Space-Time Variability in River Flow Regimes of Northeast Turkey
NASA Astrophysics Data System (ADS)
Saris, F.; Hannah, D. M.; Eastwood, W. J.
2011-12-01
The northeast region of Turkey is characterised by relatively high annual precipitation totals and river flow. It is a mountainous region with high ecological status and also it is of prime interest to the energy sector. These characteristics make this region an important area for a hydroclimatology research in terms of future availability and management of water resources. However, there is not any previous research identifying hydroclimatological variability across the region. This study provides first comprehensive and detailed information on river flow regimes of northeast Turkey which is delimited by two major river basins namely East Black Sea (EBS) and Çoruh River (ÇRB) basins. A novel river flow classification is used that yields a large-scale perspective on hydroclimatology patterns of the region and allows interpretations regarding the controlling factors on river flow variability. River flow regimes are classified (with respect to timing and magnitude of flow) to examine spatial variability based on long-term average regimes, and also by grouping annual regimes for each station-year to identify temporal (between-year) variability. Results indicate that rivers in northeast Turkey are characterised by marked seasonal flow variation with an April-May-June maximum flow period. Spatial variability in flow regime seasonality is dependent largely on the topography of the study area. The EBS Basin, for which the North Anatolian Mountains cover the eastern part, is characterised by a May-June peak; whereas the ÇRB is defined by an April-May flow peak. The timing of river flows indicates that snowmelt is an important process and contributor of river flow maxima for both basins. The low flow season is January and February. Intermediate and low regime magnitude classes dominate in ÇRB and EBS basins, respectively, while high flow magnitude class is observed for one station only across the region. Result of regime stability analysis (year-to-year variation) shows that April-May and May-June peak shape classes together with low and intermediate magnitude classes are the most frequent and persistent flow regimes. This research has advanced understanding of hydroclimatological processes in northeast Turkey by identifying river flow regimes and together with explanations regarding the controlling factors on river flow variability.
Forecasting seasonal hydrologic response in major river basins
NASA Astrophysics Data System (ADS)
Bhuiyan, A. M.
2014-05-01
Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts.
Determining the effects of dams on subdaily variation in river flows at a whole-basin scale
Zimmerman, J.K.H.; Letcher, B.H.; Nislow, K.H.; Lutz, K.A.; Magilligan, F.J.
2010-01-01
River regulation can alter the frequency and magnitude of subdaily flow variations causing major impacts on ecological structure and function. We developed an approach to quantify subdaily flow variation for multiple sites across a large watershed to assess the potential impacts of different dam operations (flood control, run-of-river hydropower and peaking hydropower) on natural communities. We used hourly flow data over a 9-year period from 30 stream gages throughout the Connecticut River basin to calculate four metrics of subdaily flow variation and to compare sites downstream of dams with unregulated sites. Our objectives were to (1) determine the temporal scale of data needed to characterize subdaily variability; (2) compare the frequency of days with high subdaily flow variation downstream of dams and unregulated sites; (3) analyse the magnitude of subdaily variation at all sites and (4) identify individual sites that had subdaily variation significantly higher than unregulated locations. We found that estimates of flow variability based on daily mean flow data were not sufficient to characterize subdaily flow patterns. Alteration of subdaily flows was evident in the number of days natural ranges of variability were exceeded, rather than in the magnitude of subdaily variation, suggesting that all rivers may exhibit highly variable subdaily flows, but altered rivers exhibit this variability more frequently. Peaking hydropower facilities had the most highly altered subdaily flows; however, we observed significantly altered ranges of subdaily variability downstream of some flood-control and run-of-river hydropower dams. Our analysis can be used to identify situations where dam operating procedures could be modified to reduce the level of hydrologic alteration. ?? 2009 John Wiley & Sons, Ltd.
Annual variability of PAH concentrations in the Potomac River watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, I.L.; Foster, G.D.
1995-12-31
Dynamics of organic contaminant transport in a large river system is influenced by annual variability in organic contaminant concentrations. Surface runoff and groundwater input control the flow of river waters. They are also the two major inputs of contaminants to river waters. The annual variability of contaminant concentrations in rivers may or may not represent similar trends to the flow changes of river waters. The purpose of the research is to define the annual variability in concentrations of polycyclic aromatic hydrocarbons (PAH) in riverine environment. To accomplish this, from March 1992 to March 1995 samples of Potomac River water weremore » collected monthly or bimonthly downstream of the Chesapeake Bay fall line (Chain Bridge) during base flow and main storm flow hydrologic conditions. Concentrations of selected PAHs were measured in the dissolved phase and the particulate phase via GC/MS. The study of the annual variability of PAH concentrations will be performed through comparisons of PAH concentrations seasonally, annually, and through study of PAH concentration river discharge dependency and rainfall dependency. For selected PAHs monthly and annual loadings will be estimated based on their measured concentrations and average daily river discharge. The monthly loadings of selected PAHs will be compared by seasons and annually.« less
Kozak, Justin P; Bennett, Micah G; Hayden-Lesmeister, Anne; Fritz, Kelley A; Nickolotsky, Aaron
2015-06-01
Large river systems are inextricably linked with social systems; consequently, management decisions must be made within a given ecological, social, and political framework that often defies objective, technical resolution. Understanding flow-ecology relationships in rivers is necessary to assess potential impacts of management decisions, but translating complex flow-ecology relationships into stakeholder-relevant information remains a struggle. The concept of ecosystem services provides a bridge between flow-ecology relationships and stakeholder-relevant data. Flow-ecology relationships were used to explore complementary and trade-off relationships among 12 ecosystem services and related variables in the Atchafalaya River Basin, Louisiana. Results from Indicators of Hydrologic Alteration were reduced to four management-relevant hydrologic variables using principal components analysis. Multiple regression was used to determine flow-ecology relationships and Pearson correlation coefficients, along with regression results, were used to determine complementary and trade-off relationships among ecosystem services and related variables that were induced by flow. Seven ecosystem service variables had significant flow-ecology relationships for at least one hydrologic variable (R (2) = 0.19-0.64). River transportation and blue crab (Callinectes sapidus) landings exhibited a complementary relationship mediated by flow; whereas transportation and crawfish landings, crawfish landings and crappie (Pomoxis spp.) abundance, and blue crab landings and blue catfish (Ictalurus furcatus) abundance exhibited trade-off relationships. Other trade-off and complementary relationships among ecosystem services and related variables, however, were not related to flow. These results give insight into potential conflicts among stakeholders, can reduce the dimensions of management decisions, and provide initial hypotheses for experimental flow modifications.
NASA Astrophysics Data System (ADS)
Kozak, Justin P.; Bennett, Micah G.; Hayden-Lesmeister, Anne; Fritz, Kelley A.; Nickolotsky, Aaron
2015-06-01
Large river systems are inextricably linked with social systems; consequently, management decisions must be made within a given ecological, social, and political framework that often defies objective, technical resolution. Understanding flow-ecology relationships in rivers is necessary to assess potential impacts of management decisions, but translating complex flow-ecology relationships into stakeholder-relevant information remains a struggle. The concept of ecosystem services provides a bridge between flow-ecology relationships and stakeholder-relevant data. Flow-ecology relationships were used to explore complementary and trade-off relationships among 12 ecosystem services and related variables in the Atchafalaya River Basin, Louisiana. Results from Indicators of Hydrologic Alteration were reduced to four management-relevant hydrologic variables using principal components analysis. Multiple regression was used to determine flow-ecology relationships and Pearson correlation coefficients, along with regression results, were used to determine complementary and trade-off relationships among ecosystem services and related variables that were induced by flow. Seven ecosystem service variables had significant flow-ecology relationships for at least one hydrologic variable ( R 2 = 0.19-0.64). River transportation and blue crab ( Callinectes sapidus) landings exhibited a complementary relationship mediated by flow; whereas transportation and crawfish landings, crawfish landings and crappie ( Pomoxis spp.) abundance, and blue crab landings and blue catfish ( Ictalurus furcatus) abundance exhibited trade-off relationships. Other trade-off and complementary relationships among ecosystem services and related variables, however, were not related to flow. These results give insight into potential conflicts among stakeholders, can reduce the dimensions of management decisions, and provide initial hypotheses for experimental flow modifications.
NASA Technical Reports Server (NTRS)
DelCastillo, Carlos E.; Miller, Richard L.
2007-01-01
We investigated the use of ocean color remote sensing to measure transport of dissolved organic carbon (DOC) by the Mississippi River to the Gulf of Mexico. From 2000 to 2005 we recorded surface measurements of DOC, colored dissolved organic matter (CDOM), salinity, and water-leaving radiances during five cruises to the Mississippi River Plume. These measurements were used to develop empirical relationships to derive CDOM, DOC, and salinity from monthly composites of SeaWiFS imagery collected from 1998 through 2005. We used river flow data and a two-end-member mixing model to derive DOC concentrations in the river end-member, river flow, and DOC transport using remote sensing data. We compared our remote sensing estimates of river flow and DOC transport with data collected by the United States Geological Survey (USGS) from 1998 through 2005. Our remote sensing estimates of river flow and DOC transport correlated well (r2 0.70) with the USGS data. Our remote sensing estimates and USGS field data showed low variability in DOC concentrations in the river end-member (7-11%), and high seasonal variability in river flow (50%). Therefore, changes in river flow control the variability in DOC transport, indicating that the remote sensing estimate of river flow is the most critical element of our DOC transport measurement. We concluded that it is possible to use this method to estimate DOC transport by other large rivers if there are data on the relationship between CDOM, DOC, and salinity in the river plume.
Avian community responses to variability in river hydrology.
Royan, Alexander; Hannah, David M; Reynolds, S James; Noble, David G; Sadler, Jonathan P
2013-01-01
River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species' responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species' distributions highlights the need to include river flow data in climate change impact models of species' distributions.
Dynamic hydro-climatic networks in pristine and regulated rivers
NASA Astrophysics Data System (ADS)
Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.
2014-12-01
Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes involved in the river food web (e.g. biofilm and riparian vegetation dynamics), the study of rivers as dynamic networks provides important clues to water management strategies and freshwater ecosystem studies.
NASA Astrophysics Data System (ADS)
Zhao, C. S.; Yang, S. T.; Zhang, H. T.; Liu, C. M.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Dong, B. E.; Lim, R. P.
2017-08-01
Sustaining adequate environmental flows (e-flows) is a key principle for maintaining river biodiversity and ecosystem health, and for supporting sustainable water resource management in basins under intensive human activities. But few methods could correctly relate river health to e-flows assessment at the catchment scale when they are applied to rivers highly impacted by human activities. An effective method is presented in this study to closely link river health to e-flows assessment for rivers at the catchment scale. Key fish species, as indicators of ecosystem health, were selected by using the foodweb model. A multi-species-based habitat suitability model (MHSI) was improved, and coupled with dominance of the key fish species as well as the Index of Biological Integrity (IBI) to enhance its accuracy in determining the fish-preferred key hydrologic habitat variables related to ecosystem health. Taking 5964 fish samples and concurrent hydrological habitat variables as the basis, the combination of key variables of flow-velocity and water-depth were determined and used to drive the Adapted Ecological Hydraulic Radius Approach (AEHRA) to study e-flows in a Chinese urban river impacted by intensive human activities. Results showed that upstream urbanization resulted in abnormal river-course geomorphology and consequently abnormal e-flows under intensive human activities. Selection of key species based on the foodweb and trophic levels of aquatic ecosystems can reflect a comprehensive requirement on e-flows of the whole aquatic ecosystem, which greatly increases its potential to be used as a guidance tool for rehabilitation of degraded ecosystems at large spatial scales. These findings have significant ramifications for catchment e-flows assessment under intensive human activities and for river ecohealth restoration in such rivers globally.
Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco
2011-05-01
Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.
NASA Astrophysics Data System (ADS)
Schäppi, B.; Molnar, P.; Perona, P.; Tockner, K.; Burlando, P.
2009-04-01
Healthy floodplain ecosystems are characterized by high habitat diversity which tends to be lost in straightened channelized rivers. River restoration projects aim to increase habitat heterogeneity by re-establishing natural flow conditions and/or re-activating geomorphic processes in straightened reaches. The success of such projects is usually measured by means of structural and functional hydrogeomorphic and ecological indicators. Important indicators include flow variables and morphological features such as flow depth, velocity, shore line length, exposed gravel area and wetted river width. Also important are the rates at which these variables and features change under varying streamflow. A high spatial variability in the indicators is generally connected with high habitat diversity. The temporal availability and spatial distribution of both aquatic and riparian habitats control the composition and diversity of benthic organisms, fish, and riparian communities. Spatial heterogeneity provides refugia, i.e. areas from which recolonization after a disturbance event may occur. In addition, it facilitates the transfer of organisms and matter across the aquatic and terrestrial interface, thereby increasing the overall functional performance of coupled river-riparian ecosystems. However the habitat diversity can be maintained over time only if there are frequent disturbances such as periodic floods that reset the system and create new germination sites for pioneer vegetation and rework the channel bed to form new aquatic habitat. Therefore the flow and morphology indicators need to be investigated on spatial as well as on temporal scales. Traditionally, these indicators are measured in the field albeit most measurements can be carried out only at low flow conditions. We propose that flow simulations with a 2d hydrodynamic model may be used for a fast and convenient assessment of indicators of flow variables and morphological features with relatively little calibration required and we illustrate an example thereof. The advantage of using computer simulations as compared to field observations is that a range of discharges can be investigated. Using a flood frequency analysis the return period of simulated flows can be estimated and translated into frequency-dependent habitat types. In order to investigate how flow variables change, we conducted a series of 2d flow simulations at different flow rates along the prealpine Thur River (Switzerland) consisting of both restored and straight reaches. Restoration basically consisted of widening the river cross-section and allowing a natural morphology to form. The simulated flow variables (flow depth and velocity) were then analyzed separately for the two reaches. The distributions of the both variables for the restored reach were significantly different from the straight reach, most notably an increase in the variance was observed. In order to analyze the temporal variability we investigated the development of the riverbed morphology over time using different digital elevation models combined with cross section data measured at annual intervals. Spatially explicit erosion and deposition patterns were derived from this analysis. The riverbed topography at different dates was then used to analyze the temporal evolution of the flow indicators for the different flow conditions. Comparisons between the restored and straight reaches allow us to assess the success of river restoration in terms of flow variability and morphological complexity.
Climate change enhances interannual variability of the Nile river flow
NASA Astrophysics Data System (ADS)
Siam, Mohamed S.; Eltahir, Elfatih A. B.
2017-04-01
The human population living in the Nile basin countries is projected to double by 2050, approaching one billion. The increase in water demand associated with this burgeoning population will put significant stress on the available water resources. Potential changes in the flow of the Nile River as a result of climate change may further strain this critical situation. Here, we present empirical evidence from observations and consistent projections from climate model simulations suggesting that the standard deviation describing interannual variability of total Nile flow could increase by 50% (+/-35%) (multi-model ensemble mean +/- 1 standard deviation) in the twenty-first century compared to the twentieth century. We attribute the relatively large change in interannual variability of the Nile flow to projected increases in future occurrences of El Niño and La Niña events and to observed teleconnection between the El Niño-Southern Oscillation and Nile River flow. Adequacy of current water storage capacity and plans for additional storage capacity in the basin will need to be re-evaluated given the projected enhancement of interannual variability in the future flow of the Nile river.
Braided river flow and invasive vegetation dynamics in the Southern Alps, New Zealand.
Caruso, Brian S; Edmondson, Laura; Pithie, Callum
2013-07-01
In mountain braided rivers, extreme flow variability, floods and high flow pulses are fundamental elements of natural flow regimes and drivers of floodplain processes, understanding of which is essential for management and restoration. This study evaluated flow dynamics and invasive vegetation characteristics and changes in the Ahuriri River, a free-flowing braided, gravel-bed river in the Southern Alps of New Zealand's South Island. Sixty-seven flow metrics based on indicators of hydrologic alteration and environmental flow components (extreme low flows, low flows, high flow pulses, small floods and large floods) were analyzed using a 48-year flow record. Changes in the areal cover of floodplain and invasive vegetation classes and patch characteristics over 20 years (1991-2011) were quantified using five sets of aerial photographs, and the correlation between flow metrics and cover changes were evaluated. The river exhibits considerable hydrologic variability characteristic of mountain braided rivers, with large variation in floods and other flow regime metrics. The flow regime, including flood and high flow pulses, has variable effects on floodplain invasive vegetation, and creates dynamic patch mosaics that demonstrate the concepts of a shifting mosaic steady state and biogeomorphic succession. As much as 25 % of the vegetation cover was removed by the largest flood on record (570 m(3)/s, ~50-year return period), with preferential removal of lupin and less removal of willow. However, most of the vegetation regenerated and spread relatively quickly after floods. Some flow metrics analyzed were highly correlated with vegetation cover, and key metrics included the peak magnitude of the largest flood, flood frequency, and time since the last flood in the interval between photos. These metrics provided a simple multiple regression model of invasive vegetation cover in the aerial photos evaluated. Our analysis of relationships among flow regimes and invasive vegetation cover has implications for braided rivers impacted by hydroelectric power production, where increases in invasive vegetation cover are typically greater than in unimpacted rivers.
Explaining and forecasting interannual variability in the flow of the Nile River
NASA Astrophysics Data System (ADS)
Siam, M. S.; Eltahir, E. A. B.
2014-05-01
The natural interannual variability in the flow of Nile River had a significant impact on the ancient civilizations and cultures that flourished on the banks of the river. This is evident from stories in the Bible and Koran, and from the numerous Nilometers discovered near ancient temples. Here, we analyze extensive data sets collected during the 20th century and define four modes of natural variability in the flow of Nile River, identifying a new significant potential for improving predictability of floods and droughts. Previous studies have identified a significant teleconnection between the Nile flow and the Eastern Pacific Ocean. El Niño-Southern Oscillation (ENSO) explains about 25% of the interannual variability in the Nile flow. Here, we identify, for the first time, a region in the southern Indian Ocean with similarly strong teleconnection to the Nile flow. Sea Surface Temperature (SST) in the region (50-80° E and 25-35° S) explains 28% of the interannual variability in the Nile flow. During those years with anomalous SST conditions in both Oceans, we estimate that indices of the SSTs in the Pacific and Indian Oceans can collectively explain up to 84% of the interannual variability in the flow of Nile. Building on these findings, we use classical Bayesian theorem to develop a new hybrid forecasting algorithm that predicts the Nile flow based on global models predictions of indices of the SST in the Eastern Pacific and Southern Indian Oceans.
High flow and riparian vegetation along the San Miguel River, Colorado
Friedman, J.M.; Auble, G.T.
2000-01-01
Riparian ecosystems are characterized by abundance of water and frequent flow related disturbance. River regulation typically decreases peak flows, reducing the amount of disturbance and altering the vegetation. The San Miguel River is one of the last relatively unregulated rivers remaining in the Colorado River Watershed. One goal of major landowners along the San Miguel including the Bureau of Land Management and The Nature Conservancy is to maintain their lands in a natural condition. Conservation of an entire river corridor requires an integrated understanding of the variability in ecosystems and external influences along the river. Therefore, the Bureau of Land Management and others have fostered a series of studies designed to catalogue that variability, and to characterize the processes that maintain the river as a whole. In addition to providing information useful to managers, these studies present a rare opportunity to investigate how a Colorado river operates in the absence of regulation.
Sauchyn, David J.; St-Jacques, Jeannine-Marie; Luckman, Brian H.
2015-01-01
Exploitation of the Alberta oil sands, the world’s third-largest crude oil reserve, requires fresh water from the Athabasca River, an allocation of 4.4% of the mean annual flow. This allocation takes into account seasonal fluctuations but not long-term climatic variability and change. This paper examines the decadal-scale variability in river discharge in the Athabasca River Basin (ARB) with (i) a generalized least-squares (GLS) regression analysis of the trend and variability in gauged flow and (ii) a 900-y tree-ring reconstruction of the water-year flow of the Athabasca River at Athabasca, Alberta. The GLS analysis removes confounding transient trends related to the Pacific Decadal Oscillation (PDO) and Pacific North American mode (PNA). It shows long-term declining flows throughout the ARB. The tree-ring record reveals a larger range of flows and severity of hydrologic deficits than those captured by the instrumental records that are the basis for surface water allocation. It includes periods of sustained low flow of multiple decades in duration, suggesting the influence of the PDO and PNA teleconnections. These results together demonstrate that low-frequency variability must be considered in ARB water allocation, which has not been the case. We show that the current and projected surface water allocations from the Athabasca River for the exploitation of the Alberta oil sands are based on an untenable assumption of the representativeness of the short instrumental record. PMID:26392554
Improving estuary models by reducing uncertainties associated with river flows
NASA Astrophysics Data System (ADS)
Robins, Peter E.; Lewis, Matt J.; Freer, Jim; Cooper, David M.; Skinner, Christopher J.; Coulthard, Tom J.
2018-07-01
To mitigate against future changes to estuaries such as water quality, catchment and estuary models can be coupled to simulate the transport of harmful pathogenic viruses, pollutants and nutrients from their terrestrial sources, through the estuary and to the coast. To predict future changes to estuaries, daily mean river flow projections are typically used. We show that this approach cannot resolve higher frequency discharge events that have large impacts to estuarine dilution, contamination and recovery for two contrasting estuaries. We therefore characterise sub-daily scale flow variability and propagate this through an estuary model to provide robust estimates of impacts for the future. River flow data (35-year records at 15-min sampling) were used to characterise variabilities in storm hydrograph shapes and simulate the estuarine response. In particular, we modelled a fast-responding catchment-estuary system (Conwy, UK), where the natural variability in hydrograph shapes generated large variability in estuarine circulation that was not captured when using daily-averaged river forcing. In the extreme, the freshwater plume from a 'flash' flood (lasting <12 h) was underestimated by up to 100% - and the response to nutrient loading was underestimated further still. A model of a slower-responding system (Humber, UK), where hydrographs typically last 2-4 days, showed less variability in estuarine circulation and good approximation with daily-averaged flow forcing. Our result has implications for entire system impact modelling; when we determine future changes to estuaries, some systems will need higher resolution future river flow estimates.
Classification of reaches in the Missouri and lower Yellowstone Rivers based on flow characteristics
Pegg, Mark A.; Pierce, Clay L.
2002-01-01
Several aspects of flow have been shown to be important determinants of biological community structure and function in streams, yet direct application of this approach to large rivers has been limited. Using a multivariate approach, we grouped flow gauges into hydrologically similar units in the Missouri and lower Yellowstone Rivers and developed a model based on flow variability parameters that could be used to test hypotheses about the role of flow in determining aquatic community structure. This model could also be used for future comparisons as the hydrological regime changes. A suite of hydrological parameters for the recent, post-impoundment period (1 October 1966–30 September 1996) for each of 15 gauges along the Missouri and lower Yellowstone Rivers were initially used. Preliminary graphical exploration identified five variables for use in further multivariate analyses. Six hydrologically distinct units composed of gauges exhibiting similar flow characteristics were then identified using cluster analysis. Discriminant analyses identified the three most influential variables as flow per unit drainage area, coefficient of variation of mean annual flow, and flow constancy. One surprising result was the relative similarity of flow regimes between the two uppermost and three lowermost gauges, despite large differences in magnitude of flow and separation by roughly 3000 km. Our results synthesize, simplify and interpret the complex changes in flow occurring along the Missouri and lower Yellowstone Rivers, and provide an objective grouping for future tests of how these changes may affect biological communities.
Untangling Trends and Drivers of Changing River Discharge Along Florida's Gulf Coast
NASA Astrophysics Data System (ADS)
Glodzik, K.; Kaplan, D. A.; Klarenberg, G.
2017-12-01
Along the relatively undeveloped Big Bend coastline of Florida, discharge in many rivers and springs is decreasing. The causes are unclear, though they likely include a combination of groundwater extraction for water supply, climate variability, and altered land use. Saltwater intrusion from altered freshwater influence and sea level rise is causing transformative ecosystem impacts along this flat coastline, including coastal forest die-off and oyster reef collapse. A key uncertainty for understanding river discharge change is predicting discharge from rainfall, since Florida's karstic bedrock stores large amounts of groundwater, which has a long residence time. This study uses Dynamic Factor Analysis (DFA), a multivariate data reduction technique for time series, to find common trends in flow and reveal hydrologic variables affecting flow in eight Big Bend rivers since 1965. The DFA uses annual river flows as response time series, and climate data (annual rainfall and evapotranspiration by watershed) and climatic indices (El Niño Southern Oscillation [ENSO] Index and North Atlantic Oscillation [NAO] Index) as candidate explanatory variables. Significant explanatory variables (one evapotranspiration and three rainfall time series) explained roughly 50% of discharge variation across rivers. Significant trends (representing unexplained variation) were shared among rivers, with geographical grouping of five northern rivers and three southern rivers, along with a strong downward trend affecting six out of eight systems. ENSO and NAO had no significant impact. Advancing knowledge of these dynamics is necessary for forecasting how altered rainfall and temperatures from climate change may impact flows. Improved forecasting is especially important given Florida's reliance on groundwater extraction to support its growing population.
A NEW METHOD FOR ENVIRONMENTAL FLOW ASSESSMENT BASED ON BASIN GEOLOGY. APPLICATION TO EBRO BASIN.
2018-02-01
The determination of environmental flows is one of the commonest practical actions implemented on European rivers to promote their good ecological status. In Mediterranean rivers, groundwater inflows are a decisive factor in streamflow maintenance. This work examines the relationship between the lithological composition of the Ebro basin (Spain) and dry season flows in order to establish a model that can assist in the calculation of environmental flow rates.Due to the lack of information on the hydrogeological characteristics of the studied basin, the variable representing groundwater inflows has been estimated in a very simple way. The explanatory variable used in the proposed model is easy to calculate and is sufficiently powerful to take into account all the required characteristics.The model has a high coefficient of determination, indicating that it is accurate for the intended purpose. The advantage of this method compared to other methods is that it requires very little data and provides a simple estimate of environmental flow. It is also independent of the basin area and the river section order.The results of this research also contribute to knowledge of the variables that influence low flow periods and low flow rates on rivers in the Ebro basin.
Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V., Oliver C.
2015-01-01
Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov–Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities. PMID:26207997
Degefu, Mekonnen Adnew; Bewket, Woldeamlak
2017-04-01
This study assesses variability, trends, and teleconnections of stream flow with large-scale climate signals (global sea surface temperatures (SSTs)) for the Omo-Ghibe River Basin of Ethiopia. Fourteen hydrological indices of variability and extremes were defined from daily stream flow data series and analyzed for two common periods, which are 1972-2006 for 5 stations and 1982-2006 for 15 stations. The Mann-Kendall's test was used to detect trends at 0.05 significance level, and simple correlation analysis was applied to evaluate associations between the selected stream flow indices and SSTs. We found weak and mixed (upward and downward) trend signals for annual and wet (Kiremt) season flows. Indices generated for high-flow (flood) magnitudes showed the same weak trend signals. However, trend tests for flood frequencies and low-flow magnitudes showed little evidences of increasing change. It was also found that El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are the major anomalies affecting stream flow variability in the Omo-Ghibe Basin. The strongest associations are observed between ENSO/Niño3.4 and the stream flow in August and September, mean Kiremt flow (July-September), and flood frequency (peak over threshold on average three peaks per year (POT3_Fre)). The findings of this study provide a general overview on the long-term stream flow variability and predictability of stream flows for the Omo-Ghibe River Basin.
NASA Astrophysics Data System (ADS)
Schubert, J.; Sanders, B. F.; Andreadis, K.
2013-12-01
The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting features, including a high degree of variability in the water depth and velocity and lesser variability in the free-surface profile and river discharge. Hydraulic control sections are also revealed, and shown to depend on flow stage. Reach-averaging of model output is applied to study the macro-scale balance of forces in this system, and the scales at which such a force balance is appropriate. We find that the reach-average slope exhibits a declining reach-length dependence with increasing reach length, up to reach lengths of 1 km. Hence, 1 km appears to be the minimum appropriate length for reach-averaging, and at this scale, a diffusive-wave momentum balance is a reasonable approximation suitable for emerging models of discharge estimation that rely only on SWOT-observable river properties (width, height, slope, etc.).
NASA Astrophysics Data System (ADS)
Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca
2017-04-01
The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.
A century of hydrological variability and trends in the Fraser River Basin
NASA Astrophysics Data System (ADS)
Déry, Stephen J.; Hernández-Henríquez, Marco A.; Owens, Philip N.; Parkes, Margot W.; Petticrew, Ellen L.
2012-06-01
This study examines the 1911-2010 variability and trends in annual streamflow at 139 sites across the Fraser River Basin (FRB) of British Columbia (BC), Canada. The Fraser River is the largest Canadian waterway flowing to the Pacific Ocean and is one of the world’s greatest salmon rivers. Our analyses reveal high runoff rates and low interannual variability in alpine and coastal rivers, and low runoff rates and high interannual variability in most streams in BC’s interior. The interannual variability in streamflow is also low in rivers such as the Adams, Chilko, Quesnel and Stuart where the principal salmon runs of the Fraser River occur. A trend analysis shows a spatially coherent signal with increasing interannual variability in streamflow across the FRB in recent decades, most notably in spring and summer. The upward trend in the coefficient of variation in annual runoff coincides with a period of near-normal annual runoff for the Fraser River at Hope. The interannual variability in streamflow is greater in regulated rather than natural systems; however, it is unclear whether it is predominantly flow regulation that leads to these observed differences. Environmental changes such as rising air temperatures, more frequent polarity changes in large-scale climate teleconnections such as El Niño-Southern Oscillation and Pacific Decadal Oscillation, and retreating glaciers may be contributing to the greater range in annual runoff fluctuations across the FRB. This has implications for ecological processes throughout the basin, for example affecting migrating and spawning salmon, a keystone species vital to First Nations communities as well as to commercial and recreational fisheries. To exemplify this linkage between variable flows and biological responses, the unusual FRB runoff anomalies observed in 2010 are discussed in the context of that year’s sockeye salmon run. As the climate continues to warm, greater variability in annual streamflow, and hence in hydrological extremes, may influence ecological processes and human usage throughout the FRB in the 21st century.
Impact of Climate Change and Human Intervention on River Flow Regimes
NASA Astrophysics Data System (ADS)
Singh, Rajendra; Mittal, Neha; Mishra, Ashok
2017-04-01
Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.
Some aspects of river flow in northern New South Wales, Australia
NASA Astrophysics Data System (ADS)
Ward, R. C.
1984-03-01
A number of catchment and hydrological characteristics are examined for a 385,000 km 2 study area in northern New South Wales. This study area spans the Great Divide and data selected from the archives of the New South Wales Water Resources Commission illustrate the marked contrasts in the character and variability of streamflow between coastal rivers draining comparatively small steeply sloping basins east of the Great Divide and the larger river systems draining the more extensive semi-arid basins of the western slopes. Particular attention is paid to comparisons of annual flows, flow-duration curves, seasonal flow regimes, flood flow and low flows. The study not only confirms the hydrological contrasts between two distinct geographical regions but also emphasises the rigorous data requirements of hydrological studies in areas of high variability of precipitation and streamflow.
Run-of-river power plants in Alpine regions: Whither optimal capacity?
NASA Astrophysics Data System (ADS)
Lazzaro, G.; Botter, G.
2015-07-01
Although run-of-river hydropower represents a key source of renewable energy, it cannot prevent stresses on river ecosystems and human well-being. This is especially true in Alpine regions, where the outflow of a plant is placed several kilometers downstream of the intake, inducing the depletion of river reaches of considerable length. Here multiobjective optimization is used in the design of the capacity of run-of-river plants to identify optimal trade-offs between two contrasting objectives: the maximization of the profitability and the minimization of the hydrologic disturbance between the intake and the outflow. The latter is evaluated considering different flow metrics: mean discharge, temporal autocorrelation, and streamflow variability. Efficient and Pareto-optimal plant sizes are devised for two representative case studies belonging to the Piave river (Italy). Our results show that the optimal design capacity is strongly affected by the flow regime at the plant intake. In persistent regimes with a reduced flow variability, the optimal trade-off between economic exploitation and hydrologic disturbance is obtained for a narrow range of capacities sensibly smaller than the economic optimum. In erratic regimes featured by an enhanced flow variability, instead, the Pareto front is discontinuous and multiple trade-offs can be identified, which imply either smaller or larger plants compared to the economic optimum. In particular, large capacities reduce the impact of the plant on the streamflow variability at seasonal and interannual time scale. Multiobjective analysis could provide a clue for the development of policy actions based on the evaluation of the environmental footprint of run-of-river plants.
Columbia River flow and drought since 1750.
Ze' ev Gedalof; David L. Peterson; Nathan J. Mantua
2004-01-01
A network of 32 drought sensitive tree-ring chronologies is used to reconstruct mean water year flow on the Columbia River at The Dalles, Oregon, since 1750. The reconstruction explains 30 percent of the variability in mean water year (October to September) flow, with a large portion of unexplained variance caused by underestimates of the most severe low flow events....
NASA Astrophysics Data System (ADS)
Pang, Aiping; Sun, Tao; Yang, Zhifeng
2013-03-01
SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.
NASA Technical Reports Server (NTRS)
Dey, B.
1985-01-01
In this study, the existing seasonal snow cover area runoff forecasting models of the Indus, Kabul, Sutlej and Chenab basins were evaluated with the concurrent flow correlation model for the period 1975-79. In all the basins under study, correlation of concurrent flow model explained the variability in flow better than by the snow cover area runoff models. Actually, the concurrent flow correlation model explained more than 90 percent of the variability in the flow of these rivers. Compared to this model, the snow cover area runoff models explained less of the variability in flow. In the Himalayan river basins under study and at least for the period under observation, the concurrent flow correlation model provided a set of results with which to compare the estimates from the snow cover area runoff models.
Andersen, Douglas C.
2016-01-01
I compared riparian cottonwood (Populus fremontii) productivity-discharge relationships in a relictual stand along the highly regulated Green River and in a naturally functioning stand along the unregulated Yampa River in semiarid northwest Colorado. I used multiple regression to model flow effects on annual basal area increment (BAI) from 1982 to 2011, after removing any autocorrelation present. Each BAI series was developed from 20 trees whose mean size (67 cm diameter at breast height [DBH]) was equivalent in the two stands. BAI was larger in the Yampa River stand except in 2 y when defoliating leaf beetles were present there. I found no evidence for a Yampa flood-magnitude threshold above which BAI declined. Flow variables explained ∼45% of residual BAI variability, with most explained by current-year maximum 90-d discharge (QM90) in the Yampa River stand and by a measure of the year-to-year change in QM90 in the Green River stand. The latter reflects a management-imposed ceiling on flood magnitude—Flaming Gorge Dam power plant capacity—infrequently exceeded during the study period. BAI in the relictual stand began to trend upward in 1992 when flows started to mimic a natural flow regime. Mature Fremont cottonwoods appear to be ecologically resilient. Their productivity along regulated rivers might be optimized using multiyear environmental flow designs.
Suwannee River flow variability 1550-2005 CE reconstructed from a multispecies tree-ring network
NASA Astrophysics Data System (ADS)
Harley, Grant L.; Maxwell, Justin T.; Larson, Evan; Grissino-Mayer, Henri D.; Henderson, Joseph; Huffman, Jean
2017-01-01
Understanding the long-term natural flow regime of rivers enables resource managers to more accurately model water level variability. Models for managing water resources are important in Florida where population increase is escalating demand on water resources and infrastructure. The Suwannee River is the second largest river system in Florida and the least impacted by anthropogenic disturbance. We used new and existing tree-ring chronologies from multiple species to reconstruct mean March-October discharge for the Suwannee River during the period 1550-2005 CE and place the short period of instrumental flows (since 1927 CE) into historical context. We used a nested principal components regression method to maximize the use of chronologies with varying time coverage in the network. Modeled streamflow estimates indicated that instrumental period flow conditions do not adequately capture the full range of Suwannee River flow variability beyond the observational period. Although extreme dry and wet events occurred in the gage record, pluvials and droughts that eclipse the intensity and duration of instrumental events occurred during the 16-19th centuries. The most prolonged and severe dry conditions during the past 450 years occurred during the 1560s CE. In this prolonged drought period mean flow was estimated at 17% of the mean instrumental period flow. Significant peaks in spectral density at 2-7, 10, 45, and 85-year periodicities indicated the important influence of coupled oceanic-atmospheric processes on Suwannee River streamflow over the past four centuries, though the strength of these periodicities varied over time. Future water planning based on current flow expectations could prove devastating to natural and human systems if a prolonged and severe drought mirroring the 16th and 18th century events occurred. Future work in the region will focus on updating existing tree-ring chronologies and developing new collections from moisture-sensitive sites to improve understandings of past hydroclimate in the region.
A pilot study of river flow prediction in urban area based on phase space reconstruction
NASA Astrophysics Data System (ADS)
Adenan, Nur Hamiza; Hamid, Nor Zila Abd; Mohamed, Zulkifley; Noorani, Mohd Salmi Md
2017-08-01
River flow prediction is significantly related to urban hydrology impact which can provide information to solve any problems such as flood in urban area. The daily river flow of Klang River, Malaysia was chosen to be forecasted in this pilot study which based on phase space reconstruction. The reconstruction of phase space involves a single variable of river flow data to m-dimensional phase space in which the dimension (m) is based on the optimal values of Cao method. The results from the reconstruction of phase space have been used in the forecasting process using local linear approximation method. From our investigation, river flow at Klang River is chaotic based on the analysis from Cao method. The overall results provide good value of correlation coefficient. The value of correlation coefficient is acceptable since the area of the case study is influence by a lot of factors. Therefore, this pilot study may be proposed to forecast daily river flow data with the purpose of providing information about the flow of the river system in urban area.
Spatial and seasonal variability of base flow in the Verde Valley, central Arizona, 2007 and 2011
Garner, Bradley D.; Bills, Donald J.
2012-01-01
Synoptic base-flow surveys were conducted on streams in the Verde Valley, central Arizona, in June 2007 and February 2011 by the U.S. Geological Survey (USGS), in cooperation with the Verde River Basin Partnership, the Town of Clarkdale, and Yavapai County. These surveys, also known as seepage runs, measured streamflow under base-flow conditions at many locations over a short period of time. Surveys were conducted on a segment of the Verde River that flows through the Verde Valley, between USGS streamflow-gaging stations 09504000 and 09506000, a distance of 51 river miles. Data from the surveys were used to investigate the dominant controls on Verde River base flow, spatial variability in gaining and losing reaches, and the effects that human alterations have on base flow in the surface-water system. The most prominent human alterations in the Verde Valley are dozens of surface-water diversions from streams, including gravity-fed ditch diversions along the Verde River.Base flow that entered the Verde River from the tributary streams of Oak Creek, Beaver Creek, and West Clear Creek was found to be a major source of base flow in the Verde River. Groundwater discharge directly into the Verde River near these three confluences also was an important contributor of base flow to the Verde River, particularly near the confluence with Beaver Creek. An examination of individual reaches of the Verde River in the Verde Valley found three reaches (largely unaffected by ditch diversions) exhibiting a similar pattern: a small net groundwater discharge in February 2011 (12 cubic feet per second or less) and a small net streamflow loss in June 2007 (11 cubic feet per second or less). Two reaches heavily affected by ditch diversions were difficult to interpret because of the large number of confounding human factors. Possible lower and upper bounds of net groundwater flux were calculated for all reaches, including those heavily affected by ditches.
NASA Astrophysics Data System (ADS)
Liu, W.; Kuo, Y. M.
2016-12-01
The Middle Route of China's South-to-North Water Transfer (MSNW) and Yangtze-Han River Water Diversion (YHWD) Projects have been operated since 2014, which may deteriorate water quality in Han River. The 11 water sampling sites distributed from the middle and down streams of Han River watershed were monitored monthly between July 2014 and December 2015. Factor analysis and cluster analysis were applied to investigate the major pollution types and main variables influencing water quality in Han River. The factor analysis distinguishes three main pollution types (agricultural nonpoint source, organic, and phosphorus point source pollution) affecting water quality of Han River. Cluster analysis classified all sampling sites into four groups and determined their pollution source for both Dry and Wet seasons. The sites located at central city receive point source pollution in both seasons. The water quality in downstream Han River (excluding central city sites) was influenced by nonpoint source pollution from Jianghan Plain. Variations of water qualities are associated with hydrological conditions varied from operations of engineering projects and seasonal variability especially in Dry season. Good water quality as Class III mainly occurred when flow rate is greater than 800 cms in Dry season. The low average flow rate below 583 cms will degrade water quality as Class V at almost all sites. Elevating the flow rate discharged from MSNW and YHWD Projects to Han River can avoid degrading water quality especially in low flow conditions and may decrease the probability of algal bloom occurrence in Han River. Increasing the flow rate from 400 cms to 700 cms in main Han River can obviously improve the water quality of Han River. The investigation of relationships between water quality and flow rate in both projects can provide management strategies of water quality for various flow conditions.
NASA Astrophysics Data System (ADS)
Praskievicz, S. J.; Luo, C.
2017-12-01
Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.
Unravelling connections between river flow and large-scale climate: experiences from Europe
NASA Astrophysics Data System (ADS)
Hannah, D. M.; Kingston, D. G.; Lavers, D.; Stagge, J. H.; Tallaksen, L. M.
2016-12-01
The United Nations has identified better knowledge of large-scale water cycle processes as essential for socio-economic development and global water-food-energy security. In this context, and given the ever-growing concerns about climate change/ variability and human impacts on hydrology, there is an urgent research need: (a) to quantify space-time variability in regional river flow, and (b) to improve hydroclimatological understanding of climate-flow connections as a basis for identifying current and future water-related issues. In this paper, we draw together studies undertaken at the pan-European scale: (1) to evaluate current methods for assessing space-time dynamics for different streamflow metrics (annual regimes, low flows and high flows) and for linking flow variability to atmospheric drivers (circulation indices, air-masses, gridded climate fields and vapour flux); and (2) to propose a plan for future research connecting streamflow and the atmospheric conditions in Europe and elsewhere. We believe this research makes a useful, unique contribution to the literature through a systematic inter-comparison of different streamflow metrics and atmospheric descriptors. In our findings, we highlight the need to consider appropriate atmospheric descriptors (dependent on the target flow metric and region of interest) and to develop analytical techniques that best characterise connections in the ocean-atmosphere-land surface process chain. We call for the need to consider not only atmospheric interactions, but also the role of the river basin-scale terrestrial hydrological processes in modifying the climate signal response of river flows.
An analysis of effect of land use change on river flow variability
NASA Astrophysics Data System (ADS)
Zhang, Tao; Liu, Yuting; Yang, Xinyue; Wang, Xiang
2018-02-01
Land use scenario analysis, SWAT model, flow characteristic indices and flow variability technology were used to analyze the effect of land use quantity and location change on river flow. Results showed that river flow variation caused by land use change from forest to crop was larger than that caused by land use change from forest to grass; Land use change neither from upstream to downstream nor from downstream to upstream had little effect on annual average discharge and maximum annual average discharge. But it had obvious effect on maximum daily discharge; Land use change which occurred in upstream could lead to producing larger magnitude flood more easily; Land use change from forest to crop or grass could increase the number of large magnitude floods and their total duration. And it also could increase the number of small magnitude floods but decrease their duration.
Simulating the Snow Water Equivalent and its changing pattern over Nepal
NASA Astrophysics Data System (ADS)
Niroula, S.; Joseph, J.; Ghosh, S.
2016-12-01
Snow fall in the Himalayan region is one of the primary sources of fresh water, which accounts around 10% of total precipitation of Nepal. Snow water is an intricate variable in terms of its global and regional estimates whose complexity is favored by spatial variability linked with rugged topography. The study is primarily focused on simulation of Snow Water Equivalent (SWE) by the use of a macroscale hydrologic model, Variable Infiltration Capacity (VIC). As whole Nepal including its Himalayas lies under the catchment of Ganga River in India, contributing at least 40% of annual discharge of Ganges, this model was run in the entire watershed that covers part of Tibet and Bangladesh as well. Meteorological inputs for 29 years (1979-2007) are drawn from ERA-INTERIM and APHRODITE dataset for horizontal resolution of 0.25 degrees. The analysis was performed to study temporal variability of SWE in the Himalayan region of Nepal. The model was calibrated by observed stream flows of the tributaries of the Gandaki River in Nepal which ultimately feeds river Ganga. Further, the simulated SWE is used to estimate stream flow in this river basin. Since Nepal has a greater snow cover accumulation in monsoon season than in winter at high altitudes, seasonality fluctuations in SWE affecting the stream flows are known. The model provided fair estimates of SWE and stream flow as per statistical analysis. Stream flows are known to be sensitive to the changes in snow water that can bring a negative impact on power generation in a country which has huge hydroelectric potential. In addition, our results on simulated SWE in second largest snow-fed catchment of the country will be helpful for reservoir management, flood forecasting and other water resource management issues. Keywords: Hydrology, Snow Water Equivalent, Variable Infiltration Capacity, Gandaki River Basin, Stream Flow
Corsi, Steven R.; Borchardt, M. A.; Spencer, S. K.; Hughes, Peter E.; Baldwin, Austin K.
2014-01-01
To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing human exposure and disease transmission.
Discharge variability and bedrock river incision on the Hawaiian island of Kaua'i
NASA Astrophysics Data System (ADS)
Huppert, K.; Deal, E.; Perron, J. T.; Ferrier, K.; Braun, J.
2017-12-01
Bedrock river incision occurs during floods that generate sufficient shear stress to strip riverbeds of sediment cover and erode underlying bedrock. Thresholds for incision can prevent erosion at low flows and slow down erosion at higher flows that do generate excess shear stress. Because discharge distributions typically display power-law tails, with non-negligible frequencies of floods much greater than the mean, models incorporating stochastic discharge and incision thresholds predict that discharge variability can sometimes have greater effects on long-term incision rates than mean discharge. This occurs when the commonly observed inverse scalings between mean discharge and discharge variability are weak or when incision thresholds are high. Because the effects of thresholds and discharge variability have only been documented in a few locations, their influence on long-term river incision rates remains uncertain. The Hawaiian island of Kaua'i provides an ideal natural laboratory to evaluate the effects of discharge variability and thresholds on bedrock river incision because it has one of Earth's steepest spatial gradients in mean annual rainfall and it also experiences dramatic spatial variations in rainfall and discharge variability, spanning a wide range of the conditions reported on Earth. Kaua'i otherwise has minimal variations in lithology, vertical motion, and other factors that can influence erosion. River incision rates averaged over 1.5 - 4.5 Myr timescales can be estimated along the lengths of Kauaian channels from the depths of river canyons and lava flow ages. We characterize rainfall and discharge variability on Kaua'i using records from an extensive network of rain and stream gauges spanning the past century. We use these characterizations to model long-term bedrock river incision along Kauaian channels with a threshold-dependent incision law, modulated by site-specific discharge-channel width scalings. Our comparisons between modeled and observed erosion rates suggest that variations in river incision rates on Kaua'i are dominated by variations in mean rainfall and discharge, rather than by differences in storminess across the island. We explore the implications of this result for the threshold dependence of river incision across Earth's varied climates.
NASA Astrophysics Data System (ADS)
Redolfi, M.; Bertoldi, W.; Tubino, M.; Welber, M.
2018-02-01
Measurement and estimation of bed load transport in gravel bed rivers are highly affected by its temporal fluctuations. Such variability is primarily driven by the flow regime but is also associated with a variety of inherent channel processes, such as flow turbulence, grain entrainment, and bed forms migration. These internal and external controls often act at comparable time scales, and are therefore difficult to disentangle, thus hindering the study of bed load variability under unsteady flow regime. In this paper, we report on laboratory experiments performed in a large, mobile bed flume where typical hydromorphological conditions of gravel bed rivers were reproduced. Data from a large number of replicated runs, including triangular and square-wave hydrographs, were used to build a statistically sound description of sediment transport processes. We found that the inherent variability of bed load flux strongly depends on the sampling interval, and it is significantly higher in complex, wandering or braided channels. This variability can be filtered out by computing the mean response over the experimental replicates, which allows us to highlight two distinctive phenomena: (i) an overshooting (undershooting) response of the mean bed load flux to a sudden increase (decrease) of discharge, and (ii) a clockwise hysteresis in the sediment rating curve. We then provide an interpretation of these findings through a conceptual mathematical model, showing how both phenomena are associated with a lagging morphological adaptation to unsteady flow. Overall, this work provides basic information for evaluating, monitoring, and managing gravel transport in morphologically active rivers.
NASA Astrophysics Data System (ADS)
Dieppois, B.; Sidibe, M.; Mahe, G. M.; Paturel, J. E.; Anifowose, B. A.; Lawler, D.; Amoussou, E.
2017-12-01
Unprecedented drought episodes that struck western and central Africa between the late 1960s and 1980s, triggered many studies investigating rainfall variability and its impacts on water resources and food production systems. However, most studies were focused at the catchment scale. In this study, we aim at investigating the key large-scale controls determining and modulating climate-river flows relationships at the subcontinental scale between 1950 and 2005. Using the first complete monthly streamflow data set (1950-2005) over western and central Africa, streamflow trend and variability are seasonally assessed at this subcontinental scale and compared to those observed in other hydroclimatic variables (precipitation, temperature and potential evapotranspiration). Long-term trends and variability in streamflow are mainly consistent with trends in rainfall. In particular, the recent post-1990s partial recovery in Sahel rainfall could have, at least partially, positively impacted river flows (e.g. the Senegal and Niger rivers). However, these relationships may have been moderated by: i) changes in land use; and ii) contributions from groundwater resources. In addition, the time-evolution of river flows is shown to be primarily driven by very strong decadal fluctuations, which can be interpreted as modulations in the baseflow, as determined using multi-temporal trend and continuous wavelet analysis. These decadal fluctuations, which are also significantly detected in rainfall, are likely related to large-scale sea-surface temperature (SST) anomaly patterns (such as the tropical Atlantic SST variability, the Atlantic Multidecadal Oscillation, the Interdecadal Pacific Oscillation and the Pacific Decadal Oscillation), which are together modulating the West African monsoon. Furthermore, influences of the catchment properties (e.g. size, vegetation and land use cover, soil properties, direction of stream flow across climate zones) on these decadal fluctuations in river flows have been examined. This study therefore aims to improve the ability of current global to regional climate models to simulate such ranges of variability and understand regional hydroclimate, as a means for improving the development of future scenarios for water resources in western and central Africa.
Estimates of streamflow characteristics for selected small streams, Baker River basin, Washington
Williams, John R.
1987-01-01
Regression equations were used to estimate streamflow characteristics at eight ungaged sites on small streams in the Baker River basin in the North Cascade Mountains, Washington, that could be suitable for run-of-the-river hydropower development. The regression equations were obtained by relating known streamflow characteristics at 25 gaging stations in nearby basins to several physical and climatic variables that could be easily measured in gaged or ungaged basins. The known streamflow characteristics were mean annual flows, 1-, 3-, and 7-day low flows and high flows, mean monthly flows, and flow duration. Drainage area and mean annual precipitation were not the most significant variables in all the regression equations. Variance in the low flows and the summer mean monthly flows was reduced by including an index of glacierized area within the basin as a third variable. Standard errors of estimate of the regression equations ranged from 25 to 88%, and the largest errors were associated with the low flow characteristics. Discharge measurements made at the eight sites near midmonth each month during 1981 were used to estimate monthly mean flows at the sites for that period. These measurements also were correlated with concurrent daily mean flows from eight operating gaging stations. The correlations provided estimates of mean monthly flows that compared reasonably well with those estimated by the regression analyses. (Author 's abstract)
Streamflow variability and optimal capacity of run-of-river hydropower plants
NASA Astrophysics Data System (ADS)
Basso, S.; Botter, G.
2012-10-01
The identification of the capacity of a run-of-river plant which allows for the optimal utilization of the available water resources is a challenging task, mainly because of the inherent temporal variability of river flows. This paper proposes an analytical framework to describe the energy production and the economic profitability of small run-of-river power plants on the basis of the underlying streamflow regime. We provide analytical expressions for the capacity which maximize the produced energy as a function of the underlying flow duration curve and minimum environmental flow requirements downstream of the plant intake. Similar analytical expressions are derived for the capacity which maximize the economic return deriving from construction and operation of a new plant. The analytical approach is applied to a minihydro plant recently proposed in a small Alpine catchment in northeastern Italy, evidencing the potential of the method as a flexible and simple design tool for practical application. The analytical model provides useful insight on the major hydrologic and economic controls (e.g., streamflow variability, energy price, costs) on the optimal plant capacity and helps in identifying policy strategies to reduce the current gap between the economic and energy optimizations of run-of-river plants.
Summer microhabitat use by adult and young-of-year snail darters (Percina tanasi) in two rivers
Ashton, M.J.; Layzer, James B.
2010-01-01
We characterised microhabitat availability and use by adult and young-of-year (YOY) snail darters (Percina tanasi Etnier 1976) while snorkelling in the French Broad and Hiwassee rivers, TN, USA. Both age groups of snail darters disproportionately used most microhabitat variables compared to their availability. Snail darters primarily occupied moderately deep, swift water over gravel substrates with little macrophyte coverage and no silt. Univariate comparisons indicated that adult and YOY darters occupied different habitat, but there was no marked differences between principal components analysis plots of multivariate microhabitat use within a river. Although the availability of microhabitat variables differed between the French Broad and Hiwassee rivers, univariate means and multivariate plots illustrated that the habitats used were generally similar by age groups of snail darters between rivers. Because our observations of habitat availability and use were constrained to low flow periods and depths <1 m, the transferability of our results to higher flow periods may be limited. However, the similarity in habitat use between rivers suggests that our results can be applied to low-normal flow conditions in other streams.
NASA Astrophysics Data System (ADS)
Koster, W. M.; Crook, D. A.; Dawson, D. R.; Gaskill, S.; Morrongiello, J. R.
2018-03-01
The development of effective strategies to restore the biological functioning of aquatic ecosystems with altered flow regimes requires a detailed understanding of flow-ecology requirements, which is unfortunately lacking in many cases. By understanding the flow conditions required to initiate critical life history events such as migration and spawning, it is possible to mitigate the threats posed by regulated river flow by providing targeted environmental flow releases from impoundments. In this study, we examined the influence of hydrological variables (e.g., flow magnitude), temporal variables (e.g., day of year) and spatial variables (e.g., longitudinal position of fish) on two key life history events (migration to spawning grounds and spawning activity) for a threatened diadromous fish (Australian grayling Prototroctes maraena) using data collected from 2008 to 2015 in the Bunyip-Tarago river system in Victoria. Our analyses revealed that flow changes act as a cue to downstream migration, but movement responses differed spatially: fish in the upper catchment showed a more specific requirement for rising discharge to initiate migration than fish in the lower catchment. Egg concentrations peaked in May when weekly flows increased relative to the median flow during a given spawning period. This information has recently been incorporated into the development of targeted environmental flows to facilitate migration and spawning by Australian grayling in the Bunyip-Tarago river system and other coastal systems in Victoria.
Anthropogenic Water Uses and River Flow Regime Alterations by Dams
NASA Astrophysics Data System (ADS)
Ferrazzi, M.; Botter, G.
2017-12-01
Dams and impoundments have been designed to reconcile the systematic conflict between patterns of anthropogenic water uses and the temporal variability of river flows. Over the past seven decades, population growth and economic development led to a marked increase in the number of these water infrastructures, so that unregulated free-flowing rivers are now rare in developed countries and alterations of the hydrologic cycle at global scale have to be properly considered and characterized. Therefore, improving our understanding of the influence of dams and reservoirs on hydrologic regimes is going to play a key role in water planning and management. In this study, a physically based analytic approach is combined to extensive hydrologic data to investigate natural flow regime alterations downstream of dams in the Central-Eastern United States. These representative case studies span a wide range of different uses, including flood control, water supply and hydropower production. Our analysis reveals that the most evident effects of flood control through dams is a decrease in the intra-seasonal variability of flows, whose extent is controlled by the ratio between the storage capacity for flood control and the average incoming streamflow. Conversely, reservoirs used for water supply lead to an increase of daily streamflow variability and an enhanced inter-catchment heterogeneity. Over the last decades, the supply of fresh water required to sustain human populations has become a major concern at global scale. Accordingly, the number of reservoirs devoted to water supply increased by 50% in the US. This pattern foreshadows a possible shift in the cumulative effect of dams on river flow regimes in terms of inter-catchment homogenization and intra-annual flow variability.
Abdi, Reza; Yasi, Mehdi
2015-01-01
The assessment of environmental flows in rivers is of vital importance for preserving riverine ecosystem processes. This paper addresses the evaluation of environmental flow requirements in three reaches along a typical perennial river (the Zab transboundary river, in north-west Iran), using different hydraulic, hydrological and ecological methods. The main objective of this study came from the construction of three dams and inter-basin transfer of water from the Zab River to the Urmia Lake. Eight hydrological methods (i.e. Tennant, Tessman, flow duration curve analysis, range of variability approach, Smakhtin, flow duration curve shifting, desktop reserve and 7Q2&10 (7-day low flow with a 2- and 10-year return period)); two hydraulic methods (slope value and maximum curvature); and two habitat simulation methods (hydraulic-ecologic, and Q Equation based on water quality indices) were used. Ecological needs of the riverine key species (mainly Barbus capito fish), river geometries, natural flow regime and the environmental status of river management were the main indices for determining the minimum flow requirements. The results indicate that the order of 35%, 17% and 18% of the mean annual flow are to be maintained for the upper, middle and downstream river reaches, respectively. The allocated monthly flow rates in the three Dams steering program are not sufficient to preserve the Zab River life.
Advancing towards functional environmental flows for temperate floodplain rivers.
Hayes, Daniel S; Brändle, Julia M; Seliger, Carina; Zeiringer, Bernhard; Ferreira, Teresa; Schmutz, Stefan
2018-08-15
Abstraction, diversion, and storage of flow alter rivers worldwide. In this context, minimum flow regulations are applied to mitigate adverse impacts and to protect affected river reaches from environmental deterioration. Mostly, however, only selected instream criteria are considered, neglecting the floodplain as an indispensable part of the fluvial ecosystem. Based on essential functions and processes of unimpaired temperate floodplain rivers, we identify fundamental principles to which we must adhere to determine truly ecologically-relevant environmental flows. Literature reveals that the natural flow regime and its seasonal components are primary drivers for functions and processes of abiotic and biotic elements such as morphology, water quality, floodplain, groundwater, riparian vegetation, fish, macroinvertebrates, and amphibians, thus preserving the integrity of floodplain river ecosystems. Based on the relationship between key flow regime elements and associated environmental components within as well as adjacent to the river, we formulate a process-oriented functional floodplain flow (ff-flow) approach which offers a holistic conceptual framework for environmental flow assessment in temperate floodplain river systems. The ff-flow approach underlines the importance of emulating the natural flow regime with its seasonal variability, flow magnitude, frequency, event duration, and rise and fall of the hydrograph. We conclude that the ecological principles presented in the ff-flow approach ensure the protection of floodplain rivers impacted by flow regulation by establishing ecologically relevant environmental flows and guiding flow restoration measures. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
South Asia river flow projections and their implications for water resources
NASA Astrophysics Data System (ADS)
Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.
2015-06-01
South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a benchmark for comparison against the downscaled GCMs. On the basis that these simulations are among the highest resolution climate simulations available we examine how useful they are for understanding the changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows, with timing of maximum river flows broadly matching the available observations and the downscaled ERA-Interim simulation. Typically the RCM simulations over-estimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model although comparison with the downscaled ERA-Interim simulation is more mixed with only a couple of the gauges showing a bias compared with the downscaled GCM runs. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century; this trend is generally masked by the large annual variability of river flows for this region. The future seasonality of river flows does not change with the future maximum river flow rates still occuring during the ASM period, with a magnitude in some cases, greater than the present day natural variability. Increases in river flow during peak flow periods means additional water resource for irrigation, the largest usage of water in this region, but also has implications in terms of inundation risk. Low flow rates also increase which is likely to be important at times of the year when water is historically more scarce. However these projected increases in resource from rivers could be more than countered by changes in demand due to reductions in the quantity and quality of water available from groundwater, increases in domestic use due to a rising population or expansion of other industries such as hydro-electric power generation.
Estimation of potential runoff-contributing areas in the Kansas-Lower Republican River Basin, Kansas
Juracek, Kyle E.
1999-01-01
Digital soils and topographic data were used to estimate and compare potential runoff-contributing areas for 19 selected subbasins representing soil, slope, and runoff variability within the Kansas-Lower Republican (KLR) River Basin. Potential runoff-contributing areas were estimated separately and collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented high, moderate, and low potential runoff. For infiltration-excess overland flow, various rainfall intensities and soil permeabilities were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that the subbasins with relatively high potential runoff are located in the central part of the KLR River Basin. These subbasins are Black Vermillion River, Clarks Creek, Delaware River upstream from Muscotah, Grasshopper Creek, Mill Creek (Wabaunsee County), Soldier Creek, Vermillion Creek (Pottawatomie County), and Wildcat Creek. The subbasins with relatively low potential runoff are located in the western one-third of the KLR River Basin, with one exception, and are Buffalo Creek, Little Blue River upstream from Barnes, Mill Creek (Washington County), Republican River between Concordia and Clay Center, Republican River upstream from Concordia, Wakarusa River downstream from Clinton Lake (exception), and White Rock Creek. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the KLR River Basin.
Trends and variability in the hydrological regime of the Mackenzie River Basin
NASA Astrophysics Data System (ADS)
Abdul Aziz, Omar I.; Burn, Donald H.
2006-03-01
Trends and variability in the hydrological regime were analyzed for the Mackenzie River Basin in northern Canada. The procedure utilized the Mann-Kendall non-parametric test to detect trends, the Trend Free Pre-Whitening (TFPW) approach for correcting time-series data for autocorrelation and a bootstrap resampling method to account for the cross-correlation structure of the data. A total of 19 hydrological and six meteorological variables were selected for the study. Analysis was conducted on hydrological data from a network of 54 hydrometric stations and meteorological data from a network of 10 stations. The results indicated that several hydrological variables exhibit a greater number of significant trends than are expected to occur by chance. Noteworthy were strong increasing trends over the winter month flows of December to April as well as in the annual minimum flow and weak decreasing trends in the early summer and late fall flows as well as in the annual mean flow. An earlier onset of the spring freshet is noted over the basin. The results are expected to assist water resources managers and policy makers in making better planning decisions in the Mackenzie River Basin.
A Riparian Approach to Dendrochronological Flow Reconstruction, Yellowstone River, Montana
NASA Astrophysics Data System (ADS)
Schook, D. M.; Rathburn, S. L.; Friedman, J. M.
2015-12-01
Tree ring-based flow reconstructions can reveal river discharge variability over durations far exceeding the gauged record, building perspective for both the measured record and future flows. We use plains cottonwood (Populus deltoides subsp. monilifera) tree rings collected from four rivers to reconstruct flow history of the Yellowstone River near its confluence with the Missouri River. Upland trees in dry regions are typically used in flow reconstruction because their annual growth is controlled by the same precipitation that drives downstream flow, but our study improves flow reconstruction by including floodplain trees that are directly affected by the river. Cores from over 1000 cottonwoods along the Yellowstone, Powder, Little Missouri, and Redwater Rivers were collected from within a 170 km radius to reconstruct flows using the Age Curve Standardization technique in a multiple regression analysis. The large sample from trees spanning many age classes allows us to use only the rings that were produced when each tree was less than 50 years old and growth was most strongly correlated to river discharge. Using trees from a range of rivers improves our ability to differentiate between growth resulting from local precipitation and river flow, and we show that cottonwood growth differs across these neighboring rivers having different watersheds. Using the program Seascorr, tree growth is found to better correlated to seasonal river discharge (R = 0.69) than to local precipitation (R = 0.45). Our flow reconstruction reveals that the most extreme multi-year or multi-decade drought periods of the last 250 years on either the Yellowstone (1817-1821) or Powder (1846-1865) Rivers are missed by the gauged discharge record. Across all sites, we document increased growth in the 20th century compared to the 19th, a finding unattainable with conventional methods but having important implications for flow management.
Climate controls on streamflow variability in the Missouri River Basin
NASA Astrophysics Data System (ADS)
Wise, E.; Woodhouse, C. A.; McCabe, G. J., Jr.; Pederson, G. T.; St-Jacques, J. M.
2017-12-01
The Missouri River's hydroclimatic variability presents a challenge for water managers, who must balance many competing demands on the system. Water resources in the Missouri River Basin (MRB) have increasingly been challenged by the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, we use observed and modeled hydroclimatic data and estimated natural flow records to describe the climatic controls on streamflow in the upper and lower portions of the MRB, examine atmospheric and oceanic patterns associated with high- and low-flow years, and investigate trends in climate and streamflow over the instrumental period. Results indicate that the two main source regions for total outflow, in the uppermost and lowermost parts of the basin, are under the influence of very different sets of climatic controls. Winter precipitation, impacted by changes in zonal versus meridional flow from the Pacific Ocean, as well as spring precipitation and temperature, play a key role in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. The upper basin, with decreasing snowpack and streamflow and warming spring temperatures, will be less likely to provide important flow supplements to the lower basin in the future.
The Graded Alluvial River: Variable Flow and the Dominant Discharge
NASA Astrophysics Data System (ADS)
Blom, A.; Arkesteijn, L.; Viparelli, E.
2016-12-01
We derive analytical formulations for the graded or equilibrium longitudinal profile of a mixed-sediment alluvial river under variable flow. The formulations are applicable to reaches upstream from the backwater zone. The model is based on the conservation equations for the mass of two distinct sediment modes, sand and gravel, at the bed surface to account for the effects of grain size selective transport and abrasion of gravel particles. The effects of a variable flow rate are included by (a) treating the flow as a continuously changing yet steady water discharge (i.e. here termed an alternating steady discharge) and (b) assuming the time scale of changes in channel slope and bed surface texture to be much larger than the one of changes in flow rate. The equations are simplified realizing that at equilibrium the river profile finds itself in a dynamic steady state with oscillations around constant mean values of channel slope and bed surface texture. A generalized sediment transport relation representing the stochastic nature of sediment transport allows for explicit or analytical solutions to the streamwise decrease of both the channel slope and the bed surface mean grain size under variable flow for reaches unaffected by backwater effects. This modelling approach also provides a definition of a channel-forming or dominant water discharge, i.e., that steady water discharge that is equivalent in its effect on the equilibrium channel slope to the full hydrograph.
Application of effective discharge analysis to environmental flow decision-making
McKay, S. Kyle; Freeman, Mary C.; Covich, A.P.
2016-01-01
Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.
Application of Effective Discharge Analysis to Environmental Flow Decision-Making.
McKay, S Kyle; Freeman, Mary C; Covich, Alan P
2016-06-01
Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.
Isolating causal pathways between flow and fish in the regulated river hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.
Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less
Isolating causal pathways between flow and fish in the regulated river hierarchy
McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.; ...
2015-07-07
Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less
South Asia river-flow projections and their implications for water resources
NASA Astrophysics Data System (ADS)
Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.
2015-12-01
South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow could mean additional water resources for irrigation, the largest usage of water in this region, but has implications in terms of inundation risk. These projected increases could be more than countered by changes in demand due to depleted groundwater, increases in domestic use or expansion of water intense industries. Including missing hydrological processes in the model would make these projections more robust but could also change the sign of the projections.
Distributional changes in rainfall and river flow in Sarawak, Malaysia
NASA Astrophysics Data System (ADS)
Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun
2017-11-01
Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.
Integrating Flow, Form, and Function for Improved Environmental Water Management
NASA Astrophysics Data System (ADS)
Albin Lane, Belize Arela
Rivers are complex, dynamic natural systems. The performance of river ecosystem functions, such as habitat availability and sediment transport, depends on the interplay of hydrologic dynamics (flow) and geomorphic settings (form). However, most river restoration studies evaluate the role of either flow or form without regard for their dynamic interactions. Despite substantial recent interest in quantifying environmental water requirements to support integrated water management efforts, the absence of quantitative, transferable relationships between river flow, form, and ecosystem functions remains a major limitation. This research proposes a novel, process-driven methodology for evaluating river flow-form-function linkages in support of basin-scale environmental water management. This methodology utilizes publically available geospatial and time-series data and targeted field data collection to improve basic understanding of river systems with limited data and resource requirements. First, a hydrologic classification system is developed to characterize natural hydrologic variability across a highly altered, physio-climatically diverse landscape. Next, a statistical analysis is used to characterize reach-scale geomorphic variability and to investigate the utility of topographic variability attributes (TVAs, subreach-scale undulations in channel width and depth), alongside traditional reach-averaged attributes, for distinguishing dominant geomorphic forms and processes across a hydroscape. Finally, the interacting roles of flow (hydrologic regime, water year type, and hydrologic impairment) and form (channel morphology) are quantitatively evaluated with respect to ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Synthetic river corridor generation is used to evaluate and isolate the role of distinct geomorphic attributes without the need for intensive topographic surveying. This three-part methodology was successfully applied in the Sacramento Basin of California, USA, a large, heavily altered Mediterranean-montane basin. A spatially-explicit hydrologic classification of California distinguished eight natural hydrologic regimes representing distinct flow sources, hydrologic characteristics, and rainfall-runoff controls. A hydro-geomorphic sub-classification of the Sacramento Basin based on stratified random field surveys of 161 stream reaches distinguished nine channel types consisting of both previously identified and new channel types. Results indicate that TVAs provide a quantitative basis for interpreting non-uniform as well as uniform geomorphic processes to better distinguish linked channel forms and functions of ecological significance. Finally, evaluation of six ecosystem functions across alternative flow-form scenarios in the Yuba River watershed highlights critical tradeoffs in ecosystem performance and emphasizes the significance of spatiotemporal diversity of flow and form for maintaining ecosystem integrity. The methodology developed in this dissertation is broadly applicable and extensible to other river systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies. Overall, this research improves scientific understanding of the linkages between hydrology, geomorphology, and river ecosystems to more efficiently allocate scare water resources for human and environmental objectives across natural and built landscapes.
NASA Astrophysics Data System (ADS)
Wu, C. L.; Knouft, J.; Chu, M.
2017-12-01
The natural flow regime within a watershed can be considered as the expected temporal patterns of streamflow variation in the absence of human impacts. While ecosystems have evolved to function under these conditions, the natural flow regime of most rivers has been significantly altered by human activities. Land use change, including the development of agriculture and urbanization, is a primary cause of the loss of natural flow regimes. These changes have altered discharge volume, timing, and variability, and consequently affected the structure and functioning of river ecosystems. The Meramec River watershed is located in east central Missouri and changes in land use have been the primary factor impacting flow regimes across the watershed. In this study, a watershed model, the Soil and Water Assessment Tool (SWAT), was developed to simulate a long-term time series of streamflow (1978-2014) within the watershed. Model performance was evaluated using statistical metrics and graphical technique including R-squared, Nash-Sutcliffe efficiency, cumulative error, and 1:1-ratio comparison between observed and simulated variables. The calibrated and validated SWAT model was then used to quantify the responses of the watershed when it was a forested natural landscape. An Indicator of Hydrologic Alteration (IHA) approach was applied to characterize the flow regime under the current landcover conditions as well as the simulated natural flow regime under the no land use change scenario. Differences in intra- and inter-annual ecologically relevant flow metrics were then compared using SWAT model outputs in conjunction with the IHA approach based on model outputs from current and no land use change conditions. This study provides a watershed-scale understanding of effects of land use change on a river's flow variability and provides a framework for the development of restoration plans for heavily altered watersheds.
Projected Impact of Climate Change on Hydrological Regimes in the Philippines
Kanamaru, Hideki; Keesstra, Saskia; Maroulis, Jerry; David, Carlos Primo C.; Ritsema, Coen J.
2016-01-01
The Philippines is one of the most vulnerable countries in the world to the potential impacts of climate change. To fully understand these potential impacts, especially on future hydrological regimes and water resources (2010-2050), 24 river basins located in the major agricultural provinces throughout the Philippines were assessed. Calibrated using existing historical interpolated climate data, the STREAM model was used to assess future river flows derived from three global climate models (BCM2, CNCM3 and MPEH5) under two plausible scenarios (A1B and A2) and then compared with baseline scenarios (20th century). Results predict a general increase in water availability for most parts of the country. For the A1B scenario, CNCM3 and MPEH5 models predict an overall increase in river flows and river flow variability for most basins, with higher flow magnitudes and flow variability, while an increase in peak flow return periods is predicted for the middle and southern parts of the country during the wet season. However, in the north, the prognosis is for an increase in peak flow return periods for both wet and dry seasons. These findings suggest a general increase in water availability for agriculture, however, there is also the increased threat of flooding and enhanced soil erosion throughout the country. PMID:27749908
NASA Astrophysics Data System (ADS)
Jäger, Paul; Zitek, Andreas
2010-05-01
Currently the EU-Water Framework Directive (WFD) represents the driving force behind the assessment for rehabilitation and conservation of aquatic resources throughout Europe. Hydropower production, often considered as "green energy", in the past has put significant pressures on river systems like fragmentation by weirs, impoundment, hydropeaking and water abstraction. Due to the limited availability of data for determining ecologically acceptable flow for rivers at water abstraction sites, a special monitoring program was conducted in the federal state of Salzburg in Austria from 2006 to 2009. Water abstraction sites at 19 hydropower plants, mostly within the trout region of the River Salzach catchment, were assessed in detail with regard to the effect of water abstraction on fish and macrozoobenthos. Based on a detailed assessment of the specific local hydro-morphological and biological situations, the validity of natural low flow criteria (Absolute Minimum Flow - AMF, the lowest daily average flow ever measured and Mean Annual Daily Low Flow - MADLF) as starting points for the determination of an ecologically acceptable flow was tested. It was assessed, if a good ecological status in accordance with the EU-WFD can be maintained at natural AMF. Additionally it was tested, if important habitat parameters describing connectivity, river type specific flow variability and river type specific habitats are maintained at this discharge. Habitat modelling was applied in some situations. Hydraulic results showed that at AMF the highest flow velocity classes were lost in most situations. When AMF was significantly undercut, flow velocities between 0,0 - 0,4 m/s became dominant, describing the loss of the river type specific flow character, leading to a loss of river type specific flow variability and habitats and increased sedimentation of fines. Furthermore limits for parameters describing connectivity for fish like maximum depth at the pessimum profile and minimum flow velocity in thalweg were undercut. Additionally a significant loss of wetted width in relation to the wetted width at MADLF was documented, leading to significantly reduced ecologically available habitats. At AMF the existence of a minimum amount of usable habitat prevented a total loss of adult fish, and a good ecological status was documented by the Fish Index Austria (FIA) in all situations, where water abstraction represented the only human pressure, and AMF was left in the river as residual flow. The fish ecological status was significantly worse in river stretches where minimum flow was significantly below the AMF. However, in about one third of these stretches a good ecological status was documented by fish. Fine grained habitat structures, expressed by mean choriotope sizes (> 20 cm) and relative roughness were found to provide enough shelter, especially for brown trout, to maintain a high variance of fish lengths influencing both, the age structure and biomass. Both variables are especially highly relevant when calculating the ecological status of rivers using the FIA, when only brown trout occurs as leading species, accompanied only by the bullhead, Cottus gobio L.. However, mean fish lengths and weights were significantly smaller in most water abstraction sites. The method currently applied for determining the ecological status by macrozoobenthos failed, because the method is still based on some types of water pollution and the flow velocity as dominating factor in rivers is not adequately considered. However, a species specific analysis of the data showed a consistent loss of rheophilic species at water abstraction sites. Based on this, recommendations for a more specified assessment of the ecological status by benthic invertebrates were developed. Natural factors like slope with significant effects on hydraulic stress (bottom shear stress, maximum flow velocities, etc.) strongly overlaid the effects of water abstraction within the whole dataset. Therefore an adequate consideration of natural factors like slope, hydraulic stress and structure parameters like mean choriotope size, and a realistic identification of the significant driving pressures (water abstraction, fragmentation, and channelization) proved to be a crucial pre-requisite for a meaningful analysis and interpretation of data and determination of efficient restoration measures. Summarizing, it can be concluded that the AMF represents a valid base for determining the ecologically acceptable flow. In most cases parameters for connectivity and river type specific habitat availability are met at this discharge. However, as this discharge represents a natural catastrophic event, it is recommended to add a dynamic component to this minimum base flow to maintain at least to some extent the river type specific flow variability, contributing to a maintenance of natural geomorphologic and ecological processes linked to natural flow patterns. Especially higher discharges, able to move substrates and flush fine sediments, should be provided in their river type specific seasonal dynamics. This seasonal clearing of sediments has been proved to be strongly related to the reproductive success of trout in the past and provides interstitial habitats for invertebrates at ecologically meaningful times of the year. Finally, re-establishment of river connectivity at weirs and the morphological restructuring of highly channelized rivers can be seen as other important pre-requisites to achieve the good ecological status in alpine river systems.
NASA Astrophysics Data System (ADS)
Glenn, Edward P.; Hucklebridge, Kate; Hinojosa-Huerta, Osvel; Nagler, Pamela L.; Pitt, Jennifer
2008-03-01
Arid zone rivers have highly variable flow rates, and flood control projects are needed to protect adjacent property from flood damage. On the other hand, riparian corridors provide important wildlife habitat, especially for birds, and riparian vegetation is adapted to the natural variability in flows on these rivers. While environmental and flood control goals might appear to be at odds, we show that both goals can be accommodated in the Limitrophe Region (the shared border between the United States and Mexico) on the Lower Colorado River. In 1999, the International Boundary and Water Commission proposed a routine maintenance project to clear vegetation and create a pilot channel within the Limitrophe Region to improve flow capacity and delineate the border. In 2000, however, Minute 306 to the international water treaty was adopted, which calls for consideration of environmental effects of IBWC actions. We conducted vegetation and bird surveys within the Limitrophe and found that this river segment is unusually rich in native cottonwood and willow trees, marsh habitat, and resident and migratory birds compared to flow-regulated segments of river. A flood-frequency analysis showed that the existing levee system can easily contain a 100 year flood even if vegetation is not removed, and the existing braided channel system has greater carrying capacity than the proposed pilot channel.
Glenn, Edward P; Hucklebridge, Kate; Hinojosa-Huerta, Osvel; Nagler, Pamela L; Pitt, Jennifer
2008-03-01
Arid zone rivers have highly variable flow rates, and flood control projects are needed to protect adjacent property from flood damage. On the other hand, riparian corridors provide important wildlife habitat, especially for birds, and riparian vegetation is adapted to the natural variability in flows on these rivers. While environmental and flood control goals might appear to be at odds, we show that both goals can be accommodated in the Limitrophe Region (the shared border between the United States and Mexico) on the Lower Colorado River. In 1999, the International Boundary and Water Commission proposed a routine maintenance project to clear vegetation and create a pilot channel within the Limitrophe Region to improve flow capacity and delineate the border. In 2000, however, Minute 306 to the international water treaty was adopted, which calls for consideration of environmental effects of IBWC actions. We conducted vegetation and bird surveys within the Limitrophe and found that this river segment is unusually rich in native cottonwood and willow trees, marsh habitat, and resident and migratory birds compared to flow-regulated segments of river. A flood-frequency analysis showed that the existing levee system can easily contain a 100 year flood even if vegetation is not removed, and the existing braided channel system has greater carrying capacity than the proposed pilot channel.
Burned forests impact water supplies.
Hallema, Dennis W; Sun, Ge; Caldwell, Peter V; Norman, Steven P; Cohen, Erika C; Liu, Yongqiang; Bladon, Kevin D; McNulty, Steven G
2018-04-10
Wildland fire impacts on surface freshwater resources have not previously been measured, nor factored into regional water management strategies. But, large wildland fires are increasing and raise concerns about fire impacts on potable water. Here we synthesize long-term records of wildland fire, climate, and river flow for 168 locations across the United States. We show that annual river flow changed in 32 locations, where more than 19% of the basin area was burned. Wildland fires enhanced annual river flow in the western regions with a warm temperate or humid continental climate. Wildland fires increased annual river flow most in the semi-arid Lower Colorado region, in spite of frequent droughts in this region. In contrast, prescribed burns in the subtropical Southeast did not significantly alter river flow. These extremely variable outcomes offer new insights into the potential role of wildfire and prescribed fire in regional water resource management, under a changing climate.
NASA Astrophysics Data System (ADS)
Khadka, Mitra B.; Martin, Jonathan B.; Kurz, Marie J.
2017-01-01
Groundwater (GW) seepage can provide a major source of water, solutes, and contaminants to rivers, but identifying magnitudes, directions and locations of seepage is complicated by its diffuse and heterogeneous distributions. However, such information is necessary to develop programs and policies for protecting ecosystems and managing water resources. Here, we assess GW seepage to the Ichetucknee River, a spring-fed, low gradient, gaining stream in north-central Florida, through automated longitudinal surveys of radon (222Rn) activities at three different flow conditions. A 222Rn mass balance model, which integrates groundwater and spring water end member 222Rn activities and longitudinal 222Rn distributions in river water, shows that diffuse groundwater seepage represents about 16% of the total river baseflow, consistent with previous results obtained from ion (Ca2+, Cl-, SRP and Fe) mass balances and dye tracer methods. During high river stage, the contribution from seepage increases to 18-23% of the river flow. The spatial distribution of GW seepage is more variable in the upper 2.2-km reach of the river than the lower 2.8-km reach, regardless of river flow conditions. The upper reach has a narrower flood plain than the lower reach, which limits evapotranspiration and increases hydraulic gradients toward the river following storm events. Seepage in the lower reach is also limited by hydrologic damming by the receiving river, which inundates the floodplain during high flow conditions, and reduces the hydraulic head gradient. These results demonstrate the variable nature of seepage to a gaining river in both time and space and indicate that multiple synoptic analyses of GW seepage are required to assess seepage rates, determine time-averaged solute fluxes, and develop optimal management policies for riverine ecosystems.
Steuer, J.J.; Newton, T.J.; Zigler, S.J.
2008-01-01
Previous attempts to predict the importance of abiotic and biotic factors to unionids in large rivers have been largely unsuccessful. Many simple physical habitat descriptors (e.g., current velocity, substrate particle size, and water depth) have limited ability to predict unionid density. However, more recent studies have found that complex hydraulic variables (e.g., shear velocity, boundary shear stress, and Reynolds number) may be more useful predictors of unionid density. We performed a retrospective analysis with unionid density, current velocity, and substrate particle size data from 1987 to 1988 in a 6-km reach of the Upper Mississippi River near Prairie du Chien, Wisconsin. We used these data to model simple and complex hydraulic variables under low and high flow conditions. We then used classification and regression tree analysis to examine the relationships between hydraulic variables and unionid density. We found that boundary Reynolds number, Froude number, boundary shear stress, and grain size were the best predictors of density. Models with complex hydraulic variables were a substantial improvement over previously published discriminant models and correctly classified 65-88% of the observations for the total mussel fauna and six species. These data suggest that unionid beds may be constrained by threshold limits at both ends of the flow regime. Under low flow, mussels may require a minimum hydraulic variable (Rez.ast;, Fr) to transport nutrients, oxygen, and waste products. Under high flow, areas with relatively low boundary shear stress may provide a hydraulic refuge for mussels. Data on hydraulic preferences and identification of other conditions that constitute unionid habitat are needed to help restore and enhance habitats for unionids in rivers. ?? 2008 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Konrad, C.; Brasher, A.; May, J.
2007-12-01
River restoration depends on re-establishment of the range of physical and biological processes that comprise the river ecosystem. Streamflow is the definitive physical processes for river ecosystems, so hydrologic alteration represents a potentially significant issue to be addressed by restoration efforts. Given adaptation of lotic species to naturally variable streamflow patterns over evolutionary time scales, however, lotic communities are resilient to at least some forms of hydrologic variability. As a result, river restoration may be successful despite limited but biologically insignificant hydrologic alteration. The responses of benthic invertebrate assemblages to variation in streamflow patterns across the western United States were investigated to identify biologically important forms and magnitudes of hydrologic variability. Biological responses to streamflow patterns were analyzed in terms of ceilings and floors on invertebrate assemblage diversity and structure using a non-parametric screening procedure and quantile regression. Variability at daily and monthly time scales was the most common streamflow pattern associated with broad metrics of invertebrate assemblages including abundance; richness and relative abundance of Ephemeroptera, Plecoptera, Trichoptera and non-insects; dominance; and diversity. Low flow magnitude and annual variability were associated with richness and trophic structure. The frequency, magnitude, and duration of high flows were associated with abundance and richness. Longer term streamflow metrics (calculated over at least 5 years) were more important than recent flows (30 and 100 days prior to invertebrate sampling). The results can be used as general guidance about when hydrologic alteration is likely to be an important factor and what streamflow patterns may need to be re-established for successful river restoration.
Daggupati, Prasad; Srinivasan, Raghavan; Ahmadi, Mehdi; Verma, Deepa
2017-01-01
Tigris and Euphrates river basin (TERB) is one of the largest river basins in the Middle East, and the precipitation (in the form of snowfall) is a major source of streamflow. This study investigates the spatial and temporal variability of precipitation and streamflow in TERB to better understand the hydroclimatic variables and how they varied over time. The precipitation shows a decreasing trend with 1980s being wetter and 2000s being drier. A total of 55 and 40% reduction in high flows in Tigris and Euphrates rivers at T20 and E3 was seen in post-reservoir period. A lag time of 3 to 4 and 5 to 6 months was estimated between peak snowfall and runoff time periods. Decreasing precipitation and streamflow along with several planned dams could hamper the sustainability of several Mesopotamian marshlands that completely depend on the water from the Tigris and Euphrates rivers.
Summer microhabitat use by adult and young-of-year snail darters (Percina tanasi) in two rivers
Ashton, M.J.; Layzer, J.B.
2010-01-01
We characterised microhabitat availability and use by adult and young-of-year (YOY) snail darters (Percina tanasiEtnier 1976) while snorkelling in the French Broad and Hiwassee rivers, TN, USA. Both age groups of snail darters disproportionately used most microhabitat variables compared to their availability. Snail darters primarily occupied moderately deep, swift water over gravel substrates with little macrophyte coverage and no silt. Univariate comparisons indicated that adult and YOY darters occupied different habitat, but there was no marked differences between principal components analysis plots of multivariate microhabitat use within a river. Although the availability of microhabitat variables differed between the French Broad and Hiwassee rivers, univariate means and multivariate plots illustrated that the habitats used were generally similar by age groups of snail darters between rivers. Because our observations of habitat availability and use were constrained to low flow periods and depths <1 m, the transferability of our results to higher flow periods may be limited. However, the similarity in habitat use between rivers suggests that our results can be applied to low-normal flow conditions in other streams. ?? Published 2010. This article is a US Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Unland, N. P.; Cartwright, I.; Andersen, M. S.; Rau, G. C.; Reed, J.; Gilfedder, B. S.; Atkinson, A. P.; Hofmann, H.
2013-03-01
The interaction between groundwater and surface water along the Tambo and Nicholson Rivers, southeast Australia, was investigated using 222Rn, Cl, differential flow gauging, head gradients, electrical conductivity (EC) and temperature profiling. Head gradients, temperature profiles, Cl concentrations and 222Rn activities all indicate higher groundwater fluxes to the Tambo River in areas of increased topographic variation where the potential to form large groundwater-surface water gradients is greater. Groundwater discharge to the Tambo River calculated by Cl mass balance was significantly lower (1.48 × 104 to 1.41 × 103 m3 day-1) than discharge estimated by 222Rn mass balance (5.35 × 105 to 9.56 × 103 m3 day-1) and differential flow gauging (5.41 × 105 to 6.30 × 103 m3 day-1). While groundwater sampling from the bank of the Tambo River was intended to account for the variability in groundwater chemistry associated with river-bank interaction, the spatial variability under which these interactions occurs remained unaccounted for, limiting the use of Cl as an effective tracer. Groundwater discharge to both the Tambo and Nicholson Rivers was the highest under high flow conditions in the days to weeks following significant rainfall, indicating that the rivers are well connected to a groundwater system that is responsive to rainfall. Groundwater constituted the lowest proportion of river discharge during times of increased rainfall that followed dry periods, while groundwater constituted the highest proportion of river discharge under baseflow conditions (21.4% of the Tambo in April 2010 and 18.9% of the Nicholson in September 2010).
Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin
Reynolds, Lindsay V.; Shafroth, Patrick B.
2016-01-20
Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.
Characteristics and Classification of Least Altered Streamflows in Massachusetts
Armstrong, David S.; Parker, Gene W.; Richards, Todd A.
2008-01-01
Streamflow records from 85 streamflow-gaging stations at which streamflows were considered to be least altered were used to characterize natural streamflows within southern New England. Period-of-record streamflow data were used to determine annual hydrographs of median monthly flows. The shapes and magnitudes of annual hydrographs of median monthly flows, normalized by drainage area, differed among stations in different geographic areas of southern New England. These differences were gradational across southern New England and were attributed to differences in basin and climate characteristics. Period-of-record streamflow data were also used to analyze the statistical properties of daily streamflows at 61 stations across southern New England by using L-moment ratios. An L-moment ratio diagram of L-skewness and L-kurtosis showed a continuous gradation in these properties between stations and indicated differences between base-flow dominated and runoff-dominated rivers. Streamflow records from a concurrent period (1960-2004) for 61 stations were used in a multivariate statistical analysis to develop a hydrologic classification of rivers in southern New England. Missing records from 46 of these stations were extended by using a Maintenance of Variation Extension technique. The concurrent-period streamflows were used in the Indicators of Hydrologic Alteration and Hydrologic Index Tool programs to determine 224 hydrologic indices for the 61 stations. Principal-components analysis (PCA) was used to reduce the number of hydrologic indices to 20 that provided nonredundant information. The PCA also indicated that the major patterns of variability in the dataset are related to differences in flow variability and low-flow magnitude among the stations. Hierarchical cluster analysis was used to classify stations into groups with similar hydrologic properties. The cluster analysis classified rivers in southern New England into two broad groups: (1) base-flow dominated rivers, whose statistical properties indicated less flow variability and high magnitudes of low flow, and (2) runoff-dominated rivers, whose statistical properties indicated greater flow variability and lower magnitudes of low flow. A four-cluster classification further classified the runoff-dominated streams into three groups that varied in gradient, elevation, and differences in winter streamflow conditions: high-gradient runoff-dominated rivers, northern runoff-dominated rivers, and southern runoff-dominated rivers. A nine-cluster division indicated that basin size also becomes a distinguishing factor among basins at finer levels of classification. Smaller basins (less than 10 square miles) were classified into different groups than larger basins. A comparison of station classifications indicated that a classification based on multiple hydrologic indices that represent different aspects of the flow regime did not result in the same classification of stations as a classification based on a single type of statistic such as a monthly median. River basins identified by the cluster analysis as having similar hydrologic properties tended to have similar basin and climate characteristics and to be in close proximity to one another. Stations were not classified in the same cluster on the basis of geographic location alone; as a result, boundaries cannot be drawn between geographic regions with similar streamflow characteristics. Rivers with different basin and climate characteristics were classified in different clusters, even if they were in adjacent basins or upstream and downstream within the same basin.
Flow characteristics of rivers in northern Australia: Implications for development
NASA Astrophysics Data System (ADS)
Petheram, Cuan; McMahon, Thomas A.; Peel, Murray C.
2008-07-01
SummaryAnnual, monthly and daily streamflows from 99 unregulated rivers across northern Australia were analysed to assess the general surface water resources of the region and their implications for development. The potential for carry-over storages was assessed using the Gould-Dincer Gamma method, which utilises the mean, standard deviation, skewness and lag-one serial correlation coefficient of annual flows. Runs Analysis was used to describe the characteristics of drought in northern Australia and the potential for 'active' water harvesting was evaluated by Base Flow Separation, Flow Duration Curves and Spells Analysis. These parameters for northern Australia were compared with data from southern Australia and data for similar Köppen class from around the world. Notably, the variability and seasonality of annual streamflow across northern Australia were observed to be high compared with that of similar Köppen classes from the rest of the world (RoW). The high inter-annual variability of runoff means that carry-over storages in northern Australia will need to be considerably larger than for rivers from the RoW (assuming similar mean annual runoff, yield and reliability). For example, in the three major Köppen zones across the North, it was possible (theoretically) to only exploit approximately 33% (Köppen Aw; n = 6), 25% (Köppen BSh; n = 12) and 13% (Köppen BWh; n = 11) of mean annual streamflow (assuming a hypothetical storage size equal to the mean annual flow). Over 90% of north Australian rivers had a Base Flow Index of less than 0.4, 72% had negative annual lag-one autocorrelation values and in half the rivers sampled greater than 80% of the total flow occurred during the 3-month peak period. These data confirm that flow in the rivers of northern Australia is largely event driven and that the north Australian environment has limited natural storage capacity. Hence, there is relatively little opportunity in many northern rivers to actively harvest water for on-farm storage, particularly under environmental flow rules that stipulate that water can only be extracted during the falling limb of a hydrograph. Streamflow drought severity, the product of drought length and magnitude, was found to be greater in northern Australia than in similar climatic regions of the RoW, due to higher inter-annual variability increasing the drought magnitude over the course of normal drought lengths. The high likelihood of severe drought means that agriculturalists seeking to irrigate from rivers in northern Australia should have especially well developed drought contingency plans.
NASA Astrophysics Data System (ADS)
Sidibe, Moussa; Dieppois, Bastien; Mahé, Gil; Paturel, Jean-Emmanuel; Rouché, Nathalie; Amoussou, Ernest; Anifowose, Babatunde; Lawler, Damian
2017-04-01
Unprecedented drought episodes that struck western and central Africa between the late 1960s and 1980s. This triggered many studies investigating rainfall variability and its impacts on food production systems. However, most studies were focused at the catchment scale. In this study, we examine how rainfall variability has impacted on river flow at the subcontinental scale between 1950 and 2010, as well as the key large-scale controls on this relationship. For the first time, we establish a complete, gap-filled, monthly streamflow data set, which extends from 1950 to 2010, over the western and central African region. To achieve this, we used linear regression modelling across and between 600 flow gauging stations (see initial database information at http://www.hydrosciences.fr/sierem/index_en.htm). Streamflow trend and variability are then seasonally assessed at this subcontinental scale and compared to those observed in three different rainfall data sets (i.e. CRU TS3.24, GPCC V7, IRD-HSM). Long-term trends and variability in streamflow are mainly consistent with trends in rainfall. However, these relationships may have been moderated by: i) changes in land use; and ii) contributions from groundwater resources. In particular, we note that the recent post 1990s partial recovery in Sahel rainfall could have, at least partially, positively impacted river flows (e.g. the Senegal and Niger rivers). Using multi-temporal trend and continuous wavelet analysis, the time-evolution of western and central African river flows are analysed, and are all characterized by very strong decadal fluctuations, which can be interpreted as modulations in the baseflow. These decadal fluctuations, which are also significantly detected in rainfall, are likely related to large-scale sea-surface temperature (SST) anomaly patterns, such as the tropical Atlantic SST variability, the Atlantic Multidecadal Oscillation, the Interdecadal Pacific Oscillation and/or the Pacific Decadal Oscillation. Furthermore, hitherto-poorly understood hydroclimatic processes related to these teleconnections at decadal timescales will be examined in this study. Influences of the catchment properties (e.g. size, shape, vegetation and landuse cover, soil type, ground-water level, direction of stream flow across climate zones) on these decadal fluctuations in river flows will also be assessed. This study therefore aims to improve the ability of current regional and global climate models to simulate such ranges of variability, to significantly improve regional hydroclimate understanding, as a means for improving the development of future scenarios for water resources in western and central Africa.
Inference of effective river properties from remotely sensed observations of water surface
NASA Astrophysics Data System (ADS)
Garambois, Pierre-André; Monnier, Jérôme
2015-05-01
The future SWOT mission (Surface Water and Ocean Topography) will provide cartographic measurements of inland water surfaces (elevation, widths and slope) at an unprecedented spatial and temporal resolution. Given synthetic SWOT like data, forward flow models of hierarchical-complexity are revisited and few inverse formulations are derived and assessed for retrieving the river low flow bathymetry, roughness and discharge (A0, K, Q) . The concept of an effective low flow bathymetry A0 (the real one being never observed) and roughness K , hence an effective river dynamics description, is introduced. The few inverse models elaborated for inferring (A0, K, Q) are analyzed in two contexts: (1) only remotely sensed observations of the water surface (surface elevation, width and slope) are available; (2) one additional water depth measurement (or estimate) is available. The inverse models elaborated are independent of data acquisition dynamics; they are assessed on 91 synthetic test cases sampling a wide range of steady-state river flows (the Froude number varying between 0.05 and 0.5 for 1 km reaches) and in the case of a flood on the Garonne River (France) characterized by large spatio-temporal variabilities. It is demonstrated that the most complete shallow-water like model allowing to separate the roughness and bathymetry terms is the so-called low Froude model. In Case (1), the resulting RMSE on infered discharges are on the order of 15% for first guess errors larger than 50%. An important feature of the present inverse methods is the fairly good accuracy of the discharge Q obtained, while the identified roughness coefficient K includes the measurement errors and the misfit of physics between the real flow and the hypothesis on which the inverse models rely; the later neglecting the unobserved temporal variations of the flow and the inertia effects. A compensation phenomena between the indentifiedvalues of K and the unobserved bathymetry A0 is highlighted, while the present inverse models lead to an effective river dynamics model that is accurate in the range of the discharge variability observed. In Case (2), the effective bathymetry profile for 80 km of the Garonne River is retrieved with 1% relative error only. Next, accurate effective topography-friction pairs and also discharge can be inferred. Finally, defining river reaches from the observation grid tends to average the river properties in each reach, hence tends to smooth the hydraulic variability.
Multiple pathways for woody plant establishment on floodplains at local to regional scales
Cooper, D.J.; Andersen, D.C.; Chimner, Rodney A.
2003-01-01
1. The structure and functioning of riverine ecosystems is dependent upon regional setting and the interplay of hydrologic regime and geomorphologic processes. We used a retrospective analysis to study recruitment along broad, alluvial valley segments (parks) and canyon segments of the unregulated Yampa River and the regulated Green River in the upper Colorado River basin, USA. We precisely aged 811 individuals of Populus deltoides ssp. wislizenii (native) and Tamarix ramosissima (exotic) from 182 wooded patches and determined the elevation and character of the germination surface for each. We used logistic regression to relate recruitment events (presence or absence of cohort) to five flow and two weather parameters.2. Woody plant establishment occurred via multiple pathways at patch, reach and segment scales. Recruitment occurred through establishment on (1) vertically accreting bars in the unregulated alluvial valley, (2) high alluvial floodplain surfaces during rare large flood events, (3) vertically accreting channel margin deposits in canyon pools and eddies, (4) vertically accreting intermittent/abandoned channels, (5) low elevation gravel bars and debris fans in canyons during multi-year droughts, and (6) bars and channels formed prior to flow regulation on the dammed river during controlled flood events.3. The Yampa River's peak flow was rarely included in models estimating the likelihood that recruitment would occur in any year. Flow variability and the interannual pattern of flows, rather than individual large floods, control most establishment.4. Regulation of the Green River flow since 1962 has had different effects on woody vegetation recruitment in canyons and valleys. The current regime mimics drought in a canyon setting, accelerating Tamarix invasion whereas in valleys the ongoing geomorphic adjustment of the channel, combined with reduced flow variability, has nearly eliminated Populus establishment.5. A single year's flow or a particular pattern of flows over a sequence of years, whether natural or man-made, produces different recruitment opportunities in alluvial and canyon reaches, in diverse landforms within a particular river reach, and for Populus and Tamarix. The design of flows to restore riparian ecosystems must consider these multiple pathways and adjust the seasonal timing, magnitude and interannual frequency of flows to match the desired outcome.
Hyporheic Zone Residence Time Distributions in Regulated River Corridors
NASA Astrophysics Data System (ADS)
Song, X.; Chen, X.; Shuai, P.; Gomez-Velez, J. D.; Ren, H.; Hammond, G. E.
2017-12-01
Regulated rivers exhibit stage fluctuations at multiple frequencies due to both natural processes (e.g., seasonal cycle) and anthropogenic activities (e.g., dam operation). The interaction between the dynamic river flow conditions and the heterogeneous aquifer properties results in complex hydrologic exchange pathways that are ubiquitous in free-flowing and regulated river corridors. The dynamic nature of the exchange flow is reflected in the residence time distribution (RTD) of river water within the groundwater system, which is a key metric that links river corridor biogeochemical processes with the hydrologic exchange. Understanding the dynamics of RTDs is critical to gain the mechanistic understanding of hydrologic exchange fluxes and propose new parsimonious models for river corridors, yet it is understudied primarily due to the high computational demands. In this study, we developed parallel particle tracking algorithms to reveal how river flow variations affect the RTD of river water in the alluvial aquifer. Particle tracking was conducted using the velocity outputs generated by three-dimensional groundwater flow simulations of PFLOTRAN in a 1600 x 800 x 20m model domain within the DOE Hanford Site. Long-term monitoring data of inland well water levels and river stage were used for eight years of flow simulation. Nearly a half million particles were continually released along the river boundary to calculate the RTDs. Spectral analysis of the river stage data revealed high-frequency (sub-daily to weekly) river stage fluctuations caused by dam operations. The higher frequencies of stage variation were progressively filtered to generate multiple sets of flow boundary conditions. A series of flow simulations were performed by using the filtered flow boundary conditions and various degrees of subsurface heterogeneity to study the relative contribution of flow dynamics and physical heterogeneity on river water RTD. Our results revealed multimodal RTDs of river water as a result of the highly variable exchange pathways driven by interactions between dynamic flow and aquifer heterogeneity. A relationship between the RTD and frequency of flow variation was built for each heterogeneity structure, which can be used to assess the potential ecological consequences of dam operations in regulated rivers.
Myers, Nathan C.
2000-01-01
Hydrologic data and a ground-water flow model were used to characterize ground-water flow in the Kansas River alluvial aquifer at Fort Riley in northeast Kansas. The ground-water flow model was developed as a tool to project ground-water flow and potential contaminant-transport paths in the alluvial aquifer on the basis of past hydrologic conditions. The model also was used to estimate historical and hypothetical ground-water flow paths with respect to a private- and several public-supply wells. The ground-water flow model area extends from the Smoky Hill and Republican Rivers downstream to about 2.5 miles downstream from the city of Ogden. The Kansas River Valley has low relief and, except for the area within the Fort Riley Military Reservation, is used primarily for crop production. Sedimentary deposits in the Kansas River Valley, formed after the ancestral Kansas River eroded into bedrock, primarily are alluvial sediment deposited by the river during Quaternary time. The alluvial sediment consists of as much as about 75 feet of poorly sorted, coarse-to-fine sand, silt, and clay, 55 feet of which can be saturated with ground water. The alluvial aquifer is unconfined and is bounded on the sides and bottom by Permian-age shale and limestone bedrock. Hydrologic data indicate that ground water in the Kansas River Valley generally flows in a downstream direction, but flow direction can be quite variable near the Kansas River due to changes in river stage. Ground-water-level changes caused by infiltration of precipitation are difficult to detect because they are masked by larger changes caused by fluctuation in Kansas River stage. Ratios of strontium isotopes Sr87 and Sr86 in water collected from wells in the Camp Funston Area indicate that the ground water along the northern valley wall originates, in part, from upland areas north of the river valley. Water from Threemile Creek, which flows out of the uplands north of the river valley, had Sr87:Sr86 ratios similar to those in ground water from wells in the northern Camp Funston Area. In addition, comparison of observed water levels from wells CF90-06, CF97-101, and CF97-401 in the Camp Funston Area and ground-water levels simulated for these wells using floodwave-response analysis indicates that ground-water inflow from bedrock is a hydraulic stress that, in addition to the changing stage in the Kansas River, acts on the aquifer. This hydraulic stress seems to be located near the northern valley wall because the effect of this stress is greater for well CF97-101, which is the well closest to the valley wall. Ground-water flow was simulated using a modular, three-dimensional, finite-difference ground-water flow model (MODFLOW). Particle tracking, used to visualize ground-water flow paths in the alluvial aquifer, was accomplished using MODPATH. Forward-in-time particle tracking indicated that, in general, particles released near the Kansas River followed much more variable paths than particles released near the valley wall. Although particle tracking does not simulate solute transport, this increased path variability indicates that, near the river, ground-water contaminants could follow many possible paths towards the river, whereas more distant from the river, ground-water contaminants likely would follow a narrower corridor. Particle tracks in the Camp Funston Area indicate that, for the 1990-98 simulation period, contaminants from the ground-water study sites in the Camp Funston Area would be unlikely to move into the vicinity of Ogden's supply wells. Backward-in-time particle tracking indicated that the flow-path and recharge areas for model cells corresponding to Ogden's supply wells lie near the northern valley wall and extend into the northern Camp Funston Area. The flow-path and recharge areas for model cells corresponding to Morris County Rural Water District wells lie within Clarks Creek Valley and probably extend outside the model area. Three hypothetical simulations, i
Maximum Flow Efficiency in an Anabranching River, Magela Creek, Northern Australia
NASA Astrophysics Data System (ADS)
Jansen, J. D.; Nanson, G. C.
2002-12-01
In this field- and laboratory-based study, we demonstrate that the development of anabranching channels in some rivers increases the conveyance of sediment and water, compared with a single channel at the same flow discharge. That is, under certain conditions, anabranching channels exhibit greater sediment transporting capacity per unit available stream power. Anabranching is a globally widespread river pattern noted in diverse physiographic, hydrologic and sedimentologic environments, and recent efforts have sought to unravel controls on their origin and maintenance. It is widely held that most rivers form a single-channel in order to minimise boundary roughness while conveying water and sediment, but do all rivers show a tendency to develop a single channel? And if so, what factors lead to long-term anabranching? The observation that anabranching commonly develops in environments where water and sediment conveyance is maintained with little or no recourse to increasing energy slope prompted the hypothesis that rivers may adopt a multiple channel pattern in order to optimise their efficiency where they cannot otherwise increase slope. It is reasoned that development of a system of multiple channels reduces total flow width and raises mean flow depth, thereby maximising sediment transport per unit area of the channel bed and maintaining or enhancing water and sediment throughput. In testing the hypothesis we present: (1) results of a field experiment in which hydraulic variables and bedload discharge are measured and compared for single-channel versus multichannel reaches of the same river (Magela Creek, northern Australia); (2) comparison of these field results with bedload transport modelling via well known bedload equations; and (3) results of an experimental flume study comparing hydraulic variables and sediment flux in single-channel versus divided flow. Magela Creek is representative of several anabranching systems draining the Alligators Rivers Region of monsoonal northern Australia. We investigate the dynamics of flows up to four-times bankfull discharge and find that at high flowstage hydraulic variables interact in a complicated manner that precludes conventional hydraulic geometry analytical methods. The complex trends among hydraulic variables reflect the differential and stage-dependent interactions between bank vegetation and channel roughness. Abrupt decline in overbank velocity promotes proximal sedimentation in the form of vertically-accreting islands, levees and sand splays - mechanisms of sediment sequestration that may eventually lead to channel avulsion and creation of new channels. Given that river pattern reveals much about river dynamics, the prevalence of anabranching - particularly among the world's largest rivers - invites the speculation that a fundamental physical principle may underpin the widespread adoption of anabranching; it may be the most efficient means of transmitting large water and sediment discharges in alluvial rivers. However, just as different equilibrium states are expected to exist in braiding, meandering and straight rivers, we anticipate that other anabranching rivers may differ in their efficiency. Moreover, the development of sediment and water flux imbalances between anabranches is a highly likely outcome of their independent functioning. Channel atrophy coupled with in-channel sedimentation lies at the heart of channel avulsion and abandonment processes and therefore is central to the anabranching pattern.
1982-02-01
operational. Many times at the startup of a project, variable selection and research data formats are often tentative because of the unknown biological...previously. This flow of data is shown in Figure 1. ELPROGI also made quality control decisions; when a variable for a given observation failed a...a series MENT OF ECOLOGICAL DATA IN LARGE RIVER ECOSYSTEMS s. PERFORMING ONG. REPORT NUMBER 7. AUTNOlt.s) S. CONTRACT O GRANT N UNMSE-) Michael P
Hydrological alteration along the Missouri River Basin: A time series approach
Pegg, M.A.; Pierce, C.L.; Roy, A.
2003-01-01
Human alteration of large rivers is common-place, often resulting in significant changes in flow characteristics. We used a time series approach to examine daily mean flow data from locations throughout the main-stem Missouri River. Data from a pre-alteration period (1925-1948) were compared with a post-alteration period (1967-1996), with separate analyses conducted using either data from the entire year or restricted to the spring fish spawning period (1 April-30 June). Daily mean flows were significantly higher during the post-alteration period at all locations. Flow variability was markedly reduced during the post-alteration period as a probable result of flow regulation and climatological shifts. Daily mean flow during the spring fish spawning period was significantly lower during the post-alteration period at the most highly altered locations in the middle portion of the river, but unchanged at the least altered locations in the upper and lower portions of the river. Our data also corroborate other analyses, using alternate statistical approaches, that suggest similar changes to the Missouri River system. Our results suggest human alterations on the Missouri River, particularly in the middle portion most strongly affected by impoundments and channelization, have resulted in changes to the natural flow regime.
Perona, Paolo; Dürrenmatt, David J; Characklis, Gregory W
2013-03-30
We propose a theoretical river modeling framework for generating variable flow patterns in diverted-streams (i.e., no reservoir). Using a simple economic model and the principle of equal marginal utility in an inverse fashion we first quantify the benefit of the water that goes to the environment in relation to that of the anthropic activity. Then, we obtain exact expressions for optimal water allocation rules between the two competing uses, as well as the related statistical distributions. These rules are applied using both synthetic and observed streamflow data, to demonstrate that this approach may be useful in 1) generating more natural flow patterns in the river reach downstream of the diversion, thus reducing the ecodeficit; 2) obtaining a more enlightened economic interpretation of Minimum Flow Release (MFR) strategies, and; 3) comparing the long-term costs and benefits of variable versus MFR policies and showing the greater ecological sustainability of this new approach. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hofmann, Harald; Cartwright, Ian; Gilfedder, Benjamin
2013-04-01
Understanding the interaction between river water and regional groundwater has significant importance for water management and resource allocation. The dynamics of groundwater/surface water interactions also have implications for ecosystems, pollutant transport, and the quality and quantity of water supply for domestic, agriculture and recreational purposes. After general assumptions and for management purposes rivers are classified in loosing or gaining rivers. However, many streams alternate between gaining and loosing conditions on a range of temporal and spatial scales due to factors including: 1) river water levels in relation to groundwater head; 2) the relative response of the groundwater and river system to rainfall; 3) heterogeneities in alluvial sediments that can lead to alternation of areas of exfiltration and infiltration along a river stretch; and 4) differences in near river reservoirs, such parafluvial flow and bank storage. Spatial variability of groundwater discharge to rivers is rarely accounted for as it is assumed that groundwater discharge is constant over river stretches and only changes with the seasonal river water levels. Riverbank storage and parafluvial flow are generally not taken in consideration. Bank storage has short-term cycles and can contribute significantly to the total discharge, especially after flood events. In this study we used hydrogeochemistry to constrain spatial and temporal differences in gaining and loosing conditions in rivers and investigate potential sources. Environmental tracers, such as major ion chemistry, stables isotopes and Radon are useful tools to characterise these sources. Surface water and ground water samples were taken in the Avon River in the Gippsland Basin, Southwest Australia. Increasing TDS along the flow path from 70 to 250 mg/l, show that the Avon is a net gaining stream. The radon concentration along the river is variable and does not show a general increase downstream, but isolated peaks in some areas instead. Radon concentrations are in general low (under 0.5 Bq/l), but rise significantly when groundwater discharges to the river (up to 3 Bq/l). By using high resolution radon mapping with a water-air-gas-exchanger in combination with EC mapping on a boat we were able to show that groundwater discharge to the river is diffuse on river reaches of about 1 km length where it occurs. The discharge areas are along large alluvial riverbed deposits and are likely to be a mixture of local groundwater and parafluvial flow. High resolution radon mapping has only been used in coastal areas and this is the first study where the method was applied to river systems.
Parker, Gene W.; Armstrong, David S.; Richards, Todd A.
2004-01-01
Four methods used to determine streamflow requirements for habitat protection at nine critical riffle reaches in the Assabet River and Charles River Basins were compared. The methods include three standard setting techniques?R2Cross, Wetted Perimeter, and Tennant?and a diagnostic method, the Range of Variability Approach. One study reach is on the main stem of the Assabet River, four reaches are on tributaries to the Assabet River (Cold Harbor Brook, Danforth Brook, Fort Meadow Brook, and Elizabeth Brook), three are on the main stem of the Charles River, and one is on a tributary to the Charles River (Mine Brook). The strength of the R2Cross and Wetted-Perimeter methods is that they may be applied at ungaged locations whereas the Tennant method and the Range of Variability Approach require a period of streamflow record for analysis. Fish community assessments conducted at or near riffle sites in flowing reaches of the Assabet River and Charles River Basins were used to indicate ecological conditions. The fish communities in the main stem and tributary reaches of both the Assabet and Charles River Basins indicated degraded aquatic ecosystems. However, the degree of degradation differs between the two basins. The extreme predominance of tolerant, generalist species in the Charles River fish community demon-strates the cumulative impacts of flow, habitat, and water-chemistry degradation, combined with the effects of nearby impoundments and changing land use. The range of discharges for nine ungaged riffle reaches defined by the median R2Cross 3-of-3 criteria, R2Cross 2-of-3 criteria, and Wetted-Perimeter streamflow requirements, was 0.86 cubic foot per second per square mile, 0.18 cubic foot per second per square mile, and 0.23 cubic foot per second per square mile, respectively. Application of R2Cross and Wetted-Perimeter methods to sites with altered streamflows or at sites that are riffles only at low to moderate flows can result in a greater variability of streamflow requirements than would result if the methods were applied to riffles on natural channels with unaltered streamflows. The R2Cross 2-of-3 criteria and the Wetted-Perimeter streamflow requirements for the Assabet and Charles River sites show narrower interquartile ranges and lower median streamflow requirements than for 10 index streamflow-gaging stations in southern New England. This is especially evident for the R2Cross 2-of-3 criteria and Wetted-Perimeter results that were close to half of the flow requirements determined at the 10 southern New England stations. The R2Cross and Wetted-Perimeter methods were also compared to the Range of Variability Approach analysis and the Tennant Method. The median R2Cross 3-of-3 criteria streamflow requirement for the nine riffles is close to the 75th percentile of the monthly mean flows during the summer low-flow period from six streamflow-gaging stations near the Assabet and Charles River Basins having mostly unaltered flow. This streamflow requirement is close to the median Tennant 40-percent-flow requirement for good habitat condi-tion for the same six nearby stations. The R2Cross 2-of-3 criteria and Wetted-Perimeter results were less than the 25th-percentile of monthly mean flows during the summer months for the six stations. These streamflow requirements are in the poor habitat range as indicated by a Tennant analysis of the same six stations. These comparisons indicate that the R2Cross and Wetted-Perimeter methods underestimate streamflow requirements when applied to sites in smaller drainage areas and channels that are runs at higher flows.
NASA Astrophysics Data System (ADS)
Voll, K.; Davidson, G. R.; Borrok, D. M.; Corcoran, M. K.; Kelley, J.; Ma, L.
2017-12-01
Seepage beneath levees during flood stage is a concern when piping occurs, creating channels under the levee and forming sand boils where transported sediments discharge. The flow depth beneath a levee varies with surface geology, following deeper paths where the levee sits on channel fill deposits and shallower paths where it sits on sandbar deposits. Piping along shallow pathways poses an increased risk of levee failure. The Lower Mississippi River Valley alluvial aquifer is geochemically stratified, with reducing waters at greater depth, resulting in unique geochemical signatures for water passing beneath the Mississippi River levee along variable flow paths. Sampling from sand boils and flowing relief wells north of Vicksburg, MS, during the 2011, 2015, and 2016 flood events demonstrates the utility of using the geochemistry of discharge water to identify different flow pathways, and to provide greater insight on the variable water-rock interactions as a function of depth. Relief wells discharge water mainly from deeper zones, reflected by low redox potential, high Fe and As, and low 87Sr/86Sr ratios. High variability in As concentrations may result from varying degrees of reductive dissolution of Fe and Mn and release of co-precipitated As. At shallower depths the aquifer is mostly oxic, lower in Fe, As, and bicarbonate, and higher in sulfate concentrations and 87Sr/86Sr ratios. The geochemical signatures of sand-boil discharge varied between boils that were short distances apart. Water samples plotted on a Piper Diagram fell along two distinct trends starting with river water and diverging along pathways reflecting unique water-rock interaction at different depths. Strontium isotope ratios indicate differences in geochemistry are not just from variable redox reactions, but also reflect dissolution of primary minerals of unique composition or provenance. Oxygen and hydrogen isotopes of all subsurface samples reflect an unexpected level of evaporation of river water prior to recharge to the aquifer, attributed to the presence of numerous water-filled depressions between the river channel and levee system. Tritium levels from wells and boils ranged from 2.3 to 7.4 TU, with some high values coming from deeper zones indicating localized variation in the residence time of water at equal depths beneath levees.
Characterizing Sub-Daily Flow Regimes: Implications of Hydrologic Resolution on Ecohydrology Studies
Bevelhimer, Mark S.; McManamay, Ryan A.; O'Connor, B.
2014-05-26
Natural variability in flow is a primary factor controlling geomorphic and ecological processes in riverine ecosystems. Within the hydropower industry, there is growing pressure from environmental groups and natural resource managers to change reservoir releases from daily peaking to run-of-river operations on the basis of the assumption that downstream biological communities will improve under a more natural flow regime. In this paper, we discuss the importance of assessing sub-daily flows for understanding the physical and ecological dynamics within river systems. We present a variety of metrics for characterizing sub-daily flow variation and use these metrics to evaluate general trends amongmore » streams affected by peaking hydroelectric projects, run-of-river projects and streams that are largely unaffected by flow altering activities. Univariate and multivariate techniques were used to assess similarity among different stream types on the basis of these sub-daily metrics. For comparison, similar analyses were performed using analogous metrics calculated with mean daily flow values. Our results confirm that sub-daily flow metrics reveal variation among and within streams that are not captured by daily flow statistics. Using sub-daily flow statistics, we were able to quantify the degree of difference between unaltered and peaking streams and the amount of similarity between unaltered and run-of-river streams. The sub-daily statistics were largely uncorrelated with daily statistics of similar scope. Furthermore, on short temporal scales, sub-daily statistics reveal the relatively constant nature of unaltered streamreaches and the highly variable nature of hydropower-affected streams, whereas daily statistics show just the opposite over longer temporal scales.« less
The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin
Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine
2016-01-01
The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.
The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine A.
2016-05-01
The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.
Upper air teleconnections to Ob River flows and tree rings
NASA Astrophysics Data System (ADS)
Meko, David; Panyushkina, Irina; Agafonov, Leonid
2015-04-01
The Ob River, one of the world's greatest rivers, with a catchment basin about the size of Western Europe, contributes 12% or more of the annual freshwater inflow to the Arctic Ocean. The input of heat and fresh water is important to the global climate system through effects on sea ice, salinity, and the thermohaline circulation of the ocean. As part of a tree-ring project to obtain multi-century long information on variability of Ob River flows, a network of 18 sites of Pinus, Larix, Populus and Salix has been collected along the Ob in the summers of 2013 and 2014. Analysis of collections processed so far indicates a significant relationship of tree-growth to river discharge. Moderation of the floodplain air temperature regime by flooding appears to be an important driver of the tree-ring response. In unraveling the relationship of tree-growth to river flows, it is important to identify atmospheric circulation features directly linked to observed time series variations of flow and tree growth. In this study we examine statistical links between primary teleconnection modes of Northern Hemisphere upper-air (500 mb) circulation, Ob River flow, and tree-ring chronologies. Annual discharge at the mouth of the Ob River is found to be significantly positively related to the phase of the East Atlantic (EA) pattern, the second prominent mode of low-frequency variability over the North Atlantic. The EA pattern, consisting of a north-south dipole of pressure-anomaly centers spanning the North Atlantic from east to west, is associated with a low-pressure anomaly centered over the Ob River Basin, and with a pattern of positive precipitation anomaly of the same region. The positive correlation of discharge and EA is consistent with these know patterns, and is contrasted with generally negative (though smaller) correlations between EA and tree-ring chronologies. The signs of correlations are consistent with a conceptual model of river influence on tree growth through air temperature. Future work aims at combining the tree-ring samples from living trees and remnant wood to reconstruction to quantitiative reconstruction of annual flow over the past millennium.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Zhang, Zongjiao; Shi, Peijun; Singh, Vijay P.; Gu, Xihui
2018-01-01
The Yellow River is the second largest river in China and is the important source for water supply in the northwestern and northern China. It is often regarded as the mother river of China. Owing to climatic change and intensifying human activities, such as increasing withdrawal of water for meeting growing agricultural irrigation needs since 1986, the flow of Yellow River has decreased, with serious impacts on the ecological environment. Using multiple hydrological indicators and Flow Duration Curve (DFC)-based ecodeficit and ecosurplus, this study investigates the impact of hydrological alterations, such as the impact of water reservoirs or dams, on downstream ecological instream flow. Results indicate that: (1) due to the impoundment and hydrological regulations of water reservoirs, occurrence rates and magnitudes of high flow regimes have decreased and the decrease is also found in the magnitudes of low flow events. These changes tend to be more evident from the upper to the lower Yellow River basin; (2) human activities tend to enhance the instream flow variability, particularly after the 1980s;(3) the ecological environment in different parts of the Yellow River basin is under different degrees of ecological risk. In general, lower to higher ecological risk can be detected due to hydrological alterations from the upper to the lower Yellow River basin. This shows that conservation of ecological environment and river health is facing a serious challenge in the lower Yellow River basin; (4) ecological instream flow indices, such as ecodeficit and ecosurplus, and IHA32 hydrological indicators are in strong relationships, suggesting that ecodeficit and ecosurplus can be regarded as appropriate ecological indicators for developing measures for mitigating the adverse impact of human activities on the conservation of ecological environment in the Yellow River basin.
Long-term changes in river system hydrology in Texas
NASA Astrophysics Data System (ADS)
Zhang, Yiwen; Wurbs, Ralph
2018-06-01
Climate change and human actives are recognized as a topical issue that change long-term water budget, flow-frequency, and storage-frequency characteristics of different river systems. Texas is characterized by extreme hydrologic variability both spatially and temporally. Meanwhile, population and economic growth and accompanying water resources development projects have greatly impacted river flows throughout Texas. The relative effects of climate change, water resources development, water use, and other factors on long-term changes in river flow, reservoir storage, evaporation, water use, and other components of the water budgets of different river basins of Texas have been simulated in this research using the monthly version of the Water Rights Analysis Package (WRAP) modelling system with input databases sets from the Texas Commission on Environmental Quality (TCEQ) and Texas Water Development Board (TWDB). The results show that long-term changes are minimal from analysis monthly precipitation depths. Evaporation rates vary greatly seasonally and for much of the state appear to have a gradually upward trend. River/reservoir system water budgets and river flow characteristics have changed significantly during the past 75 years in response to water resources development and use.
NASA Astrophysics Data System (ADS)
Wang, J.; Nathan, R.; Horne, A.
2017-12-01
Traditional approaches to characterize water-dependent ecosystem outcomes in response to flow have been based on time-averaged hydrological indicators, however there is increasing recognition for the need to characterize ecological processes that are highly dependent on the sequencing of flow conditions (i.e. floods and droughts). This study considers the representation of flow regimes when considering assessment of ecological outcomes, and in particular, the need to account for sequencing and variability of flow. We conducted two case studies - one in the largely unregulated Ovens River catchment and one in the highly regulated Murray River catchment (both located in south-eastern Australia) - to explore the importance of flow sequencing to the condition of a typical long-lived ecological asset in Australia, the River Red Gum forests. In the first, the Ovens River case study, the implications of representing climate change using different downscaling methods (annual scaling, monthly scaling, quantile mapping, and weather generator method) on the sequencing of flows and resulting ecological outcomes were considered. In the second, the Murray River catchment, sequencing within a historic drought period was considered by systematically making modest adjustments on an annual basis to the hydrological records. In both cases, the condition of River Red Gum forests was assessed using an ecological model that incorporates transitions between ecological conditions in response to sequences of required flow components. The results of both studies show the importance of considering how hydrological alterations are represented when assessing ecological outcomes. The Ovens case study showed that there is significant variation in the predicted ecological outcomes when different downscaling techniques are applied. Similarly, the analysis in the Murray case study showed that the drought as it historically occurred provided one of the best possible outcomes for River Red Gum forests when compared to other re-arrangements of flow within the same drought. These results have implications for the way we represent climate change impacts and drought risk assessments where ecological outcomes are a key management objective.
Tiffan, K.F.; Garland, R.D.; Rondorf, D.W.
2002-01-01
We used an analysis based on a geographic information system (GIS) to determine the amount of rearing habitat and stranding area for subyearling fall chinook salmon Oncorhynchus tshawytscha in the Hanford Reach of the Columbia River at steady-state flows ranging from 1,416 to 11,328 m3/s. High-resolution river channel bathymetry was used in conjunction with a two-dimensional hydrodynamic model to estimate water velocities, depths, and lateral slopes throughout our 33-km study area. To relate the probability of fish presence in nearshore habitats to measures of physical habitat, we developed a logistic regression model from point electrofishing data. We only considered variables that were compatible with a GIS and therefore excluded other variables known to be important to juvenile salmonids. Water velocity and lateral slope were the only two variables included in our final model. The amount of available rearing habitat generally decreased as flow increased, with the greatest decreases occurring between 1,416 and 4,814 m3/s. When river discharges were between 3,682 and 7,080 m3/s, flow fluctuations of 566 m3/s produced the smallest change in available rearing area (from -6.3% to +6.8% of the total). Stranding pool area was greatly reduced at steady-state flows exceeding 4,531 m3/s, but the highest net gain in stranding area was produced by 850 m3/s decreases in flow when river discharges were between 5,381 and 5,664 m3/s. Current measures to protect rearing fall chinook salmon include limiting flow fluctuations at Priest Rapids Dam to 850 m3/s when the dam is spilling water and when the weekly flows average less than 4,814 m3/s. We believe that limiting flow fluctuations at all discharges would further protect subyearling fall chinook salmon.
Characterizing spatial and temporal patterns of intermittent rivers
NASA Astrophysics Data System (ADS)
de Vries, Stefan B.; Hoeve, Jasper; Sauquet, Eric; Leigh, Catherine; Bonada, Núria; Fike, Kimberly; Dahm, Clifford; Booij, Martijn J.; Datry, Thibault
2015-04-01
Intermittent rivers (IRs) support high biodiversity due to their dynamic alternations between terrestrial and aquatic phases. They represent a large proportion of the river network. However the current knowledge on these ecosystems is limited. The international research project "Intermittent River Biodiversity Analysis and Synthesis" (IRBAS, www.irbas.fr) aims to collect and analyze data on IR biodiversity from France, Spain, North America and Australia. These activities ultimately should help in identifying relationships between flow regime components and ecological responses. The IRBAS project will provide guidelines for policy-makers and resource managers for effective water and habitat management, restoration and preservation. This work examines one of the aspects in the IRBAS project: studying the large-scale spatial distribution of IRs as well as the year-to-year variability of zero-flow events. IRs were described by two variables: the frequency of periods without flow (FREQ) per time period (months or years) and the total number of zero-flow days (DUR) in a specified time window (month or year). Daily discharge data from more than 1700 gauging stations with no significant human influence on flow were collected from France, Spain, Australia and conterminous United States. A minimum length of 30 years of data starting from 1970 was required with less than 5% of missing data. Climate data for France and Australia were also collected. A classification of perennial versus intermittent rivers was defined, with 455 stations out of the 1684 considered "intermittent", i.e. the gauging station records had, on average, at least 5 zero-flow days per year. The analysis of the subset of IRs showed that: - Greater than 50% of the IRs in the database is located in Australia, where only 35% of the stations are considered perennial. In Spain the proportion of IRs reaches 25%. The proportion of intermittent rivers in France (7%) is certainly underestimated as a consequence of the monitoring strategy, i.e. gauging stations have been primarily installed to measure perennial flows of medium size basins and most of the IRs remain ungauged. This is also true in the US where ~ 7% of the current and historical gage network is on intermittent rivers. - Intermittence of rivers demonstrates high seasonality which varies from one country to another. - Links between climate variability and intermittence are not straightforward. No relation was found between annual DUR and annual precipitation in France whereas DUR was significantly correlated with precipitation in Australia. Potential evapotranspiration was correlated with DUR for France, but not for Australia, where the results were more obscure. - No spatially coherent trends in flow intermittence were identified in Spain, France or the USA. Significant trends according to the Mann Kendall test were found in Australia and results suggest trends in yearly DUR consistent with observed changes in rainfall in Western Australia during the last few decades. The El Nino cycle is one of the possible sources of variability in intermittency patterns.
Rainfall and runoff variability in Ethiopia
NASA Astrophysics Data System (ADS)
Billi, Paolo; Fazzini, Massimiliano; Tadesse Alemu, Yonas; Ciampalini, Rossano
2014-05-01
Rainfall and river flow variability have been deeply investigated and and the impact of climate change on both is rather well known in Europe (EEA, 2012) or in other industrialized countries. Reports of international organizations (IPCC, 2012) and the scientific literature provide results and outlooks that were found contrasting and spatially incoherent (Manton et al., 2001; Peterson et al., 2002; Griffiths et al., 2003; Herath and Ratnayake, 2004) or weakened by limitation of data quality and quantity. According to IPCC (2012), in East Africa precipitation there are contrasting regional and seasonal variations and trends, though Easterling et al. (2000) and Seleshi and Camberlin (2006) report decreasing trends in heavy precipitation over parts of Ethiopia during the period 1965-2002. Literature on the impact of climate change on river flow is scarce in Africa and IPCC Technical Paper VI (IPCC, 2008) concluded that no evidence, based on instrumental records, has been found for a climate-driven globally widespread change in the magnitude/frequency of floods during the last decades (Rosenzweig et al., 2007), though increases in runoff and increased risk of flood events in East Africa are expected. Some papers have faced issues regarding rainfall and river flow variability in Ethiopia (e.g. Seleshi and Demaree, 1995; Osman and Sauerborn, 2002; Seleshi and Zanke, 2004; Meze-Hausken, 2004; Korecha and Barnston, 2006; Cheung et al., 2008) but their investigations are commonly geographically limited or used a small number of rain and flow gauges with the most recent data bound to the beginning of the last decade. In this study an attempt to depict rainfall and river flow variability, considering the longer as possible time series for the largest as possible number of meteo-stations and flow gauge evenly distributed across Ethiopia, is presented. 25 meteo-stations and 21 flow gauges with as much as possible continuous data records were selected. The length of the time series ranges between 35 to 50 and 9 to 49 years for rainfall and river flow, respectively. In order to improve the poor linear correlation model to describe rainfall gradient with altitude a simple topographic parameter is introduced capable to better depict the spatial variability of annual rainfall and its coefficient of variation. The small rains (Belg) were found to be much more unpredictable than the long, monsoon-type rains (Kiremt) and hence much more out of phase with the variation of annual precipitation amount that is significantly influenced by the Kiremt rains. In order to investigate the long term trends, rainfall anomalies were calculated as Z score for annual, Belg and Kiremt precipitation for all the stations and average values are calculated and plotted against time. The three Z trend lines obtained show no marked deviation from the mean as only an almost negligible decreasing trend is observed. Rainfall intensity in 24 hours is analyzed and the trend line of the maximum intensity averaged over the maximum value of each year recorded at each meteo-station is constructed. These data indicate a general decrease in daily rainfall intensity across Ethiopia with clear exceptions in a few selected areas. The same procedure, based on the Z scores, used to analyze rainfall variability is applied also to the river flow data and a similar result is obtained. If compared with rainfall, annual runoff shows a much wider range of variation among the study rivers. This issue is discussed and possible explanations are presented.
Developing New Modelling Tools for Environmental Flow Assessment in Regulated Salmon Rivers
NASA Astrophysics Data System (ADS)
Geris, Josie; Soulsby, Chris; Tetzlaff, Doerthe
2013-04-01
There is a strong political drive in Scotland to meet all electricity demands from renewable sources by 2020. In Scotland, hydropower generation has a long history and is a key component of this strategy. However, many rivers sustain freshwater communities that have both high conservation status and support economically important Atlantic salmon fisheries. Both new and existing hydropower schemes must be managed in accordance with the European Union's Water Framework Directive (WFD), which requires that all surface water bodies achieve good ecological status or maintain good ecological potential. Unfortunately, long-term river flow monitoring is sparse in the Scottish Highlands and there are limited data for defining environmental flows. The River Tay is the most heavily regulated catchment in the UK. To support hydropower generation, it has an extensive network of inter- and intra- catchment transfers, in addition to a large number of regulating reservoirs for which abstraction legislation often only requires minimum compensation flows. The Tay is also considered as one of Scotland's most important rivers for Atlantic salmon (Salmo salar), and there is considerable uncertainty as to how best change reservoir operations to improve the ecological potential of the river system. It is now usually considered that environmental flows require more than a minimum compensation flow, and instead should cover a range of hydrological flow aspects that represent ecologically relevant streamflow attributes, including magnitude, timing, duration, frequency and rate of change. For salmon, these hydrological indices are of particular interest, with requirements varying at different stages of their life cycle. To meet the WFD requirements, rationally alter current abstraction licences and provide an evidence base for regulating new hydropower schemes, advanced definitions for abstraction limits and ecologically appropriate flow releases are desirable. However, a good understanding of the natural flow variability and the hydrological impacts of the regulation is unavailable, partly because pre-regulation data of existing hydropower schemes are lacking. Here we develop a novel modelling approach for characterising natural flow regimes and defining hydrological flow indices. This allows us to quantitatively assess the impacts of hydropower to better inform environmental flow requirements for the Atlantic salmon river ecosystem. Results are presented for the River Lyon (390 km2), a regulated headwater catchment of the River Tay. The HBV hydrological rainfall-runoff model is used to simulate flows, based on calibrated parameters from regulated flow data, with the current hydropower scheme active. For this, the HBV model is adapted to be able to incorporate water transfers and regulated flows. The natural hydrological indices are derived from the simulated pre-regulation data, and compared with those of the regulated data to investigate the impact of the regulation on these at different critical times for Atlantic salmon. The sensitivity of the system to change is also investigated to explore the extent to which flow variables can be modified without major degradation to the river's ecosystem, while still maintaining viable hydropower generation. The modelling approach presented will provide the basis for assessing impacts on hydrological flow indices and informing environmental flows in regions with similar heavily regulated mountain river ecosystems.
NASA Astrophysics Data System (ADS)
Hardie, Scott A.; Bobbi, Chris J.
2018-03-01
Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.
Hardie, Scott A; Bobbi, Chris J
2018-03-01
Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie
Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of themore » inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.« less
Chick, J.H.; Van Den Avyle, M.J.
1999-01-01
We quantified temporal and spatial variability of zooplankton in three potential nursery sites (river, transition zone, lake) for larval striped bass (Morone saxatilis) in Lake Marion, South Carolina, during April and May 1993-1995. In two of three years, microzooplankton (rotifers and copepod nauplii) density was significantly greater in the lake site than in the river or transition zone. Macrozooplankton (>200 ??m) composition varied among the three sites in all years with adult copepods and cladocerans dominant at the lake, and juvenile Corbicula fluminea dominant at the river and transition zone. Laboratory feeding experiments, simulating both among-site (site treatments) and within-site (density treatments) variability, were conducted in 1995 to quantify the effects of the observed zooplankton variability on foraging success of larval striped bass. A greater proportion of larvae fed in the lake than in the river or transition-zone treatments across all density treatments: mean (x), 10x and 100x. Larvae also ingested significantly more dry mass of prey in the lake treatment in both the mean and 10x density treatments. Field zooplankton and laboratory feeding data suggest that both spatial and temporal variability of zooplankton influence larval striped bass foraging. Prey density levels that supported successful foraging in our feeding experiments occurred in the lake during late April and May in 1994 and 1995 but were never observed in the river or transition zone. Because the rivers flowing into Lake Marion are regulated, it may be possible to devise flow management schemes that facilitate larval transport to the lake and thereby increase the proportion of larvae matched to suitable prey resources.
Schlatter, Karen; Grabau, Matthew R.; Shafroth, Patrick B.; Zamora-Arroyo, Francisco
2017-01-01
Drastic alterations to river hydrology, land use change, and the spread of the nonnative shrub, tamarisk (Tamarix spp.), have led to the degradation of riparian habitat in the Colorado River Delta in Mexico. Delivery of environmental flows to promote native cottonwood (Populus spp.) and willow (Salix spp.) recruitment in human-impacted riparian systems can be unsuccessful due to flow-magnitude constraints and altered abiotic–biotic feedbacks. In 2014, an experimental pulse flow of water was delivered to the Colorado River in Mexico as part of the U.S.-Mexico binational agreement, Minute 319. We conducted a field experiment to assess the effects of vegetation removal, seed augmentation, and environmental flows, separately and in combination, on germination and first-year seedling establishment of cottonwood, willow, and tamarisk at five replicate sites along 5 river km. The relatively low-magnitude flow deliveries did not substantively restore natural fluvial processes of erosion, sediment deposition, and vegetation scour, but did provide wetted surface soils, shallow groundwater, and low soil salinity. Cottonwood and willow only established in wetted, cleared treatments, and establishment was variable in these treatments due to variable site conditions and inundation duration and timing. Wetted soils, bare surface availability, soil salinity, and seed availability were significant factors contributing to successful cottonwood and willow germination, while soil salinity and texture affected seedling persistence over the growing season. Tamarisk germinated and persisted in a wider range of environmental conditions than cottonwood and willow, including in un-cleared treatment areas. Our results suggest that site management can increase cottonwood and willow recruitment success from low-magnitude environmental flow events, an approach that can be applied in other portions of the Delta and to other human-impacted riparian systems across the world with similar ecological limitations.
Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.
2005-01-01
We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability of the river to assimilate wastewater treatment plant effluent. Our study illustrates the types of changes that river ecosystems might experience under future climates. Copyright ?? 2005 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lluís Ruiz-Bellet, Josep; Castelltort, Xavier; Carles Balasch, J.; Tuset, Jordi
2016-04-01
The estimation of the uncertainty of the results of the hydraulic modelling has been deeply analysed, but no clear methodological procedures as to its determination have been formulated when applied to historical hydrology. The main objective of this study was to calculate the uncertainty of the resulting peak flow of a typical historical flood reconstruction. The secondary objective was to identify the input variables that influenced the result the most and their contribution to peak flow total error. The uncertainty of 21-23 October 1907 flood of the Ebro River (NE Iberian Peninsula) in the town of Xerta (83,000 km2) was calculated with a series of local sensitivity analyses of the main variables affecting the resulting peak flow. Besides, in order to see to what degree the result depended on the chosen model, the HEC-RAS resulting peak flow was compared to the ones obtained with the 2D model Iber and with Manning's equation. The peak flow of 1907 flood in the Ebro River in Xerta, reconstructed with HEC-RAS, was 11500 m3·s-1 and its total error was ±31%. The most influential input variable over HEC-RAS peak flow results was water height; however, the one that contributed the most to peak flow error was Manning's n, because its uncertainty was far greater than water height's. The main conclusion is that, to ensure the lowest peak flow error, the reliability and precision of the flood mark should be thoroughly assessed. The peak flow was 12000 m3·s-1 when calculated with the 2D model Iber and 11500 m3·s-1 when calculated with the Manning equation.
Puig, Alba; Olguín Salinas, Héctor F; Borús, Juan A
2016-06-01
Alterations in flow regimes of large rivers may originate or increase risks to ecosystems and humans. The Paraná River basin (South America) undergoes human pressures (e.g., heavy damming in the upper basin, deforestation, and mixed pollution) that may affect the water quantity and quality of its terminal Delta (Argentina). In this study, after applying univariate and multivariate change-point detection and trend analyses to the daily data series of flows incoming to the Delta (Paraná-Santa Fe section), flow characteristics were compared by Indicators of Hydrologic Alteration (IHA) and Environmental Flow Components (EFC). Some flood characteristics were also compared from hydrometric levels in the middle Delta (San Pedro station). Chemical and microbiological water variables in the main rivers of the "Paraná Delta" Biosphere Reserve were examined during two extreme hydrologic years (October 2008 to July 2010) to detect potential risk factors in association with hydrologic conditions. In the Lower Paraná River, a historical period (1903-1972) and two more altered periods (1973-1999 wet period and 2000-2014 dry period) were identified. Flow duration curves evidenced different changes in both altered periods, reflecting the joint effect of climatic variability and human influence. The most evident alterations in the flow regime were the lack of record of the extreme-low-flow component, the attenuation of monthly flow seasonality, and the increase in the number of reversals (dry period) and in the variability of maximum and minimum flow dates. These alterations are consistent with the monthly and daily flow regulation by upstream dams evidenced by available data from the current dry period. In the middle Delta, the marked monthly seasonality in flood days decreased only in the wet period. The proportion between the number of flood days exceeding the evacuation level and that of those exceeding the warning level doubled in the wet period but decreased only slightly in the dry period. In the Delta Reserve rivers, concentrations of Escherichia coli, cadmium, lead, iron, manganese, and ammonium exceeded guideline levels under a severe drought and a dispersal of cyanobacteria appeared under a high-flow pulse in La Niña year. The ammonium concentration exceeded the level for human drink with the overbanking flood stage in El Niño year. These occasional detections pose a potential risk to the aquatic life and, especially, to the inhabitants of the Reserve. Flow duration curves, IHA, and EFC are useful tools to evaluate trends or changes of ecological and social relevance in flow regime characteristics.
NASA Astrophysics Data System (ADS)
Puig, Alba; Olguín Salinas, Héctor F.; Borús, Juan A.
2016-06-01
Alterations in flow regimes of large rivers may originate or increase risks to ecosystems and humans. The Paraná River basin (South America) undergoes human pressures (e.g., heavy damming in the upper basin, deforestation, and mixed pollution) that may affect the water quantity and quality of its terminal Delta (Argentina). In this study, after applying univariate and multivariate change-point detection and trend analyses to the daily data series of flows incoming to the Delta (Paraná-Santa Fe section), flow characteristics were compared by Indicators of Hydrologic Alteration (IHA) and Environmental Flow Components (EFC). Some flood characteristics were also compared from hydrometric levels in the middle Delta (San Pedro station). Chemical and microbiological water variables in the main rivers of the "Paraná Delta" Biosphere Reserve were examined during two extreme hydrologic years (October 2008 to July 2010) to detect potential risk factors in association with hydrologic conditions. In the Lower Paraná River, a historical period (1903-1972) and two more altered periods (1973-1999 wet period and 2000-2014 dry period) were identified. Flow duration curves evidenced different changes in both altered periods, reflecting the joint effect of climatic variability and human influence. The most evident alterations in the flow regime were the lack of record of the extreme-low-flow component, the attenuation of monthly flow seasonality, and the increase in the number of reversals (dry period) and in the variability of maximum and minimum flow dates. These alterations are consistent with the monthly and daily flow regulation by upstream dams evidenced by available data from the current dry period. In the middle Delta, the marked monthly seasonality in flood days decreased only in the wet period. The proportion between the number of flood days exceeding the evacuation level and that of those exceeding the warning level doubled in the wet period but decreased only slightly in the dry period. In the Delta Reserve rivers, concentrations of Escherichia coli, cadmium, lead, iron, manganese, and ammonium exceeded guideline levels under a severe drought and a dispersal of cyanobacteria appeared under a high-flow pulse in La Niña year. The ammonium concentration exceeded the level for human drink with the overbanking flood stage in El Niño year. These occasional detections pose a potential risk to the aquatic life and, especially, to the inhabitants of the Reserve. Flow duration curves, IHA, and EFC are useful tools to evaluate trends or changes of ecological and social relevance in flow regime characteristics.
NASA Astrophysics Data System (ADS)
Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.
2017-12-01
The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving predictions of environmental and human impacts on water quality and riverine ecosystems, and supporting environmentally responsible management of linked energy-water systems.
Littell, Jeremy; Pederson, Gregory T.; Gray, Stephen T.; Tjoelker, Michael; Hamlet, Alan F.; Woodhouse, Connie A.
2016-01-01
We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree-ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree-ring chronologies where high snowpack limits growth, which better represent the contribution of cool-season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high-intensity, long-duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s-1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm-season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late-19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands
Use of streamflow data to estimate base flowground-water recharge for Wisconsin
Gebert, W.A.; Radloff, M.J.; Considine, E.J.; Kennedy, J.L.
2007-01-01
The average annual base flow/recharge was determined for streamflow-gaging stations throughout Wisconsin by base-flow separation. A map of the State was prepared that shows the average annual base flow for the period 1970-99 for watersheds at 118 gaging stations. Trend analysis was performed on 22 of the 118 streamflow-gaging stations that had long-term records, unregulated flow, and provided aerial coverage of the State. The analysis found that a statistically significant increasing trend was occurring for watersheds where the primary land use was agriculture. Most gaging stations where the land cover was forest had no significant trend. A method to estimate the average annual base flow at ungaged sites was developed by multiple-regression analysis using basin characteristics. The equation with the lowest standard error of estimate, 9.5%, has drainage area, soil infiltration and base flow factor as independent variables. To determine the average annual base flow for smaller watersheds, estimates were made at low-flow partial-record stations in 3 of the 12 major river basins in Wisconsin. Regression equations were developed for each of the three major river basins using basin characteristics. Drainage area, soil infiltration, basin storage and base-flow factor were the independent variables in the regression equations with the lowest standard error of estimate. The standard error of estimate ranged from 17% to 52% for the three river basins. ?? 2007 American Water Resources Association.
Lunar and Planetary Science XXXV: Mars Volcanology and Tectonics
NASA Technical Reports Server (NTRS)
2004-01-01
Reports from the session, "Mars Volcanology and Tectonics" include:Martian Shield Volcanoes; Estimating the Rheology of Basaltic Lava Flows; A Model for Variable Levee Formation Rates in an Active Lava Flow; Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region: Indicators of Post-Flow Tectonic Motion; Fractal Variation with Changing Line Length: A Potential Problem for Planetary Lava Flow Identification; Burfellshraun:A Terrestrial Analogue to Recent Volcanism on Mars; Lava Domes of the Arcadia Region of Mars; Comparison of Plains Volcanism in the Tempe Terra Region of Mars to the Eastern Snake River Plains, Idaho with Implications for Geochemical Constraints; Vent Geology of Low-Shield Volcanoes from the Central Snake River Plain, Idaho: Lessons for Mars and the Moon; Field and Geochemical Study of Table Legs Butte and Quaking Aspen Butte, Eastern Snake River Plain, Idaho: An Analog to the Morphology of Small Shield Volcanoes on Mars; Variability in Morphology and Thermophysical Properties of Pitted Cones in Acidalia Planitia and Cydonia Mensae; A Volcano Composed of Light-colored Layered Deposits on the Floor of Valles Marineris; Analysis of Alba Patera Flows: A Comparison of Similarities and Differences Geomorphologic Studies of a Very Long Lava Flow in Tharsis, Mars; Radar Backscatter Characteristics of Basaltic Flow Fields: Results for Mauna Ulu, Kilauea Volcano, Hawaii;and Preliminary Lava Tube-fed Flow Abundance Mapping on Olympus Mons.
Modeling Dissolved Solids in the Rincon Valley, New Mexico Using RiverWare
NASA Astrophysics Data System (ADS)
Abudu, S.; Ahn, S. R.; Sheng, Z.
2017-12-01
Simulating transport and storage of dissolved solids in surface water and underlying alluvial aquifer is essential to evaluate the impacts of surface water operations, groundwater pumping, and climate variability on the spatial and temporal variability of salinity in the Rio Grande Basin. In this study, we developed a monthly RiverWare water quantity and quality model to simulate the both concentration and loads of dissolved solids for the Rincon Valley, New Mexico from Caballo Reservoir to Leasburg Dam segment of the Rio Grande. The measured flows, concentration and loads of dissolved solids in the main stream and drains were used to develop RiveWare model using 1980-1988 data for calibration, and 1989-1995 data for validation. The transport of salt is tracked using discretized salt and post-process approaches. Flow and salt exchange between the surface water and adjacent groundwater objects is computed using "soil moisture salt with supplemental flow" method in the RiverWare. In the groundwater objects, the "layered salt" method is used to simulate concentration of the dissolved solids in the shallow groundwater storage. In addition, the estimated local inflows under different weather conditions by using a calibrated Soil Water Assessment Tool (SWAT) were fed into the RiverWare to refine the simulation of the flow and dissolved solids. The results show the salt concentration and loads increased at Leasburg Dam, which indicates the river collects salts from the agricultural return flow and the underlying aquifer. The RiverWare model with the local inflow fed by SWAT delivered the better quantification of temporal and spatial salt exchange patterns between the river and the underlying aquifer. The results from the proposed modeling approach can be used to refine the current mass-balance budgets for dissolved-solids transport in the Rio Grande, and provide guidelines for planning and decision-making to control salinity in arid river environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, Nicholas A.; O'Connor, Ben L.; Hayse, John W.
2014-07-22
Environmental flows are an important consideration in licensing hydropower projects because operational flow releases can result in adverse conditions to downstream ecological communities. Flow variability assessments have typically focused on pre- and post-dam conditions using metrics based on daily-averaged flow values. This study used subdaily and daily flow data to assess environmental flow response to changes in hydropower operations from daily-peaking to run-of-river. An analysis tool was developed to quantify subdaily to seasonal flow variability metrics and was applied to four hydropower projects that underwent operational changes based on regulatory requirements. Results indicate that the distribution of flows is significantly different between daily-peaking and run-of- river operations and that daily-peaking operations are flashier than run-of-river operations; these differences are seen using hourly-averaged flow datasets and are less pronounced or not noticeable using daily-averaged flow datasets. Of all variability metrics analyzed, hydrograph rise and fall rates were the most sensitive to using daily versus subdaily flow data. This outcome has implications for the development of flow-ecology relationships that quantify effects of rate of change on processes such as fish stranding and displacement, along with habitat stability. The quantification of flow variability statistics should be done using subdaily datasets and metric to accurately represent the nature of hydropower operations , especially for facilities that utilize daily-peaking operations.
Derivation and Application of Idealized Flow Conditions in River Network Simulation
NASA Astrophysics Data System (ADS)
Afshari Tork, S.; Fekete, B. M.
2015-12-01
Stream flow information is essential for many applications across broad range of scales, e.g. global water balances, engineering design, flood forecasting, environmental management, etc. Quantitative assessment of flow dynamics of natural streams, requires detailed knowledge of all the geometrical and geophysical variables (e.g. bed-slope, bed roughness, etc.) along river reaches. Simplifying the river bed geometries could reduce both the computational burden implementing flow simulations and challenges in assembling the required data, especially for large domains. Average flow conditions expressed as empirical "at-a-station" hydraulic geometry relationships between key channel components, (i.e. water depth, top-width, flow velocity, flow area against discharge) have been studied since 60's. Recent works demonstrated that power-function as idealized riverbed geometry whose parameters are correlated to those of exponential relationship between mean water depth and top-width, are consistent with empirical "at-a-station" relations.US Geological Surveys' National Water Information System web-interface provides huge amount of river discharge and corresponding stage height data from several thousands of streamflow monitoring stations over United States accompanied by river survey summaries providing additional flow informations (width, mean velocity, cross-sectional area). We conducted a series of analyses to indentify consistent data daily monitoring and corresponding survey records that are suitable to refine our current understanding of how the "at-a-station" properties of river channels relate to channel forming characteristics (e.g. riverbed slope, flow regime, geology, etc.). The resulting ~1,200 actively operating USGS stations with over ~225,000 corresponding survery records (almost 200 survey per gauge on average) is the largest river survey database ever studied in the past.Our presentation will show our process assembling our river monitoring and survey data base and we will present our first results translating "at-a-station" relations into he hydraulic geometry of river channels based on idealized power-law riverbed geometries. We also will also present a series of application (e.g. improved flow rounting, simplyfied river surveying).
What if we took a global look?
NASA Astrophysics Data System (ADS)
Ouellet Dallaire, C.; Lehner, B.
2014-12-01
Freshwater resources are facing unprecedented pressures. In hope to cope with this, Environmental Hydrology, Freshwater Biology, and Fluvial Geomorphology have defined conceptual approaches such as "environmental flow requirements", "instream flow requirements" or "normative flow regime" to define appropriate flow regime to maintain a given ecological status. These advances in the fields of freshwater resources management are asking scientists to create bridges across disciplines. Holistic and multi-scales approaches are becoming more and more common in water sciences research. The intrinsic nature of river systems demands these approaches to account for the upstream-downstream link of watersheds. Before recent technological developments, large scale analyses were cumbersome and, often, the necessary data was unavailable. However, new technologies, both for information collection and computing capacity, enable a high resolution look at the global scale. For rivers around the world, this new outlook is facilitated by the hydrologically relevant geo-spatial database HydroSHEDS. This database now offers more than 24 millions of kilometers of rivers, some never mapped before, at the click of a fingertip. Large and, even, global scale assessments can now be used to compare rivers around the world. A river classification framework was developed using HydroSHEDS called GloRiC (Global River Classification). This framework advocates for holistic approach to river systems by using sub-classifications drawn from six disciplines related to river sciences: Hydrology, Physiography and climate, Geomorphology, Chemistry, Biology and Human impact. Each of these disciplines brings complementary information on the rivers that is relevant at different scales. A first version of a global river reach classification was produced at the 500m resolution. Variables used in the classification have influence on processes involved at different scales (ex. topography index vs. pH). However, all variables are computed at the same high spatial resolution. This way, we can have a global look at local phenomenon.
NASA Astrophysics Data System (ADS)
Sawada, Yohei; Nakaegawa, Tosiyuki; Miyoshi, Takemasa
2018-01-01
We examine the potential of assimilating river discharge observations into the atmosphere by strongly coupled river-atmosphere ensemble data assimilation. The Japan Meteorological Agency's Non-Hydrostatic atmospheric Model (JMA-NHM) is first coupled with a simple rainfall-runoff model. Next, the local ensemble transform Kalman filter is used for this coupled model to assimilate the observations of the rainfall-runoff model variables into the JMA-NHM model variables. This system makes it possible to do hydrometeorology backward, i.e., to inversely estimate atmospheric conditions from the information of river flows or a flood on land surfaces. We perform a proof-of-concept Observing System Simulation Experiment, which reveals that the assimilation of river discharge observations into the atmospheric model variables can improve the skill of the short-term severe rainfall forecast.
NASA Astrophysics Data System (ADS)
Kalumba, Mulenga; Nyirenda, Edwin
2017-12-01
The Government of the Republic Zambia (GRZ) will install a new hydropower station Kafue Gorge Lower downstream of the existing Kafue Gorge Station (KGS) and plans to start operating the Itezhi-Tezhi (ITT) hydropower facility in the Kafue Basin. The Basin has significant biodiversity hot spots such as the Luangwa National park and Kafue Flats. It is described as a Man-Biosphere reserve and the National Park is a designated World Heritage Site hosting a variety of wildlife species. All these natural reserves demand special protection, and environmental flow requirements (e-flows) have been identified as a necessary need to preserve these ecosystems. Implementation of e-flows is therefore a priority as Zambia considers to install more hydropower facilities. However before allocation of e-flows, it is necessary to first assess the river flow available for allocation at existing hydropower stations in the Kafue Basin. The river flow availability in the basin was checked by assessing the variability in low and high flows since the timing, frequency and duration of extreme droughts and floods (caused by low and high flows) are all important hydrological characteristics of a flow regime that affects e-flows. The river flows for a 41 year monthly time series data (1973-2014) were used to extract independent low and high flows using the Water Engineering Time Series Processing Tool (WETSPRO). The low and high flows were used to construct cumulative frequency distribution curves that were compared and analysed to show their variation over a long period. A water balance of each hydropower station was used to check the river flow allocation aspect by comparing the calculated water balance outflow (river flow) with the observed river flow, the hydropower and consumptive water rights downstream of each hydropower station. In drought periods about 50-100 m3/s of riverflow is available or discharged at both ITT and KGS stations while as in extreme flood events about 1300-1500 m3/s of riverflow is available. There is river flow available in the wet and dry seasons for e-flow allocation at ITT. On average per month 25 m3/s is allocated for e-flows at ITT for downstream purposes. On the other hand, it may be impossible to implement e-flows at KGS with the limited available outflow (river flow). The available river flow from ITT plays a very vital role in satisfying the current hydropower generating capacity at KGS. Therefore, the operations of KGS heavily depends on the available outflow (river flow) from ITT.
Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change
Reynolds, Lindsay V.; Shafroth, Patrick B.; Poff, N. LeRoy
2015-01-01
Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, late summer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the potential for streams to shift from perennial to intermittent under a warmer climate, we analyzed historic flow records from streams in the Upper Colorado River Basin (UCRB). Approximately two-thirds of 115 gaged stream reaches included in our analysis are currently perennial and the rest have some degree of intermittency. Dry years with combinations of high temperatures and low precipitation were associated with more zero-flow days. Mean annual flow was positively related to minimum flows, suggesting that potential future declines in mean annual flows will correspond with declines in minimum flows. The most important landscape variables for predicting low flow metrics were precipitation, percent snow, potential evapotranspiration, soils, and drainage area. Perennial streams in the UCRB that have high minimum-flow variability and low mean flows are likely to be most susceptible to increasing streamflow intermittency in the future.
Hierarchically nested river landform sequences
NASA Astrophysics Data System (ADS)
Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.
2017-12-01
River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.
NASA Astrophysics Data System (ADS)
Salvato, L.; Crossey, L. J.
2013-12-01
The Rio Chama is the largest stream tributary to the Rio Grande in northern New Mexico. The river's geographic location in a semiarid region results in high rates of evapotranspiration and highly variable streamflow. The Rio Chama is part of the San Juan-Chama Drinking Water Project, in which water from the San Juan River, southern Colorado, is diverted across the continental divide to the Rio Chama. Surface water moves through Abiquiu, El Vado and Heron Reservoirs to the Rio Grande to supply Albuquerque with potable drinking water. The results of these anthropogenic influences are a modified flow regime, less variability, greater base-flows, and smaller peak flows. We examined selected locations throughout the Rio Chama system to provide base-line water quality data for ongoing studies. This information will contribute to the development of the best plan to optimize flow releases and maximize benefits of the stakeholders and especially the riparian and stream ecosystems. We report results of two sampling trips representing extremes of the hydrograph in summer 2012 and fall 2012. We collected field parameters, processed water samples, and analyzed them for major anions and cations. The geochemistry enables us to better understand the impact of monthly releases of San Juan river water. We captured two points of the river's streamflow range, 54 cubic feet per second in October 2012 and 1,000 cubic feet per second in August 2012 and looked for variability within the results. We found that the reservoirs exhibit varying anion concentrations from samples taken at different depths. We compared stream waters and selected well samples at a stream transect. These samples allowed us to compare shallow ground water with the stream, and they indicated that the changes in ground water are attributed to sulfate reduction. The anion and cation inputs were most likely derived from gypsum, calcite, and salts, as there are many creeks discharging into the Rio Chama whose drainage basins contain exposures of strata bearing these minerals. We established base-line information at the extremes of flow, and our future work will integrate repeat sampling with water level data to more robustly correlate water quality characteristics with release flows. Rio Chama River, Northern New Mexico
NASA Astrophysics Data System (ADS)
Fazel, Nasim; Torabi Haghighi, Ali; Kløve, Bjørn
2017-11-01
The natural flow regime of rivers has been strongly altered world-wide, resulting in ecosystem degradation and lakes drying up, especially in arid and semi-arid regions. Determining whether this is due mainly to climate change or to water withdrawal for direct human use (e.g. irrigation) is difficult, particularly for saline lake basins where hydrology data are scarce. In this study, we developed an approach for assessing climate and land use change impacts based on river flow records for headwater and lowland reaches of rivers, using the case of Lake Urmia basin, in north-westen Iran. Flow regimes at upstream and downstream stations were studied before and after major dam construction and irrigation projects. Data from 57 stations were used to establish five different time intervals representing 10 different land use development periods (scenarios) for upstream (not impacted) and downstream (impacted) systems. An existing river impact (RI) index was used to assess changes in three main characteristics of flow (magnitude, timing and, intra-annual variability). The results showed that irrigation was by far the main driving force for river flow regime changes in the lake basin. All stations close to the lake and on adjacent plains showed significantly higher impacts of land use change than headwaters. As headwaters are relatively unaffected by agriculture, the non-significant changes observed in headwater flow regimes indicate a minor effect of climate change on river flows in the region. The benefit of the method developed is clear interpretation of results based on river flow records, which is useful in communicating land use and climate change information to decision makers and lake restoration planners.
Rivers and Floodplains as Key Components of Global Terrestrial Water Storage Variability
NASA Astrophysics Data System (ADS)
Getirana, Augusto; Kumar, Sujay; Girotto, Manuela; Rodell, Matthew
2017-10-01
This study quantifies the contribution of rivers and floodplains to terrestrial water storage (TWS) variability. We use state-of-the-art models to simulate land surface processes and river dynamics and to separate TWS into its main components. Based on a proposed impact index, we show that surface water storage (SWS) contributes 8% of TWS variability globally, but that contribution differs widely among climate zones. Changes in SWS are a principal component of TWS variability in the tropics, where major rivers flow over arid regions and at high latitudes. SWS accounts for 22-27% of TWS variability in both the Amazon and Nile Basins. Changes in SWS are negligible in the Western U.S., Northern Africa, Middle East, and central Asia. Based on comparisons with Gravity Recovery and Climate Experiment-based TWS, we conclude that accounting for SWS improves simulated TWS in most of South America, Africa, and Southern Asia, confirming that SWS is a key component of TWS variability.
NASA Astrophysics Data System (ADS)
Bhattacharya, R.; Osburn, C. L.
2017-12-01
Dissolved organic matter (DOM) exported from river catchments can influence the biogeochemical processes in coastal environments with implications for water quality and carbon budget. High flow conditions are responsible for most DOM export ("pulses") from watersheds, and these events reduce DOM transformation and production by "shunting" DOM from river networks into coastal waters: the Pulse-Shunt Concept (PSC). Subsequently, the source and quality of DOM is also expected to change as a function of river flow. Here, we used stream dissolved organic carbon concentrations ([DOC]) along with DOM optical properties, such as absorbance at 350 nm (a350) and fluorescence excitation and emission matrices modeled by parallel factor analysis (PARAFAC), to characterize DOM source, quality and fluxes under variable flow conditions for the Neuse River, a coastal river system in the southeastern US. Observations were made at a flow gauged station above head of tide periodically between Aug 2011 and Feb 2013, which captured low flow periods in summer and several high flow events including Hurricane Irene. [DOC] and a350 were correlated and varied positively with river flow, implying that a large portion of the DOM was colored, humic and flow-mobilized. During high flow conditions, PARAFAC results demonstrated the higher influx of terrestrial humic DOM, and lower in-stream phytoplankton production or microbial degradation. However, during low flow, DOM transformation and production increased in response to higher residence times and elevated productivity. Further, 70% of the DOC was exported by above average flows, where 3-4 fold increases in DOC fluxes were observed during episodic events, consistent with PSC. These results imply that storms dramatically affects DOM export to coastal waters, whereby high river flow caused by episodic events primarily shunt terrestrial DOM to coastal waters, whereas low flow promotes in-stream DOM transformation and amendment with microbial DOM.
NASA Astrophysics Data System (ADS)
Hale, C. A.; Carling, G. T.; Fernandez, D. P.; Nelson, S.; Aanderud, Z.; Tingey, D. G.; Dastrup, D.
2017-12-01
Water chemistry in mountain streams is variable during spring snowmelt as shallow groundwater flow paths are activated in the watershed, introducing solutes derived from soil water. Sr isotopes and other tracers can be used to differentiate waters that have interacted with soils and dust (shallow groundwater) and bedrock (deep groundwater). To investigate processes controlling water chemistry during snowmelt, we analyzed 87Sr/86Sr ratios, Sr and other trace element concentrations in bulk snowpack, dust, soil, soil water, ephemeral channels, and river water during snowmelt runoff in the upper Provo River watershed in northern Utah, USA, over four years (2014-2017). Strontium concentrations in the river averaged 20 ppb during base flow and decreased to 10 ppb during snowmelt runoff. 87Sr/86Sr ratios were around 0.717 during base flow and decreased to 0.715 in 2014 and 0.713 in 2015 and 2016 during snowmelt, trending towards less radiogenic values of mineral dust inputs in the Uinta Mountain soils. Ephemeral channels, representing shallow flow paths with soil water inputs, had Sr concentrations between 7-20 ppb and 87Sr/86Sr ratios between 0.713-0.716. Snowpack Sr concentrations were generally <2 ppb with 87Sr/86Sr ratios between 0.710-711, similar to atmospheric dust inputs. The less radiogenic 87Sr/86Sr ratios and lower Sr concentrations in the river during snowmelt are likely a result of activating shallow groundwater flow paths, which allows melt water to interact with shallow soils that contain accumulated dust deposits with a less radiogenic 87Sr/86Sr ratio. These results suggest that flow paths and atmospheric dust are important to consider when investigating variable solute loads in mountain streams.
A millennium-length reconstruction of Bear River stream flow, Utah
R. J. DeRose; M. F. Bekker; S.-Y. Wang; B. M. Buckley; R. K. Kjelgren; T. Bardsley; T. M. Rittenour; E. B. Allen
2015-01-01
The Bear River contributes more water to the eastern Great Basin than any other river system. It is also the most significant source of water for the burgeoning Wasatch Front metropolitan area in northern Utah. Despite its importance for water resources for the regionâs agricultural, urban, and wildlife needs, our understanding of the variability of Bear Riverâs stream...
NASA Astrophysics Data System (ADS)
Wegener, Pam; Covino, Tim; Wohl, Ellen
2017-06-01
River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.
NASA Astrophysics Data System (ADS)
Luo, X.; Hong, Y.; Lei, X.; Leung, L. R.; Li, H. Y.; Getirana, A.
2017-12-01
As one essential component of the Earth system modeling, the continental-scale river routing computation plays an important role in applications of Earth system models, such as evaluating the impacts of the global change on water resources and flood hazards. The streamflow timing, which depends on the modeled flow velocities, can be an important aspect of the model results. River flow velocities have been estimated by using the Manning's equation where the Manning roughness coefficient is a key and sensitive parameter. In some early continental-scale studies, the Manning coefficient was determined with simplified methods, such as using a constant value for the entire basin. However, large spatial variability is expected in the Manning coefficients for the numerous channels composing the river network in distributed continental-scale hydrologic modeling. In the application of a continental-scale river routing model in the Amazon Basin, we use spatially varying Manning coefficients dependent on channel sizes and attempt to represent the dominant spatial variability of Manning coefficients. Based on the comparisons of simulation results with in situ streamflow records and remotely sensed river stages, we investigate the comparatively optimal Manning coefficients and explicitly demonstrate the advantages of using spatially varying Manning coefficients. The understanding obtained in this study could be helpful in the modeling of surface hydrology at regional to continental scales.
Debris flow occurrence and sediment persistence, Upper Colorado River Valley, CO
Grimsley, Kyle J; Rathburn, Sara L.; Friedman, Jonathan M.; Mangano, Joseph F.
2016-01-01
Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.
Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO
NASA Astrophysics Data System (ADS)
Grimsley, K. J.; Rathburn, S. L.; Friedman, J. M.; Mangano, J. F.
2016-07-01
Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.
Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.
Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F
2016-07-01
Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.
NASA Astrophysics Data System (ADS)
Baran, Nicole; Petelet-Giraud, Emmanuelle; Saplairoles, Maritxu
2015-04-01
Groundwater quality is increasingly monitored in Europe where various levels of nitrate and pesticide and/or metabolite contamination have been demonstrated (Loos et al., 2010, Stuart et al., 2012). The Groundwater Daughter Directive (2006/118/EC) to Water Framework Directive (WFD) particularly requires measures to prevent or limit inputs of pollutants into groundwater and compliance with good chemical status criteria (based on EU standards of nitrate and pesticides). The WFD mentioned the need to protect groundwater but also to have a particular regard to its impact and interrelationship with associated surface waters and directly dependent terrestrial Ecosystems. The Ariège river basin (SW France - 538 km²) is an alluvial plain under high agricultural pressure leading to a contamination of the aquifer by several pesticides and metabolites (Amalric et al., 2013). The Crieu is an allochtone river, crossing the plain (~ 10 km length) before joining the Ariège River. The Crieu is often dry in its middle section suggesting water leakage from surface water towards groundwater. At the opposite, the permanent flow observed downstream suggests an input of groundwater into surface water. In May 2014, while the Crieu flow was continuous through the plain, 7 river samples were collected and analyzed for pesticides, major ions, strontium concentration and isotopes. In situ measurements of electric conductivity were also performed as well as flow gauging. Two groundwaters close to the river were also sampled. The flow gauging measurements show a decreasing river discharge in the central area of the Crieu River, suggesting surface water leakage towards groundwater. Nevertheless, the electric conductivity increases along the river flow as well as some pesticides and nitrates concentrations. This chemical evolution of the river water is thus inconsistent with a simple water infiltration and another source of dissolved solutes is required to explain the increased of concentration. Finally, downstream the quantified pesticides were different from those observed in the upper part of the Crieu but similar to those observed in groundwater. Sr isotopes together with major elements and Sr concentrations allow to identify 3 distinct end-members to explain the river quality evolution : 1) surface water, 2) groundwater and 3) sub-surface water. On this basis, we first demonstrate that the contribution of the different end-members to the river flow is highly variable from upstream to downstream. Secondly, we evidence water exchanges between the river and the groundwater compartment and vice-versa. The combination of the isotopic and geochemical approaches was essential to understand the complex relations and exchanges between surface and ground-waters occurring in few kilometers along the Crieu River. This understanding allows the comprehension of spatial variability of surface water quality. This is of primary importance when to help water managers to select relevant sampling points to be monitored in the framework of the WFD. Amalric L., et al. (2013). International Journal of Environmental Analytical Chemistry, 93: 1660-1675 Loos R. et al. (2010). Water Research, 44: 4115-4126 Stuart M. et al. (2012). Science of the Total Environment, 416: 1-21.
Prediction of River Flooding using Geospatial and Statistical Analysis in New York, USA and Kent, UK
NASA Astrophysics Data System (ADS)
Marsellos, A.; Tsakiri, K.; Smith, M.
2014-12-01
Flooding in the rivers normally occurs during periods of excessive precipitation (i.e. New York, USA; Kent, UK) or ice jams during the winter period (New York, USA). For the prediction and mapping of the river flooding, it is necessary to evaluate the spatial distribution of the water (volume) in the river as well as study the interaction between the climatic and hydrological variables. Two study areas have been analyzed; one in Mohawk River, New York and one in Kent, United Kingdom (UK). A high resolution Digital Elevation Model (DEM) of the Mohawk River, New York has been used for a GIS flooding simulation to determine the maximum elevation value of the water that cannot continue to be restricted in the trunk stream and as a result flooding in the river may be triggered. The Flooding Trigger Level (FTL) is determined by incremental volumetric and surface calculations from Triangulated Irregular Network (TIN) with the use of GIS software and LiDAR data. The prediction of flooding in the river can also be improved by the statistical analysis of the hydrological and climatic variables in Mohawk River and Kent, UK. A methodology of time series analysis has been applied for the decomposition of the hydrological (water flow and ground water data) and climatic data in both locations. The KZ (Kolmogorov-Zurbenko) filter is used for the decomposition of the time series into the long, seasonal, and short term components. The explanation of the long term component of the water flow using the climatic variables has been improved up to 90% for both locations. Similar analysis has been performed for the prediction of the seasonal and short term component. This methodology can be applied for flooding of the rivers in multiple sites.
Application of the Newtonian nudging data assimilation method for the Biebrza River flow model
NASA Astrophysics Data System (ADS)
Miroslaw-Swiatek, Dorota
2010-05-01
Data assimilation provides a tool for integrating observations of spatially distributed environmental variables with model predictions. In this paper a simple data assimilation technique, the Newtonian nudging to individual observations method, has been implemented in the 1D St. Venant equations. The method involves adding a term to the prognostic equation. This term is proportional to the difference between the value calculated in the model at a given point in time and space and the one resulted from observations. Improving the model with available measurement observations is accomplished by adequate weighting functions, that can incorporate prior knowledge about the spatial and temporal variability of the state variables being assimilated. The article contains a description of the numerical model, which employs the finite element method (FEM) to solve the 1D St. Venant equations modified by the ‘nudging' method. The developed model was applied to the Biebrza River, situated in the north-eastern part of Poland, flowing through the last extensive, fairly undisturbed river-marginal peatland in Europe. A 41 km long reach of the Lower Biebrza River described by 68 cross-sections was selected for the study. The observed water stage collected by automatic sensors was the subject of the data assimilation in the Newtonian nudging to individual observations method. The water level observation data were collected in four observation points along a river with time interval 6 hours for one year. The obtained results show a prediction with no nudging and influence of the nudging term on water stages forecast. The developed model enables integrating water stage observation with an unsteady river flow model for improved water level prediction.
Multiple causes of nonstationarity in the Weihe annual low-flow series
NASA Astrophysics Data System (ADS)
Xiong, Bin; Xiong, Lihua; Chen, Jie; Xu, Chong-Yu; Li, Lingqi
2018-02-01
Under the background of global climate change and local anthropogenic activities, multiple driving forces have introduced various nonstationary components into low-flow series. This has led to a high demand on low-flow frequency analysis that considers nonstationary conditions for modeling. In this study, through a nonstationary frequency analysis framework with the generalized linear model (GLM) to consider time-varying distribution parameters, the multiple explanatory variables were incorporated to explain the variation in low-flow distribution parameters. These variables are comprised of the three indices of human activities (HAs; i.e., population, POP; irrigation area, IAR; and gross domestic product, GDP) and the eight measuring indices of the climate and catchment conditions (i.e., total precipitation P, mean frequency of precipitation events λ, temperature T, potential evapotranspiration (EP), climate aridity index AIEP, base-flow index (BFI), recession constant K and the recession-related aridity index AIK). This framework was applied to model the annual minimum flow series of both Huaxian and Xianyang gauging stations in the Weihe River, China (also known as the Wei He River). The results from stepwise regression for the optimal explanatory variables show that the variables related to irrigation, recession, temperature and precipitation play an important role in modeling. Specifically, analysis of annual minimum 30-day flow in Huaxian shows that the nonstationary distribution model with any one of all explanatory variables is better than the one without explanatory variables, the nonstationary gamma distribution model with four optimal variables is the best model and AIK is of the highest relative importance among these four variables, followed by IAR, BFI and AIEP. We conclude that the incorporation of multiple indices related to low-flow generation permits tracing various driving forces. The established link in nonstationary analysis will be beneficial to analyze future occurrences of low-flow extremes in similar areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carolli, Mauro, E-mail: mauro.carolli@unitn.it; Geneletti, Davide, E-mail: davide.geneletti@unitn.it; Zolezzi, Guido, E-mail: guido.zolezzi@unitn.it
The provision of important river ecosystem services (ES) is dependent on the flow regime. This requires methods to assess the impacts on ES caused by interventions on rivers that affect flow regime, such as water abstractions. This study proposes a method to i) quantify the provision of a set of river ES, ii) simulate the effects of water abstraction alternatives that differ in location and abstracted flow, and iii) assess the impact of water abstraction alternatives on the selected ES. The method is based on river modelling science, and integrates spatially distributed hydrological, hydraulic and habitat models at different spatialmore » and temporal scales. The method is applied to the hydropeaked upper Noce River (Northern Italy), which is regulated by hydropower operations. We selected locally relevant river ES: habitat suitability for the adult marble trout, white-water rafting suitability, hydroelectricity production from run-of-river (RoR) plants. Our results quantify the seasonality of river ES response variables and their intrinsic non-linearity, which explains why the same abstracted flow can produce different effects on trout habitat and rafting suitability depending on the morphology of the abstracted reach. An economic valuation of the examined river ES suggests that incomes from RoR hydropower plants are of comparable magnitude to touristic revenue losses related to the decrease in rafting suitability.« less
NASA Astrophysics Data System (ADS)
Sui, Pengzhe; Iwasaki, Akito; Ryo, Masahiro; Saavedra, Oliver; Yoshimura, Chihiro
2013-04-01
Flow conditions play an important role in sustaining biodiversity of river ecosystem. However, their relations to freshwater fishes, especially to fish population density, have not been clearly described. This study, therefore, aimed to propose a new methodology to quantitatively link habitat conditions, including flow conditions and other physical conditions, to population density of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model (DHM) in order to estimate fish population density with particular attention to flow conditions. Generalized linear model (GLM) was employed to evaluate the relationship between population density of fish species and major environmental factors. The target basin was Sagami River in central Japan, where the river reach was divided into 10 sections by estuary, confluences of tributaries, and river-crossing structures (dams, weirs). The DHM was employed to simulate river discharge from 1998 to 2005, which was used to calculate 10 flow indices including mean discharge, 25th and 75th percentile discharge, duration of low and high flows, number of floods. In addition, 5 water quality parameters and 13 other physical conditions (such as basin area, river width, mean diameter of riverbed material, and number of river-crossing structures upstream and downstream) of each river section were considered as environmental variables. In case of Sagami River, 10 habitat variables among them were then selected based on their correlations to avoid multicollinearity. Finally, the best GLM was developed for each species based on Akaike's information criterion. As results, population densities of 16 fish species in Sagami River were modelled, and correlation coefficients between observed and calculated population densities for 10 species were more than 0.70. The key habitat factors for population density varied among fish species. Minimum discharge (MID) was found to be positively correlated to 9 among 16 fish species. For duration of high and low flows (DHF and DLF), longer DHF/DLF was corresponded to lower population density for 7/6 fish species, respectively, such as Rhinogobius kurodai and Plecoglossus altivelis altivelis. Among physical habitat conditions, sinuosity index (SI, the ratio between actual river section length and straight line length) seems to be the most important parameter for fish population density in Sagami River basin, since it affects 12 out of 16 fish species, followed by mean longitudinal slope (S) and number of downstream dams (NLD). Above results demonstrated the applicability of fish distribution model to provide quantitative information on flow conditions required to maintain fish population, which enabled us to evaluate and project ecological consequences of water resource management policy, such as flood management and water withdrawal.
NASA Astrophysics Data System (ADS)
Parry, Simon; Barker, Lucy; Hannaford, Jamie; Prudhomme, Christel; Smith, Katie; Svensson, Cecilia; Tanguy, Maliko
2017-04-01
Hydrological droughts of the last 50 years in the UK have been well characterised owing to a relatively dense hydrometric network. Prior to this, observed river flow data were generally limited in their spatial coverage and often subject to considerable uncertainty. Whilst qualitative records indicate the occurrence of severe droughts in the late 19th and early 20th centuries, including scenarios which may cause substantial impacts to contemporary water supply systems, existing observations are not sufficient to describe their spatio-temporal characteristics. As such, insights on drought in the UK are constrained and a range of stakeholders including water companies and regulators would benefit from a more thorough assessment of historic drought characteristics and their variability. The multi-disciplinary Historic Droughts project aims to rigorously characterise droughts in the UK to inform improved drought management and communication. Driven by rainfall and potential evapotranspiration data that have been extended using recovered records, lumped catchment hydrological models are used to reconstruct daily river flows from 1890 to 2015 for more than 200 catchments across the UK. The reconstructions are derived within a state-of-the-art modelling framework which allows a comprehensive assessment of model, structure and parameter uncertainty. Standardised and threshold-based indicators are applied to the river flow reconstructions to identify and characterise hydrological drought events. The reconstructions are most beneficial in comprehensively describing well known but poorly quantified late 19th and early 20th century droughts, placing the spatial and temporal footprint of these often extreme events within the context of modern episodes for the first time. Oscillations between drought-rich and drought-poor periods are shown not to be limited to the recent observational past, providing an increased sample size of events against which to test a range of airflow and oceanic index patterns as potential drivers of streamflow drought. The quantification of changes over time in both the mean and the variability of drought frequency, duration, severity and termination benefits from the temporal extent of the river flow reconstructions, assessing the temporal variability of drought over more prolonged timescales than previous drought trend studies. When considered alongside complimentary reconstructions of rainfall and groundwater levels, the characteristics of propagation from meteorological to hydrological drought are analysed to an extent not previously possible. The unprecedented spatio-temporal coverage of the river flow reconstructions has yielded important new insights on historic droughts in the UK. It is hoped that this more robust assessment of the historical variability of hydrological drought in the UK will underpin enhanced drought planning and management.
Assessment of floodplain vulnerability during extreme Mississippi River flood 2011
Goodwell, Allison E.; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A.; Kumar, Praveen; Garcia, Marcelo H.; Rhoads, Bruce L.; Holmes, Robert R.; Parker, Gary; Berretta, David P.; Jacobson, Robert B.
2014-01-01
Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km2 agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding.
Assessment of floodplain vulnerability during extreme Mississippi River flood 2011.
Goodwell, Allison E; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A; Kumar, Praveen; Garcia, Marcelo H; Rhoads, Bruce L; Holmes, Robert R; Parker, Gary; Berretta, David P; Jacobson, Robert B
2014-01-01
Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km(2) agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding.
Effect of climate change on environmental flow indicators in the narew basin, poland.
Piniewski, Mikołaj; Laizé, Cédric L R; Acreman, Michael C; Okruszko, Tomasz; Schneider, Christof
2014-01-01
Environmental flows-the quantity of water required to maintain a river ecosystem in its desired state-are of particular importance in areas of high natural value. Water-dependent ecosystems are exposed to the risk of climate change through altered precipitation and evaporation. Rivers in the Narew basin in northeastern Poland are known for their valuable river and wetland ecosystems, many of them in pristine or near-pristine condition. The objective of this study was to assess changes in the environmental flow regime of the Narew river system, caused by climate change, as simulated by hydrological models with different degrees of physical characterization and spatial aggregation. Two models were assessed: the river basin scale model Soil and Water Assessment Tool (SWAT) and the continental model of water availability and use WaterGAP. Future climate change scenarios were provided by two general circulation models coupled with the A2 emission scenario: IPSL-CM4 and MIROC3.2. To assess the impact of climate change on environmental flows, a method based conceptually on the "range of variability" approach was used. The results indicate that the environmental flow regime in the Narew basin is subject to climate change risk, whose magnitude and spatial variability varies with climate model and hydrological modeling scale. Most of the analyzed sites experienced moderate impacts for the Generic Environmental Flow Indicator (GEFI), the Floodplain Inundation Indicator, and the River Habitat Availability Indicator. The consistency between SWAT and WaterGAP for GEFI was medium: in 55 to 66% of analyzed sites, the models suggested the same level of impact. Hence, we suggest that state-of-the-art, high-resolution, global- or continental-scale models, such as WaterGAP, could be useful tools for water management decision-makers and wetland conservation practitioners, whereas models such as SWAT should serve as a complementary tool for more specific, smaller-scale, local assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Wedgbrow, C. S.; Wilby, R. L.; Fox, H. R.; O'Hare, G.
2002-02-01
Future climate change scenarios suggest enhanced temporal and spatial gradients in water resources across the UK. Provision of seasonal forecast statistics for surface climate variables could alleviate some negative effects of climate change on water resource infrastructure. This paper presents a preliminary investigation of spatial and temporal relationships between large-scale North Atlantic climatic indices, drought severity and river flow anomalies in England and Wales. Potentially useful predictive relationships are explored between winter indices of the Polar-Eurasian (POL) teleconnection pattern, the North Atlantic oscillation (NAO), North Atlantic sea surface temperature anomalies (SSTAs), and the summer Palmer drought severity index (PDSI) and reconstructed river flows in England and Wales. Correlation analyses, coherence testing and an index of forecast potential, demonstrate that preceding winter values of the POL index, SSTA (and to a lesser extent the NAO), provide indications of summer and early autumn drought severity and river flow anomalies in parts of northwest, southwest and southeast England. Correlation analyses demonstrate that positive winter anomalies of T1, POL index and NAO index are associated with negative PDSI (i.e. drought) across eastern parts of the British Isles in summer (r < 0.51). Coherence tests show that a positive winter SSTA (1871-1995) and POL index (1950-95) have preceded below-average summer river flows in the northwest and southwest of England and Wales in 70 to 100% of summers. The same rivers have also experienced below-average flows during autumn following negative winter phases of the NAO index in 64 to 93% of summers (1865-1995). Possible explanations for the predictor-predictand relationships are considered, including the memory of groundwater, and ocean-atmosphere coupling, and regional manifestations of synoptic rainfall processes. However, further research is necessary to increase the number of years and predictor variables from which it is possible to derive rules that may be useful for forecasting.
Detection of Flooding Responses at the River Basin Scale Enhanced by Land use Change
NASA Technical Reports Server (NTRS)
McCormick, Brian C.; Eshleman, Keith N.; Griffith, Jeff L.; Townsend, Philip A.
2009-01-01
The Georges Creek watershed (area 187.5 sq km) in western Maryland (United States) has experienced land use changes (>17% of area) associated with surface mining of coal. The adjacent Savage River watershed (area 127.2 sq km) is unmined. Moments of flood frequency distributions indicated that climatic variability affected both watersheds similarly. Normalizing annual maximum flows by antecedent streamflow and causative precipitation helped identify trends in flooding response. Analysis of contemporary storm events using Next Generation Weather Radar (NEXRAD) stage III precipitation data showed that Georges Creek floods are characterized by higher peak runoff and a shorter centroid lag than Savage River floods, likely attributable to differences in current land use. Interestingly, Georges Creek produces only two thirds of the storm-flow volume as Savage River, apparently because of infiltration into abandoned deep mine workings and an associated transbasin diversion constructed circa 1900. Empirical trend analysis is thus complicated by both hydroclimatic variability and the legacy of deep mining in the basin.
Flood dependency of cottonwood establishment along the Missouri River, Montana, USA
Scott, M.L.; Auble, G.T.; Friedman, J.M.
1997-01-01
Flow variability plays a central role in structuring the physical environment of riverine ecosystems. However, natural variability in flows along many rivers has been modified by water management activities. We quantified the relationship between flow and establishment of the dominant tree (plains cottonwood, Populus deltoides subsp. monilifera) along one of the least hydrologically altered alluvial reaches of the Missouri River: Coal Banks Landing to Landusky, Montana. Our purpose was to refine our understanding of how local fluvial geomorphic processes condition the relationship between flow regime and cottonwood recruitment. We determined date and elevation of tree establishment and related this information to historical peak stage and discharge over a 112-yr hydrologic record. Of the excavated trees, 72% were established in the year of a flow >1400 m3/s (recurrence interval of 9.3 yr) or in the following 2 yr. Flows of this magnitude or greater create the necessary bare, moist establishment sites at an elevation high enough to allow cottonwoods to survive subsequent floods and ice jams. Almost all cottonwoods that have survived the most recent flood (1978) were established >1.2 m above the lower limit of perennial vegetation (active channel shelf). Most younger individuals were established between 0 and 1.2 m, and are unlikely to survive over the long term. Protection of riparian cottonwood forest along this National Wild and Scenic section of the Missouri River depends upon maintaining the historical magnitude, frequency, and duration of floods > 1400 m3/s. Here, a relatively narrow valley constrains lateral channel movement that could otherwise facilitate cottonwood recruitment at lower flows. Effective management of flows to promote or maintain cottonwood recruitment requires an understanding of locally dominant fluvial geomorphic processes.
Paretti, Nicholas; Brasher, Anne M. D.; Pearlstein, Susanna L.; Skow, Dena M.; Gungle, Bruce W.; Garner, Bradley D.
2018-05-15
A 3-year study was undertaken to evaluate the suitability of the available modeling tools for characterizing environmental flows in the middle Verde River watershed of central Arizona, describe riparian vegetation throughout the watershed, and estimate sediment mobilization in the river. Existing data on fish and macroinvertebrates were analyzed in relation to basin characteristics, flow regimes, and microhabitat, and a pilot study was conducted that sampled fish and macroinvertebrates and the microhabitats in which they were found. The sampling for the pilot study took place at five different locations in the middle Verde River watershed. This report presents the results of this 3-year study. The Northern Arizona Groundwater Flow Model (NARGFM) was found to be capable of predicting long-term changes caused by alteration of regional recharge (such as may result from climate variability) and groundwater pumping in gaining, losing, and dry reaches of the major streams in the middle Verde River watershed. Over the period 1910 to 2006, the model simulated an increase in dry reaches, a small increase in reaches losing discharge to the groundwater aquifer, and a concurrent decrease in reaches gaining discharge from groundwater. Although evaluations of the suitability of using the NARGFM and Basin Characteristic Model to characterize various streamflow intervals showed that smallerscale basin monthly runoff could be estimated adequately at locations of interest, monthly stream-flow estimates were found unsatisfactory for determining environmental flows.Orthoimagery and Moderate Resolution Imaging Spectroradiometer data were used to quantify stream and riparian vegetation properties related to biotic habitat. The relative abundance of riparian vegetation varied along the main channel of the Verde River. As would be expected, more upland plant species and fewer lowland species were found in the upper-middle section compared to the lower-middle section, and vice-versa. Vegetation changes within the upper-middle and lower-middle reaches are related to differences in climate and hydrology. In general, the riparian vegetation of the middle Verde River watershed is that of a healthy ecosystem’s mixed age, mixed patch structure, likely a result of the mostly unaltered disturbance regime.The frequency of in-river hydrogeomorphic features (pool, riffle, run) varied along the middle Verde River channel. There was a greater abundance of riffle habitat in the upper-middle reach; the lower-middle reach included more pool habitat. The Oak Creek tributary was more homogenous in geomorphic stream habitat composition than West Clear Creek, where runs dominated the upper reaches and pools dominated many of the lower reaches.On the basis of the period of record and discharges recorded at 15-minute intervals, five flows were found to reach the gravel-transport threshold. Sediment mobilization computed with flows averaged over daily time steps yielded just three flows that reached the gravel-transport threshold, and monthly averaged flows yielded none. In the middle Verde River watershed, 15-minute data should be used when possible to evaluate sediment transport in the river system.Data from more than 300 fish surveys conducted from 1992 to 2011 were analyzed using two schemes, one that divided the river into five reaches based on basin characteristics, and a second that divided the river into five reaches based on degree of flow alteration (specifically, diversions). Fish community metrics and assemblage data were used to analyze patterns of species composition and abundance in the two approaches. Overall, native and non-native species were regularly interacting and probably competing for similar resources. Fish abundances were also analyzed in response to floods and other flow metrics. Although the data are limited, native fish abundances increased more rapidly than non-native fish abundances in response to large floods. The basin-characteristic reach analysis showed native fish in greater abundance in the upper-middle reaches of the Verde River watershed and generally decreasing with downstream distance. The median relative abundance of native fish decreased by 50 percent from reach 1 to reach 5. Using the reach scheme based on degree of flow alteration, nondiverted reaches were found to have a greater abundance of native fish than diverted reaches. In heavily diverted reaches, non-native species outnumbered native species.Fish metrics and stream-flow metrics for the 30, 90, and 365-day periods before collection were computed and the results analyzed statistically. Only abundance of all fish species was associated with the 30-day flow metrics. The 90-day flow metrics were generally positively associated with fish metrics, whereas the 365-day flow metrics had more negative correlations. In particular, significant relations were found between fish metrics and the magnitude and frequency of high flows, including maximum monthly flow, median annual number of high-flow events, and median annual maximum streamflow. Native sucker (Catostomidae) populations tended to decrease in periods of extended base flow, and fish in the non-native sunfish family (Centrarchidae) decreased in periods of flashy, high magnitude flows.A pilot study surveyed fish at five locations in the upper part of the middle Verde River watershed as a means to measure microhabitat availability and quantify native and non-native fish use of that available microhabitat. Results indicated that native and non-native species exhibit some clear differences in microhabitat use. Although at least some native and non-native fish were found in each velocity, depth, and substrate category, preferential microhabitat use was common. On a percentage basis, non-native species had a strong preference for slow-moving and deeper water with silt and sand substrate, with a secondary preference for faster moving and very shallow water and a coarse gravel substrate. Native species showed a general preference for somewhat faster, moderate depth water over coarse gravel and had no clear secondary preference.Macroinvertebrate-variables index period, high-flow year, and collection location (upper-middle Verde River, lowermiddle Verde River, or Verde River tributaries) were found to be important explanatory variables in differentiating among community metrics. Overall richness (number of unique taxa), Shannon’s diversity index, and the percent of the most dominant taxa were all highly correlated, but their response to each macroinvertebrate variable was different. The percentage of mayfly (order Ephemeroptera) taxa was significantly higher in Oak Creek and the upper-middle and lower-middle Verde River reaches, locations which have higher flows and more urbanization than other reaches. When community metrics were related to hydrologic metrics, caddisfly (order Trichoptera) populations appeared to increase and mayfly populations to decrease in response to less flashy and more stable streamflows. Conversely, caddisfly populations appeared to decrease and mayfly populations to increase in response to greater flow variability.Six locations along the Verde River were sampled for macroinvertebrates as part of a pilot study associated with this report—(1) below Granite Creek, (2) near Campbell Ranch, (3) at the U.S. Geological Survey Paulden gage, (4) at the Perkinsville Bridge, (5) at the USGS Clarkdale gage, and (6) near the Reitz Ranch property. A nonmetric multidimensional scaling ordination of macroinvertebrate assemblages showed that the Verde River below Granite Creek site was different from the five other sites and that the Perkinsville Bridge and near Reitz Ranch samples had similar community structure. The near Campbell Ranch and Paulden gage locations had similar microhabitat characteristics, with the exception of riparian cover, yet the assemblage structure was very different. The different community composition at Verde River below Granite Creek was likely due to it having the smallest substrate sizes, lowest velocities, shallowest depths, and most riparian cover of the six sites.
NASA Astrophysics Data System (ADS)
Xu, Y. J.
2016-02-01
Dujiangyan, also known as the Dujiangyan Project, is a hydraulic engineering complex built more than 2260 years ago on the Mingjiang River near Chengdu in China's Sichuan Province. The complex splits the river into two channels, a so-called "inner river" (Leijiang) and an "outer river" (Waijiang) that carry variable water volumes and sediment loads under different river flow conditions. The inner river and its numerous distributary canals are primarily man-made for irrigation over the past 2000 years, while the outer river is the natural channel and flows southward before entering into the Yangtze River. Under normal flow, 60% of the Mingjiang River goes into the inner river for irrigating nearly 1 million hectares of agricultural land on the Chengdu plain. During floods, however, less than 40% of the Mingjiang River flows into the inner river. Under both flow conditions, about 80% of the riverine sediments is carried by the outer river and continues downstream. This hydrology is achieved through a weir work complex that comprises three major components: a V-shaped bypass dike in the center of the Mingjiang River (the Yuzui Bypass Dike, see photo below), a sediment diversion canal in the inner river below the bypass dike (the Feishayan Floodgate), and a flow control in the inner river below the sediment diversion canal (the Baopingkou Diversion Passage). Together with ancillary embankments, these structures have not only ensured a regular supply of silt-reduced water to the fertile Chengdu plain, but have provided great benefits in flood control, sediment transport, and water resources regulation over the past two thousand years. The design of this ancient hydraulic complex ingeniously conforms to the natural environment while incorporating many sophisticated techniques, reflecting the concept that humankind is an integral part of nature. As we are urgently seeking solutions today to save the sinking Mississippi River Delta, examination of the ancient engineering marvel may offer insights into sustainable practices in river engineering of the lower Mississippi under climate change and sea level rise. This paper will introduce the Dujiangyan Project and will discuss possibilities of applying Dujiangyan's fundamental concept for sediment diversions in the Lower Mississippi River.
NASA Astrophysics Data System (ADS)
Gore, J.; Pasternack, G. B.; Wiener, J.
2016-12-01
Process-based river classification tends to be done at reach to catchment scales assuming channels are uniform and thus differentiated by the simple specific stream power metric. In fact, mountain rivers are highly variable at subreach scales to the point that local topographic steering may be the dominant control on geomorphic processes. This study presents a new framework for characterizing how stage-dependent topographic steering varies continuously down a river, leading to a classification of subreach landforms on the basis of the geomorphic mechanism of flow convergence routing. The two remote mountain river segments were located in the 3480-km2 Yuba River, with the upper South Yuba having a substantial sediment supply from legacy hydraulic gold mining and the mainstem Yuba downstream of New Bullards Bar Dam having a restricted sediment supply. Meter-scale DEMs were produced for both cases using airborne LiDAR and survey data. DEMs were slope detrended to focus the analysis on cross-sectional variability. DEMs were then heavily smoothed to allow for automated tracing of the valley centerline, and then cross-sectional rectangles were spaced every 5 m. The average width (W) and detrended bed elevation (Z) of the wetted area was computed from the DEM for each raster for 6-7 different river stages. Both width and cross-sectionally averaged bed elevation were standardized. The product of these two variables was computed as a measure of cross-sectional area, and is termed the geomorphic covariance (Czw) series when plotted along each river corridor. Cwz was then used to classify each cross-section as one of five distinct landform types: nozzle, wide bar, normal channel, constricted pool, and oversized pool- with this classification varying with discharge such that a section could, for example, function as a nozzle during low flow but an oversized pool at high flow, or any other combination. Longitudinal profiles of bed elevation, width, covariance, and landform type were analyzed for their stage-dependent patterns to understand their geomorphic significance and to contrast the two rivers. This new method may be the first example of a hierarchical, process-based classification at the subreach scale in which one mechanism is assessed for how it varies not only in space, but as a function of discharge.
Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes
Freeman, Mary C.; Bowen, Z.H.; Bovee, K.D.; Irwin, E.R.
2001-01-01
Conserving biological resources native to large river systems increasingly depends on how flow-regulated segments of these rivers are managed. Improving management will require a better understanding of linkages between river biota and temporal variability of flow and instream habitat. However, few studies have quantified responses of native fish populations to multiyear (>2 yr) patterns of hydrologic or habitat variability in flow-regulated systems. To provide these data, we quantified young-of-year (YOY) fish abundance during four years in relation to hydrologic and habitat variability in two segments of the Tallapoosa River in the southeastern United States. One segment had an unregulated flow regime, whereas the other was flow-regulated by a peak-load generating hydropower dam. We sampled fishes annually and explored how continuously recorded flow data and physical habitat simulation models (PHABSIM) for spring (April-June) and summer (July-August) preceding each sample explained fish abundances. Patterns of YOY abundance in relation to habitat availability (median area) and habitat persistence (longest period with habitat area continuously above the long-term median area) differed between unregulated and flow-regulated sites. At the unregulated site, YOY abundances were most frequently correlated with availability of shallow-slow habitat in summer (10 species) and persistence of shallow-slow and shallow-fast habitat in spring (nine species). Additionally, abundances were negatively correlated with 1-h maximum flow in summer (five species). At the flow-regulated site, YOY abundances were more frequently correlated with persistence of shallow-water habitats (four species in spring; six species in summer) than with habitat availability or magnitude of flow extremes. The associations of YOY with habitat persistence at the flow-regulated site corresponded to the effects of flow regulation on habitat patterns. Flow regulation reduced median flows during spring and summer, which resulted in median availability of shallow-water habitats comparable to the unregulated site. However, habitat persistence was severely reduced by flow fluctuations resulting from pulsed water releases for peak-load power generation. Habitat persistence, comparable to levels in the unregulated site, only occurred during summer when low rainfall or other factors occasionally curtailed power generation. As a consequence, summer-spawning species numerically dominated the fish assemblage at the flow-regulated site; five of six spring-spawning species occurring at both study sites were significantly less abundant at the flow-regulated site. Persistence of native fishes in flow-regulated systems depends, in part, on the seasonal occurrence of stable habitat conditions that facilitate reproduction and YOY survival.
NASA Astrophysics Data System (ADS)
Chen, X.; Song, X.; Shuai, P.; Hammond, G. E.; Ren, H.; Zachara, J. M.
2017-12-01
Hydrologic exchange flows (HEFs) in rivers play vital roles in watershed ecological and biogeochemical functions due to their strong capacity to attenuate contaminants and process significant quantities of carbon and nutrients. While most of existing HEF studies focus on headwater systems with the assumption of steady-state flow, there is lack of understanding of large-scale HEFs in high-order regulated rivers that experience high-frequency stage fluctuations. The large variability of HEFs is a result of interactions between spatial heterogeneity in hydrogeologic properties and temporal variation in river discharge induced by natural or anthropogenic perturbations. Our 9-year spatially distributed dataset (water elevation, specific conductance, and temperature) combined with mechanistic hydrobiogeochemical simulations have revealed complex spatial and temporal dynamics in km-scale HEFs and their significant impacts on contaminant plume mobility and hyporheic biogeochemical processes along the Hanford Reach. Extended multidirectional flow behaviors of unconfined, river corridor groundwater were observed hundreds of meters inland from the river shore resulting from discharge-dependent HEFs. An appropriately sized modeling domain to capture the impact of regional groundwater flow as well as knowledge of subsurface structures controlling intra-aquifer hydrologic connectivity were essential to realistically model transient storage in this large-scale river corridor. This work showed that both river water and mobile groundwater contaminants could serve as effective tracers of HEFs, thus providing valuable information for evaluating and validating the HEF models. Multimodal residence time distributions with long tails were resulted from the mixture of long and short exchange pathways, which consequently impact the carbon and nutrient cycling within the river corridor. Improved understanding of HEFs using integrated observational and modeling approaches sheds light on developing fundamental understanding of the influences of HEFs on water quality, nutrient dynamics, and ecosystem health in dynamic river corridor systems.
Macroscale water fluxes 3. Effects of land processes on variability of monthly river discharge
Milly, P.C.D.; Wetherald, R.T.
2002-01-01
A salient characteristic of river discharge is its temporal variability. The time series of flow at a point on a river can be viewed as the superposition of a smooth seasonal cycle and an irregular, random variation. Viewing the random component in the spectral domain facilitates both its characterization and an interpretation of its major physical controls from a global perspective. The power spectral density functions of monthly flow anomalies of many large rivers worldwide are typified by a "red noise" process: the density is higher at low frequencies (e.g., <1 y-1) than at high frequencies, indicating disproportionate (relative to uncorrelated "white noise") contribution of low frequencies to variability of monthly flow. For many high-latitude and arid-region rivers, however, the power is relatively evenly distributed across the frequency spectrum. The power spectrum of monthly flow can be interpreted as the product of the power spectrum of monthly basin total precipitation (which is typically white or slightly red) and several filters that have physical significance. The filters are associated with (1) the conversion of total precipitation (sum of rainfall and snowfall) to effective rainfall (liquid flux to the ground surface from above), (2) the conversion of effective rainfall to soil water excess (runoff), and (3) the conversion of soil water excess to river discharge. Inferences about the roles of each filter can be made through an analysis of observations, complemented by information from a global model of the ocean-atmosphere-land system. The first filter causes a snowmelt-related amplification of high-frequency variability in those basins that receive substantial snowfall. The second filter causes a relatively constant reduction in variability across all frequencies and can be predicted well by means of a semiempirical water balance relation. The third filter, associated with groundwater and surface water storage in the river basin, causes a strong reduction in high-frequency variability of many basins. The strength of this reduction can be quantified by an average residence time of water in storage, which is typically on the order of 20-50 days. The residence time is demonstrably influenced by freezing conditions in the basin, fractional cover of the basin by lakes, and runoff ratio (ratio of mean runoff to mean precipitation). Large lake areas enhance storage and can greatly increase total residence times (100 to several hundred days). Freezing conditions appear to cause bypassing of subsurface storage, thus reducing residence times (0-30 days). Small runoff ratios tend to be associated with arid regions, where the water table is deep, and consequently, most of the runoff is produced by processes that bypass the saturated zone, leading to relatively small residence times for such basins (0-40 days).
NASA Astrophysics Data System (ADS)
Blauhut, Veit; Stölzle, Michael; Stahl, Kerstin
2017-04-01
Drought induced low flow extremes, despite a variety of management strategies, can cause direct and indirect impacts on socio economic and ecological functions of rivers. These negative effects determine local risk and are a function of the regional drought hazard and the river system's vulnerability. Whereas drought risk analysis is known to be essential for drought management, risk analysis for low flow is less common. Where no distributed hydrological models exist, merely the local hazard at gauging stations is available to represent the entire catchment. Vulnerability information are only sparsely available. Hence, a comprehensive understanding of the drivers of low flow risk along the longitudinal river profile is often lacking. For two different rivers in southwestern Germany, this study analysed major low flow events of the past five decades. Applying a transdisciplinary approach, the hazard component is assessed by hydro-climatic analysis, hydrological modelling and forward looking stress test scenarios; the vulnerability component is estimated by a combination of impact assessment and vulnerability estimation, based on stakeholder workshops, questionnaires and regional characteristics. The results show distinct differences in low flow risk between the catchments and along the river. These differences are due to: hydrogeological characteristics that govern groundwater-surface water interaction, catchment-specific anthropogenic stimuli such as low flow decrease by near-stream groundwater pumping for public water supply or low flow augmentation by treatment plant discharge. Thus, low flow risk is anthropogenically influenced in both ways: positive and negative. Furthermore, the measured longitudinal profiles highlight the impracticability of single gauges to represent quantitative and qualitative conditions of entire rivers. Hence, this work calls for a comprehensive spatially variable consideration of flow characteristics and human influences to analyse low flow risk as the basis for an adequate low flow management.
Kupferberg, Sarah J; Palen, Wendy J; Lind, Amy J; Bobzien, Steve; Catenazzi, Alessandro; Drennan, Joe; Power, Mary E
2012-06-01
Widespread alteration of natural hydrologic patterns by large dams combined with peak demands for power and water delivery during summer months have resulted in frequent aseasonal flow pulses in rivers of western North America. Native species in these ecosystems have evolved with predictable annual flood-drought cycles; thus, their likelihood of persistence may decrease in response to disruption of the seasonal synchrony between stable low-flow conditions and reproduction. We evaluated whether altered flow regimes affected 2 native frogs in California and Oregon (U.S.A.) at 4 spatial and temporal extents. We examined changes in species distribution over approximately 50 years, current population density in 11 regulated and 16 unregulated rivers, temporal trends in abundance among populations occupying rivers with different hydrologic histories, and within-year patterns of survival relative to seasonal hydrology. The foothill yellow-legged frog (Rana boylii), which breeds only in flowing water, is more likely to be absent downstream of large dams than in free-flowing rivers, and breeding populations are on average 5 times smaller in regulated rivers than in unregulated rivers. Time series data (range = 8 - 19 years) from 5 populations of yellow-legged frogs and 2 populations of California red-legged frogs (R. draytonii) across a gradient of natural to highly artificial timing and magnitude of flooding indicate that variability of flows in spring and summer is strongly correlated with high mortality of early life stages and subsequent decreases in densities of adult females. Flow management that better mimics natural flow timing is likely to promote persistence of these species and others with similar phenology. ©2012 Society for Conservation Biology.
Flow and residence times of dynamic river bank storage and sinuosity-driven hyporheic exchange
Gomez-Velez, J.D.; Wilson, J.L.; Cardenas, M.B.; Harvey, Judson
2017-01-01
Hydrologic exchange fluxes (HEFs) vary significantly along river corridors due to spatiotemporal changes in discharge and geomorphology. This variability results in the emergence of biogeochemical hot-spots and hot-moments that ultimately control solute and energy transport and ecosystem services from the local to the watershed scales. In this work, we use a reduced-order model to gain mechanistic understanding of river bank storage and sinuosity-driven hyporheic exchange induced by transient river discharge. This is the first time that a systematic analysis of both processes is presented and serves as an initial step to propose parsimonious, physics-based models for better predictions of water quality at the large watershed scale. The effects of channel sinuosity, alluvial valley slope, hydraulic conductivity, and river stage forcing intensity and duration are encapsulated in dimensionless variables that can be easily estimated or constrained. We find that the importance of perturbations in the hyporheic zone's flux, residence times, and geometry is mainly explained by two-dimensionless variables representing the ratio of the hydraulic time constant of the aquifer and the duration of the event (Γd) and the importance of the ambient groundwater flow ( ). Our model additionally shows that even systems with small sensitivity, resulting in small changes in the hyporheic zone extent, are characterized by highly variable exchange fluxes and residence times. These findings highlight the importance of including dynamic changes in hyporheic zones for typical HEF models such as the transient storage model.
Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States
Lundquist, J.D.; Cayan, D.R.
2002-01-01
The diurnal cycle in streamflow constitutes a significant part of the variability in many rivers in the western United States and can be used to understand some of the dominant processes affecting the water balance of a given river basin. Rivers in which water is added diurnally, as in snowmelt, and rivers in which water is removed diurnally, as in evapotranspiration and infiltration, exhibit substantial differences in the timing, relative magnitude, and shape of their diurnal flow variations. Snowmelt-dominated rivers achieve their highest sustained flow and largest diurnal fluctuations during the spring melt season. These fluctuations are characterized by sharp rises and gradual declines in discharge each day. In large snowmelt-dominated basins, at the end of the melt season, the hour of maximum discharge shifts to later in the day as the snow line retreats to higher elevations. Many evapotranspiration/infiltration-dominated rivers in the western states achieve their highest sustained flows during the winter rainy season but exhibit their strongest diurnal cycles during summer months, when discharge is low, and the diurnal fluctuations compose a large percentage of the total flow. In contrast to snowmelt-dominated rivers, the maximum discharge in evapotranspiration/infiltration-dominated rivers occurs consistently in the morning throughout the summer. In these rivers, diurnal changes are characterized by a gradual rise and sharp decline each day.
Temporal and spatial variation in pharmaceutical concentrations in an urban river system
Burns, Emily E.; Carter, Laura J.; Kolpin, Dana W.; Thomas-Oates, Jane; Boxall, Alistair B.A.
2018-01-01
Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse.
Relating river geomorphology to the abundance of periphyton in New Zealand rivers
NASA Astrophysics Data System (ADS)
Hoyle, Jo; Hicks, Murray; Kilroy, Cathy
2013-04-01
Aquatic plants (including both periphyton and macrophytes) are a natural component of stream and river systems. However, abundant growth of instream plants can have detrimental impacts on the values of rivers. For example, periphyton in rivers provides basal resources for food webs and provides an important ecological service by removing dissolved nutrients and contaminants from the water column. However, high abundance of periphyton can have negative effects on habitat quality, water chemistry and biodiversity, and can reduce recreation and aesthetic values. The abundance of periphyton in rivers is influenced by a number of factors, but two key factors can be directly influenced by human activities: flow regimes and nutrient concentrations. Establishing quantitative relationships between periphyton abundance and these factors has proven to be difficult but remains an urgent priority due to the need to manage the ecological impacts of water abstraction and eutrophication of rivers worldwide. This need is particularly strong in New Zealand, where there is increasing demand for water for industry, power generation and agriculture. However, we currently have limited ability to predict the effects of changes in the mid-range flow regime on the presence/absence, abundance and composition of aquatic plants. Current water allocation limits are based on simple flow statistics, such as multiples of the median flow, but these are regional averages and can be quite unreliable on a site-specific basis. This stems largely from our limited ability to transform flow data into ecologically meaningful physical processes that directly affect plants (e.g., drag, abrasion, bed movement). The research we will present examines whether geomorphic variables, such as frequency of bed movement, are useful co-predictors in periphyton abundance-flow relationships. We collected topographic survey data and bed sediment data for 20 study reaches in the Manawatu-Wanganui region of New Zealand which have at least 3 years of flow, nutrient concentration and periphyton biomass data (laboratory measures of chlorophyll a and metrics derived from visual assessments). For each reach we set up a 1-d hydraulic model and established relationships between discharge and a number of hydraulic and geomorphic variables, including the discharge required to mobilise the bed sediment. These were then related to the flow and periphyton monitoring records to examine the strength of relationships.
NASA Astrophysics Data System (ADS)
Covino, T. P.; Wegener, P.; Weiss, T.; Wohl, E.; Rhoades, C.
2017-12-01
River networks of mountain landscapes tend to be dominated by steep, valley-confined channels that have limited floodplain area and low hydrologic buffering capacity. Interspersed between the narrow segments are wide, low-gradient segments where extensive floodplains, wetlands, and riparian areas can develop. Although they tend to be limited in their frequency relative to the narrow valley segments, the low-gradient, wide portions of mountain channel networks can be particularly important to hydrologic buffering and can be sites of high nutrient retention and ecosystem productivity. Hydrologic buffering along the wide valley segments is dependent on lateral hydrologic connectivity between the river and floodplain, however these connections have been increasingly severed as a result of various land and water management practices. We evaluated the role of river-floodplain connectivity in influencing water, dissolved organic carbon (DOC), and nutrient flux in river networks of the Colorado Rockies. We found that disconnected segments with limited floodplain/riparian area had limited buffering capacity, while connected segments exhibited variable source-sink dynamics as a function of flow. Specifically, connected segments were typically a sink for water, DOC, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along connected relative to disconnected segments. Our data suggest that lateral hydrologic connectivity in wide valleys can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. While hydrologic disconnection in one river-floodplain system is unlikely to influence water resources at larger scales, the cumulative effects of widespread disconnection may be substantial. Because intact river-floodplain (i.e., connected) systems provide numerous hydrologic and ecologic benefits, understanding the dynamics and cumulative effects of disconnection is an important step toward improved water resource and ecosystem management.
Decadal oscillations and extreme value distribution of river peak flows in the Meuse catchment
NASA Astrophysics Data System (ADS)
De Niel, Jan; Willems, Patrick
2017-04-01
In flood risk management, flood probabilities are often quantified through Generalized Pareto distributions of river peak flows. One of the main underlying assumptions is that all data points need to originate from one single underlying distribution (i.i.d. assumption). However, this hypothesis, although generally assumed to be correct for variables such as river peak flows, remains somehow questionable: flooding might indeed be caused by different hydrological and/or meteorological conditions. This study confirms these findings from previous research by showing a clear indication of the link between atmospheric conditions and flooding for the Meuse river in The Netherlands: decadal oscillations of river peak flows can (at least partially) be attributed to the occurrence of westerly weather types. The study further proposes a method to take this correlation between atmospheric conditions and river peak flows into account when calibrating an extreme value distribution for river peak flows. Rather than calibrating one single distribution to the data and potentially violating the i.i.d. assumption, weather type depending extreme value distributions are derived and composed. The study shows that, for the Meuse river in The Netherlands, such approach results in a more accurate extreme value distribution, especially with regards to extrapolations. Comparison of the proposed method with a traditional extreme value analysis approach and an alternative model-based approach for the same case study shows strong differences in the peak flow extrapolation. The design-flood for a 1,250 year return period is estimated at 4,800 m3s-1 for the proposed method, compared with 3,450 m3s-1 and 3,900 m3s-1 for the traditional method and a previous study. The methods were validated based on instrumental and documentary flood information of the past 500 years.
NASA Astrophysics Data System (ADS)
Zhang, X.; Voisin, N.; Cheng, Y.; Niemeyer, R. J.; Nijssen, B.; Yearsley, J. R.; Zhou, T.
2017-12-01
In many areas, climate change is expected to alter the flow regime and increase stream temperature, especially during summer low flow periods. During these low flow periods, water management increases flows in order to sustain human activities such as water for irrigation and hydroelectric power generation. Water extraction from rivers during warm season can increase stream temperature while reservoir regulation may cool downstream river temperatures by releasing cool water from deep layers. Thus, it is reasonable to hypothesize that water management changes the sensitivity of the stream temperature regime to climate change when compared to unmanaged resources. The time of emergence of change refers to the point in time when observations, or model simulations, show statistically significant changes from a given baseline period, i.e. above natural variability. Here we aim to address two questions by investigating the time of emergence of changes in stream temperature in the southeastern United States: what is the sensitivity of stream temperature under regulated flow conditions to climate change and what is the contribution of water management in increasing or decreasing stream temperature sensitivity to climate change. We simulate regulated flow by using runoff from the Variable Infiltration Capacity (VIC) macroscale hydrological model as input into a large scale river routing and reservoir model MOSART-WM. The River Basin Model (RBM), a distributed stream temperature model, includes a two-layer thermal stratification module to simulate stream temperature in regulated river systems. We evaluate the timing of emergence of changes in flow and stream temperature based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We analyze the difference in emergence of change between natural and regulated streamflow. Insights will be provided toward applications for multiple sectors of activities including electrical resources adequacy studies over the southeastern U.S.
Rosenberry, Donald O.; Klos, P. Zion; Neal, Andrew
2012-01-01
Seepage meters modified for use in flowing water were used to directly measure rates of exchange between surface and subsurface water in a gravel- and cobble bed river in western Pennsylvania, USA (Allegheny River, Q mean = 190 m 3/s) and a sand- and gravel-bed river in Colorado, USA (South Platte River, Q mean = 9??7 m 3/s). Study reaches at the Allegheny River were located downstream from a dam. The bed was stable with moss, algae, and river grass present in many locations. Median seepage was + 0??28 m/d and seepage was highly variable among measurement locations. Upward and downward seepage greatly exceeded the median seepage rate, ranging from + 2??26 (upward) to - 3??76 (downward) m/d. At the South Platte River site, substantial local-scale bed topography as well as mobile bedforms resulted in spatial and temporal variability in seepage greatly in exceedence of the median groundwater discharge rate of 0??24 m/d. Both upward and downward seepage were recorded along every transect across the river with rates ranging from + 2??37 to - 3??40 m/d. Despite a stable bed, which commonly facilitates clogging by fine-grained or organic sediments, seepage rates at the Allegheny River were not reduced relative to those at the South Platte River. Seepage rate and direction depended primarily on measurement position relative to local- and meso-scale bed topography at both rivers. Hydraulic gradients were small at nearly all seepage-measurement locations and commonly were not a good indicator of seepage rate or direction. Therefore, measuring hydraulic gradient and hydraulic conductivity at in-stream piezometers may be misleading if used to determine seepage flux across the sediment-water interface. Such a method assumes that flow between the well screen and sediment-water interface is vertical, which appears to be a poor assumption in coarse-grained hyporheic settings.
Hydroclimatology of the Missouri River basin
Wise, Erika K.; Woodhouse, Connie A.; McCabe, Gregory; Pederson, Gregory T.; St. Jacques, Jeannine-Marie
2018-01-01
Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.
NASA Astrophysics Data System (ADS)
Meredith, K. T.; Hughes, C. E.; Hollins, S. E.; Cendón, D. I.; Hankin, S.
2009-04-01
Australia's longest river, the Darling River, faces extreme pressure from drought and over extraction of water from its catchment. The lack of detailed baseline hydrochemical and isotopic data for the Darling River has prompted research aimed at using hydrological tracers to assess water gains and losses within the Darling River Drainage Basin. This study uses temporal hydrochemical and stable isotope data (18O and 2H) that has been monitored from gauging stations along the Barwon-Darling catchment over a five-year period from 2002 to 2007 as part of the Global Network for Isotopes in Rivers (GNIR) monitoring programme. Stream flow data, monthly δ18O and δ2H values and major ion chemistry is presented. Individual flow events were found to be isotopically distinct but the LELs that develop after these events have a very similar slope indicating similar climatic conditions across this region. During low flow conditions, salt concentrations increase systematically, δ18O and δ2H become enriched and d-excess becomes more negative indicating significant evaporation. Flow events input isotopically depleted fresh waters to the system and the d-excess returns towards the local meteoric water line. The major ions increase in concentration at a greater rate at Louth than they do at upstream at Bourke or downstream at Wilcannia, despite similar decreases in flow rates for all three sites. The hydrological response of the river to drought has had detrimental affects on the surface water system because it provides a pathway for saline groundwater to discharge into the river system.
Long-term Changes in Water Quality and Productivity in the Patuxent River Estuary: 1985 to 2003
We conducted a quantitative assessment of estuarine ecosystem responses to reduced phosphorus and nitrogen loading from sewage treatment facilities and to variability in freshwater flow and non-point nutrient inputs to the Patuxent River estuary. We analyzed a 19-year data set o...
Bjerklie, David M.; Dingman, S. Lawrence; Bolster, Carl H.
2005-01-01
A set of conceptually derived in‐bank river discharge–estimating equations (models), based on the Manning and Chezy equations, are calibrated and validated using a database of 1037 discharge measurements in 103 rivers in the United States and New Zealand. The models are compared to a multiple regression model derived from the same data. The comparison demonstrates that in natural rivers, using an exponent on the slope variable of 0.33 rather than the traditional value of 0.5 reduces the variance associated with estimating flow resistance. Mean model uncertainty, assuming a constant value for the conductance coefficient, is less than 5% for a large number of estimates, and 67% of the estimates would be accurate within 50%. The models have potential application where site‐specific flow resistance information is not available and can be the basis for (1) a general approach to estimating discharge from remotely sensed hydraulic data, (2) comparison to slope‐area discharge estimates, and (3) large‐scale river modeling.
Characterizing effects of hydropower plants on sub-daily flow regimes
NASA Astrophysics Data System (ADS)
Bejarano, María Dolores; Sordo-Ward, Álvaro; Alonso, Carlos; Nilsson, Christer
2017-07-01
A characterization of short-term changes in river flow is essential for understanding the ecological effects of hydropower plants, which operate by turning the turbines on or off to generate electricity following variations in the market demand (i.e., hydropeaking). The goal of our study was to develop an approach for characterizing the effects of hydropower plant operations on within-day flow regimes across multiple dams and rivers. For this aim we first defined ecologically meaningful metrics that provide a full representation of the flow regime at short time scales from free-flowing rivers and rivers exposed to hydropeaking. We then defined metrics that enable quantification of the deviation of the altered short-term flow regime variables from those of the unaltered state. The approach was successfully tested in two rivers in northern Sweden, one free-flowing and another regulated by cascades of hydropower plants, which were additionally classified based on their impact on short-term flows in sites of similar management. The largest differences between study sites corresponded to metrics describing sub-daily flow magnitudes such as amplitude (i.e., difference between the highest and the lowest hourly flows) and rates (i.e., rise and fall rates of hourly flows). They were closely followed by frequency-related metrics accounting for the numbers of within-day hourly flow patterns (i.e., rises, falls and periods of stability of hourly flows). In comparison, between-site differences for the duration-related metrics were smallest. In general, hydropeaking resulted in higher within-day flow amplitudes and rates and more but shorter periods of a similar hourly flow patterns per day. The impacted flow feature and the characteristics of the impact (i.e., intensity and whether the impact increases or decreases whatever is being described by the metric) varied with season. Our approach is useful for catchment management planning, defining environmental flow targets, prioritizing river restoration or dam reoperation efforts and contributing information for relicensing hydropower dams.
NASA Astrophysics Data System (ADS)
Lazzaro, G.; Soulsby, C.; Tetzlaff, D.; Botter, G.
2017-03-01
Atlantic salmon is an economically and ecologically important fish species, whose survival is dependent on successful spawning in headwater rivers. Streamflow dynamics often have a strong control on spawning because fish require sufficiently high discharges to move upriver and enter spawning streams. However, these streamflow effects are modulated by biological factors such as the number and the timing of returning fish in relation to the annual spawning window in the fall/winter. In this paper, we develop and apply a novel probabilistic approach to quantify these interactions using a parsimonious outflux-influx model linking the number of female salmon emigrating (i.e., outflux) and returning (i.e., influx) to a spawning stream in Scotland. The model explicitly accounts for the interannual variability of the hydrologic regime and the hydrological connectivity of spawning streams to main rivers. Model results are evaluated against a detailed long-term (40 years) hydroecological data set that includes annual fluxes of salmon, allowing us to explicitly assess the role of discharge variability. The satisfactory model results show quantitatively that hydrologic variability contributes to the observed dynamics of salmon returns, with a good correlation between the positive (negative) peaks in the immigration data set and the exceedance (nonexceedance) probability of a threshold flow (0.3 m3/s). Importantly, model performance deteriorates when the interannual variability of flow regime is disregarded. The analysis suggests that flow thresholds and hydrological connectivity for spawning return represent a quantifiable and predictable feature of salmon rivers, which may be helpful in decision making where flow regimes are altered by water abstractions.
Kinzel, P.J.; Nelson, J.M.; Heckman, A.K.
2009-01-01
Over the past century, flow regulation and vegetation encroachment have reduced active channel widths along the central Platte River, Nebraska. During the last two decades, an annual program of in-channel vegetation management has been implemented to stabilize or expand active channel widths. Vegetation management practices are intended to enhance riverine habitats which include nocturnal roosting habitat for sandhill cranes. Evaluating the success of other management treatments such as streamflow modification requires an understanding of how flow shapes the sandbars in the river and how sandbar morphology interacts with flow to create crane habitat. These linkages were investigated along a 1-km managed river reach by comparing the spatial pattern of riverine roosts and emergent sandbars identified with aerial infrared imagery to variables computed with a two-dimensional hydraulic model. Nocturnal observations made multiple years showed that the area and patterns of riverine roosts and emergent sandbars and the densities of cranes within roosts changed with stage. Despite sandbar vegetation management, low flows were concentrated into incised channels rather than spread out over broad sandbars. The flow model was used to compute hydraulic variables for identical streamflows through two sandbar morphologies; one following a period of relatively high flow and the other following the low-flow period. Compared with the simulation using the morphology from the antecedent high flow, the simulation using the morphology from the antecedent low flow produced a smaller quantity of available wetted area. These remote-sensing observations and hydraulic simulations illustrate the importance of considering flow history when designing streamflows to manage in-channel habitat for cranes.
NASA Astrophysics Data System (ADS)
Bawa, Nupur; Jain, Vikrant; Shekhar, Shashank; Kumar, Niraj; Jyani, Vikas
2014-12-01
Understanding the controls on the morphological variability of river systems constitutes one of the fundamental questions in geomorphic investigation. Channel morphology is an important indicator of river processes and is of significance for mapping the hydrology-ecologic connectivity in a river system and for predicting the future trajectory of river health in response to external forcings. This paper documents the spatial morphological variability and its natural and anthropogenic controls for the Yamuna River, a major tributary of the Ganga River, India. The Yamuna River runs through a major urban centre i.e. Delhi National Capital Region. The Yamuna River was divided into eight geomorphically distinct reaches on the basis of the assemblages of geomorphic units and the association of landscape, valley and floodplain settings. The morphological variability was analysed through stream power distribution and sediment load data at various stations. Stream power distribution of the Yamuna River basin is characterised by a non-linear pattern that was used to distinguish (a) high energy ‘natural' upstream reaches, (b) ‘anthropogenically altered', low energy middle stream reaches, and (c) ‘rejuvenated' downstream reaches again with higher stream power. The relationship between stream power and channel morphology in these reaches was integrated with sediment load data to define the maximum flow efficiency (MFE) as the threshold for geomorphic transition. This analysis supports the continuity of river processes and the significance of a holistic, basin-scale approach rather than isolated local scale analysis in river studies.
Final Opportunity to Rehabilitate an Urban River as a Water Source for Mexico City
Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A.; Solano-Ortiz, Rosa; Silva, Miguel A.; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos
2014-01-01
The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973–2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008–2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City. PMID:25054805
Final opportunity to rehabilitate an urban river as a water source for Mexico City.
Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A; Solano-Ortiz, Rosa; Silva, Miguel A; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos
2014-01-01
The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.
Cloern, James E.; Jassby, Alan D.
1995-01-01
Estuaries are transitional ecosystems at the interface of the terrestrial and marine realms. Their unique physiographic position gives rise to large spatial variability, and to dynamic temporal variability resulting, in part, from a variety of forces and fluxes at the oceanic and terrestrial boundaries. River flow, in particular, is an important mechanism for delivering watershed-derived materials such as fresh water, sediments, and nutrients; each of these quantities in turn directly influences the physical structure and biological communities of estuaries. With this setting in mind, we consider here the general proposition that estuarine variability at the yearly time scale can be caused by annual fluctuations in river flow. We use a “long-term” (15-year) time series of phytoplankton biomass variability in South San Francisco Bay (SSFB), a lagoon-type estuary in which phytoplankton primary production is the largest source of organic carbon (Jassby et al. 1993).
NASA Astrophysics Data System (ADS)
José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María
2017-04-01
Climatology trends, precipitation and temperature variations condition the hydrological evolution of the river flow response at basin and sub-basin scales. The link between both climate and flow trends is crucial in mountainous areas, where small variations in temperature can produce significant impacts on precipitation (occurrence as rainfall or snowfall), snowmelt and evaporation, and consequently very different flow signatures. This importance is greater in semiarid regions, where the high variability of the climatic annual and seasonal regimes usually amplifies this impact on river flow. The Sierra Nevada National Park (Southern Spain), with altitudes ranging from 2000 to 3500 m.a.s.l., is part of the global climate change observatories network and a clear example of snow regions in a semiarid environment. This mountain range is head of different catchments, being the Guadalfeo River Basin one of the most influenced by the snow regime. This study shows the observed 55-year (1961-2015) trends of annual precipitation and daily mean temperature, and the associated impacts on snowfall and snow persistence, and the resulting trend of the annual river flow in the Guadalfeo River Basin (Southern Spain), a semiarid abrupt mountainous area (up to 3450 m a.s.l.) facing the Mediterranean Sea where the Alpine and Mediterranean climates coexist in a domain highly influenced by the snow regime, and a significant seasonality in the flow regime. The annual precipitation and annual daily mean temperature experimented a decreasing trend of 2.05 mm/year and an increasing trend of 0.037 °C/year, respectively, during the study period, with a high variability on a decadal basis. However, the torrential precipitation events are more frequent in the last few years of the study period, with an apparently increasing associated dispersion. The estimated annual snowfall trend shows a decreasing trend of 0.24 mm/year, associated to the decrease of precipitation rather than to temperature increase. From the analyses of river flow observations and hydrological modelling, these trends result in an estimated decreasing annual trend of the mean river inflow to reservoirs of 0.091 m3/s, which is equivalent to a mean loss of 2.87 hm3/year during the study period. Nonetheless, these results are associated to a high variability of both extreme values and the annual and decadal values. Moreover, the decrease of the annual inflow is approximately a 25% higher than the loss of precipitation, due to the impact on the different water fluxes from the snowpack associated to the enhanced torrential behaviour of both snowfall/rainfall occurrence and snow persistence. The results show the complexity of hydrological processes in Mediterranean regions, especially under the snow influence, and point out to a significant shift in the precipitation and temperature regime, and thus on the snow-affected hydrological variables in the study area, with a decrease of the available water resource volume in the medium and long term. However, on an annual basis, years with an intense snowfall regime but mild and longer dry periods result in a significant increase of the annual river flow and water storage. Reservoir operation criteria and water allocation should undergo a revision based on hydrological modelling of the snow regions and scenario analysis.
Relevance of the Paraná River hydrology on the fluvial water quality of the Delta Biosphere Reserve.
Puig, Alba; Olguín Salinas, Héctor F; Borús, Juan A
2016-06-01
The increasing frequency of extreme events in large rivers may affect not only their flow, but also their water quality. In the present study, spatial and temporal changes in fluvial physico-chemical variables were analyzed in a mega-river delta during two extreme hydrological years (La Niña-El Niño) and related to potential explanatory factors. Basic water variables were evaluated in situ at 13 points (distant 2-35 km from each other) in watercourses of the Delta Biosphere Reserve (890 km(2)) in the Lower Paraná River (Argentina) in nine surveys (October 2008-July 2010) without meteorological tides. Samples for laboratory analyses were collected from each main river. Multivariate tests by permutations were applied. The period studied was influenced by a drought, within a long period dominated by low flows combined with dry weather and wildfires, and a large (10 years of recurrence) and prolonged (7 months) flood. The hydrological phase, followed by the season and the hydrological year (according to the ENSO event) were the principal explanatory factors of the main water quality changes, whereas the drainage sub-basin and the fluvial environment (river or stream) were secondary explanatory factors. During the drought period, conductivity, turbidity, and associated variables (e.g., major ions, silicon, and iron concentrations) were maximal, whereas real color was minimal. In the overbanking flood phase, pH and dissolved oxygen concentration were minimal, whereas real color was maximal. Dissolved oxygen saturation was also low in the receding flood phase and total major ion load doubled after the arrival of the overbanking stage. The water quality of these watercourses may be affected by the combination of several influences, such as the Paraná River flow, the pulses with sediments and solutes from the Bermejo River, the export of the Delta floodplain properties mainly by the flood, the season, and the saline tributaries to the Lower Paraná River. The high influence of the hydrology of this large river on the Delta fluvial water quality emphasizes the relevance of changes in its flow regime in recent decades, such as the seasonality attenuation. Considering that the effects of extreme events differ among and within fluvial systems, specific ecohydrological evaluations and powerful appropriate statistics are key tools to gain knowledge on these systems and to provide bases for suitable management measures in a scenario of climate change and increasing human alterations and demands.
2013-09-30
Vision Floc Camera (MVFC), a Sequoia Scientific LISST 100x Type B, an RBR CTD, and two pressure-actuated Niskin bottles. The Niskin bottles were...Eco bb2fl, that measures 3 backscattering at 532 and 650 nm and CDOM fluorescence, a WetLabs WetStar CDOM fluorometer, a Sequoia Scientific flow
Virtual mission stage I: Implications of a spaceborne surface water mission
NASA Astrophysics Data System (ADS)
Clark, E. A.; Alsdorf, D. E.; Bates, P.; Wilson, M. D.; Lettenmaier, D. P.
2004-12-01
The interannual and interseasonal variability of the land surface water cycle depend on the distribution of surface water in lakes, wetlands, reservoirs, and river systems; however, measurements of hydrologic variables are sparsely distributed, even in industrialized nations. Moreover, the spatial extent and storage variations of lakes, reservoirs, and wetlands are poorly known. We are developing a virtual mission to demonstrate the feasibility of observing surface water extent and variations from a spaceborne platform. In the first stage of the virtual mission, on which we report here, surface water area and fluxes are emulated using simulation modeling over three continental scale river basins, including the Ohio River, the Amazon River and an Arctic river. The Variable Infiltration Capacity (VIC) macroscale hydrologic model is used to simulate evapotranspiration, soil moisture, snow accumulation and ablation, and runoff and streamflow over each basin at one-eighth degree resolution. The runoff from this model is routed using a linear transfer model to provide input to a much more detailed flow hydraulics model. The flow hydraulics model then routes runoff through various channel and floodplain morphologies at a 250 m spatial and 20 second temporal resolution over a 100 km by 500 km domain. This information is used to evaluate trade-offs between spatial and temporal resolutions of a hypothetical high resolution spaceborne altimeter by synthetically sampling the resultant model-predicted water surface elevations.
NASA Astrophysics Data System (ADS)
Marciniak, Marek; Dragon, Krzysztof; Chudziak, Łukasz
2014-05-01
This article presents an investigation of the runoff of a glacial river located in the high Arctic region of Spitsbergen. The Ebba River runoff was measured during three melting seasons of 2007, 2008 and 2009. The most important component of the river recharge is the flow of melting water from glaciers (76-82% of total river runoff). However, the other components (surface water and groundwater) also made a significant contribution to the river recharge. The contribution of groundwater flow in total river runoff was estimated by measurements performed in four groups of piezometers located in different parts of the valley. The hydrogeological parameters that characterize shallow aquifer (thickness of the active layer, hydraulic conductivity, groundwater level fluctuations) were recognized by direct field measurements. The groundwater recharging river was the most variable recharge component, and ranged from 1% of the total runoff at the beginning of the melting season to even 27% at the end of summer.
Flow and form in rehabilitation of large-river ecosystems: an example from the Lower Missouri River
Jacobson, R.B.; Galat, D.L.
2006-01-01
On large, intensively engineered rivers like the Lower Missouri, the template of the physical habitat is determined by the nearly independent interaction of channel form and flow regime. We evaluated the interaction between flow and form by modeling four combinations of modern and historical channel form and modern and historical flow regimes. The analysis used shallow, slow water (shallow-water habitat, SWH, defined as depths between 0 and 1.5 m, and current velocities between 0 and 0.75 m/s) as an indicator of habitat that has been lost on many intensively engineered rivers and one that is thought to be especially important in rearing of young fishes. Two-dimensional hydrodynamic models for modern and historical channels of the Lower Missouri River at Hermann, Missouri, indicate substantial differences between the two channels in total availability and spatial characteristics of SWH. In the modern channel, SWH is maximized at extremely low flows and in overbank flows, whereas the historical channel had substantially more SWH at all discharges and SWH increased with increasing discharge. The historical channel form produced 3-7 times the SWH area of the modern channel regardless of flow regime. The effect of flow regime is evident in increased within-year SWH variability with the natural flow regime, including significant seasonal peaks of SWH associated with spring flooding. Comparison with other reaches along the Lower Missouri River indicates that a) channel form is the dominant control of the availability of habitat even in reaches where the hydrograph is more intensively altered, and b) rehabilitation projects that move toward the historical condition can be successful in increasing topographic diversity and thereby decreasing sensitivity of the availability of habitat to flow regime. The relative efficacy of managing flow and form in creating SWH is useful information toward achieving socially acceptable rehabilitation of the ecosystem in large river systems.
Smart licensing and environmental flows: Modeling framework and sensitivity testing
NASA Astrophysics Data System (ADS)
Wilby, R. L.; Fenn, C. R.; Wood, P. J.; Timlett, R.; Lequesne, T.
2011-12-01
Adapting to climate change is just one among many challenges facing river managers. The response will involve balancing the long-term water demands of society with the changing needs of the environment in sustainable and cost effective ways. This paper describes a modeling framework for evaluating the sensitivity of low river flows to different configurations of abstraction licensing under both historical climate variability and expected climate change. A rainfall-runoff model is used to quantify trade-offs among environmental flow (e-flow) requirements, potential surface and groundwater abstraction volumes, and the frequency of harmful low-flow conditions. Using the River Itchen in southern England as a case study it is shown that the abstraction volume is more sensitive to uncertainty in the regional climate change projection than to the e-flow target. It is also found that "smarter" licensing arrangements (involving a mix of hands off flows and "rising block" abstraction rules) could achieve e-flow targets more frequently than conventional seasonal abstraction limits, with only modest reductions in average annual yield, even under a hotter, drier climate change scenario.
Ernst, Anne G.; Baldigo, Barry P.; Schuler, George E.; Apse, Colin D.; Carter, James L.; Lester, Gary T.
2008-01-01
The Neversink River, in the Catskill Mountains of southeastern New York State, feeds the Neversink Reservoir, which diverts 85 percent of the river?s flow to New York City. Acidification of several headwater reaches has affected macroinvertebrate assemblages throughout the river system above the reservoir, and the alteration of flow conditions below the reservoir dam has affected macroinvertebrate assemblages for at least 10 kilometers downstream from the reservoir. In 1999, the U.S. Geological Survey, in cooperation with The Nature Conservancy, compiled data from 30 stream reaches to quantify the effects of acidification and of the reservoir on the structure and function of macroinvertebrate assemblages throughout the Neversink River. Acidic headwater reaches supported greater numbers of acid-tolerant chironomid taxa and fewer numbers of acid-sensitive Ephemeroptera and Trichoptera than neutral reaches, and fewer scraper individuals and more shredder individuals. The 14 reaches below the reservoir, with sharply decreased flows and altered flow patterns compared to reaches above the reservoir, supported more Chironomidae and fewer Ephemeroptera and Trichoptera than the upper reaches; they also had greater numbers of shredder individuals and fewer scraper and filterer individuals than reaches above the reservoir. Water-quality variables such as pH and aluminum concentration appear to have affected macroinvertebrate assemblages more strongly in the headwaters than below the reservoir, whereas physical-habitat variables such as mean channel width and water temperature have affected these assemblages more strongly downstream from the reservoir than in the headwaters. The water-quality changes due to acidification, combined with the decreased flows and lowered water temperatures below the reservoir, have disrupted downstream continuum of macroinvertebrate communities that would normally be observed from the headwaters to the mouth. The information presented herein provides a basis for further evaluation of the Neversink and similar river systems, and for assessment of the effectiveness of future conservation efforts.
Snow mass and river flows modelled using GRACE total water storage observations
NASA Astrophysics Data System (ADS)
Wang, S.
2017-12-01
Snow mass and river flow measurements are difficult and less accurate in cold regions due to the hash environment. Floods in cold regions are commonly a result of snowmelt during the spring break-up. Flooding is projected to increase with climate change in many parts of the world. Forecasting floods from snowmelt remains a challenge due to scarce and quality issues in basin-scale snow observations and lack of knowledge for cold region hydrological processes. This study developed a model for estimating basin-level snow mass (snow water equivalent SWE) and river flows using the total water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The SWE estimation is based on mass balance approach which is independent of in situ snow gauge observations, thus largely eliminates the limitations and uncertainties with traditional in situ or remote sensing snow estimates. The model forecasts river flows by simulating surface runoff from snowmelt and the corresponding baseflow from groundwater discharge. Snowmelt is predicted using a temperature index model. Baseflow is predicted using a modified linear reservoir model. The model also quantifies the hysteresis between the snowmelt and the streamflow rates, or the lump time for water travel in the basin. The model was applied to the Red River Basin, the Mackenzie River Basin, and the Hudson Bay Lowland Basins in Canada. The predicted river flows were compared with the observed values at downstream hydrometric stations. The results were also compared to that for the Lower Fraser River obtained in a separate study to help better understand the roles of environmental factors in determining flood and their variations with different hydroclimatic conditions. This study advances the applications of space-based time-variable gravity measurements in cold region snow mass estimation, river flow and flood forecasting. It demonstrates a relatively simple method that only needs GRACE TWS and temperature data for river flow or flood forecasting. The model can be particularly useful for regions with spare observation networks, and can be used in combination with other available methods to help improve the accuracy in river flow and flood forecasting over cold regions.
Kouyi, G Lipeme; Fraisse, D; Rivière, N; Guinot, V; Chocat, B
2009-01-01
Many investigations have been carried out in order to develop models which allow the linking of complex physical processes involved in urban flooding. The modelling of the interactions between overland flows on streets and flooding flows from rivers and sewer networks is one of the main objectives of recent and current research programs in hydraulics and urban hydrology. This paper outlines the original one-dimensional linking of heavy rainfall-runoff in urban areas and flooding flows from rivers and sewer networks under the RIVES project framework (Estimation of Scenario and Risks of Urban Floods). The first part of the paper highlights the capacity of Canoe software to simulate the street flows. In the second part, we show the original method of connection which enables the modelling of interactions between processes in urban flooding. Comparisons between simulated results and the results of Despotovic et al. or Gomez & Mur show a good agreement for the calibrated one-dimensional connection model. The connection operates likes a manhole with the orifice/weir coefficients used as calibration parameters. The influence of flooding flows from river was taken into account as a variable water depth boundary condition.
Temporal and spatial variation in pharmaceutical concentrations in an urban river system.
Burns, Emily E; Carter, Laura J; Kolpin, Dana W; Thomas-Oates, Jane; Boxall, Alistair B A
2018-06-15
Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modelling ecological flow regime: an example from the Tennessee and Cumberland River basins
Knight, Rodney R.; Gain, W. Scott; Wolfe, William J.
2012-01-01
Predictive equations were developed for 19 ecologically relevant streamflow characteristics within five major groups of flow variables (magnitude, ratio, frequency, variability, and date) for use in the Tennessee and Cumberland River basins using stepbackward regression. Basin characteristics explain 50% or more of the variation for 12 of the 19 equations. Independent variables identified through stepbackward regression were statistically significant in 78 of 304 cases (α > 0.0001) and represent four major groups: climate, physical landscape features, regional indicators, and land use. Of these groups, the regional and climate variables were the most influential for determining hydrologic response. Daily temperature range, geologic factor, and rock depth were major factors explaining the variability in 17, 15, and 13 equations, respectively. The equations and independent datasets were used to explore the broad relation between basin properties and streamflow and the implication of streamflow to the study of ecological flow requirements. Key results include a high degree of hydrologic variability among least disturbed Blue Ridge streams, similar hydrologic behaviour for watersheds with widely varying degrees of forest cover, and distinct hydrologic profiles for streams in different geographic regions. Published in 2011. This article is a US Government work and is in the public domain in the USA.
Tornés, E; Pérez, M C; Durán, C; Sabater, S
2014-03-15
Water hydrology, temperature and transparency, as well as nutrient retention downstream of the reservoirs alter the temporal and spatial distribution patterns of phytoplankton communities in regulated rivers. The seasonal dynamics of phytoplankton communities in the Ebro was analysed in contrasting water flow periods in sections upstream and downstream of three large reservoirs, as well as in an intermediate site. Phytoplankton communities changed in response to seasonal variations in the areas not influenced by the reservoirs, but the phytoplankton distribution downstream of the reservoirs was driven by their particular hydrodynamics. The change in environmental conditions promoted by reservoirs influenced the pattern of replacement between diatoms and green algae of the upstream section. Differences in the phytoplankton community structure, abundance and environmental variables between upstream and downstream sites were maximal during low flow periods. Chlorophytes and dinoflagellates were present during low flow periods upstream of the reservoirs and in the intermediate site. Cocconeis cf. placentula characterized the downstream section, associated to the presence of macrophytes in that section. The present study sheds light on the consequences of river regulation under potential scenarios of climate change, and results could be used to anticipate ecological problems in large regulated rivers under these circumstances. Copyright © 2013 Elsevier B.V. All rights reserved.
Geomorphology and river dynamics of the lower Copper River, Alaska
Brabets, Timothy P.; Conaway, Jeffrey S.
2009-01-01
Located in south-central Alaska, the Copper River drains an area of more than 24,000 square miles. The average annual flow of the river near its mouth is 63,600 cubic feet per second, but is highly variable between winter and summer. In the winter, flow averages approximately 11,700 cubic feet per second, and in the summer, due to snowmelt, rainfall, and glacial melt, flow averages approximately 113,000 cubic feet per second, an order of magnitude higher. About 15 miles upstream of its mouth, the Copper River flows past the face of Childs Glacier and enters a large, broad, delta. The Copper River Highway traverses this flood plain, and in 2008, 11 bridges were located along this section of the highway. The bridges cross several parts of the Copper River and in recent years, the changing course of the river has seriously damaged some of the bridges.Analysis of aerial photography from 1991, 1996, 2002, 2006, and 2007 indicates the eastward migration of a channel of the Copper River that has resulted in damage to the Copper River Highway near Mile 43.5. Migration of another channel in the flood plain has resulted in damage to the approach of Bridge 339. As a verification of channel change, flow measurements were made at bridges along the Copper River Highway in 2005–07. Analysis of the flow measurements indicate that the total flow of the Copper River has shifted from approximately 50 percent passing through the bridges at Mile 27, near the western edge of the flood plain, and 50 percent passing through the bridges at Mile 36–37 to approximately 5 percent passing through the bridges at Mile 27 and 95 percent through the bridges at Mile 36–37 during average flow periods.The U.S. Geological Survey’s Multi-Dimensional Surface-Water Modeling System was used to simulate water-surface elevation and velocity, and to compute bed shear stress at two areas where the Copper River is affecting the Copper River Highway. After calibration, the model was used to examine the effects that betterments, such as guide banks or bridge extensions, would have on flow conditions and to provide sound conceptual information that could help decide if a proposed betterment will work or determine potential problems that need to be addressed for a particular betterment. The ability of the model to simulate these hydraulic conditions was constrained by the accuracy and level of channel geometry detail, which is constantly changing in the lower Copper River.
Sediment dynamics in the lower Mekong River: Transition from tidal river to estuary
NASA Astrophysics Data System (ADS)
Nowacki, Daniel J.; Ogston, Andrea S.; Nittrouer, Charles A.; Fricke, Aaron T.; Van, Pham Dang Tri
2015-09-01
A better understanding of flow and sediment dynamics in the lowermost portions of large-tropical rivers is essential to constraining estimates of worldwide sediment delivery to the ocean. Flow velocity, salinity, and suspended-sediment concentration were measured for 25 h at three cross sections in the tidal Song Hau distributary of the Mekong River, Vietnam. Two campaigns took place during comparatively high-seasonal and low-seasonal discharge, and estuarine conditions varied dramatically between them. The system transitioned from a tidal river with ephemeral presence of a salt wedge during high flow to a partially mixed estuary during low flow. The changing freshwater input, sediment sources, and estuarine characteristics resulted in seaward sediment export during high flow and landward import during low flow. The Dinh An channel of the Song Hau distributary exported sediment to the coast at a rate of about 1 t s-1 during high flow and imported sediment in a spatially varying manner at approximately 0.3 t s-1 during low flow. Scaling these values results in a yearly Mekong sediment discharge estimate about 65% smaller than a generally accepted estimate of 110 Mt yr-1, although the limited temporal and spatial nature of this study implies a relatively high degree of uncertainty for the new estimate. Fluvial advection of sediment was primarily responsible for the high-flow sediment export. Exchange-flow and tidal processes, including local resuspension, were principally responsible for the low-flow import. The resulting bed-sediment grain size was coarser and more variable during high flow and finer during low, and the residual flow patterns support the maintenance of mid-channel islands. This article was corrected on 7 OCT 2015. See the end of the full text for details.
Contribution of wave-induced liquefaction in triggering hyperpycnal flows in Yellow River Estuary
NASA Astrophysics Data System (ADS)
Liu, X.; Jia, Y.
2017-12-01
Hyperpycnal flows, driven mainly by the gravity of near-bed negatively buoyant layers, are one of the most important processes for moving marine sediment across the earth. The issue of hyperpycnal flows existing in marine environment has drawn increasing scholars' attention since that was observed in situ off the Yellow River estuary in the 1980s. Most researches maintain that hyperpycnal flows in the Yellow River estuary are caused by the high-concentration sediments discharged from the Yellow River into sea, however, other mechanisms have been discounted since the sediment input from the river has been significantly changed due to climate and anthropogenic change. Here we demonstrate that wave-seabed interactions can generate hyperpycnal flows, without river input, by sediment flux convergence above an originally consolidated seabed. Using physical model experiments and multi-sensor field measurements, we characterize the composition-dependent liquefaction properties of the sediment due to wave-induced pore water pressure accumulation. This allows quantification of attenuation of sediment threshold velocity and critical shear stress (predominant variables in transport mechanics) during the liquefaction under waves. Parameterising the wave-seabed interactions in a new concept model shows that high waves propagating over the seabed sediment can act as a scarifier plough remoulding the seabed sediment. This contributes to marine hyperpycnal flows as the sediment is quickly resuspended under accumulating attenuation in strength. Therefore, the development of more integrative numerical models could supply realistic predictions of marine record in response to rising magnitude and frequency of storms.
Vandenberghe, V; Goethals, P L M; Van Griensven, A; Meirlaen, J; De Pauw, N; Vanrolleghem, P; Bauwens, W
2005-09-01
During the summer of 1999, two automated water quality measurement stations were installed along the Dender river in Belgium. The variables dissolved oxygen, temperature, conductivity, pH, rain-intensity, flow and solar radiation were measured continuously. In this paper these on-line measurement series are presented and interpreted using also additional measurements and ecological expert-knowledge. The purpose was to demonstrate the variability in time and space of the aquatic processes and the consequences of conducting and interpreting discrete measurements for river quality assessment and management. The large fluctuations of the data illustrated the importance of continuous measurements for the complete description and modelling of the biological processes in the river.
Ortega-Cisneros, Kelly; Scharler, Ursula M.
2015-01-01
This study aimed to determine the variability of carbon and nitrogen elemental content, stoichiometry and diet proportions of invertebrates in two sub-tropical estuaries in South Africa experiencing seasonal changes in rainfall and river inflow. The elemental ratios and stable isotopes of abiotic sources, zooplankton and macrozoobenthos taxa were analyzed over a dry/wet seasonal cycle. Nutrient content (C, N) and stoichiometry of suspended particulate matter exhibited significant spatio-temporal variations in both estuaries, which were explained by the variability in river inflow. Sediment particulate matter (%C, %N and C:N) was also influenced by the variability in river flow but to a lesser extent. The nutrient content and ratios of the analyzed invertebrates did not significantly vary among seasons with the exception of the copepod Pseudodiaptomus spp. (C:N) and the tanaid Apseudes digitalis (%N, C:N). These changes did not track the seasonal variations of the suspended or sediment particulate matter. Our results suggest that invertebrates managed to maintain their stoichiometry independent of the seasonality in river flow. A significant variability in nitrogen content among estuarine invertebrates was recorded, with highest % N recorded from predators and lowest %N from detritivores. Due to the otherwise general lack of seasonal differences in elemental content and stoichiometry, feeding guild was a major factor shaping the nutrient dynamics of the estuarine invertebrates. The nutrient richer suspended particulate matter was the preferred food source over sediment particulate matter for most invertebrate consumers in many, but not all seasons. The most distinct preference for suspended POM as a food source was apparent from the temporarily open/closed system after the estuary had breached, highlighting the importance of river flow as a driver of invertebrate nutrient dynamics under extreme events conditions. Moreover, our data showed that estuarine invertebrates concentrated C and N between 10–100 fold from trophic level I (POM) to trophic level II (detritivores/deposit feeders) and thus highlighted their importance not only as links to higher trophic level organisms in the food web, but also as providers of a stoichiometrically homeostatic food source for such consumers. As climate change scenarios for the east coast of South Africa predict increased rainfall as a higher number of rainy days and days with higher rainfall, our results suggest that future changes in rainfall and river inflow will have measurable effects on the nutrient content and stoichiometry of food sources and possibly also in estuarine consumers. PMID:26352433
Ortega-Cisneros, Kelly; Scharler, Ursula M
2015-01-01
This study aimed to determine the variability of carbon and nitrogen elemental content, stoichiometry and diet proportions of invertebrates in two sub-tropical estuaries in South Africa experiencing seasonal changes in rainfall and river inflow. The elemental ratios and stable isotopes of abiotic sources, zooplankton and macrozoobenthos taxa were analyzed over a dry/wet seasonal cycle. Nutrient content (C, N) and stoichiometry of suspended particulate matter exhibited significant spatio-temporal variations in both estuaries, which were explained by the variability in river inflow. Sediment particulate matter (%C, %N and C:N) was also influenced by the variability in river flow but to a lesser extent. The nutrient content and ratios of the analyzed invertebrates did not significantly vary among seasons with the exception of the copepod Pseudodiaptomus spp. (C:N) and the tanaid Apseudes digitalis (%N, C:N). These changes did not track the seasonal variations of the suspended or sediment particulate matter. Our results suggest that invertebrates managed to maintain their stoichiometry independent of the seasonality in river flow. A significant variability in nitrogen content among estuarine invertebrates was recorded, with highest % N recorded from predators and lowest %N from detritivores. Due to the otherwise general lack of seasonal differences in elemental content and stoichiometry, feeding guild was a major factor shaping the nutrient dynamics of the estuarine invertebrates. The nutrient richer suspended particulate matter was the preferred food source over sediment particulate matter for most invertebrate consumers in many, but not all seasons. The most distinct preference for suspended POM as a food source was apparent from the temporarily open/closed system after the estuary had breached, highlighting the importance of river flow as a driver of invertebrate nutrient dynamics under extreme events conditions. Moreover, our data showed that estuarine invertebrates concentrated C and N between 10-100 fold from trophic level I (POM) to trophic level II (detritivores/deposit feeders) and thus highlighted their importance not only as links to higher trophic level organisms in the food web, but also as providers of a stoichiometrically homeostatic food source for such consumers. As climate change scenarios for the east coast of South Africa predict increased rainfall as a higher number of rainy days and days with higher rainfall, our results suggest that future changes in rainfall and river inflow will have measurable effects on the nutrient content and stoichiometry of food sources and possibly also in estuarine consumers.
Development of an inflow controlled environmental flow regime for a Norwegian river
NASA Astrophysics Data System (ADS)
Alfredsen, Knut; Harby, Atle; Linnansaari, Tommi; Ugedal, Ola
2010-05-01
For most regulated rivers in Norway the common environmental flow regime is static and shows very little variation over the year. Recent research indicate that flow regimes that follow the natural inflow variation can meet the ecological and social demands for water in a better way. The implementation of a variable environmental flow regime provides many challenges both related to defining flow for various species and user groups in the river, but also due to practical implementation, legislation and control. A inflow controlled flow regime is developed for a Norwegian river regulated for hydro power as a pilot study. The regime should meet ecological demands from Atlantic salmon and brown trout, recreational use of water and visual impression of the river. This should be achieved preferably without altering the energy production in the hydro power system. The flow regime is developed for wet, dry and normal discharge conditions based on unregulated inflow to the catchment. The development of the seasonal flow requirements for various targets identified is done using a modification of the Building Block Method. Several options are tested regarding the integration of the flow regime into the operational strategy of the hydropower plant, both using real time prognosis of inflow and combinations with historical data. An important topic in selecting the release strategy is how it meets current Norwegian legislation and how well future documentation and environmental control can be carried out. An evaluation protocol is also proposed for the flow regime to test if the ecological targets are met.
NASA Astrophysics Data System (ADS)
Costelloe, Justin F.; Grayson, Rodger B.; McMahon, Thomas A.; Argent, Robert M.
2005-10-01
This study describes the spatial and temporal variability of water salinity of the Neales-Peake, an ephemeral river system in the arid Lake Eyre basin of central Australia. Saline to hypersaline waterholes occur in the lower reaches of the Neales-Peake catchment and lie downstream of subcatchments containing artesian mound springs. Flood pulses are fresh in the upper reaches of the rivers (<200 mg l-1). In the salt-affected reaches, flood pulses become increasingly saline during their recession. It is hypothesized that leakage from the Great Artesian Basin deposits salt at the surface. This salt is then transported by infrequent runoff events into the main river system over long periods of time. The bank/floodplain store downstream of salt-affected catchments contains high salt concentrations, and this salt is mobilized during the flow recession when bank/floodplain storage discharges into the channel. The salinity of the recession increases as the percentage of flow derived from this storage increases. A simple conceptual model was developed for investigating the salt movement processes during flow events. The model structure for transport of water and salt in the Neales-Peake catchment generated similar spatial and temporal patterns of salt distribution in the floodplain/bank storage and water flow as observed during flow events in 2000-02. However, more field-data collection and modelling are required for improved calibration and description of salt transport and storage processes, particularly with regard to the number of stores required to represent the salt distribution in the upper zone of the soil profile.
NASA Astrophysics Data System (ADS)
Manners, R.; Wilcox, A. C.; Merritt, D. M.
2016-12-01
The ecogeomorphic response of riparian ecosystems to a change in hydrologic properties is difficult to predict because of the interactions and feedbacks among plants, water, and sediment. Most riparian models of community dynamics assume a static channel, yet geomorphic processes strongly control the establishment and survival of riparian vegetation. Using a combination of approaches that includes empirical relationships and hydrodynamic models, we model the coupled vegetation-topographic response of three cross-sections on the Yampa and Green Rivers in Dinosaur National Monument, to a shift in the flow regime. The locations represent the variable geomorphology and vegetation composition of these canyon-bound rivers. We account for the inundation and hydraulic properties of vegetation plots surveyed over three years within International River Interface Cooperative (iRIC) Fastmech, equipped with a vegetation module that accounts for flexible stems and plant reconfiguration. The presence of functional groupings of plants, or those plants that respond similarly to environmental factors such as water availability and disturbance are determined from flow response curves developed for the Yampa River. Using field measurements of vegetation morphology, distance from the channel centerline, and dominant particle size and modeled inundation properties we develop an empirical relationship between these variables and topographic change. We evaluate vegetation and channel form changes over decadal timescales, allowing for the integration of processes over time. From our analyses, we identify thresholds in the flow regime that alter the distribution of plants and reduce geomorphic complexity, predominately through side-channel and backwater infilling. Simplification of some processes (e.g., empirically-derived sedimentation) and detailed treatment of others (e.g., plant-flow interactions) allows us to model the coupled dynamics of riparian ecosystems and evaluate the impact of small to large shifts in the flow regime. This approach will be useful to river managers and scientists, as they try to understand the potential changes to riparian ecosystems with uncertain changes to hydrologic regimes as a result of a changing climate and human demands.
The objective of this poster is by comparing nutrient and DOM concentrations in small and large streams, we hope to better understand: (1) watershed controls on stream nutrient and DOM concentrations; and (2) the variability of nutrient and DOM concentrations within a river netwo...
Changes in the timing of high river flows in New England over the 20th Century
Hodgkins, G.A.; Dudley, R.W.; Huntington, T.G.
2003-01-01
The annual timing of river flows is a good indicator of climate-related changes, or lack of changes, for rivers with long-term data that drain unregulated basins with stable land use. Changes in the timing of annual winter/spring (January 1 to May 31) and fall (October 1 to December 31) center of volume dates were analyzed for 27 rural, unregulated river gaging stations in New England, USA with an average of 68 years of record. The center of volume date is the date by which half of the total volume of water for a given period of time flows past a river gaging station, and is a measure of the timing of the bulk of flow within the time period. Winter/spring center of volume (WSCV) dates have become significantly earlier (p < 0.1) at all 11 river gaging stations in areas of New England where snowmelt runoff has the most effect on spring river flows. Most of this change has occurred in the last 30 years with dates advancing by 1-2 weeks. WSCV dates were correlated with March through April air temperatures (r = -0.72) and with January precipitation (r = -0.37). Three of 16 river gaging stations in the remainder of New England had significantly earlier WSCV dates. Four out of 27 river gaging stations had significantly earlier fall center of volume dates in New England. Changes in the timing of winter/spring and fall peak flow dates were consistent with the changes in the respective center of volume dates, given the greater variability in the peak flow dates. Changes in the WSCV dates over the last 30 years are consistent with previous studies of New England last-frost dates, lilac bloom dates, lake ice-out dates, and spring air temperatures. This suggests that these New England spring geophysical and biological changes all were caused by a common mechanism, temperature increases.
Predicting regime shifts in flow of the Colorado River
Gangopadhyay, Subhrendu; McCabe, Gregory J.
2010-01-01
The effects of continued global warming on water resources are a concern for water managers and stake holders. In the western United States, where the combined climatic demand and consumptive use of water is equal to or greater than the natural supply of water for some locations, there is growing concern regarding the sustainability of future water supplies. In addition to the adverse effects of warming on water supply, another issue for water managers is accounting for, and managing, the effects of natural climatic variability, particularly persistently dry and wet periods. Analyses of paleo-reconstructions of Upper Colorado River basin (UCRB) flow demonstrate that severe sustained droughts, and persistent pluvial periods, are a recurring characteristic of hydroclimate in the Colorado River basin. Shifts between persistently dry and wet regimes (e.g., decadal to multi-decadal variability (D2M)) have important implications for water supply and water management. In this study paleo-reconstructions of UCRB flow are used to compute the risks of shifts between persistently wet and dry regimes given the length of time in a specific regime. Results indicate that low frequency variability of hydro-climatic conditions and the statistics that describe this low frequency variability can be useful to water managers by providing information about the risk of shifting from one hydrologic regime to another. To manage water resources in the future water managers will have to understand the joint hydrologic effects of natural climate variability and global warming. These joint effects may produce future hydrologic conditions that are unprecedented in both the instrumental and paleoclimatic records.
Singer, Michael B.; Dunne, Thomas
2006-01-01
A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.
Solute Transport Dynamics in a Large Hyporheic Corridor System
NASA Astrophysics Data System (ADS)
Zachara, J. M.; Chen, X.; Murray, C. J.; Shuai, P.; Rizzo, C.; Song, X.; Dai, H.
2016-12-01
A hyporheic corridor is an extended zone of groundwater surface water-interaction that occurs within permeable aquifer sediments in hydrologic continuity with a river. These systems are dynamic and tightly coupled to river stage variations that may occur over variable time scales. Here we describe the behavior of a persistent uranium (U) contaminant plume that exists within the hyporheic corridor of a large, managed river system - the Columbia River. Temporally dense monitoring data were collected for a two year period from wells located within the plume at varying distances up to 400 m from the river shore. Groundwater U originates from desorption of residual U in the lower vadose zone during periods of high river stage and associated elevated water table. U is weakly adsorbed to aquifer sediments because of coarse texture, and along with specific conductance, serves as a tracer of vadose zone source terms, solute transport pathways, and groundwater-surface water mixing. Complex U concentration and specific conductance trends were observed for all wells that varied with distance from the river shoreline and the river hydrograph, although trends for each well were generally repeatable for each year during the monitoring period. Statistical clustering analysis was used to identify four groups of wells that exhibited common trends in dissolved U and specific conductance. A flow and reactive transport code, PFLOTRAN, was implemented within a hydrogeologic model of the groundwater-surface water interaction zone to provide insights on hydrologic processes controlling monitoring trends and cluster behavior. The hydrogeologic model was informed by extensive subsurface characterization, with the spatially variable topography of a basal aquitard being one of several key parameters. Numerical tracer experiments using PFLOTRAN revealed the presence of temporally complex flow trajectories, spatially variable domains of groundwater - river water mixing, and locations of enhanced groundwater - river exchange that helped to explain monitoring trends. Observations and modeling results are integrated into a conceptual model of this highly complex and dynamic system with applicability to hyporheic corridor systems elsewhere.
Hydrologic alteration affects aquatic plant assemblages in an arid-land river
Vinson, Mark; Hestmark, Bennett; Barkworth, Mary E.
2014-01-01
We evaluated the effects of long-term flow alteration on primary-producer assemblages. In 1962, Flaming Gorge Dam was constructed on the Green River. The Yampa River has remained an unregulated hydrologically variable river that joins the Green River 100 km downstream from Flaming Gorge Dam. In the 1960s before dam construction only sparse occurrences of two macroalgae, Cladophora and Chara, and no submerged vascular plants were recorded in the Green and Yampa rivers. In 2009–2010, aquatic plants were abundant and widespread in the Green River from the dam downstream to the confluence with the Yampa River. The assemblage consisted of six vascular species, Elodea canadensis, Myriophyllum sibiricum, Nasturtium officinale,Potamogeton crispus, Potamogeton pectinatus, and Ranunculus aquatilis, the macroalgae Chara and Cladophora, and the bryophyte, Amblystegium riparium. In the Green River downstream from the Yampa River, and in the Yampa River, only sparse patches of Chara and Cladophora growing in the splash zone on boulders were collected. We attribute the observed changes in the Green River to an increase in water transparency and a reduction in suspended and bed-load sediment and high flow disturbances. The lack of hydrophyte colonization downstream from the confluence with the Yampa River has implications for understanding tributary amelioration of dam effects and for designing more natural flow-regime schedules downstream from large dams.
Laub, Brian G.; Thiede, Gary P.; Macfarlane, William W.; Budy, Phaedra
2018-01-01
We explored the conservation potential of tributaries in the upper Colorado River basin by modeling native fish species richness as a function of river discharge, temperature, barrier‐free length, and distance to nearest free‐flowing main‐stem section. We investigated a historic period prior to large‐scale water development and a contemporary period. In the historic period, species richness was log‐linearly correlated to variables capturing flow magnitude, particularly mean annual discharge. In the contemporary period, the log‐linear relationship between discharge and species richness was still evident but weaker. Tributaries with lower average temperature and separated from free‐flowing main‐stem sections often had fewer native species compared to tributaries with similar discharge but with warmer temperature and directly connected to free‐flowing main stems. Thus, tributaries containing only a small proportion of main‐stem discharge, especially those at lower elevations with warmer temperatures and connected to free‐flowing main stems, can support a relatively high species richness. Tributaries can help maintain viable populations by providing ecological processes disrupted on large regulated rivers, such as natural flow and temperature regimes, and may present unique conservation opportunities. Efforts to improve fish passage, secure environmental flows, and restore habitat in these tributaries could greatly contribute to conservation of native fish richness throughout the watershed.
Pluri-annual sediment budget in a navigated river system: the Seine River (France).
Vilmin, Lauriane; Flipo, Nicolas; de Fouquet, Chantal; Poulin, Michel
2015-01-01
This study aims at quantifying pluri-annual Total Suspended Matter (TSM) budgets, and notably the share of river navigation in total re-suspension at a long-term scale, in the Seine River along a 225 km stretch including the Paris area. Erosion is calculated based on the transport capacity concept with an additional term for the energy dissipated by river navigation. Erosion processes are fitted for the 2007-2011 period based on i) a hydrological typology of sedimentary processes and ii) a simultaneous calibration and retrospective validation procedure. The correlation between observed and simulated TSM concentrations is higher than 0.91 at all monitoring stations. A variographic analysis points out the possible sources of discrepancies between the variabilities of observed and simulated TSM concentrations at three time scales: sub-weekly, monthly and seasonally. Most of the error on the variability of simulated concentrations concerns sub-weekly variations and may be caused by boundary condition estimates rather than modeling of in-river processes. Once fitted, the model permits to quantify that only a small fraction of the TSM flux sediments onto the river bed (<0.3‰). The river navigation contributes significantly to TSM re-suspension in average (about 20%) and during low flow periods (over 50%). Given the significant impact that sedimentary processes can have on the water quality of rivers, these results highlight the importance of taking into account river navigation as a source of re-suspension, especially during low flow periods when biogeochemical processes are the most intense. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.
2009-01-09
Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. In recent years, single peak releases each day or steady flows have been the operational pattern during the winter period. A double-peak pattern (two flow peaks each day) was implemented during the winter of 2006-2007 by Reclamation. Because there is no recent history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on the body condition of trout in the dam's tailwater are not known. A study plan was developed that identified researchmore » activities to evaluate potential effects from double-peaking operations during winter months. Along with other tasks, the study plan identified the need to conduct a statistical analysis of existing data on trout condition and macroinvertebrate abundance to evaluate potential effects of hydropower operations. This report presents the results of this analysis. We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam and (2) to evaluate the degree to which flow characteristics (i.e., flow volumes and flow variability) and benthic macroinvertebrate abundance affect the condition of trout in this area. This information, together with further analyses of size-stratified trout data, may also serve as baseline data to which the effects of potential future double-peaking flows can be compared. The condition (length, weight and/or relative weight) of rainbow trout (Oncorhynchus mykiss) at two sites in the Green River downstream of Flaming Gorge Dam (Tailrace and Little Hole) and weight of brown trout (Salmo trutta) at the Little Hole site has been decreasing since 1990 while the abundance of brown trout has been increasing at the two sites. At the same time, flow variability in the river has decreased and the abundance of total benthic macroinvertebrates at the Tailrace site has increased. The condition of trout in spring (averaged across all sampled trout) was positively correlated with fall and winter flow variability (including within-day skewness, within-season skewness and/or change in flow between days) at both locations. No negative correlations between trout condition and any measure of flow variability were detected. The length and weight of rainbow trout at the Little Hole site were negatively correlated with increasing fall and winter flow volume. The condition of brown trout at Little Hole and the condition of brown and rainbow trout at Tailrace were not correlated with flow volume. Macroinvertebrate variables during October were either positively correlated or not correlated with measures of trout condition at the Tailrace and Little Hole sites. With the exception of a positive correlation between taxa richness of macroinvertebrates in January and the relative weight of brown trout at Tailrace, the macroinvertebrate variables during January and April were either not correlated or negatively correlated with measures of trout condition. We hypothesize that high flow variability increased drift by dislodging benthic macroinvertebrates, and that the drift, in turn, resulted in mostly lower densities of benthic macroinvertebrates, which benefited the trout by giving them more feeding opportunities. This was supported by negative correlations between benthic macroinvertebrates and flow variability. Macroinvertebrate abundance (with the exception of ephemeropterans) was also negatively correlated with flow volume. The change in trout condition from fall to spring, as measured by the ratio of spring to fall relative weight, was evaluated to determine their usefulness as a standardized index to control for the initial condition of the fish as they enter the winter period. The ratio values were less correlated with the fall condition values than the spring condition values and did not show the same relationships to flows, to macroinvertebrates, or across years as the above-mentioned spring relative weight values. We found that the condition ratio of rainbow trout at Tailrace was positively correlated with within-day flow variability but was not correlated with flow volume, between-day-, or within-season flow variability. The condition ratios of rainbow trout at Little Hole and of both trout species at Tailrace were not correlated to any of the measured flow variables. The condition ratios of both trout species were positively correlated with the abundance of January benthic macroinvertebrates at the Little Hole site and with January dipterans (brown trout) or total coleopterans (rainbow trout) at the Tailrace site. The relationships among flows, macroinvertebrates, and trout condition were varied among species and locations.« less
Analysis of managed aquifer recharge for retiming streamflow in an alluvial river
NASA Astrophysics Data System (ADS)
Ronayne, Michael J.; Roudebush, Jason A.; Stednick, John D.
2017-01-01
Maintenance of low flows during dry periods is critical for supporting ecosystem function in many rivers. Managed aquifer recharge is one method that can be used to augment low flows in rivers that are hydraulically connected to an alluvial groundwater system. In this study, we performed numerical modeling to evaluate a managed recharge operation designed to retime streamflow in the South Platte River, northeastern Colorado (USA). Modeling involved the simulation of spatially and temporally variable groundwater-surface water exchange, as well as streamflow routing in the river. Periodic solutions that incorporate seasonality were developed for two scenarios, a natural base case scenario and an active management scenario that included groundwater pumping and managed recharge. A framework was developed to compare the scenarios by analyzing changes in head-dependent inflows and outflows to/from the aquifer, which was used to interpret the simulated impacts on streamflow. The results clearly illustrate a retiming of streamflow. Groundwater pumping near the river during winter months causes a reduction in streamflow during those months. Delivery of the pumped water to recharge ponds, located further from the river, has the intended effect of augmenting streamflow during low-flow summer months. Higher streamflow is not limited to the target time period, however, which highlights an inefficiency of flow augmentation projects that rely on water retention in the subsurface.
NASA Astrophysics Data System (ADS)
Massei, N.; Fournier, M.
2010-12-01
Daily Seine river flow from 1950 to 2008 was analyzed using Hilbert-Huang Tranform (HHT). For the last ten years, this method which combines the so-called Empirical Mode Decomposition (EMD) multiresolution analysis and the Hilbert transform has proven its efficiency for the analysis of transient oscillatory signals, although the mathematical definition of the EMD is not totally established yet. HHT also provides an interesting alternative to other time-frequency or time-scale analysis of non-stationary signals, the most famous of which being wavelet-based approaches. In this application of HHT to the analysis of the hydrological variability of the Seine river, we seek to characterize the interannual patterns of daily flow, differenciate them from the short-term dynamics and eventually interpret them in the context of regional climate regime fluctuations. In this aim, HHT is also applied to the North-Atlantic Oscillation (NAO) through the annual winter-months NAO index time series. For both hydrological and climatic signals, dominant variability scales are extracted and their temporal variations analyzed by determination of the intantaneous frequency of each component. When compared to previous ones obtained from continuous wavelet transform (CWT) on the same data, HHT results highlighted the same scales and somewhat the same internal components for each signal. However, HHT allowed the identification and extraction of much more similar features during the 1950-2008 period (e.g., around 7-yr, between NAO and Seine flow than what was obtained from CWT, which comes to say that variability scales in flow likely to originate from climatic regime fluctuations were much properly identified in river flow. In addition, a more accurate determination of singularities in the natural processes analyzed were authorized by HHT compared to CWT, in which case the time-frequency resolution partly depends on the basic properties of the filter (i.e., the reference wavelet chosen initially). Compared to CWT or even to discrete wavelet multiresolution analysis, HHT is auto-adaptive, non-parametric, allows an orthogonal decomposition of the signal analyzed and provides a more accurate estimation of changing variability scales across time for highly transient signals.
Variable parameter McCarthy-Muskingum routing method considering lateral flow
NASA Astrophysics Data System (ADS)
Yadav, Basant; Perumal, Muthiah; Bardossy, Andras
2015-04-01
The fully mass conservative variable parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price (2013) for routing floods in channels and rivers without considering lateral flow is extended herein for accounting uniformly distributed lateral flow contribution along the reach. The proposed procedure is applied for studying flood wave movement in a 24.2 km river stretch between Rottweil and Oberndorf gauging stations of Neckar River in Germany wherein significant lateral flow contribution by intermediate catchment rainfall prevails during flood wave movement. The geometrical elements of the cross-sectional information of the considered routing river stretch without considering lateral flow are estimated using the Robust Parameter Estimation (ROPE) algorithm that allows for arriving at the best performing set of bed width and side slope of a trapezoidal section. The performance of the VPMM method is evaluated using the Nash-Sutcliffe model efficiency criterion as the objective function to be maximized using the ROPE algorithm. The twenty-seven flood events in the calibration set are considered to identify the relationship between 'total rainfall' and 'total losses' as well as to optimize the geometric characteristics of the prismatic channel (width and slope of the trapezoidal section). Based on this analysis, a relationship between total rainfall and total loss of the intermediate catchment is obtained and then used to estimate the lateral flow in the reach. Assuming the lateral flow hydrograph is of the form of inflow hydrograph and using the total intervening catchment runoff estimated from the relationship, the uniformly distributed lateral flow rate qL at any instant of time is estimated for its use in the VPMM routing method. All the 27 flood events are simulated using this routing approach considering lateral flow along the reach. Many of these simulations are able to simulate the observed hydrographs very closely. The proposed approach of accounting lateral flow using the VPMM method is independently verified by routing flood hydrograph of 6 flood events which are not used in the total rainfall vs total loss relationship established for the intervening catchment of the studied river reach. Close reproduction of the outflow hydrographs of these independent events using the proposed VPMM method accounting for lateral flow demonstrate the practical utility of the method.
Variability of Ecosystem State in Rivers Containing Natural Dams: A Chemical Analysis
NASA Astrophysics Data System (ADS)
Reynolds, Z. A.
2015-12-01
Flooding, and the resulting economic damage to roads and property, is associated with natural dams such as beaver dams or log jams. For this reason, humans often remove natural dams; however, river reaches with natural dams provide very different ecosystem services in comparison with free-flowing river reaches. Therefore, the goal of this project is to assess the differences in ecosystem state between these different river reach types in the northeastern United States. We focused on differences in basic chemistry (e.g., dissolved oxygen, pH, temperature, and organic carbon) to assess the impact of natural dams on river ecosystem state. Study sites include rivers in the White Mountains and southeastern New Hampshire at locations with beaver dams, beaver ponds, beaver meadows, log jams, and free-flowing reaches. Dissolved oxygen, ORP, pH, temperature, and conductivity were measured in the field with a YSI Professional Plus meter. Water samples were collected for subsequent laboratory analysis of total organic carbon with a Shimadzu TOC-L. Preliminary results show that the chemistry of river water varies with feature type. Most significantly, dissolved oxygen concentrations are highest in free-flowing reaches and lowest in beaver ponds. Although beaver ponds are often associated with lower pH, due the increased concentration of organic acids, some beaver ponds can increase pH when compared to free-flowing reaches on the same river. Early results also show that water chemistry returns quickly to the chemistry typical of the free-flowing river reaches after being altered by a natural dam. Overall, natural dams create a river system that has more heterogeneity, and therefore has opportunities to provide more ecosystem functions, than a purely free-flowing river; this can increase the number of supported instream and riparian species. By increasing the understanding of how natural dams affect the chemistry of river water, river engineers can improve their decisions on how to remove problematic natural dams that increase flooding risks; they can also investigate possibilities to mimic the ecosystem state generated by natural dams in places where these dams are regularly removed.
NASA Astrophysics Data System (ADS)
Vermeul, V.; McKinley, J. P.; Newcomer, D.; Fritz, B. G.; Mackley, R.; Zachara, J. M.
2010-12-01
Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. In this study, simultaneous measurement of 1) wellbore flow using an electromagnetic borehole flowmeter (EBF), 2) depth discrete hydraulic head, and 3) aqueous uranium concentrations were used to quantify wellbore flow and assess the associated impacts on measured aqueous concentrations. Monitoring results demonstrate the utility of continuous (i.e., hourly measurements for ~ one month) ambient wellbore flow monitoring and show that relatively large wellbore flows (up to 4 LPM) can be induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an EBF system allowed these effects to be evaluated in concert with continuously monitored river stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multi-level well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth. In addition, observed variability in aqueous concentrations measured during active tracer transport experiments provided additional evidence of wellbore flow impacts and showed that the magnitude and direction of wellbore flow varied spatially across the wellfield. An approach to mitigate these effects based on increasing hydraulic resistance within the wellbore was evaluated. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.
Dietsch, Benjamin J.; Godberson, Julie A.; Steele, Gregory V.
2009-01-01
The Nebraska Department of Natural Resources approved instream-flow appropriations on the Platte River to maintain fish communities, whooping crane roost habitat, and wet meadows used by several wild bird species. In the lower Platte River region, the Nebraska Game and Parks Commission owns an appropriation filed to maintain streamflow for fish communities between the Platte River confluence with the Elkhorn River and the mouth of the Platte River. Because Elkhorn River flow is an integral part of the flow in the reach addressed by this appropriation, the Upper Elkhorn and Lower Elkhorn Natural Resources Districts are involved in overall management of anthropogenic effects on the availability of surface water for instream requirements. The Physical Habitat Simulation System (PHABSIM) and other estimation methodologies were used previously to determine instream requirements for Platte River biota, which led to the filing of five water appropriations applications with the Nebraska Department of Natural Resources in 1993 by the Nebraska Game and Parks Commission. One of these requested instream-flow appropriations of 3,700 cubic feet per second was for the reach from the Elkhorn River to the mouth of the Platte River. Four appropriations were granted with modifications in 1998, by the Nebraska Department of Natural Resources. Daily streamflow data for the periods of record were summarized for 17 streamflow-gaging stations in Nebraska to evaluate streamflow characteristics, including low-flow intervals for consecutive durations of 1, 3, 7, 14, 30, 60, and 183 days. Temporal trends in selected streamflow statistics were not adjusted for variability in precipitation. Results indicated significant positive temporal trends in annual flow for the period of record at eight streamflow-gaging stations - Platte River near Duncan (06774000), Platte River at North Bend (06796000), Elkhorn River at Neligh (06798500), Logan Creek near Uehling (06799500), Maple Creek near Nickerson (06800000), Elkhorn River at Waterloo (06800500), Salt Creek at Greenwood (06803555), and Platte River at Louisville (06805500). In general, sites in the Elkhorn River Basin upstream from Norfolk showed fewer significant trends than did sites downstream from Norfolk and sites in the Platte River and Salt Creek basins, where trends in low flows also were positive. Historical Platte River streamflow records for the streamflow-gaging station at Louisville, Nebraska, were used to determine the number of days per water year (Sept. 30 to Oct. 1) when flows failed to satisfy the minimum criteria of the instream-flow appropriation prior to its filing in 1993. Before 1993, the median number of days the criteria were not satisfied was about 120 days per water year. During 1993 through 2004, daily mean flows at Louisville, Nebraska, have failed to satisfy the criteria for 638 days total (median value equals 21.5 days per year). Most of these low-flow intervals occurred in summer through early fall. For water years 1953 through 2004, of the discrete intervals when flow was less that the criteria levels, 61 percent were 3 days or greater in duration, and 38 percent were 7 days or greater in duration. The median duration of intervals of flow less than the criteria levels was 4 consecutive days during 1953 through 2004.
Shanafield, Margaret; Jurado, Hugo Gutierrez; Burgueño, Jesús Eliana Rodríguez; Hernández, Jorge Ramírez; Jarchow, Christopher; Nagler, Pamela L.
2017-01-01
Many large rivers around the world no longer flow to their deltas, due to ever greater water withdrawals and diversions for human needs. However, the importance of riparian ecosystems is drawing increasing recognition, leading to the allocation of environmental flows to restore river processes. Accurate estimates of riparian plant evapotranspiration (ET) are needed to understand how the riverine system responds to these rare events and achieve the goals of environmental flows. In 2014, historic environmental flows were released into the Lower Colorado River at Morelos Dam (Mexico); this once perennial but now dry reach is the final stretch to the mighty Colorado River Delta. One of the primary goals was to supply native vegetation restoration sites along the reach with water to help seedlings establish and boost groundwater levels to foster the planted saplings. Patterns in ET before, during, and after the flows are useful for evaluating whether this goal was met and understanding the role that ET plays in this now ephemeral river system. Here, diurnal fluctuations in groundwater levels and MODIS data were used to compare estimates of ET specifically at three native vegetation restoration sites during 2014 planned flow events, while MODIS data was used to evaluate long-term (2002 – 2016) ET responses to restoration efforts at these sites. Overall, ET was generally 0 - 10 mm d-1 across sites and although daily ET values from groundwater data were highly variable, weekly averaged estimates were highly correlated with MODIS-derived estimates at most sites. The influence of the 2014 flow events was not immediately apparent in the results, although the process of clearing vegetation and planting native vegetation at the restoration sites was clearly visible in the results.
Evidence of population resistance to extreme low flows in a fluvial-dependent fish species
Katz, Rachel A.; Freeman, Mary C.
2015-01-01
Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival
NASA Astrophysics Data System (ADS)
Wang, X.-S.; Ma, M.-G.; Li, X.; Zhao, J.; Dong, P.; Zhou, J.
2009-12-01
The behavior of groundwater response to leakage of surface water in the middle reaches area of Heihe River Basin is significantly influenced by a thick vadose zone. The variation of groundwater level is a result of two recharge events corresponding to leakage of Heihe River and irrigation water with different delay time. A nonlinear leakage model is developed to calculate the monthly leakage of Heihe River in considering changes of streamflow, river stage and agricultural water utilization. Numerical modeling of variable saturated flow is carried out to investigate the general behaviors of leakage-recharge conversion through a thick vadose zone. It is found that the variable recharge can be approximated by simple reservoir models for both leakage under a river and leakage under an irrigation district but with different delay-time and recession coefficient. A triple-reservoir model of relationship between surface water, vadose zone and groundwater is developed. It reproduces the in situ water table movement during 1989-2006 with variable streamflow of Heihe River and agricultural water utilization. The model is applied to interpret groundwater dynamics during 2007-2008 that observed in the Watershed Airborne Telemetry Experimental Research (WATER).
Factors regulating year‐class strength of Silver Carp throughout the Mississippi River basin
Sullivan, Christopher J.; Weber, Michael J.; Pierce, Clay; Wahl, David H.; Phelps, Quinton E.; Camacho, Carlos A.; Colombo, Robert E.
2018-01-01
Recruitment of many fish populations is inherently highly variable inter‐annually. However, this variability can be synchronous at broad geographic scales due to fish dispersal and climatic conditions. Herein, we investigated recruitment synchrony of Silver Carp Hypophthalmichthys molitrix across the Mississippi River basin. Year‐class strength (YCS) and synchrony of nine populations (max linear distance = 806.4 km) was indexed using catch‐curve residuals correlated between sites and related to local and regional climatic conditions. Overall, Silver Carp YCS was not synchronous among populations, suggesting local environmental factors are more important determinants of YCS than large‐scale environmental factors. Variation in Silver Carp YCS was influenced by river base flow and discharge variability at each site, indicating that extended periods of static local discharge benefit YCS. Further, river discharge and air temperature were correlated and synchronized among sites, but only similarities in river discharge was correlated with Silver Carp population synchrony, indicating that similarities in discharge (i.e., major flood) among sites can positively synchronize Silver Carp YCS. The positive correlation between Silver Carp YCS and river discharge synchrony suggests that regional flood regimes are an important force determining the degree of population synchrony among Mississippi River Silver Carp populations.
NASA Astrophysics Data System (ADS)
Jawitz, J. W.
2011-12-01
What are the relative contributions of climatic variability, land management, and local geomorphology in determining the temporal dynamics of streamflow and the export of solutes from watersheds to receiving water bodies? A simple analytical framework is introduced for characterizing the temporal inequality of stream discharge and solute export from catchments using Lorenz diagrams and the associated Gini coefficient. These descriptors are used to illustrate a broad range of observed flow variability with a synthesis of multi-decadal flow data from 22 rivers in Florida. The analytical framework is extended to comprehensively link variability in flows and loads to climatically-driven inputs in terms of these inequality-based metrics. Further, based on a synthesis of data from the basins of the Baltic Sea, the Mississippi River, the Kissimmee River and other tributaries to Lake Okeechobee, FL, it is shown that inter-annual variations in exported loads for geogenic constituents, and for total N and total P, are dominantly controlled by discharge. Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents. Multi-decadal phosphorus load data from 4 of the primary tributaries to Lake Okeechobee and sodium and nitrate load data from 9 of the Hubbard Brook, NH long-term study site catchments are used to examine the relation between inequality of climatic inputs, river flows and catchment loads. The intra-annual loads to Lake Okeechobee are shown to be highly unequal, such that 90% of annual load is delivered in as little as 15% of the time. Analytic expressions are developed for measures of inequality in terms of parameters of the lognormal distribution under general conditions that include intermittency. In cases where climatic variability is high compared to that of concentrations (chemostatic conditions), such as for P in the Lake Okeechobee basin and Na in Hubbard Brook, the temporal inequality of rainfall and flow are strong surrogates for load inequality. However, in cases where variability of concentrations is high compared to that of flows (chemodynamic conditions), such as for nitrate in the Hubbard Brook catchments, load inequality is greater than rainfall or flow inequality. The measured degree of correspondence between climatic, flow, and load inequality for these data sets are shown to be well described using the general inequality framework introduced here. Important implications are that (1) variations in hydro-climatic or anthropogenic forcing can be used to robustly predict inter-annual variations in flows and loads, (2) water quality problems in receiving inland and coastal waters may persist until the accumulated storages of nutrients have been substantially depleted, and (3) remedial measures designed to intercept or capture exported flows and loads must be designed with consideration of the intra-annual inequality.
Keller, Virginie D J; Williams, Richard J; Lofthouse, Caryn; Johnson, Andrew C
2014-02-01
Dilution factors are a critical component in estimating concentrations of so-called "down-the-drain" chemicals (e.g., pharmaceuticals) in rivers. The present study estimated the temporal and spatial variability of dilution factors around the world using geographically referenced data sets at 0.5° × 0.5° resolution. Domestic wastewater effluents were derived from national per capita domestic water use estimates and gridded population. Monthly and annual river flows were estimated by accumulating runoff estimates using topographically derived flow directions. National statistics, including the median and interquartile range, were generated to quantify dilution factors. Spatial variability of the dilution factor was found to be considerable; for example, there are 4 orders of magnitude in annual median dilution factor between Canada and Morocco. Temporal variability within a country can also be substantial; in India, there are up to 9 orders of magnitude between median monthly dilution factors. These national statistics provide a global picture of the temporal and spatial variability of dilution factors and, hence, of the potential exposure to down-the-drain chemicals. The present methodology has potential for a wide international community (including decision makers and pharmaceutical companies) to assess relative exposure to down-the-drain chemicals released by human pollution in rivers and, thus, target areas of potentially high risk. © 2013 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
NASA Astrophysics Data System (ADS)
Mohammed, K.; Islam, A. S.; Khan, M. J. U.; Das, M. K.
2017-12-01
With the large number of hydrologic models presently available along with the global weather and geographic datasets, streamflows of almost any river in the world can be easily modeled. And if a reasonable amount of observed data from that river is available, then simulations of high accuracy can sometimes be performed after calibrating the model parameters against those observed data through inverse modeling. Although such calibrated models can succeed in simulating the general trend or mean of the observed flows very well, more often than not they fail to adequately simulate the extreme flows. This causes difficulty in tasks such as generating reliable projections of future changes in extreme flows due to climate change, which is obviously an important task due to floods and droughts being closely connected to people's lives and livelihoods. We propose an approach where the outputs of a physically-based hydrologic model are used as an input to a machine learning model to try and better simulate the extreme flows. To demonstrate this offline-coupling approach, the Soil and Water Assessment Tool (SWAT) was selected as the physically-based hydrologic model, the Artificial Neural Network (ANN) as the machine learning model and the Ganges-Brahmaputra-Meghna (GBM) river system as the study area. The GBM river system, located in South Asia, is the third largest in the world in terms of freshwater generated and forms the largest delta in the world. The flows of the GBM rivers were simulated separately in order to test the performance of this proposed approach in accurately simulating the extreme flows generated by different basins that vary in size, climate, hydrology and anthropogenic intervention on stream networks. Results show that by post-processing the simulated flows of the SWAT models with ANN models, simulations of extreme flows can be significantly improved. The mean absolute errors in simulating annual maximum/minimum daily flows were minimized from 4967 cusecs to 1294 cusecs for Ganges, from 5695 cusecs to 2115 cusecs for Brahmaputra and from 689 cusecs to 321 cusecs for Meghna. Using this approach, simulations of hydrologic variables other than streamflow can also be improved given that a decent amount of observed data for that variable is available.
Covington, H.R.; Weaver, Jean N.
1990-01-01
The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer (water table) is typically less than 500 ft below the land surface, but us deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat lying basaltic and sedimentary rocks of the eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon intersects the Snake River Plain aquifer, which discharges form the northern canyon wall as springs of variable size, spacing and altitude. Geologic controls on wprings are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of the several that describes the geologic occurrence of the springs along the northern wall of the Snake River canyone from Milner Dam to King Hill.
Patterns of streamflow variability are likely to be a major organizing feature of the habitat template for stream fishes. Functional organization of stream communities has been linked to streamflow, especially to patterns of flow variability that describe the physical disturbanc...
Patterns of streamflow variability are likely to be a major organizing feature of the habitat template for stream fishes. Ecological organization of stream communities has been linked to streamflow, especially to patterns of flow variability that describe the physical disturbanc...
A hybrid least squares support vector machines and GMDH approach for river flow forecasting
NASA Astrophysics Data System (ADS)
Samsudin, R.; Saad, P.; Shabri, A.
2010-06-01
This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.
NASA Astrophysics Data System (ADS)
Benjankar, R. M.; Sohrabi, M.; Tonina, D.; McKean, J. A.
2013-12-01
Aquatic habitat models utilize flow variables which may be predicted with one-dimensional (1D) or two-dimensional (2D) hydrodynamic models to simulate aquatic habitat quality. Studies focusing on the effects of hydrodynamic model dimensionality on predicted aquatic habitat quality are limited. Here we present the analysis of the impact of flow variables predicted with 1D and 2D hydrodynamic models on simulated spatial distribution of habitat quality and Weighted Usable Area (WUA) for fall-spawning Chinook salmon. Our study focuses on three river systems located in central Idaho (USA), which are a straight and pool-riffle reach (South Fork Boise River), small pool-riffle sinuous streams in a large meadow (Bear Valley Creek) and a steep-confined plane-bed stream with occasional deep forced pools (Deadwood River). We consider low and high flows in simple and complex morphologic reaches. Results show that 1D and 2D modeling approaches have effects on both the spatial distribution of the habitat and WUA for both discharge scenarios, but we did not find noticeable differences between complex and simple reaches. In general, the differences in WUA were small, but depended on stream type. Nevertheless, spatially distributed habitat quality difference is considerable in all streams. The steep-confined plane bed stream had larger differences between aquatic habitat quality defined with 1D and 2D flow models compared to results for streams with well defined macro-topographies, such as pool-riffle bed forms. KEY WORDS: one- and two-dimensional hydrodynamic models, habitat modeling, weighted usable area (WUA), hydraulic habitat suitability, high and low discharges, simple and complex reaches
Impacts of Land Use/Cover Uncertainty on Predictions of Ecologically Relevant Flow Metrics
NASA Astrophysics Data System (ADS)
Kalin, L.; Dosdogru, F.
2016-12-01
Streamflow regimes are crucial parts of the ecological integrity in river systems. Although species are adopted to natural flow variability, permanent changes in flow regimes as a result of alterations in land use/cover of the watersheds can adversely impact ecosystem health. This study assessed the impacts of land use/cover (LULC) changes on ecologically relevant flow (ERF) metrics in the rapidly urbanizing upper Cahaba River basin in north-central Alabama. Cahaba River is the longest free-flowing river in the state of Alabama and is identified by the Nature Conservancy as one of the only eight "Hotspot of Biodiversity" in the contiguous United States. Cahaba River and its major tributaries support 69 rare and imperiled species, making it one of the most various aquatic ecosystems in the United States. SWAT model was used to generate daily streamflows, which were then fed into the Indicators of Hydrological Alterations (IHA) software to generate 38 key ERF metrics that capture high, low, and median flow, as well as flashiness, which are known to have significant impacts on flora and fauna. SWAT was calibrated and validated twice with two different sources of LULC. Model performances during calibration and validations were very good and were very similar with both LULC. The flow duration curves generated based on each LULC also look very similar. However, when we compared the ERF metrics significant differences were observed signifying the importance of LULC sources. The biggest differences were in Oct-Dec low flows, rise and fall rates of daily flows, annual maximum flow and average during month od October. This study shows that although model calibration can compensate for the differences in differences in LULC sources, when it comes to key ERF metrics the use of the most reliable LULC source is evident.
Auble, Gregor T.; Bowen, Zachary H.
2008-01-01
In June 2006, an opportunistic high-flow release was made from Tiber Dam on the Marias River in Mont., to investigate possible alternatives for partially restoring the river's natural flow pattern and variability. At two sites along the river, we measured channel geometry before and after the high-flow release to evaluate channel change and alteration of physical habitat. Streamflow downstream from Tiber Dam has been stabilized by reduction of high flows and augmentation of low flows. This has produced flood-control benefits as well as some possible adverse environmental effects downstream from the dam. The 2006 high-flow release resulted in a downstream hydrograph with high flows of above-average magnitude in the post-dam flow regime of the Marias River. Timing of the peak and the declining limb of the release hydrograph were very similar to a historical, unregulated hydrograph of the Marias River. Furthermore, the high flow produced many of the qualitative elements of ecologically important physical processes that can be diminished or lost due to flow stabilization downstream from a dam. Typically dry back channels were occupied by flowing water. Islands were inundated, resulting in vegetation removal and sediment accretion that produced new disturbance patches of bare, moist substrate. Cut banks were eroded, and large woody debris was added to the river and redistributed. Flood-plain surfaces were inundated, producing substantial increases in wetted perimeter and spatially distinctive patterns of deposition associated with natural levee formation. The scale of the 2006 high flow - in terms of peak magnitude and the lateral extent of bottomland influenced by inundation or lateral channel movement - was roughly an order of magnitude smaller than the scale of an infrequent high flow in the pre-dam regime. Overall extent and composition of riparian vegetation will continue to change under a scaled-down, post-dam flow regime. For example, the importance of the non-native Russian-olive (Elaeagnus angustifolia) will likely increase. Reestablishing a more natural pattern of flows, however, should promote the increase of native cottonwood and willow (Salix spp.) in the new-albeit smaller-post-dam riparian ecosystem. A more natural flow regime will also likely provide improved habitat for native fish in the Marias River. Response of fish communities to such flows is the subject of current fisheries studies being conducted in cooperation with Bureau of Reclamation.
Mapping the Riverscape of the Middle Fork John Day River with Structure-from-Motion
NASA Astrophysics Data System (ADS)
Dietrich, J. T.
2014-12-01
Aerial photography has proven an efficient method to collect a wide range of continuous variables for large sections of rivers. These data include variables such as the planimetric shape, low-flow and bank-full widths, bathymetry, and sediment sizes. Mapping these variables in a continuous manner allows us to explore the heterogeneity of the river and build a more complete picture of the holistic riverscape. To explore a low-cost option for aerial photography and riverscape mapping, I used the combination of a piloted helicopter and an off-the-shelf digital SLR camera to collect aerial imagery for a 32 km segment of the Middle Fork John Day River in eastern Oregon. This imagery was processed with Structure-from-Motion (SfM) photogrammetry to produce high-resolution 10 cm orthophotos and digital surface models that were used to extract riverscape variables. The Middle Fork John Day River is an important spawning river for anadromous Chinnook and Steelhead and has been the focus of widespread restoration and conservation activities in response to the legacies of extensive grazing and mining activity. By mapping the riverscape of the Middle Fork John Day, I explored downstream relationships between several geomorphic variables with hyperscale analysis. These riverscape data also provided an opportunity to make a continuous map of habitat suitability for migrating adult Chinook. Both the geomorphic and habitat suitability analysis provide an important assessment of the natural variation in the river and the impact of human modification, both positive and negative.
Progress report number 2: investigations of some sedimentation characteristics of sand-bed streams
Hubbell, D.W.
1960-01-01
Hydraulic and sediment characteristics at six river sections upstream and downstream from the confluence of the Middle Loup and Dismal Rivers were measured and studied to determine some of the interrelationships between variables and the differences that exist between common variables when two flows unite. The two streams, which flow through the Sandhills region of Nebraska, have about the same water discharge, sediment concentration, and particle-size distribution of suspended sediment and bed material. Sediment discharges and flow resistances varied widely, although water discharges remained almost constant. The factor affecting the variations was water temperature, which ranged from 32° to 80° F. The bed form, which also varied with the water temperature, seemed to have a dominating influence on the sediment discharge, flow resistance, and possibly the vertical distribution of velocity and suspended sediment. Multiple regression with parameters derived from dimensional analysis yielded an expression for predicting the flow resistance and the widths and depths of individual channel sections. Contrary to those near many other confluences, slopes were steeper and channels were wider downstream from the junction of the two rivers than they were upstream. An investigation of specific sediment-transport phenomena and field procedures was made during 1956 and 1957 in cooperation with the U.S. Bureau of Reclamation. The purposes of this investigation were to provide information on the regime of rivers and to improve the procedures related to the collection of sediment data. The basic data and results of the studies made in 1956 were presented in progress report number 1, "Investigations of Some Sedimentation Characteristics of a Sand-Bed Stream." Some of the basic data and results of the studies made in 1957 are given in this report.
Yang, Jie; Graf, Thomas; Ptak, Thomas
2015-01-01
Climate change is expected to induce sea level rise in the German Bight, which is part of the North Sea, Germany. Climate change may also modify river discharge of the river Weser flowing into the German Bight, which will alter both pressure and salinity distributions in the river Weser estuary. To study the long-term interaction between sea level rise, discharge variations, a storm surge and coastal aquifer flow dynamics, a 3D seawater intrusion model was designed using the fully coupled surface-subsurface numerical model HydroGeoSphere. The model simulates the coastal aquifer as an integral system considering complexities such as variable-density flow, variably saturated flow, irregular boundary conditions, irregular land surface and anthropogenic structures (e.g., dyke, drainage canals, water gates). The simulated steady-state groundwater flow of the year 2009 is calibrated using PEST. In addition, four climate change scenarios are simulated based on the calibrated model: (i) sea level rise of 1m, (ii) the salinity of the seaside boundary increases by 4 PSU (Practical Salinity Units), (iii) the salinity of the seaside boundary decreases by 12 PSU, and (iv) a storm surge with partial dyke failure. Under scenarios (i) and (iv), the salinized area expands several kilometers further inland during several years. Natural remediation can take up to 20 years. However, sudden short-term salinity changes in the river Weser estuary do not influence the salinized area in the coastal aquifer. The obtained results are useful for coastal engineering practices and drinking water resource management. Copyright © 2015 Elsevier B.V. All rights reserved.
Waythomas, C.F.; Wallace, K.L.
2002-01-01
An areally extensive volcanic mass-flow deposit of Pleistocene age, known as the Chetaslina volcanic mass-flow deposit, is a prominent and visually striking deposit in the southeastern Copper River lowland of south-central Alaska. The mass-flow deposit consists of a diverse mixture of colorful, variably altered volcanic rocks, lahar deposits, glaciolacustrine diamicton, and till that record a major flank collapse on the southwest flank of Mount Wrangell. The deposit is well exposed near its presumed source, and thick, continuous, stratigraphic exposures have permitted us to study its sedimentary characteristics as a means of better understanding the origin, significance, and evolution of the deposit. Deposits of the Chetaslina volcanic mass flow in the Chetaslina River drainage are primary debris-avalanche deposits and consist of two principal facies types, a near-source block facies and a distal mixed facies. The block facies is composed entirely of block-supported, shattered and fractured blocks with individual blocks up to 40 m in diameter. The mixed facies consists of block-sized particles in a matrix of poorly sorted rock rubble, sand, and silt generated by the comminution of larger blocks. Deposits of the Chetaslina volcanic mass flow exposed along the Copper, Tonsina, and Chitina rivers are debris-flow deposits that evolved from the debris-avalanche component of the flow and from erosion and entrainment of local glacial and glaciolacustrine diamicton in the Copper River lowland. The debris-flow deposits were probably generated through mixing of the distal debris avalanche with the ancestral Copper River, or through breaching of a debris-avalanche dam across the ancestral river. The distribution of facies types and major-element chemistry of clasts in the deposit indicate that its source was an ancestral volcanic edifice, informally known as the Chetaslina vent, on the southwest side of Mount Wrangell. A major sector collapse of the Chetaslina vent initiated the Chetaslina volcanic mass flow forming a debris avalanche of about 4 km3 that subsequently transformed to a debris flow of unknown volume.
NASA Astrophysics Data System (ADS)
Ghysels, Gert; Benoit, Sien; Awol, Henock; Jensen, Evan Patrick; Debele Tolche, Abebe; Anibas, Christian; Huysmans, Marijke
2018-04-01
An improved general understanding of riverbed heterogeneity is of importance for all groundwater modeling studies that include river-aquifer interaction processes. Riverbed hydraulic conductivity (K) is one of the main factors controlling river-aquifer exchange fluxes. However, the meter-scale spatial variability of riverbed K has not been adequately mapped as of yet. This study aims to fill this void by combining an extensive field measurement campaign focusing on both horizontal and vertical riverbed K with a detailed geostatistical analysis of the meter-scale spatial variability of riverbed K . In total, 220 slug tests and 45 standpipe tests were performed at two test sites along the Belgian Aa River. Omnidirectional and directional variograms (along and across the river) were calculated. Both horizontal and vertical riverbed K vary over several orders of magnitude and show significant meter-scale spatial variation. Horizontal K shows a bimodal distribution. Elongated zones of high horizontal K along the river course are observed at both sections, indicating a link between riverbed structures, depositional environment and flow regime. Vertical K is lognormally distributed and its spatial variability is mainly governed by the presence and thickness of a low permeable organic layer at the top of the riverbed. The absence of this layer in the center of the river leads to high vertical K and is related to scouring of the riverbed by high discharge events. Variograms of both horizontal and vertical K show a clear directional anisotropy with ranges along the river being twice as large as those across the river.
NASA Astrophysics Data System (ADS)
Scheibe, T. D.; Hou, Z.; Murray, C. J.; Perkins, W. A.; Arntzen, E.; Richmond, M. C.; Mackley, R.; Johnson, T. C.
2016-12-01
The hyporheic zone (HZ) is the sediment layer underlying a river channel within which river water and groundwater may interact, and plays a significant role in controlling energy and nutrient fluxes and biogeochemical reactions in hydrologic systems. The area of this study is the HZ along the Hanford Reach of the Columbia River in southeastern Washington State, where daily and seasonal river stage changes, hydromorphology, and heterogeneous sediment texture drive groundwater-river water exchange and associated biogeochemical processes. The recent alluvial sediments immediately underlying the river are geologically distinct from the surrounding aquifer sediments, and serve as the primary locale of mixing and reaction. In order to effectively characterize the HZ, a novel approach was used to define and map recent alluvial (riverine) facies using river bathymetric attributes (e.g., slope, aspect, and local variability) and simulated hydrodynamic attributes (e.g., shear stress, flow velocity, river depth). The riverine facies were compared with riverbed substrate texture data for confirmation and quantification of textural relationships. Multiple flow regimes representing current (managed) and historical (unmanaged) flow hydrographs were considered to evaluate hydrodynamic controls on the current riverbed grain size distributions. Hydraulic properties were then mapped at reach and local scales by linking textural information to hydraulic property measurements from piezometers. The spatial distribution and thickness of riverine facies is being further constrained by integrating 3D time-lapse electrical resistivity tomography. The mapped distributions of riverine facies and the corresponding flow, transport and biogeochemical properties are supporting the parameterization of multiscale models of hyporheic exchange between groundwater and river water and associated biogeochemical transformations.
NASA Astrophysics Data System (ADS)
Hassenruck-Gudipati, H. J.; Goudge, T. A.; Mohrig, D. C.
2017-12-01
Rivers swelled up beyond their historic high-water marks due to precipitation from Hurricane Harvey. We used Harvey-induced flooding to investigate the flow connectivity between the coastal Trinity River and its floodplain by measuring water depth and velocity, as well as sediment-transporting conditions on the natural levee that separates the two. River discharge within the study area peaked at a historic high of 3600 cubic meters per second on September 1, 2017. The levees on two river bends were investigated on September 3 and 4 in order to characterize the hydraulic connectivity between the channel and its floodplain during the early falling limb of this flood. On September 3, a river bend located approximately 28km upstream of the river mouth was visited. Water was overtopping the levee crest at this location, 30m away from the levee crest. This overland flow only experienced about a threefold reduction in average velocity to 0.16 m/s (in 2.2 m of water) 600m away from the levee crest. On September 4, a river bend approximately 59km upstream of the river mouth was investigated. Even though the river stage was at the National Weather Service major flood stage, the levee crest separating the river and floodplain was emergent. Regardless of this local disconnect between the river and its floodplain, substantial and variable drainage velocities were measured depending on drainage patterns controlled by local topography. Velocities measured in shallow water immediately adjacent to the emergent levee were low (< 0.05 m/s in 0.2 m of water). The highest drainage velocity ( 0.18 m/s in 1.7 m of water) associated with the upstream river-bend was measured at 750m from the channel and was similar in magnitude to those recorded for the distal inundating overland flow a day before on the downstream river-bend. Results from this work highlight the maintenance of high flow velocities across the distal floodplain even during its drainage phase. The transport of sediment, detrital organics, and solutes will be explored within the context of these overland flow velocities.
Peterson, Steven M.; Flynn, Amanda T.; Vrabel, Joseph; Ryter, Derek W.
2015-08-12
The calibrated groundwater-flow model was used with the Groundwater-Management Process for the 2005 version of the U.S. Geological Survey modular three-dimensional groundwater model, MODFLOW–2005, to provide a tool for the NPNRD to better understand how water-management decisions could affect stream base flows of the North Platte River at Bridgeport, Nebr., streamgage in a future period from 2008 to 2019 under varying climatic conditions. The simulation-optimization model was constructed to analyze the maximum increase in simulated stream base flow that could be obtained with the minimum amount of reductions in groundwater withdrawals for irrigation. A second analysis extended the first to analyze the simulated base-flow benefit of groundwater withdrawals along with application of intentional recharge, that is, water from canals being released into rangeland areas with sandy soils. With optimized groundwater withdrawals and intentional recharge, the maximum simulated stream base flow was 15–23 cubic feet per second (ft3/s) greater than with no management at all, or 10–15 ft3/s larger than with managed groundwater withdrawals only. These results indicate not only the amount that simulated stream base flow can be increased by these management options, but also the locations where the management options provide the most or least benefit to the simulated stream base flow. For the analyses in this report, simulated base flow was best optimized by reductions in groundwater withdrawals north of the North Platte River and in the western half of the area. Intentional recharge sites selected by the optimization had a complex distribution but were more likely to be closer to the North Platte River or its tributaries. Future users of the simulation-optimization model will be able to modify the input files as to type, location, and timing of constraints, decision variables of groundwater withdrawals by zone, and other variables to explore other feasible management scenarios that may yield different increases in simulated future base flow of the North Platte River.
NASA Astrophysics Data System (ADS)
Keener, V. W.; Feyereisen, G. W.; Lall, U.; Jones, J. W.; Bosch, D. D.; Lowrance, R.
2010-02-01
SummaryAs climate variability increases, it is becoming increasingly critical to find predictable patterns that can still be identified despite overall uncertainty. The El-Niño/Southern Oscillation is the best known pattern. Its global effects on weather, hydrology, ecology and human health have been well documented. Climate variability manifested through ENSO has strong effects in the southeast United States, seen in precipitation and stream flow data. However, climate variability may also affect water quality in nutrient concentrations and loads, and have impacts on ecosystems, health, and food availability in the southeast. In this research, we establish a teleconnection between ENSO and the Little River Watershed (LRW), GA., as seen in a shared 3-7 year mode of variability for precipitation, stream flow, and nutrient load time series. Univariate wavelet analysis of the NINO 3.4 index of sea surface temperature (SST) and of precipitation, stream flow, NO 3 concentration and load time series from the watershed was used to identify common signals. Shared 3-7 year modes of variability were seen in all variables, most strongly in precipitation, stream flow and nutrient load in strong El Niño years. The significance of shared 3-7 year periodicity over red noise with 95% confidence in SST and precipitation, stream flow, and NO 3 load time series was confirmed through cross-wavelet and wavelet-coherence transforms, in which common high power and co-variance were computed for each set of data. The strongest 3-7 year shared power was seen in SST and stream flow data, while the strongest co-variance was seen in SST and NO 3 load data. The strongest cross-correlation was seen as a positive value between the NINO 3.4 and NO 3 load with a three-month lag. The teleconnection seen in the LRW between the NINO 3.4 index and precipitation, stream flow, and NO 3 load can be utilized in a model to predict monthly nutrient loads based on short-term climate variability, facilitating management in high risk seasons.
Bales, Jerad D.; Walters, Douglas A.
2004-01-01
The lower Roanoke River corridor in North Carolina contains a floodplain of national significance. Data from a network of 1 streamflow-measurement site, 13 river-stage sites, 13 floodplain water-level sites located along 4 transects, and 5 in situ water-quality monitoring sites were used to characterize temporal and spatial variations of floodplain and river water levels during 1997-2000 and to describe dissolved-oxygen conditions in the lower Roanoke River for the period 1998-2001. Major differences in the relation of floodplain inundation to flow occurred both among sites at a given transect and among transects. Several floodplain sites were inundated for the full range of flow conditions measured during the study. These included one site on the Big Swash transect (at about river kilometer 119); one site on the Broadneck Swamp transect (river kilometer 97), which was inundated 91 percent of the time during the study; one site on the Devils Gut transect (river kilometer 44), which was inundated throughout the study; and three sites on the Cow Swamp transect (near river kilometer 10). The relation of floodplain inundation depth to Roanoke River flow was highly variable among sites. There was no relation between flow and inundation depth at one of the Big Swash sites or at any of the four Cow Swamp sites. At two of the Big Swash transect sites, there was some relation between inundation depth and 10-day mean flow for flows greater than 700 cubic meters per second. A relatively strong relation between inundation depth and 10-day mean flow occurred at two of the Broadneck Swamp sites and, to a lesser degree, at two of the Devils Gut transect sites. There was much greater interannual variability in floodplain water levels, as represented by the difference between the maximum and minimum daily water level for a given calendar date during January-May and September-October than during the summer and late fall months. If data from this study are representative of long-term conditions, then this means that there is less uncertainty about what future floodplain water levels will be during June-August and November-December than during other months. Rates of ground-water decline, primarily due to evapotranspiration, were fairly similar at all sites, ranging from about 3 to 4 centimeters per day. For a 10-day mean flow of 300 cubic meters per second, an evaporative loss of 2 centimeters per day is equal to about 56 cubic meters per second. Evapotranspiration rates are much lower during the fall and winter months, so losses of river flow to floodplain processes likely are much lower during those months. The ground-water gradient at most sites was from the floodplain to the river, indicating a potential for ground-water movement into the river from the floodplain. At two of the Devils Gut sites, however, the water level often was higher in the river than in the floodplain when floodplain sites were not inundated. This indicates that there is a potential for river water to move as ground water from the river into the floodplain. It seems likely that this feature observed at the Devils Gut transect occurs elsewhere in the lower Roanoke River corridor. Dissolved-oxygen concentrations typically decrease with increasing distance from Roanoke Rapids Dam. During the 1998-2001 study period, the median dissolved-oxygen concentration at Halifax (river kilometer 187), the upstream-most station, was 8.4 milligrams per liter, and the median concentration at the downstream-most station (NC-45, bottom sensor; river kilometer 2.6) was 6.6 milligrams per liter. Several synoptic measurements of dissolved-oxygen concentration down the river identified the presence of a dissolved-oxygen sag in the vicinity of Halifax, with some recovery of concentrations between Halifax and about Scotland Neck at river kilometer 156. Data from the synoptic measurements also indicated that the greatest rate of dissolved-oxygen change with distance along the riv
Dams and Rivers: A Primer on the Downstream Effects of Dams
Collier, Michael; Webb, Robert H.; Schmidt, John C.
1996-01-01
The U.S. Geological Survey is charged with monitoring the water and mineral resources of the United States. Beginning in 1889, the Survey established a network of water gaging stations across most of the country's rivers; some also measured sediment content of the water. Consequently, we now have valuable long-term data with which to track water supply, sediment transport, and the occurrence of floods. Many variables affect the flow of water from mountain brook to river delta. Some are short-term perturbations like summer thunderstorms. Others occur over a longer period of time, like the El Ninos that might be separated by a decade or more. We think of these variables as natural occurrences, but humans have exerted some of the most important changes -- water withdrawals for agriculture, inter-basin transfers, and especially the construction of an extensive system of dams. Dams have altered the flow of many of the Nation's rivers to meet societal needs. We expect floods to be contained. Irrigation is possible where deserts once existed. And water is released downstream not according to natural cycles but as dictated by a region's hour-by-hour needs for water or electricity. As a result, river channels below dams have changed dramatically. Depending on annual flow, flood peaks, and a river's sediment load, we might see changes such as sand building up in one channel, vegetation crowding into another, and extensive bank erosion in another. This Circular explores the emerging scientific arena of change in rivers below dams. This science tries first to understand and then anticipate changes to river beds and banks, and to riparian habitats and animal communities. To some degree, these downstream changes can be influenced by specific strategies of dam management. Scientists and resource managers have a duty to assemble this information and present it without bias to the rest of society. Society can then more intelligently choose a balance between the benefits and adverse downstream effects of dams.
NASA Astrophysics Data System (ADS)
De Carli, E.; Hubble, T.
2014-12-01
During the peak of the Millennium Drought (1997-2010) pool-levels in the lower River Murray in South Australia dropped 1.5 metres below sea level, resulting in large-scale mass failure of the alluvial banks. The largest of these failures occurred without signs of prior instability at Long Island Marina whereby a 270 metre length of populated and vegetated riverbank collapsed in a series of rotational failures. Analysis of long-reach bathymetric surveys of the river channel revealed a strong relationship between geomorphic and hydraulic controls on channel width and downstream alluvial failure. As the entrenched channel planform meanders within and encroaches upon its bedrock valley confines the channel width is 'pinched' and decreases by up to half, resulting in a deepening thalweg and channel bed incision. The authors posit that flow and shear velocities increase at these geomorphically controlled 'pinch-points' resulting in complex and variable hydraulic patterns such as erosional scour eddies, which act to scour the toe of the slope over-steepening and destabilising the alluvial margins. Analysis of bathymetric datasets between 2009 and 2014 revealed signs of active incision and erosional scour of the channel bed. This is counter to conceptual models which deem the backwater zone of a river to be one of decelerating flow and thus sediment deposition. Complex and variable flow patterns have been observed in other mixed alluvial-bedrock river systems, and signs of active incision observed in the backwater zone of the Mississippi River, United States. The incision and widening of the lower Murray River suggests the channel is in an erosional phase of channel readjustment which has implications for riverbank collapse on the alluvial margins. The prevention of seawater ingress due to barrage construction at the Murray mouth and Southern Ocean confluence, allowed pool-levels to drop significantly during the Millennium Drought reducing lateral confining support to the over-steepened channel margins triggering large-scale riverbank failure.
NASA Astrophysics Data System (ADS)
Pal, I.; Lall, U.; Robertson, A. W.; Cane, M. A.; Bansal, R.
2013-06-01
Snowmelt-dominated streamflow of the Western Himalayan rivers is an important water resource during the dry pre-monsoon spring months to meet the irrigation and hydropower needs in northern India. Here we study the seasonal prediction of melt-dominated total inflow into the Bhakra Dam in northern India based on statistical relationships with meteorological variables during the preceding winter. Total inflow into the Bhakra Dam includes the Satluj River flow together with a flow diversion from its tributary, the Beas River. Both are tributaries of the Indus River that originate from the Western Himalayas, which is an under-studied region. Average measured winter snow volume at the upper-elevation stations and corresponding lower-elevation rainfall and temperature of the Satluj River basin were considered as empirical predictors. Akaike information criteria (AIC) and Bayesian information criteria (BIC) were used to select the best subset of inputs from all the possible combinations of predictors for a multiple linear regression framework. To test for potential issues arising due to multicollinearity of the predictor variables, cross-validated prediction skills of the best subset were also compared with the prediction skills of principal component regression (PCR) and partial least squares regression (PLSR) techniques, which yielded broadly similar results. As a whole, the forecasts of the melt season at the end of winter and as the melt season commences were shown to have potential skill for guiding the development of stochastic optimization models to manage the trade-off between irrigation and hydropower releases versus flood control during the annual fill cycle of the Bhakra Reservoir, a major energy and irrigation source in the region.
Water-balance and groundwater-flow estimation for an arid environment: San Diego region, California
NASA Astrophysics Data System (ADS)
Flint, L. E.; Flint, A. L.; Stolp, B. J.; Danskin, W. R.
2012-03-01
The coastal-plain aquifer that underlies the San Diego City metropolitan area in southern California is a groundwater resource. The understanding of the region-wide water balance and the recharge of water from the high elevation mountains to the east needs to be improved to quantify the subsurface inflows to the coastal plain in order to develop the groundwater as a long term resource. This study is intended to enhance the conceptual understanding of the water balance and related recharge processes in this arid environment by developing a regional model of the San Diego region and all watersheds adjacent or draining to the coastal plain, including the Tijuana River basin. This model was used to quantify the various components of the water balance, including semi-quantitative estimates of subsurface groundwater flow to the coastal plain. Other approaches relying on independent data were used to test or constrain the scoping estimates of recharge and runoff, including a reconnaissance-level groundwater model of the San Diego River basin, one of three main rivers draining to the coastal plain. Estimates of subsurface flow delivered to the coastal plain from the river basins ranged from 12.3 to 28.8 million m3 yr-1 from the San Diego River basin for the calibration period (1982-2009) to 48.8 million m3 yr-1 from all major river basins for the entire coastal plain for the long-term period 1940-2009. This range of scoping estimates represents the impact of climatic variability and realistically bounds the likely groundwater availability, while falling well within the variable estimates of regional recharge. However, the scarcity of physical and hydrologic data in this region hinders the exercise to narrow the range and reduce the uncertainty.
Schefter, John E.; Hirsch, Robert M.
1980-01-01
A method for evaluating the cost-effectiveness of alternative strategies for dissolved-oxygen (DO) management is demonstrated, using the Chattahoochee River, GA., as an example. The conceptual framework for the analysis is suggested by the economic theory of production. The minimum flow of the river and the percentage of the total waste inflow receiving nitrification are considered to be two variable inputs to be used in the production of given minimum concentration of DO in the river. Each of the inputs has a cost: the loss of dependable peak hydroelectric generating capacity at Buford Dam associated with flow augmentation and the cost associated with nitrification of wastes. The least-cost combination of minimum flow and waste treatment necessary to achieve a prescribed minimum DO concentration is identified. Results of the study indicate that, in some instances, the waste-assimilation capacity of the Chattahoochee River can be substituted for increased waste treatment; the associated savings in waste-treatment costs more than offset the benefits foregone because of the loss of peak generating capacity at Buford Dam. The sensitivity of the results to the estimates of the cost of replacing peak generating capacity is examined. It is also demonstrated that a flexible approach to the management of DO in the Chattahoochee River may be much more cost effective than a more rigid, institutional approach wherein constraints are placed on the flow of the river and(or) on waste-treatment practices. (USGS)
Global characteristics of stream flow seasonality and variability
Dettinger, M.D.; Diaz, Henry F.
2000-01-01
Monthly stream flow series from 1345 sites around the world are used to characterize geographic differences in the seasonality and year-to-year variability of stream flow. Stream flow seasonality varies regionally, depending on the timing of maximum precipitation, evapotranspiration, and contributions from snow and ice. Lags between peaks of precipitation and stream flow vary smoothly from long delays in high-latitude and mountainous regions to short delays in the warmest sectors. Stream flow is most variable from year to year in dry regions of the southwest United States and Mexico, the Sahel, and southern continents, and it varies more (relatively) than precipitation in the same regions. Tropical rivers have the steadiest flows. El Nin??o variations are correlated with stream flow in many parts of the Americas, Europe, and Australia. Many stream flow series from North America, Europe, and the Tropics reflect North Pacific climate, whereas series from the eastern United States, Europe, and tropical South America and Africa reflect North Atlantic climate variations.
Watershed/river channel linkages: The Upper Rio Grande Basin and the Middle Rio Grande Bosque
Jeffrey C. Whitney
1999-01-01
There continues to be a great deal of interest and discussion surrounding the demands of water management and allocation and the relationship to ecological integrity of the Rio Grande riparian ecosystem. Current river management too often fails to consider the importance of natural variability of flows. What is consistently overlooked is the relationship of a stream...
Relation of nitrate concentrations to baseflow in the Raccoon River, Iowa
Schilling, K.E.; Lutz, D.S.
2004-01-01
Excessive nitrate-nitrogen (nitrate) export from the Raccoon River in west central Iowa is an environmental concern to downstream receptors. The 1972 to 2000 record of daily streamflow and the results from 981 nitrate measurements were examined to describe the relation of nitrate to streamflow in the Raccoon River. No long term trends in streamflow and nitrate concentrations were noted in the 28-year record. Strong seasonal patterns were evident in nitrate concentrations, with higher concentrations occurring in spring and fall. Nitrate concentrations were linearly related to streamflow at daily, monthly, seasonal, and annual time scales. At all time scales evaluated, the relation was improved when baseflow was used as the discharge variable instead of total streamflow. Nitrate concentrations were found to be highly stratified according to flow, but there was little relation of nitrate to streamflow within each flow range. Simple linear regression models developed to predict monthly mean nitrate concentrations explained as much as 76 percent of the variability in the monthly nitrate concentration data for 2001. Extrapolation of current nitrate baseflow relations to historical conditions in the Raccoon River revealed that increasing baseflow over the 20th century could account for a measurable increase in nitrate concentrations.
Effect of residence times on River Mondego estuary eutrophication vulnerability.
Duarte, A S; Pinho, J L; Pardal, M A; Neto, J M; Vieira, J P; Santos, F S
2001-01-01
The south arm of the Mondego estuary, located in the central western Atlantic coast of Portugal, is almost silted up in the upstream area. So, the water circulation is mostly driven by tides and the tributary river Pranto discharges. Eutrophication has been taking place in this ecosystem during last twelve years, where macroalgae reach a luxuriant development covering a significant area of the intertidal muddy flat. A sampling program was carried out from June 1993 to June 1994. Available data on salinity profiles and on nutrients loading into the south arm were used in order to get a better understanding of the ongoing changes. River Pranto flow discharges, controlled by a sluice, were also monitored. Integral formulations are typically based on assumptions of steady state and well-mixed systems and thus cannot take into account the space and time variability of estuarine residence times, due to river discharge flow, tidal coefficients, discharge(s) location and time of release during the tidal cycle. This work presents the hydrodynamics modelling (2D-H) of this system in order to estimate the residence times variability and to assess their effect on the estuarine eutrophication vulnerability, contributing to better environmental management strategies selection.
Ackerman, Daniel J.; Rousseau, Joseph P.; Rattray, Gordon W.; Fisher, Jason C.
2010-01-01
Three-dimensional steady-state and transient models of groundwater flow and advective transport in the eastern Snake River Plain aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The steady-state and transient flow models cover an area of 1,940 square miles that includes most of the 890 square miles of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the eastern Snake River Plain aquifer. Model results can be used in numerical simulations to evaluate the movement of contaminants in the aquifer. Saturated flow in the eastern Snake River Plain aquifer was simulated using the MODFLOW-2000 groundwater flow model. Steady-state flow was simulated to represent conditions in 1980 with average streamflow infiltration from 1966-80 for the Big Lost River, the major variable inflow to the system. The transient flow model simulates groundwater flow between 1980 and 1995, a period that included a 5-year wet cycle (1982-86) followed by an 8-year dry cycle (1987-94). Specified flows into or out of the active model grid define the conditions on all boundaries except the southwest (outflow) boundary, which is simulated with head-dependent flow. In the transient flow model, streamflow infiltration was the major stress, and was variable in time and location. The models were calibrated by adjusting aquifer hydraulic properties to match simulated and observed heads or head differences using the parameter-estimation program incorporated in MODFLOW-2000. Various summary, regression, and inferential statistics, in addition to comparisons of model properties and simulated head to measured properties and head, were used to evaluate the model calibration. Model parameters estimated for the steady-state calibration included hydraulic conductivity for seven of nine hydrogeologic zones and a global value of vertical anisotropy. Parameters estimated for the transient calibration included specific yield for five of the seven hydrogeologic zones. The zones represent five rock units and parts of four rock units with abundant interbedded sediment. All estimates of hydraulic conductivity were nearly within 2 orders of magnitude of the maximum expected value in a range that exceeds 6 orders of magnitude. The estimate of vertical anisotropy was larger than the maximum expected value. All estimates of specific yield and their confidence intervals were within the ranges of values expected for aquifers, the range of values for porosity of basalt, and other estimates of specific yield for basalt. The steady-state model reasonably simulated the observed water-table altitude, orientation, and gradients. Simulation of transient flow conditions accurately reproduced observed changes in the flow system resulting from episodic infiltration from the Big Lost River and facilitated understanding and visualization of the relative importance of historical differences in infiltration in time and space. As described in a conceptual model, the numerical model simulations demonstrate flow that is (1) dominantly horizontal through interflow zones in basalt and vertical anisotropy resulting from contrasts in hydraulic conductivity of various types of basalt and the interbedded sediments, (2) temporally variable due to streamflow infiltration from the Big Lost River, and (3) moving downward downgradient of the INL. The numerical models were reparameterized, recalibrated, and analyzed to evaluate alternative conceptualizations or implementations of the conceptual model. The analysis of the reparameterized models revealed that little improvement in the model could come from alternative descriptions of sediment content, simulated aquifer thickness, streamflow infiltration, and vertical head distribution on the downgradient boundary. Of the alternative estimates of flow to or from the aquifer, only a 20 percent decrease in
How far downstream do dams impact streamflow?
NASA Astrophysics Data System (ADS)
Troy, T.
2017-12-01
Water infrastructure can be a double-edged sword. For example, dams can provide significant flood protection and stable water supplies, but they negatively impact river ecosystems. As the United States enters an era of dam decommissioning instead of dam building, it raises the question of how far downstream dams provide protection against flood peaks and sustaining environmental flows. This study uses USGS streamflow observations, the National Inventory of Dams, and VIC-modeled streamflow as a proxy for naturalized streamflow to evaluate the scale at which dams impact a variety of hydrologic signatures such as flood return period flows, streamflow variability, and low flows. Results over the Delaware River show that the impact of dams quickly dissipates as one moves downstream, but this is due to the basin's characteristics. This analysis is performed over the contiguous United States, quantifying the length scale of impact as a function of dam capacity, position on the river network, and the hydroclimatology.
Can the Gila River reduce risk in the Colorado River Basin?
NASA Astrophysics Data System (ADS)
Wade, L. C.; Rajagopalan, B.; Lukas, J.; Kanzer, D.
2012-12-01
The Colorado River is the most important source of water in the southwest United States and Northern Mexico, providing water to approximately 35 million people and 4-5 million acres of irrigated lands. To manage the water resources of the basin, estimated to be about 17 million acre-feet (MAF) of undepleted supplies per year, managers use reservoir facilities that can store more than 60 MAF. As the demands on the water resources of the basin approach or exceed the average annual supply, and with average flow projected to decrease due to climate change, smart water management is vital for its sustainability. To quantify the future risk of depleting reservoir storage, Rajagopalan et al. (2009) developed a water-balance model and ran it under scenarios based on historical, paleo-reconstructed and future projections of flows, and different management alternatives. That study did not consider the impact of the Gila River, which enters the Colorado River below all major reservoirs and U.S. diversions. Due to intensive use in Central Arizona, the Gila only has significant inflows to the Colorado in wet years. However, these irregular inflows could beneficially influence system reliability in the US by helping to meet a portion of the 1.5 MAF delivery obligations to Mexico. To help quantify the potential system reliability benefit of the Gila River, we modify the Rajagopalan et al (2009) model to incorporate simulated Gila River inflows. These new data inputs to the water balance model are based on historical flows and tree-ring reconstructions of flow in the Upper Colorado River Basin (at Lee's Ferry), the Lower Colorado River Basin (tributary inflows), and the intermittent flows from the Gila River which are generated using extreme value analysis methods. Incorporating Gila River inflows, although they are highly variable and intermittent, reduces the modeled cumulative risk of reservoir depletion by 4 to 11% by 2057, depending on the demand schedule, reservoir operation guidelines, and climate change scenario assumptions. This potential risk mitigation could be at least partly realized through enhancements to current management practices, possibly in the Gila River, that could improve the water supply reliability for all stakeholders in the Colorado River Basin.
NASA Astrophysics Data System (ADS)
Posner, A. J.
2017-12-01
The Middle Rio Grande River (MRG) traverses New Mexico from Cochiti to Elephant Butte reservoirs. Since the 1100s, cultivating and inhabiting the valley of this alluvial river has required various river training works. The mid-20th century saw a concerted effort to tame the river through channelization, Jetty Jacks, and dam construction. A challenge for river managers is to better understand the interactions between a river training works, dam construction, and the geomorphic adjustments of a desert river driven by spring snowmelt and summer thunderstorms carrying water and large sediment inputs from upstream and ephemeral tributaries. Due to its importance to the region, a vast wealth of data exists for conditions along the MRG. The investigation presented herein builds upon previous efforts by combining hydraulic model results, digitized planforms, and stream gage records in various statistical and conceptual models in order to test our understanding of this complex system. Spatially continuous variables were clipped by a set of river cross section data that is collected at decadal intervals since the early 1960s, creating a spatially homogenous database upon which various statistical testing was implemented. Conceptual models relate forcing variables and response variables to estimate river planform changes. The developed database, represents a unique opportunity to quantify and test geomorphic conceptual models in the unique characteristics of the MRG. The results of this investigation provides a spatially distributed characterization of planform variable changes, permitting managers to predict planform at a much higher resolution than previously available, and a better understanding of the relationship between flow regime and planform changes such as changes to longitudinal slope, sinuosity, and width. Lastly, data analysis and model interpretation led to the development of a new conceptual model for the impact of ephemeral tributaries in alluvial rivers.
Hydrology of the Po River: looking for changing patterns in river discharge
NASA Astrophysics Data System (ADS)
Montanari, A.
2012-05-01
Scientists and public administrators are devoting increasing attention to the Po River, in Italy, in view of concerns related to the impact of increasing urbanisation and exploitation of water resources. A better understanding of the hydrological regime of the river is necessary to improve water resources management and flood protection. In particular, the analysis of the effects of hydrological and climatic change is crucial for planning sustainable development and economic growth. An extremely interesting issue is to inspect to what extent river flows can be naturally affected by the occurrence of long periods of water abundance or scarcity, which can be erroneously interpreted as irreversible changes due to human impact. In fact, drought and flood periods alternatively occurred in the recent past in the form of long term cycles. This paper presents advanced graphical and analytical methods to gain a better understanding of the temporal distribution of the Po River discharge. In particular, we present an analysis of river flow variability and memory properties to better understand natural patterns and in particular long term changes, which may affect the future flood risk and availability of water resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu
In this paper, we use a dynamic network flow model, coupled with a transient storage zone biogeochemical model, to simulate dissolved nutrient removal processes at the channel network scale. We have explored several scenarios in respect of the combination of rainfall variability, and the biological and geomorphic characteristics of the catchment, to understand the dominant controls on removal and delivery of dissolved nutrients (e.g., nitrate). These model-based theoretical analyses suggested that while nutrient removal efficiency is lower during flood events compared to during baseflow periods, flood events contribute significantly to bulk nutrient removal, whereas bulk removal during baseflow periods ismore » less. This is due to the fact that nutrient supply is larger during flood events; this trend is even stronger in large rivers. However, the efficiency of removal during both periods decreases in larger rivers, however, due to (i) increasing flow velocities and thus decreasing residence time, and (ii) increasing flow depth, and thus decreasing nutrient uptake rates. Besides nutrient removal processes can be divided into two parts: in the main channel and in the hyporheic transient storage zone. When assessing their relative contributions the size of the transient storage zone is a dominant control, followed by uptake rates in the main channel and in the transient storage zone. Increasing size of the transient storage zone with downstream distance affects the relative contributions to nutrient removal of the water column and the transient storage zone, which also impacts the way nutrient removal rates scale with increasing size of rivers. Intra-annual hydrologic variability has a significant impact on removal rates at all scales: the more variable the streamflow is, compared to mean discharge, the less nutrient is removed in the channel network. A scale-independent first order uptake coefficient, ke, estimated from model simulations, is highly dependent on the relative size of the transient storage zone and how it changes in the downstream direction, as well as the nature of hydrologic variability.« less
Modeling sedimentation-filtration basins for urban watersheds using Soil and Water Assessment Tool
USDA-ARS?s Scientific Manuscript database
Sedimentation-filtration (SedFil) basins are one of the storm-water best management practices (BMPs) that are intended to mitigate water quality problems in urban creeks and rivers. A new physically based model of variably saturated flows was developed for simulating flow and sediment in SedFils wi...
Classical and generalized Horton laws for peak flows in rainfall-runoff events.
Gupta, Vijay K; Ayalew, Tibebu B; Mantilla, Ricardo; Krajewski, Witold F
2015-07-01
The discovery of the Horton laws for hydrologic variables has greatly lagged behind geomorphology, which began with Robert Horton in 1945. We define the classical and the generalized Horton laws for peak flows in rainfall-runoff events, which link self-similarity in network geomorphology with river basin hydrology. Both the Horton laws are tested in the Iowa River basin in eastern Iowa that drains an area of approximately 32 400 km(2) before it joins the Mississippi River. The US Geological Survey continuously monitors the basin through 34 stream gauging stations. We select 51 rainfall-runoff events for carrying out the tests. Our findings support the existence of the classical and the generalized Horton laws for peak flows, which may be considered as a new hydrologic discovery. Three different methods are illustrated for estimating the Horton peak-flow ratio due to small sample size issues in peak flow data. We illustrate an application of the Horton laws for diagnosing parameterizations in a physical rainfall-runoff model. The ideas and developments presented here offer exciting new directions for hydrologic research and education.
Trace elements in Corbicula fluminea from the San Joaquin River, California
Leland, H.V.; Scudder, B.C.
1990-01-01
(i) Trace element concentrations in soft tissue of the benthic bivalve, Corbicula fluminea, from the San Joaquin River and its major tributaries were examined during the primary irrigation season in relation to the spatial variation in concentrations of major, minor and trace constituents in riverwater and sediments. (ii) Selenium concentrations in Corbicula from perennial flow reaches of the San Joaquin River and its major tributaries varied directly with the solute (??? 0.45 ??m) Se concentrations of riverwater. Elevated concentrations occurred in clams from sites with substantial discharge originating as subsurface drainage and irrigation return flows. Both tissue and solute Se concentrations declined from June through the end of the primary irrigation season. (iii) Arsenic concentrations in Corbicula from perennial flow reaches of the San Joaquin River varied directly with the HNO3-extractable (pH 2) As:Fe ratio of suspended matter, providing evidence that sorption to oxyhydroxide surfaces is an important control on the biological availability of As. However, Corbicula from several tributaries draining alluvium derived from the Sierra Nevada had lower As concentrations than would be predicted by the relation developed for perennial flow sites of the San Joaquin River. Arsenic concentrations in Corbicula from the Tuolumne and Merced Rivers and upstream reaches of the San Joaquin River were higher than in clams from the downstream perennial flow reaches of the San Joaquin River. Concentrations of As in clams from downstream perennial flow reaches of the San Joaquin River increased from June through the end of the primary irrigation season. (iv) Mercury concentrations in Corbicula were elevated in upstream reaches of the San Joaquin River, in the Merced and Tuolumne Rivers, and in tributaries draining the Coast Ranges. Mean Cd and Cu concentrations in Corbicula were elevated in the Merced and Tuolumne Rivers, Orestimba Creek and a perennial flow reach of the San Joaquin River which receives water directly from the Delta Mendota Canal. Concentrations of Ni in clams from the San Joaquin River decreased downstream of the Delta Mendota Pool. (v) Boron and Mo were not accumulated by Corbicula despite high solute concentrations (means as high as 2960 ??g B l-1 and 9 ??g Mo l-1) in riverwater during the primary irrigation season. This bivalve may not be an appropriate bioindicator of B and Mo enrichment. Concentrations of Cr, Pb, Ag, V and Zn in Corbicula exhibited little geographic variability in the drainage. (vi) Regression analysis revealed no clear evidence of synergistic or antagonistic interactions among As, Cd, Cu, Hg, Ni and Se in their uptake by Corbicula.
NASA Astrophysics Data System (ADS)
Ruiz-Bellet, Josep Lluís; Castelltort, Xavier; Balasch, J. Carles; Tuset, Jordi
2017-02-01
There is no clear, unified and accepted method to estimate the uncertainty of hydraulic modelling results. In historical floods reconstruction, due to the lower precision of input data, the magnitude of this uncertainty could reach a high value. With the objectives of giving an estimate of the peak flow error of a typical historical flood reconstruction with the model HEC-RAS and of providing a quick, simple uncertainty assessment that an end user could easily apply, the uncertainty of the reconstructed peak flow of a major flood in the Ebro River (NE Iberian Peninsula) was calculated with a set of local sensitivity analyses on six input variables. The peak flow total error was estimated at ±31% and water height was found to be the most influential variable on peak flow, followed by Manning's n. However, the latter, due to its large uncertainty, was the greatest contributor to peak flow total error. Besides, the HEC-RAS resulting peak flow was compared to the ones obtained with the 2D model Iber and with Manning's equation; all three methods gave similar peak flows. Manning's equation gave almost the same result than HEC-RAS. The main conclusion is that, to ensure the lowest peak flow error, the reliability and precision of the flood mark should be thoroughly assessed.
Mueller, Erich R.; Schmidt, John C.; Topping, David J.; Shafroth, Patrick B.; Rodríguez-Burgueño, Jesús Eliana; Ramírez-Hernández, Jorge; Grams, Paul E.
2017-01-01
The Colorado River delta is a dramatically transformed landscape. Major changes to river hydrology and morpho-dynamics began following completion of Hoover Dam in 1936. Today, the Colorado River has an intermittent and/or ephemeral channel in much of its former delta. Initial incision of the river channel in the upstream ∼50 km of the delta occurred in the early 1940s in response to spillway releases from Hoover Dam under conditions of drastically reduced sediment supply. A period of relative quiescence followed, until the filling of upstream reservoirs precipitated a resurgence of flows to the delta in the 1980s and 1990s. Flow releases during extreme upper basin snowmelt in the 1980s, flood flows from the Gila River basin in 1993, and a series of ever-decreasing peak flows in the late 1990s and early 2000s further incised the upstream channel and caused considerable channel migration throughout the river corridor. These variable magnitude post-dam floods shaped the modern river geomorphology. In 2014, an experimental pulse-flow release aimed at rejuvenating the riparian ecosystem and understanding hydrologic dynamics flowed more than 100 km through the length of the delta’s river corridor. This small artificial flood caused localized meter-scale scour and fill of the streambed, but did not cause further incision or significant bank erosion because of its small magnitude. Suspended-sand-transport rates were initially relatively high immediately downstream from the Morelos Dam release point, but decreasing discharge from infiltration losses combined with channel widening downstream caused a rapid downstream reduction in suspended-sand-transport rates. A zone of enhanced transport occurred downstream from the southern U.S.-Mexico border where gradient increased, but effectively no geomorphic change occurred beyond a point 65 km downstream from Morelos Dam. Thus, while the pulse flow connected with the modern estuary, deltaic sedimentary processes were not restored, and relatively few new open surfaces were created for establishment of native riparian vegetation. Because water in the Colorado River basin is completely allocated, exceptional floods from the Gila River basin are the most likely mechanism for major changes to delta geomorphology for the foreseeable future.
NASA Astrophysics Data System (ADS)
Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.
2013-12-01
Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using Cl concentrations may be due to the lack of sufficient difference between groundwater and surface water Cl concentrations. Both hydrograph separation and differential flow gauging yield far higher baseflow fluxes than 222Rn activities and Cl concentrations, probably indicating the input of other sources to the river in additional to regional groundwater, such as bank return flows.
Davis, C.A.; Austin, J.E.; Buhl, D.A.
2006-01-01
In the Platte River Valley of central Nebraska, USA, riparian grasslands (also known as wet meadows) have been severely impacted by a reduction in river flows, causing lower ground-water levels and altered seasonal hydroperiods. The potential impacts of these hydrologic changes, as well as the environmental factors that influence wet meadow soil invertebrate communities, are not well understood. An understanding of the ecological processes that influence these invertebrate communities is crucial for maintaining and restoring wet meadows along the Platte River. Our objectives were to describe the soil invertebrate community of wet meadows throughout the growing season and to examine the relative roles of abiotic factors in determining patterns in invertebrate community structure. We conducted the study in 12 wet meadows along the Platte River during 1999 and 2000. We identified 73 invertebrate taxa; 39 were considered soil inhabitants. Total biomass was primarily composed of earthworms, Scarabaeidae, Isopoda, and Elateridae, with earthworms and Scarabaeidae accounting for >82%. Differences in river flow and precipitation patterns influenced some soil invertebrates. Earthworms and Scarabaeidae declined dramatically from 1999 (wet year) to 2000 (dry year). The topographic gradient created by the ridge-swale complex affected several soil invertebrate taxa; Scarabaeidae, Diplopoda, and Lepidoptera biomasses were greatest on drier ridges, while Tipulidae and Isopoda biomasscs were greatest in wetter sloughs. Responses of earthworm taxa to the topographic gradient were variable, but generally, greater biomasses occurred on ridges and mid-elevations. Water-table depth and soil moisture were the most important variables influencing wet meadow soil invertebrates. Because these communities are linked to the hydrologic processes of the Platte River, future alterations of wet meadow hydrology could shift the distribution patterns of many of these invertebrates and possibly eliminate more moisture-tolerant taxa. To maintain wet meadows and their biotic communities, flow management should focus on regaining as much as possible of the former hydrograph through properly timed flows that provide an adequate hydrologic regime for wet meadows. In addition, restoration of wet meadows will depend on restoring the natural topography of wet meadows. ?? 2006, The Society of Wetland Scientists.
Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin.
Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi
2017-05-01
Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination (R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.
Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin
NASA Astrophysics Data System (ADS)
Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi
2017-05-01
Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination ( R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.
Campbell, Sharon G.; Bartholow, John M.; Heasley, John
2010-01-01
At the request of two offices of the U.S. Fish and Wildlife Service (FWS) located in Yreka and Arcata, Calif., we applied the Systems Impact Assessment Model (SIAM) to analyze a variety of water management concerns associated with the Federal Energy Regulatory Commission (FERC) relicensing of the Klamath hydropower projects or with ongoing management of anadromous fish stocks in the mainstem Klamath River, Oregon and California. Requested SIAM analyses include predicted effects of reservoir withdrawal elevations, use of full active storage in Copco and Iron Gate Reservoirs to augment spring flows, and predicted spawning and juvenile outmigration timing of fall Chinook salmon. In an effort to further refine the analysis of spring flow effects on predicted fall Chinook production, additional SIAM analyses were performed for predicted response to spring flow release variability from Iron Gate Dam, high and low pulse flow releases, the predicted effects of operational constraints for both Upper Klamath Lake water surface elevations, and projected flow releases specified in the Klamath Project 2006 Operations Plan (April 10, 2006). Results of SIAM simulations to determine flow and water temperature relationships indicate that up to 4 degrees C of thermal variability can be attributed to flow variations, but the effect is seasonal. Much more of thermal variability can be attributed to air temperature variations, up to 6 degrees C. Reservoirs affect the annual thermal signature by delaying spring warming by about 3 weeks and fall cooling by about 2 weeks. Multi-level release outlets on Iron Gate Dam would have limited utility; however, if releases are small (700 cfs) and a near-surface and bottom-level outlet could be blended, then water temperature may be reduced by 2-4 degrees C for a 4-week period during September. Using the full active storage in Copco and Iron Gate Reservoir, although feasible, had undesirable ramifications such as earlier spring warming, loss of hydropower production, and inability to re-fill the reservoirs without causing shortages elsewhere in the system. Altering spawning and outmigration timing may be important management objectives for the salmon fishery, but difficult to implement. SIAM predicted benefits that might occur if water temperature was cooler in fall and spring emergence was advanced; however, model simulations were based on purely arbitrary thermal reductions. Spring flow variability did indicate that juvenile fall Chinook rearing habitat was the major biological 'bottleneck' for year class success. Rearing habitat is maximal in a range between 4,500 and 5,500 cfs below Iron Gate Dam. These flow levels are not typically provided by Klamath River system operations, except in very wet years. The incremental spring flow analysis provided insight into when and how long a pulse flow should occur to provide predicted fall Chinook salmon production increases. In general, March 15th - April 30th of any year was the period for pulse flows and 4000 cfs was the target flow release that provided near-optimal juvenile rearing habitat. Again, competition for water resources in the Klamath River Basin may make implementation of pulsed flows difficult.
Goetz, C.L.; Abeyta, Cynthia G.
1987-01-01
Analyses indicate that water quality in the San Juan River drainage basin upstream from Shiprock, New Mexico, is quite variable from station to station. Analyses are based on water quality data from the U.S. Geological Survey WATSTORE files and the New Mexico Environmental Improvement Division 's files. In the northeastern part of the basin, most streams are calcium-bicarbonate waters. In the northwestern and southern part of the basin, the streams are calcium-sulfate and sodium-sulfate waters. Geology, climate, and land use and water use affect the water quality. Statistical analysis shows that streamflow, suspended-sediment, dissolved-iron, dissolved-orthophosphate-phosphorus, dissolved-sodium, dissolved-sulfate, and dissolved-manganese concentrations, specific conductance, and pH are highly variable among most stations. Dissolved-radium-226 concentration is the least variable among stations. A trend in one or more water quality constituents for the time period, October 1, 1973, through September 30, 1981, was detected at 15 out of 36 stations tested. The NASQAN stations Animas River at Farmington and San Juan River at Shiprock, New Mexico, record large volumes of flow that represent an integration of the flow from many upstream tributaries. The data collected do not represent what is occurring at specific points upstream in the basin, but do provide accurate information on how water quality is changing over time at the station location. A water quality, streamflow model would be necessary to predict accurately what is occurring simultaneously in the entire basin. (USGS)
Klamath River Reconstruction: Strategies for Dealing with Uncertainty in Calibration Data
NASA Astrophysics Data System (ADS)
Woodhouse, C. A.; Malevich, S. B.; Meko, D. M.; Gangopadhyay, S.
2013-12-01
The upper Klamath Basin has been the center of conflict over competing water uses and values in recent years, exacerbated by drought conditions. Currently, water needs for irrigation, fish, and riparian environments are being addressed and plans for sharing limited water resources are being negotiated. In a number of major river basins in the western US, extended records of streamflow from tree rings have been found useful for planning by placing recent droughts in a long term context and characterizing the long-term hydrologic variability over past centuries. The focus of this research is the first reconstruction of the upper Klamath River and its potential use for management. One challenge in the reconstruction of Klamath River streamflow is the availability of high quality streamflow data for reconstruction model calibration. In the Klamath basin, a long history of diversions for irrigation along with complex wetland hydrology has made the accurate estimation of natural flows difficult. A number of sources of hydrology are available, but all show differences in magnitudes of high and low flows. While the uncertainties in the calibration streamflow data can be described and quantified, they cannot be overcome, and thus impart uncertainty to the resulting reconstruction. Thus, it is important to develop analysis strategies that highlight the most certain aspects of the reconstruction. In the case of the Klamath River records, the most robust information concerns the sequences of flow, and duration and frequency of wet and dry intervals. In the reconstruction, which extends from 1493-2010, analyses of frequency and distribution of extreme low flow years, runs of consecutive years of low flows, and the probability of transitions between wet and dry years all document long-term natural hydrologic variability, over which the impacts of climate change will be imposed. While not a perfect record of past flow, the Klamath reconstruction provides information that can be useful to management. A challenge is to convey the uncertainties, but to also highlight the information for which we have the most confidence, and why.
Which catchment characteristics control the temporal dependence structure of daily river flows?
NASA Astrophysics Data System (ADS)
Chiverton, Andrew; Hannaford, Jamie; Holman, Ian; Corstanje, Ron; Prudhomme, Christel; Bloomfield, John; Hess, Tim
2014-05-01
A hydrological classification system would provide information about the dominant processes in the catchment enabling information to be transferred between catchments. Currently there is no widely-agreed upon system for classifying river catchments. This paper developed a novel approach to assess the influence that catchment characteristics have on the precipitation-to-flow relationship, using a catchment classification based on the average temporal dependence structure in daily river flow data over the period 1980 to 2010. Temporal dependence in river flow data is driven by the flow pathways, connectivity and storage within the catchment. Temporal dependence was analysed by creating temporally averaged semi-variograms for a set of 116 near-natural catchments (in order to prevent direct anthropogenic disturbances influencing the results) distributed throughout the UK. Cluster analysis, using the variogram, classified the catchments into four well defined clusters driven by the interaction of catchment characteristics, predominantly characteristics which influence the precipitation-to-flow relationship. Geology, depth to gleyed layer in soils, slope of the catchment and the percentage of arable land were significantly different between the clusters. These characteristics drive the temporal dependence structure by influencing the rate at which water moves through the catchment and / or the storage in the catchment. Arable land is correlated with several other variables, hence is a proxy indicating the residence time of the water in the catchment. Finally, quadratic discriminant analysis was used to show that a model with five catchment characteristics is able to predict the temporal dependence structure for un-gauged catchments. This work demonstrates that a variogram-based approach is a powerful and flexible methodology for grouping catchments based on the precipitation-to-flow relationship which could be applied to any set of catchments with a relatively complete daily river flow record.
NASA Astrophysics Data System (ADS)
Antoine, Germain; Cazilhac, Marine; Monnoyer, Quentin; Jodeau, Magali; Gratiot, Nicolas; Besnier, Anne-Laure; Henault, Fabien; Le Brun, Matthieu
2015-04-01
The dynamic of suspended sediments in highly turbulent and concentrated flow is an important issue to better predict the sediment propagation along mountain rivers. In such extreme environments, the spatial and temporal variability of hydraulic and sediment parameters are difficult to measure: the flow velocity and the suspended sediment concentration (SSC) could be high (respectively several m/s and g/l) and rapidly variable. Simple methods are commonly used to estimate water discharge and mean or punctual SSC. But no method has been used successfully in a mountain river to estimate during a whole event the spatial distribution of flow velocity and SSC, as well as sediment parameters like grain size or settling velocity into a river cross section. This leads to these two questions: in such conditions, can we calculate sediment fluxes with one sediment concentration measurement? How can we explain the spatial heterogeneity of sediment characteristics? In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. Especially, several measurements are usually done during the flushing of the dams located on the upper part of the river. During the flushing event of June 2014, we instrumented the gauging station located just upstream the confluence between the Isere and the Arc River, at the outlet of the Arc River watershed. ADCP measurements have been performed to estimate the spatial distribution of the flow velocity (up to 3 m/s), and turbidimeters and automatic samplers have been used to estimate the spatial distribution of the SSC into the cross section (up to 6 g/l). These samples have been directly analyzed to measure the grain size distribution with a LISST Portable XR, as well as the settling velocities of the suspended sediments with the SCAF device (Wendling et al., 2013). Even if the measurements were difficult due to the flow conditions, some observations are relevant. For example, we observed a spatial heterogeneity of the settling velocity and the grain size of the suspended sediments into the cross section, whereas the SSC was almost homogeneous at the same time. In particular, these measurements show that the sediment flux can be calculated from the single turbidimeter located on the left bank. Moreover, the hydrodynamic measurements highlight the heterogeneity of the settling velocity due to the flow conditions. The first conclusions of these field measurements could be of great importance to assess numerical models, when they are used to estimate sediment deposits in river. V. WENDLING, N. GRATIOT, C. LEGOUT, I.G. DROPPO, A.J. MANNING, G. ANTOINE, H. MICHALLET, M. JODEAU : A rapid method for settling velocity and flocculation measurement within high suspended sediment concentration rivers. INTERCOH 2013, Gainesville, Florida.
NASA Astrophysics Data System (ADS)
Trinci, G.; Harvey, G.; Henshaw, A.; Bertoldi, W.
2016-12-01
Turbulence plays a crucial role in the life cycle of river plants and animals. Turbulent flow facilitates access to food, maintenance of adequate oxygen levels, removal of wastes, locomotion and predator evasion, but can also act as a stressor, leading to dislodgement from habitats, increased energy costs, physiological damage and even mortality. Despite this, hydraulic habitat assessments for river appraisal and restoration design have largely focused on temporally and spatially averaged flow properties rather than more complex descriptors of turbulence (turbulence intensity, and the periodicity, orientation and scale of coherent flow structures) that are known to directly influence aquatic organisms. Contrasting relationships between turbulence and mean flow velocity have been reported and there is a pressing need to improve understanding of the hydraulic environment provided by mesoscale river features, such as geomorphic units (e.g. riffles, pools, steps), upon which river management and restoration often focuses. We undertook high frequency velocity surveys within three river reaches (low, medium and high gradient) using a 3-dimensional Acoustic Doppler Velocimeter, combined with detailed surveys of bed topography and visual assessments of the spatial organisation of geomorphic units. Using a combination of multivariate statistical analysis (Principal Components Analysis, Cluster Analysis and GLMs) and geostatistics (semi-variance), the paper explores the spatial organisation of key turbulence parameters across the reaches and linkages with mean flow velocity and characteristic roughness elements. The ability of `higher order' turbulence properties to distinguish between visually identified geomorphic units is also assessed. The findings provide insights into scales of variability in turbulence properties that have direct ecological relevance, helping to inform river assessment and restoration efforts.
NASA Astrophysics Data System (ADS)
Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.
2012-12-01
A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed direction of inter-meander hyporheic flow.
NASA Astrophysics Data System (ADS)
José Polo, María; José Pérez-Palazón, María; Saénz de Rodrigáñez, Marta; Pimentel, Rafael; Arheimer, Berit
2017-04-01
Global hydrological models provide scientists and technicians with distributed data over medium to large areas from which assessment of water resource planning and use can be easily performed. However, scale conflicts between global models' spatial resolution and the local significant spatial scales in heterogeneous areas usually pose a constraint for the direct use and application of these models' results. The SWICCA (Service for Water Indicators in Climate Change Adaptation) Platform developed under the Copernicus Climate Change Service (C3S) offers a wide range of both climate and hydrological indicators obtained on a global scale with different time and spatial resolutions. Among the different study cases supporting the SWICCA demonstration of local impact assessment, the Sierra Nevada study case (South Spain) is a representative example of mountainous coastal catchments in the Mediterranean region. This work shows the lessons learnt during the study case development to derive local impact indicator tailored to suit the local end-users of water resource in this snow-dominated area. Different approaches were followed to select the most accurate method to downscale the global data and variables to the local level in a highly abrupt topography, in a sequential step approach. 1) SWICCA global climate variable downscaling followed by river flow simulation from a local hydrological model in selected control points in the catchment, together with 2) SWICCA global river flow values downscaling to the control points followed by corrections with local transfer functions were both tested against the available local river flow series of observations during the reference period. This test was performed for the different models and the available spatial resolutions included in the SWICCA platform. From the results, the second option, that is, the use of SWICCA river flow variables, performed the best approximations, once the local transfer functions were applied to the global values and an additional correction was performed based on the relative anomalies obtained instead of the absolute values. This approach was used to derive the future projections of selected local indicators for each end-user in the area under different climate change scenarios. Despite the spatial scale conflicts, the SWICCA river flow indicators (simulated by the E-HYPEv3.1.2 model) succeeded in approximating the observations during the reference period 1970-2000 when provided on a catchment scale, once local transfer functions and further anomaly correction were performed. Satisfactory results were obtained on a monthly scale for river flow in the main stream of the watershed, and on a daily scale for the headwater streams. The accessibility to the hydrological model WiMMed, which includes a snow module, locally validated in the study area has been crucial to downscale the SWICCA results and prove their usefulness.
Estimating Water Fluxes Across the Sediment-Water Interface in the Lower Merced River, California
Zamora, Celia
2008-01-01
The lower Merced River Basin was chosen by the U.S. Geological Survey?s (USGS) National Water Quality Assessment Program (NAWQA) to be included in a national study on how hydrological processes and agricultural practices interact to affect the transport and fate of agricultural chemicals. As part of this effort, surface-water?ground-water (sw?gw) interactions were studied in an instrumented 100-m reach on the lower Merced River. This study focused on estimating vertical rates of exchange across the sediment?water interface by direct measurement using seepage meters and by using temperature as a tracer coupled with numerical modeling. Temperature loggers and pressure transducers were placed in monitoring wells within the streambed and in the river to continuously monitor temperature and hydraulic head every 15 minutes from March 2004 to October 2005. One-dimensional modeling of heat and water flow was used to interpret the temperature and head observations and deduce the sw?gw fluxes using the USGS numerical model, VS2DH, which simulates variably saturated water flow and solves the energy transport equation. Results of the modeling effort indicate that the Merced River at the study reach is generally a slightly gaining stream with small head differences (cm) between the surface water and ground water, with flow reversals occurring during high streamflow events. The average vertical flux across the sediment?water interface was 0.4?2.2 cm/day, and the range of hydraulic conductivities was 1?10 m/day. Seepage meters generally failed to provide accurate data in this high-energy system because of slow seepage rates and a moving streambed resulting in scour or burial of the seepage meters. Estimates of streambed hydraulic conductivity were also made using grain-size analysis and slug tests. Estimated hydraulic conductivity for the upstream transect determined using slug tests ranged from 40 to 250 m/day, whereas the downstream transect ranged from 10 to 100 m/day. The range in variability was a result of position along each transect. A relative percent difference was used to describe the variability in estimates of hydraulic conductivity by grain-size analysis and slug test. Variability in applied methods at the upstream transect ranged from 0 to 9 percent, whereas the downstream transect showed greater variability, with a range of 80 to 133 percent.
Capesius, Joseph P.; Arnold, L. Rick
2012-01-01
The Mass Balance results were quite variable over time such that they appeared suspect with respect to the concept of groundwater flow as being gradual and slow. The large degree of variability in the day-to-day and month-to-month Mass Balance results is likely the result of many factors. These factors could include ungaged stream inflows or outflows, short-term streamflow losses to and gains from temporary bank storage, and any lag in streamflow accounting owing to streamflow lag time of flow within a reach. The Pilot Point time series results were much less variable than the Mass Balance results and extreme values were effectively constrained. Less day-to-day variability, smaller magnitude extreme values, and smoother transitions in base-flow estimates provided by the Pilot Point method are more consistent with a conceptual model of groundwater flow being gradual and slow. The Pilot Point method provided a better fit to the conceptual model of groundwater flow and appeared to provide reasonable estimates of base flow.
Ribeiro, F; Collares-Pereira, M J
2010-02-01
Life-history variability of two non-native centrarchids, pumpkinseed Lepomis gibbosus and largemouth bass Micropterus salmoides, was evaluated in three stream stretches of the lower River Guadiana drainage (south-west Iberian Peninsula) with different degrees of regulated flows. Abundance, condition and population structure differed among populations for both species, but invasion success was lower in the least regulated river. Lepomis gibbosus were abundant and had multiple age classes in the three river sites, whereas M. salmoides were less abundant and mainly represented by young-of-the-year fish. Juvenile growth in L. gibbosus was similar in all three populations, though longevity was slightly greater in the population from the River Guadiana mainstream. Lepomis gibbosus exhibited a long reproductive season, but the duration of season, size at maturity and reproductive effort varied among populations. The life-history differences found demonstrate the importance of species adaptation to local conditions which might favour their invasion success. Lepomis gibbosus were more adaptable and resilient to local conditions, whereas M. salmoides seemed dependent on reservoirs and large rivers for maintenance of riverine populations.
NASA Astrophysics Data System (ADS)
Ta, J.; Kelsey, R.; Howard, J.; Hall, M.; Lund, J. R.; Viers, J. H.
2014-12-01
Stream flow controls physical and ecological processes in rivers that support freshwater ecosystems and biodiversity vital for services that humans depend on. This master variable has been impaired by human activities like dam operations, water diversions, and flood control infrastructure. Furthermore, increasing water scarcity due to rising water demands and droughts has further stressed these systems, calling for the need to find better ways to identify and allocate environmental flows. In this study, a linear optimization model was developed for environmental flows in river systems that have minimal or no regulation from dam operations, but still exhibit altered flow regimes due to surface water diversions and groundwater abstraction. Flow regime requirements for California Central Valley spring-run Chinook salmon (Oncorhynchus tshawytscha) life history were used as a test case to examine how alterations to the timing and magnitude of water diversions meet environmental flow objectives while minimizing impact to local water supply. The model was then applied to Mill Creek, a tributary of the Sacramento River, in northern California, and its altered flow regime that currently impacts adult spring-run Chinook spawning and migration. The resulting optimized water diversion schedule can be used to inform water management decisions that aim to maximize benefit for the environment while meeting local water demands.
NASA Astrophysics Data System (ADS)
Carroll, R. W.; Warwick, J. J.
2009-12-01
Past mercury modeling studies of the Carson River-Lahontan Reservoir (CRLR) system have focused on total Hg and total MeHg transport in the Carson River, most of which is cycled through the river via sediment transport processes of bank erosion and over bank deposition during higher flow events. Much less attention has been given to low flow events and dissolved species. Four flow regimes are defined to capture significant mechanisms of mercury loading for total and dissolved species at all flow regimes. For extremely low flows, only gradient driven diffusion of mercury from the bottom sediments occurs. At low flows, diffusional loads are augmented with turbulent mixing of channel bed material. Mercury loading into the river during medium to higher flows is driven by bank erosion process, but flows remain within the confines of the river’s channel. Finally, mercury cycling during overbank flows is dominated by both bank erosion as well as floodplain deposition. Methylation and demethylation are allowed to occur in the channel and reservoir bed sediments as well as in channel bank sediments and are described by the first order kinetic equations using observed methylation and demethylation rates. Calibration and verification is divided into geomorphic as well as mercury geochemical and transport processes with evaluation done for pre- and post- 1997 flood conditions to determine systematic changes to mercury cycling as a result of the January 1997 flood. Preliminary results for a Monte Carlo simulation are presented. Monte Carlo couples output uncertainty due to ranges in bank erosion rates, inorganic mercury in the channel banks, floodplain transport capacity during over bank flows, methylation and demethylation rates and diffusional distance in the reservoir bottom sediments. Uncertainty is compared to observed variability in water column mercury concentrations and discussed in the context of flow regime and reservoir residence time.
Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, Mary C.; Henriksen, J.; Jacobson, R.B.; Kennen, J.G.; Merritt, D.M.; O'Keeffe, J. H.; Olden, J.D.; Rogers, K.; Tharme, R.E.; Warner, A.
2010-01-01
The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows scientists, water-resource managers and stakeholders to analyse and synthesise available scientific information into ecologically based and socially acceptable goals and standards for management of environmental flows. 3. The ELOHA framework includes the synthesis of existing hydrologic and ecological databases from many rivers within a user-defined region to develop scientifically defensible and empirically testable relationships between flow alteration and ecological responses. These relationships serve as the basis for the societally driven process of developing regional flow standards. This is to be achieved by first using hydrologic modelling to build a 'hydrologic foundation' of baseline and current hydrographs for stream and river segments throughout the region. Second, using a set of ecologically relevant flow variables, river segments within the region are classified into a few distinctive flow regime types that are expected to have different ecological characteristics. These river types can be further subclassified according to important geomorphic features that define hydraulic habitat features. Third, the deviation of current-condition flows from baseline-condition flow is determined. Fourth, flow alteration-ecological response relationships are developed for each river type, based on a combination of existing hydroecological literature, expert knowledge and field studies across gradients of hydrologic alteration. 4. Scientific uncertainty will exist in the flow alteration-ecological response relationships, in part because of the confounding of hydrologic alteration with other important environmental determinants of river ecosystem condition (e.g. temperature). Application of the ELOHA framework should therefore occur in a consensus context where stakeholders and decision-makers explicitly evaluate acceptable risk as a balance between the perceived value of the ecological goals, the economic costs involved and the scientific uncertainties in functional relationships between ecological responses and flow alteration. 5. The ELOHA framework also should proceed in an adaptive management context, where collection of monitoring data or targeted field sampling data allows for testing of the proposed flow alteration-ecological response relationships. This empirical validation process allows for a fine-tuning of environmental flow management targets. The ELOHA framework can be used both to guide basic research in hydroecology and to further implementation of more comprehensive environmental flow management of freshwater sustainability on a global scale. ?? 2009 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Anibas, Christian; Tolche, Abebe Debele; Ghysels, Gert; Nossent, Jiri; Schneidewind, Uwe; Huysmans, Marijke; Batelaan, Okke
2018-05-01
Among the advances made in analytical and numerical analysis methods to quantify groundwater/surface-water interaction, one methodology that stands out is the use of heat as an environmental tracer. A large data set of river and riverbed temperature profiles from the Aa River in Belgium has been used to examine the spatial-temporal variations of groundwater/surface-water interaction. Exchange fluxes were calculated with the numerical heat-transport code STRIVE. The code was applied in transient mode to overcome previous limitations of steady-state analysis, and allowed for the calculation of model quality. In autumn and winter the mean exchange fluxes reached -90 mm d-1, while in spring and early summer fluxes were -42 mm d-1. Predominantly gaining conditions occurred along the river reach; however, in a few areas the direction of flow changed in time. The river banks showed elevated fluxes up to a factor of 3 compared to the center of the river. Higher fluxes were detected in the upstream section of the reach. Due to the influence of exchange fluxes along the river banks, larger temporal variations were found in the downstream section. The exchange fluxes at the river banks seemed more driven by variable local exchange flows, while the center of the river was dominated by deep and steady regional groundwater flows. These spatial and temporal differences in groundwater/surface-water exchange show the importance of long-term investigations on the driving forces of hyporheic processes across different scales.
Milde, Amanda S.; Richardson, William B.; Strauss, Eric A.; Larson, James H.; Vallazza, Jon; Knights, Brent C.
2017-01-01
Suspended particles are an essential component of large rivers influencing channel geomorphology, biogeochemical cycling of nutrients, and food web resources. The Upper Mississippi River is a large floodplain river that exhibits pronounced spatiotemporal variation in environmental conditions and biota, providing an ideal environment for investigating dynamics of suspended particles in large river ecosystems. Here we investigated two questions: (i) How do suspended particle characteristics (e.g. size and morphology) vary temporally and spatially? and (ii) What environmental variables have the strongest association with particle characteristics? Water sampling was conducted in June, August, and September of 2013 and 2014 in Navigation Pool 19 of the Upper Mississippi River. A FlowCAM® (Flow Cytometer and Microscope) particle imaging system was used to enumerate and measure particles 53–300 μm in diameter for size and shape characteristics (e.g. volume, elongation, and symmetry). Suspended particle characteristics varied considerably over space and time and were strongly associated with discharge and concentrations of nitrate + nitrite (NO3−) and soluble reactive phosphorus. Particle characteristics in backwaters were distinct from those in other habitats for most of the study period, likely due to reduced hydrologic connectivity and higher biotic production in backwaters. During low discharge, phytoplankton and zooplankton made up relatively greater proportions of the observed particles. Concurrently during low discharge, concentrations of chlorophyll, volatile suspended solids, and total phosphorus were higher. Our results suggest that there are complex interactions among space, time, discharge, and other environmental variables (e.g. water nutrients), which drive suspended particle dynamics in large rivers.
Future Management and Control of the Lower Mississippi River
NASA Astrophysics Data System (ADS)
Willson, C. S.; Karadogan, E.
2009-12-01
In many ways the Mississippi River, which drains an area of over 1,245,000 square miles (covering 31 states and two Canadian provinces), is a highly engineered system due to the presence of control structures and levees. These features provide the necessary controls for flood protection and for sustaining navigation routes to a number of economically important ports. The lower portion of the River is subject to temporally dynamic forcings due to the high variability in annual flow rates (up to 700,000 cfs) and Gulf of Mexico conditions, both of which are expected to change over the coming decades as a result of climate change. Another phenomena that is having a major impact on the lower River delta is subsidence---some parts of coastal Louisiana are experiencing subsidence rates of up to 1 cm/year. As a result, the relative sea level rise rates in coastal Louisiana will be higher than many other delta systems throughout the world. A calibrated and validated two-dimensional hydrodynamic model has been developed for the lower River (from River Mile 105, around New Orleans out to the -100 m depth in the Gulf of Mexico) that includes all of the lower River passes and many of the dynamic forcings from the Gulf. This model has been used to look at the flow distribution through the various passes and to investigate the potential impact of large-scale river diversion into the adjacent wetlands. In this talk, we will discuss the framework for incorporating model results under projected sea level rise conditions as well as more extreme flow conditions on future use and management of the River. Examples will be shown depicting the impact on flow distribution through the passes and other uncontrolled sections of the lower River, salt water migration, and the effectiveness of river diversions.
NASA Astrophysics Data System (ADS)
Kibler, K. M.; Alipour, M.
2017-12-01
Diversion hydropower has been shown to significantly alter river flow regimes by dewatering diversion bypass reaches. Data scarcity is one of the foremost challenges to establishing environmental flow regimes below diversion hydropower dams, especially in regions of sparse hydro-meteorological observation. Herein, we test two prediction strategies for generating daily flows in rivers developed with diversion hydropower: a catchment similarity model, and a rainfall-runoff model selected by multi-objective optimization based on soft data. While both methods are designed for ungauged rivers embedded within large regions of sparse hydrologic observation, one is more complex and computationally-intensive. The objective of this study is to assess the benefit of using complex modeling tools in data-sparse landscapes to support design of environmental flow regimes. Models were tested in gauged catchments and then used to simulate a 28-year record of daily flows in 32 ungauged rivers. After perturbing flows with the hydropower diversion, we detect alteration using Indicators of Hydrologic Alteration (IHA) metrics and compare outcomes of the two modeling approaches. The catchment similarity model simulates low flows well (Nash-Sutcliff efficiency (NSE) = 0.91), but poorly represents moderate to high flows (overall NSE = 0.25). The multi-objective rainfall-runoff model performs well overall (NSE = 0.72). Both models agree that flow magnitudes and variability consistently decrease following diversion as temporally-dynamic flows are replaced by static minimal flows. Mean duration of events sustained below the pre-diversion Q75 and mean hydrograph rise and fall rates increase. While we see broad areas of agreement, significant effects and thresholds vary between models, particularly in the representation of moderate flows. Thus, use of simplified streamflow models may bias detected alterations or inadequately characterize pre-regulation flow regimes, providing inaccurate information as a basis for flow regime design. As an alternative, the multi-objective framework can be applied globally, and is robust to common challenges of flow prediction in ungauged rivers, such as equifinality and hydrologic dissimilarity of reference catchments.
Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.
In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less
Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California
Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; ...
2014-12-17
In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less
Colorado River Floods, Droughts, and Shrimp Fishing in the Upper Gulf of California, Mexico
NASA Astrophysics Data System (ADS)
All, John D.
2006-01-01
Accurate procedures that measure hydrologic variability would have great value for evaluating ecosystem impacts of upstream water use in the Colorado River Basin. Many local extractive income-based stakeholders rely directly or indirectly on ecosystem health and are adversely affected when the river does not flow. This study focuses on the impact of little or no Colorado River flow on the Mexican shrimp industry. Although there have been complaints that U.S. diversions of Colorado River flow have greatly impaired the shrimp fishery, this research demonstrates that freshwater rarely reaches the Gulf even during times of flooding, and that other factors such as overfishing may influence the instability of shrimp populations. Advanced very-high-resolution radiometer (AVHRR) satellite imagery was used to assess water volumes diverted away from the channel of the Colorado River and ultimately the Gulf of California during flooding periods. Analysis of data demonstrated that little freshwater actually reaches the Gulf even during floods because of its diversion into a large dry lake bed basin known as Laguna Salada. Fuller use of the Colorado River throughout its entire course to the sea is possible and could benefit a large cohort of users without catastrophic habitat destruction in delta ecosystems. Reconstruction of a natural earthen berm, as proposed by Ducks Unlimited, would maximize the use of floodwaters for ecosystem benefits. These findings have profound implications for local economic activities dependent on hydrologic resources in the Colorado River Delta and Upper Gulf.
Colorado river floods, droughts, and shrimp fishing in the upper gulf of California, Mexico.
All, John D
2006-01-01
Accurate procedures that measure hydrologic variability would have great value for evaluating ecosystem impacts of upstream water use in the Colorado River Basin. Many local extractive income-based stakeholders rely directly or indirectly on ecosystem health and are adversely affected when the river does not flow. This study focuses on the impact of little or no Colorado River flow on the Mexican shrimp industry. Although there have been complaints that U.S. diversions of Colorado River flow have greatly impaired the shrimp fishery, this research demonstrates that freshwater rarely reaches the Gulf even during times of flooding, and that other factors such as overfishing may influence the instability of shrimp populations. Advanced very-high-resolution radiometer (AVHRR) satellite imagery was used to assess water volumes diverted away from the channel of the Colorado River and ultimately the Gulf of California during flooding periods. Analysis of data demonstrated that little freshwater actually reaches the Gulf even during floods because of its diversion into a large dry lake bed basin known as Laguna Salada. Fuller use of the Colorado River throughout its entire course to the sea is possible and could benefit a large cohort of users without catastrophic habitat destruction in delta ecosystems. Reconstruction of a natural earthen berm, as proposed by Ducks Unlimited, would maximize the use of floodwaters for ecosystem benefits. These findings have profound implications for local economic activities dependent on hydrologic resources in the Colorado River Delta and Upper Gulf.
NASA Astrophysics Data System (ADS)
Zhang, Qi; Ye, Xu-chun; Werner, Adrian D.; Li, Yun-liang; Yao, Jing; Li, Xiang-hu; Xu, Chong-yu
2014-09-01
Changes in lake hydrological regimes and the associated impacts on water supplies and ecosystems are internationally recognized issues. During the past decade, the persistent dryness of Poyang Lake (the largest freshwater lake in China) has caused water supply and irrigation crises for the 12.4 million inhabitants of the region. There is conjecture as to whether this dryness is caused by climate variability and/or human activities. This study examines long-term datasets of catchment inflow and Lake outflow, and employs a physically-based hydrodynamic model to explore catchment and Yangtze River controls on the Lake's hydrology. Lake water levels fell to their lowest during 2001-2010 relative to previous decades. The average Lake size and volume reduced by 154 km2 and 11 × 108 m3 during the same period, compared to those for the preceding period (1970-2000). Model simulations demonstrated that the drainage effect of the Yangtze River was the primary causal factor. Modeling also revealed that, compared to climate variability impacts on the Lake catchment, modifications to Yangtze River flows from the Three Gorges Dam have had a much greater impact on the seasonal (September-October) dryness of the Lake. Yangtze River effects are attenuated in the Lake with distance from the River, but nonetheless propagate some 100 km to the Lake's upstream limit. Proposals to build additional dams in the upper Yangtze River and its tributaries are expected to impose significant challenges for the management of Poyang Lake. Hydraulic engineering to modify the flow regime between the Lake and the Yangtze River would somewhat resolve the seasonal dryness of the Lake, but will likely introduce other issues in terms of water quality and aquatic ecosystem health, requiring considerable further research.
Global relationships in river hydromorphology
NASA Astrophysics Data System (ADS)
Pavelsky, T.; Lion, C.; Allen, G. H.; Durand, M. T.; Schumann, G.; Beighley, E.; Yang, X.
2017-12-01
Since the widespread adoption of digital elevation models (DEMs) in the 1980s, most global and continental-scale analysis of river flow characteristics has been focused on measurements derived from DEMs such as drainage area, elevation, and slope. These variables (especially drainage area) have been related to other quantities of interest such as river width, depth, and velocity via empirical relationships that often take the form of power laws. More recently, a number of groups have developed more direct measurements of river location and some aspects of planform geometry from optical satellite imagery on regional, continental, and global scales. However, these satellite-derived datasets often lack many of the qualities that make DEM=derived datasets attractive, including robust network topology. Here, we present analysis of a dataset that combines the Global River Widths from Landsat (GRWL) database of river location, width, and braiding index with a river database extracted from the Shuttle Radar Topography Mission DEM and the HydroSHEDS dataset. Using these combined tools, we present a dataset that includes measurements of river width, slope, braiding index, upstream drainage area, and other variables. The dataset is available everywhere that both datasets are available, which includes all continental areas south of 60N with rivers sufficiently large to be observed with Landsat imagery. We use the dataset to examine patterns and frequencies of river form across continental and global scales as well as global relationships among variables including width, slope, and drainage area. The results demonstrate the complex relationships among different dimensions of river hydromorphology at the global scale.
Setting the scene for SWOT: global maps of river reach hydrodynamic variables
NASA Astrophysics Data System (ADS)
Schumann, Guy J.-P.; Durand, Michael; Pavelsky, Tamlin; Lion, Christine; Allen, George
2017-04-01
Credible and reliable characterization of discharge from the Surface Water and Ocean Topography (SWOT) mission using the Manning-based algorithms needs a prior estimate constraining reach-scale channel roughness, base flow and river bathymetry. For some places, any one of those variables may exist locally or even regionally as a measurement, which is often only at a station, or sometimes as a basin-wide model estimate. However, to date none of those exist at the scale required for SWOT and thus need to be mapped at a continental scale. The prior estimates will be employed for producing initial discharge estimates, which will be used as starting-guesses for the various Manning-based algorithms, to be refined using the SWOT measurements themselves. A multitude of reach-scale variables were derived, including Landsat-based width, SRTM slope and accumulation area. As a possible starting point for building the prior database of low flow, river bathymetry and channel roughness estimates, we employed a variety of sources, including data from all GRDC records, simulations from the long-time runs of the global water balance model (WBM), and reach-based calculations from hydraulic geometry relationships as well as Manning's equation. Here, we present the first global maps of this prior database with some initial validation, caveats and prospective uses.
NASA Astrophysics Data System (ADS)
Wedderburn, Scotte D.; Bailey, Colin P.; Delean, Steven; Paton, David C.
2016-01-01
River flows and salinity are key factors structuring fish assemblages in estuaries. The osmoregulatory ability of a fish determines its capacity to tolerate rising salt levels when dispersal is unfeasible. Estuarine fishes can tolerate minor fluctuations in salinity, but a relatively small number of species in a few families can inhabit extreme hypersaline waters. The Murray-Darling Basin drains an extensive area of south-eastern Australia and river flows end at the mouth of the River Murray. The system is characterized by erratic rainfall and highly variable flows which have been reduced by intensive river regulation and water extraction. The Coorong is a coastal lagoon system extending some 110 km south-eastwards from the mouth. It is an inverted estuary with a salinity gradient that typically ranges from estuarine to triple that of sea water. Hypersalinity in the southern region suits a select suite of biota, including the smallmouth hardyhead Atherinosoma microstoma - a small-bodied, euryhaline fish with an annual life cycle. The population response of A. microstoma in the Coorong was examined during a period of considerable hydrological variation and extreme salinity fluctuations (2001-2014), and the findings were related to its osmoregulatory ability. Most notably, the species was extirpated from over 50% of its range during four continuous years without river flows when salinities exceeded 120 (2007-2010). These salinities exceeded the osmoregulatory ability of A. microstoma. Substantial river flows that reached the Coorong in late 2010 and continued into 2011 led salinities to fall below 100 throughout the Coorong by January 2012. Subsequently, A. microstoma recovered to its former range by January 2012. The findings show that the consequences of prolonged periods of insufficient river flows to temperate inverted estuaries will include substantial declines in the range of highly euryhaline fishes, which also may have wider ecological consequences.
Kraemer, Thomas F.; Brabets, Timothy P.
2012-01-01
The ability to detect hydrologic variation in large arctic river systems is of major importance in understanding and predicting effects of climate change in high-latitude environments. Monitoring uranium isotopes (234U and 238U) in river water of the Yukon River Basin of Alaska and northwestern Canada (2001–2005) has enhanced the ability to identify water sources to rivers, as well as detect flow changes that have occurred over the 5-year study. Uranium isotopic data for the Yukon River and major tributaries (the Porcupine and Tanana rivers) identify several sources that contribute to river flow, including: deep groundwater, seasonally frozen river-valley alluvium groundwater, and high-elevation glacial melt water. The main-stem Yukon River exhibits patterns of uranium isotopic variation at several locations that reflect input from ice melt and shallow groundwater in the spring, as well as a multi-year pattern of increased variability in timing and relative amount of water supplied from higher elevations within the basin. Results of this study demonstrate both the utility of uranium isotopes in revealing sources of water in large river systems and of incorporating uranium isotope analysis in long-term monitoring of arctic river systems that attempt to assess the effects of climate change.
Surface-Water and Groundwater Interactions along the Withlacoochee River, West-Central Florida
Trommer, J.T.; Yobbi, D.K.; McBride, W.S.
2009-01-01
A study of the Withlacoochee River watershed in west-central Florida was conducted from October 2003 to March 2007 to gain a better understanding of the hydrology and surface-water and groundwater interactions along the river. The Withlacoochee River originates in the Green Swamp area in north-central Polk County and flows northerly through seven counties, emptying into the Gulf of Mexico. This study includes only the part of the watershed located between the headwaters in the Green Swamp and the U.S. Geological Survey gaging station near Holder, Florida. The Withlacoochee River within the study area is about 108 miles long and drains about 1,820 square miles. The Withlacoochee River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the degree of confinement between the Upper Florida aquifer and the surficial aquifer is highly variable throughout the watershed. The potential for movement of water from the surface or shallow deposits to deeper deposits, or from deeper deposits to the shallow deposits, exists throughout the Withlacoochee River watershed. Water levels were higher in deeper Upper Floridan aquifer wells than in shallow Upper Floridan aquifer wells or surficial aquifer wells at 11 of 19 paired or nested well sites, indicating potential for discharge to the surface-water system. Water levels were higher in shallow Upper Floridan aquifer or surficial aquifer wells than in deeper Upper Floridan aquifer wells at five other sites, indicating potential for recharge to the deeper Upper Floridan aquifer. Water levels in the surficial aquifer and Upper Floridan aquifer wells at the remaining three sites were virtually the same, indicating little or no confinement at the sites. Potentiometric-surface maps of the Upper Floridan aquifer indicate the pattern of groundwater flow in the aquifer did not vary greatly from season to season during the study. Potentiometric contours indicate groundwater discharge to the river in the vicinity of Dade City and Lake Panasoffkee. During dry periods, groundwater from the underlying Upper Floridan aquifer contributed to the flow in the river. During wet periods, streamflow had additional contributions from runoff and input from tributaries. Groundwater has a greater effect on streamflow downstream from the Dade City station than upstream from the Dade City station because confinement between surficial deposits and the Upper Floridan aquifer is greater in the Green Swamp area than in downstream areas. Estimates of streamflow gains and losses were made along the Withlacoochee River during base-flow conditions in May 2004, April 2005, and April 2006. Base flow was higher in April 2005 than in May 2004 and April 2006. Consistent net seepage gains were identified in 16 of 20 subreaches analyzed during all seepage runs. The direction of exchange was variable in the remaining four subreaches. Low specific conductance, pH, and calcium concentrations in water from the Withlacoochee River near the headwater area indicated a surface-water system not directly connected to the Upper Floridan aquifer. Downstream from the Dade City station, higher specific conductance, pH, and calcium concentrations in the river water indicated an increasing influence of groundwater, and were similar to groundwater during low-flow conditions. Strontium isotope ratios indicate groundwater originates from shallow parts of the Upper Floridan aquifer in the upper reaches of the river, and from increasingly deeper parts of the aquifer in the downstream direction. Mean annual base-flow estimates also indicate increasing groundwater discharge to the river in the downstream direction. Mean annual base flow estimated using standard hydrograph separation method assumptions ranged from about 4.7 to 5.1 inches per year
Salinity of the Delaware Estuary
Cohen, Bernard; McCarthy, Leo T.
1962-01-01
The purpose of this investigation was to obtain data on and study the factors affecting the salinity of the Delaware River from Philadelphia, Pa., to the Appoquinimink River, Del. The general chemical quality of water in the estuary is described, including changes in salinity in the river cross section and profile, diurnal and seasonal changes, and the effects of rainfall, sea level, and winds on salinity. Relationships are established of the concentrations of chloride and dissolved solids to specific conductance. In addition to chloride profiles and isochlor plots, time series are plotted for salinity or some quantity representing salinity, fresh-water discharge, mean river level, and mean sea level. The two major variables which appear to have the greatest effect on the salinity of the estuary are the fresh-water flow of the river and sea level. The most favorable combination of these variables for salt-water encroachment occurs from August to early October and the least favorable combination occurs between December and May.
NASA Astrophysics Data System (ADS)
Shrestha, N. S.; Dahal, P.
2016-12-01
Changes in the hydrological extreme are expected due to climate variability and are needed to assess at local and regional scales since these changes are not uniform over the globe. This study analyses the changes in intensity, frequency and persistence hydrological extreme in Gandaki River Basin (GRB) Nepal over past and future and its relation to climate variability. Hydrological data of 12 different hydrological stations covering all the sub basins of Gandaki River Basin were analyzed. At least 1 hydrological station in each sub basin to the maximum of 3 was taken into consideration for this study. Results show that hydrological extreme have increased in intensity, frequency and persistence over recent year and are predicted to increase in future (2030-2060). The time-series analysis revealed an increase in the magnitude, frequency and duration of flood and drought. The instantaneous maximum flow, flood events and duration of flood events are found to have increasing trend. The minimum discharge was observed to be decreasing which entails that the water availability in the driest time is decreasing. Trend analysis of seasonal flow revealed an increase in monsoon flows and decreasing in post monsoon. Changes in climate variability over the same period shows higher anomalies in both temperature and precipitation in recent decades (1990s and 2000s) compared to the baseline period (1970-2000). Model suggests an increasing trend in annual flows with the increase more pronounced in 2060s. Significant increase in extreme flows and subsequent decrease in dependable flows suggest increase in frequency of isolated extreme flows followed by prolonged dry spells. Data also showed that the mean temperature will be increasing from 1.9 0C to 3.1 0C and precipitation will be changing by -8% to +12% in 2031-2060 compared to the baseline period. For long-term planning and management of water resources, current trend and future change in the pattern of water availability should be analysed well in advance. Climate change with intensifying extreme events will likely have serious consequences on the hydrological changes. Therefore, this study would be useful in understanding how the hydrological regime has been changing with climate change in mountainous watershed.
Melis, T.S.; Webb, R.H.; Griffiths, P.G.; Wise, T.J.
1995-01-01
Debris flows occur in 529 tributaries of the Colorado River in Grand Canyon between Lees Ferry and Diamond Creek, Arizona (river miles 0 to 225). An episodic type of flash flood, debris flows transport poorly-sorted sediment ranging in size from clay to boulders into the Colorado River. Debris flows create and maintain debris fans and the hundreds of associated riffles and rapids that control the geomorphic framework of the Colorado River downstream from Glen Canyon Dam. Between 1984 and 1994, debris flows created 4 new rapids and enlarged 17 existing rapids and riffles. Debris flows in Grand Canyon are initiated by slope failures that occur during intense rainfall. Three of these mechanisms of slope failure are documented. Failures in weathered bedrock, particularly in the Hermit Shale and Supai Group, have initiated many historic debris flows in Grand Canyon. A second mechanism, termed the fire-hose effect, occurs when runoff pours over cliffs onto unconsolidated colluvial wedges, triggering a failure. A third initiation mechanism occurs when intense precipitation causes failures in colluvium overlying bedrock. Multiple source areas and extreme topographic relief in Grand Canyon commonly result in combinations of these three initiation mechanisms. Interpretation of 1,107 historical photographs spanning 120 years, supplemented with aerial photography made between 1935 and 1994, yielded information on the frequency of debris flows in 168 of the 529 tributaries (32 percent) of the Colorado River in Grand Canyon. Of the 168 tributaries, 96 contain evidence of debris flows that have occurred since 1872, whereas 72 tributaries have not had a debris flow during the last century. The oldest debris flow we have documented in Grand Canyon occurred 5,400 years ago in an unnamed tributary at river mile 63.3-R. Our results indicate that the frequency of debris flows ranges from one every 10 to 15 years in certain eastern tributaries, to less than one per century in other drainage basins. On average, debris flows may recur approximately every 30 to 50 years in individual tributaries, although adjacent tributaries may have considerably different histories. Peak discharges were estimated in 18 drainages for debris flows that occurred between 1939 and 1994. Typically, discharges range from about 100 to 300 cubic meters per second (m3/s). The largest debris flow in Grand Canyon during the last century, which occurred in Prospect Canyon in 1939, had a peak discharge of about 1,000 m3/s. Debris-flow deposits generally contain 15 to 30 percent sand-and-finer sediment; however, the variability of sand-and-finer sediment contained by recent debris flows is large. Reconstitution of debris-flow samples indicates a range in water content of 10 to 25 percent by weight;. Before flow regulation of the Colorado River began, debris fans aggraded by debris flows were periodically reworked by large river floods that may have been as large as 11,000 m3/s. Impoundment of the river by Glen Canyon Dam in 1963, and subsequent operation of the reservoir have reduced the magnitude of these floods. Flow releases from the dam since 1963 have only partly reworked recently-aggraded debris fans. Significant reworking of new debris-flow deposits now occurs only during river discharges higher than typical power plant releases, which currently range between 142 and 510 m3/s.
Relating the dynamics of climatological and hydrological droughts in semiarid Botswana
NASA Astrophysics Data System (ADS)
Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.
2018-06-01
Dynamics of droughts have been an associated feature of climate variability particularly in semiarid regions which impact on the response of hydrological systems. This study attempts to determine drought timescale that is suitable for monitoring the effects of drought on hydrological systems which can then be used to assess the long term persistence or reversion and forecasts of the dynamics. Based on this, climatological and hydrological drought indices characterized by Standardized precipitation evapotranspiration index (SPEI) and Standardized flow index (SFI) respectively have been determined using monthly rainfall, temperature and flow data from two major river systems. The association between climatological and hydrological droughts in Botswana has been investigated using these river systems namely: Okavango that is predominantly a storage type and Limpopo which is non-storage for a period of 1975-2014. Dynamics of climatological and hydrological droughts are showing trends towards drying conditions at both river systems. It was also observed that hydrological droughts lag climatological droughts by 7 months in Limpopo and 6 months in Okavango river systems respectively. Analyses of the association between climatic and flow indices indicate that the degree of association becomes stronger with increasing timescale at the Okavango river system. However in the Limpopo river system, it was observed that high timescales of 18- and 24-months were not useful in drought monitoring. 15-months timescale was identified to best monitor drought dynamics at both locations. Therefore SPEIs and SFIs computed at 15-months timescale have been used to assess the variability and long term persistence in drought dynamics through rescaled range analysis (R/S). H-coefficients of 0.06 and 0.08 resulted for Limpopo and Okavango respectively. These H-coefficients being significantly less than 0.5 is an indication of high variability and suggests a change in dynamics from the existing conditions in these river systems. To forecast possible changes, the nonlinear autoregressive with exogenous input (NARX) artificial neural network model has been used. Results from this model agree with those of the R/S and projects generally dry conditions for the next 40 months. Results from this study are helpful not only in choosing a proper timescale but also in evaluating the futuristic drought dynamics necessary for water resources planning and management.
Clark, Melanie L.
2012-01-01
The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios, and major ion concentrations of the main-stem streams. Sites in the Tongue River drainage basin typically had the smallest range of specific conductance and SAR values. The water chemistry of sites in the Powder River drainage basin generally was the most variable as a result of diverse characteristics of that basin. Plains tributaries in the Powder River drainage basin had the largest range of specific conductance and SAR values, in part due to the many tributaries that receive CBNG-produced waters. Trends were analyzed using the seasonal Kendall test with flow-adjusted concentrations to determine changes to water quality through time at sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Trends were evaluated for water years 2001–10 for 17 sites, which generally were on the main-stem streams and primary tributaries. Trends were evaluated for water years 2005–10 for 26 sites to increase the spatial coverage of sites. Trends were evaluated for water years 1991–2010 for eight sites to include water-quality data collected prior to widespread CBNG development and expand the temporal context of trends. Consistent patterns were not observed in trend results for water years 2001–10 for flow-adjusted specific conductance and SAR values in the Tongue, Powder, and Belle Fourche River drainage basins. Significant (p-values less than 0.05) upward trends in flow-adjusted specific conductance values were determined for 3 sites, a downward trend was determined for 1 site, and no significant (p-value greater than 0.05) trends were determined for 13 sites. One of the sites with a significant upward trend was the Tongue River at the Wyoming-Montana State line. No trend in flow-adjusted specific conductance values was determined for the Powder River at Moorhead, Mont. Significant upward trends in flow-adjusted SAR values were determined for 2 sites and no significant trends were determined for 15 sites. No trends in flow-adjusted SAR values were determined for the Tongue River at the Wyoming-Montana State line or for the Powder River at Moorhead, Mont. One of the sites with a significant upward trend in flow-adjusted SAR values was the Powder River at Arvada, Wyo. For water years 2005–10, significant upward trends in flow-adjusted specific conductance values were determined no significant trends were determined for 13 sites. A significant upward trend was determined for flow-adjusted specific conductance values for the Tongue River at the Wyoming-Montana State line. No trend in flow-adjusted specific conductance values was determined for the Powder River at Moorhead, Mont. Significant upward trends in flow-adjusted SAR values were determined for 4 sites, downward trends were determined for 5 sites, and no significant trend was determined for 17 sites. No trends in flow-adjusted SAR values were determined for the Tongue River at the Wyoming-Montana State line or for the Powder River at Moorhead, Mont. Results of the seasonal Kendall test applied to flow-adjusted specific conductance values for water years 1991–2010 indicated no significant trend for eight sites in the Tongue, Powder, and Belle Fourche River drainage basins. No significant trend in flow-adjusted specific conductance was determined for the Tongue River at the Wyoming-Montana State line or the Powder River at Moorhead, Mont. Results of the seasonal Kendall test applied to flow-adjusted SAR values for water years 1991–2010 indicated an upward trend for one site and no significant trend for four sites in the Powder and Belle Fourche River drainage basins. The significant upward trend in flow-adjusted SAR values was determined for the Powder River at Arvada, Wyo., for water years 1991–2010. Results indicate that CBNG development in the Powder River structural basin may have contributed to some trends, such as the upward trend in flow-adjusted SAR for the Powder River at Arvada, Wyo., for water years 1991–2010. An upward trend in flow-adjusted alkalinity concentrations for water years 2001–10 also was determined for the Powder River at Arvada, Wyo. Trend results are consistent with changes that can occur from the addition of sodium and bicarbonate associated with CBNG-produced waters to the Powder River. Upward trends in constituents at other sites, including the Belle Fourche River, may be the result of declining CBNG development, indicating that CBNG-produced waters may have had a dilution effect on some streams. The factors affecting other trends could not be determined because multiple factors could have been affecting the stream-water quality or because trends were observed at sites upstream from CBNG development that may have affected water-quality trends at sites downstream.
Assessment of freshwater ecosystem services in the Beas River Basin, Himalayas region, India
NASA Astrophysics Data System (ADS)
Ncube, Sikhululekile; Beevers, Lindsay; Adeloye, Adebayo J.; Visser, Annie
2018-06-01
River systems provide a diverse range of ecosystem services, examples include: flood regulation (regulating), fish (provisioning), nutrient cycling (supporting) and recreation (cultural). Developing water resources through the construction of dams (hydropower or irrigation) can enhance the delivery of provisioning ecosystem services. However, these hydrologic alterations result in reductions in less tangible regulating, cultural and supporting ecosystem services. This study seeks to understand how multiple impoundments, abstractions and transfers within the upper Beas River Basin, Western Himalayas, India, are affecting the delivery of supporting ecosystem services. Whilst approaches for assessing supporting ecosystem services are under development, the immediate aim of this paper is to set out a framework for their quantification, using the macroinvertebrate index Lotic-Invertebrate Index for Flow Evaluation (LIFE). LIFE is a weighted measure of the flow velocity preferences of the macroinvertebrate community. Flow records from multiple gauging stations within the basin were used to investigate flow variability at seasonal, inter-annual and decadal time scales. The findings show that both mean monthly and seasonal cumulative flows have decreased over time in the Beas River Basin. A positive hydroecological relationship between LIFE and flow was also identified, indicative of macroinvertebrate response to seasonal changes in the flow regime. For example, high LIFE scores (7.7-9.3) in the winter and summer seasons indicate an abundance of macroinvertebrates with a preference for high flows; this represents a high potential for instream supporting ecosystem services delivery. However, further analysis is required to understand these hydroecological interactions in the study basin and the impact on instream supporting ecosystem services delivery.
Water resources planning for rivers draining into Mobile Bay
NASA Technical Reports Server (NTRS)
April, G. C.
1976-01-01
The application of remote sensing, automatic data processing, modeling and other aerospace related technologies to hydrological engineering and water resource management are discussed for the entire river drainage system which feeds the Mobile Bay estuary. The adaptation and implementation of existing mathematical modeling methods are investigated for the purpose of describing the behavior of Mobile Bay. Of particular importance are the interactions that system variables such as river flow rate, wind direction and speed, and tidal state have on the water movement and quality within the bay system.
1986-01-01
latter process occurs at the mouth of the Magothy strength of the flow rather than being specified a River, an estuary tributary to Chesapeake Bay...periods. It is also clear, Magothy in the immediate past. As the density though, that significant geographical variability front associated with the...Estuarine Coastal chemical hydrography of the Magothy River, ?tar. Sci., ’)(4), 485-496, 1977. Tech. Rep. XVIR, Ref. 59-2, Chesapeake bay Hachey, H. B
Traveltime and dispersion in the Potomac River, Cumberland, Maryland, to Washington, D.C.
Taylor, Kenneth R.; James, Robert W.; Helinsky, Bernard M.
1985-01-01
A travel-time and dispersion study using rhodamine dye was conducted on the Potomac River between Cumberland, Maryland, and Washington, D.C., a distance of 189 miles. The flow during the study was at approximately the 90-percent flow-duration level. A similar study was conducted by Wilson and Forrest in 1964 at a flow duration of approximately 60 percent. The two sets of data were used to develop a generalized procedure for predicting travel-times and downstream concentrations resulting from spillage of water-soluble substances at any point along the river. The procedure will allow the user to calculate travel-time and concentration data for almost any spillage problem that occurs during periods of relatively steady flow between 50- and 95-percent flow duration. A new procedure for calculating unit peak concentration was derived. The new procedure depends on an analogy between a time-concentration curve and a scalene triangle. As a result of this analogy, the unit peak concentration can be expressed in terms of the length of the _lye or contaminant cloud. The new procedure facilitates the calculation of unit peak concentration for long reaches of river. Previously, there was no way to link unit peak concentration curves for studies in which the river was divided into subreaches for study. Variable dispersive characteristics caused mainly by low-head dams precluded useful extrapolation of the unit peak-concentration attenuation curves, as has been done in previous studies. The procedure is applied to a hypothetical situation in which 20,000 pounds of contaminant is spilled at a railroad crossing at Magnolia, West Virginia. The times required for the leading edge, the peak concentration, and the trailing edge of the contaminant cloud to reach Point of Rocks, Maryland (110 river miles downstream), are 295, 375, and 540 hours respectively, during a period when flow is at the 80-percent flow-duration level. The peak conservative concentration would be approximately 340 micrograms per liter at Point of Rocks.
Heat tracing to determine spatial patterns of hyporheic exchange across a river transect
NASA Astrophysics Data System (ADS)
Lu, Chengpeng; Chen, Shuai; Zhang, Ying; Su, Xiaoru; Chen, Guohao
2017-09-01
Significant spatial variability of water fluxes may exist at the water-sediment interface in river channels and has great influence on a variety of water issues. Understanding the complicated flow systems controlling the flux exchanges along an entire river is often limited due to averaging of parameters or the small number of discrete point measurements usually used. This study investigated the spatial pattern of the hyporheic flux exchange across a river transect in China, using the heat tracing approach. This was done with measurements of temperature at high spatial resolution during a 64-h monitoring period and using the data to identify the spatial pattern of the hyporheic exchange flux with the aid of a one-dimensional conduction-advection-dispersion model (VFLUX). The threshold of neutral exchange was considered as 126 L m-2 d-1 in this study and the heat tracing results showed that the change patterns of vertical hyporheic flux varied with buried depth along the river transect; however, the hyporheic flux was not simply controlled by the streambed hydraulic conductivity and water depth in the river transect. Also, lateral flow dominated the hyporheic process within the shallow high-permeability streambed, while the vertical flow was dominant in the deep low-permeability streambed. The spatial pattern of hyporheic exchange across the river transect was naturally controlled by the heterogeneity of the streambed and the bedform of the stream cross-section. Consequently, a two-dimensional conceptual illustration of the hyporheic process across the river transect is proposed, which could be applicable to river transects of similar conditions.
NASA Astrophysics Data System (ADS)
Krysanova, Valentina; Vetter, Tobias; Eisner, Stephanie; Huang, Shaochun; Pechlivanidis, Ilias; Strauch, Michael; Gelfan, Alexander; Kumar, Rohini; Aich, Valentin; Arheimer, Berit; Chamorro, Alejandro; van Griensven, Ann; Kundu, Dipangkar; Lobanova, Anastasia; Mishra, Vimal; Plötner, Stefan; Reinhardt, Julia; Seidou, Ousmane; Wang, Xiaoyan; Wortmann, Michel; Zeng, Xiaofan; Hattermann, Fred F.
2017-10-01
An intercomparison of climate change impacts projected by nine regional-scale hydrological models for 12 large river basins on all continents was performed, and sources of uncertainty were quantified in the framework of the ISIMIP project. The models ECOMAG, HBV, HYMOD, HYPE, mHM, SWAT, SWIM, VIC and WaterGAP3 were applied in the following basins: Rhine and Tagus in Europe, Niger and Blue Nile in Africa, Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, Upper Mississippi, MacKenzie and Upper Amazon in America, and Darling in Australia. The model calibration and validation was done using WATCH climate data for the period 1971-2000. The results, evaluated with 14 criteria, are mostly satisfactory, except for the low flow. Climate change impacts were analyzed using projections from five global climate models under four representative concentration pathways. Trends in the period 2070-2099 in relation to the reference period 1975-2004 were evaluated for three variables: the long-term mean annual flow and high and low flow percentiles Q 10 and Q 90, as well as for flows in three months high- and low-flow periods denoted as HF and LF. For three river basins: the Lena, MacKenzie and Tagus strong trends in all five variables were found (except for Q 10 in the MacKenzie); trends with moderate certainty for three to five variables were confirmed for the Rhine, Ganges and Upper Mississippi; and increases in HF and LF were found for the Upper Amazon, Upper Yangtze and Upper Yellow. The analysis of projected streamflow seasonality demonstrated increasing streamflow volumes during the high-flow period in four basins influenced by monsoonal precipitation (Ganges, Upper Amazon, Upper Yangtze and Upper Yellow), an amplification of the snowmelt flood peaks in the Lena and MacKenzie, and a substantial decrease of discharge in the Tagus (all months). The overall average fractions of uncertainty for the annual mean flow projections in the multi-model ensemble applied for all basins were 57% for GCMs, 27% for RCPs, and 16% for hydrological models.
Flow discharge prediction in compound channels using linear genetic programming
NASA Astrophysics Data System (ADS)
Azamathulla, H. Md.; Zahiri, A.
2012-08-01
SummaryFlow discharge determination in rivers is one of the key elements in mathematical modelling in the design of river engineering projects. Because of the inundation of floodplains and sudden changes in river geometry, flow resistance equations are not applicable for compound channels. Therefore, many approaches have been developed for modification of flow discharge computations. Most of these methods have satisfactory results only in laboratory flumes. Due to the ability to model complex phenomena, the artificial intelligence methods have recently been employed for wide applications in various fields of water engineering. Linear genetic programming (LGP), a branch of artificial intelligence methods, is able to optimise the model structure and its components and to derive an explicit equation based on the variables of the phenomena. In this paper, a precise dimensionless equation has been derived for prediction of flood discharge using LGP. The proposed model was developed using published data compiled for stage-discharge data sets for 394 laboratories, and field of 30 compound channels. The results indicate that the LGP model has a better performance than the existing models.
NASA Technical Reports Server (NTRS)
DSa, E. J.; Miller, R. L.; DelCastillo, C.
2003-01-01
The Mississippi River Bight is a highly dynamic region influenced by the seasonally variable outflow from the Mississippi River. In an effort to characterize the distribution of particulate and dissolved organic matter in the region, we conducted a two-year field program in the spring and fall (high and low flow river discharge) of 2000 and 2002. We collected a comprehensive set of bio-optical measurements consisting of vertical profiles (absorption, scattering, chlorophyll fluorescence and radiometry) and discrete measurements (pigment concentrations, particulate and CDOM absorption) that enabled us to obtain better insight into the seasonal and spatial variability of some important biogeochemical parameters. Our field measurements generally showed higher phytoplankton clorophyll concentrations in the plume waters (associated with lower surface salinities) and confirmed the high biological activity abserved in other studies. The seasonal flow of river discharge and advective currents due to wind forcing exerted a strong influence on the biological and optical properties of the region. An examination of absorption at 440 nm by the algal and non-algal fraction of the particulate pool and of CDOM revealed that at nearshore stations, contributions by the non-algal particles were high (about 40%) and decresed with increasing salinities. While CDOM absorption exhibited conservative mixing, its relative contribution to the total absorption was variable. Surface waters at most stations had lower salinities that generalliy increased with dept. Particulate matter and CDOM also decreased with depth as evidenced by absorption and scattering measurements. Good correlations in surface waters between concentrations of particulate and dissolved matter, the inherent optical properties of absorption and ackscattering and remote sensing reflectance values has allowed the development of robust empirical algorithms for phytoplankton chlorophyll and CDOM absorption.
Gadomski, D.M.; Wagner, P.G.
2009-01-01
The Hanford Reach is one of the few remaining unimpounded sections of the Columbia River. However, because of flow management at upstream dams, there are often large fluctuations in water level. To determine how environmental conditions might affect age-0 resident fishes in the Hanford Reach, we evaluated species composition, distribution, abundance, and standard lengths of larval and juvenile fishes along shoreline habitats during July and August 1998, 1999, and 2000. Catches in beach seine hauls during all three years were highly variable. The four most abundant taxa collected were three cyprinids, peamouth (Mylocheilus caurinus), northern pikeminnow (Plychocheilus oregonensis), and redside shiner (Richardson ius balteatus); and suckers (Catostoinus spp.). Highest overall catches were in sloughs of the Hanford Reach in 1999, a year with high flows, lower water level fluctuations, and more vegetation. Mean shoreline summer water temperatures were higher in 1998 than in 1999 and 2000, and mean lengths of the four most abundant taxa in late August were also greater in 1998, due presumably to enhanced growth or an earlier spawning season. In spite of flow fluctuations, overall catches of age-0 resident fishes were greater in the riverine Hanford Reach compared to past catches in a more lentic Columbia River reservoir. High abundances of age-0 resident fishes in the Hanford Reach could be due to more spawning and rearing habitat in this structurally complex area, and may mitigate for negative effects of variable flow regimes.
Wood, Tamara M.
2012-01-01
The hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to run 384 realizations of a numerical tracer experiment in order to understand the relative effects of wind, lake elevation, and Williamson River inflow on flow and transport (the movement of water and passively transported constituents) through the Williamson River Delta. Significant findings from this study include: * The replacement rate of water increased in Tulana and Goose Bay with increasing lake elevation, Williamson River inflow, and wind speed. * The fraction of Williamson River inflow passing through either side of the Delta increased with lake elevation and Williamson River inflow. * The partial replacement rate of water in Goose Bay with water from the Williamson River increased with wind speed. * The partial replacement rate of water in Tulana with water from the Williamson River decreased with wind speed. * Strong wind forcing at the water surface caused more of the Williamson River inflow to pass through Goose Bay than through Tulana. * Westerly to northwesterly winds result in more of the Williamson River inflow passing through the Goose Bay side of the Delta than through the Tulana side. * Regression models developed from the tracer experiments can be used to quantify the dependencies between transport and the independent variables to obtain rough estimates of useful quantities such as residence time and steady-state solute concentrations.
NASA Astrophysics Data System (ADS)
Beaufort, Aurélien; Lamouroux, Nicolas; Pella, Hervé; Datry, Thibault; Sauquet, Eric
2018-05-01
Headwater streams represent a substantial proportion of river systems and many of them have intermittent flows due to their upstream position in the network. These intermittent rivers and ephemeral streams have recently seen a marked increase in interest, especially to assess the impact of drying on aquatic ecosystems. The objective of this paper is to quantify how discrete (in space and time) field observations of flow intermittence help to extrapolate over time the daily probability of drying (defined at the regional scale). Two empirical models based on linear or logistic regressions have been developed to predict the daily probability of intermittence at the regional scale across France. Explanatory variables were derived from available daily discharge and groundwater-level data of a dense gauging/piezometer network, and models were calibrated using discrete series of field observations of flow intermittence. The robustness of the models was tested using an independent, dense regional dataset of intermittence observations and observations of the year 2017 excluded from the calibration. The resulting models were used to extrapolate the daily regional probability of drying in France: (i) over the period 2011-2017 to identify the regions most affected by flow intermittence; (ii) over the period 1989-2017, using a reduced input dataset, to analyse temporal variability of flow intermittence at the national level. The two empirical regression models performed equally well between 2011 and 2017. The accuracy of predictions depended on the number of continuous gauging/piezometer stations and intermittence observations available to calibrate the regressions. Regions with the highest performance were located in sedimentary plains, where the monitoring network was dense and where the regional probability of drying was the highest. Conversely, the worst performances were obtained in mountainous regions. Finally, temporal projections (1989-2016) suggested the highest probabilities of intermittence (> 35 %) in 1989-1991, 2003 and 2005. A high density of intermittence observations improved the information provided by gauging stations and piezometers to extrapolate the temporal variability of intermittent rivers and ephemeral streams.
Surface waters of Illinois River basin in Arkansas and Oklahoma
Laine, L.L.
1959-01-01
The estimated runoff from the Illinois River basin of 1,660 square miles has averaged 1,160,000 acre-feet per year during the water years 1938-56, equivalent to an average annual runoff depth of 13.1 inches. About 47 percent of the streamflow is contributed from drainage in Arkansas, where an average of 550,000 acre-ft per year runs off from 755 square miles, 45.5 percent of the total drainage area. The streamflow is highly variable. Twenty-two years of record for Illinois River near Tahlequah, Okla., shows a variation in runoff for the water year 1945 in comparison with 1954 in a ratio of almost 10 to 1. Runoff in 1927 may have exceeded that of 1945, according to records for White River at Beaver, Ark., the drainage basin just east of the Illinois River basin. Variation in daily discharge is suggested by a frequency analysis of low flows at the gaging station near Tahlequah, Okla. The mean flow at that site is 901 cfs (cubic feet per second), the median daily flow is 350 cfs, and the lowest 30-day mean flow in a year probably will be less than 130 cfs half of the time and less than 20 cfs every 10 years on the average. The higher runoff tends to occur in the spring months, March to May, a 3-month period that, on the average, accounts for almost half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is the lowest in the summer. The mean monthly flow of Illinois River near Tahlequah, Okla., for September is about 11 percent of that for May. Records show that there is flow throughout the year in Illinois River and its principal tributaries Osage Creek, Flint Creek and Barren Fork. The high variability in streamflow in this region requires the development of storage by impoundment if maximum utilization of the available water supplies is to be attained. For example, a 120-day average low flow of 22 cfs occurred in 1954 at Illinois River near Tahlequah, Okla. To have maintained the flow at 350 cfs, the median daily flow during the 19-year base period, an impoundment at that site would have required a usable storage of 185,000 acre-ft to satisfy this demand during the drought years 1954-1956. The surface waters of the Illinois River basin are excellent quality being suitable for municipal, agriculture and most industrial uses. The average concentration of the dissolved mineral content is about 105 ppm (parts per million) and the hardness about 85 ppm. The water is slightly alkaline, having a range of pH values from 7.2 to 8.0. This report gives the estimated average discharge at gaging stations and approximations of average discharge at the State line for 3 sub-basins during the 19-year period October 1937 to September 1956, used as a base period in this report. Duration-of-flow data for various percentages of the time are shown for the period of observed record at the gaging stations; similar data are estimated for the selected base period. Storage requirements to sustain flow during the recent drought years are given for 3 stations. The streamflow records in the basin are presented on a monthly and annual basis through September 1957; provisional records for 3 stations are included through July 1958 for correlation purposes. Results of discharge measurements are given for miscellaneous sites where low-flow observations have been made. (available as photostat copy only)
NASA Astrophysics Data System (ADS)
Ji, P.; Yuan, X.
2017-12-01
Located in the northern Tibetan Plateau, Sanjiangyuan is the headwater region of the Yellow River, Yangtze River and Mekong River. Besides climate change, natural and human-induced land cover change (e.g., Graze for Grass Project) is also influencing the regional hydro-climate and hydrological extremes significantly. To quantify their impacts, a land surface model (LSM) with consideration of soil moisture-lateral surface flow interaction and quasi-three-dimensional subsurface flow, is used to conduct long-term high resolution simulations driven by China Meteorological Administration Land Data Assimilation System forcing data and different land cover scenarios. In particular, the role of surface and subsurface lateral flows is also analyzed by comparing with typical one-dimensional models. Lateral flows help to simulate soil moisture variability caused by topography at hyper-resolution (e.g., 100m), which is also essential for simulating hydrological extremes including soil moisture dryness/wetness and high/low flows. The LSM will also be coupled with a regional climate model to simulate the effect of natural and anthropogenic land cover change on regional climate, with particular focus on the land-atmosphere coupling at different resolutions with different configurations in modeling land surface hydrology.
Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.
2014-01-01
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.
2013-09-30
constructed at BIO, carried the new Machine Vision Floc Camera (MVFC), a Sequoia Scientific LISST 100x Type B, an RBR CTD, and two pressure-actuated...WetStar CDOM fluorometer, a Sequoia Scientific flow control switch, and a SeaBird 37 CTD. The flow-control switch allows the ac- 9 to collect 0.2-um
Simulating Heterogeneous Infiltration and Contaminant leaching Processes at Chalk River, Ontario
NASA Astrophysics Data System (ADS)
Ali, M. A.; Ireson, A. M.; Keim, D.
2015-12-01
A study is conducted at a waste management area in Chalk River, Ontario to characterize flow and contaminant transport with the aim of contributing to improved hydrogeological risk assessment in the context of waste management. Field monitoring has been performed to gain insights into the unsaturated zone characteristics, moisture dynamics, and contaminant transport rates. The objective is to provide quantitative estimates of surface fluxes (quantification of infiltration and evaporation) and investigations of unsaturated zone processes controlling water infiltration and spatial variability in head distributions and flow rates. One particular issue is to examine the effectiveness of the clayey soil cap installed to prevent infiltration of water into the waste repository and the top sand soil cover above the clayey layer to divert the infiltrated water laterally. The spatial variability in the unsaturated zone properties and associated effects on water flow and contaminant transport observed at the site, have led to a concerted effort to develop improved model of flow and transport based on stochastic concepts. Results obtained through the unsaturated zone model investigations are combined with the hydrogeological and geochemical components and develop predictive tools to assess the long term fate of the contaminants at the waste management site.
Effect of a levee setback on aquatic resources using two-dimensional flow and bioenergetics models
Black, Robert W.; Czuba, Christiana R.; Magirl, Christopher S.; McCarthy, Sarah; Berge, Hans; Comanor, Kyle
2016-04-05
Watershed restoration is the focus of many resource managers and can include a multitude of restoration actions each with specific restoration objectives. For the White River flowing through the cities of Pacific and Sumner, Washington, a levee setback has been proposed to reconnect the river with its historical floodplain to help reduce flood risks, as well as provide increased habitat for federally listed species of salmonids. The study presented here documents the use of a modeling framework that integrates two-dimensional hydraulic modeling with process-based bioenergetics modeling for predicting how changes in flow from reconnecting the river with its floodplain affects invertebrate drift density and the net rate of energy intake of juvenile salmonids. Modeling results were calculated for flows of 25.9 and 49.3 cubic meters per second during the spring, summer, and fall. Predicted hypothetical future mean velocities and depths were significantly lower and more variable when compared to current conditions. The abundance of low energetic cost and positive growth locations for salmonids were predicted to increase significantly in the study reach following floodplain reconnection, particularly during the summer. This modeling framework presents a viable approach for evaluating the potential fisheries benefits of reconnecting a river to its historical floodplain that integrates our understanding of hydraulic, geomorphology, and organismal biology.
NASA Astrophysics Data System (ADS)
Lee, E.; Moorcroft, P. R.; Livino, A.; Briscoe, J.
2013-12-01
Since the 1970s, despite a decrease in rainfall, flow in the Parana river has increased. This paradox is explored using the Ecosystem Demography (ED) model. If there were no change in land cover, the modeled runoff decreased from the 1970s to the 2000s by 11.8% (with 1970 land cover) or 18.8% (with 2008 land cover). When the model is run holding climate constant, the decadal average of the modeled runoff increased by 24.4% (with the 1970s climate) or by 33.6% (with 2000s climate). When the model is run allowing both the actual climate and land-cover changes, the model gives an increase in the decadal average of runoff by 8.5%. This agrees well with 10.5% increase in the actual stream flow as measured at Itaipu. There are three main conclusions from this work. First, the ED model is able to explain a major, paradoxical, reality in the Parana basin. Second, it is necessary to take into account both climate and land use changes when exploring past or future changes in river flows. Third, the ED model, now coupled with a regional climate model (i.e., EDBRAMS), is a sound basis for exploring likely changes in river flows in major South American rivers.
Curran, Christopher A.; Olsen, Theresa D.
2009-01-01
Low-flow frequency statistics were computed at 17 continuous-record streamflow-gaging stations and 8 miscellaneous measurement sites in and near the Nooksack River basin in northwestern Washington and Canada, including the 1, 3, 7, 15, 30, and 60 consecutive-day low flows with recurrence intervals of 2 and 10 years. Using these low-flow statistics, 12 regional regression equations were developed for estimating the same low-flow statistics at ungaged sites in the Nooksack River basin using a weighted-least-squares method. Adjusted R2 (coefficient of determination) values for the equations ranged from 0.79 to 0.93 and the root-mean-squared error (RMSE) expressed as a percentage ranged from 77 to 560 percent. Streamflow records from six gaging stations located in mountain-stream or lowland-stream subbasins of the Nooksack River basin were analyzed to determine if any of the gaging stations could be removed from the network without significant loss of information. Using methods of hydrograph comparison, daily-value correlation, variable space, and flow-duration ratios, and other factors relating to individual subbasins, the six gaging stations were prioritized from most to least important as follows: Skookum Creek (12209490), Anderson Creek (12210900), Warm Creek (12207750), Fishtrap Creek (12212050), Racehorse Creek (12206900), and Clearwater Creek (12207850). The optimum streamflow-gaging station network would contain all gaging stations except Clearwater Creek, and the minimum network would include Skookum Creek and Anderson Creek.
Subtidal circulation patterns in a shallow, highly stratified estuary: Mobile Bay, Alabama
Noble, M.A.; Schroeder, W.W.; Wiseman, W.J.; Ryan, H.F.; Gelfenbaum, G.
1996-01-01
Mobile Bay is a wide (25-50 km), shallow (3 m), highly stratified estuary on the Gulf coast of the United States. In May 1991 a series of instruments that measure near-surface and near-bed current, temperature, salinity, and middepth pressure were deployed for a year-long study of the bay. A full set of measurements were obtained at one site in the lower bay; all but current measurements were obtained at a midbay site. These observations show that the subtidal currents in the lower bay are highly sheared, despite the shallow depth of the estuary. The sheared flow patterns are partly caused by differential forcing from wind stress and river discharge. Two wind-driven flow patterns actually exist in lower Mobile Bay. A barotropic response develops when the difference between near-surface and near-bottom salinity is less than 5 parts per thousand. For stronger salinity gradients the wind-driven currents are larger and the response resembles a baroclinic flow pattern. Currents driven by river flows are sheared and also have a nonlinear response pattern. Only near-surface currents are driven seaward by discharges below 3000 m3/s. At higher discharge rates, surface current variability uncouples from the river flow and the increased discharge rates drive near-bed current seaward. This change in the river-forced flow pattern may be associated with a hydraulic jump in the mouth of the estuary. Copyright 1996 by the American Geophysical Union.
Stochastic simulation of uranium migration at the Hanford 300 Area.
Hammond, Glenn E; Lichtner, Peter C; Rockhold, Mark L
2011-03-01
This work focuses on the quantification of groundwater flow and subsequent U(VI) transport uncertainty due to heterogeneity in the sediment permeability at the Hanford 300 Area. U(VI) migration at the site is simulated with multiple realizations of stochastically-generated high resolution permeability fields and comparisons are made of cumulative water and U(VI) flux to the Columbia River. The massively parallel reactive flow and transport code PFLOTRAN is employed utilizing 40,960 processor cores on DOE's petascale Jaguar supercomputer to simultaneously execute 10 transient, variably-saturated groundwater flow and U(VI) transport simulations within 3D heterogeneous permeability fields using the code's multi-realization simulation capability. Simulation results demonstrate that the cumulative U(VI) flux to the Columbia River is less responsive to fine scale heterogeneity in permeability and more sensitive to the distribution of permeability within the river hyporheic zone and mean permeability of larger-scale geologic structures at the site. Copyright © 2010 Elsevier B.V. All rights reserved.
3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.
Pérez-Figueroa, A; Fernández, C; Amaro, R; Hermida, M; San Miguel, E
2015-08-01
Variability at 20 microsatellite loci was examined to assess the population genetic structure, gene flow, and effective population size (N(e)) in three populations of three-spined stickleback (Gasterosteus aculeatus) from the upper basin of the Miño River in Galicia, NW Spain, where this species is threatened. The three populations showed similar levels of genetic diversity. There is a significant genetic differentiation between the three populations, but also significant gene flow. N(e) estimates based on linkage disequilibrium yielded values of 355 for the Miño River population and 241 and 311 for the Rato and Guisande Rivers, respectively, although we expect that these are overestimates. N(e) estimates based on temporal methods, considering gene flow or not, for the tributaries yielded values of 30-56 and 47-56 for the Rato and Guisande Rivers, respectively. Estimated census size (N(c)) for the Rato River was 880 individuals. This yielded a N(e)/N(c) estimate of 3-6 % for temporal estimation of N(e), which is within the empirical range observed in freshwater fishes. We suggest that the three populations analyzed have a sufficient level of genetic diversity with some genetic structure. Additionally, the absence of physical barriers suggests that conservation efforts and monitoring should focus in the whole basin as a unit.
Run-of-river power plants in Alpine regions: whither optimal capacity?
NASA Astrophysics Data System (ADS)
Lazzaro, Gianluca; Botter, Gianluca
2015-04-01
Hydropower is the major renewable electricity generation technology worldwide. The future expansion of this technology mostly relies on the development of small run-of-river projects, in which a fraction of the running flows is diverted from the river to a turbine for energy production. Even though small hydro inflicts a smaller impact on aquatic ecosystems and local communities compared to large dams, it cannot prevent stresses on plant, animal, and human well-being. This is especially true in mountain regions where the plant outflow is located several kilometers downstream of the intake, thereby inducing the depletion of river reaches of considerable length. Moreover, the negative cumulative effects of run-of-river systems operating along the same river threaten the ability of stream networks to supply ecological corridors for plants, invertebrates or fishes, and support biodiversity. Research in this area is severely lacking. Therefore, the prediction of the long-term impacts associated to the expansion of run-of-river projects induced by global-scale incentive policies remains highly uncertain. This contribution aims at providing objective tools to address the preliminary choice of the capacity of a run-of-river hydropower plant when the economic value of the plant and the alteration of the flow regime are simultaneously accounted for. This is done using the concepts of Pareto-optimality and Pareto-dominance, which are powerful tools suited to face multi-objective optimization in presence of conflicting goals, such as the maximization of the profitability and the minimization of the hydrologic disturbance induced by the plant in the river reach between the intake and the outflow. The application to a set of case studies belonging to the Piave River basin (Italy) suggests that optimal solutions are strongly dependent the natural flow regime at the plant intake. While in some cases (namely, reduced streamflow variability) the optimal trade-off between economic profitability and hydrologic disturbance is well identified, in other cases (enhanced streamflow variability) multiple options and/or ranges of optimal capacities may be devised. Such alternatives offer to water managers an objective basis to identify optimal allocation of resources and policy actions. Small hydro technology is likely to gain a higher social value in the next decades if the environmental and hydrologic footprint associated to the energetic exploitation of surface water will take a higher priority in civil infrastructures planning.
Shock, Stress or Signal? Implications of Freshwater Flows for a Top-Level Estuarine Predator
Taylor, Matthew D.; van der Meulen, Dylan E.; Ives, Matthew C.; Walsh, Chris T.; Reinfelds, Ivars V.; Gray, Charles A.
2014-01-01
Physicochemical variability in estuarine systems plays an important role in estuarine processes and in the lifecycles of estuarine organisms. In particular, seasonality of freshwater inflow to estuaries may be important in various aspects of fish lifecycles. This study aimed to further understand these relationships by studying the movements of a top-level estuarine predator in response to physicochemical variability in a large, temperate south-east Australian estuary (Shoalhaven River). Mulloway (Argyrosomus japonicus, 47–89 cm total length) were surgically implanted with acoustic transmitters, and their movements and migrations monitored over two years via fixed-position VR2W acoustic receivers configured in a linear array along the length of the estuary. The study period included a high degree of abiotic variability, with multiple pulses (exponentially high flows over a short period of time) in fresh water to the estuary, as well as broader seasonal variation in flow, temperature and conductivity. The relative deviation of fish from their modal location in the estuary was affected primarily by changes in conductivity, and smaller fish (n = 4) tended to deviate much further downstream from their modal position in the estuary than larger fish (n = 8). High-flow events which coincided with warmer temperatures tended to drive mature fish down the estuary and potentially provided a spawning signal to stimulate aggregation of adults near the estuary mouth; however, this relationship requires further investigation. These findings indicate that pulse and press effects of freshwater inflow and associated physicochemical variability play a role in the movements of mulloway, and that seasonality of large freshwater flows may be important in spawning. The possible implications of river regulation and the extraction of freshwater for consumptive uses on estuarine fishes are discussed. PMID:24752585
Nagler, Pamela L; Glenn, Edward P; Hinojosa-Huerta, Osvel; Zamora, Francisco; Howard, Keith
2008-09-01
Like other great desert rivers, the Colorado River in the United States and Mexico is highly regulated to provide water for human use. No water is officially allotted to support the natural ecosystems in the delta of the river in Mexico. However, precipitation is inherently variable in this watershed, and from 1981-2004, 15% of the mean annual flow of the Lower Colorado River has entered the riparian corridor below the last diversion point for water in Mexico. These flows include flood releases from US dams and much smaller administrative spills released back to the river from irrigators in the US and Mexico. These flows have germinated new cohorts of native cottonwood and willow trees and have established an active aquatic ecosystem in the riparian corridor in Mexico. We used ground and remote-sensing methods to determine the composition and fractional cover of the vegetation in the riparian corridor, its annual water consumption, and the sources of water that support the ecosystem. The study covered the period 2000-2004, a flood year followed by 4 dry years. The riparian corridor occupies 30,000 ha between flood control levees in Mexico. Annual evapotranspiration (ET), estimated by Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery calibrated against moisture flux tower data, was about 1.1 m yr(-1) and was fairly constant throughout the study period despite a paucity of surface flows 2001-2004. Total ET averaged 3.4 x 10(8)m(3)yr(-1), about 15% of Colorado River water entering Mexico from the US Surface flows could have played only a small part in supporting these high ET losses. We conclude that the riparian ET is supported mainly by the shallow regional aquifer, derived from agricultural return flows, that approaches the surface in the riparian zone. Nevertheless, surface flows are important in germinating cohorts of native trees, in washing salts from the soil and aquifer, and in providing aquatic habitat, thereby enriching the habitat value of the riparian corridor for birds and other wildlife. Conservation and water management strategies to enhance the delta habitats are discussed in light of the findings.
Nagler, P.L.; Glenn, E.P.; Hinojosa-Huerta, O.; Zamora, F.; Howard, K. J.
2008-01-01
Like other great desert rivers, the Colorado River in the United States and Mexico is highly regulated to provide water for human use. No water is officially allotted to support the natural ecosystems in the delta of the river in Mexico. However, precipitation is inherently variable in this watershed, and from 1981-2004, 15% of the mean annual flow of the Lower Colorado River has entered the riparian corridor below the last diversion point for water in Mexico. These flows include flood releases from US dams and much smaller administrative spills released back to the river from irrigators in the US and Mexico. These flows have germinated new cohorts of native cottonwood and willow trees and have established an active aquatic ecosystem in the riparian corridor in Mexico. We used ground and remote-sensing methods to determine the composition and fractional cover of the vegetation in the riparian corridor, its annual water consumption, and the sources of water that support the ecosystem. The study covered the period 2000-2004, a flood year followed by 4 dry years. The riparian corridor occupies 30,000 ha between flood control levees in Mexico. Annual evapotranspiration (ET), estimated by Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery calibrated against moisture flux tower data, was about 1.1 m yr-1 and was fairly constant throughout the study period despite a paucity of surface flows 2001-2004. Total ET averaged 3.4??108 m3 yr-1, about 15% of Colorado River water entering Mexico from the US Surface flows could have played only a small part in supporting these high ET losses. We conclude that the riparian ET is supported mainly by the shallow regional aquifer, derived from agricultural return flows, that approaches the surface in the riparian zone. Nevertheless, surface flows are important in germinating cohorts of native trees, in washing salts from the soil and aquifer, and in providing aquatic habitat, thereby enriching the habitat value of the riparian corridor for birds and other wildlife. Conservation and water management strategies to enhance the delta habitats are discussed in light of the findings. ?? 2007 Elsevier Ltd. All rights reserved.
Water clarity of the Colorado River—Implications for food webs and fish communities
Voichick, Nicholas; Kennedy, Theodore A.; Topping, David; Griffiths, Ronald; Fry, Kyrie
2016-11-01
The closure of Glen Canyon Dam in 1963 resulted in drastic changes to water clarity, temperature, and flow of the Colorado River in Glen, Marble, and Grand Canyons. The Colorado River is now much clearer, water temperature is less variable throughout the year, and the river is much colder in the summer months. The flow—regulated by the dam—is now less variable annually, but has larger daily fluctuations than during pre-dam times. All of these changes have resulted in a different fish community and different food resources for fish than existed before the dam was built. Recent monitoring of water clarity, by measuring turbidity, has helped scientists and river managers understand modern water-clarity patterns in the dam-regulated Colorado River. These data were then used to estimate pre-dam turbidity in the Colorado River in order to make comparisons of pre-dam and dam-regulated conditions, which are useful for assessing biological changes in the river over time. Prior to dam construction, the large sediment load resulted in low water clarity almost all of the time, a condition which was more favorable for the native fish community.
NASA Astrophysics Data System (ADS)
Wang, X.-S.; Ma, M.-G.; Li, X.; Zhao, J.; Dong, P.; Zhou, J.
2010-04-01
The behavior of groundwater response to leakage of surface water in the middle reaches area of Heihe River Basin is significantly influenced by a thick vadose zone. The groundwater regime is a result of two recharge events due to leakage of Heihe River and irrigation water with different delay time. A nonlinear leakage model is developed to calculate the monthly leakage of Heihe River in considering changes of streamflow, river stage and agricultural water utilization. Numerical modeling of variable saturated flow is carried out to investigate the general behaviors of leakage-recharge conversion through a thick vadose zone. It is found that the recharge pattern can be approximated by simple reservoir models of leakages under a river and under an irrigation district with different delay-time and recession coefficient. A triple-reservoir model of relationship between surface water, vadose zone and groundwater is developed. It reproduces the groundwater regime during 1989-2006 with variable streamflow of Heihe River and agricultural water utilization. The model is applied to interpret changes of groundwater level during 2007-2008 that observed in the Watershed Airborne Telemetry Experimental Research (WATER).
Nguyen, Uyen; Glenn, Edward P.; Nagler, Pamela L.; Scott, Russell L.
2015-01-01
The Upper San Pedro River is one of the few remaining undammed rivers that maintain a vibrant riparian ecosystem in the southwest United States. However, its riparian forest is threatened by diminishing groundwater and surface water inputs, due to either changes in watershed characteristics such as changes in riparian and upland vegetation, or human activities such as regional groundwater pumping. We used satellite vegetation indices to quantify the green leaf density of the groundwater-dependent riparian forest from 1984 to 2012. The river was divided into a southern, upstream (mainly perennial flow) reach and a northern, downstream (mainly intermittent and ephemeral flow) reach. Pre-monsoon (June) Landsat normalized difference vegetation index (NDVI) values showed a 20% drop for the northern reach (P < 0·001) and no net change for the southern reach (P > 0·05). NDVI and enhanced vegetation index values were positively correlated (P < 0·05) with river flows, which decreased over the study period in the northern reach, and negatively correlated (P < 0·05) with air temperatures in both reaches, which have increased by 1·4 °C from 1932 to 2012. NDVI in the uplands around the river did not increase from 1984 to 2012, suggesting that increased evapotranspiration in the uplands was not a factor in reducing river flows. Climate change, regional groundwater pumping, changes in the intensity of monsoon rain events and lack of overbank flooding are feasible explanations for deterioration of the riparian forest in the northern reach.
NASA Astrophysics Data System (ADS)
Deuerling, K. M.; Martin, J. B.; Martin, E. E.; Scribner, C. A.
2013-12-01
Chemical weathering of silicate rocks in glacial forelands is a potential sink for atmospheric CO2 and therefore may impact long-term climate variability. Physical weathering in glacial environments enhances the rate of chemical weathering, particularly through subglacial production of rock flour with a high surface area to volume ratio. This reactive material is transported to and chemically weathered within the proglacial system, increasing concentrations of solutes as water flows downstream. Water from proglacial rivers may also acquire solutes and draw down atmospheric CO2 through reactions driven by hyporheic zone (HZ) exchange in the broad, braided reaches of the river channel. However, few studies have addressed this process and none to date have directly examined porewater contributions. We address these questions in the Watson River/Akuliarusiarsuup Kuua (WR), which flows approximately 40 km from its headwaters, through the town of Kangerlussuaq, and into Søndre Strømfjord. We have collected river water samples five times from six sites over the 2012 and 2013 summer melt seasons and three transects of PW from sand flats located along the river. Specific conductivity (SpC), pH, and dissolved ion concentrations increase downstream, consistent with ongoing chemical weathering reactions along the flow path. Relative abundances of Na+, K+, and SiO2 increase downstream relative to Ca2+ and Mg2+ concentrations. These signals indicate preferential dissolution of biotite and/or alkali feldspar. Additionally, 206Pb/204Pb ratios become more nonradiogenic downstream, lending further evidence to dissolution of readily weathered minerals. Over the course of the melt season, SpC, pH, and dissolved ion concentrations decrease, consistent with the increase in discharge due to supraglacial melting. The greatest downstream SpC increase (~2x) occurs where the river exits largely bedrock channeled flow and enters the braided portion at the Sandflugtdalen. In general, PW samples in the sand flats indicate weathering reactions occur near the river channel and the influence of evaporation becomes more important at distal sites. Porewater SpC increases by 4 times over river water values 20 cm below the water table at the sample sites 3.5 and 7 m from the river and then increases more than an order of magnitude at 70 cm below the water table. Sites 11 m from the river channel display SpC profiles that are elevated above the river values at shallow depths and then decrease with depth, likely reflecting evaporation at shallow depths. These trends may also reflect chemical weathering of sediments in the HZ. For the solutes in the HZ to have an effect on the composition of the WR, they must exchange with the river. This process could occur through diel fluctuations in the river stage resulting from extensive ice melt during the day. Near peak river flow, the estimated head gradient was 0.4 cm/m from the river to the bank. Pressure data from CTD sensors installed in the HZ indicate a diel signal similar to the river, though muted. These findings suggest that dilute river water enters the HZ at high flow and drains at low flow, thereby providing solutes to the river.
NASA Astrophysics Data System (ADS)
Ganglbauer, A.; Bondar-Kunze, E.; Hein, T.; Zeiringer, B.
2009-04-01
Many European river systems are affected by flow alterations leading to significant differences of the pristine discharge regime at different temporal scales. Flow regulation measures and water abstraction are changing the extent and frequency of water level changes. In concert with river bed regulation this could affect the hydromorphological situation of river systems and key ecosystem functions. Microphytobenthos is a major component in the physical, chemical and biochemical processes, which occur in river systems and the associated riparian zones. They are significant primary producers in rivers, because of their high turnover rate, rapid colonization along the aquatic-terrestrial boundary, transform nutrients and support via their biomass the food webs in the river and adjacent ecosystems. The developed structure and composition of microphytobenthos is controlled by the hydromorphological conditions and thus, indicates environmental changes. The guiding question for the presented research was to what extent changes in the variability of flow affect microphytobenthos development in a river stretch and to what extent the structure and composition of microphytobenthos changed at the micro scale. To investigate these effects under natural conditions we compared a residual flow section impacted by a hydropower plant with one unaffected section of the River Ybbs, a tributary to the Danube River. The river stretch investigated was a 33 km long stretch between the villages Göstling and Opponitz in Lower Austria. The River Ybbs is draining a catchment of 1,300 km2 and has a mean discharge of 20 m3 s-1.The main benthic algal group are diatoms, which are typical for low order rivers in the Alpine area, characterized by low temperatures throughout the year. We expected that flow velocity explain the extent of microphytobenthos development at the river stretch scale and especially low flow conditions affect the structure and composition of algal biomass at the micro scale. The measurements included field surveys and two experimental settings. During May 2008 we conducted an in-situ experiment with artificial substrata to investigate the effect of flow velocity changes. We exposed glass slides in baskets along two transects in the River Ybbs at two sampling sites and eight different positions. After a period of about four weeks with weekly recurrent measurements including flow velocity, water depth, chlorophyll a content and electron transport rate (ETR) we started our experiment. Glass slides were taken from each position and were exposed in a flow reduced impounded area in the river Ybbs near Göstling. There low flow velocity was used to test the effect on microphytobenthos development. The next ten days daily measurements of flow velocity, water depth, chlorophyll-a content and electron transport rate (ETR) with the pulse amplitude modulated fluorescence method and microscopic analysis were undertaken. Based on these daily measurements under almost stable environmental conditions we could ascertain a shift in the benthic algae community. To assess the distribution along a river stretch we measured 70 sampling points at each sampling side. To characterize the biomass and activity of the microphytobenthos we used Pulse Amplitude Modulated Fluorescence (PAM-Fluorescence). Using this technique allow to measure the biomass (Chlorophyll a) and the ETR (electron transport rate) simultaneously without destroying the structure. With this technique it is possible to The PAM technique measure directly the fluorescence of chlorophyll a in the photosystem two. The quantum yield you get is the probability that a photon can be used photochemically. The quantum yield offers the possibility to illustrate the fitness of algae. Based on these measurements short term responses can be measured and combined with the results of field surveys. These analytical results were used for a habitat modelling approach to describe the microphytobenthos development at 2 scales. First results of the research will be presented.
Rodriguez-Ramirez, Alberto; Grove, Craig A.; Zinke, Jens; Pandolfi, John M.; Zhao, Jian-xin
2014-01-01
The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences coral reefs is poorly understood. Here, six Porites coral cores were used to produce a composite record of coral luminescence variability (runoff proxy) and identify drivers of terrestrial influence on the Keppel reefs, southern GBR. We found that coral skeletal luminescence effectively captured seasonal, inter-annual and decadal variability of river discharge and rainfall from the Fitzroy River catchment. Most importantly, although the influence of El Niño-Southern Oscillation (ENSO) events was evident in the luminescence records, the variability in the coral luminescence composite record was significantly explained by the PDO. Negative luminescence anomalies (reduced runoff) were associated with El Niño years during positive PDO phases while positive luminescence anomalies (increased runoff) coincided with strong/moderate La Niña years during negative PDO phases. This study provides clear evidence that not only ENSO but also the PDO have significantly affected runoff regimes at the Keppel reefs for at least a century, and suggests that upcoming hydrological disturbances and ecological responses in the southern GBR region will be mediated by the future evolution of these sources of climate variability. PMID:24416214
Rodriguez-Ramirez, Alberto; Grove, Craig A; Zinke, Jens; Pandolfi, John M; Zhao, Jian-xin
2014-01-01
The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences coral reefs is poorly understood. Here, six Porites coral cores were used to produce a composite record of coral luminescence variability (runoff proxy) and identify drivers of terrestrial influence on the Keppel reefs, southern GBR. We found that coral skeletal luminescence effectively captured seasonal, inter-annual and decadal variability of river discharge and rainfall from the Fitzroy River catchment. Most importantly, although the influence of El Niño-Southern Oscillation (ENSO) events was evident in the luminescence records, the variability in the coral luminescence composite record was significantly explained by the PDO. Negative luminescence anomalies (reduced runoff) were associated with El Niño years during positive PDO phases while positive luminescence anomalies (increased runoff) coincided with strong/moderate La Niña years during negative PDO phases. This study provides clear evidence that not only ENSO but also the PDO have significantly affected runoff regimes at the Keppel reefs for at least a century, and suggests that upcoming hydrological disturbances and ecological responses in the southern GBR region will be mediated by the future evolution of these sources of climate variability.
Spatial Variability of Streambed Hydraulic Conductivity of a Lowland River
NASA Astrophysics Data System (ADS)
Schneidewind, Uwe; Thornton, Steven; Van De Vijver, Ellen; Joris, Ingeborg; Seuntjens, Piet
2015-04-01
Streambed hydraulic conductivity K is a key physical parameter, which describes flow processes in the hyporheic zone (HZ), i.e. the dynamic interface between aquifers and streams or rivers. Knowledge of the spatial variability of K is also important for the interpretation of contaminant transport processes in the HZ. Streambed K can vary over several magnitudes at small spatial scales. It depends mostly on streambed sediment characteristics (e.g. effective porosity, grain size, packing), streambed processes (e.g. sedimentation, colmation and erosion) and the development of stream channel geometry and streambed morphology (e.g. dunes, anti-dunes, pool-riffle sequences, etc.). Although heterogeneous in natural streambeds, streambed K is often considered to be a constant parameter due to a lack of information on its spatial distribution. Here we show the spatial variability of streambed K for a small section of the River Tern, a lowland river in the UK. Streambed K was determined for more than 120 vertically and horizontally distributed locations from grain size analyses using four empirical approaches (Hazen, Beyer, Kozeny and the USBR model). Additionally, streambed K was estimated from falling head tests in 36 piezometers installed into the streambed on a 4 m by 16 m grid, by applying the Springer-Gelhar Model. For both methods streambed K followed a log-normal distribution. Variogram analysis was used to deduce the spatial variability of the streambed K values within several streambed profiles parallel and perpendicular to the main flow direction in the stream. Hydraulic conductivity Kg estimated from grain size analyses varied between 1 m/d and 155 m/d with standard deviations of 79% to 99% depending on the empirical approach used. Kh estimated from falling head tests varied between 1 m/d and 22 m/d with a standard deviation of about 50%, depending on the degree of anisotropy assumed. After rescaling the data to obtain a common sample support, Pearson correlation coefficients r were calculated between Kg and Kh. Overall, a relatively weak correlation (r < 0.3) was found between both parameters. This is most probably a result from soil coring that destroys the original sediment structure and any anisotropy within it. Analysis of streambed K improved our understanding of the flow behavior in the HZ on a local scale. This will be of importance for the subsequent assessment of nitrate transport and attenuation in the river section.
Sources and fate of nitrate in the Illinois River Basin, Illinois
Panno, S.V.; Kelly, W.R.; Hackley, Keith C.; Hwang, H.-H.; Martinsek, A.T.
2008-01-01
We conducted a two-year investigation into the sources and fate of nitrate (NO3-) in the Illinois River from the Chicago area to the river's confluence with the Mississippi River. Samples from waterways in the Chicago area (Des Plaines River and the Sanitary and Ship Canal) had relatively high concentrations of nitrogen (N) species and NO3- isotopic compositions indicative of treated wastewater (TWW). Downstream of the Brandon Road Lock and Dam, NO3- in tributaries discharging to the Illinois River primarily comes from tiles draining row crops. Nitrate isotopic signatures from these tributaries as well as drain tiles were indicative of synthetic fertilizer and/or soil organic matter (SOM) at various stages of denitrification. Nitrate-N concentrations generally decreased in the Illinois River with distance from the Chicago area primarily due to dilution. The decrease in NO3-N concentrations was especially conspicuous during the summer, when there is minimal discharge from drain tiles and NO3-N concentrations in the tributaries were low. In August 2005, when conditions were very dry, NO3-N concentrations decreased from 7.4 mg/L in the Chicago area to less than 1 mg/L near where the Illinois River discharges to the Mississippi River. The isotopic composition of NO3- in water samples from the Illinois River were a mixture of three end members: (1) fertilizer and/or SOM in drain tile water, typically showing the least amount of denitrification, (2) fertilizer and/or SOM in deeper ground water, showing the highest degree of denitrification, and (3) TWW. There was seasonal variability, depending on the volume of water flowing in the Illinois River. During high flow periods, river water samples plotted closest to those of tile drain samples; during low flow periods, a greater influence of TWW was observed in the isotopic composition. A subset of summer samples from the Chicago waterways had isotopic values plotting near and within the domain that characterizes manure and sewage. Nitrate in the Chicago area is primarily derived from TWW, with its isotopic signature evident downstream at least as far as Pekin during most of the year and all the way to the Mississippi River during periods of low flow. Denitrification occurs predominantly in groundwater between and away from drain tiles, although there is evidence that in-stream denitrification and/or biological uptake of NO3- occurs in the Peoria Lake reach of the Illinois River, at least during periods of low flow in the summer. We calculated that the river was losing about half of its NO3-N load in Peoria Lake in August 2005 (a period of very low flow), at a rate of about 7500 kg/day.
Luo, Xiangyu; Li, Hong -Yi; Leung, L. Ruby; ...
2017-03-23
In the Amazon Basin, floodplain inundation is a key component of surface water dynamics and plays an important role in water, energy and carbon cycles. The Model for Scale Adaptive River Transport (MOSART) was extended with a macroscale inundation scheme for representing floodplain inundation. The extended model, named MOSART-Inundation, was used to simulate surface hydrology of the entire Amazon Basin. Previous hydrologic modeling studies in the Amazon Basin identified and addressed a few challenges in simulating surface hydrology of this basin, including uncertainties of floodplain topography and channel geometry, and the representation of river flow in reaches with mild slopes.more » This study further addressed four aspects of these challenges. First, the spatial variability of vegetation-caused biases embedded in the HydroSHEDS digital elevation model (DEM) data was explicitly addressed. A vegetation height map of about 1 km resolution and a land cover dataset of about 90 m resolution were used in a DEM correction procedure that resulted in an average elevation reduction of 13.2 m for the entire basin and led to evident changes in the floodplain topography. Second, basin-wide empirical formulae for channel cross-sectional dimensions were refined for various subregions to improve the representation of spatial variability in channel geometry. Third, the channel Manning roughness coefficient was allowed to vary with the channel depth, as the effect of riverbed resistance on river flow generally declines with increasing river size. Lastly, backwater effects were accounted for to better represent river flow in mild-slope reaches. The model was evaluated against in situ streamflow records and remotely sensed Envisat altimetry data and Global Inundation Extent from Multi-Satellites (GIEMS) inundation data. In a sensitivity study, seven simulations were compared to evaluate the impacts of the five modeling aspects addressed in this study. The comparisons showed that representing floodplain inundation could significantly improve the simulated streamflow and river stages. Refining floodplain topography, channel geometry and Manning roughness coefficients, as well as accounting for backwater effects had notable impacts on the simulated surface water dynamics in the Amazon Basin. As a result, the understanding obtained in this study could be helpful in improving modeling of surface hydrology in basins with evident inundation, especially at regional to continental scales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xiangyu; Li, Hong -Yi; Leung, L. Ruby
In the Amazon Basin, floodplain inundation is a key component of surface water dynamics and plays an important role in water, energy and carbon cycles. The Model for Scale Adaptive River Transport (MOSART) was extended with a macroscale inundation scheme for representing floodplain inundation. The extended model, named MOSART-Inundation, was used to simulate surface hydrology of the entire Amazon Basin. Previous hydrologic modeling studies in the Amazon Basin identified and addressed a few challenges in simulating surface hydrology of this basin, including uncertainties of floodplain topography and channel geometry, and the representation of river flow in reaches with mild slopes.more » This study further addressed four aspects of these challenges. First, the spatial variability of vegetation-caused biases embedded in the HydroSHEDS digital elevation model (DEM) data was explicitly addressed. A vegetation height map of about 1 km resolution and a land cover dataset of about 90 m resolution were used in a DEM correction procedure that resulted in an average elevation reduction of 13.2 m for the entire basin and led to evident changes in the floodplain topography. Second, basin-wide empirical formulae for channel cross-sectional dimensions were refined for various subregions to improve the representation of spatial variability in channel geometry. Third, the channel Manning roughness coefficient was allowed to vary with the channel depth, as the effect of riverbed resistance on river flow generally declines with increasing river size. Lastly, backwater effects were accounted for to better represent river flow in mild-slope reaches. The model was evaluated against in situ streamflow records and remotely sensed Envisat altimetry data and Global Inundation Extent from Multi-Satellites (GIEMS) inundation data. In a sensitivity study, seven simulations were compared to evaluate the impacts of the five modeling aspects addressed in this study. The comparisons showed that representing floodplain inundation could significantly improve the simulated streamflow and river stages. Refining floodplain topography, channel geometry and Manning roughness coefficients, as well as accounting for backwater effects had notable impacts on the simulated surface water dynamics in the Amazon Basin. As a result, the understanding obtained in this study could be helpful in improving modeling of surface hydrology in basins with evident inundation, especially at regional to continental scales.« less
Perry, Russell W.; Brandes, Patricia L.; Burau, Jon R.; Sandstrom, Philip T.; Skalski, John R.
2015-01-01
Juvenile Chinook Salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River, California, must negotiate the Sacramento-San Joaquin River Delta (hereafter, the Delta), a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Fish that enter the interior and southern Delta—the region to the south of the Sacramento River where water pumping stations are located—survive at a lower rate than fish that use alternative migration routes. Consequently, total survival decreases as the fraction of the population entering the interior Delta increases, thus spurring management actions to reduce the proportion of fish that are entrained into the interior Delta. To better inform management actions, we modeled entrainment probability as a function of hydrodynamic variables. We fitted alternative entrainment models to telemetry data that identified when tagged fish in the Sacramento River entered two river channels leading to the interior Delta (Georgiana Slough and the gated Delta Cross Channel). We found that the probability of entrainment into the interior Delta through both channels depended strongly on the river flow and tidal stage at the time of fish arrival at the river junction. Fish that arrived during ebb tides had a low entrainment probability, whereas fish that arrived during flood tides (i.e., when the river's flow was reversed) had a high probability of entering the interior Delta. We coupled our entrainment model with a flow simulation model to evaluate the effect of nighttime closures of the Delta Cross Channel gates on the daily probability of fish entrainment into the interior Delta. Relative to 24-h gate closures, nighttime closures increased daily entrainment probability by 3 percentage points on average if fish arrived at the river junction uniformly throughout the day and by only 1.3 percentage points if 85% of fish arrived at night. We illustrate how our model can be used to evaluate the effects of alternative water management actions on fish entrainment into the interior Delta.
NASA Astrophysics Data System (ADS)
Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.
2018-04-01
River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.
NASA Astrophysics Data System (ADS)
Béjar, M.; Vericat, D.; Batalla, R. J.; Gibbins, C. N.
2018-06-01
The temporal and spatial variability of water and sediment loads of rivers is controlled by a suite of factors whose individual effects are often difficult to disentangle. While land use changes and localised human activities such as instream mining and hydropeaking alter water and sediment transfer, tributaries naturally contribute to discharge and sediment load of mainstem rivers, and so may help compensate upstream anthropogenic factors. The work presented here aimed to assess water and the sediment transfer in a river reach affected by gravel extraction and hydropeaking, set against a backdrop of changes to the supply of water and sediment from tributaries. Discharge and suspended sediment transport were monitored during two average hydrological years at three cross-sections along a 10-km reach of the upper River Cinca, in the Southern Pyrenees. Water and sediment loads differed substantially between the reaches. The upper reach showed a largely torrential discharge regime, controlled mainly by floods, and had high but variable water and sediment loads. The middle reach was influenced markedly by hydropeaking and tributary inflows, which increased its annual water yield four-fold. Suspended sediment load in this reach increased by only 25% compared to upstream, indicating that dilution predominated. In the lowermost section, while discharge remained largely unaltered, sediment load increased appreciably as a result of changes to sediment availability from instream mining and inputs from tributaries. At the reach scale, snowmelt and summer and autumn thunderstorms were responsible for most of the water yield, while flood flows determined the magnitude and transport of the sediment load. The study highlights that a combination of natural and human factors control the spatial and temporal transfer of water and sediment in river channels and that, depending on their geographic location and effect-size, can result in marked variability even over short downstream distances.
NASA Astrophysics Data System (ADS)
Meredith, K. T.; Hollins, S. E.; Hughes, C. E.; Cendón, D. I.; Hankin, S.; Stone, D. J. M.
2009-11-01
SummaryThe Darling River faces environmental pressures from both climate change and anthropogenic influences leading to a reduction in fresh water availability for the river system. This study uses temporal hydrochemical and stable isotope data ( 18O and 2H) that has been collected over a five-year period (2002 to 2007), as part of the Global Network for Isotopes in Rivers (GNIR) programme, which is aimed at monitoring hydrological processes in large river systems throughout the world. Daily stream flow, monthly stable isotope and major ion chemistry data is presented for sampling locations along the Darling River at Bourke, Louth and Wilcannia, as well as additional more detailed data from locations near Glen Villa. The hydrochemical data is used to partition groundwater influx that is not readily separable by using only the available isotopic data. Individual flow events in the river were found to be isotopically distinct but the Local Evaporation Lines (LELs) that develop after these events have a similar slope indicating similar climatic conditions across this region. After a storm event, fresh waters that are isotopically depleted are introduced to the system and d-excess ( d) values return towards meteoric values. During low flow, the Cl -, Na +, Mg 2+, SO 42-, δ 18O and δ 2H values all increase systematically, and d values become more negative. Hydrochemical and isotopic tracers in conjunction with high resolution sampling strategies have been used to quantify the contribution of evaporation, bank storage release and saline groundwater influx to the evolution of the river waters. Fractional contributions (% of volume) of groundwater to the river water were calculated for different reaches using Cl - concentrations, δ 18O and d values and it was found that river waters comprised of approximately 60-99% saline groundwater during zero flow. The reduced water levels in the river during the drought conditions experienced in the period of this study had detrimental impacts on the surface water system by providing a pathway for saline groundwaters to discharge into the river system. Persistent drought and continued over-abstraction of surface waters will lead to further saline groundwater intrusion along this reach of the river. This work shows that a suite of hydrochemical and isotopic tracers are needed on spatially and temporally significant scales to unravel the hydrological complexities of dryland river systems such as the Darling River.
Draut, Amy; Rubin, David M.
2013-01-01
Flood-deposited sediment has been used to decipher environmental parameters such as variability in watershed sediment supply, paleoflood hydrology, and channel morphology. It is not well known, however, how accurately the deposits reflect sedimentary processes within the flow, and hence what sampling intensity is needed to decipher records of recent or long-past conditions. We examine these problems using deposits from dam-regulated floods in the Colorado River corridor through Marble Canyon–Grand Canyon, Arizona, U.S.A., in which steady-peaked floods represent a simple end-member case. For these simple floods, most deposits show inverse grading that reflects coarsening suspended sediment (a result of fine-sediment-supply limitation), but there is enough eddy-scale variability that some profiles show normal grading that did not reflect grain-size evolution in the flow as a whole. To infer systemwide grain-size evolution in modern or ancient depositional systems requires sampling enough deposit profiles that the standard error of the mean of grain-size-change measurements becomes small relative to the magnitude of observed changes. For simple, steady-peaked floods, 5–10 profiles or fewer may suffice to characterize grain-size trends robustly, but many more samples may be needed from deposits with greater variability in their grain-size evolution.
Increasing influence of air temperature on upper Colorado River streamflow
Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.
2016-01-01
This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.
Simulated effects of host fish distribution on juvenile unionid mussel dispersal in a large river
Daraio, J.A.; Weber, L.J.; Zigler, S.J.; Newton, T.J.; Nestler, J.M.
2012-01-01
Larval mussels (Family Unionidae) are obligate parasites on fish, and after excystment from their host, as juveniles, they are transported with flow. We know relatively little about the mechanisms that affect dispersal and subsequent settlement of juvenile mussels in large rivers. We used a three-dimensional hydrodynamic model of a reach of the Upper Mississippi River with stochastic Lagrangian particle tracking to simulate juvenile dispersal. Sensitivity analyses were used to determine the importance of excystment location in two-dimensional space (lateral and longitudinal) and to assess the effects of vertical location (depth in the water column) on dispersal distances and juvenile settling distributions. In our simulations, greater than 50% of juveniles mussels settled on the river bottom within 500 m of their point of excystment, regardless of the vertical location of the fish in the water column. Dispersal distances were most variable in environments with higher velocity and high gradients in velocity, such as along channel margins, near the channel bed, or where effects of river bed morphology caused large changes in hydraulics. Dispersal distance was greater and variance was greater when juvenile excystment occurred in areas where vertical velocity (w) was positive (indicating an upward velocity) than when w was negative. Juvenile dispersal distance is likely to be more variable for mussels species whose hosts inhabit areas with steeper velocity gradients (e.g. channel margins) than a host that generally inhabits low-flow environments (e.g. impounded areas).
NASA Astrophysics Data System (ADS)
Galperin, Boris; Mellor, George L.
1990-09-01
The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.
Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA
Griffin, Eleanor R.; Friedman, Jonathan M.
2017-01-01
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p < 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.
Antweiler, Ronald C.; Taylor, Howard E.; Alpers, Charles N.
2012-01-01
The effect of heavy metals from the Iron Mountain Mines (IMM) Superfund site on the upper Sacramento River is examined using data from water and bed sediment samples collected during 1996-97. Relative to surrounding waters, aluminum, cadmium, cobalt, copper, iron, lead, manganese, thallium, zinc and the rare-earth elements (REE) were all present in high concentrations in effluent from Spring Creek Reservoir (SCR), which enters into the Sacramento River in the Spring Creek Arm of Keswick Reservoir. SCR was constructed in part to regulate the flow of acidic, metal-rich waters draining the IMM Superfund site. Although virtually all of these metals exist in SCR in the dissolved form, upon entering Keswick Reservoir they at least partially converted via precipitation and/or adsorption to the particulate phase. In spite of this, few of the metals settled out; instead the vast majority was transported colloidally down the Sacramento River at least to Bend Bridge, 67. km from Keswick Dam.The geochemical influence of IMM on the upper Sacramento River was variable, chiefly dependent on the flow of Spring Creek. Although the average flow of the Sacramento River at Keswick Dam is 250m 3/s (cubic meters per second), even flows as low as 0.3m 3/s from Spring Creek were sufficient to account for more than 15% of the metals loading at Bend Bridge, and these proportions increased with increasing Spring Creek flow.The dissolved proportion of the total bioavailable load was dependent on the element but steadily decreased for all metals, from near 100% in Spring Creek to values (for some elements) of less than 1% at Bend Bridge; failure to account for the suspended sediment load in assessments of the effect of metals transport in the Sacramento River can result in estimates which are low by as much as a factor of 100. ?? 2012.
Antweiler, Ronald C.; Taylor, Howard E.; Alpers, Charles N.
2012-01-01
The effect of heavy metals from the Iron Mountain Mines (IMM) Superfund site on the upper Sacramento River is examined using data from water and bed sediment samples collected during 1996-97. Relative to surrounding waters, aluminum, cadmium, cobalt, copper, iron, lead, manganese, thallium, zinc and the rare-earth elements (REE) were all present in high concentrations in effluent from Spring Creek Reservoir (SCR), which enters into the Sacramento River in the Spring Creek Arm of Keswick Reservoir. SCR was constructed in part to regulate the flow of acidic, metal-rich waters draining the IMM Superfund site. Although virtually all of these metals exist in SCR in the dissolved form, upon entering Keswick Reservoir they at least partially converted via precipitation and/or adsorption to the particulate phase. In spite of this, few of the metals settled out; instead the vast majority was transported colloidally down the Sacramento River at least to Bend Bridge, 67 km from Keswick Dam. The geochemical influence of IMM on the upper Sacramento River was variable, chiefly dependent on the flow of Spring Creek. Although the average flow of the Sacramento River at Keswick Dam is 250 m3/s (cubic meters per second), even flows as low as 0.3 m3/s from Spring Creek were sufficient to account for more than 15% of the metals loading at Bend Bridge, and these proportions increased with increasing Spring Creek flow. The dissolved proportion of the total bioavailable load was dependent on the element but steadily decreased for all metals, from near 100% in Spring Creek to values (for some elements) of less than 1% at Bend Bridge; failure to account for the suspended sediment load in assessments of the effect of metals transport in the Sacramento River can result in estimates which are low by as much as a factor of 100.
Jones, L. Elliott; Painter, Jaime A.; LaFontaine, Jacob H.; Sepúlveda, Nicasio; Sifuentes, Dorothy F.
2017-12-29
As part of the National Water Census program in the Apalachicola-Chattahoochee-Flint (ACF) River Basin, the U.S. Geological Survey evaluated the groundwater budget of the lower ACF, with particular emphasis on recharge, characterizing the spatial and temporal relation between surface water and groundwater, and groundwater pumping. To evaluate the hydrologic budget of the lower ACF River Basin, a groundwater-flow model, constructed using MODFLOW-2005, was developed for the Upper Floridan aquifer and overlying semiconfining unit for 2008–12. Model input included temporally and spatially variable specified recharge, estimated using a Precipitation-Runoff Modeling System (PRMS) model for the ACF River Basin, and pumping, partly estimated on the basis of measured agricultural pumping rates in Georgia. The model was calibrated to measured groundwater levels and base flows, which were estimated using hydrograph separation.The simulated groundwater-flow budget resulted in a small net cumulative loss of groundwater in storage during the study period. The model simulated a net loss in groundwater storage for all the subbasins as conditions became substantially drier from the beginning to the end of the study period. The model is limited by its conceptualization, the data used to represent and calibrate the model, and the mathematical representation of the system; therefore, any interpretations should be considered in light of these limitations. In spite of these limitations, the model provides insight regarding water availability in the lower ACF River Basin.
NASA Astrophysics Data System (ADS)
Hecht, Chad W.; Cordeira, Jason M.
2017-09-01
Atmospheric rivers (ARs) are long (>2000 km) and narrow (500-1000 km) corridors of enhanced vertically integrated water vapor and enhanced integrated water vapor transport (IVT) that are responsible for a majority of global poleward moisture transport and can result in extreme orographic precipitation. Observational evidence suggests that ARs within different synoptic-scale flow regimes may contain different water vapor source regions, orientations, and intensities and may result in different precipitation distributions. This study uses
NASA Astrophysics Data System (ADS)
Hoyle, Jo; Kilroy, Cathy; Hicks, Murray
2015-04-01
Periphyton (the algae dominated community that grows on the bed of rivers) provide a rich food source for the upper trophic levels of stream ecosystems and can also provide an important ecological service by removing dissolved nutrients and contaminants from the flow. However, in excess, periphyton can have negative effects on habitat quality, water chemistry and biodiversity, and can reduce recreation and aesthetic values. The abundance of periphyton in rivers is influenced by a number of factors, but the two key factors that can be directly influenced by human activities are flow regime and nutrient concentrations. River managers in New Zealand are required to set objectives for periphyton abundance that meet or exceed national bottom lines, and they then need to set limits on freshwater quality and quantity in their region to ensure these objectives are met. Consequently, the ability to predict periphyton abundance under different conditions is crucial for management of rivers to protect ecological and other values. Establishing quantitative relationships between periphyton abundance, hydrologic regimes and nutrient concentrations has proven to be difficult but remains an urgent priority in New Zealand. A common index for predicting periphyton abundance has been the frequency of floods greater than 3 times the median flow (FRE3), and this has been successful on a regional average but can be quite unreliable on a site-specific basis. This stems largely from our limited ability to transform flow data into ecologically meaningful physical processes that directly affect periphyton removal (e.g., drag, abrasion, bed movement). The research we will present examines whether geomorphic variables, such as frequency of bed movement, are useful co-predictors in periphyton abundance-flow-nutrient relationships. We collected data on channel topography and bed material size for 20 reaches in the Manawatu-Wanganui Region which have at least 5 years of flow, nutrient concentration and periphyton biomass data (laboratory measures of chlorophyll a and percentage cover of thin films, filaments and mats/sludge). For each reach we set up a 1-d hydraulic model and established relationships between discharge and a number of hydraulic and geomorphic variables, including the discharge required to partially and fully mobilise the bed sediment. These were then related to the flow and periphyton monitoring records to examine the strength of relationships. Relating periphyton biomass data to antecedent flow data allowed us to identify threshold flows for periphyton removal. These flows were found to be 0.9 - 9.8 times the median flow, depending on the site, with the average across sites being 3.3 times the median flow. Results also showed that general mobility of the gravelly/cobbly bed material was not required to remove periphyton but that mobility of over-passing sand (through its abrasive action) is a key control on periphyton abundance. Relationships between soluble inorganic nitrogen and periphyton abundance were found to be strong at sites where sand is mobilized infrequently but weak at sites where sand is mobilized often. Overall results indicate that integrating understanding of geomorphology, hydrology and ecology can improve prediction of periphyton abundance in New Zealand rivers.
Taylor, K.R.; James, R.W.; Helinsky, B.M.
1986-01-01
Two traveltime and dispersion measurements using rhodamin dye were conducted on a 178-mile reach of the Shenandoah River between Waynesboro, Virginia, and Harpers Ferry, West Virginia. The flows during the two measurements were at approximately the 85% and 45% flow durations. The two sets of data were used to develop a generalized procedure for predicting traveltimes and downstream concentrations resulting from spillage of water soluble substances at any point along the river reach studied. The procedure can be used to calculate traveltime and concentration data for almost any spillage that occurs during relatively steady flow between a 40% to 95% flow duration. Based on an analogy between the general shape of a time concentration curve and a scalene triangle, the procedures can be used on long river reaches to approximate the conservative time concentration curve for instantaneous spills of contaminants. The triangular approximation technique can be combined with a superposition technique to predict the approximate, conservative time concentration curve for constant rate and variable rate injections of contaminants. The procedure was applied to a hypothetical situation in which 5,000 pounds of contaminants is spilled instantaneously at Island Ford, Virginia. The times required for the leading edge, the peak concentration, and the trailing edge of the contaminant cloud to reach the water intake at Front Royal, Virginia (85 miles downstream), are 234,280, and 340 hrs, respectively, for a flow at an 80% flow duration. The conservative peak concentration would be approximately 940 micrograms/L at Front Royal. The procedures developed cannot be depended upon when a significant hydraulic wave or other unsteady flow condition exists in the flow system or when the spilled material floats or is immiscible in water. (Author 's abstract)
Streamflow in the upper Santa Cruz River basin, Santa Cruz and Pima Counties, Arizona
Condes de la Torre, Alberto
1970-01-01
Streamflow records obtained in the upper Santa Cruz River basin of southern Arizona, United States, and northern Sonora, Mexico, have been analyzed to aid in the appraisal of the surface-water resources of the area. Records are available for 15 sites, and the length of record ranges from 60 years for the gaging station on the Santa .Cruz River at Tucson to 6 years for Pantano Wash near Vail. The analysis provides information on flow duration, low-flow frequency magnitude, flood-volume frequency and magnitude, and storage requirements to maintain selected draft rates. Flood-peak information collected from the gaging stations has been projected on a regional basis from which estimates of flood magnitude and frequency may be made for any site in the basin. Most streams in the 3,503-square-mile basin are ephemeral. Ground water sustains low flows only at Santa Cruz River near Nogales, Sonoita Creek near Patagonia, and Pantano Wash near Vail. Elsewhere, flow occurs only in direct response to precipitation. The median number of days per year in which there is no flow ranges from 4 at Sonoita Creek near Patagonia to 335 at Rillito Creek near Tomson. The streamflow is extremely variable from year to year, and annual flows have a coefficient of variation close to or exceeding unity at most stations. Although the amount of flow in the basin is small most of the time, the area is subject to floods. Most floods result from high-intensity precipitation caused by thunderstorms during the period ,July to September. Occasionally, when snowfall at the lower altitudes is followed by rain, winter floods produce large volumes of flow.
NASA Astrophysics Data System (ADS)
Emerton, R.; Cloke, H. L.; Stephens, L.; Woolnough, S. J.; Zsoter, E.; Pappenberger, F.
2016-12-01
El Niño Southern Oscillation (ENSO), a mode of variability which sees fluctuations between anomalously high or low sea surface temperatures in the Pacific, is known to influence river flow and flooding at the global scale. The anticipation and forecasting of floods is crucial for flood preparedness, and this link, alongside the predictive skill of ENSO up to seasons ahead, may provide an early indication of upcoming severe flood events. Information is readily available indicating the likely impacts of El Niño and La Niña on precipitation across the globe, which is often used as a proxy for flood hazard. However, the nonlinearity between precipitation and flood magnitude and frequency means that it is important to assess the impact of ENSO events not only on precipitation, but also on river flow and flooding. Historical probabilities provide key information regarding the likely impacts of ENSO events. We estimate, for the first time, the historical probability of increased flood hazard during El Niño and La Niña through a global hydrological analysis, using a new 20thCentury ensemble river flow reanalysis for the global river network. This dataset was produced by running the ECMWF ERA-20CM atmospheric reanalysis through a research set-up of the Global Flood Awareness System (GloFAS) using the CaMa-Flood hydrodynamic model, to produce a 110-year global reanalysis of river flow. We further evaluate the added benefit of the hydrological analysis over the use of precipitation as a proxy for flood hazard. For example, providing information regarding regions that are likely to experience a lagged influence on river flow compared to the influence on precipitation. Our results map, at the global scale, the probability of abnormally high river flow during any given month during an El Niño or La Niña; information such as this is key for organisations that work at the global scale, such as humanitarian aid organisations, providing a seasons-ahead indicator of potential increased flood hazard that can be used as soon as the event onset is declared, or even earlier, when El Niño or La Niña conditions are first predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buenau, Kate E.; Hiller, Tim L.; Tyre, Andrew J.
Humans make extensive use of rivers and floodplains for economic benefits including agriculture, hydropower, commerce and recreation. Economic development of floodplains subsequently requires control of river levels to avoid flood damage. This process began in the Missouri River basin in the 1890s with the construction of a series of hydropower dams in Montana and escalated to new levels with the approval of the Pick-Sloan plan in the 1944 Flood Control Act. Maximizing these human uses of the river led to changes in and losses of hydrological and ecological processes, ultimately resulting in the federal listing of three fish and wildlifemore » species under the Endangered Species Act: the pallid sturgeon (Scaphirhyncus albus; 1983), the piping plover (Charadrius melodus; 1984), and the interior population of least tern (Sternula antillarum; 1985). The listing of terns and plovers did not affect river management until the United States Army Corps of Engineers (USACE) proposed to modify the governing document of the Missouri River Mainstem System, the Master Manual, a process which was completed in 2003. Although there was little disagreement over the habitat conditions that terns and plovers used for nesting, there was substantial disagreement over the amount of habitat necessary for terns and plovers to meet population recovery goals. Answering this question requires forecasting species-specific population responses to dynamic habitat affected by both human actions (reservoir management and habitat restoration) and natural variability in precipitation. Piping plovers and least terns nest along the Missouri River from Fort Peck, Montana to just north of Sioux City, Iowa (Figure 1). Both species prefer to nest on sand and fine gravel substrates with no or sparse vegetation cover (Prindiville Gaines and Ryan, 1988; Sherfy et al., 2012), such as riverine sandbars (emergent sandbar habitat; ESH). Piping plovers also nest on reservoir shorelines that lack vegetation cover (Anteau et al., 2012). The amount of ESH available for nesting in a given year is strongly affected by the amount of water entering the Missouri River system through precipitation and the management of water flow from six reservoirs operated by the USACE on the mainstem Missouri River. Prior to the construction of dams, the Missouri River experienced bimodal peak flows in spring and early summer in concordance with the melting of plains and mountain snowpack (Galat and Lipkin, 2000). Flows decreased during summer months, with river stage then dependent upon rainfall. The combination of consistent high flows and occasional extreme high flows, together with the meandering characteristic of the river, regularly reshaped and scoured vegetation from ESH.« less
NASA Astrophysics Data System (ADS)
Shkolnik, Igor; Pavlova, Tatiana; Efimov, Sergey; Zhuravlev, Sergey
2018-01-01
Climate change simulation based on 30-member ensemble of Voeikov Main Geophysical Observatory RCM (resolution 25 km) for northern Eurasia is used to drive hydrological model CaMa-Flood. Using this modeling framework, we evaluate the uncertainties in the future projection of the peak river discharge and flood hazard by 2050-2059 relative to 1990-1999 under IPCC RCP8.5 scenario. Large ensemble size, along with reasonably high modeling resolution, allows one to efficiently sample natural climate variability and increase our ability to predict future changes in the hydrological extremes. It has been shown that the annual maximum river discharge can almost double by the mid-XXI century in the outlets of major Siberian rivers. In the western regions, there is a weak signal in the river discharge and flood hazard, hardly discernible above climate variability. Annual maximum flood area is projected to increase across Siberia mostly by 2-5% relative to the baseline period. A contribution of natural climate variability at different temporal scales to the uncertainty of ensemble prediction is discussed. The analysis shows that there expected considerable changes in the extreme river discharge probability at locations of the key hydropower facilities. This suggests that the extensive impact studies are required to develop recommendations for maintaining regional energy security.
NASA Astrophysics Data System (ADS)
Menichini, Matia; Doveri, Marco; El Mansoury, Bouabid; El Mezouary, Lhoussaine; Lelli, Matteo; Raco, Brunella; Scozzari, Andrea; Soldovieri, Francesco
2016-04-01
The aquifer of the Lower Magra Valley (SE Liguria, Italy) extends in a flat plain, where two main rivers (Magra and Vara) flow. These rivers are characterized by a wide variation of water level and water chemical composition (TDS, Cl and SO4) due to the combination of rainfall regime and the presence of thermal springs in the inner part of the catchment area. Groundwater flow is apparently controlled by stream water infiltration, which affects both water levels and water quality. In particular, the wide range of variation of some particular chemical species in the stream water influences the groundwater chemistry on a seasonal basis. In the area of interest, there is an important well-field, which supplies most of the drinking water to the nearby city of La Spezia. In this context, the groundwater system is exposed to a high degree of vulnerability, both in terms of quality and quantity. This study is aimed to develop a predictive flow and transport model in order to assess the vulnerability s.l. of the Magra Valley aquifer system and to evaluate its behaviour in awaited climate scenarios. A flow and transport model was developed by using MODFLOW and MT3DMS codes, and it's been calibrated in both steady state and transient conditions. The model confirmed the importance of the Magra river in the water balance and chemical composition of the extracted groundwater. In addition, a data-driven modelling approach was applied in order to determine boundary conditions (e.g. rivers and constant head or general head boundaries) of the physical model under hypothetic future climate scenarios. For this purpose, fully synthetic datasets have been generated as a training set of the data-driven scheme, with input variables inspired by selected climate models and input/output relationships estimated by past observations. An experimental run of the flow-transport model for 30 years ahead was performed, based on such hypothetic scenarios. This approach highlighted how the groundwater flow of the studied aquifer is highly vulnerable and sensitive to climate conditions.
NASA Astrophysics Data System (ADS)
Stähly, Severin; Bourqui, Pierre; Franca, Mario J.; Robinson, Christopher; Schleiss, Anton J.
2016-04-01
More than half of the Swiss electricity is produced by hydropower. Large price fluctuations cause severe hydropeaking flow regimes due to corresponding production fluctuations, which undisputedly have a negative impact on aquatic biota. Water diversion due to dams on the other hand imposes downstream residual flow regimes. The absence of flood events and regular sediment supply disrupts sediment dynamics and disconnects floodplains, which are habitats of high value, from its main channel. The residual-flow controlled reach at the Sarine river in western Switzerland is the subject of the present study. The Sarine meanders strongly and the river reach under analysis has a bed incision of locally more than 100 m. Its incision provokes the isolation of the river which is consequently minimally touched by human structures and shows a natural geomorphology. Since the construction of a dam upstream this reach in 1948, aiming at the water abstraction to hydropower, vegetation could establish and the active floodplain decreased its area, as airborne images show. Nevertheless, it is classified as a floodplain of national importance and it has been under protection since 1992. It is supposed to be a valuable habitat for a wide range of organisms. The Hydromorphological Index of Diversity (HMID) is a simple tool for quantifying the habitat richness in a river reach, taking into account the mean values and the variation of water depth and flow velocity. For channelized rivers, HMID values from up to 5 are expected, while morphological pristine sites with a high spatial variability of water depth and velocity show values of 9 or higher. For the residual flow of the Sarine River, flow depth and velocity were measured using ADCP and ADV. The results are compared with a nearby natural reference river and the outcome of a 2D numerical simulation. Finally, the behaviour and limitations of the HMID, in a hydropower affected river, are discussed. In the close future an artificial flood is expected in the Sarine in order to reactivate the sediment dynamics. Using 2D numerical simulations in combination with a well understanding of the HMID an optimal planning of this event will be implemented. The present study is financed by the Swiss National Foundation (SNF), National Research Project 70, Energy Turnaround.
Identifying environmental correlates of intraspecific genetic variation.
Harrisson, K A; Yen, J D L; Pavlova, A; Rourke, M L; Gilligan, D; Ingram, B A; Lyon, J; Tonkin, Z; Sunnucks, P
2016-09-01
Genetic variation is critical to the persistence of populations and their capacity to adapt to environmental change. The distribution of genetic variation across a species' range can reveal critical information that is not necessarily represented in species occurrence or abundance patterns. We identified environmental factors associated with the amount of intraspecific, individual-based genetic variation across the range of a widespread freshwater fish species, the Murray cod Maccullochella peelii. We used two different approaches to statistically quantify the relative importance of predictor variables, allowing for nonlinear relationships: a random forest model and a Bayesian approach. The latter also accounted for population history. Both approaches identified associations between homozygosity by locus and both disturbance to the natural flow regime and mean annual flow. Homozygosity by locus was negatively associated with disturbance to the natural flow regime, suggesting that river reaches with more disturbed flow regimes may support larger, more genetically diverse populations. Our findings are consistent with the hypothesis that artificially induced perennial flows in regulated channels may provide greater and more consistent habitat and reduce the frequency of population bottlenecks that can occur frequently under the highly variable and unpredictable natural flow regime of the system. Although extensive river regulation across eastern Australia has not had an overall positive effect on Murray cod numbers over the past century, regulation may not represent the primary threat to Murray cod survival. Instead, pressures other than flow regulation may be more critical to the persistence of Murray cod (for example, reduced frequency of large floods, overfishing and chemical pollution).
NASA Astrophysics Data System (ADS)
Khadka, Mitra B.; Martin, Jonathan B.; Jin, Jin
2014-05-01
Assessing the origin, transformation and transport of terrestrially derived carbon in river systems is critical to regional and global carbon cycles, particularly in carbonate terrains, which represent the largest carbon reservoir on the earth’s surface. For this reason, we evaluated sources, cycling, and fluxes of dissolved organic and inorganic carbon (DOC and DIC) and riverine CO2 degassing to the atmosphere in the Santa Fe River in north-central Florida, a sub-tropical river that flows across two distinct hydrogeological settings of a region dominated by carbonate karst. One setting occurs in the upper river catchment, where the carbonate Floridan aquifer is confined by the siliciclastic Hawthorn Group, while the other setting occurs in the lower catchment where the river flows across the unconfined Floridan aquifer. The upper catchment is characterized by DOC-rich and DIC-poor water and the DIC has more variable and lower δ13C values compared to the lower catchment. The river in the upper catchment degasses more CO2 to the atmosphere (1156 g C m-2 yr-1) than in the lower catchment (402 g C m-2 yr-1) because soil respired carbon and organic matter decomposition increase dissolved CO2 concentration, much of which is consumed during carbonate dissolution reactions in the lower catchment. The CO2 flux from the water surface to the atmosphere during a flood event is three times greater than during base flow, suggesting that excess precipitation flushes soil organic carbon to the river through interflow and enhances the loss of terrestrial carbon via river water to the atmosphere. Our values of CO2 fluxes to the atmosphere lie within the range of fluxes from the world’s rivers, but fluxes from the carbonate dominated region are at the low end, while fluxes from the siliciclastic region are at the high end. These results indicate that catchment lithologies, particularly whether carbonate or siliciclastic, as well as flow, are critical to carbon budgets in rivers and thus are linked to the global carbon cycle.
Bullock, Avery; Ziervogel, Kai; Ghobrial, Sherif; Smith, Shannon; McKee, Brent; Arnosti, Carol
2017-01-01
Riverine systems are important sites for the production, transport, and transformation of organic matter. Much of the organic matter processing is carried out by heterotrophic microbial communities, whose activities may be spatially and temporally variable. In an effort to capture and evaluate some of this variability, we sampled four sites-two upstream and two downstream-at each of two North Carolina rivers (the Neuse River and the Tar-Pamlico River) ca. twelve times over a time period of 20 months from 2010 to 2012. At all of the sites and dates, we measured the activities of extracellular enzymes used to hydrolyze polysaccharides and peptides, and thus to initiate heterotrophic carbon processing. We additionally measured bacterial abundance, bacterial production, phosphatase activities, and dissolved organic carbon (DOC) concentrations. Concurrent collection of physical data (stream flow, temperature, salinity, dissolved oxygen) enabled us to explore possible connections between physiochemical parameters and microbial activities throughout this time period. The two rivers, both of which drain into Pamlico Sound, differed somewhat in microbial activities and characteristics: the Tar-Pamlico River showed higher β-glucosidase and phosphatase activities, and frequently had higher peptidase activities at the lower reaches, than the Neuse River. The lower reaches of the Neuse River, however, had much higher DOC concentrations than any site in the Tar River. Both rivers showed activities of a broad range of polysaccharide hydrolases through all stations and seasons, suggesting that the microbial communities are well-equipped to access enzymatically a broad range of substrates. Considerable temporal and spatial variability in microbial activities was evident, variability that was not closely related to factors such as temperature and season. However, Hurricane Irene's passage through North Carolina coincided with higher concentrations of DOC at the downstream sampling sites of both rivers. This DOC maximum persisted into the month following the hurricane, when it continued to stimulate bacterial protein production and phosphatase activity in the Neuse River, but not in the Tar-Pamlico River. Microbial community activities are related to a complex array of factors, whose interactions vary considerably with time and space.
NASA Astrophysics Data System (ADS)
Fung, C. F.; Lopez, A.; New, M.
2009-04-01
Climate change is likely to impact on freshwater ecology, the delivery of regulatory commitments to ecological status and the management of water resources. It is becoming increasingly important for European environment agencies to use and develop methods to aid planning and abstraction licensing procedures and policies in the face of climate change and with the introduction of the Water Framework Directive. Studies have been carried out in the past to investigate the implications of climate change for biodiversity. However, predicting the future is fraught with uncertainty, an area which has not been dealt with in great depth in the past. This study has been undertaken to draw on the results of new methodologies to address the uncertainties inherent in modelling future climate and assess their usability for decision-making in water resources allocations specifically in considering interactions between flow and invertebrate communities The River Itchen was chosen as the case study catchment on the strength of having a long-term coupled ecological and flow dataset and having been an area of intensive study in the past. It is a chalk stream located in the south of England and a candidate Special Area of Conservation. It has also been designated a Special Site of Scientific Interest achieved due to the number of rare species, and the richness of the macro-invertebrate community in the river catchment. An ensemble of 246 transient simulations for future climate was obtained from ClimatePrediction.net which were then used to drive a rainfall-runoff model. In order to link the modelled river flow to ecology, the Lotic Invertebrate Flow Evaluation score has been used where the invertebrate community is linked to flow largely through sensitivity to water velocity and siltation, driven by flow variability at sites with fixed channel dimensions The large ensemble of climate scenarios and thereby flow and ecological indices allows the exploration of the risk of the river of not meeting environmental flow targets in the future. Three sets of environmental flow targets which were drawn up by the Environment Agency for England and Wales for the River Itchen were tested and show that it may be difficult to maintain a natural chalk stream invertebrate community in the River Itchen in the future. The ensemble also shows low flows regularly extending from August to December which could result in the loss of a high proportion of individuals recruited that year. This would in turn lead to diminished over-wintering populations, with potentially catastrophic consequences for the following years breeding and recruitment programme. Due to a paucity of quantitative data for the response of macroinvertebrates to multi-year droughts, to provide a richer story, a matrix has been proposed for analysing the effects on biodiversity of the river which combines both the thresholds derived previously and expert opinion on how the ecology of the River Itchen will react to climate change. The matrices also provide a more accessible way of communicating rather complex information to a wider community of decision-makers. Should large changes in flow arise in the future it is likely that some form of action will be taken to mitigate or adapt to the impacts of climate change. Maintaining the ecological status of the river throug river support, i.e. augmenting river flow by pumping from the groundwater aquifer, has also been investigated. However, by augmenting the flow, the high flows are also reduced which can be important for scouring the river bed and removing silt to the benefit of the invertebrate community. Therefore at some point further augmentation may need to be curtailed in order to maintain high flows.
NASA Astrophysics Data System (ADS)
Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.
2018-03-01
Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly
Hydraulic conditions of flood flows in a Polish Carpathian river subjected to variable human impacts
NASA Astrophysics Data System (ADS)
Radecki-Pawlik, Artur; Czech, Wiktoria; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Ruiz-Villanueva, Virginia
2016-04-01
Channel morphology of the Czarny Dunajec River, Polish Carpathians, has been considerably modified as a result of channelization and gravel-mining induced channel incision, and now it varies from a single-thread, incised or regulated channel to an unmanaged, multi-thread channel. We investigated effects of these distinct channel morphologies on the conditions for flood flows in a study of 25 cross-sections from the middle river course where the Czarny Dunajec receives no significant tributaries and flood discharges increase little in the downstream direction. Cross-sectional morphology, channel slope and roughness of particular cross-section parts were used as input data for the hydraulic modelling performed with the 1D steady-flow HEC-RAS model for discharges with recurrence interval from 1.5 to 50 years. The model for each cross-section was calibrated with the water level of a 20-year flood from May 2014, determined shortly after the flood on the basis of high-water marks. Results indicated that incised and channelized river reaches are typified by similar flow widths and cross-sectional flow areas, which are substantially smaller than those in the multi-thread reach. However, because of steeper channel slope in the incised reach than in the channelized reach, the three river reaches differ in unit stream power and bed shear stress, which attain the highest values in the incised reach, intermediate values in the channelized reach, and the lowest ones in the multi-thread reach. These patterns of flow power and hydraulic forces are reflected in significant differences in river competence between the three river reaches. Since the introduction of the channelization scheme 30 years ago, sedimentation has reduced its initial flow conveyance by more than half and elevated water stages at given flood discharges by about 0.5-0.7 m. This partly reflects a progressive growth of natural levees along artificially stabilized channel banks. By contrast, sediments of natural levees deposited along the multi-thread channel and subsequently eroded in the course of lateral channel migration and floodplain reworking; as a result, they do not reduce the conveyance of floodplain flows in this reach. This study was performed within the scope of the Research Project DEC-2013/09/B/ST10/00056 financed by the National Science Centre of Poland.
Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models
NASA Astrophysics Data System (ADS)
Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca
2017-12-01
Several decades of field observations, laboratory experiments and mathematical modelings have demonstrated that the riparian environment is a disturbance-driven ecosystem, and that the main source of disturbance is river flow fluctuations. The focus of the present work has been on the key role that flow fluctuations play in determining the abundance, zonation and species composition of patches of riparian vegetation. To this aim, the scientific literature on the subject, over the last 20 years, has been reviewed. First, the most relevant ecological, morphological and chemical mechanisms induced by river flow fluctuations are described from a process-based perspective. The role of flow variability is discussed for the processes that affect the recruitment of vegetation, the vegetation during its adult life, and the morphological and nutrient dynamics occurring in the riparian habitat. Particular emphasis has been given to studies that were aimed at quantifying the effect of these processes on vegetation, and at linking them to the statistical characteristics of the river hydrology. Second, the advances made, from a modeling point of view, have been considered and discussed. The main models that have been developed to describe the dynamics of riparian vegetation have been presented. Different modeling approaches have been compared, and the corresponding advantages and drawbacks have been pointed out. Finally, attention has been paid to identifying the processes considered by the models, and these processes have been compared with those that have actually been observed or measured in field/laboratory studies.
Subsurface flow in lowland river gravel bars
NASA Astrophysics Data System (ADS)
Bray, E. N.; Dunne, T.
2017-09-01
Geomorphic and hydraulic processes, which form gravel bars in large lowland rivers, have distinctive characteristics that control the magnitude and spatial patterns of infiltration and exfiltration between rivers and their immediate subsurface environments. We present a bedform-infiltration relation together with a set of field measurements along two reaches of the San Joaquin River, CA to illustrate the conditions required for infiltration and exfiltration of flow between a stream and its undulating bed, and a numerical model to investigate the factors that affect paths and residence times of flow through barforms at different discharges. It is shown that asymmetry of bar morphology is a first-order control on the extent and location of infiltration, which would otherwise produce equal areas of infiltration and exfiltration under the assumption of sinusoidal bedforms. Hydraulic conductivity varies by orders of magnitude due to fine sediment accumulation and downstream coarsening related to the process of bar evolution. This systematic variability not only controls the magnitude of infiltration, but also the residence time of flow through the bed. The lowest hydraulic conductivity along the reach occurred where the difference between the topographic gradient and the water-surface gradient is at a maximum and thus where infiltration would be greatest into a homogeneous bar, indicating the importance of managing sand supply to maintain the ventilation and flow through salmon spawning riffles. Numerical simulations corroborate our interpretation that infiltration patterns and rates are controlled by distinctive features of bar morphology.
NASA Astrophysics Data System (ADS)
Nanson, Gerald C.; Huang, He Qing
2018-02-01
Until recently no universal agreement as to a philosophical or scientific methodological framework has been proposed to guide the study of fluvial geomorphology. An understanding of river form and process requires an understanding of the principles that govern the behaviour and evolution of alluvial rivers at the most fundamental level. To date, the investigations of such principles have followed four approaches: develop qualitative unifying theories that are usually untested; collect and examine data visually and statistically to define semi-quantitative relationships among variables; apply Newtonian theoretical and empirical mechanics in a reductionist manner; resolve the primary flow equations theoretically by assuming maximum or minimum outputs. Here we recommend not a fifth but an overarching philosophy to embrace all four: clarifying and formalising an understanding of the evolution of river channels and iterative directional changes in the context of least action principle (LAP), the theoretical basis of variational mechanics. LAP is exemplified in rivers in the form of maximum flow efficiency (MFE). A sophisticated understanding of evolution in its broadest sense is essential to understand how rivers adjust towards an optimum state rather than towards some other. Because rivers, as dynamic contemporary systems, flow in valleys that are commonly historical landforms and often tectonically determined, we propose that most of the world's alluvial rivers are over-powered for the work they must do. To remain stable they commonly evolve to expend surplus energy via a variety of dynamic equilibrium forms that will further adjust, where possible, to maximise their stability as much less common MFE forms in stationary equilibrium. This paper: 1. Shows that the theory of evolution is derived from, and applicable to, both the physical and biological sciences; 2. Focusses the development of theory in geomorphology on the development of equilibrium theory; 3. Proposes that river channels, like organisms, evolve teleomatically (progression towards an end-state by following natural laws) and iteratively (one stage forming the basis for the next) towards an optimal end-state; 4. Describes LAP as the methodological basis for understanding the self-adjustment alluvial channels towards MFE. 5. Acknowledges that whereas river channels that form within their unmodified alluvium evolve into optimal minimum-energy systems, exogenic variables, such as riparian or aquatic vegetation, can cause significant variations in resultant river-styles. We specifically attempt to address Luna Leopold's lament in 1994 that no clearly expressed philosophy explains the remarkable self-adjustment of alluvial channels.
Topping, David J.; Schmidt, John C.; Vierra, L.E.
2003-01-01
A gaging station has been operated by the U.S. Geological Survey at Lees Ferry, Arizona, since May 8, 1921. In March 1963, Glen Canyon Dam was closed 15.5 miles upstream, cutting off the upstream sediment supply and regulating the discharge of the Colorado River at Lees Ferry for the first time in history. To evaluate the pre-dam variability in the hydrology of the Colorado River, and to determine the effect of the operation of Glen Canyon Dam on the downstream hydrology of the river, a continuous record of the instantaneous discharge of the river at Lees Ferry was constructed and analyzed for the entire period of record between May 8, 1921, and September 30, 2000. This effort involved retrieval from the Federal Records Centers and then synthesis of all the raw historical data collected by the U.S. Geological Survey at Lees Ferry. As part of this process, the peak discharges of the two largest historical floods at Lees Ferry, the 1884 and 1921 floods, were reanalyzed and recomputed. This reanalysis indicates that the peak discharge of the 1884 flood was 210,000?30,000 cubic feet per second (ft3/s), and the peak discharge of the 1921 flood was 170,000?20,000 ft3/s. These values are indistinguishable from the peak discharges of these floods originally estimated or published by the U.S. Geological Survey, but are substantially less than the currently accepted peak discharges of these floods. The entire continuous record of instantaneous discharge of the Colorado River at Lees Ferry can now be requested from the U.S. Geological Survey Grand Canyon Monitoring and Research Center, Flagstaff, Arizona, and is also available electronically at http://www.gcmrc.gov. This record is perhaps the longest (almost 80 years) high-resolution (mostly 15- to 30-minute precision) times series of river discharge available. Analyses of these data, therefore, provide an unparalleled characterization of both the natural variability in the discharge of a river and the effects of dam operations on a river. Following the construction and quality-control checks of the continuous record of instantaneous discharge, analyses of flow duration, sub-daily flow variability, and flood frequency were conducted on the pre- and post-dam parts of the record. These analyses indicate that although the discharge of the Colorado River varied substantially prior to the closure of Glen Canyon Dam in 1963, operation of the dam has caused changes in discharge that are more extreme than the pre-dam natural variability. Operation of the dam has eliminated flood flows and base flows, and thereby has effectively 'flattened' the annual hydrograph. Prior to closure of the dam, the discharge of the Colorado River at Lees Ferry was lower than 7,980 ft3/s half of the time. Discharges lower than about 9,000 ft3/s were important for the seasonal accumulation and storage of sand in the pre-dam river downstream from Lees Ferry. The current operating plan for Glen Canyon Dam no longer allows sustained discharges lower than 8,000 ft3/s to be released. Thus, closure of the dam has not only cut off the upstream supply of sediment, but operation of the dam has also largely eliminated discharges during which sand could be demonstrated to accumulate in the river. In addition to radically changing the hydrology of the river, operation of the dam for hydroelectric-power generation has introduced large daily fluctuations in discharge. During the pre-dam era, the median daily range in discharge was only 542 ft3/s, although daily ranges in discharge exceeding 20,000 ft3/s were observed during the summer thunderstorm season. Relative to the pre-dam period of record, dam operations have increased the daily range in discharge during all but 0.1 percent of all days. The post-dam median daily range in discharge, 8,580 ft3/s, exceeds the pre-dam median discharge of 7,980 ft3/s. Operation of the dam has also radically changed the frequency of floods on the Colorado River at Lees Ferry. The frequency of f
Combined Flow Abstraction and Climate Change Impacts on an Aggrading Alpine River
NASA Astrophysics Data System (ADS)
Bakker, M.; Costa, A.; Silva, T. A.; Stutenbecker, L.; Girardclos, S.; Loizeau, J.-L.; Molnar, P.; Schlunegger, F.; Lane, S. N.
2018-01-01
Recent climatic warming and associated glacial retreat may have a large impact on sediment release and transfer in Alpine river basins. Concurrently, the sediment transport capacity of many European Alpine streams is affected by hydropower exploitation, notably where flow is abstracted but the sediment supply downstream is maintained. Here, we investigate the combined effects of climate change and flow abstraction on morphodynamics and sediment transfer in the Borgne River, Switzerland. From photogrammetrically derived historical Digital Elevation Models (DEMs), we find considerable net aggradation of the braided river bed (up to 5 m) since the onset of flow abstraction in 1963. Reaches responded through bed level steepening which was strongest in the upper most reach. Widespread aggradation however did not commence until the onset of glacier retreat in the late 1980s and the dry and warm years of the early 1990s. Upstream flow intake data shows that this aggradation coincided with an increase in sediment supply, although aggradation accounts for no more than 25% of supplied material. The remainder was transferred through the studied reaches. Estimations of bed load transport capacity indicate that flow abstraction reduces transport capacity by 1-2 orders of magnitude. While residual transport rates vary with morphological evolution, they are in the same order of magnitude as the sediment supply rates, which is why significant transport remains. However, the reduction in transport capacity makes the system more sensitive to short-term (annual) changes in climate-driven hydrological variability and climate-induced changes in intake management and sediment delivery rates.
Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen C.
2018-01-01
Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.
NASA Astrophysics Data System (ADS)
Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy E.; Fairley, Helen C.
2018-06-01
Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.
Sanitary quality of the Jordan River in Salt Lake County, Utah
Thompson, K.R.
1984-01-01
This investigation of the sanitary quality of the Jordan River was conducted from July 1980 to October 1982 using indicator bacteria rather than specific pathogens. A serious sanitary problem was identified. Concentrations of total coliform bacteria often exceeded 5,000 colonies per 100 milliliters and concentrations of fecal coliform bacteria often exceeded 2,000 colonies per 100 milliliters in the lower reaches of the river. At times these levels were greatly exceeded. The most conspicuous aspect of the bacteriological data is its extreme variability. Seven waste-water treatment plants, seven major tributaries, numerous storm conduits, irrigation-return flow, and other sources all contribute to the dynamic system that determines the sanitary quality of the river. Because of this variability the sanitary quality of the river cannot be predicted at any one time. In general, concentrations of all three indicator bacteria increased in a downstream direction. Storm runoff from urban areas contributed large concentrations of indicator bacteria to the river. Regression analysis of 9 years of data collected at 1700 South Street showed a significant positive correlation between both fecal coliform and fecal streptococcal concentrations versus time. Concentrations of fecal coliform and fecal streptococci have both been increasing since 1974 at 1700 South Street. (USGS)
NASA Astrophysics Data System (ADS)
Bodor, Petra; Eröss, Anita; Kovács, József; Mádl-Szönyi, Judit
2016-04-01
The subsurface part of the hydrologic cycle, the saturated groundwater flow can be mostly studied in regional discharge areas. In these regions the water has already spent geologically long time under the surface, therefore the upwelling water reflect the effect of the geometry and boundary conditions of the whole flow field, its geology and chemical processes. According to these conditions, the discharging waters can be characterized with different values and variability of physicochemical parameters (temperature, total dissolved solids, cations, anions, gas content etc.). This question has special interest in carbonate systems where the concept of regional groundwater flow was only introduced in the last few years. Hydrographs and chemographs are frequently used in karst studies to demonstrate the effect of variability of the system and to derive information for the nature of flow inside the karst (channel, fracture or matrix). Usually these graphs show abrupt changes after precipitation events, but this is typical for epigenic karsts. However, discharge areas, where hypogenic karsts developed, can behave differently due to their feeding flow systems. These systems and their effects are not so well studied yet. In this study we examined hydrographs and chemographs of the regional discharge area of a deep and thick carbonate range of Buda Thermal Karst and tried to understand those mechanisms which determine the hydrological and hydrochemical behaviour of the region. Here cold, lukewarm and also thermal waters discharge along the River Danube. The variability of physicochemical parameters (temperature, electric conductivity, pH, volume discharge, water level, dissolved CO2 and 222Rn, δ18O, δD) of the discharging water was studied to understand influencing mechanisms. We tried to understand the effect of precipitation (short and long term) and the effect of River Danube with geomathematical methods for the lukewarm components of the discharging water. Based on the results, it was found that the hydrological and hydrochemical parameters of the regional discharge zone are only slightly variable compared to the other parts of the system. The local effect of precipitation is not detectable at the area, and it has only buffered influence in the recharge zone based on comparison with integrated precipitation. However, this buffered effect is eliminated at the discharge zone. It means that these regional discharge zones of carbonates are less sensitive to the change in short and long term climatic conditions. This can be explained easily by their position in the gravity-driven flow systems. However, the transient effect of the river influences the discharge conditions, therefore the hydrological and hydrochemical conditions. These findings display the quasi permanent flow conditions regarding the regional discharge areas of carbonates with the superimposed transient effect of the river. The research was supported by the NK 101356 OTKA research grant.
Auble, Gregor T.; Wondzell, Mark; Talbert, Colin
2009-01-01
This report describes and documents a decision support system for the Gunnison River in Black Canyon of the Gunnison National Park. It is a macro-embedded EXCEL program that calculates and displays indicators representing valued characteristics or processes in the Black Canyon based on daily flows of the Gunnison River. The program is designed to easily accept input from downloaded stream gage records or output from the RIVERWARE reservoir operations model being used for the upstream Aspinall Unit. The decision support system is structured to compare as many as eight alternative flow regimes, where each alternative is represented by a daily sequence of at least 20 calendar years of streamflow. Indicators include selected flow statistics, riparian plant community distribution, clearing of box elder by inundation and scour, several measures of sediment mobilization, trout fry habitat, and federal reserved water rights. Calculation of variables representing National Park Service federal reserved water rights requires additional secondary input files pertaining to forecast and actual basin inflows and storage levels in Blue Mesa reservoir. Example input files representing a range of situations including historical, reconstructed natural, and simulated alternative reservoir operations are provided with the software.
Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge
Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.
2005-01-01
The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.
Flooding dynamics on the lower Amazon floodplain
NASA Astrophysics Data System (ADS)
Rudorff, C.; Melack, J. M.; Bates, P. D.
2013-05-01
We analyzed flooding dynamics of a large floodplain lake in the lower reach of the Amazon River for the period between 1995 through 2010. Floodplain inundation was simulated using the LISFLOOD-FP model, which combines one-dimensional river routing with two-dimensional overland flow, and a local hydrological model. Accurate representation of floodplain flows and inundation extent depends on the quality of the digital elevation model (DEM). We combined digital topography (derived from the Shuttle Radar Topography Mission) with extensive floodplain echo-sounding data to generate a hydraulically sound DEM. Analysis of daily water balances revealed that the dominant source of inflow alternated seasonally among direct rain and local runoff (October through January), Amazon River (March through August), and seepage (September). As inflows from the Amazon River increase during the rising limb of the hydrograph, regional floodwaters encounter the floodplain partially inundated from local hydrological inputs. At peak flow the floodplain routes, on average, 2.5% of the total discharge for this reach. The falling limb of the hydrograph coincides with the locally dry period, allowing seepage of water stored in sediments to become a dominant source. The average annual inflow from the Amazon River was 58.8 km3 (SD = 33.5), representing more than three thirds (80%) of inputs from all sources, with substantial inter-annual variability. The average annual net export of water from the floodplain to the Amazon River was 7.9 km3 (SD = 2.7).
Homogenization of regional river dynamics by dams and global biodiversity implications.
Poff, N Leroy; Olden, Julian D; Merritt, David M; Pepin, David M
2007-04-03
Global biodiversity in river and riparian ecosystems is generated and maintained by geographic variation in stream processes and fluvial disturbance regimes, which largely reflect regional differences in climate and geology. Extensive construction of dams by humans has greatly dampened the seasonal and interannual streamflow variability of rivers, thereby altering natural dynamics in ecologically important flows on continental to global scales. The cumulative effects of modification to regional-scale environmental templates caused by dams is largely unexplored but of critical conservation importance. Here, we use 186 long-term streamflow records on intermediate-sized rivers across the continental United States to show that dams have homogenized the flow regimes on third- through seventh-order rivers in 16 historically distinctive hydrologic regions over the course of the 20th century. This regional homogenization occurs chiefly through modification of the magnitude and timing of ecologically critical high and low flows. For 317 undammed reference rivers, no evidence for homogenization was found, despite documented changes in regional precipitation over this period. With an estimated average density of one dam every 48 km of third- through seventh-order river channel in the United States, dams arguably have a continental scale effect of homogenizing regionally distinct environmental templates, thereby creating conditions that favor the spread of cosmopolitan, nonindigenous species at the expense of locally adapted native biota. Quantitative analyses such as ours provide the basis for conservation and management actions aimed at restoring and maintaining native biodiversity and ecosystem function and resilience for regionally distinct ecosystems at continental to global scales.
NASA Astrophysics Data System (ADS)
Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo
2017-11-01
The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most affected regions by the implementation of operational management plans).
NASA Astrophysics Data System (ADS)
Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui
2016-12-01
Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.
Influence of Forest Disturbance on Hydrologic Extremes in the Colorado River Basin
NASA Astrophysics Data System (ADS)
Bennett, K. E.; Middleton, R. S.; McDowell, N. G.; Xu, C.; Wilson, C. J.
2015-12-01
The Colorado River is one of the most important freshwater rivers in the United States: it provides water supply to more than 30 million people, irrigation to 5.7 million acres of cropland, and produces over 8 billion kilowatt hours of hydroelectric power each year. Our study focuses on changes to hydrological extremes and threshold responses across the Colorado River basin due to forest fires, infestations, and stress-induced tree mortality using a scenario-based approach to estimate forest cover disturbance. Scenarios include static vegetation reductions and dynamic reductions in forest compositions based on three CMIP5 global climate models and one emission scenario (1950-2099). For headwater systems, large intra-year variability exists, indicating the influence of climate on these snowmelt driven basins. Strong seasonality in flow responses are also noted; in the Piedra River higher runoff occurs during freshet under a no-forest condition, with the greatest changes observed for maximum streamflow. Conversely, during the recessional period, flows are lower in scenarios with reduced forest compositions. Low-flows appear to be affected in some basins but not others; for example small headwater systems demonstrate higher low-flows with increased disturbance. Global Climate Model scenarios indicate a range of responses in these basins, characterized by lower peak streamflow but with higher winter flows. This response is influenced by shifts in water, and energy balances associated with a combined response of changing climate and forest cover compositions. Results also clearly show how changes in extreme events are forced by shifts in major water balance parameters (runoff, evapotranspiration, snow water equivalent, and soil moisture) from headwater basins spanning a range of hydrological regimes and ecological environments across the Colorado.
Mitigating Dam Impacts Using Environmental Flow Releases
NASA Astrophysics Data System (ADS)
Richter, B. D.
2017-12-01
One of the most ecologically disruptive impacts of dams is their alteration of natural river flow variability. Opportunities exist for modifying the operations of existing dams to recover many of the environmental and social benefits of healthy ecosystems that have been compromised by present modes of dam operation. The potential benefits of dam "re-operation" include recovery of fish, shellfish, and other wildlife populations valued both commercially and recreationally, including estuarine species; reactivation of the flood storage and water purification benefits that occur when floods are allowed to flow into floodplain forests and wetlands; regaining some semblance of the naturally dynamic balance between river erosion and sedimentation that shapes physical habitat complexity, and arresting problems associated with geomorphic imbalances; cultural and spiritual uses of rivers; and many other socially valued products and services. Assessing the potential benefits of dam re-operation begins by characterizing the dam's effects on the river flow regime, and formulating hypotheses about the ecological and social benefits that might be restored by releasing water from the dam in a manner that more closely resembles natural flow patterns. These hypotheses can be tested by implementing a re-operation plan, tracking the response of the ecosystem, and continually refining dam operations through adaptive management. This presentation will highlight a number of land and water management strategies useful in implementing a dam re-operation plan, with reference to a variety of management contexts ranging from individual dams to cascades of dams along a river to regional energy grids. Because many of the suggested strategies for dam re-operation are predicated on changes in the end-use of the water, such as reductions in urban or agricultural water use during droughts, a systemic perspective of entire water management systems will be required to attain the fullest possible benefits of dam re-operations.
Instream Flows Incremental Methodology :Kootenai River, Montana : Final Report 1990-2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Greg; Skaar, Don; Dalbey, Steve
2002-11-01
Regulated rivers such as the Kootenai River below Libby Dam often exhibit hydrographs and water fluctuation levels that are atypical when compared to non-regulated rivers. These flow regimes are often different conditions than those which native fish species evolved with, and can be important limiting factors in some systems. Fluctuating discharge levels can change the quantity and quality of aquatic habitat for fish. The instream flow incremental methodology (IFIM) is a tool that can help water managers evaluate different discharges in terms of their effects on available habitat for a particular fish species. The U.S. Fish and Wildlife Service developedmore » the IFIM (Bovee 1982) to quantify changes in aquatic habitat with changes in instream flow (Waite and Barnhart 1992; Baldridge and Amos 1981; Gore and Judy 1981; Irvine et al. 1987). IFIM modeling uses hydraulic computer models to relate changes in discharge to changes in the physical parameters such as water depth, current velocity and substrate particle size, within the aquatic environment. Habitat utilization curves are developed to describe the physical habitat most needed, preferred or tolerated for a selected species at various life stages (Bovee and Cochnauer 1977; Raleigh et al. 1984). Through the use of physical habitat simulation computer models, hydraulic and physical variables are simulated for differing flows, and the amount of usable habitat is predicted for the selected species and life stages. The Kootenai River IFIM project was first initiated in 1990, with the collection of habitat utilization and physical hydraulic data through 1996. The physical habitat simulation computer modeling was completed from 1996 through 2000 with the assistance from Thomas Payne and Associates. This report summarizes the results of these efforts.« less
NASA Astrophysics Data System (ADS)
Bou-Fakhreddine, Bassam; Mougharbel, Imad; Faye, Alain; Abou Chakra, Sara; Pollet, Yann
2018-03-01
Accurate daily river flow forecast is essential in many applications of water resources such as hydropower operation, agricultural planning and flood control. This paper presents a forecasting approach to deal with a newly addressed situation where hydrological data exist for a period longer than that of meteorological data (measurements asymmetry). In fact, one of the potential solutions to resolve measurements asymmetry issue is data re-sampling. It is a matter of either considering only the hydrological data or the balanced part of the hydro-meteorological data set during the forecasting process. However, the main disadvantage is that we may lose potentially relevant information from the left-out data. In this research, the key output is a Two-Phase Constructive Fuzzy inference hybrid model that is implemented over the non re-sampled data. The introduced modeling approach must be capable of exploiting the available data efficiently with higher prediction efficiency relative to Constructive Fuzzy model trained over re-sampled data set. The study was applied to Litani River in the Bekaa Valley - Lebanon by using 4 years of rainfall and 24 years of river flow daily measurements. A Constructive Fuzzy System Model (C-FSM) and a Two-Phase Constructive Fuzzy System Model (TPC-FSM) are trained. Upon validating, the second model has shown a primarily competitive performance and accuracy with the ability to preserve a higher day-to-day variability for 1, 3 and 6 days ahead. In fact, for the longest lead period, the C-FSM and TPC-FSM were able of explaining respectively 84.6% and 86.5% of the actual river flow variation. Overall, the results indicate that TPC-FSM model has provided a better tool to capture extreme flows in the process of streamflow prediction.
NASA Astrophysics Data System (ADS)
Nasr-Azadani, Fariborz; Khan, Rakibul; Rahimikollu, Javad; Unnikrishnan, Avinash; Akanda, Ali; Alam, Munirul; Huq, Anwar; Jutla, Antarpreet; Colwell, Rita
2017-10-01
The association of cholera and climate has been extensively documented. However, determining the effects of changing climate on the occurrence of disease remains a challenge. Bimodal peaks of cholera in Bengal Delta are hypothesized to be linked to asymmetric flow of the Ganges and Brahmaputra rivers. Spring cholera is related to intrusion of bacteria-laden coastal seawater during low flow seasons, while autumn cholera results from cross-contamination of water resources when high flows in the rivers cause massive inundation. Coarse resolution of General Circulation Model (GCM) output (usually at 100 - 300 km)cannot be used to evaluate variability at the local scale(10-20 km),hence the goal of this study was to develop a framework that could be used to understand impacts of climate change on occurrence of cholera. Instead of a traditional approach of downscaling precipitation, streamflow of the two rivers was directly linked to GCM outputs, achieving reasonable accuracy (R2 = 0.89 for the Ganges and R2 = 0.91 for the Brahmaputra)using machine learning algorithms (Support Vector Regression-Particle Swarm Optimization). Copula methods were used to determine probabilistic risks of cholera under several discharge conditions. Key results, using model outputs from ECHAM5, GFDL, andHadCM3for A1B and A2 scenarios, suggest that the combined low flow of the two rivers may increase in the future, with high flows increasing for first half of this century, decreasing thereafter. Spring and autumn cholera, assuming societal conditions remain constant e.g., at the current rate, may decrease. However significant shifts were noted in the magnitude of river discharge suggesting that cholera dynamics of the delta may well demonstrate an uncertain predictable pattern of occurrence over the next century.
Pricope, Narcisa G
2013-02-01
The Chobe River, characterized by an unusual flood pulsing regime and shared between Botswana and Namibia, lies at the heart of the world's largest transfrontier conservation area (the Kavango-Zambezi Transfrontier Conservation Area). Significant ecological changes and vegetation conversions are occurring along its floodplains. Various scenarios for agricultural and urban water use are currently being proposed by the government of Botswana. However, the understanding of the river's annual flow regime and timing of the relative contributions of water from three different sources is relatively poor. In light of past and future climate change and variability, this means that allocating water between ecological flows and economic and domestic uses will become increasingly challenging. We reconstruct the inundation history in this basin to help ease this challenge. This paper presents a spatiotemporal approach to estimate the contribution of water from various sources and the magnitude of changes in the flooding extent in the basin between 1985 and 2010. We used time series analysis of bimonthly NOAA AVHRR and NASA MODIS data and climatologic and hydrologic records to determine the flooding timing and extent. The results indicate that between 12 and 62 % of the basin is flooded on an annual basis and that the spatial extent of the flooding varies throughout the year as a function of the timing of peak discharge in two larger basins. A 30-year trend analysis indicates a consistent decline in the average monthly flooded area in the basin. The results may prove useful in future water utilization feasibility studies, in determining measures for protecting ecological flows and levels, and in ecosystem dynamics studies in the context of current and future climate change and variability.
Spatial and temporal patterns of debris flow deposition in the Oregon Coast Range, USA
May, Christine L.; Gresswell, Robert E.
2004-01-01
Patterns of debris-flow occurrence were investigated in 125 headwater basins in the Oregon Coast Range. Time since the previous debris-flows was established using dendrochronology, and recurrence interval estimates ranged from 98 to 357 years. Tributary basins with larger drainage areas had a greater abundance of potential landslide source areas and a greater frequency of scouring events compared to smaller basins. The flux rate of material delivered to the confluence with a larger river influenced the development of small-scale debris-flow fans. Fans at the mouths of tributary basins with smaller drainage areas had a higher likelihood of being eroded by the mainstem river in the interval between debris-flows, compared to bigger basins that had larger, more persistent fans. Valley floor width of the receiving channel also influenced fan development because it limited the space available to accommodate fan formation. Of 63 recent debris-flows, 52% delivered sediment and wood directly to the mainstem river, 30% were deposited on an existing fan before reaching the mainstem, and 18% were deposited within the confines of the tributary valley before reaching the confluence. Spatial variation in the location of past and present depositional surfaces indicated that sequential debris-flow deposits did not consistently form in the same place. Instead of being spatially deterministic, results of this study suggest that temporally variable and stochastic factors may be important for predicting the runout length of debris-flows.
Otero, Jaime; Jensen, Arne J.; L'Abée-Lund, Jan Henning; Stenseth, Nils Chr.; Storvik, Geir O.; Vøllestad, Leif Asbjørn
2011-01-01
Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979–2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to conserve this species. PMID:21897867
Otero, Jaime; Jensen, Arne J; L'Abée-Lund, Jan Henning; Stenseth, Nils Chr; Storvik, Geir O; Vøllestad, Leif Asbjørn
2011-01-01
Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979-2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to conserve this species.
Dynamic Floodplain representation in hydrologic flood forecasting using WRF-Hydro modeling framework
NASA Astrophysics Data System (ADS)
Gangodagamage, C.; Li, Z.; Maitaria, K.; Islam, M.; Ito, T.; Dhondia, J.
2016-12-01
Floods claim more lives and damage more property than any other category of natural disaster in the Continental United States. A system that can demarcate local flood boundaries dynamically could help flood prone communities prepare for and even prevent from catastrophic flood events. Lateral distance from the centerline of the river to the right and left floodplains for the water levels coming out of the models at each grid location have not been properly integrated with the national hydrography dataset (NHDPlus). The NHDPlus dataset represents the stream network with feature classes such as rivers, tributaries, canals, lakes, ponds, dams, coastlines, and stream gages. The NHDPlus dataset consists of approximately 2.7 million river reaches defining how surface water drains to the ocean. These river reaches have upstream and downstream nodes and basic parameters such as flow direction, drainage area, reach slope etc. We modified an existing algorithm (Gangodagamage et al., 2007) to provide lateral distance from the centerline of the river to the right and left floodplains for the flows simulated by models. Previous work produced floodplain boundaries for static river stages (i.e. 3D metric: distance along the main stem, flow depth, lateral distance from river center line). Our new approach introduces the floodplain boundary for variable water levels at each reach with the fourth dimension, time. We use modeled flows from WRF-Hydro and demarcate the right and left lateral boundaries of inundation dynamically by appropriately mapping discharges into hydraulically corrected stages. Backwater effects from the mainstem to tributaries are considered and proper corrections are applied for the tributary inundations. We obtained river stages by optimizing reach level channel parameters using newly developed stream flow routing algorithm. Non uniform inundations are mapped at each NHDplus reach (upstream and downstream nodes) and spatial interpolation is carried out on a normalized digital elevation model (always streams are at zero elevations) to obtain the smooth flood boundaries between adjacent reaches. The validation of the dynamic inundation boundaries is performed using multi-temporal satellite datasets as well as HEC-RAS hydrodynamic model results for selected streams for previous flood events.
A study of the river velocity measurement techniques and analysis methods
NASA Astrophysics Data System (ADS)
Chung Yang, Han; Lun Chiang, Jie
2013-04-01
Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating objects in water in high flow, resulting in measurement automation work still needs further study. If the priority for the safety of personnel and instruments, we can use the non-contact velocity measurement method with the theoretical analysis method to achieve real-time monitoring.
NASA Astrophysics Data System (ADS)
Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.
2012-12-01
The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b.
NASA Astrophysics Data System (ADS)
Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.
2013-03-01
The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b
Simulating Freshwater Availability under Future Climate Conditions
NASA Astrophysics Data System (ADS)
Zhao, F.; Zeng, N.; Motesharrei, S.; Gustafson, K. C.; Rivas, J.; Miralles-Wilhelm, F.; Kalnay, E.
2013-12-01
Freshwater availability is a key factor for regional development. Precipitation, evaporation, river inflow and outflow are the major terms in the estimate of regional water supply. In this study, we aim to obtain a realistic estimate for these variables from 1901 to 2100. First we calculated the ensemble mean precipitation using the 2011-2100 RCP4.5 output (re-sampled to half-degree spatial resolution) from 16 General Circulation Models (GCMs) participating the Coupled Model Intercomparison Project Phase 5 (CMIP5). The projections are then combined with the half-degree 1901-2010 Climate Research Unit (CRU) TS3.2 dataset after bias correction. We then used the combined data to drive our UMD Earth System Model (ESM), in order to generate evaporation and runoff. We also developed a River-Routing Scheme based on the idea of Taikan Oki, as part of the ESM. It is capable of calculating river inflow and outflow for any region, driven by the gridded runoff output. River direction and slope information from Global Dominant River Tracing (DRT) dataset are included in our scheme. The effects of reservoirs/dams are parameterized based on a few simple factors such as soil moisture, population density and geographic regions. Simulated river flow is validated with river gauge measurements for the world's major rivers. We have applied our river flow calculation to two data-rich watersheds in the United States: Phoenix AMA watershed and the Potomac River Basin. The results are used in our SImple WAter model (SIWA) to explore water management options.
NASA Astrophysics Data System (ADS)
Gorman, P. D.; Constantz, J.; Laforce, M. J.
2007-12-01
The reach of the Russian River flowing through Sonoma County, CA, is important to fisheries and recreations, as well as being essential to the water resources infrastructure of the county. An improved understanding of the manner in which streambed sediments impact rates of ground-water recharge is essential in optimizing withdrawals without increasing potential impacts on fishery habitats and recreational needs. Temporal and spatial variations of flux and vertical hydraulic conductivity (Kv) were measured in the streambed along the Russian River at multiple locations. In-situ flux and Kv measurements were made using a modified seepage meter equipped with piezometers during monitoring events performed in June 2003, September 2003, and March 2004. Additionally, bulk sediment samples were collected during the monitoring events to characterize the grain size distribution of the streambed. Three different streambed locations (near-bank, midpoint, and thalweg) were monitored and sampled at five different sample locales in a 20-km reach of the Russian River. Vertical hydraulic conductivity of the streambed ranged from 8.55x10-5 cm/sec to 1.52x10-1 cm/sec. Significantly (p<0.05) higher values of Kv were found near the banks of the Russian River, and Kv increased (30% to an order of magnitude) after the winter storm season of 2004. Flux varied from -240 to 600 cm/day, which indicates both gaining and losing reaches of the stream occur in our study area. These findings will assist in developing a MODFLOW ground-water flow simulation that incorporates the variable streambed conductance values determined along this reach of the Russian River.
Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt
2014-01-01
Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.
Atkinson, S F; Johnson, D R; Venables, B J; Slye, J L; Kennedy, J R; Dyer, S D; Price, B B; Ciarlo, M; Stanton, K; Sanderson, H; Nielsen, A
2009-06-15
Surfactants are high production volume chemicals that are used in a wide assortment of "down-the-drain" consumer products. Wastewater treatment plants (WWTPs) generally remove 85 to more than 99% of all surfactants from influents, but residual concentrations are discharged into receiving waters via wastewater treatment plant effluents. The Trinity River that flows through the Dallas-Fort Worth metropolitan area, Texas, is an ideal study site for surfactants due to the high ratio of wastewater treatment plant effluent to river flow (>95%) during late summer months, providing an interesting scenario for surfactant loading into the environment. The objective of this project was to determine whether surfactant concentrations, expressed as toxic units, in-stream water quality, and aquatic habitat in the upper Trinity River could be predicted based on easily accessible watershed characteristics. Surface water and pore water samples were collected in late summer 2005 at 11 sites on the Trinity River in and around the Dallas-Fort Worth metropolitan area. Effluents of 4 major waste water treatment plants that discharge effluents into the Trinity River were also sampled. General chemistries and individual surfactant concentrations were determined, and total surfactant toxic units were calculated. GIS models of geospatial, anthropogenic factors (e.g., population density) and natural factors (e.g., soil organic matter) were collected and analyzed according to subwatersheds. Multiple regression analyses using the stepwise maximum R(2) improvement method were performed to develop prediction models of surfactant risk, water quality, and aquatic habitat (dependent variables) using the geospatial parameters (independent variables) that characterized the upper Trinity River watershed. We show that GIS modeling has the potential to be a reliable and inexpensive method of predicting water and habitat quality in the upper Trinity River watershed and perhaps other highly urbanized watersheds in semi-arid regions.
Interannual variability in dissolved inorganic nutrients in northern San Francisco Bay estuary
Peterson, D.H.; Smith, R.E.; Hager, S.W.; Harmon, D.D.; Herndon, R.E.; Schemel, L.E.
1985-01-01
Nearly two decades of seasonal dissolved inorganic nutrient-salinity distributions in northern San Francisco Bay estuary (1960-1980) illustrate interannual variations in effects of river flow (a nutrient source) and phytoplankton productivity (a nutrient sink). During winter, nutrient sources dominate the nutrient-salinity distribution patterns (nutrients are at or exceed conservative mixing concentrations). During summer, however, the sources and sinks are in close competition. In summers of wet years, the effects of increased river flow often dominate the nutrient distributions (nutrients are at or less than conservative mixing concentrations), whereas in summers of dry years, phytoplankton productivity dominates (the very dry years 1976-1977 were an exception for reasons not yet clearly known). Such source/sink effects also vary with chemical species. During summer the control of phytoplankton on nutrient distributions is apparently strongest for ammonium, less so for nitrate and silica, and is the least for phosphate. Furthermore, the strength of the silica sink (diatom productivity) is at a maximum at intermediate river flows. This relation, which is in agreement with other studies based on phytoplankton abundance and enumeration, is significant to the extent that diatoms are an important food source for herbivores. The balance or lack of balance between nutrient sources and sinks varies from one estuary to another just as it can from one year to another within the same estuary. At one extreme, in some estuaries river flow dominates the estuarine dissolved inorganic nutrient distributions throughout most of the year. At the other extreme, phytoplankton productivity dominates. In northern San Francisco Bay, for example, the phytoplankton nutrient sink is not as strong as in less turbid estuaries. In this estuary, however, river effects, which produce or are associated with near-conservative nutrient distributions, are strong even at flows less than mean-annual flow. Thus, northern San Francisco Bay appears to be an estuary in between the two extremes and is shifted closer to one extreme or the other depending on interannual variations in river flow. ?? 1985 Dr W. Junk Publishers.
NASA Astrophysics Data System (ADS)
Cheng, Y.; Niemeyer, R. J.; Mao, Y.; Yearsley, J. R.; Nijssen, B.
2016-12-01
In the coming decades, climate change and population growth are expected to affect water and energy supply as well as demand in the southeastern United States. Changes in temperature and precipitation impact river flow and stream temperature with implications for hydropower generation, industrial and municipal water supply, cooling for thermo-electric power plants, agricultural irrigation, ecosystem functions and flood control. At the same time, water and energy demand are expected to change in response to temperature increase, population growth and changing crop water requirements. As part of a multi-institution study of the food-energy-water nexus in the southeastern U.S., we are developing coupled hydrological and stream temperature models that will be linked to water resources, power systems and crop models at a later stage. Here we evaluate the ability of our system to simulate water supply and stream temperature in the Tennessee River Basin using the Variable Infiltration Capacity (VIC) macroscale hydrology model coupled to the River Basin Model (RBM), a 1-D semi-Lagrangian river temperature model, which has recently been expanded with a two-layer reservoir temperature model. Simulations with VIC-RBM were performed for the Tennessee River Basin at 1/8-degree spatial resolution and a temporal resolution of 1 day or less. Reservoir releases were prescribed based on historic operating rules. In future iterations, these releases will be modeled directly by a water resources model that incorporates flood control, and power and agricultural water demands. We compare simulated flows, as well as stream and reservoir temperatures with observed flows and temperatures throughout the basin. In preparation for later stages of the project, we also perform a set of climate change sensitivity experiments to evaluate how changes in climate may impact river and reservoir temperature.
Peterson, R.; Jennings, Cecil A.; Peterson, J.T.
2013-01-01
Robust redhorse (Moxostoma robustum) and notchlip redhorse (M. collapsum) are two species of redhorses that reside in the lower Oconee River, Georgia. Robust redhorse is listed as a state endangered species in Georgia and North Carolina, and attempts to investigate factors affecting its reproductive success have met with limited success. Therefore, catch of robust redhorse young were combined with catch of notchlip redhorse to increase sample size. These congeners with similar spawning repertoire were assumed to respond similarly to environmental conditions. River discharge during spawning and rearing seasons may affect abundance of both redhorses in the lower Oconee River. An information-theoretic approach was used to evaluate the relative support of models relating abundance of age 0 redhorses to monthly discharge statistics that represented magnitude, timing, duration, variability and frequency of river discharge events for April through June 1995–2006. The best-approximating model indicated a negative relationship between the abundance of redhorses and mean maximum river discharge and the number of high pulses during June as well as a positive relationship with intermediate duration of low flows during April–June. This model is 9.6 times more plausible than the next best-fitting model, which revealed a negative relationship between the abundance of redhorses and mean maximum river discharge during May and the number of high pulses during June as well as a positive relationship between abundance and intermediate duration of low flows during April–June. Management implications from the results indicate low-stable flows for at least a 2-week period during spawning and rearing may increase reproductive success of robust and notchlip redhorses.
NASA Astrophysics Data System (ADS)
Unland, N. P.; Cartwright, I.; Andersen, M. S.; Rau, G. C.; Reed, J.; Gilfedder, B. S.; Atkinson, A. P.; Hofmann, H.
2013-09-01
The interaction between groundwater and surface water along the Tambo and Nicholson rivers, southeast Australia, was investigated using 222Rn, Cl, differential flow gauging, head gradients, electrical conductivity (EC) and temperature profiles. Head gradients, temperature profiles, Cl concentrations and 222Rn activities all indicate higher groundwater fluxes to the Tambo River in areas of increased topographic variation where the potential to form large groundwater-surface water gradients is greater. Groundwater discharge to the Tambo River calculated by Cl mass balance was significantly lower (1.48 × 104 to 1.41 × 103 m3 day-1) than discharge estimated by 222Rn mass balance (5.35 × 105 to 9.56 × 103 m3 day-1) and differential flow gauging (5.41 × 105 to 6.30 × 103 m3 day-1) due to bank return waters. While groundwater sampling from the bank of the Tambo River was intended to account for changes in groundwater chemistry associated with bank infiltration, variations in bank infiltration between sample sites remain unaccounted for, limiting the use of Cl as an effective tracer. Groundwater discharge to both the Tambo and Nicholson rivers was the highest under high-flow conditions in the days to weeks following significant rainfall, indicating that the rivers are well connected to a groundwater system that is responsive to rainfall. Groundwater constituted the lowest proportion of river discharge during times of increased rainfall that followed dry periods, while groundwater constituted the highest proportion of river discharge under baseflow conditions (21.4% of the Tambo in April 2010 and 18.9% of the Nicholson in September 2010).
NASA Astrophysics Data System (ADS)
Kurz, Isabelle; Coxon, Catherine; Tunney, Hubert; Ryan, Declan
2005-03-01
The loss of nutrients from agricultural land to water bodies is a serious concern in river basin management in many countries. To gain information on the contributions of agricultural grassland to the eutrophication of water bodies, this study set out to assess phosphorus (P) loss from grassland areas on poorly drained soils. A second aim was to look at the impact of grassland management practices on nutrient concentrations in overland flow. Edge-of-field measurements of overland flow quantity and of P and nitrogen (N) concentrations in overland flow were carried out at three study sites with different soil P levels. The amounts of overland flow and the P concentrations in overland flow varied considerably during events, and among sites and events. Despite this variability, there was a clear increase in P loss in overland flow from the low to the medium and high soil P sites. The inter-site variability of the P concentrations in overland flow greatly exceeded the variability of the amounts of overland flow from the different sites. Thus, P concentrations had a larger impact than the volume of overland flow on the differences in P exports from the three sites. Management practices which, at times, influenced the P and N concentrations in overland flow were grazing and N fertilisation.
Habitat assessment, Missouri River at Hermann, Missouri
Jacobson, Robert B.; Laustrup, Mark S.; Reuter, Joanna M.
2002-01-01
This report documents methods and results of aquatic habitat assessment in the Missouri River near Hermann, Missouri. The assessment is intended to improve understanding of spatial and temporal variability of aquatic habitat, including habitats thought to be critical for the endangered pallid sturgeon (Scaphirhynchus albus). Physical aquatic habitat - depth, velocity, and substrate - was assessed around 9 wing dikes and adjacent to the U.S. Route 19 bridge, at discharges varying from 44,000 cubic feet per second (cfs) to 146, 000 cfs during August 2000-May, 2001. For the river as a whole, velocities are bi-modally distributed with distinct peaks relating to navigation channel and wing-dike environments. Velocities predictably showed an increasing trend with increasing discharge. Substrate within wing dikes was dominated by mud at low discharges, whereas the navigation channel had patches of transporting sand, rippled sand, and coarse sand. Discharges that overtopped the wing dikes (about 93,000 cfs, March 2001) were associated with increases of patchy sand, rippled sand, and coarse sand within the wing dikes. When flows were substantially over the wing dikes (146,000 cfs, May 2001) substrates within most wing dikes showed substantial reorganization and coarsening. The habitat assessment provides a geospatial database that can be used to query wing dikes for distributions of depth, velocity, and substrate for comparison with fish samples collected by US Fish and Wildlife Service biologists (Grady and others, 2001). In addition, the assessment documented spatial and temporal variation in habitat within the Hermann reach and over a range of discharges. Measurable geomorphic change--alteration of substrate conditions plus substantial erosion and deposition--was associated with flows equaled or exceeded 12-40% of the time (40-140 days per year). Documented geomorphic change associated with high-frequency flows underscores the natural temporal variability of physical habitat in the Lower Missouri River.
Simple Words and Fuzzy Zones: Early Directions for Temporary River Research in South Africa
Uys; O'Keeffe
1997-07-01
/ Although a large proportion of South Africa's rivers are nonperennial, ecological research into these systems has only recently been initiated. Consequently, we have little verified information about the ecological functioning of these rivers or knowledge of how best to manage them. High water demands in a semiarid region results in the flow of most perennial rivers being altered from permanent to temporary in sections, through impoundment, land-use changes, abstraction, etc. Conversely, sections of many temporary rivers are altered to perennial as a result of interbasin transfers or may be exploited for surface water. Effective and appropriate management of these modifications must be based on sound scientific information, which requires intensified, directed research. We anticipate that temporary river research in South Africa will, of necessity, be driven primarily by short-term collaborative efforts and secondarily by long-term ecological studies. At the outset, a simple conceptual framework is required to encourage an appreciation of current views of the spatial and temporal dynamics of nonperennial rivers and of the variability and unpredictability that characterize these systems. We adopt the view that perennial and episodic/ephemeral rivers represent either end of a continuum, separated by a suite of intermediate flow regimes. A conceptual diagram of this continuum is presented. In the absence of a functional classification for temporary rivers, a descriptive terminology has been systematically devised in an attempt to standardize definition of the different types of river regimes encountered in the country. Present terminology lacks structure and commonly accepted working definitions. KEY WORDS: Temporary rivers; Intermittent rivers; Continuum; Terminology; Classification; Ecosystem management; South Africa
Miller, J.R.; Friedman, J.M.
2009-01-01
Resolving observations of channel change into separate planimetric measurements of floodplain formation and destruction reveals distinct relations between these processes and the flow regime. We analyzed a time sequence of eight bottomland images from 1939 to 2003 along the Little Missouri River, North Dakota, to relate geomorphic floodplain change to flow along this largely unregulated river. At the decadal scale, floodplain formation and destruction varied independently. Destruction was strongly positively correlated with the magnitude of infrequent high flows that recur every 5-10 yr, whereas floodplain formation was negatively correlated with the magnitude of frequent low flows exceeded 80% of the time. At the century scale, however, a climatically induced decrease in peak flows has reduced the destruction rate, limiting the area made available for floodplain formation. The rate of destruction was not uniform across the floodplain. Younger surfaces were consistently destroyed at a higher rate than older surfaces, suggesting that throughput of contaminants would have occurred more rapidly than predicted by models that assume uniform residence time of sediment across the floodplain. Maps of floodplain ages produced by analysis of sequential floodplain images are similar to maps of forest ages produced through dendrochronology, confirming the assumption of dendrogeomorphic studies that riparian tree establishment in this system is limited to recent channel locations. ?? 2009 Geological Society of America.
Flow resistance and hydraulic geometry in contrasting reaches of a bedrock channel
NASA Astrophysics Data System (ADS)
Ferguson, R. I.; Sharma, B. P.; Hardy, R. J.; Hodge, R. A.; Warburton, J.
2017-03-01
Assumptions about flow resistance in bedrock channels have to be made for mechanistic modeling of river incision, paleoflood estimation, flood routing, and river engineering. Field data on bedrock flow resistance are very limited and calculations generally use standard alluvial-river assumptions such as a fixed value of Manning's n. To help inform future work, we measured how depth, velocity, and flow resistance vary with discharge in four short reaches of a small bedrock channel, one with an entirely rock bed and the others with 20-70% sediment cover, and in the alluvial channel immediately upstream. As discharge and submergence increase in each of the partly or fully alluvial reaches there is a rapid increase in velocity and a strong decline in both n and the Darcy-Weisbach friction factor f. The bare-rock reach follows a similar trend from low to medium discharge but has increasing resistance at higher discharges because of the macroroughness of its rock walls. Flow resistance at a given discharge differs considerably between reaches and is highest where the partial sediment cover is coarsest and most extensive. Apart from the effect of rough rock walls, the flow resistance trends are qualitatively consistent with logarithmic and variable-power equations and with nondimensional hydraulic geometry, but quantitative agreement using sediment D84 as the roughness height is imperfect.
NASA Astrophysics Data System (ADS)
Pietroń, Jan; Jarsjö, Jerker
2014-05-01
Ongoing changes in the Central Asian climate including increasing temperatures can influence the hydrological regimes of rivers and the waterborne transport of sediments. Changes in the latter, especially in combination with adverse human activities, may severely impact water quality and aquatic ecosystems. However, waterborne transport of sediments is a result of complex processes and varies considerably between, and even within, river systems. There is therefore a need to increase our general knowledge about sediment transport under changing climate conditions. The Tuul River, the case site of this study, is located in the upper part of the basin of the Selenga River that is the main tributary to Lake Baikal, a UNESCO World Heritage Site. Like many other rivers located in the steppes of Northern Mongolia, the Tuul River is characterized by a hydrological regime that is not disturbed by engineered structures such as reservoirs and dams. However, the water quality of the downstream Tuul River is increasingly affected by adverse human activities - including placer gold mining. The largest contribution to the annual river discharge occurs during the relatively warm period in May to August. Typically, there are numerous rainfall events during this period that cause considerable river flow peaks. Parallel work has furthermore shown that due to climate change, the daily variability of discharge and numbers of peak flow events in the Tuul River Basin has increased during the past 60 years. This trend is expected to continue. We here aim at increasing our understanding of future sediment transport patterns in the Tuul River, specifically considering the scenario that peak flow events may become more frequent due to climate change. We use a one-dimensional sediment transport model of the downstream reach of the river to simulate natural patterns of sediment transport for a recent hydrological year. In general, the results show that sediment transport varies considerably spatially and temporally. Peak flow events during the warm period contribute largely to the total annual transport of sediments and also to the erosion of stored bed material. These results suggest that if the number of peak flow events will increase further due to climate change, there will be a significant increase in the annual sediment load and consequently in the load of contaminants that are attached to the sediments, in particular downstream of mining sites. The present results are furthermore consistent with parallel studies on sediment transport and climate change showing that increased water discharges and frequencies of rainfall/flow events can lead to enhanced erosion processes. Furthermore, in addition to climate change effects, human activates can change sediment loads in rivers to even greater extent, as pointed out in several studies. Thus, several different challenges can be expected to face the management of Central Asian rivers such as Tuul and their ecosystems in the future.
DeSimone, Leslie A.
2004-01-01
Water-supply withdrawals and wastewater disposal in the Assabet River Basin in eastern Massachusetts alter the flow and water quality in the basin. Wastewater discharges and stream-flow depletion from ground-water withdrawals adversely affect water quality in the Assabet River, especially during low-flow months (late summer) and in headwater areas. Streamflow depletion also contributes to loss of aquatic habitat in tributaries to the river. In 19972001, water-supply withdrawals averaged 9.9 million gallons per day (Mgal/d). Wastewater discharges to the Assabet River averaged 11 Mgal/d and included about 5.4 Mgal/d that originated from sources outside of the basin. The effects of current (2004) and future withdrawals and discharges on water resources in the basin were investigated in this study. Steady-state and transient ground-water-flow models were developed, by using MODFLOW-2000, to simulate flow in the surficial glacial deposits and underlying crystalline bedrock in the basin. The transient model simulated the average annual cycle at dynamic equilibrium in monthly intervals. The models were calibrated to 19972001 conditions of water withdrawals, wastewater discharges, water levels, and nonstorm streamflow (base flow plus wastewater discharges). Total flow through the simulated hydrologic system averaged 195 Mgal/d annually. Recharge from precipitation and ground-water discharge to streams were the dominant inflow and outflow, respectively. Evapotranspiration of ground water from wetlands and non-wetland areas also were important losses from the hydrologic system. Water-supply withdrawals and infiltration to sewers averaged 5 and 1.3 percent, respectively, of total annual out-flows and were larger components (12 percent in September) of the hydrologic system during low-flow months. Water budgets for individual tributary and main stem subbasins identified areas, such as the Fort Meadow Brook and the Assabet Main Stem Upper subbasins, where flows resulting from anthropo-genic activities were relatively large percentages, compared to other subbasins, (more than 20 percent in September) of total out-flows. Wastewater flows in the Assabet River accounted for 55, 32, and 20 percent of total nonstorm streamflow (base flow plus wastewater discharge) out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. The ground-water-flow models were used to evaluate water-management alternatives by simulating hypothetical scenarios of altered withdrawals and discharges. A scenario that included no water management quantified nonstorm stream-flows that would result without withdrawals, discharges, septic-system return flow, or consumptive use. Tributary flows in this scenario increased in most subbasins by 2 to 44 percent relative to 19972001 conditions. The increases resulted mostly from variable combinations of decreased withdrawals and decreased infiltration to sewers. Average annual nonstorm streamflow in the Assabet River decreased slightly in this scenario, by 2 to 3 percent annually, because gains in ground-water discharge were offset by the elimination of wastewater discharges. A second scenario quantified the effects of increasing withdrawals and discharges to currently permitted levels. In this simulation, average annual tributary flows decreased in most subbasins, by less than 1 to 10 percent relative to 19972001 conditions. In the Assabet River, flows increased slightly, 1 to 5 percent annually, and the percentage of wastewater in the river increased to 69, 42, and 27 percent of total nonstorm streamflow out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. A third set of scenarios quantified the effects of ground-water discharge of wastewater at four hypothetical sites, while maintaining 19972000 wastewater discharges to the Assabet River. Wastewater, discharged at a constant rate that varied among sites from 0.3 to 1
Trends in concentrations and use of agricultural herbicides for Corn Belt rivers, 1996-2006
Vecchia, Aldo V.; Gilliom, Robert J.; Sullivan, Daniel J.; Lorenz, David L.; Martin, Jeffrey D.
2009-01-01
Trends in the concentrations and agricultural use of four herbicides (atrazine, acetochlor, metolachlor, and alachlor) were evaluated for major rivers of the Corn Belt for two partially overlapping time periods: 1996-2002 and 2000-2006. Trends were analyzed for 11 sites on the mainstems and selected tributaries in the Ohio, Upper Mississippi, and Missouri River Basins. Concentration trends were determined using a parametric regression model designed for analyzing seasonal variability, flow-related variability, and trends in pesticide concentrations(SEAWAVE-Q).TheSEAWAVE-Qmodel accounts for the effect of changing flow conditions in order to separate changes caused by hydrologic conditions from changes caused by other factors, such as pesticide use. Most of the trends in atrazine and acetochlor concentrations for both time periods were relatively small and nonsignificant, but metolachlor and alachlor were dominated by varying magnitudes of concentration downtrends. Overall, with trends expressed as a percent change per year, trends in herbicide concentrations were consistent with trends in agricultural use; 84 of 88 comparisons for different sites, herbicides, and time periods showed no significant difference between concentration trends and agricultural use trends. Results indicate that decreasing use appears to have been the primary cause for the concentration downtrends during 1996-2006 and that, while there is some evidence that nonuse management factors may have reduced concentrations in some rivers, reliably evaluating the influence of these factors on pesticides in large streams and rivers will require improved, basin-specific information on both management practices and use over time. ?? 2009 American Chemical Society.
Conrads, Paul; Roehl, Edwin A.
2007-01-01
Six reservoirs in North Carolina discharge into the Pee Dee River, which flows 160 miles through South Carolina to the coastal communities near Myrtle Beach, South Carolina. During the Southeast's record-breaking drought from 1998 to 2003, salinity intrusions inundated a coastal municipal freshwater intake, limiting water supplies. To evaluate the effects of regulated flows of the Pee Dee River on salinity intrusion in the Waccamaw River and Atlantic Intracoastal Waterway, the South Carolina Department of Natural Resources and a consortium of stakeholders entered into a cooperative agreement with the U.S. Geological Survey to apply data-mining techniques to the long-term time series to analyze and simulate salinity dynamics near the freshwater intakes along the Grand Strand of South Carolina. Salinity intrusion in tidal rivers results from the interaction of three principal forces?streamflow, mean tidal water levels, and tidal range. To analyze, model, and simulate hydrodynamic behaviors at critical coastal gages, data-mining techniques were applied to over 20 years of hourly streamflow, coastal water-quality, and water-level data. Artificial neural network models were trained to learn the variable interactions that cause salinity intrusions. Streamflow data from the 18,300-square-mile basin were input to the model as time-delayed variables and accumulated tributary inflows. Tidal inputs to the models were obtained by decomposing tidal water-level data into a 'periodic' signal of tidal range and a 'chaotic' signal of mean water levels. The artificial neural network models were able to convincingly reproduce historical behaviors and generate alternative scenarios of interest. To make the models directly available to all stakeholders along the Pee Dee and Waccamaw Rivers and Atlantic Intracoastal Waterway, an easy-to-use decision support system (DSS) was developed as a spreadsheet application that integrates the historical database, artificial neural network models, model controls, streaming graphics, and model output. An additional feature is a built-in optimizer that dynamically calculates the amount of flow needed to suppress salinity intrusions as tidal ranges and water levels vary over days and months. This DSS greatly reduced the number of long-term simulations needed for stakeholders to determine the minimum flow required to adequately protect the freshwater intakes.
Huizinga, Richard J.
2015-01-01
Previous bathymetric surveys had been done at both of the sites on the Missouri River and one of the sites on the Mississippi River examined in this study. Comparisons between bathymetric surfaces from the previous surveys during the 2011 flood and those of this study generally indicate that there was an increase in the elevation of the channel bed at these sites that likely was caused by a substantial decrease in discharge and water-surface elevation compared to the 2011 surveys. However, the scour holes observed at these sites were either the same size or larger in 2014 compared to the 2011 surveys, indicating that the flow condition is not the sole variable in the determination of the size of scour holes, and that local velocity and depth also are critical variables, as indicated by predictive pier scour equations.
Freitas, Juliana G; Rivett, Michael O; Roche, Rachel S; Durrant Neé Cleverly, Megan; Walker, Caroline; Tellam, John H
2015-02-01
The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC groundwater plume discharges to a surface water receptor; and, monitoring requirements to assess the variability in CHC attenuation within a reach are expected to be onerous. Further research on transient hyporheic zone dechlorination is recommended. Copyright © 2014 Elsevier B.V. All rights reserved.
The natural channel of Brandywine Creek, Pennsylvania
Wolman, M.G.
1955-01-01
This study of the channel of Brandy wine Creek, Pennsylvania, consists of three parts. The first is an analysis of the changes which take place in the width, depth, velocity, slope of the water surface, suspended load, and roughness factor with changing discharge below the bankfull stage at each of several widely separated cross sections of the channel. Expressed as functions of the discharge, it is found that the variables behave systematically. In every section studied, as the discharge increases, the velocity increases to about the 0.6 power, depth to the 0.4, and load to the 2.0 power of the discharge. The roughness decreases to the 0.2 power of the discharge. The relative magnitudes and the direction of these variations are similar to those which have been observed in other rivers in the United States, primarily in the West. Some modifications of the hypotheses applicable to the western rivers are probably required because on Brandywine Creek the difference between the materials on the bed and in the banks is considerably greater than it is on most of the western rivers studied. In the second part of the paper the progressive changes of the same variables in the downstream direction with increasing discharge at a given frequency are described. Despite the disorderly appearance of the stream, it is found that the variables display a progressive, orderly change in the downstream direction when traced from the headwater tributaries through the trunk stream of Brandywine Creek. At a given frequency of flow, width increases with discharge to about the 0.5 power. Depth increases downstream somewhat less rapidly, while the slope and roughness both decrease in the downstream direction. Despite a decrease in the size of the material on the bed, both the mean velocity and the mean bed velocity increase downstream. The rates of change of these variables are in close accord with the changes observed on rivers flowing in alluvium and in stable irrigation canals. These relationships hold for all flows up to the bankfull stage. Analysis of the streamflow records indicates that the annual maximum discharge equals or exceeds the bankfull stage roughly once every 2 years. The regularity in the behavior of the variables with changing discharges both at-a-station and in the downstream direction and the similar rates of change of the variables on Brandywine Creek and in stable irrigation canals suggest the existence of a quasi-equilibrium in the channel of the creek. Part three of this study is concerned with this concept of equilibrium in streams. By analogy with canals and with several rivers in diverse regions of the United States it may be concluded that this quasi-equilibrium is closely related to the discharge, and to the concentration of the suspended load. The shape and longitudinal profile of the channel are determined by these two independent factors which operate within the limits set by the local geology. The latter determines the initial size, shape, and resistance of the material provided to the channel. The existence of a quasi-equilibrium among the variables studied suggests that most reaches on Brandywine Creek are at grade. This is true if the term "grade," when applied to natural rivers, is synonymous with quasi-equilibrium. The adjustability of the variables in the channel rather than the stability of any particular shape or longitudinal profile of the channel is emphasized when t
Mbandzi, N; Wasserman, R J; Deyzel, S H P; Vine, N G; Whitfield, A K
2018-06-01
The possible links between river flow, zooplankton abundance and the responses of zooplanktivorous fishes to physico-chemical and food resource changes are assessed. To this end, the seasonal abundance, distribution and diet of the estuarine round-herring Gilchristella aestuaria and Cape silverside Atherina breviceps were studied in the Kariega Estuary. Spatio-temporal differences were determined for selected physico-chemical variables, zooplankton abundance and zooplanktivorous fish abundance and distribution. Results indicated that, following a river flood event in winter (>30 m 3 s -1 ), altered physico-chemical conditions occurred throughout the estuary and depressed zooplankton stocks. Abundance of G. aestuaria was highest in spring, with this species dominant in the upper and middle zones of the estuary, while A. breviceps was dominant in summer and preferred the middle and lower zones. The catch per unit of effort of both zooplanktivores also declined significantly following the flooding, thus suggesting that these fishes are reliant on zooplankton as a primary food source for healthy populations. Copepods dominated the stomach contents of both fish species, indicating a potential for strong interspecific competition for food, particularly in the middle reaches. Temporal differences were evident in dietary overlap between the two zooplanktivorous fish species and were correlated with river flow, zooplankton availability and fish distribution. The findings of this study emphasize the close trophic linkages between zooplankton and zooplanktivorous fishes under changing estuarine environmental conditions, particularly river flow and provide important baseline information for similar studies elsewhere in South Africa and the rest of the world. © 2018 The Fisheries Society of the British Isles.
2013-09-30
numerical efforts undertaken here implement established aspects of Boussinesq -type modeling, developed by the PI and other researchers. These aspects...the Boussinesq -type framework, and then implement in a numerical model. Once this comprehensive model is developed and tested against established...phenomena that might be observed at New River. WORK COMPLETED In FY13 we have continued the development of a Boussinesq -type formulation that
NASA Astrophysics Data System (ADS)
Martinez Baquero, G. F.; Furnans, J.; Hudson, C.; Magan, C.
2012-12-01
Management decisions on rivers and associated habitats require sound tools to identify major drivers for spatial and temporal variations of temperature and related water quality variables. 3D hydrodynamic and water quality models are key components to abstract flow dynamics in complex river systems as they allow extrapolating available observations to ungaged locations and alternative scenarios. The data collection and model development are intended to support the Mid-Columbia Fisheries Enhancement Group in conjunction with the Benton Conservation District in efforts to understand how seasonal flow patterns in the Yakima and Columbia rivers interact with the Yakima delta geometry to cause the relatively high water temperatures previously observed west of Bateman Island. These high temperatures are suspected of limiting salmonid success in the area, possibly contributing to adjustments in migration patterns and increased predation. The Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP) are used to model flow patterns and enable simulations of temperature distributions and water quality parameters at the confluence. Model development is supported by a bathymetric campaign in 2011 to evaluate delta geometry and to construct the EFDC domain, a sonar river survey in 2012 to measure velocity profiles and to enable model calibration, and a continuous collection of temperature and dissolved oxygen records from Level Scout probes at key locations during last year to drive water quality simulations. The current model is able to reproduce main flow features observed at the confluence and is being prepared to integrate previous and current temperature observations. The final model is expected to evaluate scenarios for the removal or alteration of the Bateman Island Causeway. Alterations to the causeway that permit water passage to the south of Bateman Island are likely to dramatically alter the water flow patterns through the Yakima and Columbia River confluence, which in turn will alter water temperature distributions, sediment transport pathways, and salmonid migration routes.
NASA Astrophysics Data System (ADS)
Buddendorf, B.; Fabris, L.; Malcolm, I.; Lazzaro, G.; Tetzlaff, D.; Botter, G.; Soulsby, C.
2016-12-01
Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Stream hydrodynamics have a strong influence on habitat quality and affect the distribution and density of juvenile salmon. As stream hydrodynamics directly relate to stream flow variability and channel morphology, the effects of hydroclimatic drivers on the spatial and temporal variability of habitat suitability can be assessed. Critical Displacement Velocity (CDV), which describes the velocity at which fish can no longer hold station, is one potential approach for characterising habitat suitability. CDV is obtained using an empirical formula that depends on fish size and stream temperature. By characterising the proportion of a reach below CDV it is possible to assess the suitable area. We demonstrate that a generic analytical approach based on field survey and hydraulic modelling can provide insights on the interactions between flow regime and average suitable area (SA) for juvenile salmon that could be extended to other aquatic species. Analytical functions are used to model the pdf of stream flow p(q) and the relationship between flow and suitable area SA(q). Theoretically these functions can assume any form. Here we used a gamma distribution to model p(q) and a gamma function to model SA(q). Integrating the product of these functions we obtain an analytical expression of SA. Since parameters of p(q) can be estimated from meteorological and flow measurements, they can be used directly to predict the effect of flow regime on SA. We show the utility of the approach with reference to 6 electrofishing sites in a single river system where long term (50 years) data on spatially distributed juvenile salmon densities are available.
Origin of the Colorado River experimental flood in Grand Canyon
Andrews, E.D.; Pizzi, L.A.
2000-01-01
The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of ~17 x 109 m3 year -1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of approximately 17??109 m3 year-1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.
Environmental flow assessments for transformed estuaries
NASA Astrophysics Data System (ADS)
Sun, Tao; Zhang, Heyue; Yang, Zhifeng; Yang, Wei
2015-01-01
Here, we propose an approach to environmental flow assessment that considers spatial pattern variations in potential habitats affected by river discharges and tidal currents in estuaries. The approach comprises four steps: identifying and simulating the distributions of critical environmental factors for habitats of typical species in an estuary; mapping of suitable habitats based on spatial distributions of the Habitat Suitability Index (HSI) and adopting the habitat aggregation index to understand fragmentation of potential suitable habitats; defining variations in water requirements for a certain species using trade-off analysis for different protection objectives; and recommending environmental flows in the estuary considering the compatibility and conflict of freshwater requirements for different species. This approach was tested using a case study in the Yellow River Estuary. Recommended environmental flows were determined by incorporating the requirements of four types of species into the assessments. Greater variability in freshwater inflows could be incorporated into the recommended environmental flows considering the adaptation of potential suitable habitats with variations in the flow regime. Environmental flow allocations should be conducted in conjunction with land use conflict management in estuaries. Based on the results presented here, the proposed approach offers flexible assessment of environmental flow for aquatic ecosystems that may be subject to future change.
NASA Astrophysics Data System (ADS)
Hitt, O.; Hutchins, M.
2016-12-01
UK river waters face considerable future pressures, primarily from population growth and climate change. In understanding controls on river water quality, experimental studies have successfully identified response to single or paired stressors under controlled conditions. Generalised Linear Model (GLM) approaches are commonly used to quantify stressor-response relationships. To explore a wider variety of stressors physics-based models are used. Our objective is to evaluate how five different types of stressor influence the severity of river eutrophication and its impact on Dissolved Oxygen (DO) an integrated measure of river ecological health. This is done by applying a physics-based river quality model for 4 years at daily time step to a 92 km stretch in the 3445 km2 Thames (UK) catchment. To understand the impact of model structural uncertainty we present results from two alternative formulations of the biological response. Sensitivity analysis carried out using the QUESTOR model (QUality Evaluation and Simulation TOol for River systems) considered gradients of various stressors: river flow, water temperature, urbanisation (abstractions and sewage/industrial effluents), phosphate concentrations in effluents and tributaries and riparian tree shading (modifying the light input). Scalar modifiers applied to the 2009-12 time-series inputs define the gradients. The model has been run for each combination of the values of these 5 variables. Results are analysed using graphical methods in order to identify variation in the type of relationship between different pairs of stressors on the system response. The method allows for all outputs from each combination of stressors to be displayed in one graphic and so showing the results of hundreds of model runs simultaneously. This approach can be carried out for all stressor pairs, and many locations/determinands. Supporting statistical analysis (GLM) reinforces the findings from the graphical analysis. Analysis suggests that climate-driven variables (flow and river temperature) give strong explanation of variation in DO content. An indicator of low DO values typically seen in summer is chosen (10th percentile). Increasing temperature clearly has adverse effects lowering DO, and is illustrated in three example graphics.
Investigating Runoff Efficiency in Upper Colorado River Streamflow Over Past Centuries
NASA Astrophysics Data System (ADS)
Woodhouse, Connie A.; Pederson, Gregory T.
2018-01-01
With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid to the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods of high and low flow, and its correspondence to a reconstruction of late runoff season UCRB temperature variability. Results indicate that runoff efficiency has played a consistent role in modulating the relationship between precipitation and streamflow over past centuries, and that temperature has likely been the key control. While negative runoff efficiency is most common during dry periods, and positive runoff efficiency during wet years, there are some instances of positive runoff efficiency moderating the impact of precipitation deficits on streamflow. Compared to past centuries, the 20th century has experienced twice as many high flow years with negative runoff efficiency, likely due to warm temperatures. These results suggest warming temperatures will continue to reduce runoff efficiency in wet or dry years, and that future flows will be less than anticipated from precipitation due to warming temperatures.
Investigating runoff efficiency in upper Colorado River streamflow over past centuries
Woodhouse, Connie A.; Pederson, Gregory T.
2018-01-01
With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid to the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods of high and low flow, and its correspondence to a reconstruction of late runoff season UCRB temperature variability. Results indicate that runoff efficiency has played a consistent role in modulating the relationship between precipitation and streamflow over past centuries, and that temperature has likely been the key control. While negative runoff efficiency is most common during dry periods, and positive runoff efficiency during wet years, there are some instances of positive runoff efficiency moderating the impact of precipitation deficits on streamflow. Compared to past centuries, the 20th century has experienced twice as many high flow years with negative runoff efficiency, likely due to warm temperatures. These results suggest warming temperatures will continue to reduce runoff efficiency in wet or dry years, and that future flows will be less than anticipated from precipitation due to warming temperatures.
NASA Astrophysics Data System (ADS)
Murphy, K. W.; Ellis, A. W.
2012-12-01
The Salt and Verde River watersheds in the Lower Colorado River Basin are a very important surface water resource in the Southwest United States. Their runoff is captured by a downstream reservoir system serving approximately 40% of the water demand and providing hydroelectric power to the Phoenix, Arizona area. Concerns have been expressed over the risks associated with their highly variable climate dependencies under the realization that the short, historical stream flow record was but one of many possible temporal and volumetric outcome sequences. A characterization of the possible range of flow deficits arising from natural variability beyond those evident in the instrumental record can facilitate sustainability planning as well as adaptation to future climate change scenarios. Methods were developed for this study to generate very long seasonal time series of net reservoir inflows by Monte Carlo simulations of the Salt and Verde watersheds which can be analyzed for detailed probabilistic insights. Other efforts to generate stochastic flow representations for impact assessments have been limited by normality distribution assumptions, inability to represent the covariance of flow contributions from multiple watersheds, complexities of different seasonal origins of precipitation and runoff dependencies, and constraints from spectral properties of the observational record. These difficulties were overcome in this study through stationarity assessments and development of joint probability distributions with highly skewed discrete density functions characteristic of the different watershed-season behaviors derived from a 123 year record. As well, methods of introducing season-to-season correlations owing to antecedent precipitation runoff efficiency enhancements have been incorporated. Representative 10,000 year time series have been stochastically generated which reflect a full range of temporal variability in flow volume distributions. Extreme value statistical analysis methods have been employed to characterize periods of flow deficit per various definitions of a drought period. Of concern for water resources are periods of net flows lower than those necessary to maintain reservoirs without sequential depletions. Probabilities of droughts lasting from only a few years up to 25 years duration have been identified along with their distributions of time to occurrence and cumulative flow deficits which can reach 50%. The analysis has yielded representations of the full range of drought severity in both depth and duration, providing useful quantitative guidance to risk management. Similarly, the risks of extremely high flows can be quantified. This study demonstrates that the instrumented historical record, once fully characterized and probabilistically represented, can yield many more insights to threatening periods of both hydrologic deficit and excess than is often assumed.
NASA Astrophysics Data System (ADS)
Mondal, A.; Chandniha, S. K.; Lakshmi, V.; Kundu, S.; Hashemi, H.
2017-12-01
This study compares the monthly precipitation from the gridded rain gauge data collected by India Meteorological Department (IMD) and the retrievals from the Tropical Rainfall Measurement Mission (TRMM) for the river basins of India using the TRMM Multisatellite Precipitation Analysis (TMPA) version 7 (V7). The IMD and TMPA datasets have the same spatial resolution (0.25°×0.25°) and extend from 1998 to 2013. The TRMM data accuracy for the river basins is assessed by comparison with IMD using root mean square error (RMSE), normalized mean square error (NMSE), Nash-Sutcliffe coefficient (NASH) and correlation coefficient (CC) methods. The Mann-Kendall (MK) and modified Mann-Kendall (MMK) tests have been applied for analyzing the data trend, and the change has been detected by Sen's Slope using both data sets for annual and seasonal time periods. The change in intensity of precipitation is estimated by percentage for comparing actual differences in various river basins. Variation in precipitation is high (>100 mm represents >15% of average annual precipitation) in Brahmaputra, rivers draining into Myanmar (RDM), rivers draining into Bangladesh (RDB), east flowing rivers between Mahanadi and Godavari (EMG), east flowing rivers between Pennar and Cauvery (EPC), Cauvery and Tapi. The NASH and CC values vary between 0.80 to 0.98 and 0.87 to 0.99 in all river basins except area of north Ladakh not draining into Indus (NLI) and east flowing rivers south of Cauvery (ESC), while RMSE and NMSE vary from 15.95 to 101.68 mm and 2.66 to 58.38 mm, respectively. The trends for TMPA and IMD datasets from 1998 to 2013 are quite similar in MK (except 4 river basins) and MMK (except 3 river basins). The estimated results imply that the TMPA precipitation show good agreement and can be used in climate studies and hydrological simulations in locations/river basins where the number of rain gauge stations is not adequate to quantify the spatial variability of precipitation. Keywords: Precipitation data comparison, IMD, TRMM, river basins, Mann-Kendall test
Seasonal drought effects on the water quality of the Biobío River, Central Chile.
Yevenes, Mariela A; Figueroa, Ricardo; Parra, Oscar
2018-05-01
Quantifying the effect of droughts on ecosystem functions is essential to the development of coastal zone and river management under a changing climate. It is widely acknowledged that climate change is increasing the frequency and intensity of droughts, which can affect important ecosystem services, such as the regional supply of clean water. Very little is understood about how droughts affect the water quality of Chilean high flow rivers. This paper intends to investigate the effect of an, recently identified, unprecedented drought in Chile (2010-2015), on the Biobío River water quality, (36°45'-38°49' S and 71°00'-73°20' W), Central Chile. This river is one of the largest Chilean rivers and it provides abundant freshwater. Water quality (water temperature, pH, dissolved oxygen, electrical conductivity, biological oxygen demand, total suspended solids, chloride, sodium, nutrients, and trace metals), during the drought (2010-2015), was compared with a pre-drought period (2000-2009) over two reaches (upstream and downstream) of the river. Multivariate analysis and seasonal Mann-Kendall trend analyses and a Theil-Sen estimator were employed to analyze trends and slopes of the reaches. Results indicated a significant decreased trend in total suspended solids and a slightly increasing trend in water temperature and EC, major ions, and trace metals (chrome, lead, iron, and cobalt), mainly in summer and autumn during the drought. The reduced variability upstream suggested that nutrient and metal concentrations were more constant than downstream. The results evidenced, due to the close relationship between river discharge and water quality, a slightly decline of the water quality downstream of the Biobío River during drought period, which could be attenuated in a post-drought period. These results displayed that water quality is vulnerable to reductions in flow, through historical and emerging solutes/contaminants and induced pH mobilization. Consequently, seasonal changes and a progressive reduction of river flow affect the ecosystem functionality in this key Chilean river. The outcomes from this research can be used to improve how low flow conditions and the effects of a reduction in the river volume and discharge are assessed, which is the case under the scenario of more frequent drought periods.
Seismologically determined bedload flux during the typhoon season.
Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Tsai, Victor C; Chen, Chi-Hsuan
2015-02-05
Continuous seismic records near river channels can be used to quantify the energy induced by river sediment transport. During the 2011 typhoon season, we deployed a seismic array along the Chishan River in the mountain area of southern Taiwan, where there is strong variability in water discharge and high sedimentation rates. We observe hysteresis in the high-frequency (5-15 Hz) seismic noise level relative to the associated hydrological parameters. In addition, our seismic noise analysis reveals an asymmetry and a high coherence in noise cross-correlation functions for several station pairs during the typhoon passage, which corresponds to sediment particles and turbulent flows impacting along the riverbed where the river bends sharply. Based on spectral characteristics of the seismic records, we also detected 20 landslide/debris flow events, which we use to estimate the sediment supply. Comparison of sediment flux between seismologically determined bedload and derived suspended load indicates temporal changes in the sediment flux ratio, which imply a complex transition process from the bedload regime to the suspension regime between typhoon passage and off-typhoon periods. Our study demonstrates the possibility of seismologically monitoring river bedload transport, thus providing valuable additional information for studying fluvial bedrock erosion and mountain landscape evolution.
Seismologically determined bedload flux during the typhoon season
Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Tsai, Victor C.; Chen, Chi-Hsuan
2015-01-01
Continuous seismic records near river channels can be used to quantify the energy induced by river sediment transport. During the 2011 typhoon season, we deployed a seismic array along the Chishan River in the mountain area of southern Taiwan, where there is strong variability in water discharge and high sedimentation rates. We observe hysteresis in the high-frequency (5–15 Hz) seismic noise level relative to the associated hydrological parameters. In addition, our seismic noise analysis reveals an asymmetry and a high coherence in noise cross-correlation functions for several station pairs during the typhoon passage, which corresponds to sediment particles and turbulent flows impacting along the riverbed where the river bends sharply. Based on spectral characteristics of the seismic records, we also detected 20 landslide/debris flow events, which we use to estimate the sediment supply. Comparison of sediment flux between seismologically determined bedload and derived suspended load indicates temporal changes in the sediment flux ratio, which imply a complex transition process from the bedload regime to the suspension regime between typhoon passage and off-typhoon periods. Our study demonstrates the possibility of seismologically monitoring river bedload transport, thus providing valuable additional information for studying fluvial bedrock erosion and mountain landscape evolution. PMID:25652082
Influence of the Yukon River on the Bering Sea
NASA Technical Reports Server (NTRS)
Dean, Kenneson G.; Mcroy, C. Peter
1988-01-01
Physical and biological oceanography of the northern Bering Sea including the influence of the Yukon River were studied. Satellite data acquired by the Advanced Very High Resolution Radiometer (AVHRR), the LANDSAT Multispectral Scanner (MSS) and the Thematic Mapper (TM) sensor were used to detect sea surface temperatures and suspended sediments. Shipboard measurements of temperature, salinity and nutrients were acquired through the Inner Shelf Transfer and Recycling (ISHTAR) project and were compared to digitally enhanced and historical satellite images. The satellite data reveal north-flowing, warm water along the Alaskan coast that is highly turbid with complex patterns of surface circulation near the Yukon River delta. To the west near the Soviet Union, cold water, derived from an upwelling, mixes with shelf water and also flows north. The cold and warm water coincide with the Anadyr, Bering Shelf and Alaskan coastal water masses. Generally, warm Alaskan coastal water forms near the coast and extends offshore as the summer progresses. Turbid water discharged by the Yukon River progresses in the same fashion but extends northward across the entrance to Norton Sound, attaining its maximum surface extent in October. The Anadyr water flows northward and around St. Lawrence Island, but its extent is highly variable and depends upon mesoscale pressure fields in the Arctic Ocean and the Bering Sea.
NASA Astrophysics Data System (ADS)
Gower, D.; McCord, P. F.; Caylor, K. K.; Dell'Angelo, J.; Evans, T. P.
2016-12-01
Community water projects (CWPs) in the Laikipia region of Central Kenya distribute river water to smallholder farmers who otherwise lack access to municipal systems or private water sources. Participating farmers are better able to withstand climatic conditions commonly found in drylands, including high potential evapotranspiration combined with low and variable rainfall. To provide these benefits, however, CWPs must be able to deliver water in sufficient quantities and with sufficient regularity to all farmers in the network. Factors such as variable river flow, aging infrastructure and increasing membership pose challenges to the CWP management in fulfilling this task. During the dry season, river levels typically decline, reducing water available for CWP and increasing the importance of intake position within the catchment. CWPs with intakes in upstream areas have first access to river water but rely on a smaller drainage network while those in downstream areas are affected by the opposite conditions. Such conditions have pushed CWPs to jointly regulate their water consumption by setting withdrawal limits and coordinating withdrawal schedules with one another. Regulations also ensure that river water is not completely consumed by CWPs, allowing some flow to exit the catchment for human or environmental reasons. This paper uses a simple numerical model to calculate the monetary benefit that individual farmers receive from membership in a CWP. In the model, the CWP provides water to a variable number of farmers in exchange for membership fees while farmers must grow sufficient crops to feed themselves and pay fees. The model shows that, under conditions similar to those in Laikipia, CWP can consistently provide adequate benefits to its members only with intakes at particular locations within the catchment or with specific regulations in place. Otherwise, the economic benefits of CWP membership will gradually fall below the cost of membership. This result may help in developing recommendations as to how CWP should be located and managed in similar areas.
Hydrologic Connectivity Estimated throughout the Nation's River Corridors
NASA Astrophysics Data System (ADS)
Hunt, R.; Borchardt, M. A.; Bradbury, K. R.
2014-12-01
Hydrologic connectivity is a key concept that integrates longitudinal transport in rivers with vertical and lateral exchanges between rivers and hyporheic zones, riparian wetlands, floodplains, and ponded aquatic ecosystems. Desirable levels of connectivity are thought to be associated with rivers that are well-connected longitudinally while also being well connected vertically and laterally with marginal waters where carbon and nutrients are efficiently transformed, and where aquatic organisms feed, or are reared, or take refuge during floods. But what is the proper balance between longitudinal and vertical and lateral connectivity? We took a step towards quantifying hydrologic connectivity using the model NEXSS (Gomez-Velez and Harvey, 2014, GRL) applied throughout the nation's rivers. NEXSS simulates vertical and lateral connectivity and compares it with longitudinal transport along the river's main axis. It uses as inputs measured network topology for first to eighth order channels, river hydraulic geometry, sediment grain size, bedform types and sizes, estimated hydraulic conductivity of sediments, and estimates of reaction rates such as denitrification. Results indicate that hyporheic flow is large enough to exchange a river's entire volume many times within a river network, which increases biogeochemical opportunities for nutrient processing and attenuation of contaminants. Also, the analysis demonstrated why and where (i.e., in which physiographic regions of the nation) are hyporheic flow and solute reactions the greatest. The cumulative influence of hydrologic connectivity on water quality is expressed by a dimensionless index of reaction significance. Our quantification of hydrologic connectivity adds a physical basis that supports water quality modeling, and also supports scientifically based prioritization of management actions (e.g. stream restoration) and may support other types of actions (e.g. legislative actions) to help conserve healthy functional rivers with proper levels of stream metabolism and diverse food webs. The NEXSS model will be modified to account for variable flow (baseflow to bankfull) and to account for exchange that occurs with overbank flooding of riparian wetlands and floodplains.
Hydrologic Connectivity Estimated throughout the Nation's River Corridors
NASA Astrophysics Data System (ADS)
Harvey, J. W.; Gomez-Velez, J. D.
2015-12-01
Hydrologic connectivity is a key concept that integrates longitudinal transport in rivers with vertical and lateral exchanges between rivers and hyporheic zones, riparian wetlands, floodplains, and ponded aquatic ecosystems. Desirable levels of connectivity are thought to be associated with rivers that are well-connected longitudinally while also being well connected vertically and laterally with marginal waters where carbon and nutrients are efficiently transformed, and where aquatic organisms feed, or are reared, or take refuge during floods. But what is the proper balance between longitudinal and vertical and lateral connectivity? We took a step towards quantifying hydrologic connectivity using the model NEXSS (Gomez-Velez and Harvey, 2014, GRL) applied throughout the nation's rivers. NEXSS simulates vertical and lateral connectivity and compares it with longitudinal transport along the river's main axis. It uses as inputs measured network topology for first to eighth order channels, river hydraulic geometry, sediment grain size, bedform types and sizes, estimated hydraulic conductivity of sediments, and estimates of reaction rates such as denitrification. Results indicate that hyporheic flow is large enough to exchange a river's entire volume many times within a river network, which increases biogeochemical opportunities for nutrient processing and attenuation of contaminants. Also, the analysis demonstrated why and where (i.e., in which physiographic regions of the nation) are hyporheic flow and solute reactions the greatest. The cumulative influence of hydrologic connectivity on water quality is expressed by a dimensionless index of reaction significance. Our quantification of hydrologic connectivity adds a physical basis that supports water quality modeling, and also supports scientifically based prioritization of management actions (e.g. stream restoration) and may support other types of actions (e.g. legislative actions) to help conserve healthy functional rivers with proper levels of stream metabolism and diverse food webs. The NEXSS model will be modified to account for variable flow (baseflow to bankfull) and to account for exchange that occurs with overbank flooding of riparian wetlands and floodplains.
Mapping the temporary and perennial character of whole river networks
NASA Astrophysics Data System (ADS)
González-Ferreras, A. M.; Barquín, J.
2017-08-01
Knowledge of the spatial distribution of temporary and perennial river channels in a whole catchment is important for effective integrated basin management and river biodiversity conservation. However, this information is usually not available or is incomplete. In this study, we present a statistically based methodology to classify river segments from a whole river network (Deva-Cares catchment, Northern Spain) as temporary or perennial. This method is based on an a priori classification of a subset of river segments as temporary or perennial, using field surveys and aerial images, and then running Random Forest models to predict classification membership for the rest of the river network. The independent variables and the river network were derived following a computer-based geospatial simulation of riverine landscapes. The model results show high values of overall accuracy, sensitivity, and specificity for the evaluation of the fitted model to the training and testing data set (≥0.9). The most important independent variables were catchment area, area occupied by broadleaf forest, minimum monthly precipitation in August, and average catchment elevation. The final map shows 7525 temporary river segments (1012.5 km) and 3731 perennial river segments (662.5 km). A subsequent validation of the mapping results using River Habitat Survey data and expert knowledge supported the validity of the proposed maps. We conclude that the proposed methodology is a valid method for mapping the limits of flow permanence that could substantially increase our understanding of the spatial links between terrestrial and aquatic interfaces, improving the research, management, and conservation of river biodiversity and functioning.
The impact of climate changes on rivers discharge in Eastern Romania
NASA Astrophysics Data System (ADS)
Croitoru, Adina-Eliza; Minea, Ionus
2015-05-01
Climate changes imply many changes in different socioeconomic and environmental fields. Among the most important impacts are changes in water resources. Long- and mid-term river discharge flow analysis is essential for the effective management of water resources. In this work, the changes in temperature, precipitation, and river discharges as well as the connections between precipitation and river discharges were investigated. Seasonal and annual climatic and hydrological data collected at 6 weather stations and 17 hydrological stations were employed. The data sets cover 57 years (1950-2006). The modified Mann-Kendall test and Sen's slope were used to calculate trends and their slopes, whereas the Bravais-Pearson correlation index was chosen to detect the connections between precipitation and river discharge data series. The main findings are as follows: a general increase was identified in all the three variables; the air temperature data series showed the highest frequency of statistically significant slopes, mainly in annual and spring series; all data series, except the series for winter, showed an increase in precipitation, and in winter, a significant decrease in precipitation was observed at most of the stations. The increase in precipitation is reflected in the upward trends of the river discharge flows, as verified by the good Bravais-Pearson correlations, mainly for annual, summer, and autumn series.
NASA Astrophysics Data System (ADS)
Pasquale, N.; Perona, P.; Jiang, Z.; Burlando, P.
2009-04-01
Understanding and predicting the evolution of river alluvial bed forms toward a vegetated or a non-vegetated morphology have important implications for restored river corridors and the related ecosystem functioning (see also Schäppi et al, this session). Vegetation recruitment and growth on non-cohesive material of river corridors, such as gravel bars and islands of braided river, depend on the ability of roots to develop and anchor efficiently such to resist against flow erosion. In this work, we study the interannual morphological evolution of a gravel bar island, the survival rate and the growth of a number of plots with different density and orientation of transplanted cuttings (Salix Alba), the space and time dynamics of which depend on erosion and deposition processes due to floods. Our purpose is to identify island locations where the hydrodynamic conditions are more suitable for plants germination, growth and survival in relation to the river hydrograph statistics. This information is a first step to build a stochastic model able to predict the future evolution and progress of the restoration action of the investigated river reach. We focus at the main island of River Thur at Niederneunforn (Canton Thurgau, Switzerland), the restoration success of which is investigated from a mechanistic viewpoint in the research project "REstored CORridor Dynamics" (www.record.ethz.ch). Accordingly, we analyze two recent Digital Elevation Models (1 year difference), which were first corrected to account for the river bathymetry, and then we compare them in order to extract relevant interannual morphological changes. Using a two dimensional numerical hydrodynamic model we simulate several flow conditions ranging from the minimum recorded flow up to the one that completely inundates the island. Hence, we build inundation maps of the island that we associate to the frequency and the submergence duration of every area. We then correlate such results to the observed survival rate and the root characteristics of a sample of 1-year old transplanted cuttings. Despite limited in number, the investigated sample suggests that roots are shot from different points of the cuttings, which seem to reflect their location on the island and the direction of major resistance to flow erosion, also in agreement with the inundation maps.
Variational Assimilation of Sparse and Uncertain Satellite Data For 1D Saint-Venant River Models
NASA Astrophysics Data System (ADS)
Garambois, P. A.; Brisset, P.; Monnier, J.; Roux, H.
2016-12-01
Profusion of satellites are providing increasingly accurate measurements of continental water cyle, and water bodies variations while in situ observability is declining. The future Surface Water and Ocean Topography (SWOT) mission will provide maps of river surface elevations widths and slopes with an almost global coverage and temporal revisits. This will offer the possibility to address a larger variety of inverse problems in surface hydrology. Data assimilation techniques, that are broadly used in several scientific fields, aim to optimally combine models, system observations and prior information. Variational assimilation consists in iterative minimization of a discrepency measure between model outputs and observations, here for retrieving boundary conditions and parameters of a 1D Saint Venant model. Nevertheless, inferring river discharge and hydraulic parameters thanks to the observation of river surface is not straightforward. This is particularly true in the case of sparse and uncertain observations of flow state variables since they are governed by nonlinear physical processes. This paper investigates the identifiability of hydraulic controls given sparse and uncertain satellite observations of a river. The identifiability of river discharge alone and with roughness is tested for several spatio temporal patterns of river observations, including SWOT like observations. A new 1D Shallow water model with variational data assimilation, within the DassFlow chain is presented as well as postprocessing and observation operator dedicated to the future SWOT and SWOT simulator data. In view to decrease inverse problem dimensionality discharge is represented in a reduced basis. Moreover we introduce an original and reduced parametrization of the flow resistance that can account for various flow regimes along with a cross section design dedicated to remote sensing. We show which discharge temporal frequencies can be identified w.r.t observation ones and at which accuracy. Eventually the important question of the discharge identifiability potential between observation times and depending on the spatio-temporal sampling is adressed with respect to the wave lengths of the hydrological signals.
Distribution of Chironomidae in a semiarid intermittent river of Brazil.
Farias, R L; Carvalho, L K; Medeiros, E S F
2012-12-01
The effects of the intermittency of water flow on habitat structure and substrate composition have been reported to create a patch dynamics for the aquatic fauna, mostly for that associated with the substrate. This study aims to describe the spatial distribution of Chironomidae in an intermittent river of semiarid Brazil and to associate assemblage composition with environmental variables. Benthic invertebrates were sampled during the wet and dry seasons using a D-shaped net (40 cm wide and 250 μm mesh), and the Chironomidae were identified to genus level. The most abundant genera were Tanytarsus, Polypedilum, and Saetheria with important contributions of the genera Procladius, Aedokritus, and Dicrotendipes. Richness and density were not significantly different between the study sites, and multiple regression showed that the variation in richness and density explained by the environmental variables was significant only for substrate composition. The composition of genera showed significant spatial segregation across the study sites. Canonical Correspondence Analysis showed significant correspondence between Chironomidae composition and the environmental variables, with submerged vegetation, elevation, and leaf litter being important predictors of the Chironomidae fauna. This study showed that Chironomidae presented important spatial variation along the river and that this variation was substantially explained by environmental variables associated with the habitat structure and river hierarchy. We suggest that the observed spatial segregation in the fauna results in the high diversity of this group of organisms in intermittent streams.
Variation of Probable Maximum Precipitation in Brazos River Basin, TX
NASA Astrophysics Data System (ADS)
Bhatia, N.; Singh, V. P.
2017-12-01
The Brazos River basin, the second-largest river basin by area in Texas, generates the highest amount of flow volume of any river in a given year in Texas. With its headwaters located at the confluence of Double Mountain and Salt forks in Stonewall County, the third-longest flowline of the Brazos River traverses within narrow valleys in the area of rolling topography of west Texas, and flows through rugged terrains in mainly featureless plains of central Texas, before its confluence with Gulf of Mexico. Along its major flow network, the river basin covers six different climate regions characterized on the basis of similar attributes of vegetation, temperature, humidity, rainfall, and seasonal weather changes, by National Oceanic and Atmospheric Administration (NOAA). Our previous research on Texas climatology illustrated intensified precipitation regimes, which tend to result in extreme flood events. Such events have caused huge losses of lives and infrastructure in the Brazos River basin. Therefore, a region-specific investigation is required for analyzing precipitation regimes along the geographically-diverse river network. Owing to the topographical and hydroclimatological variations along the flow network, 24-hour Probable Maximum Precipitation (PMP) was estimated for different hydrologic units along the river network, using the revised Hershfield's method devised by Lan et al. (2017). The method incorporates the use of a standardized variable describing the maximum deviation from the average of a sample scaled by the standard deviation of the sample. The hydrometeorological literature identifies this method as more reasonable and consistent with the frequency equation. With respect to the calculation of stable data size required for statistically reliable results, this study also quantified the respective uncertainty associated with PMP values in different hydrologic units. The corresponding range of return periods of PMPs in different hydrologic units was further evaluated using the inverse CDF functions of the most appropriate probability distributions. The analysis will aid regional water boards in designing hydraulic structures, such as dams, spillways, levees, and in identifying and implementing prevention and control mechanisms for extreme flood events resulting from the PMPs.
NASA Astrophysics Data System (ADS)
Binet, S.; Joigneaux, E.; Pauwels, H.; Albéric, P.; Fléhoc, Ch.; Bruand, A.
2017-01-01
Water exchanges between a karstic conduit and the surrounding aquifer are driven by hydraulic head gradient at the interface between these two domains. The case-study presented in this paper investigates the impact of the geometry and interface conditions around a conduit on the spatial distribution of these exchanges. Isotopic (δ18O and δD), discharge and water head measurements were conducted at the resurgences of a karst system with a strong allogenic recharge component (Val d'Orléans, France), to estimate the amounts of water exchanged and the mixings between a saturated karstic conduit and the surrounding aquifer. The spatio-temporal variability of the observed exchanges was explored using a 2D coupled continuum-conduit flow model under saturated conditions (Feflow®). The inputs from the water heads and stable water isotopes in the groundwater flow model suggest that the amounts of water flowing from the aquifer are significant if the conduit flow discharges are less than the conduit flow capacity. This condition creates a spatial distribution of exchanges from upstream where the aquifer feeds the conduit (recharge area) to downstream where the conduit reaches its maximum discharge capacity and can feed the aquifer (discharge area). In the intermediate transport zone no exchange between the two domains takes place that brings a new criterion to delineate the vulnerable zones to surface water. On average, 4% of the water comes from the local recharge, 80% is recent river water and 16% is old river water. During the November 2008 flood, both isotopic signatures and model suggest that exchanges fluctuate around this steady state, limited when the river water level increases and intensified when the river water level decreases. The existence of old water from the river suggests a transient storage at the aquifer/conduit interface that can be considered as an underground hyporheic zone.
O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle Ann; Butler, Kenna D.
2012-01-01
Groundwater discharge to rivers has increased in recent decades across the circumpolar region and has been attributed to thawing permafrost in arctic and subarctic watersheds. Permafrost-driven changes in groundwater discharge will alter the flux of dissolved organic carbon (DOC) in rivers, yet little is known about the chemical composition and reactivity of dissolved organic matter (DOM) of groundwater in permafrost settings. Here, we characterize DOM composition of winter flow in 60 rivers and streams of the Yukon River basin to evaluate the biogeochemical consequences of enhanced groundwater discharge associated with permafrost thaw. DOC concentration of winter flow averaged 3.9 ± 0.5 mg C L−1, yet was highly variable across basins (ranging from 20 mg C L−1). In comparison to the summer-autumn period, DOM composition of winter flow had lower aromaticity (as indicated by specific ultraviolet absorbance at 254 nm, or SUVA254), lower hydrophobic acid content, and a higher proportion of hydrophilic compounds (HPI). Fluorescence spectroscopy and parallel factor analysis indicated enrichment of protein-like fluorophores in some, but not all, winter flow samples. The ratio of DOC to dissolved organic nitrogen, an indicator of DOM biodegradability, was positively correlated with SUVA254 and negatively correlated with the percentage of protein-like compounds. Using a simple two-pool mixing model, we evaluate possible changes in DOM during the summer-autumn period across a range of conditions reflecting possible increases in groundwater discharge. Across three watersheds, we consistently observed decreases in DOC concentration and SUVA254 and increases in HPI with increasing groundwater discharge. Spatial patterns in DOM composition of winter flow appear to reflect differences in the relative contributions of groundwater from suprapermafrost and subpermafrost aquifers across watersheds. Our findings call for more explicit consideration of DOC loss and stabilization pathways associated with changing subsurface hydrology in watersheds underlain by thawing permafrost.
Simulation of natural flows in major river basins in Alabama
Hunt, Alexandria M.; García, Ana María
2014-01-01
The Office of Water Resources (OWR) in the Alabama Department of Economic and Community Affairs (ADECA) is charged with the assessment of the State’s water resources. This study developed a watershed model for the major river basins that are within Alabama or that cross Alabama’s borders, which serves as a planning tool for water-resource decisionmakers. The watershed model chosen to assess the natural amount of available water was the Precipitation-Runoff Modeling System (PRMS). Models were configured and calibrated for the following four river basins: Mobile, Gulf of Mexico, Middle Tennessee, and Chattahoochee. These models required calibrating unregulated U.S. Geological Survey (USGS) streamflow gaging stations to estimate natural flows, with emphases on low-flow calibration. The target calibration criteria required the errors be within the range of: (1) ±10 percent for total-streamflow volume, (2) ±10 percent for low-flow volume, (3) ±15 percent for high-flow volume, (4) ±30 percent for summer volume, and (5) above 0.5 for the correlation coefficient (R2). Seventy-one of the 90 calibration stations in the watershed models for the four major river basins within Alabama met the target calibration criteria. Variability in the model performance can be attributed to limitations in correctly representing certain hydrologic conditions that are characterized by some of the ecoregions in Alabama. Ecoregions consisting of predominantly clayey soils and (or) low topographic relief yield less successful calibration results, whereas ecoregions consisting of loamy and sandy soils and (or) high topographic relief yield more successful calibration results. Results indicate that the model does well in hilly regions with sandy soils because of rapid surface runoff and more direct interaction with subsurface flow.
River reach classification for the Greater Mekong Region at high spatial resolution
NASA Astrophysics Data System (ADS)
Ouellet Dallaire, C.; Lehner, B.
2014-12-01
River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of hydro-ecological assessments and useful for a variety of stakeholders such as NGO, governments and researchers.
Evaluating the effects of monthly river flow trends on Environmental Flow allocation
NASA Astrophysics Data System (ADS)
Torabi Haghighi, Ali; Klove, Bjorn
2010-05-01
The Natural river flow regime can be changed by the construction of hydraulic structures such as dams, hydropower plants, pump stations and so on. Due to the new river flow regime, some parts of water resources must be allocated to environmental flow (EF). There are more than 62 hydrological methods which have been proposed for calculating EF, although these methods don't have enough acceptability to be used in practical cases and The so other methods are preferred such as holistic,….. Most hydrological methods do not take basin physiography, climate, location of hydraulic structures, monthly river flow regime, historical trend of river (annually regime), purpose of hydraulic structures and so on, into consideration. In the present work, data from more than 180 rivers from Asia (71 rivers and 16 countries), Europe (79 Rivers and 23 countries), Americas (23 rivers and 10 countries) and Africa (12 rivers and 6 countries) were used to assess EF. The rivers were divided into 5 main groups of regular permanent rivers, semi regular permanent rivers, irregular permanent rivers, seasonal rivers and dry rivers, for each groups EF calculated by some hydrological methods and compared with the natural flow regime. The results showed that besides the amount of EF, the monthly distribution of flow is very important and should be considered in reservoir operation. In seasonal rivers and dry rivers, hydraulic structure construction can be useful for conserving aquatic ecosystems
Hydrologic controls on basin-scale distribution of benthic macroinvertebrates
NASA Astrophysics Data System (ADS)
Bertuzzo, E.; Ceola, S.; Singer, G. A.; Battin, T. J.; Montanari, A.; Rinaldo, A.
2013-12-01
The presentation deals with the role of streamflow variability on basin-scale distributions of benthic macroinvertebrates. Specifically, we present a probabilistic analysis of the impacts of the variability along the river network of relevant hydraulic variables on the density of benthic macroinvertebrate species. The relevance of this work is based on the implications of the predictability of macroinvertebrate patterns within a catchment on fluvial ecosystem health, being macroinvertebrates commonly used as sensitive indicators, and on the effects of anthropogenic activity. The analytical tools presented here outline a novel procedure of general nature aiming at a spatially-explicit quantitative assessment of how near-bed flow variability affects benthic macroinvertebrate abundance. Moving from the analytical characterization of the at-a-site probability distribution functions (pdfs) of streamflow and bottom shear stress, a spatial extension to a whole river network is performed aiming at the definition of spatial maps of streamflow and bottom shear stress. Then, bottom shear stress pdf, coupled with habitat suitability curves (e.g., empirical relations between species density and bottom shear stress) derived from field studies are used to produce maps of macroinvertebrate suitability to shear stress conditions. Thus, moving from measured hydrologic conditions, possible effects of river streamflow alterations on macroinvertebrate densities may be fairly assessed. We apply this framework to an Austrian river network, used as benchmark for the analysis, for which rainfall and streamflow time-series and river network hydraulic properties and macroinvertebrate density data are available. A comparison between observed vs "modeled" species' density in three locations along the examined river network is also presented. Although the proposed approach focuses on a single controlling factor, it shows important implications with water resources management and fluvial ecosystem protection.
Laine, L.L.
1958-01-01
Analysis of streamflow data shows that water supply in the Washita River basin is variable, ranging from substantial amounts and almost continuous flow in the Washita River in the lower end of the basin to somewhat limited and intermittent flow in the upper part of the basin. The total yield of the basin averages 1,557,000 acre-ft per year, of which somewhat less than 1.3 percent is contributed by headwater areas in Texas. The surface waters are generally of acceptable quality for drinking purposes, excellent for irrigation uses, and suitable for many industrial purposes. In Oklahoma the high amounts of runoff tend to occur in the spring months. High runoff may occur during any month in the year but, in general, the available streamflow is relatively small in the summer. Most tributary streams have little sustained base flow and many are dry at times each year. Because of the high variability in flow, development of storage will be necessary to attain maximum utilization of the available water supplies. This report gives the average discharge at most gaging stations and at several additional sites for the 16-year period October 1938 to September 1954, used as a standard period in this report. Data are also shown on water available at several gaging stations and other sites for a given percentage of the time during the 16-year standard period. For several gaging stations data are given on minimum discharges for periods of various length during the most critical periods of record. For all gaging stations a summary of available basic data on streamflow is presented on a monthly annual basis. For other sites at which discharge measurements have been made, a tabulation of observed discharge is given. (available as photostat copy only)
Covington, H.R.; Weaver, Jean N.
1991-01-01
The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snake River underlies most of the eastern plain. The aquifer is composed of basaltic rocks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface but is deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat lying basaltic and sedimentary rocks of the eastern Snake River Plain aquifer, which discharges from the northern canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along the describes the geologic occurrence of springs along the northern wall of the Snake River canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill. To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Sam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.
Covington, H.R.; Weaver, Jean N.
1990-01-01
The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snaked River underlies the most of the eastern plain. The aquifer is composed of basaltic ricks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface, but is deeper than 1,000 ft in few areas. The Snake River had excavated a canyon into the nearly flat-lying basaltic and sedimentary rocks of the eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon intersects the Snake River Plain aquifer, which discharges from the north canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill. To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Dam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.
Panthi, Jeeban; Li, Fengting; Wang, Hongtao; Aryal, Suman; Dahal, Piyush; Ghimire, Sheila; Kabenge, Martin
2017-06-01
Both climatic and non-climatic factors affect surface water quality. Similar to its effect across various sectors and areas, climate change has potential to affect surface water quality directly and indirectly. On the one hand, the rise in temperature enhances the microbial activity and decomposition of organic matter in the river system and changes in rainfall alter discharge and water flow in the river ultimately affecting pollution dilution level. On the other hand, the disposal of organic waste and channelizing municipal sewage into the rivers seriously worsen water quality. This study attempts to relate hydro-climatology, water quality, and impact of climatic and non-climatic stresses in affecting river water quality in the upper Bagmati basin in Central Nepal. The results showed that the key water quality indicators such as dissolved oxygen and chemical oxygen demand are getting worse in recent years. No significant relationships were found between the key water quality indicators and changes in key climatic variables. However, the water quality indicators correlated with the increase in urban population and per capita waste production in the city. The findings of this study indicate that dealing with non-climatic stressors such as reducing direct disposal of sewerage and other wastes in the river rather than emphasizing on working with the effects from climate change would largely help to improve water quality in the river flowing from highly populated urban areas.
Scott, Michael L; Friedman, Jonathan M.
2018-01-01
This report addresses the relation between flow of the Yampa River and occurrence of herbaceous and woody riparian vegetation in Dinosaur National Monument (DINO) with the goal of informing management decisions related to potential future water development. The Yampa River in DINO flows through diverse valley settings, from the relatively broad restricted meanders of Deerlodge Park to narrower canyons, including debris fan-affected reaches in the upper Yampa Canyon and entrenched meanders in Harding Hole and Laddie Park. Analysis of occurrence of all plant species measured in 1470 quadrats by multiple authors over the last 24 years shows that riparian vegetation along the Yampa River is strongly related to valley setting and geomorphic surfaces, defined here as active channel, active floodplain, inactive floodplain, and upland. Principal Coordinates Ordination arrayed quadrats and species along gradients of overall cover and moisture availability, from upland and inactive floodplain quadrats and associated xeric species like western wheat grass (Pascopyrum smithii), cheatgrass (Bromus tectorum), and saltgrass (Distichlis spicata) to active channel and active floodplain quadrats supporting more mesic species including sandbar willow (Salix exigua), wild licorice (Glycyrrhiza lepidota), and cordgrass (Spartina spp.). Indicator species analysis identified plants strongly correlated with geomorphic surfaces. These species indicate state changes in geomorphic surfaces, such as the conversion of active channel to floodplain during channel narrowing. The dominant woody riparian species along the Yampa River are invasive tamarisk (Tamarix ramosissima), and native Fremont cottonwood (Populus deltoides ssp. wislizenii), box elder (Acer negundo L. var. interius), and sandbar willow (Salix exigua). These species differ in tolerance of drought, salinity, inundation, flood disturbance and shade, and in seed size, timing of seed dispersal and ability to form root sprouts. These physiological and ecological differences interact with flow variation and geomorphic setting, resulting in differential patterns of occurrence. For example, in park settings cottonwood is far more abundant than box elder, while the reverse is true in canyons. Synthesis of existing knowledge from the Yampa and Green rivers and elsewhere suggests that the following flow-vegetation relations can be used to assess effects of future flow alterations in the Yampa River.High variability in flow within and between years removes vegetation through erosion, extended inundation and desiccation, creating the broad, open surfaces in and near the channel that are characteristic of lightly regulated rivers in western North America. This flow variability provides opportunities for establishment of disturbance-dependent riparian species.Flow regulation that results in lower peak flows and higher low flows allows proliferation of woody riparian vegetation, mostly tamarisk in canyon reaches, but both tamarisk and cottonwood in parks. Denser near-channel vegetation promotes sediment deposition leading to channel narrowing. Decreasing flow variability also increases area of species associated with extremely high and low inundation durations relative to species associated with moderate inundation duration. In addition, such flow regulation decreases occurrence of species tolerant of fluvial disturbance, while increasing occurrence of species tolerant of extended inundation.Over the long term, establishment of cottonwood and tamarisk requires disturbance by large floods, which provides openings for new individuals. At the annual time scale, establishment can occur in any year or location that provides a moist, open surface free from frequent future disturbance. In canyons, where channel movement is limited, low surfaces are too frequently disturbed for long-term survival of cottonwood, and establishment requirements are generally met only in years of moderate to high peak flows. In park settings cottonwood establishment may also occur in years of low peak flows where survival is promoted by movement of the channel away from the seedling.Peak flows early in the growing season promote establishment of cottonwood and sandbar willow seedlings relative to those of tamarisk. This is because cottonwood and willow seed release occurs early in the summer, while that of tamarisk occurs later. Late season seed release of tamarisk allows it to establish lower on the floodplain than cottonwood.Because of its shade tolerance and the energy stored in its large seeds, box elder can become established beneath existing vegetation, an ability not shared by cottonwood, tamarisk or willow. Although box elder does not require flood disturbance, it does take advantage of soil moisture from floods, which allow this species to become established high above the channel.Decreases in flow peaks, volumes or base flows decrease growth and survival of cottonwood relative to drought-tolerant tamarisk. Storing water from the spring peak in a reservoir for release after the April-July cottonwood growth window may also decrease growth and survival of cottonwood relative to tamarisk. Decreases in peak flows decrease floodplain inundation, which can reduce growth of floodplain species by preventing recharge of the floodplain aquifer.Two or more years in a row with similar flows promote establishment of woody vegetation. Subsequent sediment deposition around this vegetation, especially if the vegetation is tamarisk, results in channel narrowing and simplification.Rapid declines in the descending limb of the hydrograph kill riparian woody seedlings by desiccation. Fluctuations in the descending limb can kill seedlings by desiccation and inundation. Thus rapid declines and fluctuations would be counterproductive following early-season peaks prescribed to promote cottonwood, but would be consistent with the goal of preventing tamarisk establishment following a late-season peak.The tendency of regulated flows to keep returning to a small number of fixed discharge values (such as power plant capacity or a fixed minimum flow) can cause unnaturally sharp banding of geomorphic surfaces, topography and vegetation that is not necessarily erased by large flood peaks.Changes in sediment load relative to transport capacity may promote channel change especially in alluvial settings. For example, decreases in sediment input from the Little Snake River Basin since 1960 (or earlier) could be associated with channel narrowing and temporary increases in establishment of both cottonwood and tamarisk along the Yampa River.Increases in salinity of water or soil promote tamarisk over the native woody species. Even if water salinity does not increase, floodplain soil salinity can be increased by decreasing the flushing caused by overbank flooding.
Streamflow simulation for continental-scale river basins
NASA Astrophysics Data System (ADS)
Nijssen, Bart; Lettenmaier, Dennis P.; Liang, Xu; Wetzel, Suzanne W.; Wood, Eric F.
1997-04-01
A grid network version of the two-layer variable infiltration capacity (VIC-2L) macroscale hydrologic model is described. VIC-2L is a hydrologically based soil- vegetation-atmosphere transfer scheme designed to represent the land surface in numerical weather prediction and climate models. The grid network scheme allows streamflow to be predicted for large continental rivers. Off-line (observed and estimated surface meteorological and radiative forcings) applications of the model to the Columbia River (1° latitude-longitude spatial resolution) and Delaware River (0.5° resolution) are described. The model performed quite well in both applications, reproducing the seasonal hydrograph and annual flow volumes to within a few percent. Difficulties in reproducing observed streamflow in the arid portion of the Snake River basin are attributed to groundwater-surface water interactions, which are not modeled by VIC-2L.
Combined Climate and Flow Abstraction Impacts on an Aggrading Alpine River
NASA Astrophysics Data System (ADS)
Bakker, M.; Costa, A.; Silva, T. A.; Stutenbecker, L.; Girardclos, S.; Loizeau, J. L.; Molnar, P.; Schlunegger, F.; Lane, S. N.
2017-12-01
Recent climatic warming and associated glacial retreat may have a large impact on sediment release and transfer in Alpine river basins. In parallel, the sediment transport capacity of many European Alpine streams is affected by hydropower exploitation, notably where flow is abstracted but the sediment supply to the headwaters is maintained at flow intakes. Here, we investigate the combined effects of climate change and flow abstraction on morphodynamics and sediment transfer in one such Alpine stream, the Borgne River, Switzerland. A unique dataset forms the basis for determining sediment deposition and transfer: (1) a set of high resolution Digital Elevation Models (DEMs) of braided river reaches is derived through applying Structure from Motion (SfM) photogrammetry to archival aerial photographs available for the period 1959-2014; (2) flow intake management data is used for the reconstruction of (up- and downstream) discharge and sediment supply since 1977. Subsequently we use bedload transport capacity calculations and climate data to assess their relative impact on the system evolution over the last 25 years. From the historical DEMs we find considerable aggradation of the river bed (up to 5 meters) since the onset of flow abstraction in 1963. Rapid and widespread aggradation however did not commence until the onset of glacier retreat in the late 1980s and the dry and notably warm years of the early 1990s. This aggradation coincided with an increase in sediment supply, although it accounts for only c. 25% of supplied material, the remainder was transferred through the studied reaches. Flow abstraction reduces transport capacity by an order of magnitude but the residual transport rates are close to sediment supply rates, which is why significant transport remains. However, the reduction in transport capacity due to direct human impacts in basin hydrology (flow abstraction) makes the system much more sensitive to changes in climate-driven hydrological variability and climate induced changes in intake management and sediment supply rates. This was exemplified by an increasingly strong climate (winter precipitation and summer temperature) influence on the delivery of glacially derived sediment.
The Role of Forests in Regulating the River Flow Regime of Large Basins of the World
NASA Astrophysics Data System (ADS)
Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.
2016-12-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.
The Role of Forests in Regulating the River Flow Regime of Large Basins of the World
NASA Astrophysics Data System (ADS)
Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.
2017-12-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.
4D Floodplain representation in hydrologic flood forecasting using WRFHydro modeling framework
NASA Astrophysics Data System (ADS)
Gangodagamage, C.; Li, Z.; Adams, T.; Ito, T.; Maitaria, K.; Islam, M.; Dhondia, J.
2015-12-01
Floods claim more lives and damage more property than any other category of natural disaster in the Continental U.S. A system that can demarcate local flood boundaries dynamically could help flood prone communities prepare for and even prevent from catastrophic flood events. Lateral distance from the centerline of the river to the right and left floodplains for the water levels coming out of the models at each grid location have not been properly integrated with the national hydrography dataset (NHDPlus). The NHDPlus dataset represents the stream network with feature classes such as rivers, tributaries, canals, lakes, ponds, dams, coastlines, and stream gages. The NHDPlus dataset consists of approximately 2.7 million river reaches defining how surface water drains to the ocean. These river reaches have upstream and downstream nodes and basic parameters such as flow direction, drainage area, reach slope etc. We modified an existing algorithm (Gangodagamage et al., 2007, 2011) to provide lateral distance from the centerline of the river to the right and left floodplains for the flows simulated by models. Previous work produced floodplain boundaries for static river stages (i.e. 3D metric: distance along the main stem, flow depth, lateral distance from river center line). Our new approach introduces the floodplain boundary for variable water levels with the fourth dimension, time. We use modeled flows from WRFHydro and demarcate the right and left lateral boundaries of inundation dynamically. This approach dynamically integrates with high resolution models (e.g., hourly and ~ 1 km spatial resolution) that are developed from recent advancements in high computational power with ground based measurements (e.g., Fluxnet), lateral inundation vectors (direction and spatial extent) derived from multi-temporal remote sensing data (e.g., LiDAR, WorldView 2, Landsat, ASTER, MODIS), and improved representations of the physical processes through multi-parameterizations. Our approach enhances the normalized (streams are at zero elevations) DEM derived upstream flow routing pathways for stream reaches for given water stages as more and more satellite data become available for various flood inundations. Validation of the inundation boundaries is performed using HEC-RAS hydrodynamic model results for selected streams.
NASA Astrophysics Data System (ADS)
Ramage, J. M.; McKenney, R. A.; Thorson, B.; Maltais, P.; Kopczynski, S. E.
2006-03-01
Snow volume and melt timing are major factors influencing the water cycle at northern high altitudes and latitudes, yet both are hard to quantify or monitor in remote mountainous regions. Twice-daily special sensor microwave imager (SSM/I) passive microwave observations of seasonal snow melt onset in the Wheaton River basin, Yukon Territory, Canada (60 ° 0805N, 134 ° 5345W), are used to test the idea that melt onset date and duration of snowpack melt-refreeze fluctuations control the timing of the early hydrograph peaks with predictable lags. This work uses the SSM/I satellite data from 1988 to 2002 to evaluate the chronology of melt and runoff patterns in the upper Yukon River basin. The Wheaton River is a small (875 km2) tributary to the Yukon, and is a subarctic, partly glacierized heterogeneous basin with near-continuous hydrographic records dating back to 1966. SSM/I pixels are sensitive to melt onset due to the strong increase in snow emissivity, and have a robust signal, in spite of coarse (>25 × 25 km2) pixel resolution and varied terrain. Results show that Wheaton River peak flows closely follow the end of large daily variations in brightness temperature of pixels covering the Wheaton River, but the magnitude of flow is highly variable, as might be expected from interannual snow mass variability. Spring rise in the hydrograph follows the end of high diurnal brightness temperature (Tb) amplitude variations (DAV) by 0 to 5 days approximately 90% of the time for this basin. Subsequent work will compare these findings for a larger (7250 km2), unglacierized tributary, the Ross River, which is farther northeast (61 ° 5940N, 132 ° 2240W) in the Yukon Territory. These techniques will also be used to try to determine the improvement in melt detection and runoff prediction from the higher resolution (15 × 15 km2) advanced microwave scanning radiometer for EOS (AMSR-E) sensor.
Bayesian Models for Streamflow and River Network Reconstruction using Tree Rings
NASA Astrophysics Data System (ADS)
Ravindranath, A.; Devineni, N.
2016-12-01
Water systems face non-stationary, dynamically shifting risks due to shifting societal conditions and systematic long-term variations in climate manifesting as quasi-periodic behavior on multi-decadal time scales. Water systems are thus vulnerable to long periods of wet or dry hydroclimatic conditions. Streamflow is a major component of water systems and a primary means by which water is transported to serve ecosystems' and human needs. Thus, our concern is in understanding streamflow variability. Climate variability and impacts on water resources are crucial factors affecting streamflow, and multi-scale variability increases risk to water sustainability and systems. Dam operations are necessary for collecting water brought by streamflow while maintaining downstream ecological health. Rules governing dam operations are based on streamflow records that are woefully short compared to periods of systematic variation present in the climatic factors driving streamflow variability and non-stationarity. We use hierarchical Bayesian regression methods in order to reconstruct paleo-streamflow records for dams within a basin using paleoclimate proxies (e.g. tree rings) to guide the reconstructions. The riverine flow network for the entire basin is subsequently modeled hierarchically using feeder stream and tributary flows. This is a starting point in analyzing streamflow variability and risks to water systems, and developing a scientifically-informed dynamic risk management framework for formulating dam operations and water policies to best hedge such risks. We will apply this work to the Missouri and Delaware River Basins (DRB). Preliminary results of streamflow reconstructions for eight dams in the upper DRB using standard Gaussian regression with regional tree ring chronologies give streamflow records that now span two to two and a half centuries, and modestly smoothed versions of these reconstructed flows indicate physically-justifiable trends in the time series.
Landscape-scale processes influence riparian plant composition along a regulated river
Palmquist, Emily C.; Ralston, Barbara; Merritt, David M.; Shafroth, Patrick B.
2018-01-01
Hierarchical frameworks are useful constructs when exploring landscape- and local-scale factors affecting patterns of vegetation in riparian areas. In drylands, which have steep environmental gradients and high habitat heterogeneity, landscape-scale variables, such as climate, can change rapidly along a river's course, affecting the relative influence of environmental variables at different scales. To assess how landscape-scale factors change the structure of riparian vegetation, we measured riparian vegetation composition along the Colorado River through Grand Canyon, determined which factors best explain observed changes, identified how richness and functional diversity vary, and described the implications of our results for river management. Cluster analysis identified three divergent floristic groups that are distributed longitudinally along the river. These groups were distributed along gradients of elevation, temperature and seasonal precipitation, but were not associated with annual precipitation or local-scale factors. Species richness and functional diversity decreased as a function of distance downstream showing that changing landscape-scale factors result in changes to ecosystem characteristics. Species composition and distribution remain closely linked to seasonal precipitation and temperature. These patterns in floristic composition in a semiarid system inform management and provide insights into potential future changes as a result of shifts in climate and changes in flow management.
NASA Astrophysics Data System (ADS)
Leary, K. P.; Buscombe, D.; Schmeeckle, M.; Kaplinski, M. A.
2017-12-01
Bedforms are ubiquitous in sand-bedded rivers, and understanding their morphodynamics is key to quantifying bedload transport. As such, mechanistic understanding of the spatiotemporal details of sand transport through and over bedforms is paramount to quantifying total sediment flux in sand-bedded river systems. However, due to the complexity of bedform field geometries and migration in natural settings, our ability to relate migration to bedload flux, and to quantify the relative role of tractive and suspended processes in their dynamics, is incomplete. Recent flume and numerical investigations indicate the potential importance of cross-stream transport, a process previously regarded as secondary and diffusive, to the three-dimensionality of bedforms and spatially variable translation and deformation rates. This research seeks to understand and quantify the importance of cross-stream transport in bedform three-dimensionality in a field setting. This work utilizes a high-resolution (0.25 m grid) data set of bedforms migrating in the channel of the Colorado River in Grand Canyon National Park. This data set comprises multi-beam sonar surveys collected at 3 different flow discharges ( 283, 566, and 1076 m3/s) along a reach of the Colorado River just upstream of the Diamond Creek USGS gage. Data were collected every 6 minutes almost continuously for 12 hours. Using bed elevation profiles (BEPs), we extract detailed bedform geometrical data (i.e. bedform height, wavelength) and spatial sediment flux data over a suite of bedforms at each flow. Coupling this spatially extensive data with a generalized Exner equation, we conduct mass balance calculations that evaluate the possibility, and potential importance, of cross-stream transport in the spatial variability of translation and deformation rates. Preliminary results suggest that intra-dune cross-stream transport can partially account for changes in the planform shape of dunes and may play an important role in spatially variable translation and deformation rates. Parameterization of cross-stream sediment transport could lead to accounting for ambiguities in bedload flux calculations caused by dune deformation, which in turn could significantly improve overall calculation of bedload and total load sediment transport in sand bedded rivers.
Sankey, Joel B.; Ralston, Barbara E.; Grams, Paul E.; Schmidt, John C.; Cagney, Laura E.
2015-01-01
Documentation of the interacting effects of river regulation and climate on riparian vegetation has typically been limited to small segments of rivers or focused on individual plant species. We examine spatiotemporal variability in riparian vegetation for the Colorado River in Grand Canyon relative to river regulation and climate, over the five decades since completion of the upstream Glen Canyon Dam in 1963. Long-term changes along this highly modified, large segment of the river provide insights for management of similar riparian ecosystems around the world. We analyze vegetation extent based on maps and imagery from eight dates between 1965 and 2009, coupled with the instantaneous hydrograph for the entire period. Analysis confirms a net increase in vegetated area since completion of the dam. Magnitude and timing of such vegetation changes are river stage-dependent. Vegetation expansion is coincident with inundation frequency changes and is unlikely to occur for time periods when inundation frequency exceeds approximately 5%. Vegetation expansion at lower zones of the riparian area is greater during the periods with lower peak and higher base flows, while vegetation at higher zones couples with precipitation patterns and decreases during drought. Short pulses of high flow, such as the controlled floods of the Colorado River in 1996, 2004, and 2008, do not keep vegetation from expanding onto bare sand habitat. Management intended to promote resilience of riparian vegetation must contend with communities that are sensitive to the interacting effects of altered flood regimes and water availability from river and precipitation.
NASA Astrophysics Data System (ADS)
Sankey, Joel B.; Ralston, Barbara E.; Grams, Paul E.; Schmidt, John C.; Cagney, Laura E.
2015-08-01
Documentation of the interacting effects of river regulation and climate on riparian vegetation has typically been limited to small segments of rivers or focused on individual plant species. We examine spatiotemporal variability in riparian vegetation for the Colorado River in Grand Canyon relative to river regulation and climate, over the five decades since completion of the upstream Glen Canyon Dam in 1963. Long-term changes along this highly modified, large segment of the river provide insights for management of similar riparian ecosystems around the world. We analyze vegetation extent based on maps and imagery from eight dates between 1965 and 2009, coupled with the instantaneous hydrograph for the entire period. Analysis confirms a net increase in vegetated area since completion of the dam. Magnitude and timing of such vegetation changes are river stage-dependent. Vegetation expansion is coincident with inundation frequency changes and is unlikely to occur for time periods when inundation frequency exceeds approximately 5%. Vegetation expansion at lower zones of the riparian area is greater during the periods with lower peak and higher base flows, while vegetation at higher zones couples with precipitation patterns and decreases during drought. Short pulses of high flow, such as the controlled floods of the Colorado River in 1996, 2004, and 2008, do not keep vegetation from expanding onto bare sand habitat. Management intended to promote resilience of riparian vegetation must contend with communities that are sensitive to the interacting effects of altered flood regimes and water availability from river and precipitation.
Data-based information gain on the response behaviour of hydrological models at catchment scale
NASA Astrophysics Data System (ADS)
Willems, Patrick
2013-04-01
A data-based approach is presented to analyse the response behaviour of hydrological models at the catchment scale. The approach starts with a number of sequential time series processing steps, applied to available rainfall, ETo and river flow observation series. These include separation of the high frequency (e.g., hourly, daily) river flow series into subflows, split of the series in nearly independent quick and slow flow hydrograph periods, and the extraction of nearly independent peak and low flows. Quick-, inter- and slow-subflow recession behaviour, sub-responses to rainfall and soil water storage are derived from the time series data. This data-based information on the catchment response behaviour can be applied on the basis of: - Model-structure identification and case-specific construction of lumped conceptual models for gauged catchments; or diagnostic evaluation of existing model structures; - Intercomparison of runoff responses for gauged catchments in a river basin, in order to identify similarity or significant differences between stations or between time periods, and relate these differences to spatial differences or temporal changes in catchment characteristics; - (based on the evaluation of the temporal changes in previous point:) Detection of temporal changes/trends and identification of its causes: climate trends, or land use changes; - Identification of asymptotic properties of the rainfall-runoff behaviour towards extreme peak or low flow conditions (for a given catchment) or towards extreme catchment conditions (for regionalization, ungauged basin prediction purposes); hence evaluating the performance of the model in making extrapolations beyond the range of available stations' data; - (based on the evaluation in previous point:) Evaluation of the usefulness of the model for making extrapolations to more extreme climate conditions projected by for instance climate models. Examples are provided for river basins in Belgium, Ethiopia, Kenya, Ecuador, Bolivia and China. References: Van Steenbergen, N., Willems, P. (2012), 'Method for testing the accuracy of rainfall-runoff models in predicting peak flow changes due to rainfall changes, in a climate changing context', Journal of Hydrology, 414-415, 425-434, doi:10.1016/j.jhydrol.2011.11.017 Mora, D., Willems, P. (2012), 'Decadal oscillations in rainfall and air temperature in the Paute River Basin - Southern Andes of Ecuador', Theoretical and Applied Climatology, 108(1), 267-282, doi:0.1007/s00704-011-0527-4 Taye, M.T., Willems, P. (2011). 'Influence of climate variability on representative QDF predictions of the upper Blue Nile Basin', Journal of Hydrology, 411, 355-365, doi:10.1016/j.jhydrol.2011.10.019 Taye, M.T., Willems, P. (2012). 'Temporal variability of hydro-climatic extremes in the Blue Nile basin', Water Resources Research, 48, W03513, 13p. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Willems, P., De Smedt, F., Batelaan, O. (in press), 'Climate change impact on river flows and catchment hydrology: a comparison of two spatially distributed models', Hydrological Processes; doi: 10.1002/hyp.9480 [in press
Glacial Meltwater Contirbutions to the Bow River, Alberta, Canada
NASA Astrophysics Data System (ADS)
Bash, E. A.; Marshall, S. J.; White, E. C.
2009-12-01
Assessment of glacial melt is critical for water resource management in areas which rely on glacier-fed rivers for agricultural and municipal uses. Changes in precipitation patterns coupled with current glacial retreat are altering the glacial contribution to river flow in areas such as the Andes of South America and the high ranges of Asia, as well as the Rockies of Western Canada. Alberta’s Bow River has its headwaters in the eastern slopes of the Canadian Rockies and contributes to the Nelson drainage system feeding into Hudson Bay. The Bow River basin contains several population centers, including the City of Calgary, and is heavily taxed for agricultural use. The combined effects of rapid glacial retreat in the Canadian Rockies, higher drought frequency, and increased demand are likely to heighten water stress in Southern Alberta. However, there has been little focus to date on the extent and importance of glacial meltwater in the Bow River. The Bow River contains 74.5 km2 of glacier ice, which amounts to only 0.29% of the basin. While this number is not high compared to some glacierized areas, Hopkinson and Young (1998) report that in dry years, glacier melt can provide up to 50% of late summer flows at a station in the upper reaches of the river system. We extend this work with an assessment of monthly and annual glacial contributions to the Bow River farther downstream in Calgary. Our analysis is based on mass balance, meteorological, and hydrological data that has been collected at the Haig Glacier since 2001. This data is used in conjunction with glacier coverage and hypsometric data for the remainder of the basin to estimate seasonal snow and glacial meltwater contributions to the Bow River from the glacierized fraction of the catchment. The results of this study show the percentage of total flow attributed to glacial melt to be highly variable. Glacier runoff contributes up to an order of magnitude more water to the Bow River per unit area of landscape, relative to the average areal contributions in the basin, accounting for 2-4% of the total flow in an average year, with glacier ice representing about 50% of this total. Future research is examining the impact of ongoing glacier retreat on these contributions and the seasonality of runoff.
ESTIMATION OF TOTAL DISSOLVED NITRATE LOAD IN NATURAL STREAM FLOWS USING AN IN-STREAM MONITOR
Estuaries respond rapidly to rain events and the nutrients carried by inflowing rivers such that discrete samples at weekly or monthly intervals are inadequate to catch the maxima and minima in nutrient variability. To acquire data with sufficient sampling frequency to realistica...
NASA Astrophysics Data System (ADS)
Bruce, L. C.; Adiyanti, S.; Ruibal, A. L.; Hipsey, M. R.
2013-12-01
Estuaries provide an important role in the filtering and transformation of carbon and nutrients from coastal catchments into the marine environment. Global trends including climate change, increased population, industrialization and agriculture have led to the rapid deterioration of estuarine ecosystems across the world. Within the Australian context, a particular concern is how changes to hydrological regimes, due to both water diversions and climate variability, are contributing to increased stress and consequent decline in estuarine health. In this study we report the modeling output of five Australian estuaries, each with different hydrological regimes and alternative management issues relating to altered hydrology: 1) The Yarra River estuary is a highly urbanized system, also receiving agriculturally derived nutrients, where the concern is the role of periodic hypoxia in reducing the assimilation capacity of nitrogen and thus increased risk of algal blooms forming in the coastal environment; 2) The upper Swan River estuary in Western Australia, which experiences persistent anoxia and hypoxia brought about by reduced flows has led to the commissioning of several oxygenation plants to alleviate stress on biodiversity and overall estuarine health; 3) The health of the Caboolture estuary in Queensland has deteriorated in the past decade with the aim of model development to quantify the various sources of surface and groundwater derived nutrients; 4) The construction of an additional channel to increase flushing in the Peel Harvey estuary in Western Australia was designed to control persistent harmful algal blooms; and 5) The Lower River Murray estuary experienced a prolonged drought that led to the development of acid sulfate soils and acid drainage deteriorating water quality. For these applications we applied 3-D hydrodynamic-biogeochemical models to determine underlying relationships between altered flow regimes, increased temperatures and the response of relevant estuarine health indicators. In general terms, the greatest threat identified was an increasing trend towards low flow conditions, both during winter and summer months beyond the usual pattern of flow variability. Minimum flows required to maintain estuarine health were determined using the models. In order to support management decisions related to environmental flow allocation and other interventions, examples of how the high frequency model output can be used to develop simple ';reduced' models that relate parameters of estuarine health to hydrological variability are described. Areas where further research is required to improve our understanding of estuarine response to hydrological change are discussed.
Evidence of an emerging levee failure mechanism causing disastrous floods in Italy
NASA Astrophysics Data System (ADS)
Orlandini, Stefano; Moretti, Giovanni; Albertson, John D.
2015-10-01
A levee failure occurred along the Secchia River, Northern Italy, on 19 January 2014, resulting in flood damage in excess of $500 million. In response to this failure, immediate surveillance of other levees in the region led to the identification of a second breach developing on the neighboring Panaro River, where rapid mitigation efforts were successful in averting a full levee failure. The paired breach events that occurred along the Secchia and Panaro Rivers provided an excellent window on an emerging levee failure mechanism. In the Secchia River, by combining the information content of photographs taken from helicopters in the early stage of breach development and 10 cm resolution aerial photographs taken in 2010 and 2012, animal burrows were found to exist in the precise levee location where the breach originated. In the Panaro River, internal erosion was observed to occur at a location where a crested porcupine den was known to exist and this erosion led to the collapse of the levee top. This paper uses detailed numerical modeling of rainfall, river flow, and variably saturated flow in the levee to explore the hydraulic and geotechnical mechanisms that were triggered along the Secchia and Panaro Rivers by activities of burrowing animals leading to levee failures. As habitats become more fragmented and constrained along river corridors, it is possible that this failure mechanism could become more prevalent and, therefore, will demand greater attention in both the design and maintenance of earthen hydraulic structures as well as in wildlife management.
Evidence of an emerging levee failure mechanism causing disastrous floods in Italy
NASA Astrophysics Data System (ADS)
Orlandini, Stefano; Moretti, Giovanni; Albertson, John
2017-04-01
A levee failure occurred along the Secchia River, Northern Italy, on January 19, 2014, resulting in flood damage in excess of 500 Million. In response to this failure, immediate surveillance of other levees in the region led to the identification of a second breach developing on the neighboring Panaro River, where rapid mitigation efforts were successful in averting a full levee failure. The paired breach events that occurred along the Secchia and Panaro Rivers provided an excellent window on an emerging levee failure mechanism. In the Secchia River, by combining the information content of photographs taken from helicopters in the early stage of breach development and 10-cm resolution aerial photographs taken in 2010 and 2012, animal burrows were found to exist in the precise levee location where the breach originated. In the Panaro River, internal erosion was observed to occur at a location where a crested porcupine den was known to exist and this erosion led to the collapse of the levee top. This paper uses detailed numerical modeling of rainfall, river flow, and variably saturated flow in the levee to explore the hydraulic and geotechnical mechanisms that were triggered along the Secchia and Panaro Rivers by activities of burrowing animals leading to levee failures. As habitats become more fragmented and constrained along river corridors it is possible that this failure mechanism could become more prevalent and, therefore, will demand greater attention in both the design and maintenance of earthen hydraulic structures as well as in wildlife management.
NASA Astrophysics Data System (ADS)
Soong, D. T.; Santacruz, S.; Jones, L.; Garcia, T.; Kočovský, P. M.; Embke, H.
2017-12-01
Grass Carp Ctenopharyngodon idella (Cyprinidae) is an invasive fish species that spawns in rivers during high-flow events. In their native range, it is believed eggs must hatch within the riverine environment in order to eventually result in production of adult fish. The lower Sandusky River is approximately 26 km long extending from its confluence with Sandusky Bay upstream to the Ballville Dam, which is impassible for Grass Carp. Grass Carp are known to have spawned in the Sandusky River, a tributary to Lake Erie, in 2011, 2013, 2015, and 2017. This study characterizes the thermal and hydraulic conditions under which these eggs could hatch in the lower Sandusky River, a relatively short river reach for egg hatching. Grass Carp eggs collected in 2015 were previously analyzed for hatching locations using a one-dimensional steady-state HEC-RAS hydraulic model. In this study we refine estimates of hatching locations by incorporating the influence of fluctuating water levels downstream due to seiches in Lake Erie and overland and tributary inflows using an unsteady 1D/2D HEC-RAS hydraulic model. Additionally, conditions conducive to successful hatching, which occurs when eggs reach the hatching stage within the river, were analyzed from nine high-flow events between 2011 and 2015. Simulated hydraulic and water temperature data were used as inputs to the Fluvial Egg Drift Simulator (FluEgg) model, which was used to analyze the transport and dispersal of Grass carp eggs until hatching. We will describe the differences in steady- and unsteady-state hydraulic modeling in predicting hatching locations of Grass Carp eggs for the 2015 spawning events. Results will also include hydraulic and temperature variables that contribute to the successful/unsuccessful in-river hatching for the nine flow events simulated.
Covington, H.R.; Weaver, Jean N.
1990-01-01
The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snake River underlies most of the eastern plain. The aquifer is composed of basaltic rocks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface, but is deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat-lying basaltic and sedimentary rocks of the eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill (fig. 1). To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Dam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.
NASA Astrophysics Data System (ADS)
Klaar, Megan; Laize, Cedric; Maddock, Ian; Acreman, Mike; Tanner, Kath; Peet, Sarah
2014-05-01
A key challenge for environmental managers is the determination of environmental flows which allow a maximum yield of water resources to be taken from surface and sub-surface sources, whilst ensuring sufficient water remains in the environment to support biota and habitats. It has long been known that sensitivity to changes in water levels resulting from river and groundwater abstractions varies between rivers. Whilst assessment at the catchment scale is ideal for determining broad pressures on water resources and ecosystems, assessment of the sensitivity of reaches to changes in flow has previously been done on a site-by-site basis, often with the application of detailed but time consuming techniques (e.g. PHABSIM). While this is appropriate for a limited number of sites, it is costly in terms of money and time resources and therefore not appropriate for application at a national level required by responsible licensing authorities. To address this need, the Environment Agency (England) is developing an operational tool to predict relationships between physical habitat and flow which may be applied by field staff to rapidly determine the sensitivity of physical habitat to flow alteration for use in water resource management planning. An initial model of river sensitivity to abstraction (defined as the change in physical habitat related to changes in river discharge) was developed using site characteristics and data from 66 individual PHABSIM surveys throughout the UK (Booker & Acreman, 2008). By applying a multivariate multiple linear regression analysis to the data to define habitat availability-flow curves using resource intensity as predictor variables, the model (known as RAPHSA- Rapid Assessment of Physical Habitat Sensitivity to Abstraction) is able to take a risk-based approach to modeled certainty. Site specific information gathered using desk-based, or a variable amount of field work can be used to predict the shape of the habitat- flow curves, with the uncertainty of estimates reducing as more information is collected. Creation of generalized physical habitat- discharge relationships by the model allows environmental managers to select the desired level of confidence in the modeled results, based on environmental risk and the level of resource investment available. Hence, resources can be better directed according to the level of certainty required at each site. This model is intended to provide managers with an alternative to the existing use of either expert opinion or resource intensive site- specific investigations in determining local environmental flows. Here, we outline the potential use of this tool by the Environment Agency in routine operational and investigation- specific scenarios using case studies to illustrate its use.
Long-term macroinvertebrate response to flow abstraction at Alpine water intakes
NASA Astrophysics Data System (ADS)
Gabbud, Chrystelle; Savioz, Amélie; Lane, Stuart
2016-04-01
The natural flow hydrological characteristics of Alpine streams, dominated by snowmelt and glacier melt, have been established for many years. More recently, the ecosystems that they sustain have been described and explained, following the hydrological, biochemical, morphodynamic, and biotic elements specific to Alpine streams. However, natural Alpine flow regimes may be strongly modified by hydroelectric power production, which impacts upon both river discharge and sediment transfer, and hence on downstream flora and fauna. These kinds of impacts are well studied where river are regulated by dams, with sediments retained behind walls, but they are much less focus on water intakes, whose storage capacity is very smaller and thus have to flush flow and sediment regularly. Here we focus on the impacts of flow abstraction on macroinvertebrates, the most widely ecological group used in freshwater biomonitoring as they act typically as indicators of environmental health. Some key generalizations can be made. For instance, in European glacially fed river systems, Plecoptera, Chironomidae, Ephemeroptera, Simuliidae, and Diptera are the main taxa found in spring as they are better adapted to cold conditions. Petts and Bickerton (1994) published macroinvertebrate samples from the upper part of the glacial stream system the Borgne d'Arolla (Valais, Switzerland), highlighting that: (1) taxa variability and productivity decline in the river because of flow abstraction, (2) 60 % of the communities were provided by tributaries, (3) there is migration upstream of the species in response to the passage from a dominant ice-melt to a snow-melt regime, (4) the colonisation is difficult because of a significant modification of the habitat in the river by sediment transport, until it becomes warmer, clearer and more stable further downstream. In order to establish the long-term impacts of flow abstraction upon instream ecology where sediment delivery is maintained but transport capacity is reduced, and to determine if the above trends are accelerated, maintained or reversed, we revisited the study of Petts and Bickerton (1994) by repeating transects of interest for both the river and the tributaries during summer 2015. Based on macroinvertebrate sampling, determinations and statistics, preliminary results show that these trends have been maintained, with macroinvertebrate presence restricted to zones immediately downstream of unregulated tributaries. Despite the river having been protected as an alluvial zone of national importance since the 1990s, there is no evidence of life in the river except in isolated tributary-fed hotspots. The data suggest that restoring this kind of system will need new approaches to manage sediment, ones that environmental flows alone are unlikely to be able to address. Reference Petts GE, Bickerton MA (1994). Influence of water abstraction on the macroinvertebrate community gradient within a glacial stream system: La Borgne d'Arolla, Valais, Switzerland. Freshwater Biology, 32:375-386.
Mir, Riyaz Ahmad; Jeelani, Gh; Dar, Farooq Ahmad
2016-07-01
River Jhelum is a major source of water for growing population and irrigation in the Kashmir Himalaya. The region is trending towards water scarcity as well as quality deterioration stage due to its highly unregulated development. The existence of few literature on various aspects of the basin prompts us to study the spatio-temporal variability of its physicochemical parameters and thereby to understand the regulating hydrogeochemical mechanisms based on 50 samples collected during high flow (June 2008) and low flow (January 2009) periods. The water chemistry exhibited significant spatial variability reflecting the mixing processes in the basin. The seasonal effect does change the concentration of ions significantly with modest variability in the order of ionic abundance. The Ca(2+) ion among cations and HCO3 (-) ion among anions dominate the ionic budget and correlates significantly with the diverse lithology of the basin. Three major water types, i.e., Ca-Mg-HCO3 (72 %), Ca-HCO3 (12 %), and Mg-Ca-HCO3 (16 %), suggest that the chemical composition of water is dominantly controlled by carbonate lithology, besides a significant contribution from silicates. However, at certain sites, the biological processes and anthropogenic activities play a major role. Relatively, the lower ionic concentration during high flow period (summer season) suggested the significant influence of higher discharge via dilution effect. The higher discharge due to higher rainfall and snow melting in response to rising temperature in this period leads to strong flushing of human and agricultural wastes into the river. The factor analysis also reflected the dominant control of varied lithology and anthropogenic sources on the water quality based on the four significant factors explaining collectively about 70-81 % of the total data variance. A two-member chloride mixing model used to estimate the discharge contribution of tributaries to the main river channel showed reliable results. It may be mentioned that the regular and continuous contamination through anthropogenic sources is likely to jeopardize and degrade the water quality in the near future. Thus, critical management approaches and strategies are very imperative for its future sustainability.
Nesting habitat use by river chubs in a hydrologically variable Appalachian tailwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peoples, Brandon K.; McManamay, Ryan A.; Orth, Donald J.
2013-07-02
Hydrologic alteration continues to affect aquatic biodiversity asknowledge of the spawning requirements of fishes, especially keystone or foundation species, becomes more critical for conservation and management. Our objectives are to quantify the spawning micro- and mesohabitat use of river chub Nocomis micropogon, a gravel mound nesting minnow, in a hydrologically regulated river in North Carolina, USA. At the microhabitat scale, substrate sizes on nests were compared with pebble counts in 1-m2 adjacent quadrats. Average depths and current velocities at nests were compared with measurements from paired transects. At the mesohabitat scale, generalised linear mixed models (GLMMs) were used to identifymore » the importance of average bed slope, average depth and percentages of rock outcrops (a measure of flow heterogeneity and velocity shelters) for predicting nest presence and abundance. To relate nesting activities to hydrologic alteration from dam operation, nest dimensions were measured before and after a scheduled discharge event approximately six times that of base flow. In addition, linear regression was used to predict changes in the use of flow refugia and overhead cover with increased fluvial distance from the dam. Microhabitats in which nests were placed had, on average, slower current velocities and shallower depths. Gravel diameters of nests were significantly smaller than substrate particles adjacent to nests. GLMMs revealed that mesohabitats with nests were shallower, had more moderate slopes and greater proportions of rock outcrops than mesohabitats without nests. Finally, the scheduled discharge event significantly flattened nests. Near the dam, nests were built in close proximity ( 2 m) to velocity shelters; this relationship diminished with distance from the dam. River chubs are spawning habitat specialists. Because multiple species rely on river chub nests for reproduction and food, the needs of this species should be considered when managing instream flows.« less
Hydrologic reconnaissance of the Noatak River basin, Alaska, 1978
Childers, Joseph M.; Kernodle, Donald R.
1981-01-01
Hydrologic data were collected in 1978 described water resources of the Noatak River basin, Alaska. Streamflow varies seasonally. No flow was observed from the upper part of the basin in late winter (April). In the lower part of the basin springs support perennial flow in the Kugururok River and downstream along the Noatak. The discharge of the Noatak was 150 cubic feet per second in April 1978. During the summer, rainstorms are common, and runoff produces high flow. During August 1978, flow was normal in the basin; unit runoff averaged about 1 cubic foot per second per square mile. The Noatak is a gravel-bed stream of moderate slope. It drops about 1,800 feet in elevation from a point near the head waters to the mouth, a distance of 400 miles. Streambed material in most places is gravel, cobbles, and boulders, maximum riffle depths and pool widths increase in a downstream direction. Stream velocity in August 1978 increased from about 1 foot per second in the upper basin to about 4 feet per second in the lower reaches. High-water marks of the maximum evident flood were found at elevations from bankfull to 5 feet above bankfull. Maximum evident flood unit runoff rates were estimated to be less than 50 cubic feet per second per square mile. Scars produced by ice jams were seldom seen above bankfull. Bank erosion appears to be most active in the lowlands. Water in the Noatak River basin is virtually unaffected by man 's activity. Water quality varies with location, weather, season, and source; the water is normally clear, cool, and hard. During late winter sea water intrudes into the Lower Noatak Canyon. Benthic invertebrate community composition and variability suggest the river 's undiminished natural quality. (USGS)
Green, Christopher T.; Bekins, Barbara A.; Kalkhoff, Stephen J.; Hirsch, Robert M.; Liao, Lixia; Barnes, Kimberlee K.
2014-01-01
Understanding how nitrogen fluxes respond to changes in agriculture and climate is important for improving water quality. In the midwestern United States, expansion of corn cropping for ethanol production led to increasing N application rates in the 2000s during a period of extreme variability of annual precipitation. To examine the effects of these changes, surface water quality was analyzed in 10 major Iowa Rivers. Several decades of concentration and flow data were analyzed with a statistical method that provides internally consistent estimates of the concentration history and reveals flow-normalized trends that are independent of year-to-year streamflow variations. Flow-normalized concentrations of nitrate+nitrite-N decreased from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to flow-weighted annual concentrations. The recent declining concentration trends can be attributed to both very high and very low discharge in the 2000s and to the long (e.g., 8 year) subsurface residence times in some basins. Dilution of N and depletion of stored N occurs in years with high discharge. Reduced N transport and increased N storage occurs in low-discharge years. Central Iowa basins showed the greatest reduction in flow-normalized concentrations, likely because of smaller storage volumes and shorter residence times. Effects of land-use changes on the water quality of major Iowa Rivers may not be noticeable for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.
NASA Astrophysics Data System (ADS)
Julian, J. P.; Doyle, M. W.; Stanley, E. H.
2006-12-01
Light is vital to the dynamics of aquatic ecosystems. It drives photosynthesis and photochemical reactions, affects thermal structure, and influences behavior of aquatic biota. Despite the fundamental role of light to riverine ecosystems, light studies in rivers have been mostly neglected because i) boundary conditions (e.g., banks, riparian vegetation) make ambient light measurements difficult, and ii) the optical water quality of rivers is highly variable and difficult to characterize. We propose a benthic light availability model (BLAM) that predicts the percent of incoming photosynthetically active radiation (PAR) available at the river bed. BLAM was developed by quantifying light attenuation of the five hydrogeomorphic controls that dictate riverine light availability: topography, riparian vegetation, channel geometry, optical water quality, and water depth. BLAM was calibrated using hydrogeomorphic data and light measurements from two rivers: Deep River - a 5th-order, turbid river in central North Carolina, and Big Spring Creek - a 2nd-order, optically clear stream in central Wisconsin. We used a series of four PAR sensors to measure i) above-canopy PAR, ii) PAR above water surface, iii) PAR below water surface, and iv) PAR on stream bed. These measurements were used to develop empirical light attenuation coefficients, which were then used in combination with optical water quality measurements, shading analyses, channel surveys, and flow records to quantify the spatial and temporal variability in riverine light availability. Finally, we apply BLAM to the Baraboo River - a 6th-order, 120-mile, unimpounded river in central Wisconsin - in order to characterize light availability along the river continuum (from headwaters to mouth).
Krstolic, Jennifer L.; Ramey, R. Clay
2012-01-01
The ecological habitat requirements of aquatic organisms and recreational streamflow requirements of the South Fork Shenandoah River were investigated by the U.S. Geological Survey in cooperation with the Central Shenandoah Valley Planning District Commission, the Northern Shenandoah Valley Regional Commission, and Virginia Commonwealth University. Physical habitat simulation modeling was conducted to examine flow as a major determinant of physical habitat availability and recreation suitability using field-collected hydraulic habitat variables such as water depth, water velocity, and substrate characteristics. Fish habitat-suitability criteria specific to the South Fork Shenandoah River were developed for sub-adult and adult smallmouth bass (Micropterus dolomieu), juvenile and sub-adult redbreast sunfish (Lepomis auritus), spotfin or satinfin shiner (Cyprinella spp), margined madtom (Noturus insignis),and river chub (Nocomis micropogon). Historic streamflow statistics for the summer low-flow period during July, August, and September were used as benchmark low-flow conditions and compared to habitat simulation results and water-withdrawal scenarios based on 2005 withdrawal data. To examine habitat and recreation characteristics during droughts, daily fish habitat or recreation suitability values were simulated for 2002 and other selected drought years. Recreation suitability during droughts was extremely low, because the modeling demonstrated that suitable conditions occur when the streamflows are greater than the 50th percentile flow for July, August, and September. Habitat availability for fish is generally at a maximum when streamflows are between the 75th and 25th percentile flows for July, August, and September. Time-series results for drought years, such as 2002, showed that extreme low-flow conditions less than the 5th percentile of flow for July, August, and September corresponded to below-normal habitat availability for both game and nongame fish in the upper section of the river. For the middle section near Luray, margined madtom and river chub habitat area were below normal, whereas adult and sub-adult smallmouth bass habitat area remained near the median expected available habitat. In the lower section near Front Royal, time-series results for adult smallmouth bass, sub-adult smallmouth bass, and margined madtom habitat were below normal when streamflows were below the 10th percentile flow for July, August, and September. All other species of fish had habitat availability within the normal range for July, August, and September. Water-conservation scenarios representing a 50 percent water-withdrawal reduction resulted in game fish habitat availability within the normal range for habitat in upper and middle river sections, instead of below normal conditions which were observed during the 2002 drought. The 50 percent water-withdrawal reduction had no measurable effect on recreation. For nongame fish such as river chub, a 20 percent withdrawal reduction resulted in habitat availability within the normal range for habitat in the upper and middle river sections. Increased water-use scenarios representing a 5 percent increase in water withdrawals resulted in a slight reduction in habitat availability; however, increased withdrawals of 20 and 50 percent resulted in habitat availability substantially less than the 25th habitat percentile, or below normal. Habitat reductions were more pronounced when flows were lower than the 10th percentile flow for July, August, and September. The results show that for normal or wet years, increased water withdrawals are not likely to correspond with extensive habitat loss for game fish or nongame fish. During drought years, however, a 20 to 50 percent increase in water withdrawals may result in below normal habitat availability for game fish throughout the river and nongame fish in the upper and middle sections of the river. These simulations of rare historic drought conditions, such as those observed in 2002, serve as a baseline for development of ecological flow thresholds for drought planning.
Perry, Russell W.; Romine, Jason G.; Pope, Adam C.; Evans, Scott D.
2018-02-27
The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3/s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta.In this report, we conducted three analyses to investigate the effect of the NDD and its proposed operation on entrainment of juvenile Chinook salmon (Oncorhynchus tshawytscha) into Georgiana Slough and the Delta Cross Channel (DCC). Fish that enter the interior Delta (the network of channels to the south of the Sacramento River) through Georgiana Slough and the DCC survive at lower rates than fish that use other migration routes (Sacramento River, Sutter Slough, and Steamboat Slough). Therefore, fisheries managers were concerned about the extent to which operation of the NDD would increase the proportion of the population entering the interior Delta, which, all else being equal, would lower overall survival through the Delta by increasing the fraction of the population subject to lower survival rates. Operation of the NDD would reduce flow in the Sacramento River, which has the potential to increase the magnitude and duration of reverse flows of the Sacramento River downstream of Georgiana Slough.In the first analysis, we evaluate the effect of the NDD bypass rules on flow reversals of the Sacramento River downstream of Georgiana Slough. The NDD bypass rules are a set of operational criteria designed to minimize upstream transport of fish into Georgiana Slough and the DCC, and were developed based on previous studies showing that the magnitude and duration of flow reversals increase the proportion of fish entering Georgiana Slough and the DCC. We estimated the frequency and duration of reverse-flow conditions of the Sacramento River downstream of Georgiana Slough under each of the prescribed minimum bypass flows described in the NDD bypass rules. To accommodate adaptive levels of protection during different times of year when juvenile salmon are migrating through the Delta, the NDD bypass rules prescribe a series of minimum allowable bypass flows that vary depending on (1) month of the year, and (2) progressively decreasing levels of protection following a pulse flow event.We determined that the NDD bypass rules increased the frequency and duration of reverse flows of the Sacramento River downstream of Georgiana Slough, with the magnitude of increase varying among scenarios. Constant low-level pumping, the most protective bypass rule that limits diversion to 10 percent of the maximum diversion and is implemented following a pulse-flow event, led to the smallest increase in frequency and duration of flow reversals. In contrast, we found that some scenarios led to sizeable increases in the fraction of the day with reverse flow. The conditions under which the proportion of the day with reverse flow can increase by greater than or equal to 10 percentage points between October and June, when juvenile salmon are present in the Delta, include October–November bypass rules and level-3 post-pulse operations during December–June. These conditions would be expected to increase the proportion of juvenile salmon entering the interior Delta through Georgiana Slough.In the second analysis, we assessed bias in Delta Simulation Model 2 (DSM2) flow predictions at the junction of the Sacramento River, DCC, and Georgiana Slough. Because DSM2 was being used to simulate California WaterFix operations, understanding the extent of bias relative to USGS streamgages was important since fish routing models were based on flow data at streamgages. We determined that river flow predicted by DSM2 was biased for Georgiana Slough and the Sacramento River. Therefore, for subsequent analysis, we bias-corrected the DSM2 flow predictions using measured stream flows as predictor variables.In the third analysis, we evaluated the effect of the NDD on the daily probability of fish entering Georgiana Slough and the DCC. We applied an existing model to predict entrainment from 15-minute flow simulations for an 82-year time series of flows simulated by DSM2 under the Proposed Action (PA), where the North Delta Diversion is implemented under California WaterFix, and the No Action Alternative (NAA), where the diversion is not implemented. To estimate the daily fraction of fish entering each river channel, entrainment probabilities were averaged over each day. To evaluate the two scenarios, we then compared mean annual entrainment probabilities by month, water year classification, and three different assumed run timings. Overall, the probability of remaining in the Sacramento River was lower under the PA scenario, but the magnitude of the difference was small (3/s. At flows greater than 41,000 ft3/s, we hypothesize that entrainment into the interior Delta is relatively constant, which would have caused little difference between scenarios at higher flows.
Krempa, Heather M.; Flickinger, Allison K.
2017-08-01
This report presents the results of a cooperative study by the U.S. Geological Survey and Missouri Department of Natural Resources to estimate total nitrogen (TN) and total phosphorus (TP) concentrations at monitoring sites within and near the Lower Grand River hydrological unit. The primary objectives of the study were to quantify temporal changes in TN and TP concentrations and compare those concentrations to conservation practices and agricultural activities. Despite increases in funding during 2011–15 for conservation practices in the Lower Grand River from the Mississippi River Basin Healthy Watersheds Initiative, decreases in flow-normalized TN and TP concentrations during this time at the long-term Grand River site were less than at other long-term sites, which did not receive funding from the Mississippi River Basin Healthy Watersheds Initiative. The relative differences in the magnitude of flow-normalized TN and TP concentrations among long-term sites are directly related to the amount of agricultural land use within the watershed. Significant relations were determined between nitrogen from cattle manure and flow-normalized TN concentrations at selected long-term sites, indicating livestock manure may be a substantial source of nitrogen within the selected long-term site watersheds. Relations between flow-normalized TN and TP concentrations with Conservation Reserve Program acres and with nitrogen and phosphorus from commercial fertilizer indicate that changes in these factors alone did not have a substantial effect on stream TN and TP concentrations; other landscape activities, runoff, within-bank nutrients that are suspended during higher streamflows, or a combination of these have had a greater effect on stream TN and TP concentrations; or there is a lag time that is obscuring relations. Temporal changes in flow-adjusted TN and TP concentrations were not substantial at Lower Grand River Mississippi River Basin Healthy Watersheds Initiative sites, indicating factors besides stream variability did not have substantial effects on TN and TP concentrations. Flow-weighted TN and TP concentrations at Lower Grand River Mississippi River Basin Healthy Watershed Initiative sites increase with increasing streamflow, which indicates runoff, within-bank nutrients that are suspended during higher streamflows, or both, have more effect on stream TN and TP concentrations than consistent point sources or groundwater sources. Timing of TN and TP concentration increases compared to streamflow increases indicate that nitrogen and phosphorus loads are more strongly related to streamflow than to a particular period of the year, indicating that runoff, within-bank nutrients that are suspended during higher streamflows, or both are a substantial source of nutrients regardless of timing.
Life history theory predicts fish assemblage response to hydrologic regimes.
Mims, Meryl C; Olden, Julian D
2012-01-01
The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P < or = 0.05) according to quantile regression. Our results largely support a priori hypotheses of relationships between specific flow indices and relative prevalence of fish life history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales.
NASA Astrophysics Data System (ADS)
Jordan, M. S.; Alexander, J. D.; Grant, G. E.; Bartholomew, J. L.
2011-12-01
Management strategies for parasites with complex life cycles may target not the parasite itself, but one of the alternate hosts. One approach is to decrease habitat for the alternate host, and in river systems flow manipulations may be employed. Two-dimensional hydraulic models can be powerful tools for predicting the relationship between flow alterations and changes in physical habit, however they require a rigorous definition of physical habitat for the organism of interest. We present habitat characterization data for the case of the alternate host of a salmonid parasite and introduce how it will be used in conjunction with a 2-dimensional hydraulic model. Ceratomyxa shasta is a myxozoan parasite of salmonids that requires a freshwater polychaete Manayunkia speciosa to complete its life cycle. Manayunkia speciosa is a small (3mm) benthic filter-feeding worm that attaches itself perpendicularly to substrate through construction of a flexible tube. In the Klamath River, CA/OR, C. shasta causes significant juvenile salmon mortality, imposing social and economic losses on commercial, sport and tribal fisheries. An interest in manipulating habitat for the polychaete host to decrease the abundance of C. shasta has therefore developed. Unfortunately, there are limited data on the habitat requirements of M. speciosa or the influence of streamflow regime and hydraulics on population dynamics and infection prevalence. This work aims to address these data needs by identifying physical habitat variables that influence the distribution of M. speciosa and determining the relationship between those variables, M. speciosa population density, and C. shasta infection prevalence. Biological samples were collected from nine sites representing three river features (runs, pools, and eddies) within the Klamath River during the summer and fall of 2010 and 2011. Environmental data including depth, velocity, and substrate, were collected at each polychaete sampling location. We tested for differences in environmental variables and polychaete densities among months and river features. Preliminary data suggest differences in density among months and river features as well as relationships among density and water velocity and substrate type. Polychaetes are currently being assayed for C. shasta infection, which will ultimately be included in our analyses. The data will subsequently be used in conjunction with a 2-dimensional hydraulic model to evaluate habitat stability and the influence of varied streamflow senarios.
NASA Astrophysics Data System (ADS)
Conallin, John; Wilson, Emma; Campbell, Josh
2018-03-01
Anthropogenic pressure on freshwater ecosystems is increasing, and often leading to unacceptable social-ecological outcomes. This is even more prevalent in intermittent river systems where many are already heavily modified, or human encroachment is increasing. Although adaptive management approaches have the potential to aid in providing the framework to consider the complexities of intermittent river systems and improve utility within the management of these systems, success has been variable. This paper looks at the application of an adaptive management pilot project within an environmental flows program in an intermittent stream (Tuppal Creek) in the Murray Darling Basin, Australia. The program focused on stakeholder involvement, participatory decision-making, and simple monitoring as the basis of an adaptive management approach. The approach found that by building trust and ownership through concentrating on inclusiveness and transparency, partnerships between government agencies and landholders were developed. This facilitated a willingness to accept greater risks and unintended consequences allowing implementation to occur.
Depositional settings of sand beaches along whitewater rivers
Vincent, K.R.; Andrews, E.D.
2008-01-01
The numbers and sizes of sand beaches suitable for recreation along selected whitewater rivers in the western United States depend on sand concentrations, range of discharge and the size, frequency and type of depositional settings. River-width expansions downstream from constrictions are the predominant depositional setting for sand beaches in the upper Grand Canyon and along five Wild and Scenic Rivers in Idaho, but not along other rivers. Beaches located upstream from constrictions are rare, in general, except in the Grand Canyon. Beaches found in expansions without constrictions dominate depositional sites along the Yampa and Green Rivers, are fairly common along the rivers in Idaho, but are relatively rare in the Grand Canyon. The magnitude of flow expansion is a reliable predictor of beach size. Beaches located on the inside of curves are uncommon, in general, but can be important recreation sites. The mid-channel bar setting is the least important from a recreation standpoint because that setting is rare and beaches there are typically small, and emergent only at low flow. The frequency of beaches is highly variable among rivers and the concentration of sand in transport is only partially responsible. Of the rivers studied, the unregulated Yampa River carries the highest concentrations of suspended sand and has among the most beaches (1.2 beaches km-1). Emergent sand beaches are essentially nonexistent along the Deschutes River and are rare along other Oregon rivers, yet these rivers transport some sand. Sand beaches are fairly common (0.8-1.1 beaches km-1) along the regulated Colorado River, but are comparatively rare (0.6 beaches km-1) along the unregulated Middle Fork Salmon River. The suspended sand concentrations in study reaches of these two rivers are similar, and the difference in the frequency of beaches may be largely because the processes that create beach-deposition settings are less active along the Middle Fork Salmon.
Groundwater and surface-water interaction within the upper Smith River Watershed, Montana 2006-2010
Caldwell, Rodney R.; Eddy-Miller, Cheryl A.
2013-01-01
The 125-mile long Smith River, a tributary of the Missouri River, is highly valued as an agricultural resource and for its many recreational uses. During a drought starting in about 1999, streamflow was insufficient to meet all of the irrigation demands, much less maintain streamflow needed for boating and viable fish habitat. In 2006, the U.S. Geological Survey, in cooperation with the Meagher County Conservation District, initiated a multi-year hydrologic investigation of the Smith River watershed. This investigation was designed to increase understanding of the water resources of the upper Smith River watershed and develop a detailed description of groundwater and surface-water interactions. A combination of methods, including miscellaneous and continuous groundwater-level, stream-stage, water-temperature, and streamflow monitoring was used to assess the hydrologic system and the spatial and temporal variability of groundwater and surface-water interactions. Collectively, data are in agreement and show: (1) the hydraulic connectedness of groundwater and surface water, (2) the presence of both losing and gaining stream reaches, (3) dynamic changes in direction and magnitude of water flow between the stream and groundwater with time, (4) the effects of local flood irrigation on groundwater levels and gradients in the watershed, and (5) evidence and timing of irrigation return flows to area streams. Groundwater flow within the alluvium and older (Tertiary) basin-fill sediments generally followed land-surface topography from the uplands to the axis of alluvial valleys of the Smith River and its tributaries. Groundwater levels were typically highest in the monitoring wells located within and adjacent to streams in late spring or early summer, likely affected by recharge from snowmelt and local precipitation, leakage from losing streams and canals, and recharge from local flood irrigation. The effects of flood irrigation resulted in increased hydraulic gradients (increased groundwater levels relative to stream stage) or even reversed gradient direction at several monitoring sites coincident with the onset of nearby flood irrigation. Groundwater-level declines in mid-summer were due to groundwater withdrawals and reduced recharge from decreased precipitation, increased evapotranspiration, and reduced leakage in some area streams during periods of low flow. Groundwater levels typically rebounded in late summer, a result of decreased evapotranspiration, decreased groundwater use for irrigation, increased flow in losing streams, and the onset of late-season flood irrigation at some sites. The effect of groundwater and surface-water interactions is most apparent along the North and South Forks of the Smith River where the magnitude of streamflow losses and gains can be greater than the magnitude of flow within the stream. Net gains consistently occurred over the lower 15 miles of the South Fork Smith River. A monitoring site near the mouth of the South Fork Smith River gained (flow from the groundwater to the stream) during all seasons, with head gradients towards the stream. Two upstream sites on the South Fork Smith River exhibited variable conditions that ranged from gaining during the spring, losing (flowing from the stream to the groundwater) during most of the summer as groundwater levels declined, and then approached or returned to gaining conditions in late summer. Parts of the South Fork Smith River became dry during periods of losing conditions, thus classifying this tributary as intermittent. The North Fork Smith River is highly managed at times through reservoir releases. The North Fork Smith River was perennial throughout the study period although irrigation diversions removed a large percentage of streamflow at times and losing conditions persisted along a lower reach. The lowermost reach of the North Fork Smith River near its mouth transitioned from a losing reach to a gaining reach throughout the study period. Groundwater and surface-water interactions occur downstream from the confluence of the North and South Fork Smith Rivers, but are less discernible compared to the overall magnitude of the main-stem streamflow. The Smith River was perennial throughout the study. Monitoring sites along the Smith River generally displayed small head gradients between the stream and the groundwater, while one site consistently showed strongly gaining conditions. Synoptic streamflow measurements during periods of limited irrigation diversion in 2007 and 2008 consistently showed gains over the upper 41.4 river miles of the main stem Smith River where net gains ranged from 13.0 to 28.9 cubic feet per second. Continuous streamflow data indicated net groundwater discharge and small-scale tributary inflow contributions of around 25 cubic feet per second along the upper 10-mile reach of the Smith River for most of the 2010 record. A period of intense irrigation withdrawal during the last two weeks in May was followed by a period (early June 2010 to mid-July 2010) with the largest net increase (an average of 71.1 cubic feet per second) in streamflow along this reach of the Smith River. This observation is likely due to increased groundwater discharge to the Smith River resulting from irrigation return flow. By late July, the apparent effects of return flows receded, and the net increase in streamflow returned to about 25 cubic feet per second. Two-dimensional heat and solute transport VS2DH models representing selected stream cross sections were used to constrain the hydraulic properties of the Quaternary alluvium and estimate temporal water-flux values through model boundaries. Hydraulic conductivity of the Quaternary alluvium of the modeled sections ranged from 3x10-6 to 4x10-5 feet per second. The models showed reasonable approximations of the streambed and shallow aquifer environment, and the dynamic changes in water flux between the stream and the groundwater through different model boundaries.
Kern, Jordan D; Patino-Echeverri, Dalia; Characklis, Gregory W
2014-08-19
Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. However, more coordinated use of wind and hydropower resources may exacerbate the impacts dams have on downstream environmental flows, that is, the timing and magnitude of water flows needed to sustain river ecosystems. In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). Results show that the greatest potential for wind energy to impact downstream flows occurs at high (∼25%) wind market penetration, when the dam sells more reserves in order to exploit spikes in real-time electricity prices caused by negative wind forecast errors. Nonetheless, compared to the initial impacts of dam construction (and the dam's subsequent operation as a peaking resource under baseline conditions) the marginal effects of any increased wind market penetration on downstream flows are found to be relatively minor.
NASA Astrophysics Data System (ADS)
Bai, Tao; Ma, Pan-pan; Kan, Yan-bin; Huang, Qiang
2017-12-01
Ecological risk assessment of river is an important content for protection and improvement of ecological environment. In this paper, taking Xiaolangdi reservoir for example, ecological risk assessments are studied based on the 1956-1997 and 2002-2008 dairy runoff data as the pre and post of construction of Xiaolangdi reservoir. Considering pre and post hydrological regime of construction of Xiaolangdi, ecological risk assessment index systems of downstream are established based on Index of Hydrologic Alteration-Range of Variability Approach method (IHA-RVA), which considering characters of flow, time, frequency, delay and change rate. Then ecological risk fuzzy comprehensive evaluation assessment model downstream is established based on risk index and RVA method. The results show that after the construction of Xiaolangdi reservoir, ecological risk occurred in the downstream of Yellow River for changed hydrological indexes, such as monthly average flow, frequency and duration of extreme annual flow and so on, which probably destroy the whole ecosystems of the river. For example, ecological risk downstream of Xiaolangdi reservoir upgrade to level two in 2008. Research results make reference values and scientific basis both in ecological risk assessment and management of reservoir after construction.
Form drag in rivers due to small-scale natural topographic features: 2. Irregular sequences
Kean, J.W.; Smith, J.D.
2006-01-01
The size, shape, and spacing of small-scale topographic features found on the boundaries of natural streams, rivers, and floodplains can be quite variable. Consequently, a procedure for determining the form drag on irregular sequences of different-sized topographic features is essential for calculating near-boundary flows and sediment transport. A method for carrying out such calculations is developed in this paper. This method builds on the work of Kean and Smith (2006), which describes the flow field for the simpler case of a regular sequence of identical topographic features. Both approaches model topographic features as two-dimensional elements with Gaussian-shaped cross sections defined in terms of three parameters. Field measurements of bank topography are used to show that (1) the magnitude of these shape parameters can vary greatly between adjacent topographic features and (2) the variability of these shape parameters follows a lognormal distribution. Simulations using an irregular set of topographic roughness elements show that the drag on an individual element is primarily controlled by the size and shape of the feature immediately upstream and that the spatial average of the boundary shear stress over a large set of randomly ordered elements is relatively insensitive to the sequence of the elements. In addition, a method to transform the topography of irregular surfaces into an equivalently rough surface of regularly spaced, identical topographic elements also is given. The methods described in this paper can be used to improve predictions of flow resistance in rivers as well as quantify bank roughness.
Holtschlag, D.J.; Koschik, J.A.
2005-01-01
Upper St. Clair River, which receives outflow from Lake Huron, is characterized by flow velocities that exceed 7 feet per second and significant channel curvature that creates complex flow patterns downstream from the Blue Water Bridge in the Port Huron, Michigan, and Sarnia, Ontario, area. Discrepancies were detected between depth-averaged velocities previously simulated by a two-dimensional (2D) hydrodynamic model and surface velocities determined from drifting buoy deployments. A detailed ADCP (acoustic Doppler current profiler) survey was done on Upper St. Clair River during July 1–3, 2003, to help resolve these discrepancies. As part of this study, a refined finite-element mesh of the hydrodynamic model used to identify source areas to public water intakes was developed for Upper St. Clair River. In addition, a numerical procedure was used to account for radial accelerations, which cause secondary flow patterns near channel bends. The refined model was recalibrated to better reproduce local velocities measured in the ADCP survey. ADCP data also were used to help resolve the remaining discrepancies between simulated and measured velocities and to describe variations in velocity with depth. Velocity data from ADCP surveys have significant local variability, and statistical processing is needed to compute reliable point estimates. In this study, velocity innovations were computed for seven depth layers posited within the river as the differences between measured and simulated velocities. For each layer, the spatial correlation of velocity innovations was characterized by use of variogram analysis. Results were used with kriging to compute expected innovations within each layer at applicable model nodes. Expected innovations were added to simulated velocities to form integrated velocities, which were used with reverse particle tracking to identify the expected flow path near a sewage outfall as a function of flow depth. Expected particle paths generated by use of the integrated velocities showed that surface velocities in the upper layers tended to originate nearer the Canadian shoreline than velocities near the channel bottom in the lower layers. Therefore, flow paths to U.S. public water intakes located on the river bottom are more likely to be in the United States than withdrawals near the water surface. Integrated velocities in the upper layers are generally consistent with the surface velocities indicated by drifting-buoy deployments. Information in the 2D hydrodynamic model and the ADCP measurements was insufficient to describe the vertical flow component. This limitation resulted in the inability to account for vertical movements on expected flow paths through Upper St. Clair River. A three dimensional hydrodynamic model would be needed to account for these effects.
Long-term data set analysis of stable isotopic composition in German rivers
NASA Astrophysics Data System (ADS)
Reckerth, Anne; Stichler, Willibald; Schmidt, Axel; Stumpp, Christine
2017-09-01
Stable isotopes oxygen-18 (18O) and deuterium (2H) are commonly used to investigate hydrological processes in catchments. However, only a few isotope studies have been conducted on a large scale and rarely over long time periods. The objective of this study was to identify the spatial and seasonal variability of isotopic composition in river water and how it is affected by geographical and hydrological factors. The stable isotopic composition of river water has been measured in nine large river catchments in Germany for a time period of 12 years or 26 years. We conducted time series and correlation analyses to identify spatial and temporal patterns of the isotopic composition in the rivers. Further, we compared it to isotopic composition in local precipitation and catchments characteristics. In the majority of the rivers, the spatial and temporal patterns of precipitation were directly reflected in river water. The isotopic signals of the river water were time shifted and show attenuated amplitudes. Further deviations from isotopic compositions in local precipitation were observed in catchments with complex flow systems. These deviations were attributed to catchment processes and influences like evaporation, damming and storage. The seasonality of the isotopic composition was mainly determined by the discharge regimes of the rivers. We found correlations between isotopic long-term averages and catchment altitude as well as latitude and longitude, resulting in a northwest-southeast gradient. Furthermore, it was shown that long-term averages of d-excess were inversely related to flow length and catchment size, which indicates that evaporation enrichment has an impact on the isotopic composition even in catchments of humid climates. This study showed that isotopic composition in rivers can serve as a proxy for the local precipitation and can be utilized as an indicator for hydrological processes even in large river basins. In future, such long time series will help to also understand the impact of changes in the hydrological cycle on the larger scales. They can also be used for calibration and validation of flow and transport models at catchment and sub-catchment scale.
2017-01-01
The continued provision of water from rivers in the southwestern United States to downstream cities, natural communities and species is at risk due to higher temperatures and drought conditions in recent decades. Snowpack and snowfall levels have declined, snowmelt and peak spring flows are arriving earlier, and summer flows have declined. Concurrent to climate change and variation, a century of fire suppression has resulted in dramatic changes to forest conditions, and yet, few studies have focused on determining the degree to which changing forests have altered flows. In this study, we evaluated changes in flow, climate, and forest conditions in the Salt River in central Arizona from 1914–2012 to compare and evaluate the effects of changing forest conditions and temperatures on flows. After using linear regression models to remove the influence of precipitation and temperature, we estimated that annual flows declined by 8–29% from 1914–1963, coincident with a 2-fold increase in basal area, a 2-3-fold increase in canopy cover, and at least a 10-fold increase in forest density within ponderosa pine forests. Streamflow volumes declined by 37–56% in summer and fall months during this period. Declines in climate-adjusted flows reversed at mid-century when spring and annual flows increased by 10–31% from 1964–2012, perhaps due to more winter rainfall. Additionally, peak spring flows occurred about 12 days earlier in this period than in the previous period, coincident with winter and spring temperatures that increased by 1–2°C. While uncertainties remain, this study adds to the knowledge gained in other regions that forest change has had effects on flow that were on par with climate variability and, in the case of mid-century declines, well before the influence of anthropogenic warming. Current large-scale forest restoration projects hold some promise of recovering seasonal flows. PMID:29176868
Dissolved and Particulate Amino Acids in the Lower Mississippi and Pearl Rivers (USA)
NASA Astrophysics Data System (ADS)
Duan, S.; Bianchi, T. S.
2006-12-01
Seasonal changes (monthly samples) in abundance and composition of dissolved and particulate amino acids were observed at one station in the lower Mississippi and Pearl Rivers (MS, USA) from September 2001 to August 2003. Spatial variability was also observed during a 4 day transmit from river-mile 225 to river mouth (Head of Passes, LA) in the Mississippi River, and a two-day downstream sampling from Jackson (MS) to Stennis Space Center (MS). Temporal data in the lower Mississippi River showed significantly lower concentrations of dissolved combined amino acids (DCAA, 0.45-1.4 μ M) and dissolved amino acids in high molecular weight fraction (HMW DAA, 0.13-0.27 μ M) than in the Pearl River (DCAA, 0.91-2.8 μ M; HMW DAA, 0.25-0.95 μ M). DCAA and HMW DAA in both rivers were generally higher during high-flow periods. DFAA was significantly lower than DCAA in both rivers (0.05-0.08 μ M), and displayed minimal seasonal variability. Total particulate amino acids (PAA) in both rivers were in the same range (0.7-1.4 μ M). A C- normalized yield of PAA (PAA-C/POC) was negatively correlated with suspended particulate matter and positively with chl-a in both rivers. No significant difference in PAA composition was observed in the two rivers. However, PAA in both rivers was relatively enriched in arginine, alanine, methionine and leucine, and depleted in aspartic acid, serine, and non-protein amino acids, compared to DCAA. While DCAA spatial variability in the lower Mississippi River was minimal, decreases in PAA (from 1.06 to 0.43 μ M) were consistent with particulate organic carbon (POC) and particulate nitrogen (PN). Frequent variations in the PAA-C/POC ratio were inversely correlated with suspended particulate matter and PAA (R = -0.7, n = 48), suggesting short- scale sedimentation and resuspension events. A gradual increase in % non-protein AA along with a loss of phytoplankton biomass along the river, suggested was indicative of bacterial utilization of labile phytodetritus. The abundance and composition of DAA and PAA in these river systems provides important information on nitrogen and carbon cycling in very different rivers entering the coastal ocean within the same coastal plain.
Neville, Helen; Issacs, Frank B.; Thurow, Russel; Dunham, J.B.; Rieman, B.
2007-01-01
Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.
NASA Technical Reports Server (NTRS)
Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan
2013-01-01
Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with 500 m resolution, and small, but significant, differences were found between peak and nadir river flow periods in terms of optimal resolution and resolvable proportion of variability.
The water quality of the LOCAR Pang and Lambourn catchments
NASA Astrophysics Data System (ADS)
Neal, C.; Jarvie, H. P.; Wade, A. J.; Neal, M.; Wyatt, R.; Wickham, H.; Hill, L.; Hewitt, N.
The water quality of the Pang and Lambourn, tributaries of the River Thames, in south-eastern England, is described in relation to spatial and temporal dimensions. The river waters are supplied mainly from Chalk-fed aquifer sources and are, therefore, of a calcium-bicarbonate type. The major, minor and trace element chemistry of the rivers is controlled by a combination of atmospheric and pollutant inputs from agriculture and sewage sources superimposed on a background water quality signal linked to geological sources. Water quality does not vary greatly over time or space. However, in detail, there are differences in water quality between the Pang and Lambourn and between sites along the Pang and the Lambourn. These differences reflect hydrological processes, water flow pathways and water quality input fluxes. The Pang’s pattern of water quality change is more variable than that of the Lambourn. The flow hydrograph also shows both a cyclical and "uniform pattern" characteristic of aquifer drainage with, superimposed, a series of "flashier" spiked responses characteristic of karstic systems. The Lambourn, in contrast, shows simpler features without the "flashier" responses. The results are discussed in relation to the newly developed UK community programme LOCAR dealing with Lowland Catchment Research. A descriptive and box model structure is provided to describe the key features of water quality variations in relation to soil, unsaturated and groundwater flows and storage both away from and close to the river.
The economic value of Trinity River water
Douglas, A.J.; Taylor, J.G.
1999-01-01
The Trinity River, largest tributary of the Klamath River, has its head-waters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.The Trinity River, largest tributary of the Klamath River, has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.
Comparison of Machine Learning methods for incipient motion in gravel bed rivers
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos
2013-04-01
Soil erosion and sediment transport of natural gravel bed streams are important processes which affect both the morphology as well as the ecology of earth's surface. For gravel bed rivers at near incipient flow conditions, particle entrainment dynamics are highly intermittent. This contribution reviews the use of modern Machine Learning (ML) methods implemented for short term prediction of entrainment instances of individual grains exposed in fully developed near boundary turbulent flows. Results obtained by network architectures of variable complexity based on two different ML methods namely the Artificial Neural Network (ANN) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) are compared in terms of different error and performance indices, computational efficiency and complexity as well as predictive accuracy and forecast ability. Different model architectures are trained and tested with experimental time series obtained from mobile particle flume experiments. The experimental setup consists of a Laser Doppler Velocimeter (LDV) and a laser optics system, which acquire data for the instantaneous flow and particle response respectively, synchronously. The first is used to record the flow velocity components directly upstream of the test particle, while the later tracks the particle's displacements. The lengthy experimental data sets (millions of data points) are split into the training and validation subsets used to perform the corresponding learning and testing of the models. It is demonstrated that the ANFIS hybrid model, which is based on neural learning and fuzzy inference principles, better predicts the critical flow conditions above which sediment transport is initiated. In addition, it is illustrated that empirical knowledge can be extracted, validating the theoretical assumption that particle ejections occur due to energetic turbulent flow events. Such a tool may find application in management and regulation of stream flows downstream of dams for stream restoration, implementation of sustainable practices in river and estuarine ecosystems and design of stable river bed and banks.
NASA Astrophysics Data System (ADS)
Ceola, Serena; Pugliese, Alessio; Castellarin, Attilio; Galeati, Giorgio
2015-04-01
Anthropogenic activities along streams and rivers are increasingly recognised to be a major concern for fluvial ecosystems. The management of water resources, by means of e.g. flow diversions and dams, for industrial, agricultural, water-supply, hydropower production and flood protection purposes induces significant changes to the natural streamflow regime of a river. Indeed, the river flow regime is known to be a major abiotic factor influencing fluvial ecosystems. An established approach aimed at preserving the behaviour and distribution of fluvial species relies on the definition of minimum streamflow requirements (i.e., environmental flows) downstream of dams and diversion structures. Such environmental flows are normally identified through methodologies that have an empirical nature and may not be representative of local ecological and hydraulic conditions. While the effect of imposing a minimum discharge release is easily predictable in terms of e.g. loss of hydropower production, the advantages in terms of species preferences are often poorly understood and seldom assessed. To analyse the interactions between flow releases and the behaviour and distribution of fluvial species (i.e., from periphyton, to benthic invertebrate and fish), one may use a habitat suitability curve, which is a fundamental tool capable of describing species preferences influenced by any generic environmental variable. The outcomes of a real case study applied to several Italian rivers, located in the Marche administrative district in Central Italy (∽10000km2), in which we quantitatively assess the effects of alternative environmental flow scenarios on the existing hydropower network and on two fish species that are quite abundant in the study area (i.e., Leuciscus cephalus cabeda and Barbus barbus plebejus), will be presented and discussed. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.
NASA Astrophysics Data System (ADS)
Castellarin, A.; Ceola, S.; Pugliese, A.; Galeati, G. A.
2015-12-01
Anthropogenic activities along streams and rivers are increasingly recognized to be a major concern for fluvial ecosystems. The management of water resources, by means of e.g. flow diversions and dams, for industrial, agricultural, water-supply, hydropower production and flood protection purposes induces significant changes to the natural streamflow regime of a river. Indeed, the river flow regime is known to be a major abiotic factor influencing fluvial ecosystems. An established approach aimed at preserving the behaviour and distribution of fluvial species relies on the definition of minimum streamflow requirements (i.e., environmental flows) downstream of dams and diversion structures. Such environmental flows are normally identified through methodologies that have an empirical nature and may not be representative of local ecological and hydraulic conditions. While the effect of imposing a minimum discharge release is easily predictable in terms of e.g. loss of hydropower production, the advantages in terms of species preferences are often poorly understood and seldom assessed. To analyze the interactions between flow releases and the behaviour and distribution of fluvial species (i.e., from periphyton, to benthic invertebrate and fish), one may use a habitat suitability curve, which is a fundamental tool capable of describing species preferences influenced by any generic environmental variable. The outcomes of a real case study applied to several Italian rivers, located in the Marche administrative district in Central Italy (∽10000km2), in which we quantitatively assess the effects of alternative environmental flow scenarios on the existing hydropower network and on two fish species that are quite abundant in the study area (i.e., Leuciscus cephalus cabeda and Barbus barbus plebejus), will be presented and discussed. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.
Numerical Simulation of Sediment Plug Formation in Alluvial Channels
NASA Astrophysics Data System (ADS)
Posner, A. J.; Duan, J. G.
2011-12-01
A sediment plug is the aggregation of sediment in a river reach that completely blocks the original channel resulting in plug growth upstream by accretion and flooding in surrounding areas. Sediment plugs historically form over relatively short periods, in many cases a matter of weeks. Although sediment plugs are much more common in reach constrictions associated with large woody debris, the mouths of tributaries, and along coastal regions, this investigation focuses on sediment plug formation in an alluvial river. During high flows in the years 1991, 1995, 2005, and 2008, a sediment plug formed in the San Marcial reach of the Middle Rio Grande. The Bureau of Reclamation has had to spend millions of dollars dredging the channel to restore flows to Elephant Butte Reservoir. The hydrodynamic and sediment transport processes, associated with plug formation, occurring in this reach are driven by 1) a flow constriction associated with a rock outcrop, 2) a railroad bridge, and 3) the water level of the downstream reservoir. The three-dimensional hydrodynamic model, Delft3D, was implemented to determine the hydrodynamic and sediment transport parameters and variables required to simulate plug formation in an effort to identify hydro- and morphodynamic thresholds. Several variables were identified by previous studies as metrics for plug formation. These variables were used in our investigation to detect the relative magnitude of each process. Both duration and degree of high flow events were simulated, along with extent of cohesive sediment deposits, reservoir level, and percent of fines in suspended sediment distribution. Results of this analysis illustrate that this model is able to reproduce the sediment plug formation. Model calibration was based on measured water levels and changes in bathymetry using both sediment transport and morphologic change parameters. Changes to hydraulic and sediment parameters are not proportional to morphologic changes and are asymptotic in their response. These results suggest that there are thresholds to predict plug formation and that the contribution of specific variables to plug formation is not uniform. Sediment plug formation is a costly and dangerous phenomenon, especially in large alluvial rivers. This investigation yielded specific insights into the hydrodynamic and morphologic processes occurring during sediment plug formation. These insights can be used to reduce the risk of plug formation and predict the locations and times of other sediment plugs.
NASA Astrophysics Data System (ADS)
Matter, Margaret A.; Garcia, Luis A.; Fontane, Darrell G.; Bledsoe, Brian
2010-01-01
SummaryMountain snowpack is the main source of water in the semi-arid Colorado River Basin (CRB), and while the demands for water are increasing, competing and often conflicting, the supply is limited and has become increasingly variable over the 20th Century. Greater variability is believed to contribute to lower accuracy in water supply forecasts, plus greater variability violates the assumption of stationarity, a fundamental assumption of many methods used in water resources engineering planning, design and management. Thus, it is essential to understand the underpinnings of hydroclimatic variability in order to accurately predict effects of climate changes and effectively meet future water supply challenges. A new methodology was applied to characterized time series of temperature, precipitation, and streamflow (i.e., historic and reconstructed undepleted flows) according to the three climate regimes that occurred in CRB during the 20th Century. Results for two tributaries in the Upper CRB show that hydroclimatic variability is more deterministic than previously thought because it entails complementary temperature and precipitation patterns associated with wetter or drier conditions on climate regime and annual scales. Complementary temperature and precipitation patterns characterize climate regime type (e.g., cool/wet and warm/dry), and the patterns entail increasing or decreasing temperatures and changes in magnitude and timing of precipitation according to the climate regime type. Accompanying each climate regime on annual scales are complementary temperature ( T) and precipitation ( P) patterns that are associated with upcoming precipitation and annual basin yield (i.e., total annual flow volume at a streamflow gauge). Annual complementary T and P patterns establish by fall, are detectable as early as September, persist to early spring, are related to the relative magnitude of upcoming precipitation and annual basin yield, are unique to climate regime type, and are specific to each river basin. Thus, while most of the water supply in the Upper CRB originates from winter snowpack, statistically significant indictors of relative magnitude of upcoming precipitation and runoff are evident in the fall, well before appreciable snow accumulation. Results of this study suggest strategies that may integrated into existing forecast methods to potentially improve forecast accuracy and advance lead time by as much as six months (i.e., from April 1 to October 1 of the previous year). These techniques also have applications in downscaling climate models and in river restoration and management.
The importance of context dependency for understanding the effects of low flow events on fish
Walters, Annika W.
2014-01-01
The natural hydrology of streams and rivers has been extensively altered by dam construction, water diversion, and climate change. An increased frequency of low-flow events will affect fish by changing habitat availability, resource availability, and reproductive cues. I reviewed the literature to characterize the approaches taken to assess low-flow events and fish, the main effects of low-flow events on fish, and the associated mechanistic drivers. Most studies are focused on temperate streams and are comparative in nature. Decreased stream flow is associated with decreased survival, growth, and abundance of fish populations and shifts in community composition, but effects are variable. This variability in effects is probably caused by context dependence. I propose 3 main sources of context dependence that drive the variation in fish responses to low-flow events: attributes of the low-flow event, attributes of the habitat, and attributes of the fish. Awareness of these sources of context dependence can help managers interpret and explain data, predict vulnerability of fish communities, and prioritize appropriate management actions.
Assessing the Impact of Climate Change on Stream Temperatures in the Methow River Basin, Washington
NASA Astrophysics Data System (ADS)
Gangopadhyay, S.; Caldwell, R. J.; Lai, Y.; Bountry, J.
2011-12-01
The Methow River in Washington offers prime spawning habitat for salmon and other cold-water fishes. During the summer months, low streamflows on the Methow result in cutoff side channels that limit the habitat available to these fishes. Future climate scenarios of increasing air temperature and decreasing precipitation suggest the potential for increasing loss of habitat and fish mortality as stream temperatures rise in response to lower flows and additional heating. To assess the impacts of climate change on stream temperature in the Methow River, the US Bureau of Reclamation is developing an hourly time-step, two-dimensional hydraulic model of the confluence of the Methow and Chewuch Rivers above Winthrop. The model will be coupled with a physical stream temperature model to generate spatial representations of stream conditions conducive for fish habitat. In this study, we develop a statistical framework for generating stream temperature time series from global climate model (GCM) and hydrologic model outputs. Regional observations of stream temperature and hydrometeorological conditions are used to develop statistical models of daily mean stream temperature for the Methow River at Winthrop, WA. Temperature and precipitation projections from 10 global climate models (GCMs) are coupled with the streamflow generated using the University of Washington Variable Infiltration Capacity model. The projections serve as input to the statistical models to generate daily time series of mean daily stream temperature. Since the output from the GCM, VIC, and statistical models offer only daily data, a k-nearest neighbor (k-nn) resampling technique is employed to select appropriate proportion vectors for disaggregating the Winthrop daily flow and temperature to an upstream location on each of the rivers above the confluence. Hourly proportion vectors are then used to disaggregate the daily flow and temperature to hourly values to be used in the hydraulic model. Historical meteorological variables are also selected using the k-nn method. We present the statistical modeling framework using Generalized Linear Models (GLMs), along with diagnostics and measurements of skill. We will also provide a comparison of the stream temperature projections from the future years of 2020, 2040, and 2080 and discuss the potential implications on fish habitat in the Methow River. Future integration of the hourly climate scenarios in the hydraulic model will provide the ability to assess the spatial extent of habitat impacts and allow the USBR to evaluate the effectiveness of various river restoration projects in maintaining or improving habitat in a changing climate.
Organic carbon sources and sinks in San Francisco Bay: variability induced by river flow
Jassby, Alan D.; Powell, T.M.; Cloern, James E.
1993-01-01
Sources and sinks of organic carbon for San Francisco Bay (California, USA) were estimated for 1980. Sources for the southern reach were dominated by phytoplankton and benthic microalgal production. River loading of organic matter was an additional important factor in the northern reach. Tidal marsh export and point sources played a secondary role. Autochthonous production in San Francisco Bay appears to be less than the mean for temperate-zone estuaries, primarily because turbidity limits microalgal production and the development of seagrass beds. Exchange between the Bay and Pacific Ocean plays an unknown but potentially important role in the organic carbon balance. Interannual variability in the organic carbon supply was assessed for Suisun Bay, a northern reach subembayment that provides habitat for important fish species (delta smelt Hypomesus transpacificus and larval striped bass Morone saxatilus). The total supply fluctuated by an order of magnitude; depending on the year, either autochthonous sources (phytoplankton production) or allochthonous sources (riverine loading) could be dominant. The primary cause of the year-to-year change was variability of freshwater inflows from the Sacramento and San Joaquin rivers, and its magnitude was much larger than long-term changes arising from marsh destruction and point source decreases. Although interannual variability of the total organic carbon supply could not be assessed for the southern reach, year-to-year changes in phytoplankton production were much smaller than in Suisun Bay, reflecting a relative lack of river influence.
Hydrological influences on the water quality trends in Tamiraparani Basin, South India.
Ravichandran, S
2003-09-01
Water quality variables--Turbidity, pH, Electrical Conductivity (EC), Chlorides and Total Hardness (TH) were monitored at a downstream location in the Tamiraparani River during 1978-1992. The observations were made at weekly intervals in a water treatment and supply plant using standard methods. Graphical and statistical analyses were used for data exploration, trend detection and assessment. Box-Whisker plots of annual and seasonal changes in variables indicated apparent trends being present in the data and their response to the seasonal influence of the monsoon rainfall. Further, the examination of the median values of the variables indicated that changes in the direction of trend occurred during 1985-1986, especially in pH, EC and TH. The statistical analyses were done using non-parametric methods, the ANCOVA on rank transformed data and the Seasonal Man-Kendall test. The presence of monotonic trend in all the water quality variables was confirmed, however, with independent direction of change. The trend line was fitted by the method of least squares. The estimated values indicated significant increases in EC (28 microS cm(-1)) while significant decreases were observed in turbidity (90 NTU), pH (0.78), and total hardness (23 ppm) in a span of 15 years. The changes induced in river flow by the addition of a stabilizing reservoir, the influence of seasonal and spatial pattern of monsoon rainfall across the river basin and the increased agriculture appear causative factors for the water quality trends seen in the Tamiraparani River system.
NASA Astrophysics Data System (ADS)
Vadnais, Marie-Ève; Assani, Ali A.; Landry, Raphaëlle; Leroux, Denis; Gratton, Denis
2012-11-01
During the first half of the twentieth century, many hydroelectric facilities were built in the Saint-Maurice River watershed, followed by other human activities in the second half of the century (pleasure boating, boom dismantling, urbanization, etc.). The goal of the study is to constrain the effects of these various types of human activities, particularly those of the many dams in the watershed, on the hydromorphological evolution of the Saint-Maurice River downstream from the La Gabelle (dam) power plant (43,000 km2). Comparison of specific discharge in this river with streamflow measured in a natural river setting reveals a significant decrease in seasonal maximum flows, aside from winter, when daily maximum flows increased significantly. Also, unlike natural rivers, the long-term trend in spring flows is not characterized by a significant change in mean downstream from the La Gabelle plant. These hydrological changes are linked to the inversion-type management mode of the reservoirs built downstream from the plant. As for the morphological evolution, the longitudinal variability of bankfull width downstream from the plant shows two significant shifts in mean: the first, which was quasi-abrupt, took place downstream of the des Forges rapid; and the second, which was gradual, occurred upstream from the confluence of the Saint-Maurice River with the St. Lawrence River, above the point where the Saint-Maurice splits into two branches. Comparison of aerial photographs taken at various times (1948, 1964, 1975, 1996, and 2008) reveals no significant change in the mean of bankfull width over time. However, a significant increase in the surface area of islets located at the confluence was observed, which is caused by sediment accumulation. These sediments were likely derived from local bank erosion resulting from anthropogenic changes.
Eyrolle-Boyer, Frédérique; Boyer, Patrick; Garcia-Sanchez, Laurent; Métivier, Jean-Michel; Onda, Yuichi; De Vismes, Anne; Cagnat, Xavier; Boulet, Béatrice; Cossonnet, Catherine
2016-01-01
To investigate riverine transfers from contaminated soils of the Fukushima Prefecture in Japan to the marine environment, suspended sediments, filtered water, sediments and detrital organic macro debris deposited onto river beds were collected in November 2013 within small coastal rivers during conditions of low flow rates and low turbidity. River waters were directly filtered on the field and high efficiency well-type Ge detectors were used to analyse radiocaesium concentrations in very small quantities of suspended particles and filtered water (a few mg to a few g). For such base-flow conditions, our results show that the watersheds studied present similar hydro-sedimentary behaviours at their outlets and that the exports of dissolved and particulate radiocaesium are comparable. Moreover, the contribution of these rivers to the instantaneous export of radiocaesium to the ocean is similar to that of the Abukuma River. Our preliminary results indicate that, in the estuaries, radiocaesium concentrations in suspended sediments would be reduced by more than 80%, while radiocaesium concentration in filtered waters would be maintained. Significant correlations between radiocaesium concentrations and radiocaesium inventories in the soils of the catchments indicate that there was at that time little intra and inter-watershed variability in the transfer processes of radiocaesium from lands to rivers at this regional scale. The apparent liquid-solid partition coefficient (KD) values acquired for the lowest loads/finest particles complement the values acquired by using sediment traps and highlight the strong capacity of the smallest particles to transfer radiocaesium. Finally, but not least, our observations suggest that there could be a significant transfer of highly contaminated detrital biomass from forest litter to the downstream rivers in a rather conservative way. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Groppelli, B.; Confortola, G.; Soncini, A.; Bocchiola, D.; Rosso, R.
2011-12-01
We merge hydraulic river modelling, use of suitability functions for fish guild colonization and hydrological modelling of catchment response to investigate future (until 2100) hydrological cycle and fish habitat suitability for an Alpine catchment in Italy, Serio river (drainage area 450 Km2, average altitude 1300 m a.s.l., main channel length ca. 36 km). Based upon detailed river channel morphology data for 73 river sections and direct local investigation we then set up and tune a quasi 2-D (i.e. with floodplains) hydraulic model for in channel flows hydraulics, depending upon daily in stream discharge. We then evaluate distributed values of hydraulic variables and therein composite habitat suitability indexes CS for a representative target species (brown trout, Salmo Trutta Fario L.), resulting into usable wetted area WUA for fish colonization. We consider both juvenile JUV and adults AD, and we evaluate the frequency (days in a year/season) of yearly/seasonal, spatially distributed and bulk (whole stream) habitat quality. We then provide synthetic indicators of (yearly/seasonal) suitability level and duration within the river. We then set up a minimal (T, P), properly tuned hydrological model able to mimick Serio river's hydrological cycle. We then use downscaled future precipitation and temperature from three general circulation models, GCMs (PCM, CCSM3, and HadCM3) available within the IPCC's data base chosen for the purpose based upon previous studies, to feed our hydrological model and provide projected hydrological regime of the catchment, together with modified habitat suitability. We then comment upon modified flow regime, habitat suitability as obtained and related uncertainty. The proposed results may be of use for river managers and may provide a template for investigation about future river habitat quality pending climate change.
Maina, Joseph; de Moel, Hans; Vermaat, Jan E; Bruggemann, J Henrich; Guillaume, Mireille M M; Grove, Craig A; Madin, Joshua S; Mertz-Kraus, Regina; Zinke, Jens
2012-10-01
Understanding the linkages between coastal watersheds and adjacent coral reefs is expected to lead to better coral reef conservation strategies. Our study aims to examine the main predictors of environmental proxies recorded in near shore corals and therefore how linked near shore reefs are to the catchment physical processes. To achieve these, we developed models to simulate hydrology of two watersheds in Madagascar. We examined relationships between environmental proxies derived from massive Porites spp. coral cores (spectral luminescence and barium/calcium ratios), and corresponding time-series (1950-2006) data of hydrology, climate, land use and human population growth. Results suggest regional differences in the main environmental drivers of reef sedimentation: on annual time-scales, precipitation, river flow and sediment load explained the variability in coral proxies of river discharge for the northeast region, while El Niño-Southern Oscillation (ENSO) and temperature (air and sea surface) were the best predictors in the southwest region. Copyright © 2012 Elsevier Ltd. All rights reserved.
The role of discharge variability in the formation and preservation of alluvial sediment bodies
NASA Astrophysics Data System (ADS)
Fielding, Christopher R.; Alexander, Jan; Allen, Jonathan P.
2018-03-01
Extant, planform-based facies models for alluvial deposits are not fully fit for purpose, because they over-emphasise plan form whereas there is little in the alluvial rock record that is distinctive of any particular planform, and because the planform of individual rivers vary in both time and space. Accordingly, existing facies models have limited predictive capability. In this paper, we explore the role of inter-annual peak discharge variability as a possible control on the character of the preserved alluvial record. Data from a suite of modern rivers, for which long-term gauging records are available, and for which there are published descriptions of subsurface sedimentary architecture, are analysed. The selected rivers are categorized according to their variance in peak discharge or the coefficient of variation (CVQp = standard deviation of the annual peak flood discharge over the mean annual peak flood discharge). This parameter ranges over the rivers studied between 0.18 and 1.22, allowing classification of rivers as having very low (< 0.20), low (0.20-0.40), moderate (0.40-0.60), high (0.60-0.90), or very high (> 0.90) annual peak discharge variance. Deposits of rivers with very low and low peak discharge variability are dominated by cross-bedding on various scales and preserve macroform bedding structure, allowing the interpretation of bar construction processes. Rivers with moderate values preserve mostly cross-bedding, but records of macroform processes are in places muted and considerably modified by reworking. Rivers with high and very high values of annual peak discharge variability show a wide range of bedding structures commonly including critical and supercritical flow structures, abundant in situ trees and transported large, woody debris, and their deposits contain pedogenically modified mud partings and generally lack macroform structure. Such a facies assemblage is distinctively different from the conventional fluvial style recorded in published facies models but is widely developed both in modern and ancient alluvial deposits. This high-peak-variance style is also distinctive of rivers that are undergoing contraction in discharge over time because of the gradual annexation of the channel belt by the establishment of woody vegetation. We propose that discharge variability, both inter-annual peak variation and "flashiness" may be a more reliable basis for classifying the alluvial rock record than planform, and we provide some examples of three classes of alluvial sediment bodies (representing low, intermediate, and high/very high discharge variability) from the rock record that illustrate this point.