." The earlier, dominantly explosive rhyolitic phase of volcanism will be examined primarily in the Cassia Mountains, near Twin Falls, Idaho. The second day of the field trip will focus on the Graveyard Point intrusion, a strongly differentiated diabase sill in easternmost Oregon. This late Tertiary sill is well exposed from floor to roof in sections up to 150 m thick, and is an example of the type of solidified shallow magma chamber that may be present beneath some Snake River Plain basalt volcanoes. The field trip will conclude with an examination of the diverse styles of effusive and explosive basaltic volcanism in the central and western Snake River Plain.

  8. Development of river flood model in lower reach of urbanized river basin

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  9. Flood Control, Mississippi River, La Crosse, Wisconsin.

    DTIC Science & Technology

    1975-10-01

    Features 2 2. ENVIROMENTAL SLTfTING WITHOUT THE PROJECT 5 Authority 5 Introduction 5 Climate 6 Topography and Geology 8 Groundwater and Water Supply 9...Fundametals of Ecology ( 3d Edition) W. B. Sanders, Philadelphia. (2) Kuchler, A. W., 1964. Potential Natural Vegetation of the Conterminous United...affected, however compensating benefits are derived by the reduction of flood damages to their property. Evacuation of about 40 permanent and seasonal

  10. The floods of March 1936, part 1, New England rivers

    USGS Publications Warehouse

    Grover, Nathan Clifford

    1937-01-01

    During the period March 9-22, 1936, there occurred in close succession over the northeastern United States, from the James and upper Ohio River Basins in Virginia and Pennsylvania to the river basins of Maine, two extraordinarily heavy storms, in which the precipitation was almost entirely in the form of rain. The depths of rainfall mark this period as one of the greatest concentrations of precipitation, in respect to time and magnitude of the area covered, of which there is record in this country. At the time of the rain there were also accumulations of snow on the ground over much of the storm-affected region that were large for the season. The comparatively warm temperatures associated with the storms thawed the snow and added materially to the quantities of water to be disposed of by drainage into the waterways, by surface storage in lakes, ponds, and reservoirs, by absorption in the ground, and, probably in comparatively negligible degree, by evaporation. The total quantity of water that had to be disposed of in these ways ranged between 10 and 30 inches in depth over much of the region. The water disposed of by natural storage, absorption, and evaporation amounted to average depths over the many river basins generally within the range of 1 to 3 inches, with a significant degree of uniformity and systematic areal distribution. The remainder of the rain and snow water, generally much larger or even several times larger in amount than surface storage, absorption, and evaporation, required accommodation by the channels of the brooks, creeks, and rivers. There were generally two distinct flood peaks, and in many of the basins the destruction was seriously aggravated, especially during the first flood, by the break-up of thick ice cover accumulated through a winter of exceptionally continuous and severe cold weather. The resulting floods were extraordinarily severe, and records of river stages, extending on some streams back to or nearly to the time of settlement

  11. Peatland and River Water Biogeochemistry of the West Siberian Plain

    NASA Astrophysics Data System (ADS)

    Frey, K. E.; Smith, L. C.; MacDonald, G. A.; Velichko, A. A.; Borisova, O. K.; Kremenetski, K. V.; Kremenetski, K. V.

    2001-12-01

    The West Siberian Plain (WSP) of arctic Russia stores a major fraction of the global soil carbon pool in the form of peat, with annual accumulation rates thought to be on the order of 1012 g C. Determining locations of present carbon accumulation in this region is essential for understanding future possible carbon cycle dynamics and globally significant greenhouse gas exchange. Despite their importance, however, locations and amounts of carbon accumulation within the WSP are poorly constrained. The relative amount of carbon sequestered in these peatlands compared with that exported through the adjacent rivers ultimately entering the Arctic Ocean is also of great interest. Water biogeochemistry of rivers draining nearby peatlands is extremely important for understanding the hydrologic exchange between these systems and to determine sources and sinks of organic carbon. Peatlands export more organic carbon per unit area than any other biogeographical land type in the world. Thus, oceans are an important sink for terrestrial organic carbon as well as nutrients, which are crucial for the high biologic productivity seen in both coastal and interior areas of the Arctic Ocean. Field campaigns in 1999, 2000, and 2001 have been conducted in the WSP. A total of 201 locations distributed throughout the WSP have been sampled, including 98 river, 49 peatland lake, 40 peat surface, 12 peat pore, and 2 ground water samples. Measurements of pH, specific conductivity, and temperature were taken in the field. Filtered water samples were taken both for cation analysis (Ag, As, Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mo, Mn, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, Tl, V, and Zn) and anion/nutrient analysis (NO3N, NH4N, total nitrogen, dissolved organic nitrogen, dissolved organic carbon, total phosphorus, Cl, and SO4). Samples for particulate analysis were also taken. Peatland type and potential for peat accumulation have been shown to be quantifiable through surface water

  12. Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.

    2012-01-01

    Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  13. On the value of satellite-based river discharge and river flood data

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Brakenridge, R.; van Praag, E.; Borrero, S.; Slayback, D. A.; Young, C.; Cohen, S.; Prades, L.; de Groeve, T.

    2015-12-01

    Flooding is the most common natural hazard worldwide. According to the World Resources Institute, floods impact 21 million people every year and affect the global GDP by $96 billion. Providing accurate flood maps in near-real time (NRT) is critical to their utility to first responders. Also, in times of flooding, river gauging stations on location, if any, are of less use to monitor stage height as an approximation for water surface area, as often the stations themselves get washed out or peak water levels reach much beyond their design measuring capacity. In a joint effort with NASA Goddard Space Flight Center, the European Commission Joint Research Centre and the University of Alabama, the Dartmouth Flood Observatory (DFO) measures NRT: 1) river discharges, and 2) water inundation extents, both with a global coverage on a daily basis. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations'. Once calibrated, daily discharge time series span from 1998 to the present. Also, the two MODIS instruments aboard the NASA Terra and Aqua satellites provide daily floodplain inundation extent with global coverage at a spatial resolution of 250m. DFO's mission is to provide easy access to NRT river and flood data products. Apart from the DFO web portal, several water extent products can be ingested by utilizing a Web Map Service (WMS), such as is established with for Latin America and the Caribbean (LAC) region through the GeoSUR program portal. This effort includes implementing over 100 satellite discharge stations showing in NRT if a river is flooding, normal, or in low flow. New collaborative efforts have resulted in flood hazard maps which display flood extent as well as exceedance probabilities. The record length of our sensors allows mapping the 1.5 year, 5 year and 25 year flood extent. These can provide key information to water management and disaster response entities.

  14. Assessment of floodplain vulnerability during extreme Mississippi River flood 2011.

    PubMed

    Goodwell, Allison E; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A; Kumar, Praveen; Garcia, Marcelo H; Rhoads, Bruce L; Holmes, Robert R; Parker, Gary; Berretta, David P; Jacobson, Robert B

    2014-01-01

    Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km(2) agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding.

  15. Assessment of floodplain vulnerability during extreme Mississippi River flood 2011

    USGS Publications Warehouse

    Goodwell, Allison E.; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A.; Kumar, Praveen; Garcia, Marcelo H.; Rhoads, Bruce L.; Holmes, Jr., Robert R.; Parker, Gary; Berretta, David P.; Jacobson, Robert B.

    2014-01-01

    Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km2 agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding.

  16. The flood of December 1982 and the 100- and 500-year flood on the Buffalo River, Arkansas

    USGS Publications Warehouse

    Neely, B.L.

    1985-01-01

    Flood profiles, peak discharges, and stages were determined for the December 1982, the 100-year, and the 500-year floods at 17 sites along the Buffalo River, Arkansas. Typical synthetic stage hydrographs for the 100- and 500-year floods were determined for each site. Flow duration data for gaging stations at St. Joe and Rush are shown. The average velocity of the water for the 100- and 500-year floods is shown for each site. Approximate flood boundaries delineating the 100- and 500-year floods are shown for Ponca, Steel Creek, Pruitt, St. Joe, and Buffalo Point. (Author 's abstract)

  17. A History of Flooding in the Red River Basin

    USGS Publications Warehouse

    Ryberg, Karen R.; Macek-Rowland, Kathleen M.; Banse, Tara A.; Wiche, Gregg J.; Martin, Cathy R.

    2007-01-01

    The U.S. Geological Survey (USGS), one of the principal Federal agencies responsible for the collection and interpretation of water-resources data, works with other Federal, State, local, tribal, and academic entities to ensure that accurate and timely data are available for making decisions regarding public welfare and property during natural disasters and to increase public awareness of the hazards that occur with such disasters. The Red River of the North Basin has a history of flooding and this poster is designed to increase public awareness of that history and of the factors that contribute to flooding.

  18. Development of tidal inlet on Mississippi River deltaic plain

    SciTech Connect

    Howard, P.C.

    1983-09-01

    Surface sampling and bathymetric surveying in 1981 and charts from 1853 to 1934 are used to formulate the history of Quatre Bayou Pass, a major inlet within the transgressive environment of the Mississippi River deltaic plain. Over this period, land loss processes caused marsh to give way to lakes and bays; therefore, tidal exchange intensified through a break in the coastal barrier. Beach sand was reworked into small tidal deltas. As lakes and bays enlarged further, the tidal prism increased; consequently, both the pass and the sandy tidal deltas increased in size. Over the last century, the increased tidal flow caused Quatre Bayou Pass to have an eight-fold cross-sectional area enlargement and a three-fold ebb-tidal delta volume increase. At present, the throat is 15 m (49 ft) deep and 1.2 km (0.7 mi) wide, while the ebb-tidal delta is comprised of 14.9 by 10/sup 6/ +/- 10% m/sup 3/ of sediment. Concurrent with these developments, recession of the barrier and much of the shoreface proceeded at a rapid rate. Because the ebb-tidal delta had a simultaneous increase in volume, the shoreface in front of the pass remained relatively stable. In other words, bathymetric expression of the ebb-tidal delta did not develop solely through progradation, but was also formed through erosion of the surrounding Gulf bottom. Accordingly, the shoal is termed ebb-tidal delta retreat body.

  19. Miocene lacustrine algal reefs—southwestern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Straccia, Frances G.; Wilkinson, Bruce H.; Smith, Gerald R.

    1990-04-01

    The Hot Spring limestone is a shallow-water algal carbonate within a late Tertiary transgressive lacustrine sequence exposed in the southwestern Snake River Plain. This 5 m thick lensoid sequence crops out over an 80 km 2 area that closely approximates original areal extent of nearshore carbonate accumulation. Reefal bodies consist of closely packed algal cylinders, several decimeters in height, each of which includes a dense laminated carbonate wall surrounding porous digitate carbonate that radiates outward and upward from one or more hollow tubes. These coalesce upsection into separate vertical columns several meters in diameter. Moderately well-sorted terrigenous and molluscan debris deposited between columns during growth indicates these structures were resistant to wave erosion and, therefore, were true reefs. Thick rings of littoral carbonate surrounding the upper walls of each column record the final stages of reef development. Structural attributes exhibited by these Miocene carbonate bodies are also common to a number of Tertiary and Quaternary algal buildups reported from other lacustrine settings. Although features within the Hot Spring limestone are complex in gross morphology and structural detail, both columnar reefs and algal cylinders display little variation in size, shape, or internal structure between areas of varying water depth and wave energy, thus reflecting the importance of biological processes as well as physical processes during reef development.

  20. The Iowa Flood Center's River Stage Sensor Network—Overview

    NASA Astrophysics Data System (ADS)

    Krajewski, W. F.; Kruger, A.; Niemeier, J. J.; Mantilla, R.; Ceynar, D.; Goska, R.; Demir, I.; Fahim Rezaei, H.; Gaynor, K. T.

    2012-12-01

    Researchers, engineers, and students at the Iowa Flood Center (IFC) have designed, built, deployed, and maintained a network of river stage sensors. The network consists of 120+ (and growing) sensors deployed across Iowa. The impetus for this endeavor was the unprecedented and devastating floods Iowa experienced in 2008. The sensors measure river stage using a commercial ultrasonic distance module. The sensors are mounted on bridges, powered by solar panels, and make river stage measurements every 15 minutes, which are transmitted via cell phones to IFC servers on the internet. At the servers, the data are ingested into relational databases and made available to researchers and the general public in real-time via the IFC flood information system (IFIS). IFIS provides a very convenient map-based view of the river stage measurement along with a wealth of other relevant information. The Iowa Department of Transportation (DOT) and the Iowa Department of Natural Resources (DNR) are keenly interested in the bridge-mounted sensors, and have helped fund their development and deployment. The sensors are relatively inexpensive and complement existing USGS discharge station measurements.

  1. Development of a flood-warning network and flood-inundation mapping for the Blanchard River in Ottawa, Ohio

    USGS Publications Warehouse

    Whitehead, Matthew T.

    2011-01-01

    Digital flood-inundation maps of the Blanchard River in Ottawa, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service and the Village of Ottawa, Ohio. The maps, which correspond to water levels (stages) at the USGS streamgage at Ottawa (USGS streamgage site number 04189260), were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning Network that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. Flood profiles were computed by means of a step-backwater model calibrated to recent field measurements of streamflow. The step-backwater model was then used to determine water-surface-elevation profiles for 12 flood stages with corresponding streamflows ranging from less than the 2-year and up to nearly the 500-year recurrence-interval flood. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas. Maps of the Village of Ottawa showing flood-inundation areas overlain on digital orthophotographs are presented for the selected floods. As part of this flood-warning network, the USGS upgraded one streamgage and added two new streamgages, one on the Blanchard River and one on Riley Creek, which is tributary to the Blanchard River. The streamgage sites were equipped with both satellite and telephone telemetry. The telephone telemetry provides dual functionality, allowing village officials and the public to monitor current stage conditions and enabling the streamgage to call village officials with automated warnings regarding flood stage and/or predetermined rates of stage increase. Data from the streamgages serve as a flood warning that emergency management personnel can use in conjunction with the flood-inundation maps by to determine a course of action when flooding is imminent.

  2. A Blueprint for Full Collective Flood Risk Estimation: Demonstration for European River Flooding.

    PubMed

    Serinaldi, Francesco; Kilsby, Chris G

    2016-12-29

    Floods are a natural hazard evolving in space and time according to meteorological and river basin dynamics, so that a single flood event can affect different regions over the event duration. This physical mechanism introduces spatio-temporal relationships between flood records and losses at different locations over a given time window that should be taken into account for an effective assessment of the collective flood risk. However, since extreme floods are rare events, the limited number of historical records usually prevents a reliable frequency analysis. To overcome this limit, we move from the analysis of extreme events to the modeling of continuous stream flow records preserving spatio-temporal correlation structures of the entire process, and making a more efficient use of the information provided by continuous flow records. The approach is based on the dynamic copula framework, which allows for splitting the modeling of spatio-temporal properties by coupling suitable time series models accounting for temporal dynamics, and multivariate distributions describing spatial dependence. The model is applied to 490 stream flow sequences recorded across 10 of the largest river basins in central and eastern Europe (Danube, Rhine, Elbe, Oder, Waser, Meuse, Rhone, Seine, Loire, and Garonne). Using available proxy data to quantify local flood exposure and vulnerability, we show that the temporal dependence exerts a key role in reproducing interannual persistence, and thus magnitude and frequency of annual proxy flood losses aggregated at a basin-wide scale, while copulas allow the preservation of the spatial dependence of losses at weekly and annual time scales.

  3. The Monitoring of River Flows and the Management of Flood Hazards using UAVs

    NASA Astrophysics Data System (ADS)

    Verosub, K. L.

    2015-12-01

    The increasing occurrence of extreme precipitation events as well as severe droughts, coupled with greater and greater human occupation of flood plains, makes increased monitoring of flows in rivers an important component of assessing the potential for water-related natural disasters as well as responding to them when they do occur. Unfortunately, this increasing need comes at a time when funding for monitoring activities is generally decreasing. In the United States, for example, gauging stations with daily flow records going back several decades or even a hundred years have been abandoned, and new stations in critical areas have not even been established. A methodology based on periodic UAV-based imaging of an entire river offers the prospect of obtaining inexpensive, real-time, high-resolution data for the determination of the river flows. The method makes use of fact that as the flow in a river rises or falls, the areal extent covered by the river changes accordingly. Furthermore, barring anthropogenic changes, the area inundated by a flow of a particular magnitude is invariant in time. For a given stretch of a river, a sequence of images spanning the full range of flow conditions provides the basic template for determining river flows. The actual flow in the river can be calibrated using previously measured flow data corresponding the dates of old aerial or satellite imagery, or calculated from new imagery by using standard flow equations and the topography of the banks of the river, determined by field surveying or Lidar. Once the basic template has been established, determination of "the state-of-the-river" at any point in time can be obtained by comparing newly-acquired UAV images with those in the database. And because a given image encompasses many topographic features that are inundated to differing extents, the resolution of the flow determination is limited only by the completeness of the imagery in the basic template. Repeat flights at weekly

  4. Flood hazards studies in the Mississippi River basin using remote sensing

    NASA Technical Reports Server (NTRS)

    Rango, A.; Anderson, A. T.

    1974-01-01

    The Spring 1973 Mississippi River flood was investigated using remotely sensed data from ERTS-1. Both manual and automatic analyses of the data indicated that ERTS-1 is extremely useful as a regional tool for flood mamagement. Quantitative estimates of area flooded were made in St. Charles County, Missouri and Arkansas. Flood hazard mapping was conducted in three study areas along the Mississippi River using pre-flood ERTS-1 imagery enlarged to 1:250,000 and 1:100,000 scale. Initial results indicate that ERTS-1 digital mapping of flood prone areas can be performed at 1:62,500 which is comparable to some conventional flood hazard map scales.

  5. Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho

    SciTech Connect

    Tullis, J.A.

    1995-09-01

    Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, <0.5 m in height, and from 8 to 14 m in diameter. They are found on flat and sloped surfaces, and appear less frequently in lowland areas. The mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dug to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a {open_quotes}floor{close_quotes} of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief.

  6. 44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... engineering, (ii) the proposed grading, excavations, new construction, and substantial improvements are... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood plain management criteria for mudslide (i.e., mudflow)-prone areas. 60.4 Section 60.4 Emergency Management and...

  7. 44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... engineering, (ii) the proposed grading, excavations, new construction, and substantial improvements are... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plain management criteria for mudslide (i.e., mudflow)-prone areas. 60.4 Section 60.4 Emergency Management and...

  8. 44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... engineering, (ii) the proposed grading, excavations, new construction, and substantial improvements are... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood plain management criteria for mudslide (i.e., mudflow)-prone areas. 60.4 Section 60.4 Emergency Management and...

  9. Origin of the Colorado River experimental flood in Grand Canyon

    USGS Publications Warehouse

    Andrews, E.D.; Pizzi, L.A.

    2000-01-01

    The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of ~17 x 109 m3 year -1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of approximately 17??109 m3 year-1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the

  10. A multi-century tree-ring record of spring flooding on the Mississippi River

    NASA Astrophysics Data System (ADS)

    Therrell, Matthew D.; Bialecki, Margaret B.

    2015-10-01

    Widespread destructive flooding is a common phenomenon along the Lower Mississippi River, and river managers have long sought to understand the temporal variability and relevant climatic factors of the system. One of the important drawbacks to better understanding the flood regime of this and similar large river systems is the relatively short instrumental record of flooding. In this study, we present a novel, annually-resolved tree-ring record of spring flooding based on anatomically anomalous "flood rings" preserved in trees growing about 60 km downstream of the Mississippi and Ohio River confluence. Our chronology records 39 flood-ring years between 1770 and 2009 including nearly all of the observed significant floods of the 20th century as well as severe floods documented in prior centuries. Comparison of the flood ring record with stream gage observations suggests that large-magnitude floods lasting for more than 10 days, during the spring flood season, are most likely to cause a flood ring in sampled trees. Instrumental and paleo-proxy records of atmospheric circulation features relevant to spring flooding on the Lower Mississippi were also examined. Results of this research suggest that similar flood-ring records could provide important insight into flood history elsewhere in the Mississippi River system and perhaps climate variability over North America.

  11. Flood Map for the Winooski River in Waterbury, Vermont, 2014

    USGS Publications Warehouse

    Olson, Scott A.

    2015-01-01

    High-water marks from Tropical Storm Irene were available for seven locations along the study reach. The highwater marks were used to estimate water-surface profiles and discharges resulting from Tropical Storm Irene throughout the study reach. From a comparison of the estimated water-surface profile for Tropical Storm Irene with the water-surface profiles for the 1- and 0.2-percent annual exceedance probability (AEP) floods, it was determined that the high-water elevations resulting from Tropical Storm Irene exceeded the estimated 1-percent AEP flood throughout the Winooski River study reach but did not exceed the estimated 0.2-percent AEP flood at any location within the study reach.

  12. Principal Locations of Metal Loading from Flood-Plain Tailings, Lower Silver Creek, Utah, April 2004

    USGS Publications Warehouse

    Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine

    2007-01-01

    Because of the historical deposition of mill tailings in flood plains, the process of determining total maximum daily loads for streams in an area like the Park City mining district of Utah is complicated. Understanding the locations of metal loading to Silver Creek and the relative importance of these locations is necessary to make science-based decisions. Application of tracer-injection and synoptic-sampling techniques provided a means to quantify and rank the many possible source areas. A mass-loading study was conducted along a 10,000-meter reach of Silver Creek, Utah, in April 2004. Mass-loading profiles based on spatially detailed discharge and chemical data indicated five principal locations of metal loading. These five locations contributed more than 60 percent of the cadmium and zinc loads to Silver Creek along the study reach and can be considered locations where remediation efforts could have the greatest effect upon improvement of water quality in Silver Creek.

  13. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    SciTech Connect

    Zullo, V.A.; Harris, W.B.; Price, V.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geology in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.

  14. Flood-inundation maps for the St. Marys River at Decatur, Indiana

    USGS Publications Warehouse

    Strauch, Kellan R.

    2015-08-24

    The availability of these maps and associated Web mapping tools, along with the current river stage from USGS streamgages and forecasted flood stages from the NWS, provides emergency managers and residents with information that may be critical for flood-emergency planning and flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  15. A framework for global river flood risk assessments

    NASA Astrophysics Data System (ADS)

    Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.

    2013-05-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from the EM

  16. Modern Environmental Changes on Amapa Coastal Plain under Amazon River Influence

    NASA Astrophysics Data System (ADS)

    Santos, V. F.; Figueiredo, A. G.; Silveira, O. M.; Polidori, L.

    2007-05-01

    The Amazonian coastal environment is very dynamic compared to other coasts. It is situated at the edge of the Earth's largest forest, and is segmented by fluvial systems, with the biggest being the Amazon River. The rivers are particularly influenced by the Intertropical Convergence Zone (ITCZ), which controls the water and particle discharge, and the flooding regime. Moderate and strong El Nino conditions correlate with low-precipitation periods, and La Nina events cause precipitation to increase. These variables and others related to the Amazon dispersal system create an interesting area for the study of global and regional environmental changes. The Araguari River floodplain on the Amapa coast is influenced by natural processes of global scale such as ENSO events and ITCZ, and by local processes such as Amazon River discharge, tides and tidal bore (pororoca). Anthropogenic processes such as extensive water-buffalo farming also promote environmental changes. Time- series analyses of remote sensing images and suspended sediment have shown that the maximum turbidity zone inside Araguari River is related to the pororoca phenomenon. The pororoca remobilizes sediment from the river bottom and margins, developing sediment suspension >15 g/l as it passes - creating fluid muds. The pororoca also introduces Amazon- and shelf-derived sediment into the Araguari estuary. Measurements during eight spring-tide cycles indicate erosion of 3 cm of consolidated mud and deposition of 1 cm. The pororoca also influences the remobilization and cycling of nutrients and consequently affects the distribution of benthic organisms, including benthonic foraminifera and thecamoebians. For more than a century, the coastal plain has had water-buffalo farming (>42,000 animals today), which modifies the drainage system and affects sedimentary processes. Areas with more buffalo trails have higher suspended-sediment concentration (SSC) during the dry season and lower SSC during the rainy season

  17. Assessment of channel changes, model of historical floods, and effects of backwater on flood stage, and flood mitigation alternatives for the Wichita River at Wichita Falls, Texas

    USGS Publications Warehouse

    Winters, Karl E.; Baldys, Stanley

    2011-01-01

    In cooperation with the City of Wichita Falls, the U.S. Geological Survey assessed channel changes on the Wichita River at Wichita Falls, Texas, and modeled historical floods to investigate possible causes and potential mitigation alternatives to higher flood stages in recent (2007 and 2008) floods. Extreme flooding occurred on the Wichita River on June 30, 2007, inundating 167 homes in Wichita Falls. Although a record flood stage was reached in June 2007, the peak discharge was much less than some historical floods at Wichita Falls. Streamflow and stage data from two gages on the Wichita River and one on Holliday Creek were used to assess the interaction of the two streams. Changes in the Wichita River channel were evaluated using historical aerial and ground photography, comparison of recent and historical cross sections, and comparison of channel roughness coefficients with those from earlier studies. The floods of 2007 and 2008 were modeled using a one-dimensional step-backwater model. Calibrated channel roughness was larger for the 2007 flood compared to the 2008 flood, and the 2007 flood peaked about 4 feet higher than the 2008 flood. Calibration of the 1941 flood yielded a channel roughness coefficient (Manning's n) of 0.030, which represents a fairly clean natural channel. The step-backwater model was also used to evaluate the following potential mitigation alternatives: (1) increasing the capacity of the bypass channel near River Road in Wichita Falls, Texas; (2) removal of obstructions near the Scott Avenue and Martin Luther King Junior Boulevard bridges in Wichita Falls, Texas; (3) widening of aggraded channel banks in the reach between Martin Luther King Junior Boulevard and River Road; and (4) reducing channel bank and overbank roughness. Reductions in water-surface elevations ranged from 0.1 foot to as much as 3.0 feet for the different mitigation alternatives. The effects of implementing a combination of different flood-mitigation alternatives were

  18. Flood dependency of cottonwood establishment along the Missouri River, Montana, USA

    USGS Publications Warehouse

    Scott, M.L.; Auble, G.T.; Friedman, J.M.

    1997-01-01

    Flow variability plays a central role in structuring the physical environment of riverine ecosystems. However, natural variability in flows along many rivers has been modified by water management activities. We quantified the relationship between flow and establishment of the dominant tree (plains cottonwood, Populus deltoides subsp. monilifera) along one of the least hydrologically altered alluvial reaches of the Missouri River: Coal Banks Landing to Landusky, Montana. Our purpose was to refine our understanding of how local fluvial geomorphic processes condition the relationship between flow regime and cottonwood recruitment. We determined date and elevation of tree establishment and related this information to historical peak stage and discharge over a 112-yr hydrologic record. Of the excavated trees, 72% were established in the year of a flow >1400 m3/s (recurrence interval of 9.3 yr) or in the following 2 yr. Flows of this magnitude or greater create the necessary bare, moist establishment sites at an elevation high enough to allow cottonwoods to survive subsequent floods and ice jams. Almost all cottonwoods that have survived the most recent flood (1978) were established >1.2 m above the lower limit of perennial vegetation (active channel shelf). Most younger individuals were established between 0 and 1.2 m, and are unlikely to survive over the long term. Protection of riparian cottonwood forest along this National Wild and Scenic section of the Missouri River depends upon maintaining the historical magnitude, frequency, and duration of floods > 1400 m3/s. Here, a relatively narrow valley constrains lateral channel movement that could otherwise facilitate cottonwood recruitment at lower flows. Effective management of flows to promote or maintain cottonwood recruitment requires an understanding of locally dominant fluvial geomorphic processes.

  19. Coupled mechanism of unsystematic Damming and Climate Change effect on the rivers of the Great Plains of Kansas

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Daniels, M. D.

    2014-12-01

    Damming the natural flow regime is responsible to drive away native species from the aquatic ecosystem and it becomes potentially damaging when it concerns the drought-prone areas in particular. Drought cycles are common in the Great Plains, which have given native fish species adapted strategies for coping with extreme variation in flow regimes. However, native populations have crashed as these stream networks became heavily fragmented beginning in the post-depression water reclamation era and continued into the 1960's boom in flood control dam construction. This study is an attempt to understand and assess the cumulative impacts of river network fragmentation and climate change on the river ecosystem, geomorphology and hydrology of the Smoky-Hill River Basin of North-West Kansas. The vast majority of the basin does not overly significant groundwater resources and is thus reliant on water supplied from precipitation, runoff, and shallow alluvial storage zones strongly connected to surface water systems, which is now fragmented by the construction of both small farm-ponds as well as big flood reservoir structures. Thus, there is a high probability of stream network segments to be dissociated (from the main channel during dry periods) and/or completely depleted (in case of a series of drought cycles) in this area. This paper would identify such vulnerable network segments and assess the impact of extreme climatic conditions - as a single event or scenario of cyclic droughts that can drive the native fishes out of the Smoky-Hill River Basin - by comparing modeled future flow regime projections with historic flow regimes in the fragmented river structure. The study will further address structural and functional connectivity of the river and would contribute to the understanding of fragmentation and its effect to the stream ecology at a higher scale, where a larger aquatic population can get affected by a single drought event.

  20. Flood of June 4-5, 2002, in the Maquoketa River Basin, east-central Iowa

    USGS Publications Warehouse

    Eash, David A.

    2004-01-01

    Severe flooding occurred on June 4-5, 2002, in the Maquoketa River Basin in Delaware, Dubuque, Jackson, and Jones Counties, following thunderstorm activity over east-central Iowa. The rain gage at Cascade, Iowa, recorded a 14-hour rainfall of 6.0 inches at noon on June 4. Radar indications estimated as much as 8 to 10 inches of rain fell in the upper-middle part of the Maquoketa River Basin. Peak discharges on the Maquoketa River at Monticello of 47,500 cubic feet per second (recurrence interval estimated to be greater than 500 years as computed using flood-estimation equations developed by the U.S. Geological Survey), and at the Maquoketa River near Maquoketa streamflow-gaging station of 47,900 cubic feet per second (recurrence interval about 50 years), were determined for the flood. The peak discharge of the 2002 flood is nearly equal that of the 1944 flood (48,000 cubic feet per second), the largest flood on record in the Maquoketa River Basin. The 2002 flood is the largest known flood in the North Fork Maquoketa River Basin. A peak discharge of 22,600 cubic feet per second (recurrence interval about 110 years) was determined for the flood at the North Fork Maquoketa River near Fulton gaging station. Information about the basin and flood history, the 2002 thunderstorms and associated flooding, and a profile of high-water marks are presented for selected reaches along the Maquoketa and North Fork Maquoketa Rivers.

  1. Susquehanna River Basin Flood Control Review Study

    DTIC Science & Technology

    1980-08-01

    considered more favorable. Channel improvements which included dredging and/or constructing or raising existing levees at 7 locations (Hornell, Avoca , Corning...Local channel improvements at Hornell, Avoca , Painted Post, Lisle, and Oxford were authorized after submission of the 1936 report. On 20 June 1936...Cohocton River: Sub-Area Il-B Co-I Rural Bath 22 15 Co-2 Avoca Bath 94 0 Co-3 Rural Campbell 724 53 Co-4 Bath Bath 57 0 TOTAL SUB-AREA Il-B s 35 TABLE

  2. Effectiveness of water infrastructure for river flood management - Part 1: Flood hazard assessment using hydrological models in Bangladesh

    NASA Astrophysics Data System (ADS)

    Gusyev, M. A.; Kwak, Y.; Khairul, M. I.; Arifuzzaman, M. B.; Magome, J.; Sawano, H.; Takeuchi, K.

    2015-06-01

    This study introduces a flood hazard assessment part of the global flood risk assessment (Part 2) conducted with a distributed hydrological Block-wise TOP (BTOP) model and a GIS-based Flood Inundation Depth (FID) model. In this study, the 20 km grid BTOP model was developed with globally available data on and applied for the Ganges, Brahmaputra and Meghna (GBM) river basin. The BTOP model was calibrated with observed river discharges in Bangladesh and was applied for climate change impact assessment to produce flood discharges at each BTOP cell under present and future climates. For Bangladesh, the cumulative flood inundation maps were produced using the FID model with the BTOP simulated flood discharges and allowed us to consider levee effectiveness for reduction of flood inundation. For the climate change impacts, the flood hazard increased both in flood discharge and inundation area for the 50- and 100-year floods. From these preliminary results, the proposed methodology can partly overcome the limitation of the data unavailability and produces flood~maps that can be used for the nationwide flood risk assessment, which is presented in Part 2 of this study.

  3. Emplacement of Columbia River flood basalt

    SciTech Connect

    Reidel, Stephen P. )

    1997-11-01

    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  4. Emplacement of Columbia River flood basalt

    SciTech Connect

    Reidel, S.P.

    1998-11-01

    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  5. Hydrological applications of Landsat imagery used in the study of the 1973 Indus River flood, Pakistan

    USGS Publications Warehouse

    Deutsch, Morris; Ruggles, F.H.

    1978-01-01

    During August and September 1973, the Indus River Valley of Pakistan experienced one of the largest floods on record, resulting in damages to homes, businesses, public works, and crops amounting to millions of rupees. Tremendous areas of lowlands were inundated along the Indus River and major tributaries. Landsat data made it possible to easily measure the extent of flooding, totaling about 20,000 km2 within an area of about 400,000 km2 south from the Punjab to the Arabian Sea.The Indus River data were used to continue experimentation in the development of rapid, accurate, and inexpensive optical techniques of flood mapping by satellite begun in 1973 for the Mississipi River floods. The research work on the Indus River not resulted in the development of more effective procedures for optical processing of flood data and synoptically depicting flooding, but also provided potentially valuable ancillary information concerning the hydrology of much of the Indus River Basin.

  6. Environmental Statement for Local Flood Protection Project at Three Rivers, Texas. Supplement.

    DTIC Science & Technology

    1977-02-28

    Oak County, Texas Nueces River Three Rivers Local Flood Protection Project 20. AD6TRACT (C-Iut. u m ~ "d if ne~em and ~ideif by block nutbr...Environmental impact statement/report purposes to construct a levee system to protect the city of Three Rivers, Texas from flooding of Frio and Nueces Rivers. No...Construct levee system to protect the city of Three Rivers, Texas, from flooding of Frio and Nueces Rivers. 3. a. Environmental Impacts: The project

  7. A proposal for mitigation of floods in main colombian rivers

    NASA Astrophysics Data System (ADS)

    Donado, L. D.; Bravo, E.; Ortiz, R. O.

    2012-04-01

    Floods are naturally produced by rainfall and are a worldwide threat, which cannot be controlled. The effects of the floods are not proportional to the magnitude of the events in different parts of the world. It is due to the local risk management and the reduction of the vulnerability. This research looks for the reduction of the effects of the heavy rainfall in the Magdalena River. Two main effects are detected: intensity of the rainfall and residence time of the flow in the river. Several factors were detected to increase the vulnerability of the Magdalena Valley. Those are the increase of sediment load caused by deforestation, mining and the lack of sustainable urban drainage systems. Unfortunately, the majority of the Colombian actions have been aimed to the construction of public works for "controlling" the effects of the floods and reducing the territory vulnerability without any technical reason but private interests. All the investments are done with no planning or management. In a continue review of all the dikes and walls to avoid river floods, we appreciate that the failure of this elements increased the territory vulnerability, generating false expectation of security. We propose some non-structural solutions in combination of structural ones for reducing costs of investments and emergency attention. The main conclusion of this work is based on the fact that natural hazards are unavoidable but they can be mitigated reducing the residence time of the water on the channels with the reactivation of old natural channels and constructing cutoff channels in the meandering valley.

  8. The 2014 Karnali River Floods in Western Nepal: Making Community Based Early Warning Systems Work When Data Is Lacking

    NASA Astrophysics Data System (ADS)

    Dugar, S.; MacClune, K.; Venkateswaran, K.; Yadav, S.; Szoenyi, M.

    2015-12-01

    Implementing Community Based Flood Early Warning System (EWS) in developing countries like Nepal is challenging. Complex topography and geology combined with a sparse network of river and rainfall gauges and little predictive meteorological capacity both nationally and regionally dramatically constrain EWS options. This paper provides a synopsis of the hydrological and meteorological conditions that led to flooding in the Karnali River, West Nepal during mid-August 2014, and analyses the effectiveness of flood EWS in the region. On August 14-15, 2014, a large, slow moving weather system deposited record breaking rainfall in the foothills of the Karnali River catchment. Precipitation depths of 200 to 500 mm were recorded over a 24-hour period, which led to rapid rise of river heights. At the Chisapani river gauge station used for the existing EWS, where the Karnali River exits the Himalaya onto the Indo-Gangetic Plain, water levels rapidly exceeded the 11 meter danger level. Between 3 to 6 am, water levels rose from 11 to 16. 1 meters, well beyond the design height of 15 meters. Analysis suggests that 2014 floods may have been a one-in-1000 year event. Starting with the onset of intense rainfall, the Chisapani gauge reader was in regular communication with downstream stakeholders and communities providing them with timely information regarding rising water level. This provided people just enough time to move to safe places with their livestock and key assets. Though households still lost substantial assets, without the EWS, floodwaters would have caught communities completely unaware and damage would almost certainly have been much worse. In particular, despite the complications associated with access to the Chisapani gauge and failure of critical communication nodes during the floods, EWS was instrumental in saving lives. This study explores both the details of the flood event and performance of the early warning system, and identifies lessons learned to help

  9. The 2012 Seti River flood disaster and alpine cryospheric hazards facing Pokhara, Nepal

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey; Leonard, Gregory; Paudel, Lalu; Regmi, Dhananjay; Bajracharya, Samjwal; Fort, Monique; Joshi, Sharad; Poudel, Khagendra; Thapa, Bhabana; Watanabe, Teiji

    2014-05-01

    were not implicated in the 2012 disaster, the possibility exists for a small glacial lake outburst flood to trigger a larger mass movement. Such a debris flow could reach Pokhara directly. More likely, a debris flow in the Sabche Cirque could form another temporary and potentially dangerous impoundment dam in the gorge. Furthermore, the type of rockfall blockage that produced 2012's natural impoundment reservoir is likely to happen repeatedly. Hence, there is a high capacity of the Earth system in this area to produce comparable or even bigger flash floods or mass flows. The likelihood of a further disaster is magnified by imprudent habitation of the river channel and lower floodplain. Of all the changes to the Pokhara Valley, human encroachment on the flood plain is the factor most related to increasing vulnerability, but it is also the one factor that could be remedied by a complete ban on construction on lower terraces, if that is politically feasible. Warning systems could help, but fairly relocating people in jeopardy would be more effective. Supported by NASA/USAID SERVIR Applied Sciences and USAID Climbers' Science.

  10. Ground-water levels in an alluvial plain between the Tanana and Chena Rivers near Fairbanks, Alaska 1986-93

    USGS Publications Warehouse

    Glass, R.L.; Lilly, M.R.; Meyer, D.F.

    1996-01-01

    The aquifer of an alluvial plain between the Tanana and Chena Rivers near Fairbanks, Alaska, generally consists of highly transmissive sands and gravels under water-table conditions. During 1986-88, the U.S. Geological Survey studied the distribution of ground-water levels in the alluvial plain between Moose Creek Dam and the confluence of the Tanana and Chena Rivers. Moose Creek Dam is a flood-control structure on the Chena River that impounds water only during high flows in the Chena River or during tests of the dam's control gates. Ground-water-level information is needed to help design and place septic systems, buildings, and drainage structures. Using 38 existing wells and 83 wells drilled for this study during 1986 and 1987, ground-water levels were measured to determine the depth to the water table, its seasonal variation, and its relation to changes in river and reservoir stages. Water levels were continuously measured in 10 wells and periodically measured in 110 other wells until August 1988. During 1989, water levels were measured at least once in 59 wells. Three wells were equipped with water-level recorders through 1993. River stages were measured continuously at one gaging station on the Tanana River and at two stations on the Chena River. During summer months of 1986-88, stages and discharges in the Chena River were generally less than long-term mean monthly values, whereas mean monthly stages and discharges in the Tanana River fluctuated above and below long-term mean monthly values. Depths to water in monitoring wells ranged from slightly above land surface to about 21 feet below land surface. Depths to water in the alluvial plain were within 10 feet of land surface in most areas, but were within 5 feet of land surface in many low-lying areas. In general, the water table sloped to the northwest, from the Tanana River to the Chena River, at a gradient of about 4 feet per mile. Water levels in wells within about half a mile of either river responded

  11. Influences on flood frequency distributions in Irish river catchments

    NASA Astrophysics Data System (ADS)

    Ahilan, S.; O'Sullivan, J. J.; Bruen, M.

    2012-04-01

    This study explores influences on flood frequency distributions in Irish rivers. A Generalised Extreme Value (GEV) type I distribution is recommended in Ireland for estimating flood quantiles in a single site flood frequency analysis. This paper presents the findings of an investigation that identified the GEV statistical distributions that best fit the annual maximum (AM) data series extracted from 172 gauging stations of 126 rivers in Ireland. Analysis of these data was undertaken to explore hydraulic and hydro-geological factors that influence flood frequency distributions. A hierarchical approach of increasing statistical power that used probability plots, moment and L-moment diagrams, the Hosking goodness of fit algorithm and a modified Anderson-Darling (A-D) statistical test was followed to determine whether a type I, type II or type III distribution was valid. Results of the Hosking et al. method indicated that of the 143 stations with flow records exceeding 25 yr, data for 95 (67%) was best represented by GEV type I distributions and a further 9 (6%) and 39 (27%) stations followed type II and type III distributions respectively. Type I, type II and type III distributions were determined for 83 (58%), 16 (11%) and 34 (24%) stations respectively using the modified A-D method (data from 10 stations was not represented by GEV family distributions). The influence of karst terrain on these flood frequency distributions was assessed by incorporating results on an Arc-GIS platform showing karst features and using Monte Carlo simulations to assess the significance of the number and clustering of the observed distributions. Floodplain effects were identified by using two-sample t-tests to identify statistical correlations between the distributions and catchment properties that are indicative of strong floodplain activity. The data reveals that type I distributions are spatially well represented throughout the country. While also well represented throughout the

  12. Flood control and loss estimation for paddy field at midstream of Chao Phraya River Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Cham, T. C.; Mitani, Y.

    2015-09-01

    2011 Thailand flood has brought serious impact to downstream of Chao Phraya River Basin. The flood peak period started from August, 2011 to the end of October, 2011. This research focuses on midstream of Chao Phraya River Basin, which is Nakhon Sawan area includes confluence of Nan River and Yom River, also confluence of Ping River and Nan River. The main purpose of this research is to understand the flood generation, estimate the flood volume and loss of paddy field, also recommends applicable flood counter measurement to ease the flood condition at downstream of Chao Phraya River Basin. In order to understand the flood condition, post-analysis is conducted at Nakhon Sawan. The post-analysis consists of field survey to measure the flood marks remained and interview with residents to understand living condition during flood. The 2011 Thailand flood generation at midstream is simulated using coupling of 1D and 2D hydrodynamic model to understand the flood generation during flood peak period. It is calibrated and validated using flood marks measured and streamflow data received from Royal Irrigation Department (RID). Validation of results shows good agreement between simulated result and actual condition. Subsequently, 3 scenarios of flood control are simulated and Geographic Information System (GIS) is used to assess the spatial distribution of flood extent and reduction of loss estimation at paddy field. In addition, loss estimation for paddy field at midstream is evaluated using GIS with the calculated inundation depth. Results show the proposed flood control at midstream able to minimize 5% of the loss of paddy field in 26 provinces.

  13. Multisite flooding hazard assessment in the Upper Mississippi River

    NASA Astrophysics Data System (ADS)

    Ghizzoni, Tatiana; Roth, Giorgio; Rudari, Roberto

    2012-01-01

    SummaryThis contribution presents an assessment of the joint probability distribution able to describe multi-site multi-basin flood scenarios in a high dimensionality framework. This goal will be pursued through two different approaches: the multivariate skew- t distribution and the Student copula with arbitrary margins. While copulas have been widely used in the modeling of hydrological processes, the use of the skew- t distribution in hydrology has been only recently proposed with reference to a trivariate application (Ghizzoni et al., 2010, Adv. Water Resour., 33, 1243-1255). Both methods are here applied and discussed in a context of considerably higher dimensionality: the Upper Mississippi River floods. In fact, to enhance the characteristics of the correlation structure, eighteen nested and non-nested gauging stations were selected, with significantly different contributing areas. Such conditions represent a challenge for both the skew- t and the copula approach. In perspective, the ability of such approaches in explaining the multivariate aspects of the relevant processes is needed to specify flood hazard scenarios in terms of their intensity, extension and frequency. When this is associated to the knowledge of location, value and vulnerability of exposed elements, comprehensive flood risk scenarios can be produced, and risk cumuli quantified, for given portfolios, composed of wherever located risks.

  14. Stratigraphic and sedimentologic response to Late Quaternary climate change and glacio-eustasy, Colorado River, Gulf Coastal Plain of Texas

    SciTech Connect

    Blum, M.D. . Dept. of Geology)

    1992-01-01

    This paper summarizes results of investigations of the Colorado River, Gulf Coastal Plain of Texas, which provides a detailed record of fluvial response to late Quaternary climatic change and glacio-eustatic sea level rise. Four allostratigraphic units of late Pleistocene through modern age are differentiated in the bedrock-confined lower Colorado valley on the Inner Coastal Plain. Here up to 10 meters of late Pleistocene sediments underlie a terrace at 17--20 meters above the present-day channel. Two distinct allostratigraphic units underlie an extensive Holocene terrace at 12--14 meters above the present-day channel. Allostratigraphic units and bounding disconformities correlate with climatic changes that have been identified from paleobiological data, and represent stratigraphic response to changes in the relationship between discharge and sediment supply. In addition, changes in sedimentary facies through time represents a response to changes in climate coupled with a protracted degradation of upland soil mantles. This degradation of soils altered the rate at which precipitation inputs were transferred to stream channels as runoff, which led to increases in the peakedness of flood hydrographs and changes in the relative importance of channel versus floodplain depositional environments. Increased flood stages during the late Holocene promoted the increasing importance of floodplain construction by vertical accretion, and late Holocene to modern allostratigraphic units contain thick vertical accretion facies. These same allostratigraphic units and component facies persist downvalley to the Outer Coastal Plain, but stratigraphic architecture changes as a result of the last glacio-eustatic cycle. Here late Holocene and modern sediments onlap and bury late Pleistocene and early to middle Holocene stratigraphic units that were emplaced during the last sea level lowstand and the transgression that followed.

  15. Flood forecasting for River Mekong with data-based models

    NASA Astrophysics Data System (ADS)

    Shahzad, Khurram M.; Plate, Erich J.

    2014-09-01

    In many regions of the world, the task of flood forecasting is made difficult because only a limited database is available for generating a suitable forecast model. This paper demonstrates that in such cases parsimonious data-based hydrological models for flood forecasting can be developed if the special conditions of climate and topography are used to advantage. As an example, the middle reach of River Mekong in South East Asia is considered, where a database of discharges from seven gaging stations on the river and 31 rainfall stations on the subcatchments between gaging stations is available for model calibration. Special conditions existing for River Mekong are identified and used in developing first a network connecting all discharge gages and then models for forecasting discharge increments between gaging stations. Our final forecast model (Model 3) is a linear combination of two structurally different basic models: a model (Model 1) using linear regressions for forecasting discharge increments, and a model (Model 2) using rainfall-runoff models. Although the model based on linear regressions works reasonably well for short times, better results are obtained with rainfall-runoff modeling. However, forecast accuracy of Model 2 is limited by the quality of rainfall forecasts. For best results, both models are combined by taking weighted averages to form Model 3. Model quality is assessed by means of both persistence index PI and standard deviation of forecast error.

  16. Consequences of an unusual flood event: case study of a drainage canal breach on a fluvial plain in NE Slovenia

    NASA Astrophysics Data System (ADS)

    Vidmar, Ines; Ambrožič, Bojan; Debeljak, Barbara; Dolžan, Erazem; Gregorin, Špela; Grom, Nina; Herman, Polona; Keršmanc, Teja; Mencin, Eva; Mernik, Natalija; Švara, Astrid; Trobec, Ana; Turnšek, Anita; Vodeb, Petra; Torkar, Anja; Brenčič, Mihael

    2013-04-01

    On November 4-6 2012 heavy precipitation resulted in floods in the middle and lower course of Drava River in NE Slovenia causing damage to many properties in the flooded area. The meteorological situation that led to consequent floods was characterized by high precipitation, fast snowmelt, SW wind and relatively high air temperature. The weather event was part of a cyclone which was spreading over the area of North, West and Central Europe in the direction of Central Europe and carried with it the passing of a cold front through Slovenia on November 4 and 5. The flood wave travelled on the Drava River from Austria to Slovenia past the 11 hydroelectric power plants after eventually moving over the Slovenian-Croatian border. The river discharge increased in the early morning of November 5 reaching 3165 m3/s. This work focuses on a single event in the Ptujsko polje where among other damage caused by the flooding, the river broke through the drainage canal of the Formin hydroelectric power plant and changed its course. The Ptujsko polje contains two fluvial terraces. In the area of Formin HPP, the lower terrace is 1.5 km wide and the surface as well as the groundwater gradient shift from west to east with the groundwater flowing parallel to the river. These characteristics contributed to the flooding and consequential breach in the embankment of the drainage canal. Several aspects of the recent floods are discussed including a critical reflection of data accessibility, possible causes and mechanisms behind it as well as the possibility of its forecasting. Synthesis of accessible data from open domain sources is performed with emphasis on geological conditions. Discharge and precipitation data from the data base of Slovenian Environment Agency are collected, reviewed and analyzed. The flood event itself is analyzed and described in detail. It is determined that the flood wave was different from the ones regulated by natural processes which points to an anthropogenic

  17. Magnitude, frequency and timing of floods in the Tarim River basin, China: Changes, causes and implications

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Sun, Peng; Chen, Xiaohong; Kong, Dongdong

    2016-04-01

    The flood magnitude, frequency and timing were analyzed using daily flow data for a period of 1950-2007 from 8 stations in the Tarim River basin, a typical arid inland river basin in China. The causes for flood occurrences were investigated using daily meteorological data. Results indicated that precipitation and temperature were increasing persistently since the 1980s and significant increases in precipitation and temperature were observed after the 1990s. As a result, floods amplified at annual and seasonal time scales in most tributary basins after the 1980s. The floods in the basin are mainly attributed to rainstorms and melting of glaciers and snowpack, and rainstorm-induced floods and temperature-induced floods were dominant in the basin. Extreme floods, such as the three largest recorded floods and floods with return periods > 10 years occurred mainly after the 1990s, with significant increase in flood-induced crop and livestock losses. It was found that heavy floods in many tributary basins often occurred about the same time. The Tarim River basin is a typical arid inland river basin in a high altitude zone and amplifying floods in recent decades, particularly after 1990s, is arousing considerable concern for mitigation of flood hazards. Results of this study shed light on hydrological response of arid regions to warming climate at higher latitudes in the northern hemisphere.

  18. Comparisons of PBDE composition and concentration in fish collected from the Detroit River, MI and Des Plaines River, IL

    USGS Publications Warehouse

    Rice, C.P.; Chernyak, S.M.; Begnoche, L.; Quintal, R.; Hickey, J.

    2002-01-01

    Polybrominated diphenyl ethers (PBDEs) were identified in fish collected from the Detroit River, MI and Des Plaines Rivers, IL. In the Detroit River fish, carp and large mouth bass, the congener patterns were dominated by the 2,2′,4,4′-tetrabromo (BDE-47) congener; however, in Des Plaines River carp the dominant isomers were the heptabromo congeners BDE-181 and BDE-183 and lesser amounts of another heptabromo congener, BDE-190, and two hexabromo congeners, BDE-154 and BDE-153. Three possible sources exist for these less-commonly identified PBDE congeners: (a) waste discharge from manufacturing or discarded products near the river, (b) public owned treatment work (POTW) effluents which constitute more than 75% of the flow in the Des Plaines River, (c) or formation of these congeners by debromination of in-place deposits of decabromodiphenyl ether. Average concentration totals (sum of concentrations for seven of the dominant PBDE congeners) were similar on a wet weight bases for the carp (5.39 ng/g wet weight) and large mouth bass (5.25 ng/g) in the Detroit River samples; however, the bass were significantly higher, ρ=0.01, when compared on a lipid basis (bass-163 ng/g vs. carp-40.5 ng/g lipid weight). Some of the PBDE congeners were positively correlated with increasing lipid levels in both fish species. Average total PBDE concentrations in the carp from the Des Plaines River (12.48 ng/g wet weight) were significantly higher, ρ=0.01, than in carp from the Detroit River. The residues were isolated using standard organochlorine methods for fish and analyzed using gas chromatography/mass spectrometry-negative chemical ionization methods.

  19. INVERSE ESTIMATION OF BED ROUGHNESS COEFFICIENTS IN OPEN-CHANNELS WITH FLOOD PLAINS BY USING ADJOINT SHALLOW-WATER MODEL

    NASA Astrophysics Data System (ADS)

    Yoshida, Keisuke

    This study describes the methodology on an inverse estimation of the bed roughness coefficients in open-channels with flood plains. The coefficients are identified by an adjoint shallow-water model and an optimal control theory. Several twin experiments were carried out with the synthetic data in order to validate the method. The data assimilated consists of values of the water level and depth-averaged velocity. The results showed that the coefficients can be accurately predicted with the velocity data, while the estimation fails with the water level data. This is because the cross-sectionally distributed bed roughness does not always influence the lateral profile of the water level, but the local velocity field. Namely, the relation between the lateral profile of the water level and the bed roughness turns out to be non-unique in open-channels with flood plains.

  20. Mount St. Helens Project. Cowlitz River Levee Systems, 2009 Level of Flood Protection Update Summary

    DTIC Science & Technology

    2010-02-04

    mountainous region between Mount St. Helens and Mt. Rainier to the Columbia River at Longview, WA. The upstream-most levee is at Castle Rock where a... Mount St. Helens Project Cowlitz River Levee Systems 2009 Level of Flood Protection Update Summary Cowlitz River at Longview... Mount St. Helens Project. Cowlitz River Levee Systems, 2009 Level of Flood Protection Update Summary 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  1. Braid-plain dynamics and bank erosion along the Matanuska River, Alaska

    NASA Astrophysics Data System (ADS)

    Curran, J. H.

    2009-12-01

    Braid-plain activity and geomorphic features in the Matanuska River in southcentral Alaska between 1949 and 2006 were examined to support a bank erosion hazard assessment. The glacial Matanuska River drains 6,500 km2 and is braided for 85 percent of its 150 km course, which parallels a major highway and flows through the towns of Sutton and Palmer, Alaska. The historical braid plain was defined as the envelope of areas with active channels, unvegetated bars, or vegetated bars with evidence of channels since 1949 and delineated in a GIS from 1949, 1962, and 2006 aerial orthoimagery. We created a strip map of bank height and composition (primarily bedrock and unconsolidated sediment) at braid-plain margins and outlined valley bottom features (terraces and tributary fans) adjacent to the braid plain to assess erodibility. Braid-plain dynamism has created a mosaic of extensive lightly vegetated bars interspersed with forested bars in strips along the banks and in small mid-channel positions. Abandoned channels filled with groundwater or tributary streamflow have created clearwater side channels within these bars that serve as the primary spawning location for chum, sockeye, and coho salmon in the Matanuska River basin. Erosion magnitudes for the periods 1949-1962 and 1962-2006 were computed as braid-plain expansion at transects across the historical braid-plain boundaries. Episodic, spatially distributed erosion and the antiquity of some eroded surfaces suggests that average annual erosion rates at a location are not adequate for assessing future erosion at that location in a braid plain. Lateral expansion caused bank erosion of 100 -275 m at 20 locations over the full period, about half at tributary fans and most occurring in a single time period. Minor growth of tributary fans constricted the braid plain, and emerging terraces have the potential to shrink the braid plain. Eroded banks included undated but pre-historic fluvial terraces and tributary fans. Where

  2. The 2010 flood in the Sele river basin (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Biafore, M.; Cristiano, L.; Gentile, S.; Gentilella, M.; Giannattasio, M.; Napoli, F.

    2012-04-01

    On the 7th of November 2010, a deep Atlantic trough across the North-African Coast triggered an intense flux of hot-humid and unstable currents toward Italy. On the 8th of November, this trough extended over the Italian Peninsula, enhancing wind currents from south-west in the lower atmospheric layers in the west-facing regions. This structure has been almost stable within the following three days, from the 8th to the 10th of November. The southern currents, filled of humidity gained during their passage over the Tyrrhenian Sea, have generated diffuse rainstorms. Raingauges located along the Apennine range of the Campania Region have measured rainfall depths with estimated return period up to 90 years within time intervals of 48 hours, particularly across the Sele River basin (5.000 km2). At catchment scale, the overall rainfall event appeared as an unusual succession of three important sub-events, with a temporal scale of ten hours each. These sub-events generated three successive floods, with increasing peak values, within Sele sub-catchments (spatial extents of 1000-2000 km2) characterised by response times of the order of 10 hours. The overall event generated a major flood within the Sele River basin, with relevant damages to urban infrastructures, network utilities, agricultural and industrial settlements. The measured water level within Sele cross-section at Albanella (10 km uplsope the sea outlet) was the highest level ever measured since the gauge station has been established in 1933. A time series of spatial average rainfall depth from 1933 to 2010 have been reconstructed from historical daily raingauge data, in order to assess the return period of the spatial average rainfall depth across the entire Sele River basin. The probabilistic distribution of the catchment average annual maximum rain depth in two days is efficiently modelled by Gumbel law and the estimated return period of the two-days rain depth in 8-9 November 2010 is 130 years. Campania Region

  3. Stream-sediment geochemistry in mining-impacted streams : sediment mobilized by floods in the Coeur d'Alene-Spokane River system, Idaho and Washington

    USGS Publications Warehouse

    Box, Stephen E.; Bookstrom, Arthur A.; Ikramuddin, Mohammed

    2005-01-01

    Environmental problems associated with the dispersion of metal-enriched sediment into the Coeur d'Alene-Spokane River system downstream from the Coeur d'Alene Mining District in northern Idaho have been a cause of litigation since 1903, 18 years after the initiation of mining for lead, zinc, and silver. Although direct dumping of waste materials into the river by active mining operations stopped in 1968, metal-enriched sediment continues to be mobilized during times of high runoff and deposited on valley flood plains and in Coeur d'Alene Lake (Horowitz and others, 1993). To gauge the geographic and temporal variations in the metal contents of flood sediment and to provide constraints on the sources and processes responsible for those variations, we collected samples of suspended sediment and overbank deposits during and after four high-flow events in 1995, 1996, and 1997 in the Coeur d'Alene-Spokane River system with estimated recurrence intervals ranging from 2 to 100 years. Suspended sediment enriched in lead, zinc, silver, antimony, arsenic, cadmium, and copper was detected over a distance of more than 130 mi (the downstream extent of sampling) downstream of the mining district. Strong correlations of all these elements in suspended sediment with each other and with iron and manganese are apparent when samples are grouped by reach (tributaries to the South Fork of the Coeur d'Alene River, the South Fork of the Coeur d'Alene River, the main stem of the Coeur d'Alene River, and the Spokane River). Elemental correlations with iron and manganese, along with observations by scanning electron microscopy, indicate that most of the trace metals are associated with Fe and Mn oxyhydroxide compounds. Changes in elemental correlations by reach suggest that the sources of metal-enriched sediment change along the length of the drainage. Metal contents of suspended sediment generally increase through the mining district along the South Fork of the Coeur d'Alene River, decrease

  4. Flood of May 23, 2004, in the Turkey and Maquoketa River basins, northeast Iowa

    USGS Publications Warehouse

    Eash, David A.

    2006-01-01

    Severe flooding occurred on May 23, 2004, in the Turkey River Basin in Clayton County and in the Maquoketa River Basin in Delaware County following intense thunderstorms over northeast Iowa. Rain gages at Postville and Waucoma, Iowa, recorded 72-hour rainfall of 6.32 and 6.55 inches, respectively, on May 23. Unofficial rainfall totals of 8 to 10 inches were reported in the Turkey River Basin. The peak discharge on May 23 at the Turkey River at Garber streamflow-gaging station was 66,700 cubic feet per second (recurrence interval greater than 500 years) and is the largest flood on record in the Turkey River Basin. The timing of flood crests on the Turkey and Volga Rivers, and local tributaries, coincided to produce a record flood on the lower part of the Turkey River. Three large floods have occurred at the Turkey River at Garber gaging station in a 13-year period. Peak discharges of the floods of June 1991 and May 1999 were 49,900 cubic feet per second (recurrence interval about 150 years) and 53,900 cubic feet per second (recurrence interval about 220 years), respectively. The peak discharge on May 23 at the Maquoketa River at Manchester gaging station was 26,000 cubic feet per second (recurrence interval about 100 years) and is the largest known flood in the upper part of the Maquoketa River Basin.

  5. The floods of March 1936, part 2, Hudson River to Susquehanna River region

    USGS Publications Warehouse

    Grover, Nathan C.

    1937-01-01

    During the period March 9-22, 1936, there occurred in close succession over the northeastern United States, from the James and upper Ohio River Basins in Virginia and Pennsylvania to the river basins of Maine, two extraordinarily heavy storms, in which the precipitation was almost entirely in the form of rain. The depths of rainfall mark this period as one of the greatest concentrations of precipitation, in respect to time and magnitude of the area covered, of which there is record in this country. At the time of the rain there were also accumulations of snow on the ground over much of the storm-affected region that were large for the season. The comparatively warm temperatures associated with the storms thawed the snow and added materially to the quantities of water to be disposed of by drainage into the waterways, by surface storage in lakes, ponds, and reservoirs, by absorption in the ground, and, probably in comparatively negligible degree, by evaporation. The total quantity of water that had to be disposed of in these ways ranged between 10 and 30 inches in depth over much of the region. The water disposed of by natural storage, absorption, and evaporation amounted to average depths over the many river basins generally within the range of 1 to 3 inches, with a significant degree of uniformity and systematic areal distribution. The remainder of the rain and snow water, generally much larger or even several times larger in amount than surface storage, absorption, and evaporation, required accommodation by the channels of the brooks, creeks, and rivers. There were generally two distinct flood peaks, and in many of the basins the destruction was seriously aggravated, especially during the first flood, by the break-up of thick ice cover accumulated through a winter of exceptionally continuous and severe cold weather. The resulting floods were extraordinarily severe, and records of river stages, extending on some streams back to or nearly to the time of settlement

  6. Flood risk assessment in European river basins--concept, methods, and challenges exemplified at the Mulde River.

    PubMed

    Meyer, Volker; Haase, Dagmar; Scheuer, Sebastian

    2009-01-01

    Flood risk assessment is an essential part of flood risk management, a concept that is becoming more and more popular in European flood policy and is part of the new European Union flood directive. This paper gives a brief introduction into the general concept and methods of flood risk assessment. Furthermore, 3 problems in the practical application of flood risk assessment, particularly on the river basin scale, are discussed: First, uncertainties in flood risk assessment; second, the inclusion of social and environmental flood risk factors; and third, the consideration of the spatial dimension of flood risk. In the 2nd part of the paper a multicriteria risk mapping approach is introduced that is intended to address these 3 problems.

  7. 33 CFR 165.930 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL. 165.930 Section 165.930 Navigation and Navigable Waters... River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL....

  8. D GIS for Flood Modelling in River Valleys

    NASA Astrophysics Data System (ADS)

    Tymkow, P.; Karpina, M.; Borkowski, A.

    2016-06-01

    The objective of this study is implementation of system architecture for collecting and analysing data as well as visualizing results for hydrodynamic modelling of flood flows in river valleys using remote sensing methods, tree-dimensional geometry of spatial objects and GPU multithread processing. The proposed solution includes: spatial data acquisition segment, data processing and transformation, mathematical modelling of flow phenomena and results visualization. Data acquisition segment was based on aerial laser scanning supplemented by images in visible range. Vector data creation was based on automatic and semiautomatic algorithms of DTM and 3D spatial features modelling. Algorithms for buildings and vegetation geometry modelling were proposed or adopted from literature. The implementation of the framework was designed as modular software using open specifications and partially reusing open source projects. The database structure for gathering and sharing vector data, including flood modelling results, was created using PostgreSQL. For the internal structure of feature classes of spatial objects in a database, the CityGML standard was used. For the hydrodynamic modelling the solutions of Navier-Stokes equations in two-dimensional version was implemented. Visualization of geospatial data and flow model results was transferred to the client side application. This gave the independence from server hardware platform. A real-world case in Poland, which is a part of Widawa River valley near Wroclaw city, was selected to demonstrate the applicability of proposed system.

  9. Generalized Exponential Distribution in Flood Frequency Analysis for Polish Rivers.

    PubMed

    Markiewicz, Iwona; Strupczewski, Witold G; Bogdanowicz, Ewa; Kochanek, Krzysztof

    2015-01-01

    Many distributions have been used in flood frequency analysis (FFA) for fitting the flood extremes data. However, as shown in the paper, the scatter of Polish data plotted on the moment ratio diagram shows that there is still room for a new model. In the paper, we study the usefulness of the generalized exponential (GE) distribution in flood frequency analysis for Polish Rivers. We investigate the fit of GE distribution to the Polish data of the maximum flows in comparison with the inverse Gaussian (IG) distribution, which in our previous studies showed the best fitting among several models commonly used in FFA. Since the use of a discrimination procedure without the knowledge of its performance for the considered probability density functions may lead to erroneous conclusions, we compare the probability of correct selection for the GE and IG distributions along with the analysis of the asymptotic model error in respect to the upper quantile values. As an application, both GE and IG distributions are alternatively assumed for describing the annual peak flows for several gauging stations of Polish Rivers. To find the best fitting model, four discrimination procedures are used. In turn, they are based on the maximized logarithm of the likelihood function (K procedure), on the density function of the scale transformation maximal invariant (QK procedure), on the Kolmogorov-Smirnov statistics (KS procedure) and the fourth procedure based on the differences between the ML estimate of 1% quantile and its value assessed by the method of moments and linear moments, in sequence (R procedure). Due to the uncertainty of choosing the best model, the method of aggregation is applied to estimate of the maximum flow quantiles.

  10. Geomorphic adjustment to hydrologic modifications along a meandering river: Implications for surface flooding on a floodplain

    NASA Astrophysics Data System (ADS)

    Edwards, Brandon L.; Keim, Richard F.; Johnson, Erin L.; Hupp, Cliff R.; Marre, Saraline; King, Sammy L.

    2016-09-01

    Responses of large regulated rivers to contemporary changes in base level are not well understood. We used field measurements and historical analysis of air photos and topographic maps to identify geomorphic trends of the lower White River, Arkansas, USA, in the 70 years following base-level lowering at its confluence with the Mississippi River and concurrent with flood control by dams. Incision was identified below a knickpoint area upstream of St. Charles, AR, and increases over the lowermost ~90 km of the study site to ~2 m near the confluence with the Mississippi River. Mean bankfull width increased by 30 m (21%) from 1930 to 2010. Bank widening appears to be the result of flow regulation above the incision knickpoint and concomitant with incision below the knickpoint. Hydraulic modeling indicated that geomorphic adjustments likely reduced flooding by 58% during frequent floods in the incised, lowermost floodplain affected by backwater flooding from the Mississippi River and by 22% above the knickpoint area. Dominance of backwater flooding in the incised reach indicates that incision is more important than flood control on the lower White River in altering flooding and also suggests that the Mississippi River may be the dominant control in shaping the lower floodplain. Overall, results highlight the complex geomorphic adjustment in large river-floodplain systems in response to anthropogenic modifications and their implications, including reduced river-floodplain connectivity.

  11. 33 CFR 165.T09-0166 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... waters of the Des Plaines River located between mile marker 286.0 (Brandon Road Lock and Dam) and mile marker 290.0 (point at which the Des Plaines River connects with the Chicago Sanitary and Ship Canal). (2... marker 290.0 (point at which the Chicago Sanitary and Ship Canal connects to the Des Plaines River)...

  12. On the use of InSAR technology to assess land subsidence in Jakarta coastal flood plain

    NASA Astrophysics Data System (ADS)

    Koudogbo, Fifame; Duro, Javier; Garcia Robles, Javier; Arnaud, Alain; Abidin, Hasanuddin Z.

    2014-05-01

    Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. It is situated on the northern coastal alluvial plane of Java which shares boundaries with West Java Province in the south and in the east, and with Banten Province in the west. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. The southern part of the city is hilly. Thirteen major rivers flow through Jakarta to the Java Sea. The Ciliwung River is the most significant river and divides the city West to East. In the last three decades, urban growing of Jakarta has been very fast in sectors as industry, trade, transportation, real estate, among others. This exponential development has caused several environmental issues; land subsidence is one of them. Subsidence in Jakarta has been known since the early part of the 20th century. It is mainly due to groundwater extraction, the fast development (construction load), soil natural consolidation and tectonics. Evidence of land subsidence exists through monitoring with GPS, level surveys and InSAR investigations. InSAR states for "Interferometric Synthetic Aperture Radar". Its principle is based on comparing the distance between the satellite and the ground in consecutive satellite passes over the same area on the Earth's surface. Radar satellites images record, with very high precision, the distance travelled by the radar signal that is emitted by the satellite is registered. When this distance is compared through time, InSAR technology can provide highly accurate ground deformation measurements. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion

  13. Flood Plain Information, East Branch Perkiomen Creek and Indian Creek, Bucks and Montgomery Counties, Pennsylvania.

    DTIC Science & Technology

    1974-10-01

    and continuing into the fol- lowing day caused flooding in the Borough of Sellersville. A flash flood warning had been issued for the area and the...INTELLIGENCER,(a) DECEMBER 21. 1973 RELATIVE TO THE FLOOD OF DECEMBER 20, 1973 BUCKS-MONTGOMERY STORM CLAIMS ONE LIFE A flash flood warning lasting

  14. The effect of the "Great Flood of 1993" on subsequent suspended sediment concentrations and fluxes in the Mississippi River Basin, USA

    USGS Publications Warehouse

    Horowitz, A.J.

    2006-01-01

    During the spring/summer of 1993, the upper Midwestern USA experienced unusually heavy precipitation (200-350% above normal). More than 500 gauging stations in the region were simultaneously above flood stage, and nearly 150 major rivers and tributaries over-topped their banks. This was one of the costliest floods in the history of the USA, and came to be known as the "Great Flood of 1993". An examination of the long-term daily sediment record for the Mississippi River at Thebes, Illinois (representing the middle, or lower part of the upper basin), indicates that the flood had a severe and long-lasting impact on subsequent suspended sediment concentrations (SSC) and annual suspended sediment fluxes in the basin. At Thebes, pre1993 (1981-1992) median discharge and SSC were about 5400 m3 s-1 and 304 mg L-1, respectively; whereas, post-1993 (1994-2004) median discharge and SSC were about 5200 m3 s-1 and 189 mg L-1, respectively. Clearly, the 1993 flood removed substantial amounts of "stored" bed sediment and/or readily erodible flood plain deposits, eliminating a major source of SSC for the Thebes site. Examination of additional, but discontinuous sediment records (covering the period from 1981-2004) for other sites in the basin indicates that current post-flood declines in SSC and suspended sediment fluxes range from a low of about 10% to a high of about 36%.

  15. Knife River: Early Village Life on the Plains. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Metcalf, Fay

    This document, from the lesson plan series, "Teaching with Historic Places," examines the Native Americans who lived on the plains along the Knife River in what is now North Dakota. Following an introductory section, the document sets out student objectives, teaching activities, readings, and illustrations. The teaching activity…

  16. Appendix E: Research papers. Manual versus digital LANDSAT analysis for modeling river flooding. [Black River, New York

    NASA Technical Reports Server (NTRS)

    Philipson, W. R. (Principal Investigator); Hafker, W. R.

    1980-01-01

    The comparative value of manual versus digital image analysis for determining flood boundaries is being examined in a study of the use of LANDSAT data for modeling flooding of the Black River, in northern New York. The work is an extension of an earlier study in which Black River flooding was assessed through visually interpreted, multi-date LANDSAT band 7 images. Based on the results to date, it appears that neither color-additive viewing nor digital analysis of LANDSAT data provide improvement in accuracy over visual analysis of band 7 images, for delineating the boundaries of flood-affected areas.

  17. Effectiveness of Water Infrastructure for River Flood Management: Part 2 - Flood Risk Assessment and Its Changes in Bangladesh

    NASA Astrophysics Data System (ADS)

    Kwak, Y.; Gusyev, M.; Arifuzzaman, B.; Khairul, I.; Iwami, Y.; Takeuchi, K.

    2015-06-01

    A case study of Bangladesh presents a methodological possibility based on a global approach for assessing river flood risk and its changes considering flood hazard, exposure, basic vulnerability and coping capacity. This study consists of two parts in the issue of flood change: hazard assessment (Part 1) and risk assessment (Part 2). In Part 1, a hazard modeling technology was introduced and applied to the Ganges, Brahmaputra and Meghna (GBM) basin to quantify the change of 50- and 100-year flood hazards in Bangladesh under the present (1979-2003) and future (2075-2099) climates. Part 2 focuses on estimating nationwide flood risk in terms of affected people and rice crop damage due to a 50-year flood hazard identified in Part 1, and quantifying flood risk changes between the presence and absence of existing water infrastructure (i.e., embankments). To assess flood risk in terms of rice crop damage, rice paddy fields were extracted and flood stage-damage curves were created for maximum risk scenarios as a demonstration of risk change in the present and future climates. The preliminary results in Bangladesh show that a tendency of flood risk change strongly depends on the temporal and spatial dynamics of exposure and vulnerability such as distributed population and effectiveness of water infrastructure, which suggests that the proposed methodology is applicable anywhere in the world.

  18. Solute geochemistry of the Snake River plain regional aquifer system, Idaho and eastern Oregon

    USGS Publications Warehouse

    Wood, W.W.; Low, W.H.

    1987-01-01

    Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Solute reactions indicate that calcite and silica are precipitated in the aquifer. Large amounts of sodium and chloride, relative to their concentration in the igneous rock, are being removed from the aquifer. Release of fluids from inclusions in the igneous rocks, and initial flushing of grain boundaries and pores of detrital marine sediments in interbeds are believed to be the source of the sodium chloride. Identification and quantification of reactions controlling solute concentrations in groundwater in the eastern plain indicate that the aquifer is not a large mixing vessel that simply stores and transmits water and solutes but is undergoing diagenesis and is both a source and sink for solutes. Reactions controlling solutes in the western Snake River basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake River Plain contains

  19. Flood-inundation maps for the Saddle River from Upper Saddle River Borough to Saddle River Borough, New Jersey, 2013

    USGS Publications Warehouse

    Watson, Kara M.; Hoppe, Heidi L.

    2013-01-01

    Digital flood-inundation maps for a 4.1-mile reach of the Saddle River from 0.6 miles downstream from the New Jersey-New York State boundary in Upper Saddle River Borough to 0.2 miles downstream from the East Allendale Road bridge in Saddle River Borough, New Jersey, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to select water levels (stages) at the USGS streamgage 01390450, Saddle River at Upper Saddle River, New Jersey. Current conditions for estimating near real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/nwis/uv?site_no=01390450. The National Weather Service (NWS) forecasts flood hydrographs at many places that are often collocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relations (in effect March 2013) at USGS streamgage 01390450, Saddle River at Upper Saddle River, New Jersey, and documented high-water marks from recent floods. The hydraulic model was then used to determine eight water-surface profiles for flood stages at 0.5-foot (ft) intervals referenced to the streamgage datum, North American Vertical Datum of 1988 (NAVD 88), and ranging from bankfull, 0.5 ft below NWS Action Stage, to the upper extent of the stage-discharge rating which is approximately 1 ft higher than the highest recorded water level at the streamgage. Action Stage is the stage which when reached

  20. Storm and flood of July 31-August 1, 1976, in the Big Thompson River and Cache la Poudre River basins, Larimer and Weld Counties, Colorado

    USGS Publications Warehouse

    McCain, Jerald F.; Shroba, R.R.

    1979-01-01

    the site during 88 years of flood history. At the gaging station on the North Fork Big Thompson River at Drake, the peak discharge on July 31 was 8,710 cubic feet per second as compared to the previous maximum discharge during 29 years of record of 1,290 cubic feet per second. Peak discharges for three small tributaries near the area of heaviest rainfall northeast of Estes Park exceeded previously recorded maximum discharges for basins of less than 4 square miles in Colorado. Stream velocities were rapid along the tributaries near the storm center and on the Big Thompson River in the canyon section, with average velocities of 20-25 feet per second being common. The flood crest on the Big Thompson River moved through the 7.7-mile reach between Drake and the canyon mouth in about 30 minutes for an average travel rate of 15 miles per hour, or about 23 feet per second. The peak discharge of the flood on the Big Thompson River at the canyon mouth exceeded the 100-year flood discharge for the site by a ratio of 1.8. Upstream in the Big Thompson River basin, the flood was even more rare being 3.8 times the estimated 100-year flood discharge at the site on the Big Thompson River just upstream from Drake. In the Cache la Poudre River basin, recurrence intervals were computed to be 100 years for the flood on Deadman Creek and 16 years for Rist Canyon and the Cache la Poudre River at the canyon mouth near Fort Collins. Although the rainfall and flood discharges were unusually large, they are not unprecedented for some areas along the eastern foothills and plains of Colorado. The May 1935 and June 1965 floods on some streams along the eastern plains greatly exceeded the 1976 flood peaks in the storm area. Prior floods on several other streams in the foothills have approximately equaled the 1976 peak discharges. PART B: Intense rainfall from the Big Thompson thunderstorm complex on the evening of July 31,1976, and the ensuing floods that evening and the fol

  1. Flood-inundation map library for the Licking River and South Fork Licking River near Falmouth, Kentucky

    USGS Publications Warehouse

    Lant, Jeremiah G.

    2016-09-19

    Digital flood inundation maps for a 17-mile reach of Licking River and 4-mile reach of South Fork Licking River near Falmouth, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with Pendleton County and the U.S. Army Corps of Engineers–Louisville District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Licking River at Catawba, Ky., (station 03253500) and the USGS streamgage on the South Fork Licking River at Hayes, Ky., (station 03253000). Current conditions (2015) for the USGS streamgages may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis). In addition, the streamgage information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The flood hydrograph forecasts provided by the NWS are usually collocated with USGS streamgages. The forecasted peak-stage information, also available on the NWS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, flood profiles were computed for the Licking River reach and South Fork Licking River reach by using a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current (2015) stage-discharge relations for the Licking River at Catawba, Ky., and the South Fork Licking River at Hayes, Ky., USGS streamgages. The calibrated model was then used to calculate 60 water-surface profiles for a sequence of flood stages, at 2-foot intervals, referenced to the streamgage datum and ranging from an elevation near bankfull to the elevation associated with a major flood that

  2. Reconnaissance Report for Section 205 Flood Damage Reduction Study, Mississippi River, Hull, Illinois

    DTIC Science & Technology

    1990-08-01

    River , Coon Rapids Dam to the Ohio River , Final Report, dated July 1986. This Corps of Engineers report presents the results of investigations into the...Mississippi River in Adams, Pike, and Calhoun Counties, Illinois. The Corps of Engineers improved this flood control system in the 1960’s. This system was...retarding/ desilting reservoirs. Various Corps of Engineers reports address the planning and engineering of this project. Flood Insurance Study. Village of

  3. Effects of flooding and drought on water quality in Gulf Coastal Plain streams in Georgia.

    PubMed

    Golladay, Stephen W; Battle, Juliann

    2002-01-01

    Since 1994, water-quality constituents have been measured monthly in three adjacent Coastal Plain watersheds in southwestern Georgia. During 1994, rainfall was 650 mm above annual average and the highest flows on record were observed. From November 1998 through November 2000, 19 months had below average rainfall. Lowest flows on record were observed during the summer of 2000. The watersheds are human-dominated with row-crop agriculture and managed forestlands being the major land uses. However, one watershed (Chickasawhatchee Creek) had 10 to 13% less agriculture and greater wetland area, especially along the stream. Suspended particles, dissolved organic carbon, NH4-N, and soluble reactive phosphorus concentrations were greater during wet and flood periods compared with dry and drought periods for each stream. Regional hydrologic conditions had little effect on NO3-N or dissolved inorganic carbon. Chickasawhatchee Creek had significantly lower suspended sediment and NO3-N concentrations and greater organic and inorganic carbon concentrations, reflecting greater wetland area and stronger connection to a regional aquifer system. Even though substantial human land use occurred within all watersheds, water quality was generally good and can be attributed to low stream drainage density and relatively intact floodplain forests. Low drainage density minimizes surface run-off into streams. Floodplain forests reduce nonpoint-source pollutants through biological and physical absorption. In addition to preserving water quality, floodplain forests provide important ecological functions through the export of nutrients and organic carbon to streams. Extreme low flows may be disruptive to aquatic life due to both the lack of water and to the scarcity of biologically important materials originating from floodplain forests.

  4. Braided stream and flood plain architecture: the Rio Vero Formation, Spanish Pyrenees

    NASA Astrophysics Data System (ADS)

    Jones, S. J.; Frostick, L. E.; Astin, T. R.

    2001-03-01

    Early- to middle-Miocene fluvial sandstones of the Rio Vero Formation were studied, in an area around the town of Barbastro, south central Pyrenees Spain. The outstanding quality of outcrops in this area allows a three-dimensional study of architectural elements. Six architectural elements are recognised, described in detail, and interpreted from three key localities. Seven main lithofacies were identified and sub-divided into gravelly, sandy and fine-grained lithofacies. The architectural elements and lithofacies have been combined with a hierarchy of depositional bounding surfaces to fully interpret the evolution of the depositional system at the meso- and macro-scale. Not only the different architectural elements and lithofacies of the complete braided fluvial system, but also the lateral variation of the architectural elements were emphasised in this study. Differential tectonic movements, seasonal climate change, and their effect on vertical and lateral evolution of the area were the main control on basin sedimentation, channel interconnection, palaeocurrent patterns, and consequently the fluvial architecture. The presence of lateral ramp anticlines caused the fluvial system to be laterally restricted, with the main channel-belts being located in the areas of highest subsidence and lowest topography. Intervening topographic highs acted as both flood plains and lateral barriers between the main channel systems. The proposed depositional model comprises broad, low-sinuosity, perennial, but seasonal moderate-energy streams. The sandstone architecture is dominated by channel-fill and sheet sands, and associated simple and more complex bars. Adjacent to the main channel-belts fine-grained sandstones, siltstones and immature paleosols occur. The along-strike relationship between major fluvial systems and their outlets into a foreland basin has important implications for the infill of the basin and the modelling of fluvial systems along mountain belt fronts.

  5. Columbia River flood basalts from a centralized crustal magmatic system

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Ramos, F. C.; Hart, G. L.; Patterson, J. D.; Brandon, A. D.

    2008-03-01

    The Columbia River Basalt Group in the northwestern United States, comprising about 230,000 cubic kilometres of rock, exhibits unusual patterns in lava distribution, geochemistry and its apparent relationship to regional tectonics. Consequently, there is little consensus on the origin of its magmas. Here, we examine the isotopic ratios of Sr, Nd, Pb and Os and trace-element abundances in Columbia River basalts. The results suggest that most of the lava was produced when magma derived from a mantle plume assimilated continental crust in a central magma chamber system located at the boundary between the North American craton and the accreted terranes of Idaho and Oregon. Other, related basalts are the product of mixing between the mantle plume and different types of regional upper mantle. Magma was then transported over a wide region by an extensive network of dykes, a process that has been identified in other flood basalt provinces as well. Interactions of the plume with surrounding upper mantle, and of mantle-derived magmas with regional crust, provide a relatively simple model to explain the more unusual features of the main-phase Columbia River Basalts.

  6. Floods of July 23-26, 2010, in the Little Maquoketa River and Maquoketa River Basins, Northeast Iowa

    USGS Publications Warehouse

    Eash, David A.

    2012-01-01

    Minor flooding occurred July 23, 2010, in the Little Maquoketa River Basin and major flooding occurred July 23–26, 2010, in the Maquoketa River Basin in northeast Iowa following severe thunderstorm activity over the region during July 22–24. A breach of the Lake Delhi Dam on July 24 aggravated flooding on the Maquoketa River. Rain gages at Manchester and Strawberry Point, Iowa, recorded 72-hour-rainfall amounts of 7.33 and 12.23 inches, respectively, on July 24. The majority of the rainfall occurred during a 48-hour period. Within the Little Maquoketa River Basin, a peak-discharge estimate of 19,000 cubic feet per second (annual flood-probability estimate of 4 to 10 percent) at the discontinued 05414500 Little Maquoketa River near Durango, Iowa streamgage on July 23 is the sixth largest flood on record. Within the Maquoketa River Basin, peak discharges of 26,600 cubic feet per second (annual flood-probability estimate of 0.2 to 1 percent) at the 05416900 Maquoketa River at Manchester, Iowa streamgage on July 24, and of 25,000 cubic feet per second (annual flood-probability estimate of 1 to 2 percent) at the 05418400 North Fork Maquoketa River near Fulton, Iowa streamgage on July 24 are the largest floods on record for these sites. A peak discharge affected by the Lake Delhi Dam breach on July 24 at the 05418500 Maquoketa River near Maquoketa, Iowa streamgage, located downstream of Lake Delhi, of 46,000 cubic feet per second on July 26 is the third highest on record. High-water marks were measured at five locations along the Little Maquoketa and North Fork Little Maquoketa Rivers between U.S. Highway 52 near Dubuque and County Road Y21 near Rickardsville, a distance of 19 river miles. Highwater marks were measured at 28 locations along the Maquoketa River between U.S. Highway 52 near Green Island and State Highway 187 near Arlington, a distance of 142 river miles. High-water marks were measured at 13 locations along the North Fork Maquoketa River between

  7. A remote sensing approach for connecting the historic 2011 Mississippi River flood to wetland sedimentation on the Delta

    NASA Astrophysics Data System (ADS)

    Falcini, Federico; Colella, Simone; Volpe, Gianluca; Khan, Nicole; Macelloni, Leonardo; Santoleri, Rosalia; Horton, Benjamin; Jerolmack, Douglas

    2013-04-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert additional water to the adjacent Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. Since standard products available from MyOcean were not suitable for this purpose an ad hoc processing was developed to establish a relationship between field suspended sediment concentration (SSC) data and the corrected MODIS reflectance at 645 nm. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area, and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Little accumulation occurred along the shoreline between these river sources. The correspondence between zones of high shoreline deposition, and coastal SSC patterns indentified from satellite data, is strongly suggestive of plume-derived deposition on marshes. Our findings allow us to set an hydrodynamic theory that provides a mechanistic link between river-mouth dynamics and wetland sedimentation patterns, which is relevant for plans to restore deltaic wetlands.

  8. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    SciTech Connect

    Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

  9. Spatial variations in the magnitude of the 1993 floods, Raccoon River basin, Iowa

    NASA Astrophysics Data System (ADS)

    Prestegaard, Karen L.; Matherne, Anne M.; Shane, Brendan; Houghton, Kevin; O'Connell, Michael; Katyl, Nancy

    1994-08-01

    The persistent position of a mid-level circulation pattern in the summer of 1993 supported the formation of frequent storms in the upper Midwest (Bell et al., 1993). Storm events that occurred during this period caused multiple episodes of flooding in the region (Wahl et al., 1993). The high floods along the upper Mississippi River generated debates about the effectiveness of flood control measures and the effects of land use on flood peak discharges. In order to examine spatial variations in flood peak discharges, we surveyed flood channels and flood profiles on the Raccoon River and its tributaries in west-central Iowa. The Raccoon River basin has variable topography and land use, including some of the most intensely agricultural land in the United States. Extensive ditch networks and subsurface tile drain systems have been installed to enhance runoff and accelerate drainage. We found that sites within and downstream of modified channels had higher magnitude floods than than other comparably sized basins in the Raccoon River basin and the upper Midwest for which data were available. Erosion patterns also followed land use patterns; the upper portions of channelized Raccoon River tributaries experienced short times of flooding and had less erosion than downstream channelized reaches that were severely eroded and had significant damage to bridges and other structures.

  10. Low-energy Beach ridge sedimentation in the Mississippi River delta plain

    SciTech Connect

    Gerdes, R.G.; Penland, S.

    1985-01-01

    Regressive beach ridge plains, such as Cheniere Caminada, Cheniere Caillou, and Cheniere Ronquille, are common depositional features within the Mississippi River delta plain in southeastern Louisiana. Vibracored sequences indicate beach ridge formation is a 3 stage process: Stage 1: Distributary Progradation, followed by Stage 2: Longshore Transport Interception, and completed by Stage 3: Beach Ridge Progradation. Cheniere Caminada is the largest beach ridge plain and is associated with the Late Lafourche delta. Radiocarbon dates indicate beach ridge building began approximately 720 years BP, when the Bayou Lafourche distributaries built seaward of the older, retreating Bayou Blue shoreline and intercepted westward longshore sediment transport, resulting in the progradation of Cheniere Caminada. Near the fan apex, beach ridges are 7-8 m thick and thin westward 2-3 m thick against the levees of Bayou Moreau. A typical beach ridge vertical sequence coarsens upward, with shoreface silty sands overlain by a thin cap of beach, washover, and aeolian sands. Beach ridge progradation in this area ceased approximately 300 years BP with the abandonment of Bayou Lafourche. The documentation of multiple regressive beach ridge plains suggest these deposits are stratigraphically more significant in the Mississippi River delta plain than recognized previously. The regressive beach ridge sequence documented in this study both stratigraphically and genetically contrasts with the classic transgressive chenier ridges of southwestern Louisiana.

  11. Climatic variability and flood frequency of the Santa Cruz River, Pima County, Arizona

    USGS Publications Warehouse

    Webb, Robert H.; Betancourt, Julio L.

    1992-01-01

    Past estimates of the 100-year flood for the Santa Cruz River at Tucson, Arizona, range from 572 to 2,780 cubic meters per second. An apparent increase in flood magnitude during the past two decades raises concern that the annual flood series is nonstationary in time. The apparent increase is accompanied by more annual floods occurring in fall and winter and fewer in summer. This greater mixture of storm types that produce annual flood peaks is caused by a higher frequency of meridional flow in the upper-air circulation and increased variance of ocean-atmosphere conditions in the tropical Pacific Ocean. Estimation of flood frequency on the Santa Cruz River is complicated because climate affects the magnitude and frequency of storms that cause floods. Mean discharge does not change significantly, but the variance and skew coefficient of the distribution of annual floods change with time. The 100-year flood during El Niffo-Southern Oscillation conditions is 1,300 cubic meters per second, more than double the value for other years. The increase is mostly caused by an increase in recurvature of dissipating tropical cyclones into the Southwestern United States during El Niffo-Southern Oscillation conditions. Flood frequency based on hydroclimatology was determined by combining populations of floods caused by monsoonal storms, frontal systems, and dissipating tropical cyclones. For 1930-59, annual flood frequency is dominated by monsoonal floods, and the estimated 100-year flood is 323 cubic meters per second. For 1960-86, annual flood frequency at recurrence intervals of greater than 10 years is dominated by floods caused by dissipating tropical cyclones, and the estimated 100-year flood is 1,660 cubic meters per second. For design purposes, 1,660 cubic meters per second might be an appropriate value for the 100-year flood at Tucson, assuming that climatic conditions during 1960-86 are representative of conditions expected in the immediate future.

  12. Survival of plains cottonwood (Populus deltoides subsp. monilifera) and saltcedar (Tamarix ramosissima) seedlings in response to flooding

    USGS Publications Warehouse

    Gladwin, D.N.; Roelle, J.E.

    1998-01-01

    We examined the response of first year saltcedar (Tamarix ramosissima) and plains cottonwood (Populus deltoides subsp. monilifera) seedlings to flooding in fall (25 days) and spring (28 days) using potgrown plants (12-18 individuals/26.5-liter pot). Seedlings were initially counted in all pots prior to fall treatment. Survival was calculated as the proportion of seedlings in each pot still alive following spring treatment. Mean survival rates of seedlings flooded in fall (saltcedar = 0.8%, cottonwood = 20.8%, n = 14 pots) were lower compared to the spring flooding treatment (saltcedar = 91.1%, cottonwood = 92.2%, n = 13) and control (saltcedar = 93.9%, cottonwood = 98.7%, n = 14). We used multiple response permutation procedures to detect omnibus distributional differences in survival data (total tests = 9) because assumptions of normality and equal variance were not met. Survival distributions differed between saltcedar and cottonwood fall flooding groups (P 0.07). Smaller size and consequent lack of energy reserves may account for lower survival of saltcedar compared to cottonwood in the fall treatment and for lower survival of both species in the fall treatment compared to the spring treatment. Fall flooding for controlling first year saltcedar seedlings is suggested as a potentially useful technique in riparian habitat restoration and management in the southwestern United States.

  13. Reconstruction of The Extreme Flood Series of The Tiber River In Rome From The Xv Century

    NASA Astrophysics Data System (ADS)

    Calenda, G.; Calvani, L.; Mancini, C. P.; Volpi, E.

    The stage measurements of extreme flood events of the Tiber River in Rome constitute one of the longer available hydrologic records. In fact we are fairly sure of knowing the peak stages of all the extreme floods which flooded the town of Rome since the XV century. It is an almost complete record covering more than 500 years. An effort to evaluate the peak flow of the observed events may be very helpful for the understanding of the long term behaviour of the extreme flood events. The case of the Tiber River in Rome is particularly favourable, since several informations are available: a) a long record of daily stage measurements up to the XVIII century; b) several records of daily rainfall depth measurement at rain gauges in the Tiber catchment extending at least up to the middle of the XIX century; c) detailed surveys executed immediately after the great flood of 1870, that flooded the town of Rome, before the extensive modifications of the town and of the river bed, following the annexation of the town to the kingdom of Italy, including: the town and of the river bed, maximum flood levels in the river and in the town, the food hydrograph; d) a less detailed survey of the river bed executed in 1744; e) an extremely rich iconography, showing the conditions of the Tiber banks starting from the XVI century; f) contemporary description of several extreme floodings; g) a rich series of flow measurements and bed surveys after the great flood of 1870 to present days. Using a monodimensional steady state model to compute flow profiles in the river bed, a bidimensional hydrodinamic model to simulate the flooding of the town, and correlating the estimated flows and rainfall records for control purposes, a reasonable reconstruction of a five century long extreme flood series has been attempte.

  14. Floods of July 19-25, 1999, in the Wapsipinicon and Cedar River basins, northeast Iowa

    USGS Publications Warehouse

    Ballew, J.L.; Eash, D.A.

    2001-01-01

    Severe flooding occurred during July 19-25, 1999, in the Wapsipinicon and Cedar River Basins following two thunderstorms over northeast Iowa. During July 18-19, as much as 6 inches of rainfall was centered over Cerro Gordo, Floyd, Mitchell, and Worth Counties. During July 20-21, a second storm occurred in which an additional rainfall of as much as 8 inches was centered over Chickasaw and Floyd Counties. The cumulative effect of the storms produced floods with new maximum peak discharges at the following streamflow-gaging stations: Wapsipinicon River near Tripoli, 19,400 cubic feet per second; Cedar River at Charles City, 31,200 cubic feet per second (recurrence interval about 90 years); Cedar River at Janesville, 42,200 cubic feet per second (recurrence interval about 80 years); and Flood Creek near Powersville, 19,000 cubic feet per second. Profiles of flood elevations for the July 1999 flood are presented in this report for selected reaches along the Wapsipinicon, Cedar, and Shell Rock Rivers and along Flood Creek. Information about the river basins, rain storms, and flooding are presented along with information on temporary bench marks and reference points in the Wapsipinicon and Cedar River Basins.

  15. Irrigated acreage and other land uses on the Snake River Plain, Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, Gerald F.; Goodell, S.A.

    1986-01-01

    Prompted by the need for a current, accurate, and repeatable delineation of irrigated acreage on the Snake River Plain, the U.S. Geological Survey entered into a cooperative agreement with the Idaho Department of Water Resources Image Analysis Facility and the U.S. Bureau of Reclamation to delineate 1980 land use form Landsat data. Irrigated acreage data were needed as input to groundwater flow models developed by the U.S. Geological Survey in a study of the regional aquifer system underlying the Snake River Plain. Single-date digital multispectral scanner data analyzed to delineate land-use classes. Source of irrigation water (surface water, ground water, and combined) was determined from county maps of 1975 water-related land use, data from previous investigations, and field checking. Surface-water diversions for irrigation on the Snake River Plain began in the 1840's. With the stimulus of Federal aid authorized by the Desert Land Act, Carey Act, and Reclamation Act, irrigated area increased rapidly in the early 1900's. By 1929, 2.2 million acres were irrigated. Ground water became and important source of irrigation water after World War II. In 1980, about 3.1 million acres of the Snake River Plain were irrigate: 2.0 million acres with surface water, 1.0 million with ground water, and 0.1 million with combined surface and ground water. About 5.2 million acres (half of the plain) are undeveloped rangeland, 1.0 million acres (one-tenth) are classified as barren. The remaining land is a mixture of dryland agriculture, water bodies, wetland, forests, and urban areas.

  16. Floods of 1950 in the upper Mississippi River and Lake Superior basins in Minnesota

    USGS Publications Warehouse

    Paulsen, C.G.

    1953-01-01

    In areal coverage and magnitude of peak discharge the floods of April-May 1950 in the Missouri River Basin in North and South Dakota were unprecedented in the area. These floods were characterized by an extremely late spring breakup of ice, by great flood peaks resulting from snow melt, and by two separate floods in the James River Valley in less than a month. The primary cause of the floods was the rapid melting of the season's great accumulation of snow, one of the deepest on record. In the period between the normal spring breakup time and the actual breakup of river ice, considerably more snow accumulated. Some of this was melted by a few .warm days and the melt was stored as water behind snow barriers in upland watercourses. A sudden increase in temperature beginning April 13 and lasting until most of the snow had been converted into runoff resulted in rapid rise of flood waters. Tributary flood waters made the Missouri River from Mobridge to Yankton, S. Oak., rise to near the maximum recorded discharge. At Sioux City, Iowa, the 1950 flood peak-discharge exceeded any previously recorded by the Geological Survey. The center of the flooded area west of the Missouri River lay m the Cannonball River Basin which had the greatest water content of snow on the ground just before the ice broke up Floods north and south of this area were relatively less intense. Scattered records of the Cannonball River and a study of newspaper accounts and other information show that the flood of 1950 was greatest since the area was settled. Flooding of the James River at Jamestown was the greatest since 1897, and the floods of April and May 1950 were of nearly the same stage. Itemized flood damages were made by Federal and State agencies, and relief was sent to the area by the Department of the Army and the American National Red Cross. Data include records of stage and discharge at 54 gaging stations for the period of flood, a summary of peak discharges and comparative data for past

  17. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Setback and community flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General §...

  18. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Setback and community flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General §...

  19. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Setback and community flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General §...

  20. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Setback and community flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General §...

  1. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Setback and community flood... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General §...

  2. Flood of April 2-3, 2005, Neversink River Basin, New York

    USGS Publications Warehouse

    Suro, Thomas P.; Firda, Gary D.

    2006-01-01

    Heavy rain on April 2-3, 2005 produced rainfall amounts of 3 inches to almost 6 inches within a 36-hour period throughout the Delaware River basin. Major flooding occurred in the East and West Branches of the Delaware River and their tributaries, the main stem of the Delaware River and the Neversink River, a major tributary to the Delaware River. The resultant flooding damaged hundreds of homes, caused millions of dollars in damage to infrastructure in Orange and Sullivan Counties, and forced more than 1,000 residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Some of the most extensive flooding occurred along the Neversink and Delaware Rivers in Orange and Sullivan Counties, New York. Disaster recovery assistance from the April 2005 flooding in New York stood at almost $35 million in 2005, at which time more than 3,400 New Yorkers had registered for Federal aid. All U.S. Geological Survey stream-gaging stations on the Neversink River below the Neversink Reservoir recorded peak water-surface elevations higher than those recorded during the September 2004 flooding. Peak water-surface elevations at some study sites on the Neversink River exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey stream-gaging stations were the highest ever recorded. Several U.S. Geological Survey stream-gaging stations on the Delaware River also recorded peak water-surface elevations that exceeded those recorded during the September 2004 flooding.

  3. Coastal Evolution of the Mississippi River Chenier Plain: A Geomorphic Process-Response Model

    NASA Astrophysics Data System (ADS)

    McBride, R. A.; Taylor, M. J.; Byrnes, M. R.

    2007-12-01

    Using 28 topographic profiles, air-photo interpretation, and historical shoreline-change data, coastal processes were evaluated along the Mississippi River Chenier Plain to explain the occurrence, distribution, and geomorphic hierarchy of primary landforms. The Louisiana Chenier Plain, classified as a low-profile, microtidal, storm- dominated coast, is located west and downdrift of the Mississippi River deltaic plain. This late-Holocene, marginal-deltaic environment is 200 km long, less than 30 km wide, and composed of mud deposits capped by marsh interspersed with thin sand- and shell-rich ridges ("cheniers") that are less than 4 m in elevation. Most Chenier-Plain ridges represent open-Gulf paleoshorelines. Past shoreline morphodynamics allow ridges to be classified as transgressive (cheniers), regressive (beach ridges), or laterally accreted (spits). Geomorphic zones that contain two or more regressive, transgressive, or laterally accreted ridges are termed complexes. Consequently, we further refine the Chenier-Plain definition by Otvos and Price (1979, Marine Geology) and define Chenier Plain as containing at least two or more chenier complexes. As such, a geomorphic hierarchy of landforms is devised relative to dominant coastal process. The Chenier Plain is defined as a first-order feature (5000 km2) composed of three second-order features (30 to 300 km2): chenier complex, beach ridge complex, and spit complex. Individual ridges of each complex type were further separated into third-order features: chenier, beach ridge, and spit. To understand long-term evolution of the Chenier Plain, modern tidal-inlet processes operating at Sabine, Calcasieu, and Mermentau river entrances were also examined relative to the inlet-stability ratio. Prior to human modification and stabilization efforts, the Mermentau River entrance is classified as wave-dominated, Sabine Pass as tide-dominated, and Calcasieu Pass as tide-dominated to mixed. Hoyt (1969, American Association of

  4. 76 FR 65609 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ..., Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL AGENCY: Coast... of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, Calumet-Saganashkee Channel on all waters of the Chicago...

  5. 33 CFR 165.930 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Des Plaines River located between mile marker 286.0 (Brandon Road Lock and Dam) and mile marker 290.0... Sanitary and Ship Canal. All U.S. waters of the Chicago Sanitary and Ship Canal between mile marker 290.0... (Main Branch) and North Branch Chicago River). (4) Chicago River (Main Branch). All U.S. waters of...

  6. Modeling the Biogeochemical Response of a Flood Plain Aquifer Impacted By Seasonal Temperature and Water Table Variations

    NASA Astrophysics Data System (ADS)

    Arora, B.; Spycher, N.; Molins, S.; Steefel, C. I.

    2014-12-01

    for seasonal temperature changes to accurately represent lateral and vertical delivery of water and nutrients as well as biogeochemical transformations within the Rifle Flood Plain system.

  7. A climate informed model for nonstationary flood risk prediction: Application to Negro River at Manaus, Amazonia

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; Lall, Upmanu; Troy, Tara J.; Devineni, Naresh

    2015-03-01

    Historically, flood risk management and flood frequency modeling have been based on assumption of stationarity, i.e., flood probabilities are invariant across years. However, it is now recognized that in many places, extreme floods are associated with specific climate states which may recur with non-uniform probability across years. Conditional on knowledge of the operating climate regime, the probability of a flood of a certain magnitude can be higher or lower in a given year. Here we explore nonstationary flood risk for the streamflow series of the Negro River at the city of Manaus in Brazil by investigating climate teleconnections associated with the interannual variability of the peak flows. We evaluate attributes and the fit of a generalized extreme value (GEV) distribution with nonstationary parameters to the annual peak series of the Negro River stages. The annual peak flood occurs between May and July and its magnitude depends on the Negro River stage at the beginning of the year and on the previous December sea surface temperature (SST) of a region in the tropical Pacific Ocean. A statistically significant monotonic trend is also observed in the peak level series. The indexing of the parameters of a GEV distribution to the NINO3 index and to the observed river stage at the beginning of the year reveals a changing flood hazard for the city, with the joint occurrence of high values associated with La Niña conditions in the previous December and high river stages in January preceding the flood season. The proposed model is shown to be useful for quantifying the changing flood hazard several months in advance for Manaus, thus providing an early flood alert system for the city and may be an important tool for the dynamic flood risk management for the region.

  8. Microbial and chemical contamination during and after flooding in the Ohio River-Kentucky, 2011.

    PubMed

    Yard, Ellen E; Murphy, Matthew W; Schneeberger, Chandra; Narayanan, Jothikumar; Hoo, Elizabeth; Freiman, Alexander; Lewis, Lauren S; Hill, Vincent R

    2014-09-19

    Surface water contaminants in Kentucky during and after 2011 flooding were characterized. Surface water samples were collected during flood stage (May 2-4, 2011; n = 15) and after (July 25-26, 2011; n = 8) from four different cities along the Ohio River and were analyzed for the presence of microbial indicators, pathogens, metals, and chemical contaminants. Contaminant concentrations during and after flooding were compared using linear and logistic regression. Surface water samples collected during flooding had higher levels of E. coli, enterococci, Salmonella, Campylobacter, E. coli O157:H7, adenovirus, arsenic, copper, iron, lead, and zinc compared to surface water samples collected 3-months post-flood (P < 0.05). These results suggest that flooding increases microbial and chemical loads in surface water. These findings reinforce commonly recommended guidelines to limit exposure to flood water and to appropriately sanitize contaminated surfaces and drinking wells after contamination by flood water.

  9. Rapid Exposure Assessment of Nationwide River Flood for Disaster Risk Reduction

    NASA Astrophysics Data System (ADS)

    Kwak, Y.; Park, J.; Arifuzzaman, B.; Iwami, Y.; Amirul, Md.; Kondoh, A.

    2016-06-01

    considerably increased. For flood disaster risk reduction, it is important to identify and characterize flood area, locations (particularly lowland along rivers), and durations. For this purpose, flood mapping and monitoring are an imperative process and the fundamental part of risk management as well as emergency response. Our ultimate goal is to detect flood inundation areas over a nationwide scale despite limitations of optical and multispectral images, and to estimate flood risk in terms of affected people. We propose a methodological possibility to be used as a standard approach for nationwide rapid flood exposure assessment with the use of the multi-temporal Moderate Resolution Imaging Spectrometer (MODIS), a big contributor to progress in near-real-time flood mapping. The preliminary results in Bangladesh show that a propensity of flood risk change strongly depends on the temporal and spatial dynamics of exposure such as distributed population.

  10. Based on GIS technology flood disaster assessment study of Fuhe River Basin

    NASA Astrophysics Data System (ADS)

    Wu, Dingding; Zhao, Xinyu; Chen, Jing

    2014-01-01

    Flood protection of Fuhe river basin has been payed high attention after Changkai-levee crevasse in 2010. This paper constructions a model of flood disaster lose calculation considering flood disaster and social economic developing based on GIS. Firstly social economic indexes have been selected according to characteristics of the urban and the rural. Secondly a mathematical model of flood routing using Finite Volume Method has been made in spacial information grids, the data of inundated depth and flood duration can be extracted from the grids. In the end ,wo calculate the loss by flood disaster losses calculation process model. This paper solves the stacking problem of flood characteristic and administrative boundaries effectively, which makes a development on accuracy of flood disaster assessment.

  11. Flooding of the Great River during the Common Era: A Paleohydrological Record of High Magnitude Flood Events from the Central Mississippi River Valley

    NASA Astrophysics Data System (ADS)

    Williams, J. W.; Munoz, S. E.; Gruley, K. E.; Massie, A.

    2014-12-01

    Streamflow characteristics are known to be sensitive to changes in climate, but few continuous records of flooding exist to evaluate the response of hydrological systems to centennial- and millennia-scale climate changes. Here, we present sedimentary records from two oxbow lakes (Horseshoe Lake and Grassy Lake, Illinois, USA) in the central Mississippi River valley (CMRV) that display abrupt shifts in sediment composition and particle-size consistent with deposition by floodwaters immediately following inundation of the floodplain. The sedimentary record at Horseshoe Lake begins ca. AD 100 and displays five major flood events, with four of these occurring after ca. AD 1100. Situated 200 km downstream, the record from Grassy Lake begins later, ca. AD 800, and also shows four major flood events after ca. AD 1100. An analysis of synchronicity using Bayesian age modelling software shows high likelihoods that the four overlapping flood events occurred at the same time, confirming that these events resulted from flooding of the Mississippi River. The most recent event we record at AD 1840 ± 50 corresponds to the AD 1844 flood, the largest flood by discharge (37 m3/s) measured by the gauging station at St. Louis, Missouri, indicating that our sedimentary records document high magnitude flood events. Together, our two sedimentary records show a major shift in the frequency of high magnitude flooding in the central Mississippi River at ca. AD 1100. From AD 100 - AD 1100, only one relatively subtle flood event is recorded, but from AD 1100 - AD 1900, four high magnitude floods deposited distinctive sediment at both sites. The period of infrequent flooding corresponds to a time of agricultural intensification and population growth in the CMRV, while the entire region was abandoned when flood frequency increased. The pronounced shift in flood frequency we observe in our records at ca. AD 1100 begins during the Medieval Climate Anomaly (MCA; AD 950 - AD 1250), a period of

  12. Floods of 1952 in California. Flood of January 1952 in the south San Francisco Bay region; Snowmelt flood of 1952 in Kern River, Tulare Lake, and San Joaquin River basins

    USGS Publications Warehouse

    Rantz, S.E.; Stafford, H.M.

    1956-01-01

    Two major floods occurred in California in 1952. The first was the flood of January 11-13 in the south San Francisco Bay region that resulted from heavy rains which began on the morning of January 11 and ended about noon January 13. This flood was notable for the magnitude of the peak discharges, although these discharges were reduced by the controlling effect of reservoirs for conservation and flood-control purposes. The flood damage was thereby reduced, and no lives were lost; damage, nevertheless, amounted to about $1.400.000. The second flood was due, not to the immediate runoff of heavy rain, but to the melting of one of the largest snow packs ever recorded in the Sierra Nevada range. In the spring and summer of 1952, flood runoff occurred on all the major streams draining the Sierra Nevada. In the northern half of the Central Valley basin?the Sacramento River basin?flood volumes and maximum daily discharges were not exceptional. and flood damage was not appreciable. However, in the southern half, which is formed by the Kern River, Tulare Lake, and San Joaquin River basins, new records for snowmelt runoff were established for some streams; but for below-normal temperatures and shorter, less warm hot spells, record flood discharges would have occurred on many others. In the three basins an area of 200,000 acres. largely cropland. was inundated, and damage was estimated at $11,800,000.

  13. Development of roughness updating based on artificial neural network in a river hydraulic model for flash flood forecasting

    NASA Astrophysics Data System (ADS)

    Fu, J. C.; Hsu, M. H.; Duann, Y.

    2016-02-01

    Flood is the worst weather-related hazard in Taiwan because of steep terrain and storm. The tropical storm often results in disastrous flash flood. To provide reliable forecast of water stages in rivers is indispensable for proper actions in the emergency response during flood. The river hydraulic model based on dynamic wave theory using an implicit finite-difference method is developed with river roughness updating for flash flood forecast. The artificial neural network (ANN) is employed to update the roughness of rivers in accordance with the observed river stages at each time-step of the flood routing process. Several typhoon events at Tamsui River are utilized to evaluate the accuracy of flood forecasting. The results present the adaptive n-values of roughness for river hydraulic model that can provide a better flow state for subsequent forecasting at significant locations and longitudinal profiles along rivers.

  14. Study on river regulation measures of dried-up rivers of Haihe River basin, China.

    PubMed

    Peng, Jing; Li, Shaoming; Qi, Lan

    2013-01-01

    In recent years, the ecological environment of plain rivers within Haihe River basin is questionable because of severe water shortages. Most of the rivers dry up regularly and it is therefore necessary to take measures to improve the river ecological environment. Meanwhile, flood control is the principal function for most of the dried-up rivers, so river regulation works for flood control also should be undertaken. In this paper, some measures of river regulation were selected applied to the Haihe River basin, taking these measures not only ensure the river security but also realize its ecological benefit. Examples of the application of selected measures for the representative rivers, Yongding River and Hutuo River, both located within the Haihe River basin, are also assessed. These measures provide practical solutions to ecological and flood control problems of dried-up rivers, are generic in nature, and could therefore be applied to other same type rivers.

  15. Water resources of the Yellow Medicine River Watershed, Southwestern Minnesota

    USGS Publications Warehouse

    Novitzki, R.P.; Van Voast, Wayne A.; Jerabek, L.A.

    1969-01-01

    The Yellow Medicine and Minnesota Rivers are the major sources of surface water. For physiographic regions – Upland Plain, Slope, Lowland Plain, and Minnesota River Flood Plain – influence surface drainage, and the flow of ground water through the aquifers. The watershed comprises 1070 square miles, including the drainage basin of the Yellow Medicine River (665 square miles) and 405 square miles drained by small streams tributary to the Minnesota River.

  16. Aggradation of Leveed Channels and Their Flood Plains in Arroyo Bottoms

    NASA Astrophysics Data System (ADS)

    Vincent, K. R.

    2005-12-01

    the emerging flood plain became dominated by silt (or clay) while the levees next to the channel remained dominated by fine or very fine sand. Furthermore, the channel and floodplain aggraded at similar rates and thus had come into geomorphic equilibrium. Vertical accretion of the channel banks, which are the flanks of channel-margin levees, was accomplished by deposition of inclined lamina and very thin beds dominated by silt that have fairly uniform thickness. This may have been promoted by rapid infiltration of stream water into the banks, filtering fine suspended sediment at the solid interface.

  17. River channel network design for drought and flood control: A case study of Xiaoqinghe River basin, Jinan City, China.

    PubMed

    Cui, Baoshan; Wang, Chongfang; Tao, Wendong; You, Zheyuan

    2009-08-01

    Vulnerability of river channels to urbanization has been lessened by the extensive construction of artificial water control improvements. The challenge, however, is that traditional engineering practices on isolated parts of a river may disturb the hydrologic continuity and interrupt the natural state of ecosystems. Taking the Xiaoqinghe River basin as a whole, we developed a river channel network design to mitigate river risks while sustaining the river in a state as natural as possible. The river channel risk from drought during low-flow periods and flood during high-flow periods as well as the potential for water diversion were articulated in detail. On the basis of the above investigation, a network with "nodes" and "edges" could be designed to relieve drought hazard and flood risk respectively. Subsequently, the shortest path algorithm in the graph theory was applied to optimize the low-flow network by searching for the shortest path. The effectiveness assessment was then performed for the low-flow and high-flow networks, respectively. For the former, the network connectedness was evaluated by calculating the "gamma index of connectivity" and "alpha index of circuitry"; for the latter, the ratio of flood-control capacity to projected flood level was devised and calculated. Results show that the design boosted network connectivity and circuitry during the low-flow periods, indicating a more fluent flow pathway, and reduced the flood risk during the high-flow periods.

  18. Mechanisms of flash-flood generation in a gullied high-plains grassland: evidence for partial contributing area runoff

    NASA Astrophysics Data System (ADS)

    Asanuma, A.; Tucker, G. E.; Rengers, F. K.

    2014-12-01

    Flash floods commonly cause rapid gully erosion, creating headwalls that erode into previously stable surfaces, thereby reducing arable land and releasing sediment that can contaminate water supplies. In semi-arid landscapes, gully erosion tends to be driven by flash floods. Here, we study the mechanisms for flash-flood generation, seeking to answer two questions: (1) how spatially variable is runoff production, and (2) what combination of rainfall intensity and duration is required to produce runoff? To answer these questions, we combine field data from a study site on the Colorado High Plains, USA, with numerical modeling. The site is characterized by patchy, dryland shrub vegetation dispersed throughout the otherwise bare slopes and gullies. Analysis of six years of rainfall and runoff data indicate that flash flood generation requires a 15-minute intensity of approximately 38 mm/hr. Sprinkler experiments on isolated bare and vegetated plots revealed a large contrast between infiltration capacities: bare areas can produce runoff when the rainfall exceeds 10-15 mm/hr, whereas vegetated areas permit infiltration of at least 45 mm/hr during relatively brief, intense events. These findings imply that high-intensity rainstorms associated with summertime moist convective systems drive gully incision. They also suggest that a self-enhancing feedback may exist in which initial incision creates steep and relatively bare slopes that tend to generate more runoff, leading to more aggressive gully incision.

  19. Flood of July 9-11, 1993, in the Raccoon River basin, west-central Iowa

    USGS Publications Warehouse

    Eash, D.A.; Koppensteiner, B.A.

    1997-01-01

    Water-surface-elevation profiles and peak discharges for the flood of July 9-11, 1993, in the Raccoon River Basin, west-central Iowa, are presented in this report. The profiles illustrate the 1993 flood along the Raccoon, North Raccoon, South Raccoon, and Middle Raccoon Rivers and along Brushy and Storm Creeks in the west-central Iowa counties of Carroll, Dallas, Greene, Guthrie, and Polk. Water-surface-elevation profiles for the floods of June 1947, March 1979, and June 29- July 1, 1986, in the Raccoon River Basin also are included in the report for comparative purposes. The July 9-11, 1993, flood is the largest known peak discharge at gaging stations Brushy Creek near Templeton (station number 05483318) 19,000 cubic feet per second, Middle Raccoon River near Bayard (station number 05483450) 27,500 cubic feet per second, Middle Raccoon River at Panora (station number 05483600) 22,400 cubic feet per second, South Raccoon River at Redfield (station number 05484000) 44,000 cubic feet per second, and Raccoon River at Van Meter (station number 05484500) 70,100 cubic feet per second. The peak discharges were, respectively, 1.5, 1.3, 1.1,1.2, and 1.3 times larger than calculated 100-year recurrence-interval discharges. The report provides information on flood stages and discharges and floodflow frequencies for streamflow-gaging stations in the Raccoon River Basin using flood information collected through 1996. A flood history summarizes rainfall conditions and damages for floods that occurred during 1947, 1958, 1979, 1986, 1990, and 1993. Information on temporary bench marks and reference points established in the Raccoon River Basin during 1976-79 and 1995-97 also is included in the report.

  20. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  1. Flood-inundation maps for the Yellow River at Plymouth, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2016-11-16

    Digital flood-inundation maps for a 4.9-mile reach of the Yellow River at Plymouth, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 05516500, Yellow River at Plymouth, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=05516500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many sites that are often collocated with USGS streamgages, including the Yellow River at Plymouth, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood and forecasts of flood hydrographs at this site.For this study, flood profiles were computed for the Yellow River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the current stage-discharge relations at the Yellow River streamgage, in combination with the flood-insurance study for Marshall County (issued in 2011). The calibrated hydraulic model was then used to determine eight water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability flood profile elevation (flood elevation with recurrence intervals within 100 years) is within

  2. Monitoring of 2009 Krishna River Flood using Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    Murthy, A.; Gouda, K. C.; Bhat, R.; Laxmikantha, B. P.; Prabhuraj, D. K.

    2012-12-01

    The Krishna River Basin in the south India experienced a major flood during October 2009, which is the second largest Eastward draining River in Peninsular India covering vast area in the States of Maharashtra, Karnataka and Andhra Pradesh. This River drains approximately 2,58,948 km2 , which is about 8 % of the total geographical area of India. In the present study the lateral extent of river resulted by the flood is monitored and analyzed using the MODIS remote sensing satellite data. The extension of river is derived by processing the data before, during and after the flood event in the river basin. Associated meteorological parameters like rainfall, river run off, rise in water column are also discussed using multi-source satellite (TMI/TRMM, SRTM DEM etc) and observed data. The land cover and Land use analysis of the basin is also carried out for the pre flood and post flood scenarios. It is observed that the elevation tends to decrease from the western part to the eastern part of the basin. The variations of lateral extent is well captured by the GIS analysis, which indicates the extent pattern are different at east and west part of basin due to different topographical features in the river basin. Figure 1 presents the increase in the lateral extent of river due to the flood event. This information can be used by the disaster managers for pro-active disaster mitigation. Figure 1: Increase in the lateral extent of Krishna river due to the October 2009 flood.

  3. Flow structures and sandbar dynamics in a canyon river during a controlled flood, Colorado River, Arizona

    USGS Publications Warehouse

    Wright, S.A.; Kaplinski, M.

    2011-01-01

    In canyon rivers, debris fan constrictions create rapids and downstream pools characterized by secondary flow structures that are closely linked to channel morphology. In this paper we describe detailed measurements of the three-dimensional flow structure and sandbar dynamics of two pools along the Colorado River in the Grand Canyon during a controlled flood release from Glen Canyon Dam. Results indicate that the pools are characterized by large lateral recirculation zones (eddies) resulting from flow separation downstream from the channel constrictions, as well as helical flow structures in the main channel and eddy. The lateral recirculation zones are low-velocity areas conducive to fine sediment deposition, particularly in the vicinity of the separation and reattachment points and are thus the dominant flow structures controlling sandbar dynamics. The helical flow structures also affect morphology but appear secondary in importance to the lateral eddies. During the controlled flood, sandbars in the separation and reattachment zones at both sites tended to build gradually during the rising limb and peak flow. Deposition in shallow water on the sandbars was accompanied by erosion in deeper water along the sandbar slope at the interface with the main channel. Erosion occurred via rapid mass failures as well as by gradual boundary shear stress driven processes. The flow structures and morphologic links at our study sites are similar to those identified in other river environments, in particular sharply curved meanders and channel confluences where the coexistence of lateral recirculation and helical flows has been documented. Copyright 2011 by the American Geophysical Union.

  4. Hydrology, geomorphology, and flood profiles of the Mendenhall River, Juneau, Alaska

    USGS Publications Warehouse

    Neal, Edward G.; Host, Randy H.

    1999-01-01

    Water-surface-profile elevations for the 2-, 20-, 25-, 50-, and 100-year floods were computed for the Mendenhall River near Juneau, Alaska, using the U.S. Army Corps of Engineers Hydrologic Engineering Center River Analysis System model. The peak discharges for the selected recurrence intervals were determined using the standard log-Pearson type III method. Channel cross sections were surveyed at 60 locations to define hydraulic characteristics over a 5.5-mile reach of river beginning at Mendenhall Lake outlet and extending to the river mouth. A peak flow of 12,400 cubic feet per second occurred on the Mendenhall River on October 20, 1998. This discharge is equivalent to about a 10-year flood on the Mendenhall River and floodmarks produced by this flood were surveyed and used to calibrate the model. The study area is currently experiencing land-surface uplift rates of about 0.05 foot per year. This high rate of uplift has the potential to cause incision or downcutting of the river channel through lowering of the base level. Vertical datum used in the study area was established about 37 years before the most recent surveys of river-channel geometry. The resulting difference between land-surface elevations and sea level continues to increase. Continuing incision of the river channel combined with increased land-surface elevations with respect to sea level may result in computed flood profiles that are higher than actual existing conditions in the tidally influenced reach of the river.

  5. Flood-inundation maps for the White River near Edwardsport, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2014-01-01

    The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 03360730 White River near Edwardsport, Ind., and forecasted stream stages from the National Weather Service, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  6. Flood Summary Chehalis River Basin, January 1990 Event (and November 1990 Event Addendum)

    DTIC Science & Technology

    1991-05-31

    Chehalis area. On the other hand, the three Eastern Washington counties (Chelan, Kittitas and Yakima ) experienced severe flooding for the first time in...River Basin, Washington Floods, 1990 19 ABSTRACT (Continue on reverse if necessary and identify by block number) The main report documents the 100-year...2 6. Temperature ........................................................ 2 7. Freezing Level and Snowpack

  7. Yellowstone plume-continental lithosphere interaction beneath the Snake River Plain

    NASA Astrophysics Data System (ADS)

    Hanan, Barry B.; Shervais, John W.; Vetter, Scott K.

    2008-01-01

    The Snake River Plain represents 17 m.y. of volcanic activitythat took place as the North American continent migrated overa relatively fixed magma source, or hotspot. The identificationof a clear seismic image of a plume beneath Yellowstone is compellingevidence that the Miocene to recent volcanism associated withthe Columbia Plateau, Oregon High Lava Plains, Snake River Plain,Northern Nevada Rift and Yellowstone Plateau represents a singlemagmatic system related to a mantle plume. A remaining enigmais, why do radiogenic isotope signatures from basalts eruptedover the Mesozoic-Paleozoic accreted terrains suggesta plume source while basalts erupted across the Proterozoic-Archeancraton margin indicate an ancient subcontinental mantle lithospheresource? We show that ancient cratonic lithosphere like thatof the Wyoming province superimposes its inherent isotopic compositionon sublithospheric plume and/or asthenospheric melts. The resultsshow that Yellowstone plume could have a radiogenic isotopecomposition similar to the mantle source of the early ColumbiaRiver Basalt Group and that the plume source composition haspersisted to the present day.

  8. Contrasts of atmospheric circulation and associated tropical convection between Huaihe River valley and Yangtze River valley mei-yu flooding

    NASA Astrophysics Data System (ADS)

    Hong, Jieli; Liu, Yimin

    2012-07-01

    The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu (i.e., the East Asian rainy season in June) and the related tropical convection were investigated. During the both flooding cases, although the geopotential height anomalies always exhibit equivalent barotropic structures in middle to high latitudes at middle and upper troposphere, the phase of the Rossby wave train is different over Eurasian continent. During flooding in the Huaihe River valley, only one single blocking anticyclone is located over Baikal Lake. In contrast, during flooding in the Yangtze River valley, there are two blocking anticyclones. One is over the Ural Mountains and the other is over Northeast Asia. In the lower troposphere a positive geopotential height anomaly is located at the western ridge of subtropical anticyclone over Western Pacific (SAWP) in both flooding cases, but the location of the height anomaly is much farther north and west during the Huaihe River mei-yu flooding. Furthermore, abnormal rainfall in the Huaihe River valley and the regions north of it in China is closely linked with the latent heating anomaly over the Arabian Sea and Indian peninsula. However, the rainfall in the Yangtze River valley and the regions to its south in China is strongly related to the convection over the western tropical Pacific. Numerical experiments demonstrated that the enhanced latent heating over the Arabian Sea and Indian peninsula causes water vapor convergence in the region south of Tibetan Plateau and in the Huaihe River valley extending to Japan Sea with enhanced precipitation; and vapor divergence over the Yangtze River valley and the regions to its south with deficient precipitation. While the weakened convection in the tropical West Pacific results in moisture converging over the Yangtze River and the region to its south, along with abundant rainfall.

  9. Modelling the socio-economic impact of river floods in Europe

    NASA Astrophysics Data System (ADS)

    Alfieri, Lorenzo; Feyen, Luc; Salamon, Peter; Thielen, Jutta; Bianchi, Alessandra; Dottori, Francesco; Burek, Peter

    2016-06-01

    River floods generate a large share of the socio-economic impact of weather-driven hazards worldwide. Accurate assessment of their impact is a key priority for governments, international organization, reinsurance companies and emergency responders. Yet, available databases of flood losses over large domains are often affected by gaps and inconsistencies in reported figures. In this work, a framework to reconstruct the economic damage and population affected by river floods at continental scale is applied. Pan-European river flow simulations are coupled with a high-resolution impact assessment framework based on 2-D inundation modelling. Two complementary methods are compared in their ability to estimate the climatological average flood impact and the impact of each flood event in Europe between 1990 and 2013. The event-based method reveals key features, such as the ability to include changes in time of all three components of risk, namely hazard, exposure and vulnerability. Furthermore, it skilfully reproduces the socio-economic impact of major flood events in the past two decades, including the severe flooding hitting central Europe in June 2013. On the other hand, the integral method is capable of reproducing the average flood losses which occurred in Europe between 1998 and 2009. Strengths and limitations of the proposed model are discussed to stress the large potential for filling in the gaps of current datasets of flood impact.

  10. Adige river in Trento flooding map, 1892: private or public risk transfer?

    NASA Astrophysics Data System (ADS)

    Ranzi, Roberto

    2016-04-01

    For the determination of the flood risk hydrologist and hydraulic engineers focuse their attention mainly to the estimation of physical factors determining the flood hazard, while economists and experts of social sciences deal mainly with the estimation of vulnerability and exposure. The fact that flood zoning involves both hydrological and socio-economic aspects, however, was clear already in the XIX century when the impact of floods on inundated areas started to appear in flood maps, for instance in the UK and in Italy. A pioneering 'flood risk' map for the Adige river in Trento, Italy, was already published in 1892, taking into account in detail both hazard intensity in terms of velocity and depth, frequency of occurrence, vulnerability and economic costs for flood protection with river embankments. This map is likely to be the reinterpreted certainly as a pioneering, and possibly as the first flood risk map for an Italian river and worldwide. Risk levels were divided in three categories and seven sub-categories, depending on flood water depth, velocity, frequency and damage costs. It is interesting to notice the fact that at that time the map was used to share the cost of levees' reparation and enhancement after the severe September 1882 flood as a function of the estimated level of protection of the respective areas against the flood risk. The sharing of costs between public bodies, the railway company and private owners was debated for about 20 years and at the end the public sustained the major costs. This shows how already at that time the economic assessment of structural flood protections was based on objective and rational cost-benefit criteria, that hydraulic risk mapping was perceived by the society as fundamental for the design of flood protection systems and that a balanced cost sharing between public and private was an accepted approach although some protests arose at that time.

  11. Investigation of Soil Permeability and Hydrological Properties of Flood Plain Deposits of the Rio Grande in EL Paso TX

    NASA Astrophysics Data System (ADS)

    Schacht, D.; Jin, L.; Doser, D. I.

    2013-12-01

    The various soil types within the flood plains of Rio Grande in El Paso 's Lower Valley have long been utilized by local farmers. These soils are typically more conducive to farming than the more recent (Pliocene) sandy soils outside of the flood plain region. This project will explore the various properties of these soils types such as their grain size, depths, extent, and hydrological conductivity utilizing various geophysical and geochemical methods. The study site is located in El Paso 's Lower Valley and is situated in an actively farmed area. Soil maps from the Natural Resource Conservation Service (NRCS) and variations in vegetation growth will help delineate locations of soil types in the study area. The information that will be collected will produce baseline data to help track expected seasonal variations in the soil's moisture content and in the depth of the local water table. This project represents a collaboration between El Paso Community College's and the University of Texas at El Paso's Departments of Geological Sciences as a means for students majoring in Geological Sciences at El Paso Community College to gain hands on experience in researching geological issues through partnerships with their future institution and faculty.

  12. Influence of riparian and watershed alterations on sandbars in a Great Plains river

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Paukert, Craig P.; Daniels, M.L.

    2014-01-01

    Anthropogenic alterations have caused sandbar habitats in rivers and the biota dependent on them to decline. Restoring large river sandbars may be needed as these habitats are important components of river ecosystems and provide essential habitat to terrestrial and aquatic organisms. We quantified factors within the riparian zone of the Kansas River, USA, and within its tributaries that influenced sandbar size and density using aerial photographs and land use/land cover (LULC) data. We developed, a priori, 16 linear regression models focused on LULC at the local, adjacent upstream river bend, and the segment (18–44 km upstream) scales and used an information theoretic approach to determine what alterations best predicted the size and density of sandbars. Variation in sandbar density was best explained by the LULC within contributing tributaries at the segment scale, which indicated reduced sandbar density with increased forest cover within tributary watersheds. Similarly, LULC within contributing tributary watersheds at the segment scale best explained variation in sandbar size. These models indicated that sandbar size increased with agriculture and forest and decreased with urban cover within tributary watersheds. Our findings suggest that sediment supply and delivery from upstream tributary watersheds may be influential on sandbars within the Kansas River and that preserving natural grassland and reducing woody encroachment within tributary watersheds in Great Plains rivers may help improve sediment delivery to help restore natural river function.

  13. Flooding

    MedlinePlus

    ... flooding Prepare for flooding For communities, companies, or water and wastewater facilities: Suggested activities to help facilities ... con monóxido de carbono. Limit contact with flood water. Flood water may have high levels of raw ...

  14. River flood events in Thailand and Bangladesh observed by CryoSat-2

    NASA Astrophysics Data System (ADS)

    Nielsen, Karina; Villadsen, Heidi; Andersen, Ole; Stenseng, Lars; Knudsen, Per

    2015-04-01

    The high along track resolution of the SIRAL altimeter carried on-board CryoSat-2 offers a wide range of unique opportunities for satellite monitoring. This study focuses on the ability of CryoSat-2 to detect the effects of flood events such as increased river levels and inundation of land. Here we study two flood events; the Bangladesh flood event of June 2012 and the flooding in Thailand that lasted between July 2011 and January 2012. The flooding in these areas was caused by abnormal monsoonal rainfall and affected millions of people. We process CryoSat-2 level 1b SAR mode data to derive water levels for the areas and compare these levels before, during and after the flooding events. Other parameters such as the backscatter coefficient and pulse peakiness are also considered. To verify the extent of the flooding observed by CryoSat-2 we compare with independent sources such as Landsat images.

  15. Flood of July 5-7, 1978, on the South Fork Zumbro River at Rochester, Minnesota

    USGS Publications Warehouse

    Latkovich, V.J.

    1979-01-01

    The intense thunderstorm of July 5-6, 1978, caused record flooding on the South Fork Zumbro River at Rochester, Minnesota. The peak discharge on July 6 was 30,500 cubic feet per second compared with 19,600 cubic feet per second for the flood of March 1965, which was the largest previously known. The 1965 flood had a recurrence interval of about 30 years, whereas the 1978 flood had a recurrence interval exceeding 100 years. The flood waters claimed at least 5 lives and 5,000 people were forced to leave their homes. Millions of dollars in flood damage was reported, and this report summarizes some of the flood data and a photomosaic map shows the inundated area.

  16. Flood-inundation maps for the Flatrock River at Columbus, Indiana, 2012

    USGS Publications Warehouse

    Coon, William F.

    2013-01-01

    Digital flood-inundation maps for a 5-mile reach of the Flatrock River on the western side of Columbus, Indiana, from County Road 400N to the river mouth at the confluence with Driftwood River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Flatrock River at Columbus (station number 03363900). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service, which also presents the USGS data, at http:/water.weather.gov/ahps/. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at the Flatrock River streamgage, high-water marks that were surveyed following the flood of June 7, 2008, and water-surface profiles from the current flood-insurance study for the City of Columbus. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 9 ft or near bankfull to 20 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual exceedance probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37 ft

  17. Flood Hazard Mapping Assessment for El-Awali River Catchment-Lebanon

    NASA Astrophysics Data System (ADS)

    Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Hijazi, Samar

    2016-04-01

    River flooding prediction and flood forecasting has become an essential stage in the major flood mitigation plans worldwide. Delineation of floodplains resulting from a river flooding event requires coupling between a Hydrological rainfall-runoff model to calculate the resulting outflows of the catchment and a hydraulic model to calculate the corresponding water surface profiles along the river main course. In this study several methods were applied to predict the flood discharge of El-Awali River using the available historical data and gauging records and by conducting several site visits. The HEC-HMS Rainfall-Runoff model was built and applied to calculate the flood hydrographs along several outlets on El-Awali River and calibrated using the storm that took place on January 2013 and caused flooding of the major Lebanese rivers and by conducting additional site visits to calculate proper river sections and record witnesses of the locals. The Hydraulic HEC-RAS model was then applied to calculate the corresponding water surface profiles along El-Awali River main reach. Floodplain delineation and Hazard mapping for 10,50 and 100 years return periods was performed using the Watershed Modeling System WMS. The results first show an underestimation of the flood discharge recorded by the operating gauge stations on El-Awali River, whereas, the discharge of the 100 years flood may reach up to 506 m3/s compared by lower values calculated using the traditional discharge estimation methods. Second any flooding of El-Awali River may be catastrophic especially to the coastal part of the catchment and can cause tragic losses in agricultural lands and properties. Last a major floodplain was noticed in Marj Bisri village this floodplain can reach more than 200 meters in width. Overall, performance was good and the Rainfall-Runoff model can provide valuable information about flows especially on ungauged points and can perform a great aid for the floodplain delineation and flood

  18. Amazon river flow regime and flood recessional agriculture: Flood stage reversals and risk of annual crop loss

    NASA Astrophysics Data System (ADS)

    Coomes, Oliver T.; Lapointe, Michel; Templeton, Michael; List, Geneva

    2016-08-01

    The annual flood cycle is an important driver of ecosystem structure and function in large tropical rivers such as the Amazon. Riparian peasant communities rely on river fishing and annual floodplain agriculture, closely adapted to the recession phase of the flood pulse. This article reports on a poorly documented but important challenge facing farmers practicing flood recessional agriculture along the Amazon river: frequent, unpredictable stage reversals (repiquetes) which threaten to ruin crops growing on channel bars. We assess the severity of stage reversals for rice production on exposed river mud bars (barreales) near Iquitos, Peru. Crop loss risk is estimated based on a quantitative analysis of 45 years of daily Amazon stage data and field data from floodplain communities nearby in the Muyuy archipelago, upstream of Iquitos. Rice varieties selected, elevations of silt rich bars where rice is sown, as well as planting and harvest dates are analyzed in the light of the timing, frequencies and amplitudes of observed stage reversals that have the potential to destroy growing rice. We find that unpredictable stage reversals can produce substantial crop losses and shorten significantly the length of average growing seasons on lower elevation river bars. The data reveal that local famers extend planting down to lower bar elevations where the mean probabilities of re-submergence before rice maturity (due to reversals) approach 50%, below which they implicitly consider that the risk of crop loss outweighs the potential reward of planting.

  19. Flood Magnitude and Frequency of the Delaware River in New Jersey, New York, and Pennsylvania

    USGS Publications Warehouse

    Schopp, Robert D.; Firda, Gary D.

    2008-01-01

    From September 2004 to June 2006, the Delaware River in New Jersey, New York, and Pennsylvania experienced three major floods that caused extensive damage. The Federal Emergency Management Agency (FEMA) needed updated information on the flood magnitude and frequency for the eight active streamflow-gaging stations along the main stem Delaware River in New Jersey, New York, and Pennsylvania that included the three recent floods in order to update its flood insurance studies. Therefore, the U.S. Geological Survey (USGS) computed updated flood magnitude and frequency values following the guidelines published by the Interagency Advisory Committee on Water Data in its Bulletin 17B. The updated flood-frequency values indicate that the recurrence interval of the September 2004 flood ranged from 20 to 35 years, the recurrence interval of the April 2005 flood ranged from 40 to 70 years, and the recurrence interval of the June 2006 flood ranged from 70 to greater than 100 years. Examination of trends in flood discharges indicate no statistically significant trends in peak flows during the period of record for any of the eight streamflow-gaging stations.

  20. Geomorphic changes resulting from floods in reconfigured gravel-bed river channels in Colorado, USA

    USGS Publications Warehouse

    Elliott, J.G.; Capesius, J.P.

    2009-01-01

    Geomorphic changes in reconfi gured reaches of three Colorado rivers in response to floods in 2005 provide a benchmark for "restoration" assessment. Sedimententrainment potential is expressed as the ratio of the shear stress from the 2 yr, 5 yr, 10 yr, and 2005 floods to the critical shear stress for sediment. Some observed response was explained by the excess of flood shear stress relative to the resisting force of the sediment. Bed-load entrainment in the Uncompahgre River and the North Fork Gunnison River, during 4 and 6 yr floods respectively, resulted in streambed scour, streambed deposition, lateral-bar accretion, and channel migration at various locations. Some constructed boulder and log structures failed because of high rates of bank erosion or bed-material deposition. The Lake Fork showed little or no net change after the 2005 flood; however, this channel had not conveyed floods greater than the 2.5 yr flood since reconfi guration. Channel slope and the 2 yr flood, a surrogate for bankfull discharge, from all three reconfi gured reaches plotted above the Leopold and Wolman channel-pattern threshold in the "braided channel" region, indicating that braiding, rather than a single-thread meandering channel, and midchannel bar formation may be the natural tendency of these gravel-bed reaches. When plotted against a total stream-power and median-sediment-size threshold for the 2 yr flood, however, the Lake Fork plotted in the "single-thread channel" region, the North Fork Gunnison plotted in the " multiplethread" region, and the Uncompahgre River plotted on the threshold. All three rivers plotted in the multiple-thread region for floods of 5 yr recurrence or greater. ?? 2009 Geological Society of America.

  1. Flood-inundation maps for the Suncook River in Epsom, Pembroke, Allenstown, and Chichester, New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.; Johnston, Craig M.; Hays, Laura

    2012-01-01

    Digital flood-inundation maps for a 16.5-mile reach of the Suncook River in Epsom, Pembroke, Allenstown, and Chichester, N.H., from the confluence with the Merrimack River to U.S. Geological Survey (USGS) Suncook River streamgage 01089500 at Depot Road in North Chichester, N.H., were created by the USGS in cooperation with the New Hampshire Department of Homeland Security and Emergency Management. The inundation maps presented in this report depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suncook River at North Chichester, N.H. (station 01089500). The current conditions at the USGS streamgage may be obtained on the Internet (http://waterdata.usgs.gov/nh/nwis/uv/?site_no=01089500&PARAmeter_cd=00065,00060). The National Weather Service forecasts flood hydrographs at many places that are often collocated with USGS streamgages. Forecasted peak-stage information is available on the Internet at the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) flood-warning system site (http://water.weather.gov/ahps/) and may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. These maps along with real-time stream stage data from the USGS Suncook River streamgage (station 01089500) and forecasted stream stage from the NWS will provide emergency management personnel and residents with information that is critical for flood-response activities, such as evacuations, road closures, disaster declarations, and post-flood recovery. The maps, along with current stream-stage data from the USGS Suncook River streamgage and forecasted stream-stage data from the NWS, can be accessed at the USGS Flood Inundation Mapping Science Web site http://water.usgs.gov/osw/flood_inundation/.

  2. Impact of sedimentary heterogenities and sinuosity on river -aquifer exchanges in a meandering alluvial plain.

    NASA Astrophysics Data System (ADS)

    Rivière, A.; Maillot, M.; Weill, P.; Goblet, P.; Ors, F.

    2015-12-01

    A coupled sedimentary and hydrogeological model is used to quantify the impact of sedimentary heterogeneities and sinuosity on groundwater fluxes in an alluvial plain deposited by a meandering fluvial system. A 3D heterogeneous alluvial plain model is built with the stochastic/process-based model FLUMY, that simulates the evolution and the sedimentary processes of a meandering channel and its associated deposits. The resulting sedimentary blocks are translated in terms of hydrodynamic parameters (hydrofacies) and used in the 3D transient water transport model METIS. The simulated domain is 10 m-thick and at a pluri-kilometric horizontal scale, allowing considering several meanders. A head gradient between the upstream and downstream limits is imposed. The river is considered as a constant-head boundary that decreases linearly along the channel centerline. A zero-flux condition is prescribed on the other boundaries. Several cases are studied, including different degrees of sinuosity and different configurations of sediment heterogeneity: (i) a homogeneous sandy aquifer (ii) single mud-filled oxbow lake in a sandy porous media, (iii) several mud-filled oxbow lakes in a sandy porous media, and (iv) "fully" heterogeneous alluvial plain including fine-grained overbank deposits, sandy point bars, mudplugs and sandy crevasse plays. We quantify the exchange rates and directions between the river and the aquifer along the channel centerline, the piezometric evolution and the water residence time in the heterogeneous alluvial plain. This original method can improve our understanding of the functioning of alluvial corridors and evaluate the relevance of taking into account the structural heterogeneity of alluvial plains in larger regional hydrogeological models.

  3. Flood-inundation maps for the Susquehanna River near Harrisburg, Pennsylvania, 2013

    USGS Publications Warehouse

    Roland, Mark A.; Underwood, Stacey M.; Thomas, Craig M.; Miller, Jason F.; Pratt, Benjamin A.; Hogan, Laurie G.; Wnek, Patricia A.

    2014-01-01

    A series of 28 digital flood-inundation maps was developed for an approximate 25-mile reach of the Susquehanna River in the vicinity of Harrisburg, Pennsylvania. The study was selected by the U.S. Army Corps of Engineers (USACE) national Silver Jackets program, which supports interagency teams at the state level to coordinate and collaborate on flood-risk management. This study to produce flood-inundation maps was the result of a collaborative effort between the USACE, National Weather Service (NWS), Susquehanna River Basin Commission (SRBC), The Harrisburg Authority, and the U.S. Geological Survey (USGS). These maps are accessible through Web-mapping applications associated with the NWS, SRBC, and USGS. The maps can be used in conjunction with the real-time stage data from the USGS streamgage 01570500, Susquehanna River at Harrisburg, Pa., and NWS flood-stage forecasts to help guide the general public in taking individual safety precautions and will provide local municipal officials with a tool to efficiently manage emergency flood operations and flood mitigation efforts. The maps were developed using the USACE HEC–RAS and HEC–GeoRAS programs to compute water-surface profiles and to delineate estimated flood-inundation areas for selected stream stages. The maps show estimated flood-inundation areas overlaid on high-resolution, georeferenced, aerial photographs of the study area for stream stages at 1-foot intervals between 11 feet and 37 feet (which include NWS flood categories Action, Flood, Moderate, and Major) and the June 24, 1972, peak-of-record flood event at a stage of 33.27 feet at the Susquehanna River at Harrisburg, Pa., streamgage.

  4. Techniques for computing discharge at four Navigation Dams on the Illinois and Des Plaines Rivers in Illinois

    USGS Publications Warehouse

    Mades, Dean M.; Weiss, Linda S.; Gray, John R.

    1991-01-01

    Techniques for computing discharge are developed for Brandon Road Dam on the Des Plaines River and for Dresden Island, Marseilles, and Starved Rock Dams on the Illinois River. At Brandon Road Dam, streamflow is regulated by the operation of Tainter gates and headgates. At Dresden Island, Marseilles, and Starved Rock Dams, only Tainter gates are operated to regulate streamflow. The locks at all dams are equipped with culvert valves that are used to fill and empty the lock. The techniques facilitate determination of discharge at locations along the upper Illinois Waterway where no streamflow-gaging stations exist. The techniques are also useful for computing low flows when the water-surface slope between control structures on the river approaches zero and traditional methods of determining discharge based on slope are unsatisfactory. Two techniques can be used to compute discharge at the dams--gate ratings and tailwater ratings . A gate ratingdescribes the relation between discharge, gate opening, tailwater stage, and headwater stage. A tailwater rating describes the relation between tailwater stage and discharge. Gate ratings for Tainter gates at Dresden Island, Marseilles, and Starved Rock Dams are based on a total of 78 measurements of discharge that range from 569 to 86,400 cubic feet per second. Flood hydrographs developed from the gate ratings and Lockmaster records of gate opening and stage compare closely with streamflow records published for nearby streamflow-gaging stations. Additional measurements are needed to verify gate ratings for Tainter gates and headgates at Brandon Road Dam after the dam rehabilitation is completed. Extensive leakage past deteriorated headgates and sluice gates contributed to uncertainty in the ratings developed for this dam. A useful tailwater rating is developed for Marseilles Dam. Tailwater ratings for Dresden Island Dam and Starved Rock Dam are of limited use because of varying downstream channel-storage conditions. A tailwater

  5. Flood Inundation Analysis Considering Mega Floods in PyeonChang River Basin of South Korea

    NASA Astrophysics Data System (ADS)

    Kim, D.; Han, D.; Choi, C.; Lee, J.; Kim, H. S.

    2015-12-01

    Recently, abnormal climate has frequently occurred around the world due to global warming. In South Korea, more than 90% of damage due to natural disasters has been caused by extreme events like strong wind and heavy rainfall. Most studies regarding the impact of extreme events on flood damage have focused on a single heavy rainfall event. But several heavy rainfall events can be occurred continuously and these events will affect occurring huge flood damage. This study explores the impact of the continuous extreme events on the flood damage. Here we call Mega flood for this type of flood which is caused by the continuous extreme events. Inter Event Time Definition (IETD) method is applied for making Mega flood scenarios depending on independent rainfall event scenarios. Flood inundations are estimated in each situation of the Mega flood scenarios and the flood damages are estimated using a Multi-Dimensional Flood Damage Analysis (MD-FDA) method. As a result, we expect that flood damage caused by Mega flood leads to much greater than damage driven by single rainfall event. The results of this study can be contributed for making a guideline and design criteria in order to reduce flood damage.This work was supported by the National Research Foundation of Korea (NRF) and grant funded by the Korean government (MEST; No. 2011-0028564).

  6. Variations in flood magnitude-effect relations and the implications for flood risk assessment and river management

    NASA Astrophysics Data System (ADS)

    Hooke, J. M.

    2015-12-01

    In spite of major physical impacts from large floods, present river management rarely takes into account the possible dynamics and variation in magnitude-impact relations over time in flood risk mapping and assessment nor incorporates feedback effects of changes into modelling. Using examples from the literature and from field measurements over several decades in two contrasting environments, a semi-arid region and a humid-temperate region, temporal variations in channel response to flood events are evaluated. The evidence demonstrates how flood physical impacts can vary at a location over time. The factors influencing that variation on differing timescales are examined. The analysis indicates the importance of morphological changes and trajectory of adjustment in relation to thresholds, and that trends in force or resistance can take place over various timescales, altering those thresholds. Sediment supply can also change with altered connectivity upstream and changes in state of hillslope-channel coupling. It demonstrates that seasonal timing and sequence of events can affect response, particularly deposition through sediment supply. Duration can also have a significant effect and modify the magnitude relation. Lack of response or deposits in some events can mean that flood frequency using such evidence is underestimated. A framework for assessment of both past and possible future changes is provided which emphasises the uncertainty and the inconstancy of the magnitude-impact relation and highlights the dynamic factors and nature of variability that should be considered in sustainable management of river channels.

  7. Global River Flood Exposure Assessment Under Climate Change: How Many Asians Are Affected By Flood in the Future?

    NASA Astrophysics Data System (ADS)

    Kwak, Y.; Iwami, Y.

    2014-12-01

    Physical exposure assessment in this study shows a methodological possibility to be used as a preliminary case study based on a global approach for flood risk assessment consisting of hazard, exposure, and vulnerability. The purpose of this preliminary study is to estimate potential flood inundation areas as a hazard (both present and future condition), and flood exposure change over the Asia region with consideration of climate change impacts. A flood hazard was characterized by inundation area at the high-resolution of 500 m, location (lowland around rivers), and probability (floods with the 50-year return period). This study introduced a new approach to moderate the global flood hazard and the exposure calculation with significant limitations of current models for continental-scale flood risk assessment by using the flood inundation depth (FID) model based on Manning's steady, uniform flow resistance formula in extreme case during 25-year simulations based on the global BTOP distributed hydrological model using precipitations from the MRI-AGCM 3.2S with SRES A1B emissions scenarios for present-day (daily data from 1980 to 2004), and end-of-the-21st century (daily data from 2075 to 2099). It effectively simplified the complexity between hydrological and topological variables in a flood risk-prone area with assumption of the effects of natural or artificial levees. Exposure was obtained by combining the hazards at the same resolution to identify affected population by calculating with urbanization ratio and population change ratio of Asian countries from a distributed data of global population (Landscan by the Oak Ridge National Laboratory). As a result of the physical exposure assessment from present to the end-of-the-21st century, potential hazards area and affected population are projected to increase 4.2 % (approximately 75,900 km2) and 3.4 % (approximately 35.1 million people) respectively, because Asian population increases about 43% in the future. We found

  8. Flood management on the lower Yellow River: hydrological and geomorphological perspectives

    NASA Astrophysics Data System (ADS)

    Shu, Li; Finlayson, Brian

    1993-05-01

    The Yellow River, known also as "China's Sorrow", has a long history of channel changes and disastrous floods in its lower reaches. Past channel positions can be identified from historical documentary records and geomorphological and sedimentological evidence. Since 1947, government policy has been aimed at containing the floods within artificial levees and preventing the river from changing its course. Flood control is based on flood-retarding dams and off-stream retention basins as well as artificial levees lining the channel. The design flood for the system has a recurrence interval of only around 60 years and floods of this and larger magnitudes can be generated downstream of the main flood control dams at Sanmenxia and Xiaolangdi. Rapid sedimentation along the river causes problems for storage and has raised the bed of the river some 10 m above the surrounding floodplain. The present management strategy is probably not viable in the long term and to avoid a major disaster a new management approach is required. The most viable option would appear to be to breach the levees at predetermined points coupled with advanced warning and evacuation of the population thus put at risk.

  9. Flood disturbance effects on benthic diatom assemblage structure in a semiarid river network.

    PubMed

    Tornés, Elisabet; Acuña, Vicenç; Dahm, Clifford N; Sabater, Sergi

    2015-02-01

    Disturbances such as floods and droughts play a central role in determining the structure of riverine benthic biological assemblages. Extreme disturbances from flash floods are often restricted to part of the river network and the magnitude of the flood disturbance may lessen as floods propagate downstream. The present study aimed to characterize the impact of summer monsoonal floods on the resistance and resilience of the benthic diatom assemblage structure in nine river reaches of increasing drainage size within the Gila River in the southwestern United States. Monsoonal floods had a profound effect on the diatom assemblage in the Gila River, but the effects were not related to drainage size except for the response of algal biomass. During monsoons, algal biomass was effectively reduced in smaller and larger systems, but minor changes were observed in medium systems. Resistance and resilience of the diatom assemblage to floods were related to specific species traits, mainly to growth forms. Tightly adhered, adnate and prostrate species (Achnanthidium spp., Cocconeis spp.) exhibited high resistance to repeated scour disturbance. Loosely attached diatoms, such as Nitzschia spp. and Navicula spp., were most susceptible to drift and scour. However, recovery of the diatom assemblage was very quick indicating a high resilience, especially in terms of biomass and diversity. Regional hydroclimatic models predict greater precipitation variability, which will select for diatoms resilient to bed-mobilizing disturbances. The results of this study may help anticipate future benthic diatom assemblage patterns in the southwestern United States resulting from a more variable climate.

  10. Flood-inundation maps for the Tippecanoe River at Winamac, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.

    2015-09-25

    For this study, flood profiles were computed for the Tippecanoe River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at the Tippecanoe River streamgage, in combination with the current (2014) Federal Emergency Management Agency flood-insurance study for Pulaski County. The calibrated hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability (AEP) flood stage (flood with recurrence intervals within 100 years) has not been determined yet for this streamgage location. The rating has not been developed for the 1-percent AEP because the streamgage dates to only 2001. The simulated water-surface profiles were then used with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar]) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 03331753, Tippecanoe River at Winamac, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  11. Flood elevations for the Soleduck River at Sol Duc Hot Springs, Clallam County, Washington

    USGS Publications Warehouse

    Nelson, L.M.

    1983-01-01

    Elevations and inundation areas of a 100-year flood of the Soleduck River, Washington, were determined by the U.S. Geological Survey for the area in the vicinity of the Sol Duc Hot Springs resort, a public facility in the Olympic National Park that under Federal law must be located beyond or protected from damage by a 100-year flood. Results show that most flooding could be eliminated by raising parts of an existing dike. In general, little flood damage is expected, except at the southern end of an undeveloped airstrip that could become inundated and hazardous due to flow from a tributary. The airstrip is above the 100-year flood of the Soleduck River.

  12. Developing an Approach to Prioritize River Restoration using Data Extracted from Flood Risk Information System Databases.

    NASA Astrophysics Data System (ADS)

    Vimal, S.; Tarboton, D. G.; Band, L. E.; Duncan, J. M.; Lovette, J. P.; Corzo, G.; Miles, B.

    2015-12-01

    Prioritizing river restoration requires information on river geometry. In many states in the US detailed river geometry has been collected for floodplain mapping and is available in Flood Risk Information Systems (FRIS). In particular, North Carolina has, for its 100 Counties, developed a database of numerous HEC-RAS models which are available through its Flood Risk Information System (FRIS). These models that include over 260 variables were developed and updated by numerous contractors. They contain detailed surveyed or LiDAR derived cross-sections and modeled flood extents for different extreme event return periods. In this work, over 4700 HEC-RAS models' data was integrated and upscaled to utilize detailed cross-section information and 100-year modelled flood extent information to enable river restoration prioritization for the entire state of North Carolina. We developed procedures to extract geomorphic properties such as entrenchment ratio, incision ratio, etc. from these models. Entrenchment ratio quantifies the vertical containment of rivers and thereby their vulnerability to flooding and incision ratio quantifies the depth per unit width. A map of entrenchment ratio for the whole state was derived by linking these model results to a geodatabase. A ranking of highly entrenched counties enabling prioritization for flood allowance and mitigation was obtained. The results were shared through HydroShare and web maps developed for their visualization using Google Maps Engine API.

  13. Floods on Duck and Little Duck Rivers and Grindstone Hollow, Hunt, Hickory Flat, and Wolf Creeks in the vicinity of Manchester, Tennessee. [Duck River; Little Duck River

    SciTech Connect

    Not Available

    1984-09-01

    This flood hazard report describes the extent and severity of the flood potential along selected reaches of the Duck and Little Duck Rivers, and Grindstone Hollow, Hunt, Hickory Flat, and Wolf Creeks in the vicinity of Manchester, Tennessee. The report was prepared by TVA as a result of a request from the city of Manchester for TVA technical assistance in evaluating alternative solutions to local flood problems. 5 references, 12 figures, 12 tables.

  14. Snake River Plain Play Fairway Analysis - Phase 1 Report

    SciTech Connect

    Shervais, John W.; Glen, Jonathan M.; Liberty, Lee M.; Dobson, Patrick; Gasperikova, Erika; Sonnenthal, Eric; Visser, Charles; Nielson, Dennis; Garg, Sabodh; Evans, James P.; Siler, Drew; DeAngelo, Jacob; Athens, Noah; Burns, Erick

    2015-09-02

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. Our goals for this Phase 1 study are to: (1) adapt the methodology of Play Fairway Analysis for geothermal exploration to create a formal basis for its application to geothermal systems, (2) assemble relevant data for the SRP from publicly available and private sources, and (3) build a geothermal play fairway model for the SRP and identify the most promising plays, using software tools that are standard in the petroleum industry. The success of play fairway analysis in geothermal exploration depends critically on defining a systematic methodology that is grounded in theory (as developed within the petroleum industry over the last two decades) and within the geologic and hydrologic framework of real geothermal systems. Our preliminary assessment of the data suggests that important undiscovered geothermal resources may be located in several areas of the SRP, including the western SRP (associated with buried lineaments defined by gravity or magnetic anomalies, and capped by extensive deposits of lacustrine sediment), at lineament intersections in the central SRP (along the Banbury-Hagerman trend NW of Twin Falls, and along the northern margin of the Mt Bennett Hills-Camas Prairie area), and along the margins of the eastern SRP. Additional high temperature resources are likely associated with rhyolite domes and crypto-domes in the eastern SRP, but are masked by shallow groundwater flow leading to low upper crustal heat flow values. These blind resources may be exploitable with existing deep drilling technology. Groundwater modeling planned for later phases of the PFA project will address whether temperatures at viable producing depths are sufficient to support electricity production.

  15. Snake River Plain Play Fairway Analysis – Phase 1 Report

    SciTech Connect

    Shervais, John W.; Glen, Jonathan M.; Liberty, Lee M.; Dobson, Patrick; Gasperikova, Erika

    2015-09-01

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. Our goals for this Phase 1 study are to: (1) adapt the methodology of Play Fairway Analysis for geothermal exploration to create a formal basis for its application to geothermal systems, (2) assemble relevant data for the SRP from publicly available and private sources, and (3) build a geothermal play fairway model for the SRP and identify the most promising plays, using software tools that are standard in the petroleum industry. The success of play fairway analysis in geothermal exploration depends critically on defining a systematic methodology that is grounded in theory (as developed within the petroleum industry over the last two decades) and within the geologic and hydrologic framework of real geothermal systems. Our preliminary assessment of the data suggests that important undiscovered geothermal resources may be located in several areas of the SRP, including the western SRP (associated with buried lineaments defined by gravity or magnetic anomalies, and capped by extensive deposits of lacustrine sediment), at lineament intersections in the central SRP (along the Banbury-Hagerman trend NW of Twin Falls, and along the northern margin of the Mt Bennett Hills-Camas Prairie area), and along the margins of the eastern SRP. Additional high temperature resources are likely associated with rhyolite domes and crypto-domes in the eastern SRP, but are masked by shallow groundwater flow leading to low upper crustal heat flow values. These blind resources may be exploitable with existing deep drilling technology. Groundwater modeling planned for later phases of the PFA project will address whether temperatures at viable producing depths are sufficient to support electricity production.

  16. Temporal clustering of floods and impacts of climate indices in the Tarim River basin, China

    NASA Astrophysics Data System (ADS)

    Gu, Xihui; Zhang, Qiang; Singh, Vijay P.; Chen, Yongqin David; Shi, Peijun

    2016-12-01

    The occurrence rates of floods in Tarim River basin, the largest arid basin in China, were estimated using the Peak-over-Threshold (POT) technique. The intra-annual, seasonal and inter-annual clustering of floods was then analyzed using the Cox regression model, month frequency method and dispersion index, respectively. Possible impacts of climate indices on the occurrence rates were also investigated. Both NAO and AO are selected as significant covariates to occurrence rates of floods in Tarim River basin by Cox regression model, suggesting occurrence of flood events is not independent, but exhibits temporal clustering in intra-annual scale. On the basis of the results of the station and region-wide modeling by Cox regression model, we suggest using a model in which the rate of occurrence depends on monthly averaged NAO or AO. The Cox regression model not only can be used to assess the time-varying rate of flood occurrence, but also has the capability to forecast the predictors. Flood occurrence time and probability of exceedance are changing with climate index from negative to positive on both station and region scale. In addition, seasonal clustering of station-based floods and regional observed floods are also identified with mainly concentrating from June to August. Meanwhile, dispersion index is used to evaluate the inter-annual clustering of annual number of flood occurrences both on station and region. We found that inter-annual clustering of regional floods is more evident than that of station-based floods, indicating that regional observed flood records are generally over-dispersed with a tendency for flood events to cluster in time.

  17. Global-scale river flood vulnerability in the last 50 years

    PubMed Central

    Tanoue, Masahiro; Hirabayashi, Yukiko; Ikeuchi, Hiroaki

    2016-01-01

    The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections. PMID:27782160

  18. Global-scale river flood vulnerability in the last 50 years

    NASA Astrophysics Data System (ADS)

    Tanoue, Masahiro; Hirabayashi, Yukiko; Ikeuchi, Hiroaki

    2016-10-01

    The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections.

  19. Paleomagnetic correlation of ignimbrites along the southern margin of the central Snake River Plain, Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Finn, D. R.; Coe, R. S.; Spinardi, F.; Reichow, M. K.; Knott, T.; McDonnell, L.; Cunningham, D.; Branney, M.

    2011-12-01

    Mid-late Miocene explosive volcanism associated with the Yellowstone hotspot occurred in the central Snake River Plain, for example at the 12.5-11.3 Ma Bruneau-Jarbidge and 10-8.6 Ma Twin Falls eruptive centres. The volcanism was characterized by high-temperature rhyolitic caldera-forming super-eruptions, some exceeding 450 km3. To determine the number and scales and of these giant eruptions we are investigating successions of outflow ignimbrites at the southern and northern margins of the plain. The ignimbrites are exposed discontinuously in widely spaced (50-200 km) mountain ranges and are typically extensive, intensely welded and rheomorphic. Paleomagnetic characterization of individual (paleosol-bounded) eruption-units together with field, petrographic and chemical characterization will aid in stratigraphic correlation between distant sections. By correlating and mapping the eruption-units we can better estimate how the frequencies and volumes of the super-eruptions changed during eastward progression of Yellowstone hotspot volcanism. This information helps distinguish between effects of thermal flux, crustal structure, and tectonics on magmatic history of this continental large igneous province. Additionally, large caldera collapse events dramatically modify landscapes, and location and scale of calderas may have significantly contributed to Snake River Plain topography. Over 300 paleomagnetic cores were collected in September 2010 from the Cassia Hills, Rogerson Graben, and Bruneau-Jarbidge regions in the southern margin of the Snake River Plain. We drilled 10 oriented cores per eruption unit at reference sections from each location and demagnetized them with alternating-field (AF) and thermal demagnetization techniques. In some cases AF treatment up to 200 mT was unable to completely destroy a specimen's natural remnant magnetization and so thermal treatment was used to finish the experiment. Zjiderveld diagrams from AF, thermal and hybrid experiments show

  20. Long-term changes to flood conditions due to varying management strategies, Rock River, WI

    NASA Astrophysics Data System (ADS)

    Fredrick, K. C.

    2015-12-01

    The Rock River is a 300-mile tributary of the Mississippi River in southern Wisconsin. Its source is a protected migratory bird habitat called the Horicon National Wildlife Refuge. Below the refuge, the Rock River flows through mostly rural, agricultural areas, with wide floodplain of mixed land use. Between the dam at Horicon and a hydroelectric dam in Watertown, WI, lie the townships of Lebanon, Ashippun, and Ixonia. These rural townships boast productive agricultural lands of mostly corn, soybeans, and alfalfa. Large portions of their land are within the floodplain, underlain by vast expanses of outwash sands and gravels, glaciolacustrine deposits, and tills. Throughout the region, spring floods are common from snowmelt and spring rain. These annual floods may be exacerbated by frozen ground and slow infiltration, making it an accepted part of life for residents. Over the last 8 years, and possibly as many as 20, this segment of the Rock River has seen an increase in flooding both in periodicity and retention of flood waters. Due to the delicate habitat of the wildlife refuge and the commissioned hydroelectric installation at the upper dam in Watertown, the residents and local governments of the Lebanon/Ashippun/Ixonia segment of the river have mostly been left to their own devices to monitor and manage flood events. Lebanon Township has been recording water levels for several years. Recent events at the hydroelectric plant seem to indicate that it may be playing a more important role in the flooding. High water events and flood retention do not correlate well with precipitation for the region. It appears that releases at the dam, or periods of water retention, are driving the long flooding periods upstream. Negative impacts to the region from the flooding include property damage, loss of arable land, and environmental effects.

  1. Flood-inundation maps for the North Branch Elkhart River at Cosperville, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Johnson, Esther M.

    2014-01-01

    Digital flood-inundation maps for a reach of the North Branch Elkhart River at Cosperville, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers, Detroit District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=04100222. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the North Branch Elkhart River at Cosperville, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the North Branch Elkhart River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind., and preliminary high-water marks from the flood of March 1982. The calibrated hydraulic model was then used to determine four water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS

  2. Flood-inundation maps for the East Fork White River at Columbus, Indiana

    USGS Publications Warehouse

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 5.4-mile reach of the East Fork White River at Columbus, Indiana, from where the Flatrock and Driftwood Rivers combine to make up East Fork White River to just upstream of the confluence of Clifty Creek with the East Fork White River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03364000&agency_cd=USGS&). The National Weather Service (NWS) forecasts flood hydrographs for the East Fork White River at Columbus, Indiana at their Advanced Hydrologic Prediction Service (AHPS) flood warning system Website (http://water.weather.gov/ahps/), that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. The calibrated hydraulic model was then used to determine 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data), having a 0.37-ft vertical accuracy and a 1.02 ft

  3. 76 FR 35106 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... Including Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard is establishing a... of navigable waterways in the Chicago area and is intended to restrict vessels from entering...

  4. 75 FR 26094 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... including Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Temporary interim rule with request for comments. SUMMARY... Michigan. This temporary safety zone will cover 77 miles of navigable waterways in the Chicago area....

  5. 76 FR 23524 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... Including Des Plaines River, Chicago Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of proposed rulemaking. SUMMARY: The Coast Guard... proposed safety zone will cover 77 miles of navigable waterways in the Chicago area and is intended...

  6. Evaluation of levee setbacks for flood-loss reduction, Middle Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Dierauer, Jennifer; Pinter, Nicholas; Remo, Jonathan W. F.

    2012-07-01

    SummaryOne-dimensional hydraulic modeling and flood-loss modeling were used to test the effectiveness of levee setbacks for flood-loss reduction along the Middle Mississippi River (MMR). Four levee scenarios were assessed: (1) the present-day levee configuration, (2) a 1000 m levee setback, (3) a 1500 m levee setback, and (4) an optimized setback configuration. Flood losses were estimated using FEMA's Hazus-MH (Hazards US Multi-Hazard) loss-estimation software on a structure-by-structure basis for a range of floods from the 2- to the 500-year events. These flood-loss estimates were combined with a levee-reliability model to calculate probability-weighted damage estimates. In the simplest case, the levee setback scenarios tested here reduced flood losses compared to current conditions for large, infrequent flooding events but increased flood losses for smaller, more frequent flood events. These increases occurred because levee protection was removed for some of the existing structures. When combined with buyouts of unprotected structures, levee setbacks reduced flood losses for all recurrence intervals. The "optimized" levee setback scenario, involving a levee configuration manually planned to protect existing high-value infrastructure, reduced damages with or without buyouts. This research shows that levee setbacks in combination with buyouts are an economically viable approach for flood-risk reduction along the study reach and likely elsewhere where levees are widely employed for flood control. Designing a levee setback around existing high-value infrastructure can maximize the benefit of the setback while simultaneously minimizing the costs. The optimized levee setback scenario analyzed here produced payback periods (costs divided by benefits) of less than 12 years. With many aging levees failing current inspections across the US, and flood losses spiraling up over time, levee setbacks are a viable solution for reducing flood exposure and flood levels.

  7. The Upper Mississippi River floodscape: spatial patterns of flood inundation and associated plant community distributions

    USGS Publications Warehouse

    DeJager, Nathan R.; Rohweder, Jason J.; Yin, Yao; Hoy, Erin E.

    2016-01-01

    Questions How is the distribution of different plant communities associated with patterns of flood inundation across a large floodplain landscape? Location Thirty-eight thousand nine hundred and seventy hectare of floodplain, spanning 320 km of the Upper Mississippi River (UMR). Methods High-resolution elevation data (Lidar) and 30 yr of daily river stage data were integrated to produce a ‘floodscape’ map of growing season flood inundation duration. The distributions of 16 different remotely sensed plant communities were quantified along the gradient of flood duration. Results Models fitted to the cumulative frequency of occurrence of different vegetation types as a function of flood duration showed that most types exist along a continuum of flood-related occurrence. The diversity of community types was greatest at high elevations (0–10 d of flooding), where both upland and lowland community types were found, as well as at very low elevations (70–180 d of flooding), where a variety of lowland herbaceous communities were found. Intermediate elevations (20–60 d of flooding) tended to be dominated by floodplain forest and had the lowest diversity of community types. Conclusions Although variation in flood inundation is often considered to be the main driver of spatial patterns in floodplain plant communities, few studies have quantified flood–vegetation relationships at broad scales. Our results can be used to identify targets for restoration of historical hydrological regimes or better anticipate hydro-ecological effects of climate change at broad scales.

  8. Flood-inundation maps for the East Fork White River at Shoals, Indiana

    USGS Publications Warehouse

    Boldt, Justin A.

    2016-05-06

    Digital flood-inundation maps for a 5.9-mile reach of the East Fork White River at Shoals, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the East Fork White River at Shoals, Ind. (USGS station number 03373500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site SHLI3). NWS AHPS forecast peak stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.Flood profiles were computed for the East Fork White River reach by means of a one-dimensional, step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the current stage-discharge relation (USGS rating no. 43.0) at USGS streamgage 03373500, East Fork White River at Shoals, Ind. The calibrated hydraulic model was then used to compute 26 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from approximately bankfull (10 ft) to the highest stage of the current stage-discharge rating curve (35 ft). The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM), derived from light detection and ranging (lidar) data, to delineate the area flooded at each water level. The areal extent of the 24-ft flood-inundation map was

  9. Water-level changes in the High Plains aquifer, Republican River Basin in Colorado, Kansas, and Nebraska, 2002 to 2015

    USGS Publications Warehouse

    McGuire, V.L.

    2016-12-29

    The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. More than 95 percent of the water withdrawn from the High Plains aquifer is used for irrigation. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). The Republican River Basin is 15.9 million acres (about 25,000 square miles) and is located in northeast Colorado, northern Kansas, and southwest Nebraska. The Republican River Basin overlies the High Plains aquifer for 87 percent of the basin area. Water-level declines had begun in parts of the High Plains aquifer within the Republican River Basin by 1964. In 2002, management practices were enacted in the Middle Republican Natural Resources District in Nebraska to comply with the Republican River Compact Final Settlement. The U.S. Geological Survey, in cooperation with the Middle Republican Natural Resources District, completed a study of water-level changes in the High Plains aquifer within the Republican River Basin from 2002 to 2015 to enable the Middle Republican Natural Resources District to assess the effect of the management practices, which were specified by the Republican River Compact Final Settlement. Water-level changes determined from this study are presented in this report.Water-level changes from 2002 to 2015 in the High Plains aquifer within the Republican River Basin, by well, ranged from a rise of 9.4 feet to a decline of 43.2 feet. The area-weighted, average water-level change from 2002 to 2015 in this part of the aquifer was a decline of 4.5 feet.

  10. Ecological response to and management of increased flooding caused by climate change.

    PubMed

    Poff, N LeRoy

    2002-07-15

    River channels and their flood plains are among the most naturally dynamic ecosystems on earth, in large part due to periodic flooding. The components of a river's natural flood regime (magnitude, frequency, duration and timing of peak flows) interact to maintain great habitat heterogeneity and to promote high species diversity and ecosystem productivity. Flood regimes vary within and among rivers, depending on catchment size, geology and regional hydroclimatology. Geographic variation in contemporary flood regimes results in river-to-river variation in ecosystem structure, and therefore in potential river ecosystem response to increased future flooding. The greater the deviation in flood regime from contemporary or recent historical conditions, the greater the expected ecological alteration. Ecological response will also depend on how extensively humans have altered natural river dynamics through land-use practices. Examples of human-caused changes in flood regime (e.g. urbanization, agricultural practices) provide analogues to explore the ecological implications of region-specific climate change. In many settings where humans have severely modified rivers (e.g. through leveeing), more frequent larger floods will work to re-establish connections with severed flood-plain and riparian wetlands in human-dominated river valleys. Developing and implementing non-structural flood-management policies based on ecological principles can benefit river ecosystems, as well as human society.

  11. Impact of a large flood on mountain river habitats, channel morphology, and valley infrastructure

    NASA Astrophysics Data System (ADS)

    Hajdukiewicz, Hanna; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Radecki-Pawlik, Artur

    2016-11-01

    The Biała River, Polish Carpathians, was considerably modified by channelization and channel incision in the twentieth century. To restore the Biała, establishing an erodible corridor was proposed in two river sections located in its mountain and foothill course. In these sections, longer, unmanaged channel reaches alternate with short, channelized reaches; and channel narrowing and incision increases in the downstream direction. In June 2010 an 80-year flood occurred on the river; and this study aims at determining its effects on physical habitat conditions for river biota, channel morphology, and valley-floor infrastructure. Surveys of 10 pairs of closely located, unmanaged and channelized cross sections, performed in 2009 and in the late summer 2010, allowed us to assess the flood-induced changes to physical habitat conditions. A comparison of channel planforms determined before (2009) and after (2012) the flood provided information on the degree of channel widening as well as changes in the width of particular elements of the river's active zone in eight stretches of the Biała. The impact of the flood on valley-floor infrastructure was confronted with the degree of river widening in unmanaged and channelized river reaches. Before the flood, unmanaged cross sections were typified by finer bed material and greater lateral variability in depth-averaged and near-bed flow velocity than channelized cross sections. The flood tended to equalize habitat conditions in both types of river cross sections, obliterating differences (in particular physical habitat parameters) between channelized and unmanaged channel reaches. River widening mostly reflected an increase in the area of channel bars, whereas the widening of low-flow channels was less pronounced. A comparison of channel planform from 2009 and 2012 indicated that intense channel incision typical of downstream sections limited river widening by the flood. Active channel width increased by half in the unmanaged

  12. Flooding and forest succession in a modified stretch along the upper Mississippi River

    USGS Publications Warehouse

    Yin, Yao

    1998-01-01

    This research examines the effect of a rare flood on floodplain forest regeneration in a 102-km stretch of the Mississippi River beginning 21 km above the mouth of the Ohio River. The river has been restricted by levees and navigation structures and subjected to sediment dredging to maintain a stable navigation channel. Because the bank erosion-accretion process has been slowed or eliminated, cottonwood (Populus spp.) and willow (Salix spp.) communities regenerate poorly in the modified river environment. An unusually large flood in 1993 destroyed the entire ground vegetation layer, killing 77.2% of the saplings and 32.2% of the trees. The flood created an alternative mechanism for cottonwood and willow to regenerate under canopy openings, enabling the community type composition of the present-day forest to be sustained for the next 50 years. Over time, however, the forest will likely exhibit considerable compositional fluctuation.

  13. Flood of July 1-5, 1978 on the Kickapoo River, southwestern Wisconsin

    USGS Publications Warehouse

    Hughes, Peter E.; Hannuksela, J.S.; Danchuk, W.J.

    1981-01-01

    The Kickapoo River valley in southwestern Wisconsin had a devastating flood ($10 million estimated damages) during July 1-5, 1978. The flash flooding was caused by intense storms on June 30 through July 2. Total rainfall accumulation ranged from 5.8 inches near Ontario to 9.5 inches at La Farge. The resulting flood equaled or exceeded the largest ones recorded since the 1850 's and equaled or exceeded the 100-year flood frequency at the U.S. Geological Survey 's streamflow gages at La Farge and Steuben. Elevation and delineation of the flood are shown on photo mosaics developed from black and white aerial photographs. The 100-mile reach from Wauzeka to Wilton is shown. A summary of the storm conditions causing the flood and an analysis of the rainfall totals, as prepared by the Wisconsin Geological and Natural History Survey, are also included. (USGS)

  14. Flood-inundation maps for the West Branch Delaware River, Delhi, New York, 2012

    USGS Publications Warehouse

    Coon, William F.; Breaker, Brian K.

    2012-01-01

    Digital flood-inundation maps for a 5-mile reach of the West Branch Delaware River through the Village and part of the Town of Delhi, New York, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of Delhi, the Delaware County Soil and Water Conservation District, and the Delaware County Planning Department. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) referenced to the USGS streamgage at West Branch Delaware River upstream from Delhi, N.Y. (station number 01421900). In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model that had been used to produce the flood insurance rate maps for the most recent flood insurance study for the Town and Village of Delhi. This hydraulic model was used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 7 ft or near bankfull to 16 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual-exceedance-probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model, which was derived from Light Detection and Ranging (LiDAR) data with a 1.2-ft (0.61-ft root mean squared error) vertical accuracy and 3.3-ft (1-meter) horizontal resolution, to delineate the area flooded at each water level. A map that was produced using this method to delineate the inundated area for the flood that occurred on August 28, 2011, agreed well with highwater marks that had been located in the field using a

  15. Flood-inundation maps for the Mississinewa River at Marion, Indiana, 2013

    USGS Publications Warehouse

    Coon, William F.

    2014-01-01

    Digital flood-inundation maps for a 9-mile (mi) reach of the Mississinewa River from 0.75 mi upstream from the Pennsylvania Street bridge in Marion, Indiana, to 0.2 mi downstream from State Route 15 were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Mississinewa River at Marion (station number 03326500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the current stage-discharge relation at the Mississinewa River streamgage, in combination with water-surface profiles from historic floods and from the current (2002) flood-insurance study for Grant County, Indiana. The hydraulic model was then used to compute seven water-surface profiles for flood stages at 1-fo (ft) intervals referenced to the streamgage datum and ranging from 10 ft, which is near bankfull, to 16 ft, which is between the water levels associated with the estimated 10- and 2-percent annual exceedance probability floods (floods with recurrence interval between 10 and 50 years) and equals the “major flood stage” as defined by the NWS. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging (lidar) data having a 0.98 ft vertical accuracy and 4.9 ft

  16. Aeroradioactivity Survey and Areal Geology of the Savannah River Plant Area, South Carolina and Georgia (ARMS-I)

    DTIC Science & Technology

    1962-03-01

    Savannah River Plant area where it is found along the Savannah River near the Effingham-Screven county line, Ga., and possibly also near the Edisto River , S...layers found on the east bank of the North Fork of the Edisto River (along State Highway 215, southwest of Pelion in Lexington County, S. C.) are...distinctly higher or lower than the surrounding Coastal Plain. Parts of the Ogeechee River (Ga.), Savannah River and Edisto River (S. C.) flood plains

  17. Morphodynamic Response of the Unregulated Yampa River at Deerlodge to the 2011 Flood

    NASA Astrophysics Data System (ADS)

    Wheaton, J. M.; Scott, M.; Perkins, D.; DeMeurichy, K.

    2011-12-01

    The Yampa River, a tributary to the Green River, is the last undammed major tributary in the upper Colorado River Basin. The Yampa River at Deerlodge is actively braiding in an unconfined park valley setting, just upstream of the confined Yampa Canyon in Dinosaur National Monument. Deerlodge is a critical indicator site, which is monitored closely for signs of potential channel narrowing and associated invasions of non-native tamarisk or salt cedar (Tamarix) by the National Park Service's Northern Colorado Plateau Network (NPS-NCPN). Like many rivers draining the Rockies, the Yampa was fed by record snowpack in this year's spring runoff and produced the second largest flood of record at 748 cms (largest food of record was 940 cms in1984). In contrast to most major rivers in the Colorado Basin, which are now dammed, the Yampa's natural, unregulated floods are thought to be of critical importance in rejuvenating the floodplain and reorganizing habitat in a manner favorable to native riparian vegetation and unfavorable to tamarisk. As part of the Big Rivers Monitoring Protocol, a 1.5 km reach of the braided river was surveyed with sub-centimeter resolution ground-based LiDaR and a total station in September of 2010 and was resurveyed after the 2011floods. The ground-based LiDaR captures the vegetation as well as topography. Additionally, vegetation surveys were performed to identify plant species present, percent covers and relative abundance before and after the flood. The Geomorphic Change Detection software was used to distinguish the real net changes from noise and segregate the budget by specific mechanisms of geomorphic change associated with different channel and vegetative patterns. This quantitative study of the morphodynamic response to a major flood highlights a critical potential positive feedback the flood plays on native riparian vegetation recruitment and potential negative feedback on non-native tamarisk.

  18. Flood moderation: Declining peak flows along some Rocky Mountain rivers and the underlying mechanism

    NASA Astrophysics Data System (ADS)

    Rood, Stewart B.; Foster, Stephen G.; Hillman, Evan J.; Luek, Andreas; Zanewich, Karen P.

    2016-05-01

    It has been proposed that global warming will amplify the water cycle and intensify river floods. We tested this hypothesis by investigating historic trends in magnitudes, durations and timing of the annual peak flows of rivers that drain the Rocky Mountains around the North American hydrographic apex, the source for rivers flowing to the Pacific, Arctic (including Hudson Bay) and Atlantic Oceans. We sought century-long records and to reduce influences from land-use we assessed drainages from parks and protected areas. Of 30 rivers and reaches that were free-flowing or slightly regulated, seven displayed declining peak flows (7 p < 0.1, 4 p < 0.05), and one showed increase (p < 0.05); three of five moderately regulated rivers displayed decline (p < 0.05). Substantial floods, exceeding the 1-in-5 year recurrence (Q5), were more common in the early versus latter halves of the records for some Arctic drainages and were more common during the Pacific Decadal Oscillation negative phase for all regions. The timing of peak flows was relatively unchanged and Q5 flood durations declined for a few rivers. These results indicate flood moderation rather than flood intensification, particularly for Arctic Ocean drainages. This could reflect regional hydrological consequences from climate change including: (1) declining overall annual river flows; (2) winter warming that would increase the rain versus snow proportion, thus reducing snow accumulation and melt; and (3) spring warming that advances snow melt, lengthening the melt interval before peak flows. These changes would shift the seasonality of river flows and reduce annual peaks. We might expect continuing moderation of peak flows but there will probably still be occasional major floods from exceptional rain events such as occurred in northern Montana in 1964 and in southern Alberta in 2013.

  19. Redwood River at Marshall, Minnesota; Feasibility Report for Flood Control.

    DTIC Science & Technology

    1979-06-01

    would be converted to open- space recreational and other pub- lic use areas. The displacement of existing development in addition to being totally...State policy that permanently habitable space below the regulatory flood elevation should not be flood proofed. Similarly, evacuation and flood- proofing...Recreation and open space Added recreational Additional recrea- opportunities with tional opportunities trail system and with trail system other

  20. Influence of deposition of fine plant debris in river floodplain shrubs on flood flow conditions - The Warta River case study

    NASA Astrophysics Data System (ADS)

    Mazur, Robert; Kałuża, Tomasz; Chmist, Joanna; Walczak, Natalia; Laks, Ireneusz; Strzeliński, Paweł

    2016-08-01

    This paper presents problems caused by organic material transported by flowing water. This material is usually referred to as plant debris or organic debris. Its composition depends on the characteristic of the watercourse. For lowland rivers, the share of the so-called small organic matter in plant debris is considerable. This includes both various parts of water plants and floodplain vegetation (leaves, stems, blades of grass, twigs, etc.). During floods, larger woody debris poses a significant risk to bridges or other water engineering structures. It may cause river jams and may lead to damming of the flowing water. This, in turn, affects flood safety and increases flood risk in river valleys, both directly and indirectly. The importance of fine plant debris for the phenomenon being studied comes down to the hydrodynamic aspect (plant elements carried by water end up on trees and shrubs, increase hydraulic flow resistance and contribute to the nature of flow through vegetated areas changed from micro-to macro-structural). The key part of the research problem under analysis was to determine qualitative and quantitative debris parameters and to establish the relationship between the type of debris and the type of land use of river valleys (crop fields, meadows and forested river sections). Another problem was to identify parameters of plant debris for various flow conditions (e.g. for low, medium and flood flows). The research also included an analysis of the materials deposited on the structure of shrubs under flood flow conditions during the 2010 flood on the Warta River.

  1. Global assessment of river flood protection benefits and corresponding residual risks under climate change

    NASA Astrophysics Data System (ADS)

    Lim, Wee Ho; Yamazaki, Dai; Koirala, Sujan; Hirabayashi, Yukiko; Kanae, Shinjiro; Dadson, Simon J.; Hall, Jim W.

    2016-04-01

    Global warming increases the water-holding capacity of the atmosphere and this could lead to more intense rainfalls and possibly increasing natural hazards in the form of flooding in some regions. This implies that traditional practice of using historical hydrological records alone is somewhat limited for supporting long-term water infrastructure planning. This has motivated recent global scale studies to evaluate river flood risks (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014, Sadoff et al., 2015) and adaptations benefits (e.g., Jongman et al., 2015). To support decision-making in river flood risk reduction, this study takes a further step to examine the benefits and corresponding residual risks for a range of flood protection levels. To do that, we channelled runoff information of a baseline period (forced by observed hydroclimate conditions) and each CMIP5 model (historic and future periods) into a global river routing model called CaMa-Flood (Yamazaki et al., 2011). We incorporated the latest global river width data (Yamazaki et al., 2014) into CaMa-Flood and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the flood protection benefits. We quantify the corresponding residual risks using a mathematical approach that is consistent with the modelling structure of CaMa-Flood. Globally and regionally, we find that the benefits of flood protection level peak somewhere between 20 and 500 years; residual risks diminish

  2. Development of flood-inundation maps for the Mississippi River in Saint Paul, Minnesota

    USGS Publications Warehouse

    Czuba, Christiana R.; Fallon, James D.; Lewis, Corby R.; Cooper, Diane F.

    2014-01-01

    Digital flood-inundation maps for a 6.3-mile reach of the Mississippi River in Saint Paul, Minnesota, were developed through a multi-agency effort by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and in collaboration with the National Weather Service. The inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the National Weather Service Advanced Hydrologic Prediction Service site at http://water.weather.gov/ahps/inundation.php, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgage at the Mississippi River at Saint Paul (05331000). The National Weather Service forecasted peak-stage information at the streamgage may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the Mississippi River by means of a one-dimensional step-backwater model. The hydraulic model was calibrated using the most recent stage-discharge relation at the Robert Street location (rating curve number 38.0) of the Mississippi River at Saint Paul (streamgage 05331000), as well as an approximate water-surface elevation-discharge relation at the Mississippi River at South Saint Paul (U.S. Army Corps of Engineers streamgage SSPM5). The model also was verified against observed high-water marks from the recent 2011 flood event and the water-surface profile from existing flood insurance studies. The hydraulic model was then used to determine 25 water-surface profiles for flood stages at 1-foot intervals ranging from approximately bankfull stage to greater than the highest recorded stage at streamgage 05331000. The simulated water-surface profiles were then combined with a geographic information system digital elevation model, derived from high-resolution topography

  3. The Iowa Flood Center's River Stage Sensors—Technical Details

    NASA Astrophysics Data System (ADS)

    Niemeier, J. J.; Kruger, A.; Ceynar, D.; Fahim Rezaei, H.

    2012-12-01

    The Iowa Flood Center (IFC), along with support from the Iowa Department of Transportation (DOT) and the Iowa Department of Natural Resources (DNR) have developed a bridge-mounted river stage sensor. Each sensor consists of an ultrasonic distance measuring module, cellular modem, a GPS unit that provides accurate time and an embedded controller that orchestrates the sensors' operation. A sensor is powered by a battery and solar panel along with a solar charge controller. All the components are housed in/on a sturdy metal box that is then mounted on the side of a bridge. Additionally, each sensor incorporates a water-intrusion sensor and an internal temperature sensor. In operation, the microcontroller wakes, and turns on the electronics every 15 minutes and then measures the distance between the ultrasonic sensor and the water surface. Several measurements are averaged and transmitted along with system health information (battery voltage, state of water intrusion sensor, and internal temperature) via cellular modem to remote servers on the internet. The microcontroller then powers the electronics down and enters a sleep/power savings mode. The sensor's firmware allows the remote server to adjust the measurement rate to 5, 15, and 60 minutes. Further, sensors maintain a 24-day buffer of previous measurements. If a sensor could not successfully transmit its data because of cellular network connection problems, it will transmit the backlog on subsequent transmissions. We paid meticulous attention to all engineering aspects and sensors are very robust and have operated essentially continuously through two Iowa winters and summers, including the 2012 record-breaking warm summer.

  4. Sediment-Basalt Architecture, Pliocene and Pleistocene Eastern and Central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Helm-Clark, C. M.; Link, P. K.

    2006-12-01

    This presentation is a synthesis of known stratigraphic studies of the Pliocene, Pleistocene and Holocene basalts and interbedded sedimentary beds on the Eastern Snake River Plain (ESRP). This information is important for understanding the post-caldera tectonic evolution of the ESRP, especially for tracking patterns of volcanic eruption and changes in topography. Geophysical surveys and existing well logs indicate the depth of the basalt sequence is usually 2 km or less, even near the axis of the Plain. An alteration horizon, the product of high heat-flow in the wake of the Yellowstone hot spot, moderated by cold-water recharge in the thick and highly-transmissive Snake River Aquifer, has variable depth. The surface and near-surface of the lava fields are mainly basalts less than a half a million years old, from Island Park to Twin Falls/Shoshone. Near the junction of the Eastern and Western Snake River Plains, these youngest late Pleistocene basalts, many less than 100,000 years old, overlie early Pleistocene basalts more than a million and a half years old. Most basalt flows have been erupted from NW-trending volcanic rift zones like the Great Rift of Idaho or from the Axial Volcanic High (AVH). The AVH is a constructional axial ridge formed by multiple volcanic vents, small shield volcanoes and rhyolitic domes which run the length of the ESRP. A combination of previous and new stratigraphic and geochronology studies, including U-Pb detrital-zircon geochronology on sediments, reveals several lake sequences, formed by the damming of rivers. These tend to be thickest in upstream, valley-mouth, and Plain-marginal locations where the rivers were trapped. The lake beds generally pinch out toward the AVH. The most notable of these are the Mid-Pleistocene Raft Formation, the Late Pleistocene American Falls Lake Beds, at least two mid-Pleistocene sequences of ponded sediment from the Big Lost River at its egress onto the ESRP, and a 2.5 to 1.6 Ma sequence in the Big Lost

  5. Enigmatic Post-Glacial Degradation and Aggradation of Rivers on the Alberta Plains

    NASA Astrophysics Data System (ADS)

    Malowany, K. S.; osborn, G.; Wu, P. P.

    2011-12-01

    Rivers flowing eastward from the Canadian Rockies across the Alberta plains are situated in narrow flat-bottomed valleys on the order of 50 to 100 m below the plains surface. Post-Laurentide Ice Sheet river history is characterized by (a) incision into the general plains surface following deglaciation, (b) aggradation, soon thereafter, in which up to 25 m of alluvial fill was deposited in the new valleys, and (c) Holocene reincision into the fill, down to depths at least as great as those of the pre-fill valleys. This complicated history probably results from an interplay of (a) isostatic depression/ rebound, which is considered here using a Glacial Isostatic Adjustment model that incorporates the RF2 and RF3 earth models described by Wang et al. (2008) with the ICE4G deglaciation model of Peltier (1994), and (b) variations in sediment flux. The initial incision post-dates the retreat of the Laurentide Ice Sheet eastward across Alberta, ca. 14 ka, and pre-dates the ca. 11 ka alluvial fill. Incision cannot have resulted from general uplift provided by post-glacial isostatic rebound, because rebound was and is generally greater downstream where ice was thicker. Hence river gradients have generally decreased because of rebound. Incision more likely resulted from increased gradients provided by isostatic depression under the center of the ice sheet, relative to the plains gradient that would exist without ice effects. Temporary increased gradients on particular reaches of rivers were provided by the passage across Alberta of the slope of a peripheral bulge on the margin of the isostatic depression. However, some reaches of the rivers have orientations that preclude an obvious connection to bulge gradients. The switch from degradation to aggradation in early post-glacial time was proposed to be a result of decreasing river gradients due to rebound, by Kellerhals and Shaw (1982), but later considered to be a result of influx of paraglacial sediments from the Canadian

  6. Urban Flood Management with Integrated Inland-River System in Seoul

    NASA Astrophysics Data System (ADS)

    Moon, Y. I.; Kim, J. S.; Yuk, J. M.

    2015-12-01

    Global warming and climate change have caused significant damage and loss of life worldwide. The pattern of natural disasters has gradually diversified and their frequency is increasing. The impact of climate change on flood risk in urban rivers is of particular interest because these areas are typically densely populated. The occurrence of urban river flooding due to climate change not only causes significant loss of life and property but also causes health and social problems. It is therefore necessary to develop a scientific urban flood management system to cope with and reduce the impacts of climate change, including flood damage. In this study, we are going to introduce Integrated Inland-River Flood Analysis System in Seoul to conduct predictions on flash rain or short-term rainfall by using radar and satellite information and perform prompt and accurate prediction on the inland flooded areas. In addition, this urban flood management system can be used as a tool for decision making of systematic disaster prevention through real-time monitoring.

  7. Flood risk trends in coastal watersheds in South Spain: direct and indirect impact of river regulation

    NASA Astrophysics Data System (ADS)

    Egüen, M.; Polo, M. J.; Gulliver, Z.; Contreras, E.; Aguilar, C.; Losada, M. A.

    2015-06-01

    Spain is one of the world's countries with a large number of reservoirs per inhabitant. This intense regulation of the fluvial network during the 20th century has resulted in a decrease in flood events, a higher availability of water resources, and a high development of the irrigated crop area, even in the drier regions. For decades, flood perception was reduced since the development of reservoirs protected the floodplains of river; this resulted in later occupation of soil by urban, agricultural and industrial uses. In recent years, an increasing perception of flood events is observed, associated to the higher damage associated to extreme events in the now occupied areas, especially in coastal watersheds. This work shows the change on flood risk in the coastal areas of three hydrographic basins in Andalusia (South Spain) during the reservoir expansion period: the Guadalete, Guadalquivir and Guadalhorce river basins. The results differentiate the impact of the regulation level on both the cumulative distribution functions of the fluvial discharge near the river mouth, for different time scales, and the associated damage related to the enhanced soil occupation during this period. The different impact on the final medium and long term flood risk is also assessed in terms of the storage capacity per unit area throughout the basins, the effective annual runoff/precipitation index, the frequency of sea storms, and the human factor (change in social perception of floods), for different intervals in the flood extreme regime. The implications for adaptation actions is also assessed.

  8. Flood of September 18-19, 2004 in the Upper Delaware River Basin, New York

    USGS Publications Warehouse

    Brooks, Lloyd T.

    2005-01-01

    The interaction between the remnants of tropical depression Ivan and a frontal boundary in the upper Delaware River basin on September 18-19, 2004, produced 4 to more than 6 inches of rainfall over a 5-county area within a 24-hour period. Significant flooding occurred on the East Branch Delaware River and its tributaries, and the main stem of the Delaware River. The resultant flooding damaged more than 100 homes and displaced more than 1,000 people. All of the counties within the basin were declared Federal disaster areas, but flood damage in New York was most pronounced in Delaware, Orange, and Sullivan Counties. Flood damage totaled more than $10 million. Peak water-surface elevations at some study sites in the basin exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey (USGS) streamflow-gaging stations were the highest ever recorded.

  9. Circulation in a bay influenced by flooding of a river discharging outside the bay

    NASA Astrophysics Data System (ADS)

    Kakehi, Shigeho; Takagi, Takamasa; Okabe, Katsuaki; Takayanagi, Kazufumi

    2017-03-01

    To investigate the influence of a river discharging outside a bay on circulation in the bay, we carried out current and salinity measurements from mooring systems and hydrographic observations in Matsushima Bay, Japan, and off the Naruse River, which discharges outside the bay. Previously, enhancement of horizontal circulation in the bay induced by increased freshwater input from the Naruse River was reported to have degraded the seedling yield of wild Pacific oysters in the bay, but the freshwater inflow from the river was not directly measured. Our hydrographic observations in Katsugigaura Strait, approximately 3 km southwest of the Naruse River mouth, detected freshwater derived from the river. The mooring data revealed that freshwater discharged by the river flowed into Matsushima Bay via the strait and that the freshwater transport increased when the river was in flood. The inflow through straits other than Katsugigaura was estimated by a box model analysis to be 26-145 m3 s-1 under normal river discharge conditions, and it decreased to 6 m3 s-1 during flood conditions. During flood events, the salt and water budgets in the bay were maintained by the horizontal circulation: inflow occurred mainly via Katsugigaura Strait, and outflow was mainly via other straits.

  10. An expanded model: flood-inundation maps for the Leaf River at Hattiesburg, Mississippi, 2013

    USGS Publications Warehouse

    Storm, John B.

    2014-01-01

    Digital flood-inundation maps for a 6.8-mile reach of the Leaf River at Hattiesburg, Mississippi (Miss.), were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Leaf River at Hattiesburg, Miss. (station no. 02473000). Current conditions for estimating near-real-time areas of inundation by use of USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relations at the Leaf River at Hattiesburg, Miss. streamgage (02473000) and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system (GIS

  11. Planned flooding and Colorado River riparian trade-offs downstream from Glen Canyon Dam, Arizona

    USGS Publications Warehouse

    Stevens, Lawrence E.; Ayers, T.J.; Bennett, J.B.; Christensen, K.; Kearsley, M.J.C.; Meretsky, V.J.; Phillips, A. M.; Parnell, R.A.; Spence, J.; Sogge, M.K.; Springer, A.E.; Wegner, D.L.

    2001-01-01

    Regulated river restoration through planned flooding involves trade-offs between aquatic and terrestrial components, between relict pre-dam and novel post-dam resources and processes, and between management of individual resources and ecosystem characteristics. We review the terrestrial (wetland and riparian) impacts of a 1274 m3/s test flood conducted by the U.S. Bureau of Reclamation in March/April 1996, which was designed to improve understanding of sediment transport and management downstream from Glen Canyon Dam in the Colorado River ecosystem. The test flood successfully restored sandbars throughout the river corridor and was timed to prevent direct impacts to species of concern. A total of 1275 endangered Kanab ambersnail (Oxyloma haydeni kanabensis) were translocated above the flood zone at Vaseys Paradise spring, and an estimated 10.7% of the total snail habitat and 7.7% of the total snail population were lost to the flood. The test flood scoured channel margin wetlands, including potential foraging habitats of endangered Southwestern Willow Flycatcher (Empidonax traillii extimus). It also buried ground-covering riparian vegetation under >1 m of fine sand but only slightly altered woody sandbar vegetation and some return-current channel marshes. Pre-flood control efforts and appropriate flood timing limited recruitment of four common nonnative perennial plant species. Slight impacts on ethnobotanical resources were detected >430 km downstream, but those plant assemblages recovered rapidly. Careful design of planned flood hydrograph shape and seasonal timing is required to mitigate terrestrial impacts during efforts to restore essential fluvial geomorphic and aquatic habitats in regulated river ecosystems.

  12. Groundwater flooding vulnerability assessment in riverside alluviums of Nakdong River, South Korea

    NASA Astrophysics Data System (ADS)

    Chang, kwangsoo; Lee, Seunghyun; Kwon, Mijin; Kim, Deoggeun

    2016-04-01

    Soil wetting or inundation due to rising groundwater table can cause groundwater flooding in the riverside alluvium and also affect the scale of surface water flooding. There is possible to occur the flooding of lowland by falling the groundwater level at heavy rain and is important to evaluate the vulnerability and the prediction of groundwater problem. Three groups (safe, intermediate, and vulnerable) are classified by using groundwater flooding vulnerability index(FVI) which is calculated using groundwater level's time series measured at each monitoring well. A prediction model for the classification is developed by using a discriminant analysis based on the correlation between the original groups and physical features (topography, soil, sediment layer distribution, soil drainage, and groundwater level-related features). And we have created a groundwater flooding vulnerability GIS Map. This research results is possible to policy support of establishment of flooding providing the flooding vulnerability technique using the groundwater occurring the damage came from the fluctuation of groundwater level by the water level change of river and the effect of rainfall. Also, in conjunction with the existing flooding/drought map, it improve the accuracy of groundwater flooding/drought prediction, and it becomes possible to respond the water sources, water level down by using the evaluation system in flooding/drought.

  13. Quantification of increased flood risk due to global climate change for urban river management planning.

    PubMed

    Morita, M

    2011-01-01

    Global climate change is expected to affect future rainfall patterns. These changes should be taken into account when assessing future flooding risks. This study presents a method for quantifying the increase in flood risk caused by global climate change for use in urban flood risk management. Flood risk in this context is defined as the product of flood damage potential and the probability of its occurrence. The study uses a geographic information system-based flood damage prediction model to calculate the flood damage caused by design storms with different return periods. Estimation of the monetary damages these storms produce and their return periods are precursors to flood risk calculations. The design storms are developed from modified intensity-duration-frequency relationships generated by simulations of global climate change scenarios (e.g. CGCM2A2). The risk assessment method is applied to the Kanda River basin in Tokyo, Japan. The assessment provides insights not only into the flood risk cost increase due to global warming, and the impact that increase may have on flood control infrastructure planning.

  14. Reevalution of background iodine-129 concentrations in water from the Snake River Plain Aquifer, Idaho, 2003

    USGS Publications Warehouse

    Cecil, L. DeWayne; Hall, L. Flint; Green, Jaromy R.

    2003-01-01

    Background concentrations of iodine-129 (129I, half-life = 15.7 million years) resulting from natural production in the earth?s atmosphere, in situ production in the earth by spontaneous fission of uranium-238(238U), and fallout from nuclear weapons tests conducted in the 1950s and 1960s were reevaluated on the basis of 52 analyses of ground- and surface-water samples collected from the eastern Snake River Plain in southeastern Idaho. The background concentration estimated using the results of a subset of 30 ground-water samples analyzed in this reevaluation is 5.4 attocuries per liter (aCi/L; 1 aCi = 10-18 curies) and the 95-percent nonparametric confidence interval is 5.2 to 10.0 aCi/L. In a previous study, a background 129I concentration was estimated on the basis of analyses of water samples from 16 sites on or tributary to the eastern Snake River Plain. At the 99-percent confidence level, background concentrations of 129I in that study were less than or equal to 8.2 aCi/L. During 1993?94, 34 water samples from 32 additional sites were analyzed for 129I to better establish the background concentrations in surface and ground water from the eastern Snake River Plain that is presumed to be unaffected by wastedisposal practices at the Idaho National Engineering and Environmental Laboratory (INEEL). Surface water contained larger 129I concentrations than water from springs and wells contained. Because surface water is more likely to be affected by anthropogenic fallout and evapotranspiration, background 129I concentrations were estimated in the current research using the laboratory results of ground-water samples that were assumed to be unaffected by INEEL disposal practices.

  15. Aqueous geochemistry and diagenesis in the eastern Snake River Plain aquifer system, Idaho

    USGS Publications Warehouse

    Wood, Warren W.; Low, Walton H.

    1986-01-01

    Water budget and isotopic analyses of water in the eastern Snake River Plain aquifer system confirm that most, if not all, of the water is local meteoric in origin. Solute mass-balance arguments suggest that ∼5 × 109 moles of calcite and 2.6 × 109 moles of silica are precipitated annually in the aquifer. Isotopic evaluations of calcite and petrographic observation of silica support the low-temperature origin of these deposits. Approximately 2.8 × 109 moles of chloride, 4.5 × 109 moles of sodium, 1.4 × 109 moles of sulfate, and 2 × 109 moles of magnesium are removed annually from the aquifer framework by solution. Proposed weathering reactions are shown to be consistent with mass balance, carbon isotopes, observed mineralogy, and chemical thermodynamics. Large quantities of sodium, chloride, and sulfate are being removed from the system relative to their abundances in the rock. Sedimentary interbeds, which are estimated to compose <10% of the aquifer volume, may yield as much as 20% of the solutes generated within the aquifer. Weathering rate of the aquifer framework of the eastern Snake River Plain is 14 (Mg/km2)/yr or less than half the average of the North American continent. This contrasts with the rate for the eastern Snake River basin, 34 (Mg/km2)/yr, which is almost identical to the average for the North American continent. Identification and quantification of reactions controlling solute concentrations in ground water in the eastern plain indicate that the aquifer is not an “inert bathtub” that simply stores and transmits water and solutes but is undergoing active diagenesis and is both a source and sink for solutes.

  16. Joint modelling of flood peaks and volumes along the Danube River

    NASA Astrophysics Data System (ADS)

    Kohnova, Silvia; Papaioannou, George; Bacigal, Tomas; Jeneiova, Katarina; Szolgay, Jan; Loukas, Athanasios

    2016-04-01

    Flood frequency analysis is usually performed as univariate analysis of flood peaks using a suitable theoretical probability distribution of annual maximum flood peaks. However, other flood attributes, such as flood volume and duration, are necessary for the design of hydrotechnical projects. In this study, various copula families have been applied to bivariate analysis of discharge and volume in extreme flood incidents modelling. Streamflow data from numerous gauged stations of the Danube River have been used. The methodology consists of a combination of Annual Maximum Flood peaks (AMF) with corresponding volumes and independent annual maximum volumes of fixed duration at 5,10,15,20,25,30 and 60 days, respectively. The Kendall's tau coefficient quantifies the correlation in distinct discharge-volume settings. The Archimedean (e.g. Frank, Clayton and Ali-Mikhail-Haq) copulas revealed to be more capable for bivariate modeling of floods than the other examined copula families at the Danube River. Results showed in general that copulas are effective tools for bivariate modeling of the two random variables studied.

  17. Coupled hydrogeomorphic and woody-seedling responses to controlled flood releases in a dryland river

    NASA Astrophysics Data System (ADS)

    Wilcox, Andrew C.; Shafroth, Patrick B.

    2013-05-01

    Interactions among flow, geomorphic processes, and riparian vegetation can strongly influence both channel form and vegetation communities. To investigate such interactions, we took advantage of a series of dam-managed flood releases that were designed in part to maintain a native riparian woodland system on a sand-bed, dryland river, the Bill Williams River, Arizona, USA. Our resulting multiyear flow experiment examined differential mortality among native and nonnative riparian seedlings, associated flood hydraulics and geomorphic changes, and the temporal evolution of feedbacks among vegetation, channel form, and hydraulics. We found that floods produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach. We also observed significantly greater mortality among nonnative tamarisk (Tamarix) seedlings than among native willow (Salix gooddingii) seedlings, reflecting the greater first-year growth of willow relative to tamarisk. When vegetation was small early in our study period, the effects of vegetation on flood hydraulics and on mediating flood-induced channel change were minimal. Vegetation growth in subsequent years resulted in stronger feedbacks, such that vegetation's stabilizing effect on bars and its drag effect on flow progressively increased, muting the geomorphic effects of a larger flood release. These observations suggest that the effectiveness of floods in producing geomorphic and ecological changes varies not only as a function of flood magnitude and duration, but also of antecedent vegetation density and size.

  18. Extending the flood record on the Middle Gila River with Holocene stratigraphy

    SciTech Connect

    Huckleberry, G. . Dept. of Geosciences)

    1993-04-01

    Historical changes in flood frequency and magnitude are correlated to changes in channel geometry for the Middle Gila River (MGR) in south-central Arizona. The author has attempted to reconstruct the frequency of large floods on the MGR for the last 1,000 years by looking at the stratigraphic record with the purpose of modeling channel changes during a period of significant local cultural change, i.e., the Hohokam-Pima cultural transition. After distinguishing and mapping geological surfaces in the eastern part of the Gila River Indian Community. The author placed a series of backhoe trenches on late Holocene MGR terraces. He interprets lithological discontinuities within overbank deposits as boundaries separating temporally discrete floods. Detrital charcoal from within the stratigraphy was submitted to the National Science Foundation-University of Arizona AMS facility for radiocarbon analysis. The stratigraphic record indicates that a minimum of four large floods have occurred on the MGR since A.D. 1300. Three of these floods may correspond to large historical floods in 1833, 1868, and 1905. If so, then it appears that MGR flood frequency increased after A.D. 1800. There is no evidence for increased flood frequency and channel transformations during the cultural decline of the Hohokam in the 15th century.

  19. Coupled hydrogeomorphic and woody-seedling responses to controlled flood releases in a dryland river

    USGS Publications Warehouse

    Wilcox, Andrew C.; Shafroth, Patrick B.

    2013-01-01

    Interactions among flow, geomorphic processes, and riparian vegetation can strongly influence both channel form and vegetation communities. To investigate such interactions, we took advantage of a series of dam-managed flood releases that were designed in part to maintain a native riparian woodland system on a sand-bed, dryland river, the Bill Williams River, Arizona, USA. Our resulting multiyear flow experiment examined differential mortality among native and nonnative riparian seedlings, associated flood hydraulics and geomorphic changes, and the temporal evolution of feedbacks among vegetation, channel form, and hydraulics. We found that floods produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach. We also observed significantly greater mortality among nonnative tamarisk (Tamarix) seedlings than among native willow (Salix gooddingii) seedlings, reflecting the greater first-year growth of willow relative to tamarisk. When vegetation was small early in our study period, the effects of vegetation on flood hydraulics and on mediating flood-induced channel change were minimal. Vegetation growth in subsequent years resulted in stronger feedbacks, such that vegetation's stabilizing effect on bars and its drag effect on flow progressively increased, muting the geomorphic effects of a larger flood release. These observations suggest that the effectiveness of floods in producing geomorphic and ecological changes varies not only as a function of flood magnitude and duration, but also of antecedent vegetation density and size.

  20. Characterization and mapping of the Browns Creek rhyolite: Western Snake River Plain, ID, USA

    NASA Astrophysics Data System (ADS)

    Clippinger, D. T.; Boroughs, S.; Bonnichsen, B.

    2012-12-01

    The purpose of this study is to map and characterize the geologic units that comprise the Brown's Creek region of the western Snake River Plain, with a focus on the eruptive behavior and physical characteristics of the exposed rhyolite. Located near Oreana ID, southeast of the Owyhee Front, the rhyolite in Browns Creek and adjacent rocks has never been mapped in detail. The volcanics in the Browns Creek area are predominantly comprised of low to high silica rhyolite (73%-78% SiO2), and a previously published 40Ar/39Ar date returned an age of 11.20 ± .02 Ma. The rhyolites have phenocryst assemblages of Na-plagioclase, quartz, K-feldspar, pyroxene, oxides, and zircon. Both phenocryst content and crystal size vary widely from approximately 15-50% and 1-10 mm respectively. The rhyolite in the Browns Creek region has a δ18O value of 8.5‰ and marks a very sharp boundary (<10 km) between normal δ18O rhyolites of the Western Snake River plain to the northwest, and the roughly contemporaneous and much more voluminous low-δ18O rhyolites of the Central Snake River Plain to the southeast. The earliest, large scale mapping suggested that the rhyolite in the Browns Creek region was a rheomorphic ignimbrite, sourced from the North, while later workers proposed that the unit was composed of an early, small, non-welded ignimbrite, followed by two separate lava flows. Detailed field work and sample collection from this study indicates that the outcrops of rhyolite lava display a continuum of phenocryst contents and structural features, consistent with a single evolving magma which effused from multiple vent areas. Steeply dipping flow features are pervasive, basal and marginal breccias are common, and the unit rarely displays the lower aspect ratio outcrops typical of other large lava flows in the region. Currently, our preferred explanation for these observations is that of a single magma showing an evolutionary trend of crystallization and fractionation, with periodic

  1. Comparison of Methylmercury Ecology in Adjacent Coastal Plain Rivers in South Carolina

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Journey, C. A.; Chapelle, F. H.; Lowery, M. A.; Conrads, P. A.

    2010-12-01

    Fish-tissue mercury concentrations (approximately 2 micrograms per gram) in the Edisto River basin of South Carolina are among the highest recorded in the United States. Substantially lower mercury concentrations (approximately 0.2 microgram per gram) are reported in fish from the adjacent Congaree River sub-basin and the Congaree National Park. Concentrations of total mercury were statistically higher in sediments from the Congaree River compared with those in sediments from the Edisto River. No statistically significant differences were observed in concentrations of methylmercury or in the range of net methylation potentials in sediments collected from various Edisto and Congaree hydrologic settings. In both systems, net methylation potentials were an order of magnitude or more lower in stream-channel sediments than in wetland sediments. These results are not consistent with the hypothesis that differences in fish-tissue mercury between the Edisto and Congaree basins reflect fundamental differences in the potential for each system to methylate mercury. The marked differences in net methylation potential observed between the wetland and in-stream settings suggested an alternative hypothesis: differences in the efficiency of methylmercury transport from zones of production (wetlands) to points of entry into the food chain (channels) contribute to the observed differences in fish-tissue mercury concen¬trations between the two river systems. An assessment of the flood hydrodynamics of these two rivers is consistent with the alternative hypothesis.

  2. Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils.

    PubMed

    Guimarães, J R; Meili, M; Hylander, L D; de Castro e Silva, E; Roulet, M; Mauro, J B; de Lemos, R

    2000-10-16

    In aquatic systems, bottom sediments have often been considered as the main methylmercury (MeHg) production site. In tropical floodplain areas, however, floating meadows and flooded forests extend over large areas and can be important Hg methylating sites. We present here a cross-system comparison of the Hg net methylation capacity in surface sediments, flooded soils and roots of floating aquatic macrophytes, assayed by in situ incubation with 203Hg and extraction of formed Me203 Hg by acid leaching and toluene. The presence of mono-MeHg was confirmed by thin layer chromatography and other techniques. Study areas included floodplain lakes in the Amazon basin (Tapajós, Negro and Amazon rivers), the Pantanal floodplain (Paraguay river basin), freshwater coastal lagoons in Rio de Janeiro and oxbow lakes in the Mogi-Guaçú river, São Paulo state. Different Hg levels were added in assays performed in 1994-1998, but great care was taken to standardise all other test parameters, to allow data comparisons. Net MeHg production was one order of magnitude higher (mean 13.8%, range 0.28-35) in the living or decomposing roots of floating or rooted macrophyte mats (Eichhornia azurea, E. crassipes, Paspalum sp., Eleocharis sellowiana, Salvinia sp., S. rotundifolia and Scirpus cubensis) than in the surface layer of underlying lake sediments (mean 0.6%, range 0.022-2.5). Methylation in flooded soils presented a wide range and was in some cases similar to the one found in macrophyte roots but usually much lower. In a Tapajós floodplain lake, natural concentrations of MeHg in soil and sediment cores taken along a lake-forest transect agreed well with data on net methylation potentials in the same samples. E. azurea, E. crassipes and Salvinia presented the highest methylation potentials, up to 113 times higher than in sediments. Methylation in E. azurea from six lakes of the Paraguay and Cuiabá rivers, high Pantanal, was determined in the 1998 dry and wet seasons and ranged from

  3. The flash flood of October 2011 in the Magra River basin (Italy): rainstorm characterisation and flood response analysis

    NASA Astrophysics Data System (ADS)

    Marchi, Lorenzo; Boni, Giorgio; Cavalli, Marco; Comiti, Francesco; Crema, Stefano; Lucía, Ana; Marra, Francesco; Zoccatelli, Davide

    2013-04-01

    On 25 October 2011, the Magra River, a stream of northwest Italy outflowing into the Ligurian Sea, was affected by a flash flood, which caused severe economic damage and loss of lives. The catchment covers an area of 1717 km2, of which 605 km2 are drained by the Vara River, the major tributary of the Magra River. The flood was caused by an intense rainstorm which lasted approximately 20 hours. The most intense phase lasted about 8 hours, with rainfall amounts up to around 500 mm. The largest rainfall depths (greater than 300 mm) occurred in a narrow southwest - northeast oriented belt covering an area of approximately 400 km2. This flash flood was studied by analysing rainstorm characteristics, runoff response and geomorphic effects. The rainfall fields used in the analysis are based on data from the Settepani weather radar antenna (located at around 100 km from the study basin) and the local rain gauge network. Radar observations and raingauge data were merged to obtain rainfall estimates at 30 min with a resolution of 1 km2. River stage and discharge rating curves are available for few cross-sections on the main channels. Post-flood documentation includes the reconstruction of peak discharge by means of topographic surveys and application of the slope-conveyance method in 34 cross-sections, observations on the geomorphic effects of the event - both in the channel network and on the hillslopes - and the assessment of the timing of the flood based on interviews to eyewitnesses. Regional authorities and local administrations contributed to the documentation of the flood by providing hydrometeorological data, civil protection volunteers accounts, photos and videos recorded during and immediately after the flood. A spatially distributed rainfall-runoff model, fed with rainfall estimates obtained by the radar-derived observations, was used to check the consistency of field-derived peak discharges and to derive the time evolution of the flood. The assessment of unit

  4. Long-term flood controls on semi-arid river form: evidence from the Sabie and Olifants rivers, eastern South Africa

    NASA Astrophysics Data System (ADS)

    Heritage, G.; Tooth, S.; Entwistle, N.; Milan, D.

    2015-03-01

    Rivers in the Kruger National Park, eastern South Africa, are characterised by bedrock-influenced "macrochannels" containing variable alluvial thicknesses and riparian vegetation assemblages. Evidence from the Sabie and Olifants rivers suggests that flows up to moderate floods (<3500 m3 s-1) tend to result in net alluviation, with sediments gradually covering the underlying bedrock. More extreme floods strip alluvium and erode bedrock, effectively exerting the primary control over long-term river morphologic development. On the Olifants River, post-flood aerial LIDAR imagery reveals that the 2012 extreme flood (~14000 m3 s-1) resulted in extensive stripping of stored alluvial sediment, exposing and eroding the underlying weathered bedrock. On the Sabie River, preliminary optically stimulated luminescence ages for remnant alluvium are all less than 1000 years, highlighting typical timescales of sediment storage. Together, these results suggest that while periods of general alluviation occur on these systems, long-term river development results from extreme flood-generated bedrock erosion.

  5. Flood-inundation maps for the East Fork White River near Bedford, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2014-01-01

    Digital flood-inundation maps for an 1.8-mile reach of the East Fork White River near Bedford, Indiana (Ind.) were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selectedwater levels (stages) at USGS streamgage 03371500, East Fork White River near Bedford, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=03371500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the East Fork White River near Bedford, Ind. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the East Fork White River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03371500, East Fork White River near Bedford, Ind., and documented high-water marks from the flood of June 2008. The calibrated hydraulic model was then used to determine 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from

  6. Using post-flood surveys and geomorphologic mapping to evaluate hydrological and hydraulic models: The flash flood of the Girona River (Spain) in 2007

    NASA Astrophysics Data System (ADS)

    Segura-Beltrán, F.; Sanchis-Ibor, C.; Morales-Hernández, M.; González-Sanchis, M.; Bussi, G.; Ortiz, E.

    2016-10-01

    This paper analyzes the Girona River (Spain) flash flood, occurred on the 12th of October 2007, combining hydrological and hydraulic modeling with geomorphologic mapping and post-flood survey information. This research aims to reproduce the flood event in order to understand and decipher the flood processes and dynamics on a system of prograding alluvial fans. The hydrological model TETIS was used to characterize the shape and dimension of the October 2007 Girona River hydrograph. Subsequently, the flood event was reproduced using the free surface flow module of the model RiverFlow2D. The combination of hydrological and hydraulic models was evaluated using post-flood surveys defining maximum flooded area and flood depths. Then, simulations with different peak discharges were carried out to estimate the hydro-geomorphologic response of the Girona River floodplain, through the identification of the activation thresholds in different geomorphic elements. Results showed that the unit peak discharge of the October 2007 flood event (5 m3 s-1 km-2) was among the largest ever recorded in the area, according to the existing literature. Likewise, the hydraulic model showed a good performance in reproducing the flood event (FitA = 76%, RMSE = 0.65 m and NSE = 0.6), despite the complexity of the case, an ephemeral and ungauged river. The model simulation revealed the existence of an activation pattern of paleochannels and alluvial fans, which was altered by the presence of some anthropogenic disturbances. This multidisciplinary approach proved to be a useful strategy for understanding flash flood processes in ungauged catchments. It allowed understanding the mechanisms governing floods in alluvial fans systems and it represented a solid contribution for early warning plans and risk mitigation policies.

  7. Flood-inundation maps for the Tippecanoe River near Delphi, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2013-01-01

    Digital flood-inundation maps for an 11-mile reach of the Tippecanoe River that extends from County Road W725N to State Road 18 below Oakdale Dam, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind. Current conditions at the USGS streamgages in Indiana may be obtained online at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind., and USGS streamgage 03332605, Tippecanoe River below Oakdale Dam, Ind. The hydraulic model was then used to simulate 13 water-surface profiles for flood stages at 1-foot intervals reference to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the

  8. Streamflow characterization and summary of water-quality data collection during the Mississippi River flood, April through July 2011

    USGS Publications Warehouse

    Welch, Heather L.; Barnes, Kimberlee K.

    2013-01-01

    From April through July 2011, the U.S. Geological Survey collected surface-water samples from 69 water-quality stations and 3 flood-control structures in 4 major subbasins of the Mississippi River Basin to characterize the water quality during the 2011 Mississippi River flood. Most stations were sampled at least monthly for field parameters suspended sediment, nutrients, and selected pesticides. Samples were collected at daily to biweekly frequencies at selected sites in the case of suspended sediment. Hydro-carbon analysis was performed on samples collected at two sites in the Atchafalaya River Basin to assess the water-quality implications of opening the Morganza Floodway. Water-quality samples obtained during the flood period were collected at flows well above normal streamflow conditions at the majority of the stations throughout the Mississippi River Basin and its subbasins. Heavy rainfall and snowmelt resulted in high streamflow in the Mississippi River Basin from April through July 2011. The Ohio River Subbasin contributed to most of the flow in the lower Mississippi-Atchafalaya River Subbasin during the months of April and May because of widespread rainfall, whereas snowmelt and precipitation from the Missouri River Subbasin and the upper Mississippi River Subbasin contributed to most of the flow in the lower Mississippi-Atchafalaya River Subbasin during June and July. Peak streamflows from the 2011 flood were higher than peak streamflow during previous historic floods at most the selected streamgages in the Mississippi River Basin. In the Missouri River Subbasin, the volume of water moved during the 1952 flood was greater than the amount move during the 2011 flood. Median concentrations of suspended sediment and total phosphorus were higher in the Missouri River Subbasin during the flood when compared to the other three subbasins. Surface water in the upper Mississippi River Subbasin contained higher median concentrations of total nitrogen, nitrate

  9. Inundation and salinity impacts to above- and belowground productivity in Spartina patens and Spartina alterniflora in the Mississippi River Deltaic Plain: implications for using river diversions as restoration tools

    USGS Publications Warehouse

    Snedden, Gregg A.; Cretini, Kari Foster; Patton, Brett

    2015-01-01

    Inundation and salinity directly affect plant productivity and processes that regulate vertical accretion in coastal wetlands, and are expected to increase as sea level continues to rise. In the Mississippi River deltaic plain, river diversions, which are being implemented as ecosystem restoration tools, can also strongly increase inundation in coastal wetlands. We used an in situ mesocosm approach to examine how varying salinity (two levels) and inundation rates (six levels) influenced end-of-season above- and belowground biomass of Spartina patens and Spartina alterniflora during the growing season (March–October) in 2011. Above- and belowground biomass was highest in both species at higher elevations when inundation was minimal, and decreased exponentially with decreased elevation and increased flood duration. This negative biomass response to flooding was more pronounced in S. patens than in S. alterniflora, and S. patens also showed stronger biomass reductions at higher salinities. This salinity effect was absent for belowground biomass in S. alterniflora. These findings suggest that even subtle increases in sea level may lead to substantial reductions in productivity and organic accretion, and also illustrate the importance of considering the inundation tolerance of co-dominant species in receiving areas when utilizing river diversions for delta restoration.

  10. Activation of the Inner Continental Shelf Following the Great Mississippi/Atchafalaya River Flood of 2011

    NASA Astrophysics Data System (ADS)

    Kolker, A.; Li, C.; Allison, M. A.; Ameen, A. D.; Dash, P.; Ramatchandirane, C. G.; Sinclair, G.; Smith, D.; Ullah, M.; Williams, K.

    2011-12-01

    While rives are the primary means by which material is delivered from continents to the ocean, relatively little is known about the role that large rivers, particularly in North America, play in the geology of the inner continental shelf. Flood control measures initiated in response the to massive 2011 Mississippi River flood diverted nearly 22,900 m3 sec-1 of freshwater through the Atchafalaya River basin into the Atchafalaya River shelf in southwest Louisiana, temporarily creating one of the largest shelf-discharging rivers on Earth, and providing an historic opportunity to study shelf-to-shore exchange processes. A multi-disciplinary approach using Acoustic Current Doppler Profilers, CTDs, satellite photographs, and the naturally occurring radiotracer 7Be revealed that event produced intense gradients in temperature, salinity and turbidity across the inner continental shelf, resulting in complex circulation patterns. The freshwater plume extended over 30 km into the, "marine," environment. Furthermore, the flood activated sedimentary dynamics across the shelf, leading to large deposits of fine-grained material across the Atchafalaya/Chenier coast. Our study indicates that large rivers produce unique oceanographic dynamics when they interact with the continental shelf, and that these systems should be viewed differently from small shelf-discharging rivers (like the Hudson) or large continental-slope discharging rivers (like the Mississippi).

  11. Costs and benefits of adapting to river floods at the global scale

    NASA Astrophysics Data System (ADS)

    Ward, Philip; Aerts, Jeroen; Botzen, Wouter; Hallegatte, Stephane; Jongman, Brenden; Kind, Jarl; Scussolini, Paolo; Winsemius, Hessel

    2015-04-01

    It is well known that the economic losses associated with flooding are huge; for example in 2012 alone the economic losses from flooding exceeded 19 billion. As a result, different models have been developed to assess global scale flood risk. Recently, these have been used in several studies to assess current flood risk at the global scale, and to project how risk may increase as a result of climate change and/or socioeconomic development. In most regions, these studies show rapid increases in risk into the future, and therefore call for urgent adaptation. However, to date no studies have attempted to assess the costs of carrying out such adaptation, nor the benefits. In this paper, we therefore present the first global scale estimate of the costs and benefits of adapting to increased river flood risk caused by factors such as climate change and socioeconomic development. For this study, we concentrate on structural adaptation measures, such as dikes, designed to prevent flood hazard up to a certain design standard. We address two questions: 1. What would be the costs and benefits of maintaining current flood protection standards, accounting for future climate and socioeconomic change until 2100? 2. What flood protection standards would be required by 2100 to keep future flood risk constant at today's levels? And what would be the costs and benefits associated with this? In this paper, we will present our first global estimates of the costs and benefits of adaptation to increased flood risk, as well as maps of these findings per country and river basin. We present the results under 4 emission scenarios (RCPs), 5 socioeconomic scenarios (SSPs), and under several assumptions relating to total potential flood damages, discount rates, construction costs, maintenance costs, and so forth. The research was carried out using the GLOFRIS modelling cascade. This global flood risk model calculates flood risk in terms of annual expected damage, and has been developed and

  12. Magnitude and extent of flooding at selected river reaches in western Washington, January 2009

    USGS Publications Warehouse

    Mastin, M.C.; Gendaszek, A.S.; Barnas, C.R.

    2010-01-01

    A narrow plume of warm, moist tropical air produced prolonged precipitation and melted snow in low-to-mid elevations throughout western Washington in January 2009. As a result, peak-of-record discharges occurred at many long-term streamflow-gaging stations in the region. A disaster was declared by the President for eight counties in Washington State and by May 2009, aid payments by the Federal Emergency Management Agency (FEMA) had exceeded $17 million. In an effort to document the flood and to obtain flood information that could be compared with simulated flood extents that are commonly prepared in conjunction with flood insurance studies by FEMA, eight stream reaches totaling 32.6 miles were selected by FEMA for inundation mapping. The U.S. Geological Survey?s Washington Water Science Center used a survey-grade global positioning system (GPS) the following summer to survey high-water marks (HWMs) left by the January 2009 flood at these reaches. A Google Maps (copyright) application was developed to display all HWM data on an interactive mapping tool on the project?s web site soon after the data were collected. Water-surface profiles and maps that display the area and depth of inundation were produced through a geographic information system (GIS) analysis that combined surveyed HWM elevations with Light Detection and Ranging (LiDAR)-derived digital elevation models of the study reaches and surrounding terrain. In several of the reaches, floods were well confined in their flood plains and were relatively straightforward to map. More common, however, were reaches with more complicated hydraulic geometries where widespread flooding resulted in flows that separated from the main channel. These proved to be more difficult to map, required subjective hydrologic judgment, and relied on supplementary information, such as aerial photographs and descriptions of the flooding from local landowners and government officials to obtain the best estimates of the extent of flooding.

  13. Contemporary Tectonic Motion of the Eastern Snake River Plain: A Campaign Global Positioning System Study

    SciTech Connect

    Suzette Payne; John Chadwick; Dave Rodgers; Teresa Vanhove

    2007-11-01

    A comparison of precision campaign GPS data from 1995 and 2004 from ten benchmarks on the eastern Snake River Plain (eSRP) has revealed that the province moved 2.8 ± 0.3 mm/yr to the SW (232.4 ± 6.3°) relative to a fixed North American reference frame. The benchmarks had no measurable displacement relative to one another at the resolution of the GPS during the nine-year study, evidence that the province moves as a rigid, non-extending block. This scenario is supported by the aseismic nature of the province and the lack of measurable horizontal stress in boreholes. However, an additional small component of intra-plain extension must also be invoked to account for the observed NW-trending volcanic rift zones that transect the eSRP. We suggest that intra-plain extension is too slow (<1 mm/yr) to measure using our campaign GPS methods, but may be sufficient over millennial time scales to accommodate rift zone formation. Slower velocities measured on three benchmarks within the neighboring Basin and Range ‘seismic parabola’ are consistent with this region serving as a zone of detachment between the North American craton and the faster-moving eSRP.

  14. Hydrology and digital simulation of the regional aquifer system, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Garabedian, S.P.

    1992-01-01

    The transient model was used to simulate aquifer changes from 1981 to 2010 in response to three hypothetical development alternatives: (1) Continuation of 1980 hydrologic conditions, (2) increased pumpage, and (3) increased recharge. Simulation of continued 1980 hydrologic conditions for 30 years indicated that head declines of 2 to 8 feet might be expected in the central part of the plain. The magnitude of simulated head declines was con- sistent with head declines measured during the 1980 water year. Larger declines were calculated along model boundaries, but these changes may have resulted from underestimation of tribu- tary drainage-basin underflow and inadequate aquifer definition. Simulation of increased ground-water pumpage (an additional 2,400 cubic feet per second) for 30 years indicated head declines of 10 to 50 feet in the central part of the plain. These relatively large head declines were accompanied by increased simulated river leakage of 50 percent and decreased spring discharge of 20 percent. The effect of increased recharge (800 cubic feet per sec- ond) for 30 years was a rise in simulated heads of 0 to 5 feet in the central part of the plain.

  15. Constraining rates and trends of historical wetland loss, Mississippi River Delta Plain, south-central Louisiana

    USGS Publications Warehouse

    Bernier, Julie C.; Morton, Robert A.; Barras, John A.

    2006-01-01

    The timing, magnitude, and rate of wetland loss were described for five wetland-loss hotspots in the Terrebonne Basin of the Mississippi River delta plain. Land and water areas were mapped for 34 dates between 1956 and 2004 from historical National Wetlands Inventory (NWI) datasets, aerial photographs, and Landsat Thematic Mapper (TM) satellite images. Since 1956, the emergent land area at the five study areas in south-central Louisiana has decreased by about 50%. Comparison of the water-area curve derived from the 29 TM images with water-level records from the nearby Grand Isle, Louisiana tide gauge (NOS #8761724) clearly shows that changes in land and water areas fluctuate in response to variations in regional water levels. The magnitude of water-area fluctuations decreased from the 1980s to the 1990s as former areas of wet marsh within and immediately adjacent to the wetland-loss hotspots became permanently submerged. The most rapid wetland loss occurred during the late 1960s and 1970s. Peak wetland-loss rates during this period were two to four times greater than both the pre-1970s background rates and the most recent wetland-loss rates. These results provide constraints on predicting future delta-plain wetland losses and identify Landsat TM imagery as an important source for analyzing land- and water-area changes across the entire delta plain.

  16. Characterizing Past and Future Flood Regimes of California's Cosumnes River: A Hydroinformatic Approach

    NASA Astrophysics Data System (ADS)

    Whipple, A. A.; Condon, L. E.; Viers, J. H.

    2014-12-01

    As the only major undammed river on the west slope of California's Sierra Nevada, with over 100 years of USGS streamflow data, and the location of several floodplain conservation and restoration efforts, the Cosumnes River offers a unique opportunity to study connections between a river's flow regime and floodplain functions. Flow regime, including frequency and magnitude of floods, and its interaction with the surrounding landscape are primary drivers of floodplain structure and ecosystem dynamics. However, these floodplain processes and functions are often altered by water management schemes, land uses, and hydroclimatic alteration induced by climate warming. Improved understanding of ecologically relevant aspects of flow regime and potential future alteration is central to managing floodplain ecosystems and their services. In order to describe the inundation regime of the lower Cosumnes River floodplain, California, this research moves beyond flood frequency analysis to examine other flood event characteristics and identify flood types using statistical cluster analysis. Floods are characterized using metrics of ecological relevance, such as magnitude, timing, duration, and total volume. To explore potential effects of climate change, non-stationary Generalized Extreme Value models are fit to historical floods based on temperature and precipitation at the monthly scale. Temperature and precipitation variables from downscaled Global Climate Models of the Coupled Model Intercomparison Project Phase-5 are then applied to develop flood distributions for climate change scenarios. These results are used to adjust the magnitude of clustered flood events identified in the historical record, and the sensitivity of the inundation regime to these changes is assessed. This research provides useful scientific insights for management and restoration efforts within the Cosumnes watershed and demonstrates the utility of applying these methods to other floodplain systems.

  17. Floods of March 1978, in the Maumee River basin, northeastern Indiana

    USGS Publications Warehouse

    Hoggatt, Richard Earl

    1981-01-01

    Floods in the Maumee River basin in northeastern Indiana in March 1978 resulted in heavy damage in Fort Wayne and surrounding areas. Flood damage in Fort Wayne was estimated by the Mayor to be 11 million dollars. Approximately 15 percent of the city was inundated, and 2,400 of its 190,000 residents were forced to leave their homes. The estimate of damage in Adams and Allen Counties by Civil Defense officials was 44 million dollars. The Maumee River at New Haven exceeded the peak stage of record, 21.4 feet, by 2.2 feet. The peak discharge at this stream-gaging station, 22,400 cubic feet per second, was about equal to that of a 75-year flood. Recurrence intervals of peak flows on streams tributary to the Maumee River ranged from 5 to 50 years. Records of peak and daily discharges and some precipitation data are given in this report. 

  18. Characteristics of nitrate in major rivers and aquifers of the Sanjiang Plain, China.

    PubMed

    Cao, Yingjie; Tang, Changyuan; Song, Xianfang; Liu, Changming; Zhang, Yinghua

    2012-10-26

    The characteristics of nitrate (NO(3)(-)) in major rivers and aquifers of the Sanjiang Plain, China were investigated by hydrogeochemical conditions, nitrogen isotope technique and CFCs trace. An overall understanding on the sources and fate of NO(3)(-) in the surface water and the groundwater was obtained. The NO(3)(-) concentrations in the surface water were low and no samples exceeds the WTO standards. However, 11.4% of the groundwater samples exceeded the WTO standards, indicating local NO(3)(-) pollution in rural areas. Redox condition analysis revealed that most of the surface water had oxic condition, while for the shallow groundwater (mean well depth smaller than 30 m), the redox condition began to change into anoxic zone, and the deep groundwater (mean well depth larger than 50 m) showed strong anoxic condition. The δ(15)N-NO(3) data indicated soil N and fertilizer contributed the major sources in the surface water, and NO(3)(-) in the groundwater mainly showed a manure origin. In the Songhua-Heilong River, dilution effect was dominating, while for the Wusuli River, it showed that mix with water contained excess of NO(3)(-) resulted in the NO(3)(-) concentration increased along the river. Additionally, the NO(3)(-) transportation in the groundwater was analyzed by groundwater ages derived from environmental tracer (CFCs) data. The relation between the groundwater ages and the NO(3)(-) concentrations showed that the young groundwater with the age less than 60 years had higher NO(3)(-) concentrations than the old groundwater over the age of 60 years because anthropogenic activities began to boom from 1950s in the Sanjiang Plain.

  19. Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex

    NASA Astrophysics Data System (ADS)

    Vogel, Sebastian; Märker, Michael

    2010-05-01

    , present-day digital elevation model (DEM) was generated. A detailed terrain analysis yielded 15 different primary and secondary topographic indices of the present-day DEM. Then, a classification and regression model was generated combining the present-day topographic indices to predict the depth of the pre-AD 79 surface. This model was calibrated with the measured depth of the pre-AD 79 surface from the drilling data. To gain a pre-AD 79 digital elevation model (DEM) the modeled depth of the pre-AD 79 surface was subtracted from the present-day DEM. To reconstruct some paleo-environmental features, such as the paleo-coast and the paleo-river network and its flood plain, the modeled pre-AD 79 DEM was compared with the classified characteristic of the pre-AD 79 stratum, identified from the drilling documentation. It is the first time that the paleo-topography and paleo-environmental features of the Sarno River basin were systematically reconstructed using a detailed database of input variables and sophisticated data mining technologies. Keywords: Sarno River Basin, Roman paleo-topography, paleo-environment, stratigraphical core drillings, Classification and Regression Trees

  20. Assessment of Climate Change Impact on Flood Risk in the Red River Basin

    NASA Astrophysics Data System (ADS)

    Rasmussen, P. F.

    2015-12-01

    In recent years, there have been a number of large spring floods in the Red River basin in the states of North Dakota and Minnesota, and in the Province of Manitoba. These recent floods have led to speculation that increased greenhouse gas concentrations may be changing precipitation patterns and impacting the frequency of floods. In this study, we investigate whether this is a reasonable assumption based on global climate model output. A regression model is developed to predict spring peak discharge on the Red River at a streamflow gage located at the border of the US and Canada. The predictor variables include antecedent fall precipitation used as a proxy for soil moisture at freeze-up, winter snow accumulation, and spring precipitation during the period of melt. Data from the North American Regional Reanalysis (NARR) have been used to calibrate the model. Bias-corrected projections from the CMIP5 GCM model ensemble are then used to predict floods in future years. The predicted floods are modeled using non-stationary frequency analysis. The use of multiple GCMs and multiple Representative Concentration Pathways (RCPs) allow for an estimate of uncertainty to be associated with the results. It is concluded that climate change will likely have an impact on floods in the Red River basin, but the uncertainty surrounding this assessment is rather large.

  1. Regional L-Moment-Based Flood Frequency Analysis in the Upper Vistula River Basin, Poland

    NASA Astrophysics Data System (ADS)

    Rutkowska, A.; Żelazny, M.; Kohnová, S.; Łyp, M.; Banasik, K.

    2017-02-01

    The Upper Vistula River basin was divided into pooling groups with similar dimensionless frequency distributions of annual maximum river discharge. The cluster analysis and the Hosking and Wallis (HW) L-moment-based method were used to divide the set of 52 mid-sized catchments into disjoint clusters with similar morphometric, land use, and rainfall variables, and to test the homogeneity within clusters. Finally, three and four pooling groups were obtained alternatively. Two methods for identification of the regional distribution function were used, the HW method and the method of Kjeldsen and Prosdocimi based on a bivariate extension of the HW measure. Subsequently, the flood quantile estimates were calculated using the index flood method. The ordinary least squares (OLS) and the generalised least squares (GLS) regression techniques were used to relate the index flood to catchment characteristics. Predictive performance of the regression scheme for the southern part of the Upper Vistula River basin was improved by using GLS instead of OLS. The results of the study can be recommended for the estimation of flood quantiles at ungauged sites, in flood risk mapping applications, and in engineering hydrology to help design