Sample records for river hydroelectric system

  1. [Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: a review].

    PubMed

    Yang, Kun; Deng, Xi; Li, Xue-Ling; Wen, Ping

    2011-05-01

    Hydroelectric cascade exploitation, one of the major ways for exploiting water resources and developing hydropower, not only satisfies the needs of various national economic sectors, but also promotes the socio-economic sustainable development of river basin. unavoidable anthropogenic impacts on the entire basin ecosystem. Based on the process of hydroelectric cascade exploitation and the ecological characteristics of river basins, this paper reviewed the major impacts of hydroelectric cascade exploitation on dam-area ecosystems, river reservoirs micro-climate, riparian ecosystems, river aquatic ecosystems, wetlands, and river landscapes. Some prospects for future research were offered, e.g., strengthening the research of chain reactions and cumulative effects of ecological factors affected by hydroelectric cascade exploitation, intensifying the study of positive and negative ecological effects under the dam networks and their joint operations, and improving the research of successional development and stability of basin ecosystems at different temporal and spatial scales.

  2. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  3. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  4. What is the real price of hydroelectric production on the Senegal River?

    NASA Astrophysics Data System (ADS)

    Raso, Luciano; Bader, Jean-Claude; Malaterre, Pierre-Olivier

    2014-05-01

    Manantali is an annual reservoir on the Senegal River, located in Mali and serving Senegal and Mauritania. The reservoir is used to regulate the flow for hydroelectric production, in the face of the extremely variable seasonal climate of the region. Manantali has been operative for about 10 years now, exceeding the planned production capacity. The economic benefit comes at a price. Before the dam's construction, the annual flood was the basis of flood recession agriculture, traditionally practiced by the local population. Hydroelectric production requires a more regular flow; therefore flow peaks that used to create the flood are now dumped in the reservoir. Floods are reduced because the current reservoir management privileges hydroelectric production to flood recession agriculture. Moreover, the local water authority is evaluating the construction of 6 more reservoirs, which will enhance even further the controllability of the river flow. This study assesses the externalities of energy production for the agricultural production, quantifying the reduction of flooded surface when energy production is maximized, or alternatively, the loss energy production to maintain a minimum sustainable flood. In addition, we examine the system reliability against extreme events, and how a better use of hydrological information can improve the present reservoir management, in order to find a win-win solution. In this study we employ Stochastic Dual Dynamic Programming (SDDP) methodology. SDDP is a leaner version of Stochastic Dynamic Programming (SDP). SDDP does not suffer of the "curse of dimensionality", and therefore it can be applied to larger systems. In this application we include in the model: i) A semi-distributed hydrological model, ii) the reservoir, iii) the hydraulic routing process within the catchment and from the reservoir to the floodplain.

  5. Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system

    NASA Astrophysics Data System (ADS)

    Jidin, Razali; Othman, Bahari

    2013-06-01

    The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.

  6. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    USGS Publications Warehouse

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  7. River flow maintenance turbine for Milner Hydroelectric Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carson, J.L.; Holveck, W.H.; Gokhman, A.

    1995-12-31

    The Milner Hydroelectric Project on the Snake River in Idaho was commissioned in 1992. The project included renovation of an existing dam, which was built to supply irrigation water to a canal system, construction of a new spillway, and the addition of a new powerhouse. The forebay of the main powerhouse is located on a combination power and irrigation canal, approximately 3500 feet (1070 m) from the dam, with a short tailrace returning the water to the river. There are two Kaplan turbines installed in the main powerhouse, rated at 1000 cfs and 4000 cfs respectively at a net headmore » of 150 feet. The FERC license required that a target flow of 200 cfs be released from the dam to maintain a stream flow between the dam and the powerhouse. In order to utilize this flow, a small powerhouse was constructed at the toe of the dam. The site conditions favored a vertical axial flow turbine, with a net head of 56 feet. As the flow is constant and the head is fairly constant, a fixed geometry turbine was selected, to be controlled solely by the intake gate. Due to the higher head, the main powerhouse can generate more power per unit of flow than can the bypass turbine. Therefore, it is undesirable for the discharge of the bypass turbine to be any greater than required by the license. Also, the release flow is determined by a river gauge, the accuracy of which is unknown, but assumed to be within five percent. In order to meet these two requirements, the turbine was specified to have manually adjustable runner blades to obtain the required release flow of 200 cfs at any head between 55 and 58 feet.« less

  8. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  9. 1. CONTEXTUAL VIEW OF THE NINE MILE HYDROELECTRIC DEVELOPMENT (HED), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW OF THE NINE MILE HYDROELECTRIC DEVELOPMENT (HED), SHOWING DAM AND POWERHOUSE IN FOREGROUND, VILLAGE COMPLEX IN RIGHT BACKGROUND, LOOKING WEST FROM ABOVE STATE HIGHWAY 291 - Nine Mile Hydroelectric Development, State Highway 291 along Spokane River, Nine Mile Falls, Spokane County, WA

  10. 18 CFR 420.51 - Hydroelectric power plant water use charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Hydroelectric power plant water use charges. 420.51 Section 420.51 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Hydroelectric Power Water...

  11. River recreation management opportunities in hydroelectric relicensing

    Treesearch

    James R. Bernier

    1992-01-01

    Between now and 1993, more than 200 existing hydroelectric projects will come up for relicensing before FERC, the Federal Energy Regulatory Commission. This provides a rare opportunity for agencies and individuals to markedly influence the ecological and recreational balance of these projects. This paper presents an overview of the relicensing process, describes some...

  12. Planning status report: water resources appraisal for hydroelectric licensing, Potomac River basin, Pennsylvania, Maryland, West Virginia, Virginia, and District of Columbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    Updated information on water resources in the Potomac River Basin is presented for use by the FERC and its staff when considering hydroelectric licensing and other work. The report presents data on water resource developments, existing and potential, and on water use by existing and projected steam-electric generating facilities. Past and present planning studies are summarized.

  13. Canton hydroelectric project: feasibility study. Final report, appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-05-01

    These appendices contain legal, environmental, regulatory, technical and economic information used in evaluating the feasibility of redeveloping the hydroelectric power generating facilities at the Upper and Lower Dams of the Farmington River at Collinsville, CT. (LCL)

  14. The effects of run-of-river hydroelectric power schemes on invertebrate community composition in temperate streams and rivers.

    PubMed

    Bilotta, Gary S; Burnside, Niall G; Turley, Matthew D; Gray, Jeremy C; Orr, Harriet G

    2017-01-01

    Run-of-river (ROR) hydroelectric power (HEP) schemes are often presumed to be less ecologically damaging than large-scale storage HEP schemes. However, there is currently limited scientific evidence on their ecological impact. The aim of this article is to investigate the effects of ROR HEP schemes on communities of invertebrates in temperate streams and rivers, using a multi-site Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 22 systematically-selected ROR HEP schemes and 22 systematically-selected paired control sites. Five widely-used family-level invertebrate metrics (richness, evenness, LIFE, E-PSI, WHPT) were analysed using a linear mixed effects model. The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the evenness of the invertebrate community. However, no statistically significant effects were detected on the four other metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future invertebrate community impact studies.

  15. The effects of run-of-river hydroelectric power schemes on invertebrate community composition in temperate streams and rivers

    PubMed Central

    2017-01-01

    Run-of-river (ROR) hydroelectric power (HEP) schemes are often presumed to be less ecologically damaging than large-scale storage HEP schemes. However, there is currently limited scientific evidence on their ecological impact. The aim of this article is to investigate the effects of ROR HEP schemes on communities of invertebrates in temperate streams and rivers, using a multi-site Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 22 systematically-selected ROR HEP schemes and 22 systematically-selected paired control sites. Five widely-used family-level invertebrate metrics (richness, evenness, LIFE, E-PSI, WHPT) were analysed using a linear mixed effects model. The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the evenness of the invertebrate community. However, no statistically significant effects were detected on the four other metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future invertebrate community impact studies. PMID:28158282

  16. 3. SWIMMING POOL. VIEW TO SOUTHEAST. Rainbow Hydroelectric Facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SWIMMING POOL. VIEW TO SOUTHEAST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  17. 1. SWIMMING POOL. VIEW TO WEST. Rainbow Hydroelectric Facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SWIMMING POOL. VIEW TO WEST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  18. 2. SWIMMING POOL. VIEW TO SOUTHEAST. Rainbow Hydroelectric Facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SWIMMING POOL. VIEW TO SOUTHEAST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  19. 78 FR 35630 - Martin Dam Hydroelectric Project; Notice of Availability of the Draft Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 349-173] Martin Dam Hydroelectric Project; Notice of Availability of the Draft Environmental Impact Statement for the Martin Dam... the Martin Dam Hydroelectric Project (FERC No. 349), located on the Tallapoosa River in Tallapoosa...

  20. 76 FR 67178 - Wells Hydroelectric Project; Notice of Availability of the Final Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2149-152] Wells Hydroelectric Project; Notice of Availability of the Final Environmental Impact Statement for the Wells... application for license for the Wells Hydroelectric Project (FERC No. 2149), located on the Columbia River in...

  1. 53. NEW BCB AND LIGHTNING ARRESTER ARRANGEMENT, SANTA ANA RIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. NEW BCB AND LIGHTNING ARRESTER ARRANGEMENT, SANTA ANA RIVER NO. 2, JAN. 24, 1977. SCE drawing no. 455670-0. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  2. 76 FR 26718 - Gibson Dam Hydroelectric Company, LLC; Notice of Availability of Draft Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... Dam Hydroelectric Company, LLC; Notice of Availability of Draft Environmental Assessment In accordance... reviewed the application for license for the Gibson Dam Hydroelectric Project, located at the U.S. Department of the Interior, Bureau of Reclamation's, Gibson dam on the Sun River in Lewis and Clark and Teton...

  3. The impacts of wind power integration on sub-daily variation in river flows downstream of hydroelectric dams.

    PubMed

    Kern, Jordan D; Patino-Echeverri, Dalia; Characklis, Gregory W

    2014-08-19

    Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. However, more coordinated use of wind and hydropower resources may exacerbate the impacts dams have on downstream environmental flows, that is, the timing and magnitude of water flows needed to sustain river ecosystems. In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). Results show that the greatest potential for wind energy to impact downstream flows occurs at high (∼25%) wind market penetration, when the dam sells more reserves in order to exploit spikes in real-time electricity prices caused by negative wind forecast errors. Nonetheless, compared to the initial impacts of dam construction (and the dam's subsequent operation as a peaking resource under baseline conditions) the marginal effects of any increased wind market penetration on downstream flows are found to be relatively minor.

  4. 32. SHAW BOX 5 TON CRANE, SANTA ANA RIVER NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. SHAW BOX 5 TON CRANE, SANTA ANA RIVER NO. 3, JAN. 24, 1977. SCE drawing no. 455678-0. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA

  5. Methane and CO2 emissions from China's hydroelectric reservoirs: a new quantitative synthesis.

    PubMed

    Li, Siyue; Zhang, Quanfa; Bush, Richard T; Sullivan, Leigh A

    2015-04-01

    Controversy surrounds the green credentials of hydroelectricity because of the potentially large emission of greenhouse gases (GHG) from associated reservoirs. However, limited and patchy data particularly for China is constraining the current global assessment of GHG releases from hydroelectric reservoirs. This study provides the first evaluation of the CO2 and CH4 emissions from China's hydroelectric reservoirs by considering the reservoir water surface and drawdown areas, and downstream sources (including spillways and turbines, as well as river downstream). The total emission of 29.6 Tg CO2/year and 0.47 Tg CH4/year from hydroelectric reservoirs in China, expressed as CO2 equivalents (eq), corresponds to 45.6 Tg CO2eq/year, which is 2-fold higher than the current GHG emission (ca. 23 Tg CO2eq/year) from global temperate hydropower reservoirs. China's average emission of 70 g CO2eq/kWh from hydropower amounts to 7% of the emissions from coal-fired plant alternatives. China's hydroelectric reservoirs thus currently mitigate GHG emission when compared to the main alternative source of electricity with potentially far great reductions in GHG emissions and benefits possible through relatively minor changes to reservoir management and design. On average, the sum of drawdown and downstream emission including river reaches below dams and turbines, which is overlooked by most studies, represents the equivalent of 42% of the CO2 and 92% of CH4 that emit from hydroelectric reservoirs in China. Main drivers on GHG emission rates are summarized and highlight that water depth and stratification control CH4 flux, and CO2 flux shows significant negative relationships with pH, DO, and Chl-a. Based on our finding, a substantial revision of the global carbon emissions from hydroelectric reservoirs is warranted.

  6. The Effect of Hydroelectric Power Plants (hpp) on Agro-Life at Rural Land Regulation in Turkey

    NASA Astrophysics Data System (ADS)

    Onursal Denli, G.; Denli, H. H.; Seker, D. Z.; Bitik, E.; Cetin, S.

    2014-12-01

    Turkey is one of the self-sufficient in foodstuffs and globally ranks as 7th significant agricultural exporter in the world. Main trading partners are the European Union, the United States and the Middle East. As known, agricultural production is dependent on factors including efficient and effective use of all inputs ranging from those natural resources as in land and water to well-trained human resources as labour at the production. The socio-economic aspects of this sector take several forms ranging from the incomes of the primary producers. Rural land regulation is a necessity for rural areas and is regarded as a useful instrument for improving farmer's incomes and life standards. The irrigation system, established during the rural regulation/land consolidation period of large-scale farming, is insufficiently adjusted to the new land tenure structures. The government is especially in the process of water management with hydroelectric power plants. This process produces energy that is required but effects negatively the rivers and agricultural, environmental, climatic conditions. Rivers are vessels of the nature. Free flowing rivers give life to all nature. Most of the studies indicate that Hydroelectric Power Plants (HPP) affects the surface and ground-water management, natural life, agricultural productivity, socio-economic situation at agricultural regions and agro-life related with immigration. This study emphasizes the effect of Hydroelectric Power Plants which are used in transformation of water as a renewable natural resource into electricity power from the perspective of environmental policies and rural regulation.

  7. 53. SIPHON NO. 1, SANTA ANA RIVER NO. 2 PROJECT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. SIPHON NO. 1, SANTA ANA RIVER NO. 2 PROJECT, EXHIBIT L, PROJECT 1933, MAY 1973. SCE drawing no. 5110869 (sheet no. 11; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  8. The Effects of Run-of-River Hydroelectric Power Schemes on Fish Community Composition in Temperate Streams and Rivers

    PubMed Central

    2016-01-01

    The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon—Salmo salar, number of >1 year old Atlantic salmon, number of brown trout—Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the number of species. However, no statistically significant effects were detected on the other five metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies. PMID:27191717

  9. The Effects of Run-of-River Hydroelectric Power Schemes on Fish Community Composition in Temperate Streams and Rivers.

    PubMed

    Bilotta, Gary S; Burnside, Niall G; Gray, Jeremy C; Orr, Harriet G

    2016-01-01

    The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon-Salmo salar, number of >1 year old Atlantic salmon, number of brown trout-Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the number of species. However, no statistically significant effects were detected on the other five metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies.

  10. Dams in the Amazon: Belo Monte and Brazil's hydroelectric development of the Xingu River Basin.

    PubMed

    Fearnside, Phillip M

    2006-07-01

    Hydroelectric dams represent major investments and major sources of environmental and social impacts. Powerful forces surround the decision-making process on public investments in the various options for the generation and conservation of electricity. Brazil's proposed Belo Monte Dam (formerly Kararaô) and its upstream counterpart, the Altamira Dam (better known by its former name of Babaquara) are at the center of controversies on the decision-making process for major infrastructure projects in Amazonia. The Belo Monte Dam by itself would have a small reservoir area (440 km2) and large installed capacity (11, 181.3 MW), but the Altamira/Babaquara Dam that would regulate the flow of the Xingu River (thereby increasing power generation at Belo Monte) would flood a vast area (6140 km2). The great impact of dams provides a powerful reason for Brazil to reassess its current policies that allocate large amounts of energy in the country's national grid to subsidized aluminum smelting for export. The case of Belo Monte and the five additional dams planned upstream (including the Altamira/Babaquara Dam) indicate the need for Brazil to reform its environmental assessment and licensing system to include the impacts of multiple interdependent projects.

  11. 4. PENSTOCKS. EXHIBIT L, SANTA ANA RIVER NO. 1 PROJECT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PENSTOCKS. EXHIBIT L, SANTA ANA RIVER NO. 1 PROJECT, APR. 30, 1945. SCE drawing no. 523197 (sheet no. 7; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, SAR-1 Forebay & Penstock, Redlands, San Bernardino County, CA

  12. 4. FOREBAY AND PENSTOCK, EXHIBIT L, SANTA ANA RIVER NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FOREBAY AND PENSTOCK, EXHIBIT L, SANTA ANA RIVER NO. 2 PROJECT, APR. 30, 1945. SCE drawing no. 523642 (sheet no. 13; for filing with the Federal Power Commission). - Santa Ana River Hydroelectric System, SAR-2 Forebay & Penstock, Redlands, San Bernardino County, CA

  13. 44. SECTIONS OF POWER HOUSE, EXHIBIT L, SANTA ANA RIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. SECTIONS OF POWER HOUSE, EXHIBIT L, SANTA ANA RIVER NO. 2 PROJECT, APR. 30, 1945. SCE drawing no. 523644 (sheet no. 15; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  14. 76 FR 14651 - BOST4 Hydroelectric Company, LLC; Notice of Application Tendered for Filing With the Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... (BOST4). e. Name of Project: Red River Lock & Dam No. 4 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 4 on the Red River, in Red River Parish near the City of Coushatta, Louisiana. g. Filed Pursuant to...

  15. 77 FR 786 - BOST4 Hydroelectric Company, LLC, (BOST4); Notice of Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... (BOST4). e. Name of Project: Red River Lock & Dam No. 4 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 4 on the Red River, in Red River Parish near the Town of Coushatta, Louisiana. g. Filed Pursuant to...

  16. 18. SOUTH SIDE OF TULE RIVER POWERHOUSE COMPLEX TAKEN FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SOUTH SIDE OF TULE RIVER POWERHOUSE COMPLEX TAKEN FROM ACROSS SEGMENT OF OLD HIGHWAY 190. VEHICLE AT PHOTO CENTER IS IN APPROXIMATELY THE SAME POSITION AS THE MODEL T FORD IN THE HISTORIC VIEW SHOWN IN PHOTO CA-216-19. VIEW TO NORTH. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  17. 15. OVERVIEW OF TULE RIVER POWERHOUSE FROM FLUME SECTION JUST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. OVERVIEW OF TULE RIVER POWERHOUSE FROM FLUME SECTION JUST SOUTHEAST OF FOREBAY SHOWING BYPASSED SEGMENT OF OLD HIGHWAY 190 IN FRONT OF POWERHOUSE A PHOTO RIGHT CENTER. TAILRACE FROM POWERHOUSE DISCHARGES PROJECT WATER BACK INTO TULE RIVER MIDDLE FORK JUST OUT OF VIEW AT EXTREME LEFT OF PHOTO. VIEW TO SOUTHWEST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  18. Downstream passage and impact of turbine shutdowns on survival of silver American Eels at five hydroelectric dams on the Shenandoah River

    USGS Publications Warehouse

    Eyler, Sheila; Welsh, Stuart A.; Smith, David R.; Rockey, Mary

    2016-01-01

    Hydroelectric dams impact the downstream migrations of silver American Eels Anguilla rostrata via migratory delays and turbine mortality. A radiotelemetry study of American Eels was conducted to determine the impacts of five run-of-the-river hydroelectric dams located over a 195-km stretch of the Shenandoah River, Virginia–West Virginia, during fall 2007–summer 2010. Overall, 96 radio-tagged individuals (mean TL = 85.4 cm) migrated downstream past at least one dam during the study. Most American Eels passed dams relatively quickly; over half (57.9%) of the dam passage events occurred within 1 h of reaching a dam, and most (81.3%) occurred within 24 h of reaching the dam. Two-thirds of the dam passage events occurred via spill, and the remaining passage events were through turbines. Migratory delays at dams were shorter and American Eels were more likely to pass via spill over the dam during periods of high river discharge than during low river discharge. The extent of delay in migration did not differ between the passage routes (spill versus turbine). Twenty-eight American Eels suffered turbine-related mortality, which occurred at all five dams. Mortality rates for eels passing through turbines ranged from 15.8% to 40.7% at individual dams. Overall project-specific mortality rates (with all passage routes combined) ranged from 3.0% to 14.3%. To protect downstream-migrating American Eels, nighttime turbine shutdowns (1800–0600 hours) were implemented during September 15–December 15. Fifty percent of all downstream passage events in the study occurred during the turbine shutdown period. Implementation of the seasonal turbine shutdown period reduced cumulative mortality from 63.3% to 37.3% for American Eels passing all five dams. Modifying the turbine shutdown period to encompass more dates in the spring and linking the shutdowns to environmental conditions could provide greater protection to downstream-migrating American Eels.

  19. 76 FR 14653 - BOST3 Hydroelectric Company, LLC (BOST3); Notice of Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ...). e. Name of Project: Red River Lock & Dam No. 3 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 3 on the Red River, in Natchitoches Parish near the City of Colfax, Louisiana. g. Filed Pursuant to...

  20. Downstream effects of a hydroelectric reservoir on aquatic plant assemblages.

    PubMed

    Bernez, Ivan; Haury, Jacques; Ferreira, Maria Teresa

    2002-03-16

    Macrophytes were studied downstream of the Rophémel hydroelectric dam on the River Rance (Côtes d'Armor Department, western France) to assess the effects of hydroelectric functioning on river macrophyte communities. We studied ten representative sections of the hydro-peaking channel on five occasions in 1995 and 1996, on a 15-km stretch of river. Floristic surveys were carried out on sections 50 m in length, and genera of macroalgae, species of bryophyta, hydrophytes, and emergent rhizophytes were identified. For the aquatic bryophytes and spermatophytes section of our study, we compared our results with 19th century floristic surveys, before the dam was built. During the vegetative growth period, the hydro-peaking frequency was low. The plant richness was highest near the dam. The macrophyte communities were highly modified according to the distance to the dam. The frequency and magnitude of hydro-peaking was related to the aquatic macrophyte richness in an Intermediate Disturbance Hypothesis position. However, the results of the eco-historical comparison with 19th century floristic surveys point to the original nature of the flora found at the site. Some floral patterns, seen during both periods and at an interval of 133 years, were indicative of the ubiquity of the aquatic flora and of the plants" adaptability. This demonstrates the importance of taking river basin history into account in such biological surveys.

  1. 16. EXTERIOR NORTH END OF TULE RIVER POWERHOUSE SHOWING POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. EXTERIOR NORTH END OF TULE RIVER POWERHOUSE SHOWING POWERHOUSE AT PHOTO CENTER, SUBSTATION AT PHOTO RIGHT FOREGROUND, OFFICE BEHIND SUBSTATION AT RIGHT OF POWERHOUSE, AND MACHINE SHOP AT LEFT OF POWERHOUSE. THIS PHOTOGRAPH DUPLICATES HISTORIC VIEW SHOWN IN PHOTO CA-216-17. VIEW TO SOUTHEAST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  2. Mosquito abundance and behavior in the influence area of the hydroelectric complex on the Madeira River, Western Amazon, Brazil.

    PubMed

    Cruz, Rafael Mesquita Bastos; Gil, Luiz Herman Soares; de Almeida e Silva, Alexandre; da Silva Araújo, Maisa; Katsuragawa, Tony Hiroshi

    2009-11-01

    Malaria is currently highly prevalent and restricted to the north of Brazil, and its dynamics are severely affected by human environmental changes, such as the large dam construction recently approved by the Brazilian Government in Rondônia. We studied the mosquito fauna and behavior before hydroelectric construction. Mosquitoes were captured by human landing catches on the riversides of the Madeira River in Porto Velho, Rondônia. A total of 3121 mosquitoes from eight different genera were collected; only Mansonia and Anopheles darlingi were found in all 21 collection sites throughout the night. These results suggest that the riverines of the study area are exposed to malaria.

  3. 7. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING EXCITER No 1. EXCITER No. 1 IMPULSE WHEEL NOZZLE SHUTOFF VALVE AND LOMBARD GOVERNOR IN FOREGROUND. NORTH EXIT DOOR VISIBLE IN BACKGROUND. VIEW TO NORTH. - Kern County No. 1 Hydroelectric System, Powerhouse Exciters, Kern River Canyon, Bakersfield, Kern County, CA

  4. 77 FR 785 - BOST5 Hydroelectric Company, LLC, (BOST5); Notice of Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... (BOST5). e. Name of Project: Red River Lock & Dam No. 5 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 5 on the Red River, in Bassier Parish near the Town of Ninock, Louisiana. g. Filed Pursuant to: Federal...

  5. 76 FR 21885 - BOST5 Hydroelectric Company, LLC; Notice of Application Tendered for Filing With the Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... (BOST5). e. Name of Project: Red River Lock & Dam No. 5 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 5 on the Red River, near the town of Ninock near the City of Shreveport, Louisiana. g. Filed Pursuant to...

  6. 9. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING EXCITER No 2. Ca. 1930 GENERAL ELECTRIC ALTERNATING CURRENT MOTOR REPLACEMENT FOR ALLIS-CHALMERS IMPULSE WHEEL IS VISIBLE ON RIGHT ALONG WITH COUPLING TO EXCITER SHAFT. VIEW TO NORTHWEST. - Kern County No. 1 Hydroelectric System, Powerhouse Exciters, Kern River Canyon, Bakersfield, Kern County, CA

  7. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snakemore » River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach

  8. 75 FR 38543 - Klamath Hydroelectric Settlement Agreement, Including Secretarial Determination on Whether To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Klamath Hydroelectric Settlement Agreement, Including Secretarial Determination on Whether To Remove Four Dams on the Klamath River in California and Oregon AGENCY: Department of the Interior. ACTION: Notice; correction. SUMMARY: The Department of the...

  9. Status Review of Wildlife Mitigation at 14 of 27 Major Hydroelectric Projects in Idaho, 1983-1984 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Robert C.; Mehrhoff, L.A.

    1985-01-01

    The Pacific Northwest Electric Power Planning and Conservation Act and wildlife and their habitats in the Columbia River Basin and to compliance with the Program, the wildlife mitigation status reports coordination with resource agencies and Indian Tribes. developed the Columbia River Basin Fish and Wildlife Program development, operation, and maintenance of hydroelectric projects on existing agreements; and past, current, and proposed wildlife factual review and documentation of existing information on wildlife meet the requirements of Measure 1004(b)(l) of the Program. The mitigation, enhancement, and protection activities were considered. In mitigate for the losses to those resources resulting from the purposemore » of these wildlife mitigation status reports is to provide a resources at some of the Columbia River Basin hydroelectric projects the river and its tributaries. To accomplish this goal, the Council were written with the cooperation of project operators, and in within Idaho.« less

  10. 76 FR 44899 - FFP Missouri 17, LLC; BOST2 Hydroelectric LLC; Notice of Competing Preliminary Permit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... at the U.S. Army Corps of Engineers' (Corps) Columbia Lock & Dam, located on the Ouachita River near... & Dam Hydroelectric Project No. 13824-000 would consist of: (1) Two to four compact bulb turbines, with... Dam; (2) a 40-foot x 60-foot control building located on the South Carolina side of the river; and (3...

  11. Using fire dynamics simulator to reconstruct a hydroelectric power plant fire accident.

    PubMed

    Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min

    2011-11-01

    The location of the hydroelectric power plant poses a high risk to occupants seeking to escape in a fire accident. Calculating the heat release rate of transformer oil as 11.5 MW/m(2), the fire at the Taiwan Dajia-River hydroelectric power plant was reconstructed using the fire dynamics simulator (FDS). The variations at the escape route of the fire hazard factors temperature, radiant heat, carbon monoxide, and oxygen were collected during the simulation to verify the causes of the serious casualties resulting from the fire. The simulated safe escape time when taking temperature changes into account is about 236 sec, 155 sec for radiant heat changes, 260 sec for carbon monoxide changes, and 235-248 sec for oxygen changes. These escape times are far less than the actual escape time of 302 sec. The simulation thus demonstrated the urgent need to improve escape options for people escaping a hydroelectric power plant fire. © 2011 American Academy of Forensic Sciences.

  12. Carbon emission from global hydroelectric reservoirs revisited.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  13. 78 FR 48661 - Application for Presidential Permit; Soule River Hydroelectric Project: Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Hydroelectric Project: Correction AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application; correction. SUMMARY: The Department of Energy (DOE) Office of Electricity Delivery..., Office of Electricity Delivery and Energy Reliability (OE-20), U.S. Department of Energy, 1000...

  14. 77 FR 55205 - Barren River Lake Hydro LLC; Notice of Application Accepted for Filing and Soliciting Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    .... c. Date filed: December 9, 2011, and amended on June 12, 2012. d. Applicant: Barren River Lake Hydro LLC (Barren River Hydro) e. Name of Project: Barren River Lake Dam Hydroelectric Project. f. Location... registration, using the eComment system at http://www.ferc.gov/docs-filing/ecomment.asp . You must include your...

  15. Potential Effects of Hydroelectric Dam Development in the Mekong River Basin on the Migration of Siamese Mud Carp (Henicorhynchus siamensis and H. lobatus) Elucidated by Otolith Microchemistry

    PubMed Central

    Fukushima, Michio; Jutagate, Tuantong; Grudpan, Chaiwut; Phomikong, Pisit; Nohara, Seiichi

    2014-01-01

    The migration of Siamese mud carp (Henicorhynchus siamensis and H. lobatus), two of the most economically important fish species in the Mekong River, was studied using an otolith microchemistry technique. Fish and river water samples were collected in seven regions throughout the whole basin in Thailand, Laos and Cambodia over a 4 year study period. There was coherence between the elements in the ambient water and on the surface of the otoliths, with strontium (Sr) and barium (Ba) showing the strongest correlation. The partition coefficients were 0.409–0.496 for Sr and 0.055 for Ba. Otolith Sr-Ba profiles indicated extensive synchronized migrations with similar natal origins among individuals within the same region. H. siamensis movement has been severely suppressed in a tributary system where a series of irrigation dams has blocked their migration. H. lobatus collected both below and above the Khone Falls in the mainstream Mekong exhibited statistically different otolith surface elemental signatures but similar core elemental signatures. This result suggests a population originating from a single natal origin but bypassing the waterfalls through a passable side channel where a major hydroelectric dam is planned. The potential effects of damming in the Mekong River are discussed. PMID:25099147

  16. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  17. Bathymetric surveys of the Neosho River, Spring River, and Elk River, northeastern Oklahoma and southwestern Missouri, 2016–17

    USGS Publications Warehouse

    Hunter, Shelby L.; Ashworth, Chad E.; Smith, S. Jerrod

    2017-09-26

    In February 2017, the Grand River Dam Authority filed to relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission. The predominant feature of the Pensacola Hydroelectric Project is Pensacola Dam, which impounds Grand Lake O’ the Cherokees (locally called Grand Lake) in northeastern Oklahoma. Identification of information gaps and assessment of project effects on stakeholders are central aspects of the Federal Energy Regulatory Commission relicensing process. Some upstream stakeholders have expressed concerns about the dynamics of sedimentation and flood flows in the transition zone between major rivers and Grand Lake O’ the Cherokees. To relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission, the hydraulic models for these rivers require high-resolution bathymetric data along the river channels. In support of the Federal Energy Regulatory Commission relicensing process, the U.S. Geological Survey, in cooperation with the Grand River Dam Authority, performed bathymetric surveys of (1) the Neosho River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, (2) the Spring River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, and (3) the Elk River from Noel, Missouri, to the Oklahoma State Highway 10 bridge near Grove, Oklahoma. The Neosho River and Spring River bathymetric surveys were performed from October 26 to December 14, 2016; the Elk River bathymetric survey was performed from February 27 to March 21, 2017. Only areas inundated during those periods were surveyed.The bathymetric surveys covered a total distance of about 76 river miles and a total area of about 5 square miles. Greater than 1.4 million bathymetric-survey data points were used in the computation and interpolation of bathymetric-survey digital elevation models and derived contours at 1-foot (ft) intervals. The minimum bathymetric-survey elevation of the Neosho

  18. Divestiture summary report: Sale of Eklutna and Snettisham hydroelectric projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This report accompanies the legislative proposal to authorize sale of the two Alaskan Federal hydroelectric projects and close out the Alaska Power Administration (APA). The 78,210 kill Snettisham Project serving Juneau would be sold to the Alaska Energy Authority, a State corporation which owns six other hydroelectric projects. The 30,000 kill Eklutna Project serving the Anchorage and Matanuska Valley areas would be sold to the three electric utilities which now purchase power from that project. Terms and conditions for the sales are set out in negotiated Purchase Agreements. Key aspects include: (1) Development of Transition Plans within six months aftermore » Congress authorizes the divestiture. (2) Transaction Date to be set in the Transition Plans. (3) Description of assets to be transferred. (4) Price and payment terms. (5) Environmental Management Plans. (6) Protection of interests in several important non-power'' uses of project land and water. Under a separate agreement, the Purchasers assume responsibility for developing and implementing post-sale programs for protection, mitigation, and enhancement of fish and wildlife resources impacted by hydroelectric development in the Eldutna and Snettisham basins. The estimated sale proceeds to the United States Treasury are between $73.5 and $80.3 million, assuming the transactions are completed between October 1, 1992 and October 1, 1993. Eklutna and Snettisham are modest-sized, single-purpose hydroelectric projects involving small river basins entirely within Alaska. Locally, they are important long-term suppliers of economically-priced hydroelectric power. The sale terms and structure assure that the projects will continue to serve their intended purposes. Modest rate increases are expected over the short term, but long-term power rates are expected to be similar to those that would prevail under continued Federal ownership.« less

  19. Divestiture summary report: Sale of Eklutna and Snettisham hydroelectric projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This report accompanies the legislative proposal to authorize sale of the two Alaskan Federal hydroelectric projects and close out the Alaska Power Administration (APA). The 78,210 kill Snettisham Project serving Juneau would be sold to the Alaska Energy Authority, a State corporation which owns six other hydroelectric projects. The 30,000 kill Eklutna Project serving the Anchorage and Matanuska Valley areas would be sold to the three electric utilities which now purchase power from that project. Terms and conditions for the sales are set out in negotiated Purchase Agreements. Key aspects include: (1) Development of Transition Plans within six months aftermore » Congress authorizes the divestiture. (2) Transaction Date to be set in the Transition Plans. (3) Description of assets to be transferred. (4) Price and payment terms. (5) Environmental Management Plans. (6) Protection of interests in several important ``non-power`` uses of project land and water. Under a separate agreement, the Purchasers assume responsibility for developing and implementing post-sale programs for protection, mitigation, and enhancement of fish and wildlife resources impacted by hydroelectric development in the Eldutna and Snettisham basins. The estimated sale proceeds to the United States Treasury are between $73.5 and $80.3 million, assuming the transactions are completed between October 1, 1992 and October 1, 1993. Eklutna and Snettisham are modest-sized, single-purpose hydroelectric projects involving small river basins entirely within Alaska. Locally, they are important long-term suppliers of economically-priced hydroelectric power. The sale terms and structure assure that the projects will continue to serve their intended purposes. Modest rate increases are expected over the short term, but long-term power rates are expected to be similar to those that would prevail under continued Federal ownership.« less

  20. Efficacy of electrofishing to assess plasma cortisol concentration in juvenile chinook salmon passing hydroelectric dams on the Columbia River

    USGS Publications Warehouse

    Mauls, Alec G.; Mesa, Matthew G.

    1994-01-01

    We tested the efficacy of using electrofishing to collect juvenile fall chinook salmon Oncorhynchus tshawytscha to assess their plasma cortisol concentrations. In laboratory experiments, plasma cortisol titers of fish sampled immediately (<4 s) after a 1.5-s, 500-V DC electroshock were not different from controls (mean ± SE, 28.8 ± 5.2 ng/mL), but within 15 min they were significantly higher (148.2 ± 19.0 ng/mL) than controls. Plasma cortisol levels of fish released through turbines and of those released through the juvenile-bypass system at Bonneville Dam, Oregon-Washington, and collected by electrofishing did not differ from each other or from prerelease samples (about 70 ± 7 ng/mL). Our results indicate that electrofishing can be used to collect fish for stress assessment in the wild, provided fish are sacrificed immediately after capture. We are concerned, however, that the small number of fish we captured by electrofishing may not be representative of the majority of fish that pass through turbines or bypass systems. The fish used in this study were not migrating smolts and so were not typical of juvenile chinook salmon passing through hydroelectric dams on the Columbia River. Developmental as well as species- and stock-related factors should be addressed in future studies.

  1. Hiilangaay Hydroelectric Project – Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twitchell, Sara; Stimac, Michael; Lang, Lisa

    2016-06-01

    The Hiilangaay Hydroelectric Project (“Hiilangaay” or the “Project”) is a 5-megawatt hydroelectric resource currently under construction on Prince of Wales Island (POW), Alaska, approximately ten miles east of Hydaburg. The objective of the Project is to interconnect with the existing transmission grid on Prince of Wales Island, increasing the hydroelectric generation capability by 5 MW, eliminating the need for diesel generation, increasing the reliability of the electrical system, and allowing the interconnected portion of the island to have 100 percent renewable energy generation. Pre-construction activities including construction planning, permit coordination and compliance, and final design have made it possible tomore » move forward with construction of the Hiilangaay Project. Despite repeated delays to the schedule, persistence and long-term planning will culminate in the construction of the Project, and make Prince of Wales Island independent of diesel-fueled energy« less

  2. Short-term cascaded hydroelectric system scheduling based on chaotic particle swarm optimization using improved logistic map

    NASA Astrophysics Data System (ADS)

    He, Yaoyao; Yang, Shanlin; Xu, Qifa

    2013-07-01

    In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.

  3. 77 FR 2970 - Gibson Dam Hydroelectric Company, LLC, Montana; Notice of Availability of Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12478-003] Gibson Dam... reviewed the application for license for the Gibson Dam Hydroelectric Project, located at the U.S. Department of the Interior, Bureau of Reclamation's Gibson dam on the Sun River in Lewis and Clark and Teton...

  4. The influence of changes in lifestyle and mercury exposure in riverine populations of the Madeira River (Amazon Basin) near a hydroelectric project.

    PubMed

    Hacon, Sandra S; Dórea, José G; Fonseca, Márlon de F; Oliveira, Beatriz A; Mourão, Dennys S; Ruiz, Claudia M V; Gonçalves, Rodrigo A; Mariani, Carolina F; Bastos, Wanderley R

    2014-02-26

    In the Amazon Basin, naturally occurring methylmercury bioaccumulates in fish, which is a key source of protein consumed by riverine populations. The hydroelectric power-plant project at Santo Antônio Falls allows us to compare the Hg exposure of riverine populations sparsely distributed on both sides of the Madeira river before the area is to be flooded. From 2009 to 2011, we concluded a population survey of the area (N = 2,008; representing circa 80% of community residents) that estimated fish consumption and mercury exposure of riverine populations with different degrees of lifestyle related to fish consumption. Fish samples from the Madeira river (N = 1,615) and 110 species were analyzed for Hg. Hair-Hg was significantly lower (p < 0.001) in less isolated communities near to the capital of Porto Velho (median 2.32 ppm) than in subsistence communities in the Cuniã Lake, 180 km from Porto Velho city (median 6.3 ppm). Fish Hg concentrations ranged from 0.01 to 6.06 µg/g, depending on fish size and feeding behavior. Currently available fish in the Madeira river show a wide variability in Hg concentrations. Despite cultural similarities, riparians showed hair-Hg distribution patterns that reflect changes in fish-eating habits driven by subsistence characteristics.

  5. The Influence of Changes in Lifestyle and Mercury Exposure in Riverine Populations of the Madeira River (Amazon Basin) near a Hydroelectric Project

    PubMed Central

    Hacon, Sandra S.; Dórea, José G.; Fonseca, Márlon de F.; Oliveira, Beatriz A.; Mourão, Dennys S.; Ruiz, Claudia M. V.; Gonçalves, Rodrigo A.; Mariani, Carolina F.; Bastos, Wanderley R.

    2014-01-01

    In the Amazon Basin, naturally occurring methylmercury bioaccumulates in fish, which is a key source of protein consumed by riverine populations. The hydroelectric power-plant project at Santo Antônio Falls allows us to compare the Hg exposure of riverine populations sparsely distributed on both sides of the Madeira river before the area is to be flooded. From 2009 to 2011, we concluded a population survey of the area (N = 2,008; representing circa 80% of community residents) that estimated fish consumption and mercury exposure of riverine populations with different degrees of lifestyle related to fish consumption. Fish samples from the Madeira river (N = 1,615) and 110 species were analyzed for Hg. Hair-Hg was significantly lower (p < 0.001) in less isolated communities near to the capital of Porto Velho (median 2.32 ppm) than in subsistence communities in the Cuniã Lake, 180 km from Porto Velho city (median 6.3 ppm). Fish Hg concentrations ranged from 0.01 to 6.06 µg/g, depending on fish size and feeding behavior. Currently available fish in the Madeira river show a wide variability in Hg concentrations. Despite cultural similarities, riparians showed hair-Hg distribution patterns that reflect changes in fish-eating habits driven by subsistence characteristics. PMID:24577285

  6. Total mercury and methylmercury levels in fish from hydroelectric reservoirs in Tanzania.

    PubMed

    Ikingura, J R; Akagi, H

    2003-03-20

    Total mercury (THg) and methylmercury (MeHg) levels have been determined in fish species representing various tropic levels in four major hydroelectric reservoirs (Mtera, Kidatu, Hale-Pangani, Nyumba ya Mungu) located in two distinct geographical areas in Tanzania. The Mtera and Kidatu reservoirs are located along the Great Ruaha River drainage basin in the southern central part of the country while the other reservoirs are located within the Pangani River basin in the north eastern part of Tanzania. Fish mercury levels ranged from 5 to 143 microg/kg (mean 40 microg/kg wet weight) in the Mtera Reservoir, and from 7 to 119 microg/kg (mean 21 microg/kg) in the Kidatu Reservoir downstream of the Great Ruaha River. The lowest THg levels, in the range 1-10 microg/kg (mean 5 microg/kg), were found in fish from the Nyumba ya Mungu (NyM) Reservoir, which is one of the oldest reservoirs in the country. Fish mercury levels in the Pangani and Hale mini-reservoirs, downstream of the NyM Reservoir, were in the order of 3-263 microg/kg, with an average level of 21 microg/kg. These THg levels are among the lowest to be reported in freshwater fish from hydroelectric reservoirs. Approximately 56-100% of the total mercury in the fish was methylmercury. Herbivorous fish species contained lower THg levels than the piscivorous species; this was consistent with similar findings in other fish studies. In general the fish from the Tanzanian reservoirs contained very low mercury concentrations, and differed markedly from fish in hydroelectric reservoirs of similar age in temperate and other regions, which are reported to contain elevated mercury concentrations. The low levels of mercury in the fish correlated with low background concentrations of THg in sediment and flooded soil (mean 2-8 microg/kg dry weight) in the reservoir surroundings. This suggested a relatively clean reservoir environment that has not been significantly impacted by mercury contamination from natural or anthropogenic

  7. 76 FR 46840 - Time Extension To Accept Proposals, Select One Lessee, and Contract for Hydroelectric Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Time Extension To Accept Proposals, Select One Lessee, and Contract for Hydroelectric Power Development at the Pueblo Dam River Outlet, a Feature of the... period for accepting written proposals detailed in the Notice of Intent to Accept Proposals, Select One...

  8. Culinary and pressure irrigation water system hydroelectric generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christiansen, Cory

    Pleasant Grove City owns and operates a drinking water system that included pressure reducing stations (PRVs) in various locations and flow conditions. Several of these station are suitable for power generation. The City evaluated their system to identify opportunities for power generation that can be implemented based on the analysis of costs and prediction of power generation and associated revenue. The evaluation led to the selection of the Battle Creek site for development of a hydro-electric power generating system. The Battle Creek site includes a pipeline that carries spring water to storage tanks. The system utilizes a PRV to reducemore » pressure before the water is introduced into the tanks. The evaluation recommended that the PRV at this location be replaced with a turbine for the generation of electricity. The system will be connected to the utility power grid for use in the community. A pelton turbine was selected for the site, and a turbine building and piping system were constructed to complete a fully functional power generation system. It is anticipated that the system will generate approximately 440,000 kW-hr per year resulting in $40,000 of annual revenue.« less

  9. Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) in the influence areas of a hydroelectric power plant on the Madeira River in the Amazon Basin

    PubMed Central

    2018-01-01

    Abstract Background Biodiversity loss is accelerating rapidly in response to increasing human influence on the Earth’s natural ecosystems. One way to overcome this problem is by focusing on places of human interest and monitoring the changes and impacts on the biodiversity. This study was conducted at six sites within the influence area of the Santo Antônio Hydroelectric Power Plant in the margins of the Madeira River in Rondônia State. The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six plots (transects) each, totaling 30 sampling plots. The transects were distributed with 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km, measured perpendicularly from the river margin towards the interior of the forest. For sampling the ground-dwelling ants, the study used the ALL (ants of the leaf litter) protocol, which is standardized globally in the inventories of ant fauna. For the purpose of impact indicators, the first two campaigns (September 2011 to November 2011) were carried out in the pre-filling period, while campaigns 3 to 10 (February 2012 to November 2014) were carried out during and after the filling of the hydroelectric reservoir. A total of 253 events with a total of 9,165 occurrences were accounted during the monitoring. The ants were distributed in 10 subfamilies, 68 genera and 324 species/morphospecies. The impact on ant biodiversity during the periods before and after filling was measured by ecological indicators and by the presence and absence of some species/morphospecies. This is the first study, as far as we know, including taxonomic and ecological treatment to monitor the impact of a hydroelectric power plant on ant fauna. New information Until recently, most studies conducted on hydroelectric plants, located in the Amazon Basin, were carried out after the implementation of dams in order to assess their impacts on the environment and biodiversity (Benchimol

  10. Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) in the influence areas of a hydroelectric power plant on the Madeira River in the Amazon Basin.

    PubMed

    Fernandes, Itanna O; de Souza, Jorge L P

    2018-01-01

    Biodiversity loss is accelerating rapidly in response to increasing human influence on the Earth's natural ecosystems. One way to overcome this problem is by focusing on places of human interest and monitoring the changes and impacts on the biodiversity. This study was conducted at six sites within the influence area of the Santo Antônio Hydroelectric Power Plant in the margins of the Madeira River in Rondônia State. The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six plots (transects) each, totaling 30 sampling plots. The transects were distributed with 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km, measured perpendicularly from the river margin towards the interior of the forest. For sampling the ground-dwelling ants, the study used the ALL (ants of the leaf litter) protocol, which is standardized globally in the inventories of ant fauna. For the purpose of impact indicators, the first two campaigns (September 2011 to November 2011) were carried out in the pre-filling period, while campaigns 3 to 10 (February 2012 to November 2014) were carried out during and after the filling of the hydroelectric reservoir. A total of 253 events with a total of 9,165 occurrences were accounted during the monitoring. The ants were distributed in 10 subfamilies, 68 genera and 324 species/morphospecies. The impact on ant biodiversity during the periods before and after filling was measured by ecological indicators and by the presence and absence of some species/morphospecies. This is the first study, as far as we know, including taxonomic and ecological treatment to monitor the impact of a hydroelectric power plant on ant fauna. Until recently, most studies conducted on hydroelectric plants, located in the Amazon Basin, were carried out after the implementation of dams in order to assess their impacts on the environment and biodiversity (Benchimol and Peres 2015, Latrubesse et al. 2017

  11. Hydroelectric System Response to Part Load Vortex Rope Excitation

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Nicolet, C.; Bégum, A.; Landry, C.; Gomes, J.; Avellan, F.

    2016-11-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope on the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of v = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed to analyse potential interactions between hydraulic excitation sources and electrical components.

  12. 63. PANORAMIC VIEW OF HEADWORKS FROM WEST SIDE OF RIVER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. PANORAMIC VIEW OF HEADWORKS FROM WEST SIDE OF RIVER, LOOKING UPSTREAM, Prints No. 173, 174 and 175, November 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  13. Optimal control of hydroelectric facilities

    NASA Astrophysics Data System (ADS)

    Zhao, Guangzhi

    challenging problem of optimizing a sequence of two hydro dams sharing the same river system. The complexity of this problem is magnified and we just scratch its surface here. The thesis concludes with suggestions for future work in this fertile area. Keywords: dynamic programming, hydroelectric facility, optimization, optimal control, switching cost, turbine efficiency.

  14. 77 FR 55466 - Barren River Lake Hydro LLC; Notice Soliciting Scoping Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13022-003] Barren River Lake Hydro LLC; Notice Soliciting Scoping Comments Take notice that the following hydroelectric..., 2012. d. Applicant: Barren River Lake Hydro LLC (Barren River Hydro). e. Name of Project: Barren River...

  15. 78 FR 79434 - Sabine River Authority of Texas and Sabine River Authority, State of Louisiana; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2305-036] Sabine River Authority of Texas and Sabine River Authority, State of Louisiana; Notice of Availability of the Final Environmental Impact Statement for the Toledo Bend Hydroelectric Project In accordance with the National Environmental Policy Act of 1969 and the...

  16. 76 FR 67723 - CRD Hydroelectric, LLC; Notice of Application To Amend License and Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    .... Name of Project: Red Rock Hydroelectric Project. f. Location: The project is located at the U.S. Army Corps of Engineers Lake Red Rock Dam on the Des Moines River in Marion County, Iowa. g. Filed Pursuant.... Army Corps of Engineers' Lake Red Rock Dam. The applicant's proposal also includes the installation of...

  17. Benchmarking of Advanced Control Strategies for a Simulated Hydroelectric System

    NASA Astrophysics Data System (ADS)

    Finotti, S.; Simani, S.; Alvisi, S.; Venturini, M.

    2017-01-01

    This paper analyses and develops the design of advanced control strategies for a typical hydroelectric plant during unsteady conditions, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solutions addressed in this work, the proposed methodologies rely on data-driven and model-based approaches applied to the system under monitoring. Extensive simulations and comparisons serve to determine the best solution for the development of the most effective, robust and reliable control tool when applied to the considered hydraulic system.

  18. 76 FR 75543 - Missisquoi River Technologies; Missisquoi River Hydro LLC; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ..., Missisquoi River Technologies informed the Commission that its exemption from licensing for the North Troy..., located at 453 East Hill Rd., Middlesex, VT 05602, is now the exemptee of the North Troy Hydroelectric...

  19. Nile River, Lake Nasser, Aswan Dam, Egypt

    NASA Image and Video Library

    1991-08-11

    Egypt's High Aswan Dam on the Nile River at the first cataracts, Nile River, (24.0N, 33.0E) was completed in 1971 to provide cheap hydroelectric power and to regulate the historically uneven flow of the Nile River. The contrast between the largely base rock desert east of the Nile versus the sand covered desert west of the river and the ancient irrigated floodplain downstream from the damsite is clearly shown.

  20. Nile River, Lake Nasser, Aswan Dam, Egypt

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Egypt's High Aswan Dam on the Nile River at the first cataracts, Nile River, (24.0N, 33.0E) was completed in 1971 to provide cheap hydroelectric power and to regulate the historically uneven flow of the Nile River. The contrast between the largely base rock desert east of the Nile versus the sand covered desert west of the river and the ancient irrigated floodplain downstream from the damsite is clearly shown.

  1. Study of the Time Response of a Simulated Hydroelectric System

    NASA Astrophysics Data System (ADS)

    Simani, S.; Alvisi, S.; Venturini, M.

    2014-12-01

    This paper addresses the design of an advanced control strategy for a typical hydroelectric dynamic process, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solution, the proposed methodology relies on an adaptive control designed by means of the on-line identification of the system model under monitoring. Extensive simulations and comparison with respect to a classic hydraulic turbine speed PID regulator show the effectiveness of the proposed modelling and control tools.

  2. [Limnetic zooplankton run-off a high-head dam and their fate in a river with high current velocity (case of the Krasnoiarsk hydroelectric power station on the Yenisei river].

    PubMed

    Dubovskaia, O P; Gladyshev, M I; Makhutova, O N

    2004-01-01

    The vertical distribution of net zooplankton in head-water of Krasnoyarsk hydroelectric power station and its horizontal distribution in the tail-water were studied during two years in winter and summer seasons. In order to distinguish living and dead individuals the special staining was used. It was revealed that on average 77% of living plankton pass through high-head dam with deep water scoop to the tailwater. While passing through dam aggregates some individuals of the reservoir plankton are traumatized and die, that results in some increase of portion of dead individuals in the tail water near dam (from 3 to 6%). Alive zooplankton passed through the dam aggregates is eliminated under the Upper Yenisei highly turbulent conditions. There is approximately 10% of it in 32 km from the dam if compare with biomass in 20-40 m layer of reservoir, the portion of dead increases to 11%. The biomass of zooplankton suspended in the water column of the tail-water sometimes increases (till > 1 g/m3) due to large Copepoda Heteroscope borealis, which inhabits near-bottom and near-shore river zones and can be found in the central part of the river during reproductive period. Limnetic zooplankton from the reservoir cannot be considered as important food for planktivores in the tail-water.

  3. Reducing the Impacts of Hydroelectric Dams on Juvenile Anadromous Fishes: Bioengineering Evaluations Using Acoustic Imaging in the Columbia River, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.

    2008-07-29

    Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to mergingmore » and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.« less

  4. 19. Heat Pump, view to the southwest. This system provides ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Heat Pump, view to the southwest. This system provides ventilation air heating and cooling throughout the powerhouse. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  5. Accounting System for Water Use by Vegetation in the Lower Colorado River Valley

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1992-01-01

    The Colorado River is the principal source of water in the valley of the Colorado River between Hoover Dam and the international boundary with Mexico (fig. 1). Agricultural, domestic, municipal, industrial, hydroelectric-power genera-tion, and recreation are the primary uses of river water in the valley. Most of the consumptive use of water from the river occurs downstream from Davis Dam, where water is diverted to irrigate crops along the river or is exported to interior regions of California and Arizona. Most of the agricultural areas are on the alluvium of the flood plain; in a few areas, land on the alluvial terraces has been cultivated. River water is consumed mainly by vegetation (crops and phreatophytes) on the flood plain. Crops were grown on 70.3 percent of the vegetated area classified by using 1984 digital image satellite data. Phreatophytes, natural vege-tation that obtain water from the alluvial aquifer, covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped from the river. In some areas, water is pumped from wells completed in the alluvial aquifer, which is hydraulically connected to the river.

  6. Impacts of hydroelectric dams on alluvial riparian plant communities in Eastern Brazilian Amazonian.

    PubMed

    Ferreira, Leandro Valle; Cunha, Denise A; Chaves, Priscilla P; Matos, Darley C L; Parolin, Pia

    2013-09-01

    The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  7. From Milk-Medicine To Public (Re)Education Programs: An Examination Of Anishinabek Mothers' Responses To Hydroelectric Flooding In The Treaty #3 District, 1900-1975.

    PubMed

    Luby, Brittany

    2015-01-01

    This paper explores how Anishinabek women managed their households during the hydroelectric boom of the 1950s and provides new insight into flooding impact analyses. To date, historians have sought to understand how hydroelectric development compromised "subsistence" living. Research has addressed declining fish and game populations and the corresponding decline in male employment. But, what do these trends mean once the nets and traps have been emptied? By focusing on the family home, we discover that hydroelectric power generation on the Winnipeg River disrupted the environment's ability to provide resources necessary to maintain women's reproductive health (especially breast milk). Food shortages caused by hydroelectric development in the postwar era compromised Anishinabek women's ability to raise their children in accordance with cultural expectations. What emerges from this analysis is a new lens through which to theorize the voluntary enrolment of Anishinabek children in residential schools in northwestern Ontario.

  8. Climate change impacts on high-elevation hydroelectricity in California

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh; Guégan, Marion; Uvo, Cintia B.

    2014-03-01

    While only about 30% of California's usable water storage capacity lies at higher elevations, high-elevation (above 300 m) hydropower units generate, on average, 74% of California's in-state hydroelectricity. In general, high-elevation plants have small man-made reservoirs and rely mainly on snowpack. Their low built-in storage capacity is a concern with regard to climate warming. Snowmelt is expected to shift to earlier in the year, and the system may not be able to store sufficient water for release in high-demand periods. Previous studies have explored the climate warming effects on California's high-elevation hydropower by focusing on the supply side (exploring the effects of hydrological changes on generation and revenues) ignoring the warming effects on hydroelectricity demand and pricing. This study extends the previous work by simultaneous consideration of climate change effects on high-elevation hydropower supply and pricing in California. The California's Energy-Based Hydropower Optimization Model (EBHOM 2.0) is applied to evaluate the adaptability of California's high-elevation hydropower system to climate warming, considering the warming effects on hydroelectricity supply and pricing. The model's results relative to energy generation, energy spills, reservoir energy storage, and average shadow prices of energy generation and storage capacity expansion are examined and discussed. These results are compared with previous studies to emphasize the need to consider climate change effects on hydroelectricity demand and pricing when exploring the effects of climate change on hydropower operations.

  9. Enhancement and management of eel fisheries affected by hydroelectric dams in New Zealand

    USGS Publications Warehouse

    Boubee, J.; Chisnall, B.; Watene, E.; Williams, E.; Roper, D.; Haro, A.

    2003-01-01

    Two freshwater anguillid eel species, Anguilla australis and A. dieffenbachia, form the basis of important traditional, recreational, and commercial fisheries in New Zealand. These fisheries have been affected by the damming of many of the major waterways for hydroelectric generation. To create fisheries in reservoirs that would be otherwise inaccessible, elvers have been transferred from the base of dams into habitats upstream. Operations in three catchments: the Patea River (Lake Rotorangi), Waikato River (eight reservoirs notably the two lowermost, lakes Karapiro and Arapuni), and Rangitaiki River (lakes Matahina and Aniwhenua) are discussed. In all reservoirs, the transfers have successfully established fishable populations within six years of the first transfers and, in Lake Arapuni eels have reached the marketable size of 220 g in less than four years. In comparison, it typically takes from 13 to 17 years before eel populations are fishable in the lower Waikato River where direct access to the sea is available. Telemetry and monitoring at the screens and tailraces of several power stations have been used to determine migration timing, triggers, and pathways of mature eels. Successful downstream transfer of mature migrating adults has been achieved by spillway opening and netting in headraces during rain events in autumn, but means of preventing eels from impinging and entraining at the intakes are still required. An integrated, catchment-wide management system will be required to ensure sustainability of the fisheries. ?? Copyright by the American Fisheries Society 2003.

  10. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  11. Proliferation of Hydroelectric Dams in the Andean Amazon and Implications for Andes-Amazon Connectivity

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics. PMID:22529979

  12. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    PubMed

    Finer, Matt; Jenkins, Clinton N

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  13. [The mosquito fauna (Diptera: Culicidae) of the environs of the Sayan-Shushenskoe hydroelectric power station].

    PubMed

    Gornostaeva, R M

    1999-01-01

    Among females and larvae of mosquitoes collected in 1969, 1981-1984 in the area of the Sayan-Shushenskoe hydroelectric power station (140 km up the Yenisei River from the Abakan city) 5 genera and 30 species were recorded. Based on recent collections and reference data (Gornostaeva e. a., 1969; Gornostaeva, Danilov, 1986) the fauna of the region in question includes 31 species of mosquitoes (Anopheles--1, Culiseta--2, Coquillettidia--1, Aedes--22, Culex--5).

  14. 4. PULLEY SYSTEM AND CABLE FOR GATELIFTING MECHANISM, MOUNTED ABOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PULLEY SYSTEM AND CABLE FOR GATE-LIFTING MECHANISM, MOUNTED ABOVE THE THREE GATE OPENINGS, LOOKING SOUTH/SOUTHEAST. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  15. 7. Unit 3 Service Water System Valves, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Unit 3 Service Water System Valves, view to the east. These pipes and valves supply water from the draft chest for cooling the generator barrels. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  16. 77 FR 73636 - Rock River Beach, Inc.; Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14345-001] Rock River Beach.... c. Date filed: November 23, 2012. d. Applicant: Rock River Beach, Inc. e. Name of Project: Rock River Beach Hydroelectric Project. f. Location: On the Rock River, in the Town of Onota, Alger County...

  17. 77 FR 2966 - Rock River Beach, Inc.; Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14345-000] Rock River Beach.... c. Filing Date: January 5, 2012. d. Applicant: Rock River Beach, Inc. e. Name of Project: Rock River Beach Hydroelectric Project. f. Location: On the Rock River, in the Township of Onota, Alger County...

  18. [Fishery resource protection by artificial propagation in hydroelectric development: Lixianjiang River drainage in Yunnan as an example].

    PubMed

    Yang, Yong-Hong; Yang, Jun-Xing; Pan, Xiao-Fu; Zhou, Wei; Yang, Mei-Lin

    2011-04-01

    Hydroelectric developments can result in a number of negative environmental consequences. Conservation aquaculture is a branch of science derived from conservation and population recovery studies on endangered fishes. Here we discuss the impacts on fishes caused by hydropower projects in Lixianjiang, and evaluate effects and problems on the propagation of Parazacco spilurus, Hemibagrus pluriradiatus, Neolissochilus benasi and Semilabeo obscurus. A successful propagation project includes foraging ecology in fields, pond cultivation, juvenile fish raising, prevention and curing on fish disease, genetic management, artificial releasing and population monitoring. Artificial propagation is the practicable act on genetic intercommunication, preventing population deterioration for fishes in upper and lower reaches of the dam. For long-term planning, fish stocks are not suitable for many kind of fishes, but can prevent fishes from going extinct in the wild. Basic data collection on fish ecology, parent fish hunting, prevention on fish disease are the most important factors on artificial propagation. Strengthening the genetic management of stock population for keeping a higher genetic diversity can increase the success of stock enhancement. The works on Lixianjiang provide a new model for river fish protection. To make sure the complicated project works well, project plans, commission contracts, base line monitoring and techniques on artificial reproduction must be considered early. Last, fishery conservation should be considered alongside location development.

  19. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  20. Effects of Artificial Flooding for Hydroelectric Development on the Population of Mansonia humeralis (Diptera: Culicidae) in the Paraná River, São Paulo, Brazil

    PubMed Central

    de Paula, Marcia Bicudo; Gomes, Almério de Castro; Natal, Delsio; Duarte, Ana Maria Ribeiro de Castro; Mucci, Luís Filipe

    2012-01-01

    The closure of two phases of the dam at the Porto Primavera Hydroelectric Plant on the Paraná River flooded a flawed system located in the Municipality of Presidente Epitácio, São Paulo state, favoring the proliferation of aquatic weeds. This study aimed to observe the population of Mansonia humeralis in the area, monitoring the richness, diversity, and dominance of this species both before and during different phases of reservoir flooding as well as evaluate its possible consequences concerning human and animal contact. Adult mosquitoes were collected monthly in the following periods: at the original level, after the first flood, and after the maximum level had been reached between 1997 and 2002. Collection methods used were an aspirator, a Shannon trap, and the Human Attractive Technique. A total of 30,723 mosquitoes were collected, Ma. humeralis accounting for 3.1% in the preflood phase, 59.6% in the intermediate, and 53.8% at maximum level. This species is relevant to public health, since the prospect of continued contact between Ma. humeralis and the human population enhances the dam's importance in the production of nuisance mosquitoes, possibly facilitating the transmission of arboviruses. Local authorities should continue to monitor culicid activity through sustainable entomological surveillance. PMID:22529867

  1. Evaluation methodology for flood damage reduction by preliminary water release from hydroelectric dams

    NASA Astrophysics Data System (ADS)

    Ando, T.; Kawasaki, A.; Koike, T.

    2017-12-01

    IPCC AR5 (2014) reported that rainfall in the middle latitudes of the Northern Hemisphere has been increasing since 1901, and it is claimed that warmer climate will increase the risk of floods. In contrast, world water demand is forecasted to exceed a sustainable supply by 40 percent by 2030. In order to avoid this expectable water shortage, securing new water resources has become an utmost challenge. However, flood risk prevention and the secure of water resources are contradictory. To solve this problem, we can use existing hydroelectric dams not only as energy resources but also for flood control. However, in case of Japan, hydroelectric dams take no responsibility for it, and benefits have not been discussed accrued by controlling flood by hydroelectric dams, namely by using preliminary water release from them. Therefore, our paper proposes methodology for assessing those benefits. This methodology has three stages as shown in Fig. 1. First, RRI model is used to model flood events, taking account of the probability of rainfall. Second, flood damage is calculated using assets in inundation areas multiplied by the inundation depths generated by that RRI model. Third, the losses stemming from preliminary water release are calculated, and adding them to flood damage, overall losses are calculated. We can evaluate the benefits by changing the volume of preliminary release. As a result, shown in Fig. 2, the use of hydroelectric dams to control flooding creates 20 billion Yen benefits, in the probability of three-day-ahead rainfall prediction of the assumed maximum rainfall in Oi River, in the Shizuoka Pref. of Japan. As the third priority in the Sendai Framework for Disaster Risk Reduction 2015-2030, `investing in disaster risk reduction for resilience - public and private investment in disaster risk prevention and reduction through structural and non-structural measures' was adopted. The accuracy of rainfall prediction is the key factor in maximizing the benefits

  2. Downstream impacts of a Central Amazonian hydroelectric dam on tree growth and mortality in floodplain forests

    NASA Astrophysics Data System (ADS)

    Resende, A. F. D.; Silva, T. S. F.; Silva, J. D. S.; Piedade, M. T. F.; Streher, A. S.; Ferreira-Ferreira, J.; Schongart, J.

    2017-12-01

    The flood pulse of large Amazonian Rivers is characterized by predictable high- and low-water periods during the annual cycle, and is the main driving force in the floodplains regulating decomposition, nutrient cycles, productivity, life cycles and growth rhythms of floodplains' biota. Over at least 20 millions of years, tree species in these ecosystems developed complex adaptative mechanisms to tolerate flooding, such as the tree species Macrolobium acaciifolium (Fabaceae) and Eschweilera tenuifolia (Lecythidaceae) occupying the lower topographic positions in the floodplain forests along the oligothrophic black-water rivers. Tree growth occurs mainly during terrestrial phase, while during the aquatic phase the anoxic conditions result into a cambial dormancy and formation of annual tree rings. The hydroelectric dam Balbina which was installed in the Uatumã River (central Amazonia) during the 1980s altered significantly the flood pulse regime resulting into higher minimum and lower maximum annual water levels. The suppression of the terrestrial phase caused large-scale mortality of flood-adapted trees growing on the lower topographic positions, as evidenced by radiocarbon dating and cross-dating techniques (dendrochronology). In this study we estimated the extension of dead forests using high resolution ALOS/PALSAR radar images, for their detection along a fluvial distance of more than 280 km downstream of the power plant. Further we analyzed tree growth of 60 living individuals of E. tenuifolia by tree-ring analyses comparing the post- and pre-dam periods. We evaluated the impacts of the altered hydrological regime on tree growth considering ontogenetic effects and the fluvial distance of the trees to the dam. Since the Balbina power plant started operating the associated igapó forests lost about 11% of its cover. We found a significant reduction of tree growth of E. tenuifolia during the post-dam period as a consequence of the increasing aquatic phase duration

  3. Precipitation Estimates for Hydroelectricity

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco J.; Hou, Arthur Y.; de Castro, Manuel; Checa, Ramiro; Cuartero, Fernando; Barros, Ana P.

    2011-01-01

    Hydroelectric plants require precise and timely estimates of rain, snow and other hydrometeors for operations. However, it is far from being a trivial task to measure and predict precipitation. This paper presents the linkages between precipitation science and hydroelectricity, and in doing so it provides insight into current research directions that are relevant for this renewable energy. Methods described include radars, disdrometers, satellites and numerical models. Two recent advances that have the potential of being highly beneficial for hydropower operations are featured: the Global Precipitation Measuring (GPM) mission, which represents an important leap forward in precipitation observations from space, and high performance computing (HPC) and grid technology, that allows building ensembles of numerical weather and climate models.

  4. [Space-time water monitoring system at the Iriklinsk hydroelectric power station].

    PubMed

    Deriabin, D G; Poliakov, E G; Priakhina, A A; Karimov, I F

    2002-01-01

    The Microbiosensor B 17677 F test system was applied to make a space-time monitoring of the biotoxicity of water used for production and everyday purposes at the Iriklinsk hydroelectric power station (IHEPS) and to identify the leading causes determining the biotoxicity of tested samples. There were seasonal variations in the biotoxicity with the maximum in spring and with minimum in winter and spring and a relationship of the spring rise in the biotoxicity to water pH changes. There was also an association of the certain values of the biotoxicity of industrial water with the concentration of petroleum products that are major pollutants at the IHEPS. The datum points that characterize the maximum level of technogenic exposure were identified.

  5. Where Can You Buy a River?

    ERIC Educational Resources Information Center

    Coon-Come, Matthew

    1991-01-01

    Since 1975, Quebec hydroelectric projects have had negative impacts on the Cree hunting way of life and sacred sites, caused mercury contamination, and disrupted natural cycles of water and wildlife. Supported by contracts with New York State, new massive projects will destroy the six largest rivers in northwestern Quebec. (SV)

  6. OBLIQUE VIEW OF SOUTHWEST AND SOUTHEAST SIDES OF HYDROELECTRIC POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF SOUTHWEST AND SOUTHEAST SIDES OF HYDROELECTRIC POWER HOUSE WITH DAM TO LEFT OF HYDROELECTRIC POWER HOUSE AND ENTRANCE TO OLD LOCK CHAMBER ON RIGHT, VIEW TOWARDS NORTH - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  7. WTS-4 system verification unit for wind/hydroelectric integration study

    NASA Technical Reports Server (NTRS)

    Watts, A. W.

    1982-01-01

    The Bureau of Reclamation (Reclamation) initiated a study to investigate the concept of integrating 100 MW of wind energy from megawatt-size wind turbines with the Federal hydroelectric system. As a part of the study, one large wind turbine was purchased through the competitive bid process and is now being installed to serve as a system verification unit (SVU). Reclamation negotiated an agreement with NASA to provide technical management of the project for the design, fabrication, installation, testing, and initial operation. Hamilton Standard was awarded a contract to furnish and install its WTS-4 wind turbine rated at 4 MW at a site near Medicine Bow, Wyoming. The purposes for installing the SVU are to fully evaluate the wind/hydro integration concept, make technical evaluation of the hardware design, train personnel in the technology, evaluate operation and maintenance aspects, and evaluate associated environmental impacts. The SVU will be operational in June 1982. Data from the WTS-4 and from a second SVU, Boeing's MOD-2, will be used to prepare a final design for a 100-MW farm if Congress authorizes the project.

  8. Identified recreation opportunities and preferences for the lower Penobscot River, Maine

    Treesearch

    Milton J. Fusselman; Joanne Tynon

    1995-01-01

    The Penobscot River has been the focus of a major Atlantic Salmon restoration effort for the last 25 years. The river has received national and international attention with the proposal of an additional 38-megawatt hydroelectric facility on its main stem. This study was conducted in response to a need to identify recreation enhancement and mitigation options related to...

  9. VERTICAL DETAIL OBLIQUE VIEW OF NORTHEAST SIDE OF HYDROELECTRIC POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VERTICAL DETAIL OBLIQUE VIEW OF NORTHEAST SIDE OF HYDROELECTRIC POWER HOUSE WITH OLD BYPASS IN FOREGROUND, SHOWING GLASS BLOCKS PROVIDING LIGHT TO BASEMENT OF HYDROELECTRIC POWER HOUSE, VIEW TOWARDS WEST SOUTHWEST - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  10. Red River of the North, Reconnaissance Report: Wild Rice River.

    DTIC Science & Technology

    1980-12-01

    2 lists the waste treatment facilities and needs of fifteen coumnities within the subbasin. Hydropower There are three dams located on the Wild Rice...potential hydroelectric sites. The dams were built primarily for flood control purposes and are classified as small-scale facilities. The main obstacles...drain a combined total area of 2,233 square miles. Several small low-water dams and a few larger impoundments have been constructed on the river and its

  11. Systematic Sustainability Assessment (SSA) Tool for Hydroelectric Project in Malaysia

    NASA Astrophysics Data System (ADS)

    Turan, Faiz Mohd; Johan, Kartina

    2017-08-01

    Sustainably developed and managed hydropower has enormous potential to contribute to global sustainability goals. It is known that hydroelectricity contributing small amounts to greenhouse gas emissions and other atmospheric pollutants. However, developing the remaining hydroelectric potential offers many challenges, and public pressure and expectations on the environmental and social performance of hydroelectric tend to increase over time. This paper aims to develop Systematic Sustainability Assessment (SSA) Tool that promotes and guides more sustainable hydroelectric projects in the context of Malaysia. The proposed SSA tool which not only provide a quality and quantitative report of sustainability performance but also act as Self-Assessment Report (SAR) to provide roadmap to achieve greater level of sustainability in project management for continuous improvement. It is expected to provide a common language that allow government, civil society, financial institutions and the hydroelectric sector to talk about and evaluate sustainability issues. The advantage of SSA tool is it can be used at any stage of hydroelectric development, from the earliest planning stages right through to operation.

  12. 78 FR 6319 - Eastern Hydroelectric Corporation; Notice Rejecting Request for Rehearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 7019-068] Eastern... an order amending license Article 401 for Eastern Hydroelectric Corporation's (Eastern Hydroelectric....\\1\\ On January 11, 2013, Eastern Hydroelectric filed a request for rehearing of Commission staff's...

  13. CRANE WINCH MECHANISM, UPPER LEVEL OF HYDROELECTRIC POWER HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CRANE WINCH MECHANISM, UPPER LEVEL OF HYDROELECTRIC POWER HOUSE - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  14. ELECTRICAL SWITCHBOARD IN UPPER LEVEL OF HYDROELECTRIC POWER HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ELECTRICAL SWITCHBOARD IN UPPER LEVEL OF HYDROELECTRIC POWER HOUSE - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  15. 77 FR 75628 - STS Hydropower, Ltd., Dan River, Inc., and City of Danville, VA; Notice of Application for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ..., Ltd., Dan River, Inc., and City of Danville, VA; Notice of Application for Partial Transfer of License... Bankruptcy Trustee for Dan River, Inc. and STS Hydropower, Ltd (co-licensees) transferors and the City of... Schoolfield Hydroelectric Project, FERC No. 2411, located on the Dan River in Pittsylvania County, Virginia...

  16. Feasibility, Design and Construction of a Small Hydroelectric Power Generation Station as a Student Design Project.

    ERIC Educational Resources Information Center

    Peterson, James N.; Hess, Herbert L.

    An undergraduate capstone engineering design project now provides hydroelectric power to a remote wilderness location. Students investigated the feasibility of designing, building, and installing a 4kW hydroelectric system to satisfy the need for electric power to support the research and teaching functions of Taylor Ranch, a university facility…

  17. Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir.

    PubMed

    Cardoso, Simone J; Vidal, Luciana O; Mendonça, Raquel F; Tranvik, Lars J; Sobek, Sebastian; Fábio, Roland

    2013-01-01

    Substantial amounts of organic matter (OM) from terrestrial ecosystems are buried as sediments in inland waters. It is still unclear to what extent this OM constitutes a sink of carbon, and how much of it is returned to the atmosphere upon mineralization to carbon dioxide (CO2). The construction of reservoirs affects the carbon cycle by increasing OM sedimentation at the regional scale. In this study we determine the OM mineralization in the sediment of three zones (river, transition, and dam) of a tropical hydroelectric reservoir in Brazil as well as identify the composition of the carbon pool available for mineralization. We measured sediment organic carbon mineralization rates and related them to the composition of the OM, bacterial abundance and pCO2 of the surface water of the reservoir. Terrestrial OM was an important substrate for the mineralization. In the river and transition zones most of the OM was allochthonous (56 and 48%, respectively) while the dam zone had the lowest allochthonous contribution (7%). The highest mineralization rates were found in the transition zone (154.80 ± 33.50 mg C m(-) (2) d(-) (1)) and the lowest in the dam (51.60 ± 26.80 mg C m(-) (2) d(-) (1)). Moreover, mineralization rates were significantly related to bacterial abundance (r (2) = 0.50, p < 0.001) and pCO2 in the surface water of the reservoir (r (2) = 0.73, p < 0.001). The results indicate that allochthonous OM has different contributions to sediment mineralization in the three zones of the reservoir. Further, the sediment mineralization, mediated by heterotrophic bacteria metabolism, significantly contributes to CO2 supersaturation in the water column, resulting in higher pCO2 in the river and transition zones in comparison with the dam zone, affecting greenhouse gas emission estimations from hydroelectric reservoirs.

  18. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    NASA Astrophysics Data System (ADS)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  19. Sedimentation and contamination patterns of dike systems along the Rhône River (France)

    NASA Astrophysics Data System (ADS)

    Seignemartin, Gabrielle; Tena, Alvaro; Piégay, Hervé; Roux, Gwenaelle; Winiarski, Thierry

    2017-04-01

    Humans have historically modified the Rhône River, especially in the last centuries. In the 19th century, the river was systematically embanked for flood protection purposes, and works continued along the 20th century with dike system engineering work for navigation. The Rhône was canalised and its historical course by-passed by a series of hydroelectric dams. Besides, industrial activity polluted the river. For example, high levels of PCB's were attributed to the inputs of the heavily industrialized zone downstream from Lyon. During floods, these contaminants, associated with the suspended sediment, were trapped by the engineering works and the floodplain. Currently, a master plan to reactivate the river dynamics in the alluvial margins by removing the groyne-fields and dikes in the by-passed sections is being implemented. Within this context, this work aims to assess historical dynamics of sediment and associated contaminants in the floodplain (e.g. trace metal elements), notably in the dike system, in order to evaluate the contamination risk related to bank protection removal. With this objective, a transversal methodology has been applied coupling GIS diachronic analysis (old maps, bathymetric data, Orthophotos, LIDAR, etc.) to understand the historical floodplain evolution, sediment survey to obtain sediment thickness (metal rod and Ground Penetrating Radar), and sediment sampling (manual auger and core sampling) to obtain the metal element concentrations (X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometry). By this way, metal element patterns were defined and used as contamination tracing indicators to apprehend the contamination history but also as geochemical background indicators to define the sediment source influence. We found that sediment temporal patterns are directly related with the by-pass construction year. Spatially, fine sediment deposition predominates in the dike systems, being lower in the floodplain already disconnected in

  20. The further environmental development of Polyphyto Hydroelectric Project reservoir in Kozani prefecture and its contribution to the life quality improvement

    NASA Astrophysics Data System (ADS)

    Saounatsou, Chara; Georgi, Julia

    2014-08-01

    The Polyphyto Hydroelectric Project was constructed in 1974 and it has been operating since on the Aliakmonas River, Kozani prefecture, by the Greek Public Power Corporation. The construction of the Ilarion Hydroelectric Project, upstream from the Polyphyto Reservoir, has been recently completed and will start operating in the near future. Apart from hydroelectric power production, the Polyphyto reservoir provides flood control to the areas below the Polyphyto dam. It is also used to manage water provision to the city of Thessaloniki and adjacent agricultural plain, providing at the same time cooling water to the Thermo Electric Projects in Ptolemaida. The Polyphyto reservoir has potential for further development as an economic fulcrum to the region in which is located. The Kozani and Servia-Velvendos Municipalities have proceeded to the construction of several touristic, nautical - athletic and fishing projects. In order to promote such developments, while preserving the artificial wetland, flora and fauna of the Polyphyto Reservoir, it is important to reduce the fluctuation of the reservoir elevation which according to its technical characteristics is 21m. The aim of this paper is to propose the combined operation of the two Hydroelectric Project reservoirs to satisfy all the present Polyphyto Hydroelectric Project functions and to reduce the annual fluctuation of the Polyphyto Reservoir. The HEC-5, Version 8 / 1998 computer model was used in our calculations, as developed by the Hydrologic Engineering Center (HEC) of the US Army Corps of Engineers for reservoir operation simulation. Five possible operation scenarios are tested in this paper to show that the present fluctuation of the Polyphyto Reservoir can be reduced, with some limitations, except during dry weather periods.

  1. Power-poor nation taps jungle river for energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-13

    The Paute River 1,690-MW hydroelectric power project near Cuenca will triple the power generating capacity of Ecuador. Progress on this practically inaccessible site is reported. The centerpiece will be the 560-ft-high Amaluza Dam. The underground powerhouse is slated to come on line in 1982.

  2. 75 FR 61458 - Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1494-386] Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments, Motions To Intervene, and... August 16, 2010. d. Applicant: Grand River Dam Authority. e. Name of Project: Pensacola Hydroelectric...

  3. Legal obstacles and incentives to the development of small scale hydroelectric power in New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in New Jersey are described. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is discussed. New Jersey follows the riparian theory of water law. Following an extensive discussion of the New Jersey water law, New Jersey regulatory law and financial considerations regardingmore » hydroelectric power development are discussed.« less

  4. The Paradox of Restoring Native River Landscapes and Restoring Native Ecosystems in the Colorado River System

    NASA Astrophysics Data System (ADS)

    Schmidt, J. C.

    2014-12-01

    Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide

  5. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at differentmore » areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.« less

  6. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  7. Study on safety operation for large hydroelectric generator unit

    NASA Astrophysics Data System (ADS)

    Yan, Z. G.; Cui, T.; Zhou, L. J.; Zhi, F. L.; Wang, Z. W.

    2012-11-01

    Hydroelectric generator unit is a complex mechanical system which is composed of hydraulic turbine and electric generator. Rotary system is supported by the bearing bracket and the reinforced concrete structures, and vibration problem can't be avoided in the process of operating. Many large-scale hydroelectric units have been damaged because of the vibration problem in recent years. As the increase of the hydraulic turbine unit capacity and water head, the safe operation of hydraulic turbine has become a focus research in many countries. The operating characteristics of the hydraulic turbine have obvious differences at different working conditions. Based on the combination of field measurement and theoretical calculation, this paper shows a deep research on the safe operation of a large-scale Francis turbine unit. Firstly, the measurements of vibration, swing, pressure fluctuation and noise were carried out at 4 different heads. And also the relationships between vibrations and pressure fluctuations at different heads and working conditions were analysed deeply. Then the scientific prediction of safe operation for the unit at high head were done based on the CFD numerical calculation. Finally, this paper shows the division of the operating zone for the hydroelectric unit. According to the experimental results (vibrations, swings, pressure fluctuations and noise) as well as the theoretical results, the operating zone of the unit has been divided into three sections: prohibited operating zone, transition operating zone and safe operating zone. After this research was applied in the hydropower station, the security and economic efficiency of unit increased greatly, and enormous economic benefits and social benefits have been obtained.

  8. VIEW OF SOUTHEAST SIDE OF HYDROELECTRIC POWER HOUSE, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTHEAST SIDE OF HYDROELECTRIC POWER HOUSE, VIEW TOWARDS NORTHWEST - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  9. Quantifying production of salmon fry in an unscreened irrigation system: A case study on the Rangitata River, New Zealand

    USGS Publications Warehouse

    Unwin, M.J.; Webb, M.; Barker, R.J.; Link, W.A.

    2005-01-01

    Diversion of out-imigrant juvenile salmon into unscreened irrigation and hydroelectric canals is thought to have contributed significantly to declining populations of anadromous salmonids in the Pacific Northwest but is seldom studied in detail. Here we describe a program to study the fate of Chinook salmon Oncorhynchus tshawytscha fry diverted into the unscreened Rangitata Diversion Race (RDR) on the Rangitata River, New Zealand, by trapping fish in a random sample of on-farm canals in irrigation schemes (systems) served by the RDR. The catch rate at a site 9 km below the intake was strongly related to Rangitata River flow, but catches further downstream were unrelated to flow. Most fish entering the RDR were fry or early postfry ( 70 mm FL), suggesting that many such fish became resident in the RDR for up to 3 months. Consequently, our estimate of the total number of fish leaving the RDR via on-farm canals (204,200 fish; 95% confidence limits = 127, 100 and 326,700) is a conservative measure of the number lost from the Rangitata River because it does not allow for mortality within the RDR. We did not quantify the proportion of Rangitata River out-migrants that entered the RDR, but our results suggest that this figure was at least 5% and that it may have been as high as 25%, depending on mortality rates within the Rangitata River main stem and the RDR itself.

  10. PLANAR VIEW OF NORTHWEST SIDE OF HYDROELECTRIC POWER HOUSE, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLANAR VIEW OF NORTHWEST SIDE OF HYDROELECTRIC POWER HOUSE, VIEW TOWARDS SOUTHEAST - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  11. HANDMADE WOODEN RACK FOR TOOL STORE, LOWER LEVEL OF HYDROELECTRIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HANDMADE WOODEN RACK FOR TOOL STORE, LOWER LEVEL OF HYDROELECTRIC POWER HOUSE - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  12. HARNESS END OF ELECTRIC TURBINE IN LOWER LEVEL OF HYDROELECTRIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HARNESS END OF ELECTRIC TURBINE IN LOWER LEVEL OF HYDROELECTRIC POWER HOUSE - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  13. A critical analysis of the environment impact assessment report of the 2000 MW lower subansiri hydroelectric project with special reference to the down stream ecology and people's livelihood.

    PubMed

    Baruah, Debojit; Dutta, Ranjit; Hazarika, Lakhi Prasad; Sarmah, Sarada Kanta

    2011-10-01

    The Environment Impact Assessment (EIA) report of the 2000 MW Lower Subansiri Hydroelectric Project prepared by the WAPCOS (Water and Power Consultancy Service, 2003) indicates that downstream survey was done only up to 7 km from the dam site without giving much importance to the actual scenario and avoiding some most crucial ecological aspects. In the report, insufficient records of terrestrial flora, phytoplanktons and fish diversity are given. No records of aquatic macrophytes, riparian flora, zooplanktons, avian fauna, floodplain crops, besides peoples' livelihood and diverse habitat provided by the river in its downstream are presented in the report. Especially the wetlands, associated and influenced by the unregulated Subansiri River did not find any place in the EIA report. Interestingly, no mention of the Ganges Dolphin--Platanista gangetica gangetica Roxb. could be found in the report, whereas the river provides a healthy habitat for a good number of this critically endangered fresh water dolphin. From our pre-impact study, it is clear that rich downstream ecology of the river with its present and existing environmental scenario will be adversely affected due to the construction and operation of the proposed project, and there will be distinct possibilities of elimination of other native species. In addition, people's livelihood will be affected largely through alteration of the flow regime of the river. In-depth study with comprehensive documentation of all biotic and abiotic parameters is obligatory before taking any decision about the operation of the 2000 MW Lower Subansiri Hydroelectric Project.

  14. Hydroelectric production from Brazil's São Francisco River could cease due to climate change and inter-annual variability.

    PubMed

    de Jong, Pieter; Tanajura, Clemente Augusto Souza; Sánchez, Antonio Santos; Dargaville, Roger; Kiperstok, Asher; Torres, Ednildo Andrade

    2018-09-01

    By the end of this century higher temperatures and significantly reduced rainfall are projected for the Brazilian North and Northeast (NE) regions due to Global Warming. This study examines the impact of these long-term rainfall changes on the Brazilian Northeast's hydroelectric production. Various studies that use different IPCC models are examined in order to determine the average rainfall reduction by the year 2100 in comparison to baseline data from the end of the 20th century. It was found that average annual rainfall in the NE region could decrease by approximately 25-50% depending on the emissions scenario. Analysis of historical rainfall data in the São Francisco basin during the last 57years already shows a decline of more than 25% from the 1961-90 long-term average. Moreover, average annual rainfall in the basin has been below its long-term average every year bar one since 1992. If this declining trend continues, rainfall reduction in the basin could be even more severe than the most pessimistic model projections. That is, the marked drop in average rainfall projected for 2100, based on the IPCC high emissions scenario, could actually eventuate before 2050. Due to the elasticity factor between rainfall and streamflow and because of increased amounts of irrigation in the São Francisco basin, the reduction in the NE's average hydroelectric production in the coming decades could be double the predicted decline in rainfall. Conversely, it is estimated that wind power potential in the Brazilian NE will increase substantially by 2100. Therefore both wind and solar power will need to be significantly exploited in order for the NE region to sustainably replace lost hydroelectric production. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. 75 FR 74700 - Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No.: 2183-078] Grand River Dam... Dam Authority. e. Name of Project: Markham Ferry Hydroelectric Project. f. Location: The project is..., Grand River Dam Authority, P.O. Box 409, Vinita, Oklahoma 74301-0409, (918) 256-5545 or by e-mail...

  16. OBLIQUE VIEW OF NORTHEAST AND SOUTHEAST SIDES OF HYDROELECTRIC POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF NORTHEAST AND SOUTHEAST SIDES OF HYDROELECTRIC POWER HOUSE, VIEW TOWARDS WEST - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  17. Two Case Studies to Quantify Resilience across Food-Energy-Water Systems: the Columbia River Treaty and Adaptation in Yakima River Basin Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Malek, K.; Adam, J. C.; Richey, A.; Rushi, B. R.; Stockle, C.; Yoder, J.; Barik, M.; Lee, S. Y.; Rajagopalan, K.; Brady, M.; Barber, M. E.; Boll, J.; Padowski, J.

    2017-12-01

    The U.S. Pacific Northwest (PNW) plays a significant role in meeting agricultural and hydroelectric demands nationwide. Climatic and anthropogenic stressors, however, potentially threaten the productivity, resilience, and environmental health of the region. Our objective is to understand how resilience of each Food-Energy-Water (FEW) sector, and the combined Nexus, respond to exogenous perturbations and the extent to which technological and institutional advances can buffer these perturbations. In the process of taking information from complex integrated models and assessing resilience across FEW sectors, we start with two case studies: 1) Columbia River Treaty (CRT) with Canada that determines how multiple reservoirs in the Columbia River basin (CRB) are operated, and 2) climate change adaptation actions in the Yakima River basin (YRB). We discuss these case studies in terms of the similarities and contrasts related to FEW sectors and management complexities. Both the CRB and YBP systems are highly sensitive to climate change (they are both snowmelt-dominant) and already experience water conflict. The CRT is currently undergoing renegotiation; a new CRT will need to consider a much more comprehensive approach, e.g., treating environmental flows explicitly. The YRB also already experiences significant water conflict and thus the comprehensive Yakima Basin Integrated Plan (YBIP) is being pursued. We apply a new modeling framework that mechanistically captures the interactions between the FEW sectors to quantify the impacts of CRT and YBIP planning (as well as adaptation decisions taken by individuals, e.g., irrigators) on resilience in each sector. Proposed modification to the CRT may relieve impacts to multiple sectors. However, in the YRB, irrigators' actions to adapt to climate change (through investing in more efficient irrigation technology) could reduce downstream water availability for other users. Developing a process to quantify resilience to perturbations

  18. Nile River, Lake Nasser, Aswan High Dam, Egypt, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Lake Nasser, (24.0N, 33.0E) at the Aswan High Dam on the Nile River, in Egypt is the world's second largest artificial lake, extending 500 km, in length and about 5000 sq. km. in area. The lake has a storage capacity sufficient to irrigate farms in Egypt and Sudan year round allowing up to three harvests per year. Other benefits include year round river navagation, hydroelectric power, more fish harvests, reduced flooding and more industrial employment. opportunites.

  19. OBLIQUE VIEW OF NORTHWEST AND NORTHEAST SIDES OF HYDROELECTRIC POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF NORTHWEST AND NORTHEAST SIDES OF HYDROELECTRIC POWER HOUSE, OLD BYPASS IN BACKGROUND, VIEW TOWARDS SOUTH - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  20. Long-term changes to flood conditions due to varying management strategies, Rock River, WI

    NASA Astrophysics Data System (ADS)

    Fredrick, K. C.

    2015-12-01

    The Rock River is a 300-mile tributary of the Mississippi River in southern Wisconsin. Its source is a protected migratory bird habitat called the Horicon National Wildlife Refuge. Below the refuge, the Rock River flows through mostly rural, agricultural areas, with wide floodplain of mixed land use. Between the dam at Horicon and a hydroelectric dam in Watertown, WI, lie the townships of Lebanon, Ashippun, and Ixonia. These rural townships boast productive agricultural lands of mostly corn, soybeans, and alfalfa. Large portions of their land are within the floodplain, underlain by vast expanses of outwash sands and gravels, glaciolacustrine deposits, and tills. Throughout the region, spring floods are common from snowmelt and spring rain. These annual floods may be exacerbated by frozen ground and slow infiltration, making it an accepted part of life for residents. Over the last 8 years, and possibly as many as 20, this segment of the Rock River has seen an increase in flooding both in periodicity and retention of flood waters. Due to the delicate habitat of the wildlife refuge and the commissioned hydroelectric installation at the upper dam in Watertown, the residents and local governments of the Lebanon/Ashippun/Ixonia segment of the river have mostly been left to their own devices to monitor and manage flood events. Lebanon Township has been recording water levels for several years. Recent events at the hydroelectric plant seem to indicate that it may be playing a more important role in the flooding. High water events and flood retention do not correlate well with precipitation for the region. It appears that releases at the dam, or periods of water retention, are driving the long flooding periods upstream. Negative impacts to the region from the flooding include property damage, loss of arable land, and environmental effects.

  1. OBLIQUE VIEW OF NORTHWEST SIDE OF HYDROELECTRIC POWER HOUSE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF NORTHWEST SIDE OF HYDROELECTRIC POWER HOUSE AND INTERIOR OF SOUTHWEST CORNER OF OLD BYPASS IN FOREGROUND, VIEW TOWARDS SOUTHWEST - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  2. 2. VIEW EAST ALONG DIKE TOWARDS HYDROELECTRIC GENERATING FACILITY. FORMER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW EAST ALONG DIKE TOWARDS HYDROELECTRIC GENERATING FACILITY. FORMER TRANSFORMER BUILDING AND SERVICE SHED SEEN TO LEFT BELOW DIKE - Middle Creek Hydroelectric Dam, On Middle Creek, West of U.S. Route 15, 3 miles South of Selinsgrove, Selinsgrove, Snyder County, PA

  3. Authorizing the continued use of certain lands within the Sequoia National Park by portions of an existing hydroelectric project. A report submitted to the House of Representatives, Ninety-Ninth Congress, First Session

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    The report on House Joint Resolution 382, as amended, would allow a 10-year license for a hydroelectric plant currently operating within Sequoia National Park, but prohibit any expansion of the project. The first hydroelectric facility on the Kaweah River dates from the 1890s, shortly after the park was established to preserve California's sequoia trees. The legislation would require no additional federal funding and have no inflationary impact. Correspondence from the Department of Interior to the committee outlines the Department's philosophy and findings regarding the facility and suggests amendments along the lines of those proposed by the committee.

  4. RiverHeath: Neighborhood Loop Geothermal Exchange System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geall, Mark

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  5. 18 CFR 420.51 - Hydroelectric power plant water use charges.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... increased hydraulic head available to the hydroelectric project as a result of investments by the Commission shall be charged one mill per kilowatt-hour of energy produced. (2) Owners of hydroelectric power plants... kilowatt-hour of energy produced. No charges for increased flows will be required when charges for...

  6. 18 CFR 420.51 - Hydroelectric power plant water use charges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... increased hydraulic head available to the hydroelectric project as a result of investments by the Commission shall be charged one mill per kilowatt-hour of energy produced. (2) Owners of hydroelectric power plants... kilowatt-hour of energy produced. No charges for increased flows will be required when charges for...

  7. 18 CFR 420.51 - Hydroelectric power plant water use charges.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... increased hydraulic head available to the hydroelectric project as a result of investments by the Commission shall be charged one mill per kilowatt-hour of energy produced. (2) Owners of hydroelectric power plants... kilowatt-hour of energy produced. No charges for increased flows will be required when charges for...

  8. 18 CFR 420.51 - Hydroelectric power plant water use charges.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... increased hydraulic head available to the hydroelectric project as a result of investments by the Commission shall be charged one mill per kilowatt-hour of energy produced. (2) Owners of hydroelectric power plants... kilowatt-hour of energy produced. No charges for increased flows will be required when charges for...

  9. Stratigraphy, sedimentology, and volume of sediments behind a dam relic on the Muskegon River, Big Rapids, Michigan

    USGS Publications Warehouse

    Westjohn, David B.

    1997-01-01

    The proposed removal of the remnants of a hydroelectric dam in the Muskegon River at Big Rapids, Michigan, will potentially affect flow of the river at the city's water intake system. Fifteen boreholes were augered in bottom sediments in the river just upstream from the dam relic, and streambottom profiles were made using ground-penetrating radar. Data from boreholes show that sediments captured by the dam foundation were deposited in two distinctly different sedimentary environments. Sediments that overlie the pre-dam channel surface consist of lacustrine clay, wood chips, silt, and sand. These lacustrine sediments are interbedded in a cyclical fashion, and they were deposited under low flow to stagnant water conditions during 1916-66, when a 17-foot-tall hydroelectric dam was in place. Demolition of the upper 13 feet of this dam in 1966 resulted in erosion of most of the lacustrine sediments, and subsequent deposition of coarser alluvium in the impoundment behind the remaining dam foundation. Lacustrine sediments are present in the active part of the stream channel and extend from the dam foundation to about 1,300 feet upstream. The composite thickness of lacustrine sediments and overlying coarser alluvium was determined from sediment cores collected from the boreholes. The volume of these sediments is estimated to be about 19,000 cubic yards.

  10. Development of a 1 D hydrodynamic habitat model for the Hippopotamus amphibious as basis for sustainable exploitation of hydroelectric power

    NASA Astrophysics Data System (ADS)

    Manful, D. Y.; Kaule, G.; Wieprecht, S.; Rees, J.; Hu, W.

    2009-12-01

    Hydroelectric Power (HEP) is proving to be a good alternative to carbon based energy. In the past hydropower especially large scale hydro attracted significant criticism as a result of its impact on the environment. A new breed of hydroelectric dam is in the offing. The aim is to have as little a footprint as possible on the environment in both pre and post construction phases and thus minimize impact on biodiversity whilst producing clean renewable energy. The Bui dam is 400 MW scheme currently under development on the Black Volta River in the Bui national park in Ghana. The reservoir created by the Bui barrage is expected to impact (through inundation) the habitat of two species of hippos know to exist in the park, the Hippopotamus amphibius and the Choeropsis liberiensis. Computer-based models present a unique opportunity to assess quantitatively the impact of the new reservoir on the habitat of the target species in this case the H. amphibious. Until this undertaking, there were very few studies documenting the habitat of the H. amphibious let alone model it. The work and subsequent presentation will show the development of a habitat model for the Hippopotamus amphibius. The Habitat Information retrieval Program based on Streamflow Analysis, in short HIPStrA, is a one dimensional (1D) in-stream, spatially explicit hybrid construct that combines physico-chemical evidence and expert knowledge to forecast river habitat suitability (Hs) for the Hippopotamus amphibius. The version of the model presented is specifically developed to assess the impact of a reservoir created by a hydroelectric dam on potential dwelling areas in the Bui gorge for hippos. Accordingly, this version of HIPStrA simulates a special reservoir suitability index (Rsi), a metric that captures the”hippo friendliness” of any lake or reservoir. The impact of measured and simulated flood events as well as low flows, representing extreme events is also assessed. Recommendations are made for the

  11. Future Impacts of Hydroelectric Power Development on Methylmercury Exposures of Canadian Indigenous Communities.

    PubMed

    Calder, Ryan S D; Schartup, Amina T; Li, Miling; Valberg, Amelia P; Balcom, Prentiss H; Sunderland, Elsie M

    2016-12-06

    Developing Canadian hydroelectric resources is a key component of North American plans for meeting future energy demands. Microbial production of the bioaccumulative neurotoxin methylmercury (MeHg) is stimulated in newly flooded soils by degradation of labile organic carbon and associated changes in geochemical conditions. We find all 22 Canadian hydroelectric facilities being considered for near-term development are located within 100 km of indigenous communities. For a facility in Labrador, Canada (Muskrat Falls) with planned completion in 2017, we probabilistically modeled peak MeHg enrichment relative to measured baseline conditions in the river to be impounded, downstream estuary, locally harvested fish, birds and seals, and three Inuit communities. Results show a projected 10-fold increase in riverine MeHg levels and a 2.6-fold increase in estuarine surface waters. MeHg concentrations in locally caught species increase 1.3 to 10-fold depending on time spent foraging in different environments. Mean Inuit MeHg exposure is forecasted to double following flooding and over half of the women of childbearing age and young children in the most northern community are projected to exceed the U.S. EPA's reference dose. Equal or greater aqueous MeHg concentrations relative to Muskrat Falls are forecasted for 11 sites across Canada, suggesting the need for mitigation measures prior to flooding.

  12. Status after 5 Years of Survival Compliance Testing in the Federal Columbia River Power System (FCRPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, John R.; Weiland, Mark A.; Ham, Kenneth D.

    Survival studies of juvenile salmonids implanted with acoustic tags have been conducted at hydroelectric dams within the Federal Columbia River Power System (FCRPS) in the Columbia and Snake rivers between 2010 and 2014 to assess compliance with dam passage survival standards stipulated in the 2008 Biological Opinion (BiOp). For juvenile salmonids migrating downstream in the spring, dam passage survival defined as survival from the upstream dam face to the tailrace mixing zone must be ≥96% and for summer migrants, ≥93%, and estimated with a standard error ≤1.5% (i.e., 95% confidence interval of ±3%). A total of 29 compliance tests havemore » been conducted at 6 of 8 FCRPS main-stem dams, using over 109,000 acoustic-tagged salmonid smolts. Of these 29 compliance studies, 23 met the survival standards and 26 met the precision requirements. Of the 6 dams evaluated to date, individual survival estimates range from 0.9597 to 0.9868 for yearling Chinook Salmon, 0.9534 to 0.9952 for steelhead, and 0.9076 to 0.9789 for subyearling Chinook Salmon. These investigations suggest the large capital investment over the last 20 years to improve juvenile salmon passage through the FCRPS dams has been beneficial.« less

  13. 77 FR 40607 - Whitman River Dam, Inc.; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Dam, Inc.; Notice of Availability of Environmental Assessment In accordance with the National... for an original license for the Crocker Dam Hydroelectric Project, to be located on the Whitman River... Energy Regulatory Commission, 888 First Street, Washington, DC 20426. Please affix ``Crocker Dam...

  14. 77 FR 38796 - Georgia Power Company; Bartletts Ferry Hydroelectric Project; Notice of Revised Restricted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Alabama] Georgia Power Company; Bartletts Ferry Hydroelectric Project; Notice of Revised Restricted... by issuance of a new license for the Bartletts Ferry Hydroelectric Project No. 485. The programmatic... Hydroelectric Project. On June 14, 2012, the Kialegee Tribal Town requested a revision to the restricted service...

  15. A model for the data extrapolation of greenhouse gas emissions in the Brazilian hydroelectric system

    NASA Astrophysics Data System (ADS)

    Pinguelli Rosa, Luiz; Aurélio dos Santos, Marco; Gesteira, Claudio; Elias Xavier, Adilson

    2016-06-01

    Hydropower reservoirs are artificial water systems and comprise a small proportion of the Earth’s continental territory. However, they play an important role in the aquatic biogeochemistry and may affect the environment negatively. Since the 90s, as a result of research on organic matter decay in manmade flooded areas, some reports have associated greenhouse gas emissions with dam construction. Pioneering work carried out in the early period challenged the view that hydroelectric plants generate completely clean energy. Those estimates suggested that GHG emissions into the atmosphere from some hydroelectric dams may be significant when measured per unit of energy generated and should be compared to GHG emissions from fossil fuels used for power generation. The contribution to global warming of greenhouse gases emitted by hydropower reservoirs is currently the subject of various international discussions and debates. One of the most controversial issues is the extrapolation of data from different sites. In this study, the extrapolation from a site sample where measurements were made to the complete set of 251 reservoirs in Brazil, comprising a total flooded area of 32 485 square kilometers, was derived from the theory of self-organized criticality. We employed a power law for its statistical representation. The present article reviews the data generated at that time in order to demonstrate how, with the help of mathematical tools, we can extrapolate values from one reservoir to another without compromising the reliability of the results.

  16. Sedimentary Records of Hyperpycnal Flows and the Influence of River Damming on Sediment Dynamics of Estuaries: Examples from the Nelson, Churchill, Moisie and Sainte-Marguerite Rivers (Canada)

    NASA Astrophysics Data System (ADS)

    St-Onge, G.; Duboc, Q.; Boyer-Villemaire, U.; Lajeunesse, P.; Bernatchez, P.

    2015-12-01

    Sediment cores were sampled in the estuary of the Nelson and Churchill Rivers in western Hudson Bay, as well as in the estuary of the Moisie and Sainte-Marguerite Rivers in Gulf of St. Lawrence in order to evaluate the impact of hydroelectric dams on the sedimentary regime of these estuaries. The gravity cores at the mouth of the Nelson River recorded several cm-thick rapidly deposited layers with a reverse to normal grading sequence, indicating the occurrence of hyperpycnal flows generated by major floods during the last few centuries. These hyperpycnal flows were probably caused by ice-jam formation, which can increase both the flow and the sediment concentration following the breaching of such natural dams. Following the construction of hydroelectric dams since the 1960s, the regulation of river discharge prevented the formation of hyperpycnal flows, and hence the deposition of hyperpycnites in the upper part of the cores. In the core sampled in the estuary of the Churchill River, only one hyperpycnite was recorded. This lower frequency may be due to the enclosed estuary of the Churchill River, its weaker discharge and the more distal location of the coring site.In the Gulf of St. Lawrence, grain size measurements allowed the identification of a major flood around AD 1844±4 years in box cores from both the Sainte-Marguerite and Moisie Rivers, whereas a drastic decrease in variations in the median grain size occurred around AD ~1900 in the estuary of the Sainte-Marguerite River, highlighting the offshore impact of the SM1 dam construction in the early 1900s. Furthermore, sedimentological variations in the box cores from both estuaries have been investigated by wavelet analysis and the sharp disappearance of high frequencies around AD 1900 in the estuary of the dammed river (Sainte-Marguerite River), but not in the estuary of the natural river (Moisie River), also provides evidence of the influence of dams on the sedimentary regime of estuaries.

  17. Assessment of spermatogenesis and plasma sex steroids in a seasonal breeding teleost: a comparative study in an area of influence of a tributary, downstream from a hydroelectric power dam, Brazil.

    PubMed

    Domingos, Fabricio F T; Thomé, Ralph G; Arantes, Fabio P; Castro, Antonio Carlos S; Sato, Yoshimi; Bazzoli, Nilo; Rizzo, Elizete

    2012-12-01

    River damming and building of hydroelectric power plants interrupt the reproductive migration routes and change the major physicochemical parameters of water quality, with drastic consequences for populations of migratory fishes. The goal of this study was to evaluate proliferation and cell death during spermatogenesis and serum profiles of sex steroids in Prochilodus argenteus, from the São Francisco River, downstream from the Três Marias Dam. A total of 257 adult males were caught quarterly during a reproductive cycle in two sites: the first 34 km of the river after the dam (site 1) and the second 34-54 km after the dam (site 2), after the confluence with a tributary, the Abaeté River. Seasonal changes in the testicular activity associated with morphometric analyses of germ cells as well as proliferation and testicular apoptosis support a more active spermatogenesis in fish from site 2, where higher levels of sex steroids and gonadosomatic index (GSI) were also found. In site 1, fish presented low serum levels of testosterone, 17β-estradiol and 17α-hydroxyprogesterone and a low GSI during gonadal maturation. Spermatogonial proliferation (PCNA) and apoptosis (TUNEL) were more elevated in fish from site 1, but spermatocytes were mainly labelled in fish from site 2. Overall, these data demonstrate changes in testicular activity and plasma sex steroids in a neotropical teleost fish living downstream from a hydroelectric dam, supplying new data on fish reproduction in regulated rivers. Moreover, morphometric analyses associated with sex steroids profiles provide reliable tools to assess fish spermatogenesis under environmental stress conditions.

  18. 7. SHOSHONE HYDROELECTRIC PLANT, WEST ELEVATION OF MAIN BUILDING TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SHOSHONE HYDROELECTRIC PLANT, WEST ELEVATION OF MAIN BUILDING TO THE LEFT, NORTH ELEVATION OF OFFICE BUILDING TO THE RIGHT, VIEW TO THE EAST. CONCRETE 'PATH' IN FOREGROUND IS THE CONDUIT THROUGH WHICH POWER CABLES RUN FROM THE TRANSFORMERS TO THE 115 KV SUBSTATION. - Shoshone Hydroelectric Plant Complex, 60111 U.S. Highway 6, Garfield County, CO

  19. Geologic factors pertinent to the proposed A. J. Wiley Hydroelectric Project No. 2845, Bliss, Idaho

    USGS Publications Warehouse

    Malde, Harold E.

    1981-01-01

    The A.J. Wiley Hydroelectric Project is a proposal by the Idaho Power Company to develop hydroelectricity near Bliss, Idaho, by building a dam on the Snake River (fig. 1). The proposed dam would impound a narrow reservoir as deep as 85 feet in a free-flowing reach of the river that extends from the upper reach of water impounded by the Bliss Dam to the foot of the Lower Salmon Falls Dam, nearly 8 miles farther upstream. The proposed dam would be built in three sections: a spillway section and a powerhouse (intake) section to be constructed of concrete in the right-handed part, and an embankment section to be constructed as a zoned-fill of selected earth materials in the left-hand part. (Right and left are to be understood in the sense of looking downstream.) In August, 1979, the Idaho Power Company was granted a 3-year permit (Project No. 2845) by the Federal Energy Regulatory Commission (FERC) to make site investigations and environmental studies in the project area. A year later, on August 26, 1980, the company applied to FERC for a license to construct the project. On October 8, 1980, as explained in a letter by William W. Lindsay, Director of the Office of Electric Power Regulation, the company was given 90 days to correct certain deficiencies in the application. Because several of the deficiencies identified by Mr. Lindsay pertain to geologic aspects of the project, his letter is attached to this report as Appendix A. Hereafter in this report, the deficiencies listed by Mr. Lindsay are identified by the numerical entries in his letter. The Idaho Power Company is referred to as the applicant.

  20. INTERIOR DETAIL VIEW OF CASING FOR FRANCIS WATER WHEEL (TURBINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR DETAIL VIEW OF CASING FOR FRANCIS WATER WHEEL (TURBINE #2). PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  1. Energy Perspective: Is Hydroelectricity Green?

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2009-01-01

    The current worldwide concern over energy is primarily related to imported oil, oil drilling and refining capacity, and transportation capacity. However, this concern has bolstered interest in a broader range of "green" energy technologies. In this article, the author discusses the use of hydroelectricity as an alternative energy source…

  2. Initial river test of a monostatic RiverSonde streamflow measurement system

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; ,

    2003-01-01

    A field experiment was conducted on May 7-8, 2002 using a CODAR RiverSonde UHF radar system at Vernalis, California on the San Joaquin River. The monostatic radar configuration on one bank of the river, with the antennas looking both upriver and downriver, provided very high-quality data. Estimates of both along-river and cross-river surface current were generated using several models, including one based on normal-mode analysis. Along-river surface velocities ranged from about 0.6 m/s at the river banks to about 1.0 m/s near the middle of the river. Average cross-river surface velocities were 0.02 m/s or less.

  3. WHEELROOM (TURBINE ROOM), LOOKING WEST TOWARD PENSTOCK FOR #2 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WHEELROOM (TURBINE ROOM), LOOKING WEST TOWARD PENSTOCK FOR #2 AND #1 TURBINES. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  4. Marginal Economic Value of Streamflow: A Case Study for the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Brown, Thomas C.; Harding, Benjamin L.; Payton, Elizabeth A.

    1990-12-01

    The marginal economic value of streamflow leaving forested areas in the Colorado River Basin was estimated by determining the impact on water use of a small change in streamflow and then applying economic value estimates to the water use changes. The effect on water use of a change in streamflow was estimated with a network flow model that simulated salinity levels and the routing of flow to consumptive uses and hydroelectric dams throughout the Basin. The results show that, under current water management institutions, the marginal value of streamflow in the Colorado River Basin is largely determined by nonconsumptive water uses, principally energy production, rather than by consumptive agricultural or municipal uses. The analysis demonstrates the importance of a systems framework in estimating the marginal value of streamflow.

  5. Establishing baseline biodiversity data prior to hydroelectric dam construction to monitoring impacts to bats in the Brazilian Amazon.

    PubMed

    Bobrowiec, Paulo Estefano D; Tavares, Valéria da Cunha

    2017-01-01

    The modification of Amazonian rivers by the construction of megaprojects of hydroelectric dams has widely increased over the last decade. Robust monitoring programs have been rarely conducted prior to the establishment of dams to measure to what extent the fauna, and its associated habitats may be affected by upcoming impacts. Using bats as models, we performed analyses throughout the area under the influence of the Santo Antônio hydroelectric dam, Southwestern Brazilian Amazonia before its construction to estimate how the fauna and its associated habitats would be affected by the upcoming impacts. We surveyed bats in 49 plots distributed along the areas going to be inundated by the dam and those remaining dry. As predictors for the species distribution, we tested the variables of vegetation structure and topography. Species composition largely differed between the dry plots and the plots located in areas that will be flooded, and this was strongly associated with the variables of forest basal area and elevation. Vegetation-related variables also had strong influence on the guilds distribution. The flooding of lower elevations areas is expected to negatively affect the species number and abundance of frugivorous species. In contrast, it is likely that animalivores will be less vulnerable to dam-induced flooding, since they were abundant in the areas not expect to be inundated. We urge for the implementation of studies to predict impacts caused by large hydroelectric dams, including tests of the influence of the local conditions that shape diversity to avoid massive losses of the biota, and to build preventive monitoring and management actions.

  6. Establishing baseline biodiversity data prior to hydroelectric dam construction to monitoring impacts to bats in the Brazilian Amazon

    PubMed Central

    Tavares, Valéria da Cunha

    2017-01-01

    The modification of Amazonian rivers by the construction of megaprojects of hydroelectric dams has widely increased over the last decade. Robust monitoring programs have been rarely conducted prior to the establishment of dams to measure to what extent the fauna, and its associated habitats may be affected by upcoming impacts. Using bats as models, we performed analyses throughout the area under the influence of the Santo Antônio hydroelectric dam, Southwestern Brazilian Amazonia before its construction to estimate how the fauna and its associated habitats would be affected by the upcoming impacts. We surveyed bats in 49 plots distributed along the areas going to be inundated by the dam and those remaining dry. As predictors for the species distribution, we tested the variables of vegetation structure and topography. Species composition largely differed between the dry plots and the plots located in areas that will be flooded, and this was strongly associated with the variables of forest basal area and elevation. Vegetation-related variables also had strong influence on the guilds distribution. The flooding of lower elevations areas is expected to negatively affect the species number and abundance of frugivorous species. In contrast, it is likely that animalivores will be less vulnerable to dam-induced flooding, since they were abundant in the areas not expect to be inundated. We urge for the implementation of studies to predict impacts caused by large hydroelectric dams, including tests of the influence of the local conditions that shape diversity to avoid massive losses of the biota, and to build preventive monitoring and management actions. PMID:28886029

  7. Spatial-temporal dynamics and sources of total Hg in a hydroelectric reservoir in the Western Amazon, Brazil.

    PubMed

    Pestana, I A; Bastos, W R; Almeida, M G; de Carvalho, D P; Rezende, C E; Souza, C M M

    2016-05-01

    Damming rivers to construct hydroelectric reservoirs results in a series of impacts on the biogeochemical Hg cycle. For example, modifying the hydrodynamics of a natural watercourse can result in the suspension and transport of Hg deposits in the water column, which represents an exposure risk for biota. The objective of this study was to evaluate the influences of seasonality on the dispersion of total Hg in the Hydroelectric Power Plant (HPP)-Samuel Reservoir (Porto Velho/Brazil). Sampling campaigns were performed during the three following hydrological periods characteristic of the region: low (Oct/2011), ebbing (May/2012), and high (Feb/2013) water. Sediment profiles, suspended particulate matter (SPM), and aquatic macrophytes (Eicchornia crassipes and Oryza spp.) were collected, and their Hg concentrations and isotopic and elemental C and N signatures were determined. The drainage basin significantly influenced the SPM compositions during all the periods, with a small autochthonous influence from the reservoir during the low water. The highest SPM Hg concentrations inside the reservoir were observed during the high water period, suggesting that the hydrodynamics of this environment favor the suspension of fine SPM, which has a higher Hg adsorption capacity. The Hg concentrations in the sediment profiles were ten times lower than those in the SPM, indicating that large particles with low Hg concentrations were deposited to form the bottom sediment. Hg concentrations were higher in aquatic macrophyte roots than in their leaves and appeared to contribute to the formation of SPM during the low water period. In this environment, Hg transport mainly occurs in SPM from the Jamari River drainage basin, which is the primary source of Hg in this environment.

  8. 75 FR 19989 - Final Environmental Impact Statement for Drought Management Planning at the Kerr Hydroelectric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... Drought Management Planning at the Kerr Hydroelectric Project, Flathead Lake, MT AGENCY: Bureau of Indian... Impact Statement (FEIS) for Drought Management Planning at the Kerr Hydroelectric Project, Flathead Lake... drought management planning at the Kerr Hydroelectric Project no sooner than 30 days following the...

  9. 78 FR 25434 - Henwood Associates, Inc.; Salmon Creek Hydroelectric Company; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... Associates, Inc.; Salmon Creek Hydroelectric Company; Notice of Transfer of Exemption 1. By letter filed April 18, 2013, Henwood Associates, Inc. and Salmon Creek Hydroelectric Company informed the Commission that the exemption from licensing for the Salmon Creek Hydroelectric Project, FERC No. 3730, originally...

  10. Hydroelectric Generating Facilities General Permit ...

    EPA Pesticide Factsheets

    2017-08-28

    The Notice of Availability of the Final NPDES General Permits (HYDROGP) for Discharges at Hydroelectric Generating Facilities in Massachusetts (MAG360000) and New Hampshire (NHG360000) and Tribal Lands in the State of Massachusetts was published in the Federal Register on December 7, 2009 (see 74 Fed. Reg. No. 233, pages 64074 - 64075).

  11. Simulation of the transient processes of load rejection under different accident conditions in a hydroelectric generating set

    NASA Astrophysics Data System (ADS)

    Guo, W. C.; Yang, J. D.; Chen, J. P.; Peng, Z. Y.; Zhang, Y.; Chen, C. C.

    2016-11-01

    Load rejection test is one of the essential tests that carried out before the hydroelectric generating set is put into operation formally. The test aims at inspecting the rationality of the design of the water diversion and power generation system of hydropower station, reliability of the equipment of generating set and the dynamic characteristics of hydroturbine governing system. Proceeding from different accident conditions of hydroelectric generating set, this paper presents the transient processes of load rejection corresponding to different accident conditions, and elaborates the characteristics of different types of load rejection. Then the numerical simulation method of different types of load rejection is established. An engineering project is calculated to verify the validity of the method. Finally, based on the numerical simulation results, the relationship among the different types of load rejection and their functions on the design of hydropower station and the operation of load rejection test are pointed out. The results indicate that: The load rejection caused by the accident within the hydroelectric generating set is realized by emergency distributing valve, and it is the basis of the optimization for the closing law of guide vane and the calculation of regulation and guarantee. The load rejection caused by the accident outside the hydroelectric generating set is realized by the governor. It is the most efficient measure to inspect the dynamic characteristics of hydro-turbine governing system, and its closure rate of guide vane set in the governor depends on the optimization result in the former type load rejection.

  12. Optimization of Multiple and Multipurpose Reservoir System Operations by Using Matrix Structure (Case Study: Karun and Dez Reservoir Dams)

    PubMed Central

    Othman, Faridah; Taghieh, Mahmood

    2016-01-01

    Optimal operation of water resources in multiple and multipurpose reservoirs is very complicated. This is because of the number of dams, each dam’s location (Series and parallel), conflict in objectives and the stochastic nature of the inflow of water in the system. In this paper, performance optimization of the system of Karun and Dez reservoir dams have been studied and investigated with the purposes of hydroelectric energy generation and providing water demand in 6 dams. On the Karun River, 5 dams have been built in the series arrangements, and the Dez dam has been built parallel to those 5 dams. One of the main achievements in this research is the implementation of the structure of production of hydroelectric energy as a function of matrix in MATLAB software. The results show that the role of objective function structure for generating hydroelectric energy in weighting method algorithm is more important than water supply. Nonetheless by implementing ε- constraint method algorithm, we can both increase hydroelectric power generation and supply around 85% of agricultural and industrial demands. PMID:27248152

  13. Hyperspectral Imaging of River Systems

    DTIC Science & Technology

    2010-09-30

    98) Prescribed by ANSI Std Z39-18 2 2. As soon as it is available we will collect HICOTM data for the Yangtze River and adjacent coastal...the Yangtze and other river systems. The goal is to validate our algorithms and to further our understanding of this important river and the East...For the past year we have been collecting HICOTM data for the Columbia (Fig. 3) and Yangtze Rivers (Fig. 4). There are many constraints on data

  14. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochnauer, Tim; Claire, Christopher

    2009-05-07

    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based onmore » potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.« less

  15. Climate change impact on operation of dams and hydroelectricity generation in the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2016-12-01

    We are using a large-scale, high-resolution, fully integrated hydrological/reservoir/hydroelectricity model to investigate the impact of climate change on the operation of 11037 dams and generation of electricity from 375 hydroelectric power plants in the Northeastern United States. Moreover, we estimate the hydropower potential of the region by energizing the existing non-powered dams and then studying the impact of climate change on the hydropower potential. We show that climate change increases the impact of dams on the hydrology of the region. Warmer temperatures produce shorter frozen periods, earlier snowmelt and elevated evapotranspiration rates, which when combined with changes in precipitation, are projected to increase water availability in winter but reduce it during summer. As a result, the water that is stored by dams will be more than ever a necessary part of the routine water systems operations to compensate for these seasonal imbalances. The function of dams as emergency water storage for creating drought resiliency will mostly diminish in the future. Building more dams to cope with the local impacts of climate change on water resources and to offset the increased drought vulnerability may thus be inevitable. Annual hydroelectricity generation in the region is 41 Twh. Our estimate of the annual hydropower potential of non-powered dams adds up to 350 Twh. Climate change may reduce hydropower potential from non-powered dams by up to 13% and reduce current hydroelectricity generation by up to 8% annually. Hydroelectricity generation and hydropower potential may increase in winter months and decline in months of summer and fall. These changes call for recalibration of dam operations and may raise conflict of interests in multipurpose dams.

  16. Phlebotomines (Diptera: Psychodidae) in a Hydroelectric System Affected Area from Northern Amazonian Brazil: Further Insights into the Effects of Environmental Changes on Vector Ecology

    PubMed Central

    Furtado, Nercy Virginia Rabelo; Galardo, Allan Kardec Ribeiro; Galardo, Clicia Denis; Firmino, Viviane Caetano

    2016-01-01

    During 2012–2015, an entomological survey was conducted as part of a phlebotomine (Diptera: Psychodidae) monitoring program in an area influenced by the Santo Antônio do Jari hydroelectric system (Amapá State, Brazil). The purpose was to study aspects of Amazon/Guianan American cutaneous leishmaniasis (ACL) vectors subjected to stresses by anthropogenic environmental changes. For sampling, CDC light traps were positioned 0.5, 1, and 20 m above ground at five capture locations along the Jari River Basin. Fluctuations in phlebotomine numbers were analyzed to determine any correlation with rainfall, dam waterlogging, and/or ACL cases, from May 2012 to March 2015. We captured 2,800 individuals, and among 45 species identified, Bichromomyia flaviscutellata, Nyssomyia umbratilis, and Psychodopygus squamiventris s.l. were determined to be the main putative vectors, based on current knowledge of the Amazon/Guianan ACL scenario. Rainfall, but not complete flooding, was relatively correlated with phlebotomine fluctuation, mainly observed for Ps. squamiventris s.l., as were ACL cases with Ny. umbratilis. Behavioral changes were observed in the unexpected high frequency of Bi. flaviscutellata among CDC captures and the noncanopy dominance of Ny. umbratilis, possibly attributable to environmental stress in the sampled ecotopes. Continuous entomological surveillance is necessary to monitor the outcomes of these findings. PMID:28042300

  17. Analysis of synchronous and induction generators used at hydroelectric power plant

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Popa, G. N.; lagăr, A.

    2017-01-01

    In this paper is presented an analysis of the operating electric generators (synchronous and induction) within a small capacity hydroelectric power plant. Such is treated the problem of monitoring and control hydropower plant using SCADA systems. Have been carried an experimental measurements in small hydropower plant for different levels of water in the lake and various settings of the operating parameters.

  18. Groundwater-Surface Water Interactions and Downstream Transport of Water, Heat, and Solutes in a Hydropeaked River

    NASA Astrophysics Data System (ADS)

    Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Watson, J.

    2017-12-01

    A majority of the world's largest river systems are regulated by dams. In addition to being used for water resources management and flood prevention, many large dams are also used for hydroelectric power generation. In the United States, dams account for 7% of domestic electricity, and hydropower accounts for 16% of worldwide electricity production. To help meet electricity demand during peak usage times, hydropower utilities often increase their releases of water during high demand periods. This practice, termed hydropeaking, can cause large transient flow regimes downstream of hydroelectric dams. These transient flow increases can result in order of magnitude daily fluctuations in discharge, and the released water can have different thermal and chemical properties than ambient river water. As hydropeaking releases travel downstream, the temporary rise in stage and increase in discharge can enhance surface water-groundwater (SW-GW) exchange between the river and its alluvial aquifer. This dam-induced SW-GW exchange, combined with hydrodynamic attenuation and heat exchange processes, result in complex responses downstream. The dam-regulated Lower Colorado River downstream of Austin, TX was used as a natural laboratory to observe SW-GW interactions and downstream transport of water, heat, and solutes under hydropeaking conditions. To characterize SW-GW interactions, well transects were installed in the banks of the river to observe exchanges between the river and alluvial aquifer. The well transects were installed at three different distances from the dam (15km, 35km, and 80km). At each well transect conductivity, temperature, and pressure sensors were deployed in the monitoring wells and in the channel. Additional conductivity and temperature sensors were deployed along the study reach to provide a more detailed record of heat and solute transport during hydropeaking releases. The field data spans over two months of daily dam releases that were punctuated by two

  19. Gonad organochlorine concentrations and plasma steroid levels in white sturgeon (Acipenser transmontanus) from the Columbia River, USA

    USGS Publications Warehouse

    Foster, E.P.; Fitzpatrick, M.S.; Feist, G.W.; Schreck, C.B.; Yates, J.

    2001-01-01

    Sturgeon are an important fishery resource world-wide, providing food and income through commercial, sport, and tribal fisheries. However, sturgeon populations are imperiled in many areas due to overharvest, habitat loss, and pollution. White Sturgeon (Acipenser transmontanus) are found along the west coast of North America from San Francisco Bay, USA to British Columbia, Canada. The Columbia River, located in the Pacific Northwest USA, supports active commercial, sport, and tribal white sturgeon fisheries. The white sturgeon fishery in the Columbia River estuary is one of the most productive sturgeon fisheries in the World. Despite the success of the Columbia River estuary white sturgeon fishery, the populations within the impounded sections (i.e. behind the hydroelectric dams) of the Columbia River experience poor reproductive success (Beamesderfer et al. 1995). This poor reproductive success has been attributed to hydroelectric development, but water pollution could also be a significant factor. The bottom dwelling life history and late maturing reproductive strategy for this species may make it particularly sensitive to the adverse effects of bioaccumulative pollutants.The Columbia River receives effluent from bleached-kraft pulp mills, aluminum smelters, municipal sewage treatment plants and runoff from agricultural. industrial, and urban areas. Bioaccumulative contaminants that have the potential for endocrine disruption have been detected in fish and sediments from the Columbia River (Foster et al. 1999). An integrated system of hormones control reproduction in vertebrates. Plasma steroids direct developmental events essential for reproduction. Disruption of endocrine control by contaminants has been linked to reproductive anomalies and failure in a number of vertebrate species (Guillette et al. 1996; Jobling et al. 1996). Because of this, it is important to understand if organochlorine compounds are accumulating in Columbia River white sturgeon and having

  20. What tools do we have to study the morphological effects of hydroelectric plants in developing countries? The Chilean case

    NASA Astrophysics Data System (ADS)

    Alcayaga, Hernan; Caamaño, Diego; Palma, Sebastian; Contreras, Karla

    2017-04-01

    Countries growing rates are directly related to energy production. Therefore, developed and developing nations are focused on hydropower and dam construction; on the contrary dam removal practices are significantly different among nations, demonstrating the former group a lesser interest on removing structures. Chiles hydropower generation corresponds to 50% of the current grid, having a potential capacity to double the current situation. Thus: ¿What tools can we apply to assess the potential impacts on our rivers? The goal of this project is to study two different reaches located in two separates streams in Central Chile. The Aconcagua River represents a mountain stream (i.e. steep, narrow, and confined) subject to the operation of a hydroelectric system composed by five diversion hydropower plants built during the 90`s. The Rapel River reach corresponds to the last 10km upstream to the outlet; it is a mild and wide stream that includes the gravel-sand transition. The Rapel dam operates about 25km upstream this second reach that is characterized by an 112m wall built in 1968. The Aconcagua hydropower system was characterized within a GIS environment and a morphological response conceptual model applied. The model uses two indexes to evaluate changes in i) channel forming discharge and ii) sediment supply. The provided response shows the trends and magnitudes of the changes, based in eighth possible directions for ten morphological responsible variables. The Rapel river system was evaluated differently and sampling of sediments characteristics (D50 and armour index), discharge index for both before and after the dam operation, Morphological Quality Index (IQM) and an analysis of aerial photography time series were performed. Results showed that the hydrology indicator impacts for the Aconcagua system were more severe than the impacts on sediments transport (typically the case for diversion type hydropower). A fine armour layer was found within the Rapel river site

  1. Decision support system for optimally managing water resources to meet multiple objectives in the Savannah River Basin

    USGS Publications Warehouse

    Roehl, Edwin A.; Conrads, Paul

    2015-01-01

    Managers of large river basins face conflicting demands for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin, for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting dependent economies for years. The Savannah River estuary contains two municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor to expand ship traffic since the 1970s have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent. A planned deepening of the harbor includes flow-alteration features to minimize further migration of salinity, whose effectiveness will only be known after all construction is completed.One of the challenges of large basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge, while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of

  2. 8. LONG VIEW OF CONCRETE FORBAY/SANDBOX FROM ENTRY POINT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LONG VIEW OF CONCRETE FORBAY/SANDBOX FROM ENTRY POINT OF WATER CONVEYANCE SYSTEM. VIEW TO WEST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  3. Fish mercury increase in Lago Manso, a new hydroelectric reservoir in tropical Brazil.

    PubMed

    Hylander, Lars D; Gröhn, Janina; Tropp, Magdalena; Vikström, Anna; Wolpher, Henriette; de Castro E Silva, Edinaldo; Meili, Markus; Oliveira, Lázaro J

    2006-10-01

    It has been frequently demonstrated that mercury (Hg) concentrations in fish rise in newly constructed hydroelectric reservoirs in the Northern Hemisphere. In the present work, we studied whether similar effects take place also in a tropical upland reservoir during impoundment and discuss possible causes and implications. Total Hg concentrations in fish and several soil and water parameters were determined before and after flooding at Rio Manso hydroelectric power plant in western Brazil. The Hg concentrations in soil and sediment were within the background levels in the region (22-35 ng g(-1) dry weight). There was a strong positive correlation between Hg and carbon and sulphur in sediment. Predatory fish had total Hg concentrations ranging between 70 and 210 ng g(-1) f.w. 7 years before flooding and between 72 and 755 ng g(-1) f.w. during flooding, but increased to between 216 and 938 ng g(-1) f.w. in the piscivorous and carnivorous species Pseudoplatystoma fasciatum, cachara, and Salminus brasiliensis, dourado, 3 years after flooding. At the same time, concentrations of organic carbon in the water increased and oxygen concentrations decreased, indicating increased decomposition and anoxia as contributing to the increased Hg concentrations in fish. The present fish Hg concentrations in commonly consumed piscivorous species are a threat to the health of the population dependent on fishing in the dam and downstream river for sustenance. Mercury exposure can be reduced by following fish consumption recommendations until fish Hg concentrations decrease to a safe level.

  4. SMOOTHING THE PEAKS: GRIDSHARE SMART GRID TECHNOLOGY TO REDUCE BROWNOUTS ON MICRO-HYDROELECTRIC MINI-GRIDS IN BHUTAN

    EPA Science Inventory

    Village scale micro-hydroelectric systems in countries like Bhutan, Thailand, Peru, Laos and China provide renewable electricity to thousands of self-reliant communities in remote locations. While promising, many of these systems are plagued by a common problem: brownouts occu...

  5. Flow management for hydropower extirpates aquatic insects, undermining river food webs

    USGS Publications Warehouse

    Kennedy, Theodore A.; Muehlbauer, Jeffrey D.; Yackulic, Charles B.; Lytle, D.A.; Miller, S.A.; Dibble, Kimberly L.; Kortenhoeven, Eric W.; Metcalfe, Anya; Baxter, Colden V.

    2016-01-01

    Dams impound the majority of rivers and provide important societal benefits, especially daily water releases that enable on-peak hydroelectricity generation. Such “hydropeaking” is common worldwide, but its downstream impacts remain unclear. We evaluated the response of aquatic insects, a cornerstone of river food webs, to hydropeaking using a life history–hydrodynamic model. Our model predicts that aquatic-insect abundance will depend on a basic life-history trait—adult egg-laying behavior—such that open-water layers will be unaffected by hydropeaking, whereas ecologically important and widespread river-edge layers, such as mayflies, will be extirpated. These predictions are supported by a more-than-2500-sample, citizen-science data set of aquatic insects from the Colorado River in the Grand Canyon and by a survey of insect diversity and hydropeaking intensity across dammed rivers of the Western United States. Our study reveals a hydropeaking-related life history bottleneck that precludes viable populations of many aquatic insects from inhabiting regulated rivers.

  6. New notch weir system designed to pass shad through Potomac Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    This article discusses the design and functional characteristics of a notch and three-weir labyrinth fish passage facility at Little Falls Dam. Most effective at low-head hydroelectric power plants, the weir system will reduce flow velocities to a value thought to be low enough for healthy shad to swim against. It is felt that this system will re-establish the shad population in a 10-mile stretch of the Patomac River near Washington.

  7. GOVERNOR FOR #3 GENERATOR INSIDE ELWHA POWERHOUSEWOODWARD WATERWHEEL GOVERNOR TYPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GOVERNOR FOR #3 GENERATOR INSIDE ELWHA POWERHOUSE--WOODWARD WATERWHEEL GOVERNOR TYPE HR: 21,500 LBS OF THRUST, SIZE 11 BORE & STROKE. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  8. Ticks (Acari: Ixodidae) on wild animals from the Porto-Primavera Hydroelectric power station area, Brazil.

    PubMed

    Labruna, Marcelo B; de Paula, Cátia D; Lima, Thiago F; Sana, Dênis A

    2002-12-01

    From June 2000 to June 2001, a total of 741 ticks were collected from 51 free-living wild animals captured at the Porto-Primavera Hydroelectric power station area, located alongside an approximately 180 km course of the Paran river, between the states of S o Paulo and Mato Grosso do Sul, comprising 9 species of 3 genera: Ambly-omma (7 species), Boophilus (1) and Anocentor (1). A total of 421 immature Amblyomma ticks were reared in laboratory until the adult stage, allowing identification of the species. A. cajennense was the most frequent tick species (mostly immature stages) collected on 9 host species: Myrmecophaga tridactyla, Tamandua tetradactyla,Cerdocyon thous, Puma concolor,Tayassu tajacu, Mazama gouazoubira,Hydrochaeris hydrochaeris,Alouatta caraya, Cebus apella. Other tick species were less common, generally restricted to certain host taxa.

  9. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... the Federal Power Act, at which non-Federal hydroelectric development is permissible; or (2) An...

  10. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... the Federal Power Act, at which non-Federal hydroelectric development is permissible; or (2) An...

  11. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... the Federal Power Act, at which non-Federal hydroelectric development is permissible; or (2) An...

  12. [Hygienic characteristics of work conditions at large Hydroelectric Power Plants with mechanization and automatization].

    PubMed

    Iakimova, L D

    1997-01-01

    The article touches upon hygienic problems associated with mechanization and automation of major hydroelectric power stations. The authors present criteria to evaluate work conditions of the main occupations participating in the technologic process of hydroelectric power stations.

  13. Tree-ring reconstruction of streamflow in the Snare River Basin, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Martin, J. P.; Pisaric, M. F.

    2017-12-01

    Drought is a component of many ecosystems in North America causing environmental and socioeconomical impacts. In the ongoing context of climatic and environmental changes, drought-related issues are becoming problematic in northern Canada, which have not been associated with drought-like conditions in the past. Dryer than average conditions threatens the energy security of northern canadian communities, since this region relies on the production of hydroelectricity as an energy source. In the North Slave Region of Northwest Territory (NWT), water levels and streamflows were significantly lower in 2014/2015. The Government of the NWT had to spend nearly $50 million to purchase diesel fuel to generate enough electricity to supplement the reduced power generation of the Snare River hydroelectric system, hence the need to better understand the multi-decadal variability in streamflow. The aims of this presentation are i) to present jack pine and white spruce tree-ring chronologies of Southern NWT; ii) to reconstruct past streamflow of the Snare River Basin; iii) to evaluate the frequency and magnitude of extreme drought conditions, and iv) to identify which large-scale atmospheric or oceanic patterns are teleconnected to regional hydraulic conditions. Preliminary results show that the growth of jack pine and white spruce populations is better correlated with precipitation and temperature, respectively, than hydraulic conditions. Nonetheless, we present a robust streamflow reconstruction of the Snare River that is well correlated with the summer North Atlantic Oscillation (NAO) index, albeit the strength of the correlation is non-stationary. Spectral analysis corroborate the synchronicity between negative NAO conditions and drought conditions. From an operational standpoint, considering that the general occurrence of positive/negative NAO can be predicted, it the hope of the authors that these results can facilitate energetic planning in the Northwest Territories through

  14. Snake River Sockeye Salmon Habitat and Limnological Research; 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuscher, David; Taki, Doug

    1996-05-01

    This report contains studies which are part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Attention is focused on population monitoring studies in the Sawtooth Valley Lakes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. Dynamic hydrologic economic modeling of tradeoffs in hydroelectric systems

    NASA Astrophysics Data System (ADS)

    Kern, Jordan D.

    Hydropower producers face a future beset by unprecedented changes in the electric power industry, including the rapid growth of installed wind power capacity and a vastly increased supply of natural gas due to horizontal hydraulic fracturing (or "fracking"). There is also increased concern surrounding the potential for climate change to impact the magnitude and frequency of droughts. These developments may significantly alter the financial landscape for hydropower producers and have important ramifications for the environmental impacts of dams. Incorporating wind energy into electric power systems has the potential to affect price dynamics in electricity markets and, in so doing, alter the short-term financial signals on which dam operators rely to schedule reservoir releases. Chapter 1 of this doctoral dissertation develops an integrated reservoir-power system model for assessing the impact of large scale wind power integration of hydropower resources. Chapter 2 explores how efforts to reduce the carbon footprint of electric power systems by using wind energy to displace fossil fuel-based generation may inadvertently yield further impacts to river ecosystems by disrupting downstream flow patterns. Increased concern about the potential for climate change to alter the frequency and magnitude of droughts has led to growing interest in "index insurance" that compensates hydropower producers when values of an environmental variable (or index), such as reservoir inflows, crosses an agreed upon threshold (e.g., low flow conditions). Chapter 3 demonstrates the need for such index insurance contracts to also account for changes in natural gas prices in order to be cost-effective. Chapter 4 of this dissertation analyzes how recent low natural gas prices (partly attributable to fracking) have reduced the cost of implementing ramp rate restrictions at dams, which help restore sub-daily variability in river flows by limiting the flexibility of dam operators in scheduling

  16. Designing and Implementation of River Classification Assistant Management System

    NASA Astrophysics Data System (ADS)

    Zhao, Yinjun; Jiang, Wenyuan; Yang, Rujun; Yang, Nan; Liu, Haiyan

    2018-03-01

    In an earlier publication, we proposed a new Decision Classifier (DCF) for Chinese river classification based on their structures. To expand, enhance and promote the application of the DCF, we build a computer system to support river classification named River Classification Assistant Management System. Based on ArcEngine and ArcServer platform, this system implements many functions such as data management, extraction of river network, river classification, and results publication under combining Client / Server with Browser / Server framework.

  17. The return on the blueback salmon to the Columbia River

    USGS Publications Warehouse

    Fisher, Frederick S.

    1948-01-01

    THE year 1941 was a crucial one for the blueback salmon of the Columbia River. During that year, one brood came closer to extinction than was realized by more than a few individuals. The immediate causes were not overfishing, hydroelectric power development, or irrigation—although these factors continued to exert their long-standing effects. The direct causes can be attributed to an “act of God” plus—in large measure--lack of knowledge concerning the basic principles of effective artificial propagation. With the security and assurance provided by subsequent developments, those concerned with the Columbia River blueback salmon may be interested in a brief recapitulation of events that transpired during the early 1940s. This particular piece of fishery history bears upon the problems of the immediate future on the Columbia River.

  18. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affectmore » wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project

  19. Influence of environmental variables on diffusive greenhouse gas fluxes at hydroelectric reservoirs in Brazil.

    PubMed

    Rogério, J P; Santos, M A; Santos, E O

    2013-11-01

    For almost two decades, studies have been under way in Brazil, showing how hydroelectric reservoirs produce biogenic gases, mainly methane (CH4) and carbon dioxide (CO2), through the organic decomposition of flooded biomass. This somewhat complex phenomenon is due to a set of variables with differing levels of interdependence that directly or indirectly affect greenhouse gas (GHG) emissions. The purpose of this paper is to determine, through a statistical data analysis, the relation between CO2, CH4 diffusive fluxes and environmental variables at the Furnas, Itumbiara and Serra da Mesa hydroelectric reservoirs, located in the Cerrado biome on Brazil's high central plateau. The choice of this region was prompted by its importance in the national context, covering an area of some two million square kilometers, encompassing two major river basins (Paraná and Tocantins-Araguaia), with the largest installed power generation capacity in Brazil, together accounting for around 23% of Brazilian territory. This study shows that CH4 presented a moderate negative correlation between CO2 and depth. Additionally, a moderate positive correlation was noted for pH, water temperature and wind. The CO2 presented a moderate negative correlation for pH, wind speed, water temperature and air temperature. Additionally, a moderate positive correlation was noted for CO2 and water temperature. The complexity of the emission phenomenon is unlikely to occur through a simultaneous understanding of all the factors, due to difficulties in accessing and analyzing all the variables that have real, direct effects on GHG production and emission.

  20. Potential of Micro Hydroelectric Generator Embedded at 30,000 PE Effluent Discharge of Sewerage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Che Munaaim, M. A.; Razali, N.; Ayob, A.; Hamidin, N.; Othuman Mydin, M. A.

    2018-03-01

    A micro hydroelectric generator is an energy conversion approach to generate electricity from potential (motion) energy to an electrical energy. In this research, it is desired to be implemented by using a micro hydroelectric generator which is desired to be embedded at the continuous flow of effluent discharge point of domestic sewerage treatment plant (STP). This research evaluates the potential of electricity generation from micro hydroelectric generator attached to 30,000 PE sewerage treatment plant. The power output obtained from calculation of electrical power conversion is used to identify the possibility of this system and its ability to provide electrical energy, which can minimize the cost of electric bill especially for the pumping system. The overview of this system on the practical application with the consideration of payback period is summarized. The ultimate aim of the whole application is to have a self-ecosystem electrical power generated for the internal use of STP by using its own flowing water in supporting the sustainable engineering towards renewable energy and energy efficient approach. The results shows that the output power obtained is lower than expected output power (12 kW) and fall beyond of the range of a micro hydro power (5kW - 100kW) since it is only generating 1.58 kW energy by calculation. It is also observed that the estimated payback period is longer which i.e 7 years to recoup the return of investment. A range of head from 4.5 m and above for the case where the flow shall at least have maintained at 0.05 m3/s in the selected plant in order to achieved a feasible power output. In conclusion, wastewater treatment process involves the flowing water (potential energy) especially at the effluent discharge point of STP is possibly harvested for electricity generation by embedding the micro hydroelectric generator. However, the selection of STP needs to have minimum 4.5 meter head with 0.05 m3/s of continuously flowing water to make

  1. 77 FR 34033 - American River Power IX, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... generator; (3) a concrete tailrace releasing water into the river downstream of the dam; (4) a switchyard... study the feasibility of the Peoria Dam, Illinois--Hydroelectric Water Power Project (Peoria Dam Project...-long, 50-foot-wide, 55-foot-high powerhouse containing two horizontal Kaplan pit turbines each with a...

  2. Infiltration and hydraulic connections from the Niagara River to a fractured-dolomite aquifer in Niagara Falls, New York

    USGS Publications Warehouse

    Yager, R.M.; Kappel, W.M.

    1998-01-01

    The spatial distribution of hydrogen and oxygen stable-isotope values in groundwater can be used to distinguish different sources of recharge and to trace groundwater flow directions from recharge boundaries. This method can be particularly useful in fractured-rock settings where multiple lines of evidence are required to delineate preferential flow paths that result from heterogeneity within fracture zones. Flow paths delineated with stable isotopes can be combined with hydraulic data to form a more complete picture of the groundwater flow system. In this study values of ??D and ??18O were used to delineate paths of river-water infiltration into the Lockport Group, a fractured dolomite aquifer, and to compute the percentage of fiver water in groundwater samples from shallow bedrock wells. Flow paths were correlated with areas of high hydraulic diffusivity in the shallow bedrock that were delineated from water-level fluctuations induced by diurnal stage fluctuations in man-made hydraulic structures. Flow paths delineated with the stable-isotope and hydraulic data suggest that fiver infiltration reaches an unlined storm sewer in the bedrock through a drainage system that surrounds aqueducts carrying river water to hydroelectric power plants. This finding is significant because the storm sewer is the discharge point for contaminated groundwater from several chemical waste-disposal sites and the cost of treating the storm sewer's discharge could be reduced if the volume of infiltration from the river were decreased.The spatial distribution of hydrogen and oxygen stable-isotope values in groundwater can be used to distinguish different sources of recharge and to trace groundwater flow directions from recharge boundaries. This method can be particularly useful in fractured-rock settings where multiple lines of evidence are required to delineate preferential flow paths that result from heterogeneity within fracture zones. Flow paths delineated with stable isotopes can be

  3. Behavior and passage of silver-phase American eels, Anguilla rostrata (LeSueur), at a small hydroelectric facility

    USGS Publications Warehouse

    Haro, Alex; Castro-Santos, Ted; Boubée, Jacques

    2000-01-01

    Downstream migrant eels were monitored near a small (51 MW) hydroelectric facility on the Connecticut River (Massachusetts, USA) for two seasons using acoustic and radio telemetry. Eels frequently made several attempts over periods of one to several days to pass the station. Did activity of eels was variable, although most movements occurred at night. Eels occupied a variety of depths in the forebay area, but spent the greater proportion of time at or near the bottom (10 m), occasionally venturing to the surface. Horizontal movements usually spanned across the entire width of the forebay. There was no significant relationship between duration of forebay presence and either flow or light intensity. Although all telemetered eels passed via the turbines, some migrant eels did use a surface bypass.

  4. Effects of flow restoration on mussel growth in a Wild and Scenic North American River

    PubMed Central

    2013-01-01

    Background Freshwater mussels remain among the most imperiled species in North America due primarily to habitat loss or degradation. Understanding how mussels respond to habitat changes can improve conservation efforts. Mussels deposit rings in their shell in which age and growth information can be read, and thus used to evaluate how mussels respond to changes in habitat. However, discrepancies between methodological approaches to obtain life history information from growth rings has led to considerable uncertainty regarding the life history characteristics of many mussel species. In this study we compared two processing methods, internal and external ring examination, to obtain age and growth information of two populations of mussels in the St. Croix River, MN, and evaluated how mussel growth responded to changes in the operation of a hydroelectric dam. Results External ring counts consistently underestimated internal ring counts by 4 years. Despite this difference, internal and external growth patterns were consistent. In 2000, the hydroelectric dam switched from operating on a peaking schedule to run-of-the-river/partial peaking. Growth patterns between an upstream and downstream site of the dam were similar both before and after the change in operation. At the downstream site, however, older mussels had higher growth rates after the change in operation than the same sized mussels collected before the change. Conclusions Because growth patterns between internal and external processing methods were consistent, we suggest that external processing is an effective method to obtain growth information despite providing inaccurate age information. External processing is advantageous over internal processing due to its non-destructive nature. Applying this information to analyze the influence of the operation change in the hydroelectric dam, we suggest that changing to run-of-the-river/partial peaking operation has benefited the growth of older mussels below the dam

  5. 33 CFR 62.51 - Western Rivers Marking System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers... toward the Gulf of Mexico. (b) The Western Rivers System varies from the standard U.S. system as follows...

  6. 33 CFR 62.51 - Western Rivers Marking System.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers... toward the Gulf of Mexico. (b) The Western Rivers System varies from the standard U.S. system as follows...

  7. Columbia River System Analysis Model - Phase 1

    DTIC Science & Technology

    1991-10-01

    Reach reservoirs due to the impact of APPENDIX D 6 Wenatchee River flows and additional inflow downstream of Rocky Reach. An inflow link terminates at...AD-A246 639I 11 11111 till11 1 111 US Army Corps of Engineers Hydrologic Engineering Center Columbia River System Analysis Model - Phase I Libby...WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) Columbia River System Analysis - Phase I 12. PERSONAL AUTHOR(S

  8. VIEW OF #2 EXCITER WITH GOVERNOR ON GENERATOR FLOOR. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF #2 EXCITER WITH GOVERNOR ON GENERATOR FLOOR. THIS EXCITER IS DRIVEN BY A HORIZONTAL KAPLAN WHEEL LOCATED ON OPPOSITE SIDE OF WALL IN WHEELROOM. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  9. Dynamics of Total Microcystin LR Concentration in Three Subtropical Hydroelectric Generation Reservoirs in Uruguay, South America.

    PubMed

    González-Piana, Mauricio; Fabián, Daniel; Piccardo, Andrea; Chalar, Guillermo

    2017-10-01

    This study analyzed the temporal dynamics of total microcystin LR concentrations between the years of 2012 and 2015 in the Bonete, Baygorria and Palmar hydroelectric generation reservoirs in the central region of the Negro River, Uruguay. The three reservoirs showed differents total microcystin LR concentration, with no significant differences among them. Over 20 sampling dates, the three reservoirs exhibited total microcystin LR concentrations on eight occasions that corresponded to a slight to moderate human health risk according to WHO guideline values for recreational waters. By determining the concentration of microcystin LR in cyanobacterial biomass, we identified cyanobacterial populations that occurred over time with varying degrees of toxin production (maximal 85.4 µg/mm 3 ). The microcystin LR concentration in Bonete was positively correlated with temperature (r = 0.587) and cyanobacterial biomass (r = 0.736), in Baygorria with cyanobacterial biomass (r = 0.521), and in Palmar with temperature (r = 0.500) and negatively correlated with ammonia (r = -0.492). Action is needed to reduce the presence of toxic cyanobacteria in these systems. A decrease in the use of agrochemicals and management changes in the reservoir basins could be successful long-term measures.

  10. Diversity and genetic distance in populations of Steindachnerina in the upper Paraná river floodplain of Brazil.

    PubMed

    Oliveira, A V; Prioli, A J; Prioli, S M A P; Pavanelli, C S; Júlio, H F; Panarari, R S

    2002-08-01

    Whereas four species of the genus Steindachnerina occur in the Paraná river basin, S. insculpta was the only endemic species of the region under analysis, which is the third lower section of the upper Paraná river. Among other factors, this species has been characterised by the absence of spots in the basal region of the dorsal fin. However, various specimens with this characteristic appeared in the region after the construction of the Itaipu Hydroelectric Plant in 1982. An analysis of the genetic variability of Steindachnerina populations with or without spots is provided. Specimens were collected in different sites of the floodplain of the upper Paraná river and samples were compared by random amplified polymorphic DNA (RAPD) technique and morphological analyses. Ninety-eight amplified loci with nine random primers were analysed in 19 specimens of each phenotype. Data for genetic distance showed great divergences between the two phenotypes and indicate two different species. Spotted specimens may be identified as S. brevipinna, found in the region downstream Sete Quedas Falls. The species must have overcome the geographical barrier during the building of the Itaipu hydroelectric dam that submerged the waterfalls and which became an obstacle between the upper and middle Paraná river some 150 km downstream. Since phenotypes do not share dominant alleles, absence of gene flow has been suggested.

  11. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    USGS Publications Warehouse

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  12. Potential of modified flow-release rules for Kingsley Dam in meeting crane habitat requirements, Platte River, Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H.W.; Hiew, K.L.; Loubser, E.

    1985-11-01

    The Whooping Crane, an endangered species, uses the Platte River downstream from Overton, Nebraska in its migratory route. Maintenance of favorable habitat conditions required by law may mean restrictions on development and management of Colorado's entitled water in the South Platte River. The project investigated meeting crane habitat flow requirements by alternative plans for flow releases through Kingsley Dam (North Platte River) and Narrows Dam (a proposed project on the South Platte River). The analysis is based on mean monthly flow of the past 39 years. Irrigation releases were held firm, hydroelectric power production was maximized, and flows available tomore » meet habitat requirements were determined. A simulation model was developed to model the operation of the North Platte and South Platte Rivers.« less

  13. Mitigation and enhancement techniques for the Upper Mississippi River system and other large river systems

    USGS Publications Warehouse

    Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.

    1982-01-01

    Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management

  14. Pike Esox Lucius Distribution and Feeding Comparisons in Natural and Historically Channelized River Sections

    NASA Astrophysics Data System (ADS)

    Ivanovs, Kaspars

    2016-12-01

    During the last century a large portion of small and medium-sized rivers in Latvia were channelized, hydroelectric power stations were also built, which led to changes in the hydrodynamic conditions, geomorphological structure, as well as a change in the fish fauna. Fish are an integral part of any community in natural or man-made bodies of water. They actively participate in maintaining the system, balancing/equilibrium, energy, substance transformation and biomass production. They are able to influence other organisms in the ecosystem in which they live. The aim of the paper "Pike distribution and feeding comparisons in natural and historically channelized river sections" is to find out what pike feed on in different environments in Latvian rivers, such as natural and straightened river sections, as well as what main factors determine the composition of their food. Several points were assessed during the course of the study: the impact of environmental conditions on the feeding habits and the distribution of pike; the general feeding habits of predators in Latvian rivers; the feeding differences of predators in natural and straightened river sections; and lastly, rhithral and pothamal habitats were compared. The study was based on data from 2014 and 2015 on fish fauna monitoring. During the study, 347 pike were collected from 136 plots using electrofishing method.

  15. National wild and scenic rivers system, January 2000

    USGS Publications Warehouse

    ,; ,; ,; ,; ,

    2000-01-01

    The National Wild and Scenic Rivers System was created by Congress in 1968 (Public Law 90-542; 16 U.S.C 1271 et seq.) to preserve certain rivers with outstanding natural cultural, or recreational features in a free flowing condition for enjoyment of present and future generations. As of January 2000, the National System has grown from its initial eight components to a 156-river system with representation in 37 states.

  16. National Hydroelectric Power Resources Study:Regional Assessment: Volume XXIII: Alaska and Hawaii

    DTIC Science & Technology

    1981-09-01

    amount of recoverable geothermal energy is still unknown, a test well (HGP-A) was drilled 6,450 feet into the eastern rift of Kilauea volcano on...US Army Corps of Engineers National Hydroelectric Power Resources Study Volume XXIII September 1 981 Regional Assessment: Alaska and Hawaii ...National Hydroelectric Power Resources Study: Final Regional Assessment; Alaska and Hawaii IS. PERFORMING ORG. REPORT NUMBER IWR 82-𔃻-23 7. AUTHOR(a) 8

  17. 18 CFR 292.208 - Special requirements for hydroelectric small power production facilities located at a new dam or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for hydroelectric small power production facilities located at a new dam or diversion. 292.208 Section... requirements for hydroelectric small power production facilities located at a new dam or diversion. (a) A hydroelectric small power production facility that impounds or diverts the water of a natural watercourse by...

  18. 18 CFR 292.208 - Special requirements for hydroelectric small power production facilities located at a new dam or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for hydroelectric small power production facilities located at a new dam or diversion. 292.208 Section... requirements for hydroelectric small power production facilities located at a new dam or diversion. (a) A hydroelectric small power production facility that impounds or diverts the water of a natural watercourse by...

  19. 18 CFR 292.208 - Special requirements for hydroelectric small power production facilities located at a new dam or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for hydroelectric small power production facilities located at a new dam or diversion. 292.208 Section... requirements for hydroelectric small power production facilities located at a new dam or diversion. (a) A hydroelectric small power production facility that impounds or diverts the water of a natural watercourse by...

  20. Hydrological, morphometrical, and biological characteristics of the connecting rivers of the International Great Lakes: a review

    USGS Publications Warehouse

    Edwards, Clayton J.; Hudson, Patrick L.; Duffy, Walter G.; Nepszy, Stephen J.; McNabb, Clarence D.; Haas, Robert C.; Liston, Charles R.; Manny, Bruce; Busch, Wolf-Dieter N.; Dodge, D.P.

    1989-01-01

    The connecting channels of the Great Lakes are large rivers (1, 200-9, 900 m3 • s-1) with limited tributary drainage systems and relatively stable hydrology (about 2:1 ration of maximum to minimum flow). The rivers, from headwaters to outlet, are the St. Marys, St. Clair, Detroit, Niagara, and St. Lawrence. They share several characteristics with certain other large rivers: the fish stocks that historically congregated for spawning or feeding have been overfished, extensive channel modification have been made, and they have been used as a repository for domestic and industrial wastes and for hydroelectric energy generation. Levels of phosphorus, chlorophyll a, and particulate organic matter increase 3- to 5-fold from the St. Marys River to the St. Lawrence River. Biological communities dependent on nutrients in the water column, such as phytoplankton, periphyton, and zooplankton similarly increase progressively downstream through the system. The standing crop of emergent macrophytes is similar in all of the rivers, reflecting the relatively large nutrient pools in the sediments and atmosphere. Consequently, emergent macrophytes are an important source of organic matter (67% of total primary production) in the nutrient poor waters of the St. Marys River, whereas phytoplankton production dominates (76%) in the enriched St. Lawrence River. Submersed and emergent macrophytes and the associated periphyton are major producers of organic matter in the connecting channels. Another major source of organic matter (measured as ash free dry weight, AFDW) in the Detroit River is sewage, introduced at a rate of 26, 000 t per year. The production of benthos ranges from a low 5.4 g AFDW•m-2 in the Detroit River to a high of 15.5 g AFDW•m-2 in the St. Marys River. The rivers lack the organic transport from riparian sources upstream but receive large amounts of high quality phytoplankton and zooplankton from the Great Lakes.

  1. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    USGS Publications Warehouse

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria; Hebblewhite, Mark; Lowe, Winsor; Muhlfeld, Clint C.; Nelson, Cara; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologicaltering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  2. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes.

    PubMed

    Hauer, F Richard; Locke, Harvey; Dreitz, Victoria J; Hebblewhite, Mark; Lowe, Winsor H; Muhlfeld, Clint C; Nelson, Cara R; Proctor, Michael F; Rood, Stewart B

    2016-06-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  3. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    PubMed Central

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria J.; Hebblewhite, Mark; Lowe, Winsor H.; Muhlfeld, Clint C.; Nelson, Cara R.; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth. PMID:27386570

  4. 77 FR 38796 - Alabama Power Company; Holt Hydroelectric Project; Notice of Revised Restricted Service List for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Power Company; Holt Hydroelectric Project; Notice of Revised Restricted Service List for a Programmatic... Hydroelectric Project No. 2203. The programmatic agreement, when executed by the Commission, the Alabama SHPO...

  5. PROTOTYPE EICHER FISH SCREEN AND EVALUATION FACILITY, INSTALLED IN 1990 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROTOTYPE EICHER FISH SCREEN AND EVALUATION FACILITY, INSTALLED IN 1990 ON #1 PENSTOCK. PROJECT SPONSORED BY THE ELECTRICAL POWER RESEARCH INSTITUTE TO TRANSFER FISH DOWNSTREAM PAST THE TURBINES. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  6. A review of the current status of the American shad '(Alosa sapidissima)' in the Susquehanna River. Special report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidell, B.D.

    1979-02-01

    During the last two hundred years there has been a dramatic and sustained decline in the American shad fishery of the Susquehanna River. Among the explanations most often advanced for this decline are overfishing, both in the Chesapeake Bay and in the river itself; construction of dams (canal-feeder and hydro-electric) or other obstructions to passage of anadromous fishes; and deleterious effects on water quality caused by mining wastes, sawmill pulp wastes, municipal sewages and increased agricultural activity in the watershed leading to fluctuations in flow characteristis of the river. This report attempts to answer these questions.

  7. Nile River, Lake Nasser, Aswan High Dam, Egypt

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Aswan High Dam, 2.5 miles across and 364 feet high, (24.0N, 33.0E) completed in 1971, was constructed to supply cheap hydroelectric power to both Egypt and Sudan by impounding, controling and regulating the flood waters of the Nile River in Lake Nasser, the world's second largest artifical lake. The lake extends over 500 miles in length, covers an area of some 2,000 square miles and is as much as 350 feet deep at the face of the dam.

  8. Sediment and water discharge rates of Turkish Black Sea rivers before and after hydropower dam construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, B.J.

    1994-06-01

    Presently, the water discharge rate to the Black Sea by Turkish rivers is approximately 41 km[sup 3]/yr. The sediment discharge rate of Turkish rivers to the Black Sea is 28 x 10[sup 6] t/yr. Before construction of the hydroelectric dams, the sediment discharge rate was approximately 70 x 10[sup 6] t/yr. The sharp reduction in sediment load is largely a result of the dams near the mouths of the Yesil Irmak and Kizil Irmak rivers. Before the construction of dams, Turkish rivers contributed approximately one third of the total amount of sediment received by the Black Sea from all surroundingmore » rivers. The life-span of the major reservoirs varies from approximately only one century (Yesil Irmak river reservoirs) to several thousand years (Sakarya river reservoirs). Life-span for the large Altinkaya Dam reservoir is estimated with approximately 500 yr.« less

  9. 76 FR 20657 - Wells Hydroelectric Project; Notice of Availability of the Draft Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2149-152] Wells Hydroelectric Project; Notice of Availability of the Draft Environmental Impact Statement for the Wells... of Energy Projects has reviewed the application for license for the Wells Hydroelectric Project (FERC...

  10. 18 CFR 16.19 - Procedures for an existing licensee of a minor hydroelectric power project or of a minor part of...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... existing licensee of a minor hydroelectric power project or of a minor part of a hydroelectric power....19 Procedures for an existing licensee of a minor hydroelectric power project or of a minor part of a hydroelectric power project with a license not subject to sections 14 and 15 of the Federal Power Act. (a...

  11. 18 CFR 16.19 - Procedures for an existing licensee of a minor hydroelectric power project or of a minor part of...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... existing licensee of a minor hydroelectric power project or of a minor part of a hydroelectric power....19 Procedures for an existing licensee of a minor hydroelectric power project or of a minor part of a hydroelectric power project with a license not subject to sections 14 and 15 of the Federal Power Act. (a...

  12. 18 CFR 16.19 - Procedures for an existing licensee of a minor hydroelectric power project or of a minor part of...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... existing licensee of a minor hydroelectric power project or of a minor part of a hydroelectric power....19 Procedures for an existing licensee of a minor hydroelectric power project or of a minor part of a hydroelectric power project with a license not subject to sections 14 and 15 of the Federal Power Act. (a...

  13. 18 CFR 16.19 - Procedures for an existing licensee of a minor hydroelectric power project or of a minor part of...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... existing licensee of a minor hydroelectric power project or of a minor part of a hydroelectric power....19 Procedures for an existing licensee of a minor hydroelectric power project or of a minor part of a hydroelectric power project with a license not subject to sections 14 and 15 of the Federal Power Act. (a...

  14. 18 CFR 16.19 - Procedures for an existing licensee of a minor hydroelectric power project or of a minor part of...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... existing licensee of a minor hydroelectric power project or of a minor part of a hydroelectric power....19 Procedures for an existing licensee of a minor hydroelectric power project or of a minor part of a hydroelectric power project with a license not subject to sections 14 and 15 of the Federal Power Act. (a...

  15. 2. CONFLUENCE POOL, DETAIL OF TUNNEL PORTAL WITH WATER ENTERING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONFLUENCE POOL, DETAIL OF TUNNEL PORTAL WITH WATER ENTERING FROM SANTA ANA RIVER. VIEW TO NORTHEAST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  16. Water quality study of Sunter River in Jakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Martinus, Y.; Astono, W.; Hendrawan, D.

    2018-01-01

    Sunter River flows in the city of Jakarta with the designation of river water for agricultural purposes, and can be utilized for urban business and hydroelectric power industry. This study aims to determine the Sunter River water quality based on physical and chemical parameters. Water sampling was conducted 2 times which done in April and May with 5 sampling stations for measuring. The samples was analayzed in the laboratory according SNI methods for parameters BOD, COD, PO4 3-, NO3, Oil & Grease and Detergents. The quality status of Sunter River is determined by the Pollutant Index method. The results show that the water quality of Sunter River is influenced by organic parameter as dominant pollutant with COD concentration ranging from 48 mg/l - 182.4 mg/l and BOD concentration ranging from 14.69 mg/L - 98.91 mg/L. The Pollution Index calculation results show that the water quality status of Sunter River is moderate polluted with IP 6.47. The source of pollutants generally comes from the urban drainage channels, tributaries, and slaughtering industry. The results of this study expected to be use by the government to improve the water quality of Sunter River for better environment.

  17. Contaminants in fishes from great lakes-influenced sections and above dams of three Michigan Rivers: III. Implications for health of bald eagles

    USGS Publications Warehouse

    Giesy, J.P.; Bowerman, W.W.; Mora, M.A.; Verbrugge, D.A.; Othoudt, R. A.; Newsted, J.L.; Summer, C. L.; Aulerich, R.J.; Bursian, S.J.; Ludwig, J. P.; Dawson, G. A.; Kubiak, T.J.; Best, D. A.; Tillitt, D. E.

    1995-01-01

    Recently, there have been discussions of the relative merits of passage of fishes around hydroelectric dams on three rivers (Au Sable, Manistee, and Muskegon) in Michigan. A hazard assessment was conducted to determine the potential for adverse effects on bald eagles that could consume such fishes from above and below dams on the three primary rivers. The hazard assessments were verified by comparing the reproductive productivities of eagles nesting in areas where they ate primarily fish from either above or below dams on the three primary rivers, as well as on two additional rivers in Michigan, the Menominee and Thunder Bay. Concentrations of organochlorine insecticides (OCI), polychlorinated biphenyls (total PCBs), 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ), and total mercury (Hg) were measured in composite samples of fishes from above and below hydroelectric dams on the Manistee and Muskegon Rivers, which flow into Lake Michigan, and the Au Sable River, which flows into Lake Huron. Mean concentrations of OCI, total PCBs, and TCDD-EQ were all greater in fishes from below the dams than in those from above. The hazard assessment indicated that current concentrations of Hg and OCI other than DDT (DDT + DDE + DDD) in fish from neither above nor below dams would present a significant hazard to bald eagles (Haliaeetus leucocephalus). Both total PCBs and TCDD-EQ in fishes from below the dams currently present a significant hazard to bald eagles, since their mean hazard quotients (HQ) were all greater than one.

  18. VIEW OF HISTORIC SLATE SWITCHBOARD IN THE CONTROL ROOM OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF HISTORIC SLATE SWITCHBOARD IN THE CONTROL ROOM OF THE ELWHA POWERHOUSE, INCLUDING: METERS, PROTECTIVE RELAYS, AND SWITCHES. NOTE ADDITION OF PERSONAL COMPUTERS FOR POWER METERING AND OPERATIONS. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  19. 52. POWER HOUSE AREA, SANTA ANA NO. 2; DETAIL MAP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. POWER HOUSE AREA, SANTA ANA NO. 2; DETAIL MAP OF SANTA ANA NO. 1 AND NO. 2 HYDROELECTRIC PROJECT, EXHIBIT K, APR. 30, 1945. SCE drawing no. 523691 (sheet no. 6; for filing with the Federal Power Commission). - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  20. 77 FR 47628 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [P-13123-002-CA] Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting Postponement On July 17, 2012, the...), on the Eagle Mountain Pumped Storage Hydroelectric Project. However, the meeting has been postponed...

  1. 76 FR 22393 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Cancellation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [P-13123-002-CA] Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Cancellation of Teleconference On March 15... Mountain Pumped Storage Hydroelectric Project. This meeting has been cancelled. We will reschedule this...

  2. White sturgeon spawning areas in the lower Snake River

    USGS Publications Warehouse

    Parsley, M.J.; Kappenman, K.M.

    2000-01-01

    We documented 17 white sturgeon Acipenser transmontanus spawning locations in the Snake River from the mouth to Lower Granite Dam (river km 0 to 173). Spawning locations were determined by the collection of fertilized eggs on artificial substrates or in plankton nets. We collected 245 eggs at seven locations in McNary Reservoir, 22 eggs at three locations in Ice Harbor Reservoir, 30 eggs from two locations in Lower Monumental Reservoir, and 464 eggs at five locations in Little Goose Reservoir. All 17 locations were in high water velocity areas and between 1.0 and 7.0 km downstream from a hydroelectric dam. The documentation of spawning areas is important because this habitat is necessary to maintain natural and viable populations.

  3. Global analysis of river systems: from Earth system controls to Anthropocene syndromes.

    PubMed Central

    Meybeck, Michel

    2003-01-01

    Continental aquatic systems from rivers to the coastal zone are considered within two perspectives: (i) as a major link between the atmosphere, pedosphere, biosphere and oceans within the Earth system with its Holocene dynamics, and (ii) as water and aquatic biota resources progressively used and transformed by humans. Human pressures have now reached a state where the continental aquatic systems can no longer be considered as being controlled by only Earth system processes, thus defining a new era, the Anthropocene. Riverine changes, now observed at the global scale, are described through a first set of syndromes (flood regulation, fragmentation, sediment imbalance, neo-arheism, salinization, chemical contamination, acidification, eutrophication and microbial contamination) with their related causes and symptoms. These syndromes have direct influences on water uses, either positive or negative. They also modify some Earth system key functions such as sediment, water, nutrient and carbon balances, greenhouse gas emissions and aquatic biodiversity. Evolution of river syndromes over the past 2000 years is complex: it depends upon the stages of regional human development and on natural conditions, as illustrated here for the chemical contamination syndrome. River damming, eutrophication and generalized decrease of river flow due to irrigation are some of the other global features of river changes. Future management of river systems should also consider these long-term impacts on the Earth system. PMID:14728790

  4. Water-quality and algal conditions in the North Umpqua River basin, Oregon, 1992-95, and indications for resource management

    USGS Publications Warehouse

    Anderson, Chauncey W.; Carpenter, Kurt D.

    1998-01-01

    Water quality in the Wild and Scenic reach is dominated by water released from the hydroelectric project area during summer. Effects of the hydroelectric project include seasonal control of streamflow, water temperature, and phosphorus concentrations, and the possible release of low but ecologically important concentrations of organic nitrogen. A review of available data and literature suggests that the reservoirs can increase the interception of sediments and large organic debris, and promote their conversion into fine-grained particulate and dissolved organic matter for downstream transport. These effects could be compounded by the effects of forestry in the basin, including alteration of hydrologic cycles, changes in sediment and nutrient runoff, reductions of the transport of large woody debris, and degradation of habitat quality. It is hypothesized that, in the North Umpqua River, these processes have induced a fundamental shift in the river’s food web, from a detritus-based system to a system with a 2 higher emphasis on algal production. Confirmation of these changes and their effects on higher trophic levels are needed to properly manage the aquatic resources for all designated beneficial uses in the basin.

  5. 2. OVERVIEW OF MAINTENANCE ROAD AND FOURTH FLUME ABOVE SAR1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERVIEW OF MAINTENANCE ROAD AND FOURTH FLUME ABOVE SAR-1 FOREBAY, HIGH ABOVE SANTA ANA RIVER BED, LOOKING SOUTHWEST. - Santa Ana River Hydroelectric System, Flumes & Tunnels below Sandbox, Redlands, San Bernardino County, CA

  6. 76 FR 72196 - CRD Hydroelectric LLC; Western Minnesota Municipal Power Agency; Notice of Application for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... Hydroelectric LLC; Western Minnesota Municipal Power Agency; Notice of Application for Transfer of License, and Soliciting Comments and Motions To Intervene On October 14, 2011, CRD Hydroelectric LLC (transferor) and Western Minnesota Municipal Power Agency (transferee) filed an application for transfer of license for the...

  7. Health evaluation indicator system for urban landscape rivers, case study of the Bailianjing River in Shanghai

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Yue; Yang, Haizhen; Lu, Zhibo; Xu, Xiaotian

    2010-11-01

    The River Bailianjing is an iconic landscape feature known to all residents in Pudong area and running through the Shanghai Expo 2010 Park. The river and its basin was a complex living ecosystem which supports a unique variety of flora and fauna several decades ago. However, as a result of unsuccessful pollution source control, sewage and first flow of the storm water is directly coming into the river in some catchment. The water quality of the river is seriously organically polluted now. The typical organic pollutants are COD, NH3-N, TN and TP, which cause the extinction of the water plants and aquatic. Furthermore, the artificial hard river banks isolate the river course and the land, which damaged the whole ecological system totally. The nature of the River Bailianjing and its history has resulted in many government departments and authorities and non government organizations having jurisdiction and/or an interest in the river's management. As a new tool to improve river management, the river health assessment has become the major focus of ecological and environmental science. Consequently, research on river health evaluation and its development on river management are of great theoretical and practical significance. In order to evaluate the healthy status of the River Bailianjing and prepare comprehensive scientific background data for the integrated river ecological rehabilitation planning, the health evaluation indicator system for River Bailianjing is brought forward. The indicator system has three levels: the first is target layer; the second is criteria layer, including five fields: water quality characteristics, hydrology characteristics, river morphology, biological characteristics and river scenic beauty; the third is an index layer, a total of 15 specific indicators included. Fuzzy AHP method is used to evaluate the target river's health status, and five grades are set up to describe it: healthy, sub health, marginal, unhealthy and pathological. The

  8. Flood trends and river engineering on the Mississippi River system

    USGS Publications Warehouse

    Pinter, N.; Jemberie, A.A.; Remo, J.W.F.; Heine, R.A.; Ickes, B.S.

    2008-01-01

    Along >4000 km of the Mississippi River system, we document that climate, land-use change, and river engineering have contributed to statistically significant increases in flooding over the past 100-150 years. Trends were tested using a database of >8 million hydrological measurements. A geospatial database of historical engineering construction was used to quantify the response of flood levels to each unit of engineering infrastructure. Significant climate- and/or land use-driven increases in flow were detected, but the largest and most pervasive contributors to increased flooding on the Mississippi River system were wing dikes and related navigational structures, followed by progressive levee construction. In the area of the 2008 Upper Mississippi flood, for example, about 2 m of the flood crest is linked to navigational and flood-control engineering. Systemwide, large increases in flood levels were documented at locations and at times of wing-dike and levee construction. Copyright 2008 by the American Geophysical Union.

  9. Trading river services: optimizing dam decisions at the basin scale to improve socio-ecological resilience

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Gold, A.; Uchida, E.; McGreavy, B.; Smith, S. M.; Wilson, K.; Blachly, B.; Newcomb, A.; Hart, D.; Gardner, K.

    2017-12-01

    Dam removal has become a cornerstone of environmental restoration practice in the United States. One outcome of dam removal that has received positive attention is restored access to historic habitat for sea-run fisheries, providing a crucial gain in ecosystem resilience. But dams also provide stakeholders with valuable services, and uncertain socio-ecological outcomes can arise if there is not careful consideration of the basin scale trade offs caused by dam removal. In addition to fisheries, dam removals can significantly affect landscape nutrient flux, municipal water storage, recreational use of lakes and rivers, property values, hydroelectricity generation, the cultural meaning of dams, and many other river-based ecosystem services. We use a production possibility frontiers approach to explore dam decision scenarios and opportunities for trading between ecosystem services that are positively or negatively affected by dam removal in New England. Scenarios that provide efficient trade off potentials are identified using a multiobjective genetic algorithm. Our results suggest that for many river systems, there is a significant potential to increase the value of fisheries and other ecosystem services with minimal dam removals, and further increases are possible by including decisions related to dam operations and physical modifications. Run-of-river dams located near the head of tide are often found to be optimal for removal due to low hydroelectric capacity and high impact on fisheries. Conversely, dams with large impoundments near a river's headwaters can be less optimal for dam removal because their value as nitrogen sinks often outweighs the potential value for fisheries. Hydropower capacity is negatively impacted by dam removal but there are opportunities to meet or exceed lost capacity by upgrading preserved hydropower dams. Improving fish passage facilities for dams that are critical for safety or water storage can also reduce impacts on fisheries. Our

  10. Mercury Contamination in an Indicator Fish Species from Andean Amazonian Rivers Affected by Petroleum Extraction.

    PubMed

    Webb, Jena; Coomes, Oliver T; Mainville, Nicolas; Mergler, Donna

    2015-09-01

    Elevated mercury (Hg) concentrations in fish from Amazonia have been associated with gold-mining, hydroelectric dams and deforestation but few studies consider the role of petroleum extraction. Hg levels were determined in fish samples collected in three river basins in Ecuador and Peru with contrasting petroleum exploitation and land-use characteristics. The non-migratory, piscivorous species, Hoplias malabaricus, was used as a bioindicator. The rate of Hg increase with body weight for this species was significantly higher on the Corrientes River, near the site of a recent oil spill, than on the other two rivers. In the absence of substantial deforestation and other anthropogenic sources in the Corrientes River basin, this finding suggests that oil contamination in Andean Amazonia may have a significant impact on Hg levels in fish.

  11. 78 FR 48670 - Rivermill Hydroelectric, Inc., New Hampshire Hydro Associates; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Hydroelectric, Inc., New Hampshire Hydro Associates; Notice of Transfer of Exemption August 5, 2013. 1. By letter filed July 19, 2013, Rivermill Hydroelectric, Inc. and New Hampshire Hydro Associates informed the... issued September 21, 1988,\\2\\ has been transferred to New Hampshire Hydro Associates. The project is...

  12. 78 FR 55072 - Sutton Hydroelectric Company, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... Hydroelectric Company, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On March 1, 2013, Sutton Hydroelectric Company, LLC filed an application for a successive preliminary permit, pursuant to section 4(f) of the Federal Power Act...

  13. 75 FR 71102 - White Mountain Hydroelectric Corp.; Notice of Application for Amendment of License, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... Amendment of License. b. Project No.: 11313-019. c. Date Filed: March 31, 2010. d. Applicant: White Mountain Hydroelectric Corp. e. Name of Project: Apthorp Hydroelectric Project. f. Location: The project is located on... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 11313-019] White Mountain...

  14. 51. INTAKE AND POWER HOUSE AREAS, SANTA ANA NO. 1; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. INTAKE AND POWER HOUSE AREAS, SANTA ANA NO. 1; DETAIL MAP OF SANTA ANA NO. 1 AND NO. 2 HYDROELECTRIC PROJECT, EXHIBIT K, APR. 30, 1945. SCE drawing no. 523690 (sheet no. 5; for filing with the Federal Power Commission). - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  15. Digital Earth system based river basin data integration

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Wanqing; Lin, Chao

    2014-12-01

    Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

  16. Morphosedimentary dynamics of the Madeira River in Brazil

    NASA Astrophysics Data System (ADS)

    Bonthius, C.; Latrubesse, E. M.; Abad, J. D.

    2012-12-01

    anabranching reach, are compared, offering insight into the roles of these intrinsic variables in the fluvial system. Sediment samples collected during the field campaign were analyzed for grain size composition. Connections between median grain size (d50), hydraulic variables, and channel morphology are discussed in context of the resulting channel pattern. These analyses also shed light on differences that exist between the Madeira River and other large fluvial systems. Currently endangered by impoundment with hydroelectric projects expected to be fully operational by January of 2013, the Madeira River is a mega-river that faces irreversible change due to human impact. As a result, the collection and analysis of data of current baseline conditions is of timely and necessary importance to assess geomorphologic and hydrologic changes in the fluvial system, model the river's behavior under a variety of natural and anthropogenic conditions, and inform management plans for the Madeira River and Amazon River basins. References Latrubesse, E.M. 2008. Patterns of anabranching channels: the ultimate end-member adjustment of mega-rivers. Geomorphology, 101, pp. 130-145. Latrubesse, E.M., Stevaux, J.C. and Sinha, R. 2005. Tropical Rivers. Geomorphology, 70, pp. 187-206.

  17. Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissell, Gael

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.

  18. 77 FR 41980 - Uniontown Hydro, LLC, Project No. 12958-001-Kentucky and Indiana, Uniontown Hydroelectric Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Uniontown Hydro, LLC, Project No. 12958-001-Kentucky and Indiana, Uniontown Hydroelectric Project; Newburgh Hydro, LLC, Project No. 12962-001-Kentucky and Indiana, Newburgh Hydroelectric Project; Notice of Revised Restricted Service List for a...

  19. 76 FR 25330 - Georgia Power Company; Project No. 485-063-Georgia and Alabama, Bartletts Ferry Hydroelectric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ...-063--Georgia and Alabama, Bartletts Ferry Hydroelectric Project; Notice of Proposed Restricted Service... Ferry Hydroelectric Project. The Programmatic Agreement, when executed by the Commission, the Georgia...., Bin 10221, Atlanta, GA 30308. Elizabeth Ann Brown, Deputy SHPO, Joey Charles, Georgia Power Alabama...

  20. Integrating Disciplines, Sectors, and Societies to Improve the Definition and Implementation of Environmental Flows for Dammed Amazonian Rivers

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Livino, A.; Arias, M. E.; Crouch, T. D.; Anderson, E.; Marques, E.; Dutka-Gianelli, J.

    2017-12-01

    The Amazon River watershed is the world's largest river basin and provides US$30 billion/yr in ecosystem services to local populations, national societies, and humanity at large. The Amazon is also a relatively untapped source of hydroelectricity for Latin America, and construction of >30 large hydroelectric dams and >170 small dams is currently underway. Hydropower development will have a cascade of physical, ecological, and social effects at local to global scales. While Brazil has well-defined environmental impact assessment and mitigation programs, these efforts often fail to integrate data and knowledge across disciplines, sectors, and societies throughout the dam planning process. Resulting failures of science, policy, and management have had widespread environmental, economic, and social consequences, highlighting the need for an improved theoretical and practical framework for understanding the impacts of Amazon dams and guiding improved management that respects the needs and knowledge of diverse set of stakeholders. We present a conceptual framework that links four central goals: 1) connecting research in different disciplines (interdisciplinarity); 2) incorporating new knowledge into decision making (adaptive management); 3) including perspectives and participation of non-academic participants in knowledge generation (transdisciplinarity); and 4) extending the idea of environmental flows ("how much water does a river need?") to better consider human uses and users through the concept of fluvial anthropology ("how much water does a society need?"). We use this framework to identify opportunities for improved integration strategies within the (Brazilian) hydroelectric power plant planning and implementation "lifecycle." We applied this approach to the contentious Belo Monte dam, where compliance with regulatory requirements, including monitoring for environmental flows, exemplifies the opportunity for applying adaptive management, but also highlights an

  1. VIEW OF PELTON WATER WHEEL COMPANY (SAN FRANCISCO) TURBINE: SPEED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PELTON WATER WHEEL COMPANY (SAN FRANCISCO) TURBINE: SPEED 225 RPM, 17,500 HP. PHOTO BY JET LOWE, HAER, 1995. (Note: the dark hole in the concrete column to the left is from a tear in the negative.) - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  2. Solomon Gulch hydroelectric project takes shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The planning and current construction activities for the Solomon Gulch hydroelectric plant near Valdez, Alaska which is scheduled for dam completion in 1980 and power plant operation in 1981 are discussed. The main dam will be 115 ft high and 360 ft wide. The two paralled 48-in. dia penstocks will be constructed from surplus pipe left over from the Alaska pipeline project. Construction on the 12 MW plant began in October 1978. (LCL)

  3. 76 FR 51961 - Brown Bear Power, LLC, Topsham Hydroelectric Generating Facility Trust No. 1, Topsham Hydro...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... On August 3, 2011, Brown Bear Power, LLC, Topsham Hydroelectric Generating Facility (Trust No. 1... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 4784-082] Brown Bear Power, LLC, Topsham Hydroelectric Generating Facility Trust No. 1, Topsham Hydro Partners Limited Partnership...

  4. 76 FR 81929 - South Carolina Public Service Authority; Notice of Workshop for Santee Cooper Hydroelectric Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 199-205] South Carolina Public Service Authority; Notice of Workshop for Santee Cooper Hydroelectric Project On May 26 and...) and the South Carolina Public Service Authority (SCPSA), licensee for the Santee-Cooper Hydroelectric...

  5. 12. TYPICAL CONCRETELINED CANAL/FLUME TRANSITION (LOCATED JUST WEST OF HIGHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. TYPICAL CONCRETE-LINED CANAL/FLUME TRANSITION (LOCATED JUST WEST OF HIGHWAY 190 CROSSOVER). WATER CONVEYANCE SYSTEM IS COMPRISED OF MULTIPLE INTERSET CONCRETE-LINED CANAL AND FLUME SECTIONS. VIEW TO WEST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  6. Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan for Fiscal Year 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration; Northwest Power Planning Council; Columbia Basin Fish and Wildlife Authority

    1994-02-01

    This document is part of Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The Fiscal Year 1994 (FY 1994) Annual Implementation Work Plan (AIWP) presents Bonneville Power Administration`s (BPA`s) plan for implementation of the Columbia River Basin Fish and Wildlife Program (Program). The purpose of the Program is to guide BPA and other federal agencies in carrying out their responsibilities to protect, mitigate, and enhance fish and wildlife in the Columbia River Basin. Phase I began the work of salmonmore » recovery with certain fast-track measures completed in August 1991. Phase II dealt with Snake and Columbia river flow and salmon harvest and was completed in December 1991. Phase III dealt with system-wide habitat and salmon production issues and was completed in September 1992. Phase IV planning, focusing on resident fish and wildlife, began in August 1993, and was finished and adopted in November 1993. This report provides summaries of the ongoing and new projects for FY 1994 within the areas of juvenile migration, adult migration, salmon harvest, production and habitat, coordinated implementation, monitoring and evaluation, resident fish, and wildlife.« less

  7. Carbon pathways in the Seine river system

    NASA Astrophysics Data System (ADS)

    Marescaux, Audrey; Garnier, Josette; Thieu, Vincent

    2016-04-01

    Many papers have recently suggested that the anthropogenic perturbations of the carbon cycle have led to a significant increase in carbon export from terrestrial ecosystems to inland waters. The quantification of the carbon cascade (including fate of CO2 emissions) in highly anthropized river systems is thus essential to understand the response of aquatic systems. The Seine Basin where Paris and its environs represent 2/3 of its population, and agriculture is particularly intensive, is a eutrophic system. The main aim of this research is to understand and quantify how an excess of anthropogenic nutrients entering the Seine River system may locally enhance primary production, C sequestration, C respiration and CO2 emissions. The development of a new CO2 module in the pre-existing biogeochemical Riverstrahler model (Billen et al., 2007) should enable a refined calculation of the carbon budget. Besides calculation of the Respiration and Production activities along the entire river continuum, it will directly associate CO2 emissions. The CO2 modelling results will be confronted to (i) direct (in-situ) measurements with a non-dispersive infrared gas analyzer and (ii) indirect measurements based on total alkalinity, carbonate and pH along the Seine river system during the last decades, and (iii) calculations of a C metabolism budget. Billen, G., Garnier, J., Némery, J., Sebilo, M., Sferratore, A., Barles, S., Benoit P., Benoît, M. (2007). A long-term view of nutrient transfers through the Seine river continuum. Science of the Total Environment, 375(1-3), 80-97. http://doi.org/10.1016/j.scitotenv.2006.12.005

  8. 76 FR 67174 - Arkansas Electric Cooperative Corp., Riverbank Hydro No. 9 LLC, Solia 3 Hydroelectric LLC, Lock...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... Hydroelectric LLC, Lock Hydro Friends Fund XLV, FFP Project 2 LLC; Notice of Competing Preliminary Permit... (Riverbank) and Solia 3 Hydroelectric LLC (Solia) and on May 3, 2011, Lock Hydro Friends Fund XLV (Lock Hydro...

  9. 75 FR 30805 - Gibson Dam Hydroelectric Company, LLC; Notice Soliciting Comments, and Final Terms and Conditions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12478-003] Gibson Dam... of Application: Major Project--Existing Dam. b. Project No.: P-12478-003. c. Date filed: August 28, 2009. d. Applicant: Gibson Dam Hydroelectric Company, LLC. e. Name of Project: Gibson Dam Hydroelectric...

  10. 75 FR 51258 - Boott Hydropower, Inc.; Eldred L Field Hydroelectric Facility Trust; Notice of Application for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2790-055] Boott Hydropower... Hydropower, Inc. and Eldred L Field Hydroelectric Facility Trust. e. Name of Project: Lowell Hydroelectric... Affairs Coordinator, Boott Hydropower, Inc., One Tech Drive, Suite 220, Andover, MA 01810. Tel: (978) 681...

  11. Large-scale flow experiments for managing river systems

    USGS Publications Warehouse

    Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.

  12. 3. LOOKING NORTHEAST ACROSS DAM TO GATE CONTROLS, CABLE CAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. LOOKING NORTHEAST ACROSS DAM TO GATE CONTROLS, CABLE CAR ANCHORING, AND, AT RIGHT, HEAD WORKS AT PORTAL OF TUNNEL ZERO FOR DIVERSION OF WATER TO BEAR CREEK/SANTA ANA RIVER CONFLUENCE POOL. - Santa Ana River Hydroelectric System, Santa Ana River Diversion Dam, Redlands, San Bernardino County, CA

  13. EXTERNAL OVERVIEW OF WHEELROOM (TURBINE ROOM) WITH PENSTOCK FOR #1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERNAL OVER-VIEW OF WHEELROOM (TURBINE ROOM) WITH PENSTOCK FOR #1 AND #2 GENERATORS AND #2 EXCITER, VIEWED WEST TO EAST. TURBINES ARE HORIZONTAL TWIN FRANCIS TURBINES, MANUFACTURED BY WELLMAN-SEAVER MORGAN CO. IN 1911. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  14. 78 FR 5798 - Ceresco Hydroelectric Dam, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... Hydroelectric Dam, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On October 19, 2012, Ceresco Hydroelectric Dam, LLC... feet National Geodetic Vertical Datum; (2) a dam comprised of (a) a 126- foot-wide, 13-foot-high...

  15. 1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, AND FROM SANTA ANA RIVER THROUGH TUNNEL #0 AT RIGHT. VIEW TO NORTHEAST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  16. Updated estimates of long-term average dissolved-solids loading in streams and rivers of the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating over 4.5 million acres of farmland, and annually generating about 12 billion kilowatt hours of hydroelectric power. The Upper Colorado River Basin, part of the Colorado River Basin, encompasses more than 110,000 mi2 and is the source of much of more than 9 million tons of dissolved solids that annually flows past the Hoover Dam. High dissolved-solids concentrations in the river are the cause of substantial economic damages to users, primarily in reduced agricultural crop yields and corrosion, with damages estimated to be greater than 300 million dollars annually. In 1974, the Colorado River Basin Salinity Control Act created the Colorado River Basin Salinity Control Program to investigate and implement a broad range of salinity control measures. A 2009 study by the U.S. Geological Survey, supported by the Salinity Control Program, used the Spatially Referenced Regressions on Watershed Attributes surface-water quality model to examine dissolved-solids supply and transport within the Upper Colorado River Basin. Dissolved-solids loads developed for 218 monitoring sites were used to calibrate the 2009 Upper Colorado River Basin Spatially Referenced Regressions on Watershed Attributes dissolved-solids model. This study updates and develops new dissolved-solids loading estimates for 323 Upper Colorado River Basin monitoring sites using streamflow and dissolved-solids concentration data through 2012, to support a planned Spatially Referenced Regressions on Watershed Attributes modeling effort that will investigate the contributions to dissolved-solids loads from irrigation and rangeland practices.

  17. 78 FR 69663 - Jonathan and Jayne Chase Troy Mills Hydroelectric Inc.; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... Jayne Chase Troy Mills Hydroelectric Inc.; Notice of Transfer of Exemption 1. By letter filed October 15, 2013, Jonathan Chase informed the Commission that the exemption from licensing for the Troy Hydroelectric Project, FERC No. 13381, originally issued December 2, 2011,\\1\\ has been transferred to Troy Mills...

  18. Probabilistic streamflow forecasting for hydroelectricity production: A comparison of two non-parametric system identification algorithms

    NASA Astrophysics Data System (ADS)

    Pande, Saket; Sharma, Ashish

    2014-05-01

    This study is motivated by the need to robustly specify, identify, and forecast runoff generation processes for hydroelectricity production. It atleast requires the identification of significant predictors of runoff generation and the influence of each such significant predictor on runoff response. To this end, we compare two non-parametric algorithms of predictor subset selection. One is based on information theory that assesses predictor significance (and hence selection) based on Partial Information (PI) rationale of Sharma and Mehrotra (2014). The other algorithm is based on a frequentist approach that uses bounds on probability of error concept of Pande (2005), assesses all possible predictor subsets on-the-go and converges to a predictor subset in an computationally efficient manner. Both the algorithms approximate the underlying system by locally constant functions and select predictor subsets corresponding to these functions. The performance of the two algorithms is compared on a set of synthetic case studies as well as a real world case study of inflow forecasting. References: Sharma, A., and R. Mehrotra (2014), An information theoretic alternative to model a natural system using observational information alone, Water Resources Research, 49, doi:10.1002/2013WR013845. Pande, S. (2005), Generalized local learning in water resource management, PhD dissertation, Utah State University, UT-USA, 148p.

  19. A geomorphological characterisation of river systems in South Africa: A case study of the Sabie River

    NASA Astrophysics Data System (ADS)

    Eze, Peter N.; Knight, Jasper

    2018-06-01

    Fluvial geomorphology affects river character, behaviour, evolution, trajectory of change and recovery potential, and as such affects biophysical interactions within a catchment. Water bodies in South Africa, in common with many other water-stressed parts of the world, are generally under threat due to increasing natural and anthropogenic influences including aridity, siltation and pollution, as well as climate and environmental change. This study reports on a case study to characterise the geomorphology of different river systems in South Africa, with the aim of better understanding their properties, controls, and implications for biophysical interactions including water quality, biodiversity (aquatic and riparian), and human activity within the catchment. The approach adopted is based on the River Styles® framework (RSF), a geomorphology-based approach developed for rivers in New Zealand and Australia, but applied here for the first time to South Africa. Based on analysis of remote sensing imagery, SRTM-2 digital topographic data and field observations on sites through the entire river system, six geomorphic elements were identified along the Sabie River, northeast South Africa (gorge, bedrock-forced meander, low-moderate sinuosity planform controlled sand bed, meandering sand bed, low sinuosity fine grained sand bed, and floodouts), using the RSF classification scheme and based on the RSF procedural tree of Brierley and Fryirs (2005). Previous geomorphological studies along the Sabie River have shown that different reaches respond differently to episodic floods; we use these data to link river geomorphological character (as defined by the RSF) to the hydrodynamic conditions and processes giving rise to such character. This RSF approach can be used to develop a new management approach for river systems that considers their functional biophysical behaviour within individual reaches, rather than considering them as homogeneous and uniform systems.

  20. National Hydroelectric Power Resources Study: Regional Assessment: Volume XXII: Western Systems Coordinating Council, (WSCC). Volume 22

    DTIC Science & Technology

    1981-09-01

    respectively; the Klamath Mountains of Oregon and California; the Basin and Ranges of Nevada, the Teton Range of Wyoming; the Uinta Mountains of Utah...approximately 292,000 square miles, includes all of the Columbia River system in the United States and all other river basins in Idaho, Oregon, and...Central Valley and the Los Angeles Basin of California. The western valleys of the Pacific Northwest, the Denver-Cheyenne area along the Rockies’ eastern

  1. Kyiv Small Rivers in Metropolis Water Objects System

    NASA Astrophysics Data System (ADS)

    Krelshteyn, P.; Dubnytska, M.

    2017-12-01

    The article answers the question, what really are the small underground rivers with artificial watercourses: water bodies or city engineering infrastructure objects? The place of such rivers in metropolis water objects system is identified. The ecological state and the degree of urbanization of small rivers, as well as the dynamics of change in these indicators are analysed on the Kiev city example with the help of water objects cadastre. It was found that the registration of small rivers in Kyiv city is not conducted, and the summary information on such water objects is absent and is not taken into account when making managerial decisions at the urban level. To solve this problem, we propose to create some water bodies accounting system (water cadastre).

  2. 78 FR 26358 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With the Bureau of Land Management a... of the Meeting: Commission staff will meet with the staff of the Bureau of Land Management to improve... Policy and Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage Hydroelectric...

  3. Science partnership between U.S. Geological Survey and the Lower Elwha Klallam Tribe—Understanding the Elwha River Dam Removal Project

    USGS Publications Warehouse

    Duda, Jeffrey J.; Beirne, Matt M.; Warrick, Jonathan A.; Magirl, Christopher S.

    2018-04-16

    After nearly a century of producing power, two large hydroelectric dams on the Elwha River in Washington State were removed during 2011 to 2014 to restore the river ecosystem and recover imperiled salmon populations. Roughly two-thirds of the 21 million cubic meters of sediment—enough to fill nearly 2 million dump trucks—contained behind the dams was released downstream, which restored natural processes and initiated important changes to the river, estuarine, and marine ecosystems. A multidisciplinary team of scientists from the Lower Elwha Klallam Tribe, academia, non-governmental organizations, Federal and state agencies, and the U.S. Geological Survey collected key data before, during, and after dam removal to understand the outcomes of this historic project on the Elwha River ecosystem.

  4. Mathematical Modeling in Systems for Operational Evaluation of the Stress-Strain State of the Arch-Gravity Dam at the Sayano-Shushenskaya Hydroelectric Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellendir, E. N.; Gordon, L. A., E-mail: lev-gordon@mail.ru; Khrapkov, A. A.

    Current studies of the stress-strain state of the dam at the Sayano-Shushenskaya Hydroelectric Power Plant at VNIIG based on mathematical modeling including full scale and experimental data are described. Applications and programs intended for automatic operational evaluation of the stress-strain state of the dam for optimizing control of the upper race level in the course of the annual filling-drawdown cycle and during seismic events are examined. Improvements in systems for monitoring the stress-strain state of concrete dams are proposed.

  5. Taking the pulse of a river system: first 20 years

    USGS Publications Warehouse

    Leake, Linda; Johnson, Barry

    2006-01-01

    Your doctor would not base decisions for your health care today on one physical examination when you were age three! You would reasonably expect decisions to be based on records from over your lifetime. Likewise, those responsible for monitoring the health of the Upper Mississippi River System want a more comprehensive way to diagnose problems and find treatment options. To begin developing a comprehensive view of the river, the five neighboring states of the Upper Mississippi River System and several Federal agencies formed a partnership in 1986 to monitor river conditions and long-term trends in the Upper Mississippi and Illinois Rivers.

  6. Origin of the Colorado River experimental flood in Grand Canyon

    USGS Publications Warehouse

    Andrews, E.D.; Pizzi, L.A.

    2000-01-01

    The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of ~17 x 109 m3 year -1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of approximately 17??109 m3 year-1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the

  7. 43. FLOOR PLAN OF POWER HOUSE, EXHIBIT L, SANTA ANA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. FLOOR PLAN OF POWER HOUSE, EXHIBIT L, SANTA ANA RIVER NO. 2 PROJECT, APR. 30, 1945. SCE drawing no. 523643 (sheet no. 14; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  8. 55. CROSS SECTION OF POWER HOUSE, EXHIBIT L, SANTA ANA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. CROSS SECTION OF POWER HOUSE, EXHIBIT L, SANTA ANA RIVER NO. 1 PROJECT, APR. 30, 1945. SCE drawing no. 523199 (sheet no. 9, for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  9. Guidelines for conducting Smolt survival studies in the Columbia River

    USGS Publications Warehouse

    Giorgi,; Skalski,; Pevin,; Smith,; Langeslay,; Counihan, Timothy D.; Perry, Russell W.; Bickford, Shane

    2010-01-01

    For more than a decade, investigators from different research groups in the Pacific Northwest have been using electronic tags to estimate survival of salmonid smolts as they migrate seaward past hydroelectric dams and through impoundments on the Snake and Columbia Rivers. Over the years, they have refined both analytical and field methods associated with such studies. In this collaborative paper, they synthesize years of experience to formulate a set of guidelines that may assist others with the design and execution of survival studies involving smolts during their migratory phase.

  10. Nonnative Fishes in the Upper Mississippi River System

    USGS Publications Warehouse

    Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.

    2009-01-01

    The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for

  11. Long-term changes in river system hydrology in Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwen; Wurbs, Ralph

    2018-06-01

    Climate change and human actives are recognized as a topical issue that change long-term water budget, flow-frequency, and storage-frequency characteristics of different river systems. Texas is characterized by extreme hydrologic variability both spatially and temporally. Meanwhile, population and economic growth and accompanying water resources development projects have greatly impacted river flows throughout Texas. The relative effects of climate change, water resources development, water use, and other factors on long-term changes in river flow, reservoir storage, evaporation, water use, and other components of the water budgets of different river basins of Texas have been simulated in this research using the monthly version of the Water Rights Analysis Package (WRAP) modelling system with input databases sets from the Texas Commission on Environmental Quality (TCEQ) and Texas Water Development Board (TWDB). The results show that long-term changes are minimal from analysis monthly precipitation depths. Evaporation rates vary greatly seasonally and for much of the state appear to have a gradually upward trend. River/reservoir system water budgets and river flow characteristics have changed significantly during the past 75 years in response to water resources development and use.

  12. The Platte River Hydrologic Observatory (PRIVHO)

    NASA Astrophysics Data System (ADS)

    Harvey, F.; Ramirez, J. A.; Thurow, T. L.

    2004-12-01

    The Platte River Hydrologic Observatory (PRIVHO), located within the Platte River Basin, of the U.S. central Great Plains, affords excellent interdisciplinary and multi-disciplinary research opportunities for scientists to examine the impacts of scaling, to investigate forcing feedbacks and coupling of various interconnected hydrological, geological, climatological and biological systems, and to test the applicability and limits of prediction in keeping with all five of CUAHSI's priority science criteria; linking hydrologic and biogeochemical cycles, sustainability of water resources, hydrologic and ecosystem interactions, hydrologic extremes, and fate and transport of contaminants. In addition, PRIVHO is uniquely positioned to investigate many human dimension questions such as those related to interstate and intrastate conflicts over water use, evolution of water policy and law in the wake of advancing science, societal and economic changes that are driven by water use, availability and management, and human impacts on climate and land use changes. The Platte River traverses several important environmental gradients, including temperature and precipitation-to-evaporation ratio, is underlain by the High Plains Aquifer under much of its reach, crosses a number of terrestrial ecoregions, and in central Nebraska, serves as a vital link in the Central Flyway, providing habitat for 300 species of migratory birds and many threatened or endangered species. The Platte River flows through metropolitan, urban and agricultural settings and is impacted by both point and non-point pollution. The Platte River is one of the most over-appropriated rivers in the country with 15 major dams, hundreds of small reservoirs, and thousands of irrigation wells. The river provides municipal and industrial water supplies for about 3.5 million people, irrigation water for millions of acres of farmland, and generates millions of dollars of hydroelectric power. PRIVHO will allow researchers to

  13. Influence of Forest Disturbance on Hydrologic Extremes in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Middleton, R. S.; McDowell, N. G.; Xu, C.; Wilson, C. J.

    2015-12-01

    The Colorado River is one of the most important freshwater rivers in the United States: it provides water supply to more than 30 million people, irrigation to 5.7 million acres of cropland, and produces over 8 billion kilowatt hours of hydroelectric power each year. Our study focuses on changes to hydrological extremes and threshold responses across the Colorado River basin due to forest fires, infestations, and stress-induced tree mortality using a scenario-based approach to estimate forest cover disturbance. Scenarios include static vegetation reductions and dynamic reductions in forest compositions based on three CMIP5 global climate models and one emission scenario (1950-2099). For headwater systems, large intra-year variability exists, indicating the influence of climate on these snowmelt driven basins. Strong seasonality in flow responses are also noted; in the Piedra River higher runoff occurs during freshet under a no-forest condition, with the greatest changes observed for maximum streamflow. Conversely, during the recessional period, flows are lower in scenarios with reduced forest compositions. Low-flows appear to be affected in some basins but not others; for example small headwater systems demonstrate higher low-flows with increased disturbance. Global Climate Model scenarios indicate a range of responses in these basins, characterized by lower peak streamflow but with higher winter flows. This response is influenced by shifts in water, and energy balances associated with a combined response of changing climate and forest cover compositions. Results also clearly show how changes in extreme events are forced by shifts in major water balance parameters (runoff, evapotranspiration, snow water equivalent, and soil moisture) from headwater basins spanning a range of hydrological regimes and ecological environments across the Colorado.

  14. Climate Change Impacts on Stream Temperatures in the Columbia River System

    NASA Astrophysics Data System (ADS)

    Yearsley, J. R.; Crozier, L.

    2014-12-01

    The Columbia River system, a drainage basin of 668,000 sq. km that includes the Columbia and Snake River rivers, supports a large population of anadromous, cold-water fishes. 13 species of these fishes are listed under the Endangered Species Act and are vulnerable to impacts of climate change. Bioenergetics models for these species have been developed by the federal agencies that operate the Federal Columbia River Power System. These models simulate the impacts on anadromous fishes as they move through the power system both upstream as adults and downstream as juveniles. Water temperature simulations required for input to the bioenergetics models were made for two different segments of the Columbia River system; one being the portions from the Canadian border to Bonneville Dam and the Snake River from Brownlee Dam in Idaho to its confluence and the other, the Salmon River basin in Idaho. Simulations were performed for the period 1928-1998 with the semi-Lagrangian stream temperature model, RBM, for existing conditions and for a two 2040 climate scenarios, a cool, dry condition (ECHO_g model) and a warm, wet condition (MIROC_3.2 model). Natural flows were simulated with the variable infiltration capacity model, VIC, and modified for Columbia River project operations using HYDSIM, a hydro system regulation model that simulates month-to-month operation of the Pacific Northwest hydropower system.

  15. 33 CFR Appendix - List of FPC Standard Articles Forms Used in Permits and Licenses for Hydroelectric Projects

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Forms Used in Permits and Licenses for Hydroelectric Projects Navigation and Navigable Waters CORPS OF... hydropower projects under the Federal Power Act (ER 1140-2-4). Pt. 221, List List of FPC Standard Articles Forms Used in Permits and Licenses for Hydroelectric Projects The following FPC standard articles Forms...

  16. 33 CFR Appendix - List of FPC Standard Articles Forms Used in Permits and Licenses for Hydroelectric Projects

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Forms Used in Permits and Licenses for Hydroelectric Projects Navigation and Navigable Waters CORPS OF... hydropower projects under the Federal Power Act (ER 1140-2-4). Pt. 221, List List of FPC Standard Articles Forms Used in Permits and Licenses for Hydroelectric Projects The following FPC standard articles Forms...

  17. Investigation of Sediment Pathways and Concealed Sedimentological Features in Hidden River Cave, Kentucky

    NASA Astrophysics Data System (ADS)

    Feist, S.; Maclachlan, J. C.; Reinhardt, E. G.; McNeill-Jewer, C.; Eyles, C.

    2016-12-01

    Hidden River Cave is part of a cave system hydrogeologically related to Mammoth Cave in Kentucky and is a multi-level active cave system with 25km of mapped passages. Upper levels experience flow during flood events and lower levels have continuously flowing water. Improper industrial and domestic waste disposal and poor understanding of local hydrogeology lead to contamination of Hidden River Cave in the early 1940s. Previously used for hydroelectric power generation and as a source of potable water the cave was closed to the public for almost 50 years. A new sewage treatment plant and remediation efforts since 1989 have improved the cave system's health. This project focuses on sedimentological studies in the Hidden River Cave system. Water and sediment transport in the cave are being investigated using sediment cores, surface sediment samples and water level data. An Itrax core scanner is used to analyze sediment cores for elemental concentrations, magnetic susceptibility, radiography, and high resolution photography. Horizons of metal concentrations in the core allow correlation of sedimentation events in the cave system. Thecamoebian (testate amoebae) microfossils identified in surface samples allow for further constraint of sediment sources, sedimentation rates, and paleoclimatic analysis. Dive recorders monitor water levels, providing data to further understand the movement of sediment through the cave system. A general time constraint on the sediment's age is based on the presence of microplastic in the surface samples and sediment cores, and data from radiocarbon and lead-210 dating. The integration of various sedimentological data allows for better understanding of sedimentation processes and their record of paleoenvironmental change in the cave system. Sediment studies and methodologies from this project can be applied to other karst systems, and have important applications for communities living on karst landscapes and their water management policies.

  18. Deposition and simulation of sediment transport in the Lower Susquehanna River reservoir system

    USGS Publications Warehouse

    Hainly, R.A.; Reed, L.A.; Flippo, H.N.; Barton, G.J.

    1995-01-01

    The Susquehanna River drains 27,510 square miles in New York, Pennsylvania, and Maryland and is the largest tributary to the Chesapeake Bay. Three large hydroelectric dams are located on the river, Safe Harbor (Lake Clarke) and Holtwood (Lake Aldred) in southern Pennsylvania, and Conowingo (Conowingo Reservoir) in northern Maryland. About 259 million tons of sediment have been deposited in the three reservoirs. Lake Clarke contains about 90.7 million tons of sediment, Lake Aldred contains about 13.6 million tons, and Conowingo Reservoir contains about 155 million tons. An estimated 64.8 million tons of sand, 19.7 million tons of coal, 112 million tons of silt, and 63.3 million tons of clay are deposited in the three reservoirs. Deposition in the reservoirs is variable and ranges from 0 to 30 feet. Chemical analyses of sediment core samples indicate that the three reservoirs combined contain about 814,000 tons of organic nitrogen, 98,900 tons of ammonia as nitrogen, 226,000 tons of phosphorus, 5,610,000 1tons of iron, 2,250,000 tons of aluminum, and about 409,000 tons of manganese. Historical data indicate that Lake Clarke and Lake Aldred have reached equilibrium, and that they no longer store sediment. A comparison of cross-sectional data from Lake Clarke and Lake Aldred with data from Conowingo Reservoir indicates that Conowingo Reservoir will reach equilibrium within the next 20 to 30 years. As the Conowingo Reservoir fills with sediment and approaches equilibrium, the amount of sediment transported to the Chesapeake Bay will increase. The most notable increases will take place when very high flows scour the deposited sediment. Sediment transport through the reservoir system was simulated with the U.S. Army Corps of Engineers' HEC-6 computer model. The model was calibrated with monthly sediment loads for calendar year 1987. Calibration runs with options set for maximum trap efficiency and a "natural" particle-size distribution resulted in an overall computed trap

  19. Using place-based curricula to teach about restoring river systems

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.; Collins, B. D.; Updegrave, C.; Montgomery, D. R.; Colonnese, T. G.; Sheikh, A. J.; Haynie, K.; Johnson, V.; Data Sets; Inquiry in Environmental Restoration Studies (Nsf Geo Project 0808076)

    2010-12-01

    Zalles, Daniel R. (Center for Technology in Learning, SRI International) Collins, Brian D., Updegrave, Cynthia, Montgomery, David R., Colonnese, Thomas G., Sheikh, Amir J., (University of Washington) Haynie, Kathleen., Johnson, Vonda. (Haynie Research and Evaluation) A collaborative team from the University of Washington and SRI International is developing place based curricula about complex river systems. This NSF-funded project, known as Data Sets and Inquiry in Environmental Restoration Studies (DIGERS), is producing and piloting curricula on river systems of the Puget Sound over a two-year period at the University of Washington and at a public high school on an Indian reservation. At the high school, DIGERS is developing for a population of Native American students a geoscience curriculum that is embedded in their culture and bio-physical environment. At the UW, the goal is to teach about rivers as integrated physical, biological, and human systems that are products of their unique geological and human histories. The curriculum addresses the challenge of teaching general principles about rivers in a way that develops students’ capability to develop a more sophisticated understanding of the interplay of attributes that characterize a particular river at a point in time. Undergraduate students also learn about the challenges of trying to "restore" local river environments to some past condition, including the pitfall of over-generalizing the efficacy of human interventions from one river system to another. For the high school curriculum, a web site is being produced that integrates modules of general information about the focal scientific phenomena (e.g., rivers and floodplains; how human activities influence rivers; salmon habitat) and data and inquiry-related skills (e.g., how to reconstruct historical change) with place based historical and contemporary information about a specific river environment: the Snohomish River watershed. This information consists

  20. Hydroelectric Generating Facilities General Permit (HYDROGP) for Massachusetts & New Hampshire

    EPA Pesticide Factsheets

    Documents, links & contacts for the Notice of Availability of the Final NPDES General Permits (HYDROGP) for Discharges at Hydroelectric Generating Facilities in Massachusetts (MAG360000) and New Hampshire (NHG360000) and Tribal Lands in the State of MA.

  1. Susitna Hydroelectric Project: terrestrial environmental workshop and preliminary simulation model

    USGS Publications Warehouse

    Everitt, Robert R.; Sonntag, Nicholas C.; Auble, Gregory T.; Roelle, James E.; Gazey, William

    1982-01-01

    The technical feasibility, economic viability, and environmental impacts of a hydroelectric development project in the Susitna River Basin are being studied by Acres American, Inc. on behalf of the Alaska Power Authority. As part of these studies, Acres American recently contracted LGL Alaska Research Associates, Inc. to coordinate the terrestrial environmental studies being performed by the Alaska Department of Fish and Game and, as subcontractors to LGL, several University of Alaska research groups. LGL is responsible for further quantifying the potential impacts of the project on terrestrial wildlife and vegetation, and for developing a plan to mitigate adverse impacts on the terrestrial environment. The impact assessment and mitigation plan will be included as part of a license application to the Federal Energy Regulatory Commission (FERC) scheduled for the first quarter of 1983. The quantification of impacts, mitigation planning, and design of future research is being organized using a computer simulation modelling approach. Through a series of workshops attended by researchers, resource managers, and policy-makers, a computer model is being developed and refined for use in the quantification of impacts on terrestrial wildlife and vegetation, and for evaluating different mitigation measures such as habitat enhancement and the designation of replacement lands to be managed by wildlife habitat. This report describes the preliminary model developed at the first workshop held August 23 -27, 1982 in Anchorage.

  2. American shad in the Columbia River

    USGS Publications Warehouse

    Petersen, J.H.; Hinrichsen, R.A.; Gadomski, D.M.; Feil, D.H.; Rondorf, D.W.

    2003-01-01

    American shad Alosa sapidissima from the Hudson River, New York, were introduced into the Sacramento River, California, in 1871 and were first observed in the Columbia River in 1876. American shad returns to the Columbia River increased greatly between 1960 and 1990, and recently 2-4 million adults have been counted per year at Bonneville Dam, Oregon and Washington State (river kilometer 235). The total return of American shad is likely much higher than this dam count. Returning adults migrate as far as 600 km up the Columbia and Snake rivers, passing as many as eight large hydroelectric dams. Spawning occurs primarily in the lower river and in several large reservoirs. A small sample found returning adults were 2-6 years old and about one-third of adults were repeat spawners. Larval American shad are abundant in plankton and in the nearshore zone. Juvenile American shad occur throughout the water column during night, but school near the bottom or inshore during day. Juveniles consume a variety of zooplankton, but cyclopoid copepods were 86% of the diet by mass. Juveniles emigrate from the river from August through December. Annual exploitation of American shad by commercial and recreational fisheries combined is near 9% of the total count at Bonneville Dam. The success of American shad in the Columbia River is likely related to successful passage at dams, good spawning and rearing habitats, and low exploitation. The role of American shad within the aquatic community is poorly understood. We speculate that juveniles could alter the zooplankton community and may supplement the diet of resident predators. Data, however, are lacking or sparse in some areas, and more information is needed on the role of larval and juvenile American shad in the food web, factors limiting adult returns, ocean distribution of adults, and interactions between American shad and endangered or threatened salmonids throughout the river. ?? 2003 by the American Fisheries Society.

  3. Probabilistic Seismic Hazard Analysis of Victoria, British Columbia, Canada: Considering an Active Leech River Fault

    NASA Astrophysics Data System (ADS)

    Kukovica, J.; Molnar, S.; Ghofrani, H.

    2017-12-01

    The Leech River fault is situated on Vancouver Island near the city of Victoria, British Columbia, Canada. The 60km transpressional reverse fault zone runs east to west along the southern tip of Vancouver Island, dividing the lithologic units of Jurassic-Cretaceous Leech River Complex schists to the north and Eocene Metchosin Formation basalts to the south. This fault system poses a considerable hazard due to its proximity to Victoria and 3 major hydroelectric dams. The Canadian seismic hazard model for the 2015 National Building Code of Canada (NBCC) considered the fault system to be inactive. However, recent paleoseismic evidence suggests there to be at least 2 surface-rupturing events to have exceeded a moment magnitude (M) of 6.5 within the last 15,000 years (Morell et al. 2017). We perform a Probabilistic Seismic Hazard Analysis (PSHA) for the city of Victoria with consideration of the Leech River fault as an active source. A PSHA for Victoria which replicates the 2015 NBCC estimates is accomplished to calibrate our PSHA procedure. The same seismic source zones, magnitude recurrence parameters, and Ground Motion Prediction Equations (GMPEs) are used. We replicate the uniform hazard spectrum for a probability of exceedance of 2% in 50 years for a 500 km radial area around Victoria. An active Leech River fault zone is then added; known length and dip. We are determining magnitude recurrence parameters based on a Gutenberg-Richter relationship for the Leech River fault from various catalogues of the recorded seismicity (M 2-3) within the fault's vicinity and the proposed paleoseismic events. We seek to understand whether inclusion of an active Leech River fault source will significantly increase the probabilistic seismic hazard for Victoria. Morell et al. 2017. Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 27, doi: 10.1130/GSATG291A.1

  4. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... license or exemption is filed for a project located at a Government dam, as defined in section 3(10) of...

  5. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... license or exemption is filed for a project located at a Government dam, as defined in section 3(10) of...

  6. VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND LATERAL BRACING, LOOKING SOUTH. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  7. VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND LATERAL BRACING, LOOKING NORTH. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  8. 76 FR 73612 - Lock Hydro Friends Fund XVIII; Upper Hydroelectric LLC; FFP Project 95 LLC; Riverbank Hydro No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14261-000; 14268-000; 14277-000; 14281-000] Lock Hydro Friends Fund XVIII; Upper Hydroelectric LLC; FFP Project 95 LLC... Friends Fund XVIII (Lock Hydro), Upper Hydroelectric LLC (Upper Hydro), Riverbank Hydro No. 25 LLC...

  9. 78 FR 12344 - Wekiva River System Advisory Management Committee Meetings (FY2013)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... River System Advisory Management Committee. DATES: The meetings are scheduled for: April 3, 2013; June 4... meeting will result in decisions and steps that advance the Wekiva River System Advisory Management... Wekiva River System Advisory Management Committee, National Park Service, 5342 Clark Road, PMB 123...

  10. Natural infection by Paramphistomoidea Stiles and Goldberger, 1910 trematodes in wild Marsh Deer (Blastocerus dichotomus Illiger, 1815) from Sérgio Mottas's hydroelectric power station flooding area.

    PubMed

    do Nascimento, Cristiano G; do Nascimento, Adjair A; Mapeli, Elaine B; Tebaldi, José H; Duarte, José M B; Hoppe, Estevam G Lux

    2006-01-01

    Studies on helminthfauna of marsh deer Blastocerus dichotomus Illiger, 1815 are rare, although helminthic diseases are an important cause of mortality in these animals. Fifteen male and female adult marsh deer from Sergio Motta's hydroelectric power station flooding area at Paraná River which died during the capture and quarantine procedures, between 1998 and 1999, were necropsied. Three trematodes species, Paramphistomum cervi, Balanorchis anastrofus and Zygocotyle lunatum, all belonging to superfamily Paramphistomoidea, were identified. The obtained trematodes were identified, counted and their respectives descriptors of infection were determined. All necropsied animals were infected by helminths. Paramphistomum cervi was the most prevalent species, while Zygocotyle lunatum was found in only one animal.

  11. 10. DETAILS OF STEEL FLUME, TYPICAL BENTS AND TRUSSES. EXHIBIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAILS OF STEEL FLUME, TYPICAL BENTS AND TRUSSES. EXHIBIT L, SANTA ANA RIVER NO. 1 PROJECT, APR. 30, 1945. SCE drawing no. 523196 (sheet no. 6; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Flumes & Tunnels below Sandbox, Redlands, San Bernardino County, CA

  12. 9. DETAILS OF STEEL FLUME, TYPICAL CURVES AND TRANSITIONS. EXHIBIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAILS OF STEEL FLUME, TYPICAL CURVES AND TRANSITIONS. EXHIBIT L, SANTA ANA RIVER NO. 1 PROJECT, APR. 30, 1945. SCE drawing no. 523195 (sheet no. 5; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Flumes & Tunnels below Sandbox, Redlands, San Bernardino County, CA

  13. 2. INTAKES, S.A.R. 2 AND KELLER CREEK, EXHIBIT L, SANTA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. INTAKES, S.A.R. 2 AND KELLER CREEK, EXHIBIT L, SANTA ANA RIVER NO. 2 PROJECT, APR. 30, 1945. SCE drawing no. 523639 (sheet no. 10, for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, SAR-2 Intake, Redlands, San Bernardino County, CA

  14. 11. Photocopy of photograph (original copy in Edison collection). Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph (original copy in Edison collection). Photographer and date unknown, although photo taken prior to 1930 reconstruction of Project flumes. VIEW OF ORIGINAL SOUTH FORK OF THE TULE RIVER MIDDLE FORK "BOX" WOOD FLUME BRANCH SHOWING NORTH FORK OF TULE RIVER MIDDLE FORK CROSSING. VIEW TO NORTHWEST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  15. 77 FR 29626 - Application Ready for Environmental Analysis and Soliciting Comments, Recommendations, Terms and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... Hydroelectric, LLC (BOST3). e. Name of Project: Red River Lock & Dam No. 3 Hydroelectric Project. f. Location: The proposed project would be located at the existing U.S. Army Corps of Engineer's (Corps) Red River Lock & Dam No. 3 on the Red River, in Natchitoches Parish near the City of Colfax, Louisiana. The...

  16. 1. RUINED PORTION OF SANTA ANA CANAL INTAKE ALONGSIDE SAR3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. RUINED PORTION OF SANTA ANA CANAL INTAKE ALONGSIDE SAR-3 SYSTEM TUNNEL, JUST TO SOUTH OF SAR-2. VIEW TO SOUTHEAST. - Santa Ana River Hydroelectric System, Abandoned Tunnel, Redlands, San Bernardino County, CA

  17. Deer Creek Dam, Hydroelectric Powerplant, 868 feet/291 degrees from intersection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Deer Creek Dam, Hydroelectric Powerplant, 868 feet/291 degrees from intersection of dam complex access road with U.S. Highway 189, 1,340 feet/352 degrees from the dam spillway overpass, Charleston, Wasatch County, UT

  18. 78 FR 41056 - Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... applications for original licenses for the Red River Lock and Dam No. 5 Hydroelectric Project (FERC Project No. 12758-004), Red River Lock and Dam No. 4 Hydroelectric Project (FERC Project No. 12757- 004), and Red... be located on the Red River in Louisiana. The Lock and Dam No. 5 Project would be located in Bossier...

  19. 50. ROCK DROP AND FISH WHEEL, CONDUIT NO. 1 SPILLWAY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. ROCK DROP AND FISH WHEEL, CONDUIT NO. 1 SPILLWAY, FLUME NO. 17, EXHIBIT L, SANTA ANA RIVER NO. 1 PROJECT, APR. 30, 1945. SCE drawing no. 523192 (sheet no. 2; for filing with the Federal Power Commission). - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  20. Middle Mississippi River decision support system: user's manual

    USGS Publications Warehouse

    Rohweder, Jason J.; Zigler, Steven J.; Fox, Timothy J.; Hulse, Steven N.

    2005-01-01

    This user's manual describes the Middle Mississippi River Decision Support System (MMRDSS) and gives detailed examples on its use. The MMRDSS provides a framework to assist decision makers regarding natural resource issues in the Middle Mississippi River floodplain. The MMRDSS is designed to provide users with a spatially explicit tool for tasks, such as inventorying existing knowledge, developing models to investigate the potential effects of management decisions, generating hypotheses to advance scientific understanding, and developing scientifically defensible studies and monitoring. The MMRDSS also includes advanced tools to assist users in evaluating differences in complexity, connectivity, and structure of aquatic habitats among river reaches. The Environmental Systems Research Institute ArcView 3.x platform was used to create and package the data and tools of the MMRDSS.

  1. 7. OVERVIEW OF FLUME LINE RUNNING ALONG NORTH SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. OVERVIEW OF FLUME LINE RUNNING ALONG NORTH SIDE OF TULE RIVER MIDDLE FORK CANYON TOWARD SIPHON CANYON FROM A POINT APPROXIMATELY ONE QUARTER MILE EAST OF FORBAY. EAST END OF DOUBLE-BARREL SIPHON IS VISIBLE IN THE DISTANCE AT PHOTO RIGHT CENTER BELOW CLOUDS. VIEW TO EAST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  2. General classification handbook for floodplain vegetation in large river systems

    USGS Publications Warehouse

    Dieck, Jennifer J.; Ruhser, Janis; Hoy, Erin E.; Robinson, Larry R.

    2015-01-01

    This handbook describes the General Wetland Vegetation Classification System developed as part of the U.S. Army Corps of Engineers’ Upper Mississippi River Restoration (UMRR) Program, Long Term Resource Monitoring (LTRM) element. The UMRR is a cooperative effort between the U.S. Army Corps of Engineers, U.S. Geological Survey, U.S. Fish and Wildlife Service, and the states of Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The classification system consists of 31 general map classes and has been used to create systemic vegetation data layers throughout the diverse Upper Mississippi River System (UMRS), which includes the commercially navigable reaches of the Mississippi River from Minneapolis, Minnesota, in the north to Cairo, Illinois, in the south, the Illinois River, and navigable portions of the Kaskaskia, Black, St. Croix, and Minnesota Rivers. In addition, this handbook describes the evolution of the General Wetland Vegetation Classification System, discusses the process of creating a vegetation data layer, and describes each of the 31 map classes in detail. The handbook also acts as a pictorial guide to each of the map classes as they may appear in the field, as well as on color-infrared imagery. This version is an update to the original handbook published in 2004.

  3. Susquehanna River Basin Hydrologic Observing System (SRBHOS)

    NASA Astrophysics Data System (ADS)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.

    2004-12-01

    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested

  4. The watershed and river systems management program

    USGS Publications Warehouse

    Markstrom, S.L.; Frevert, D.; Leavesley, G.H.; ,

    2005-01-01

    The Watershed and River System Management Program (WaRSMP), a joint effort between the U.S. Geological Survey (USGS) and the U.S. Bureau of Reclamation (Reclamation), is focused on research and development of decision support systems and their application to achieve an equitable balance among diverse water resource management demands. Considerations include: (1) legal and political constraints; (2) stake holder and consensus-building; (3) sound technical knowledge; (4) flood control, consumptive use, and hydropower; (5) water transfers; (6) irrigation return flows and water quality; (7) recreation; (8) habitat for endangered species; (9) water supply and proration; (10) near-surface groundwater; and (11) water ownership, accounting, and rights. To address the interdisciplinary and multi-stake holder needs of real-time watershed management, WaRSMP has developed a decision support system toolbox. The USGS Object User Interface facilitates the coupling of Reclamation's RiverWare reservoir operations model with the USGS Modular Modeling and Precipitation Runoff Modeling Systems through a central database. This integration is accomplished through the use of Model and Data Management Interfaces. WaRSMP applications include Colorado River Main stem and Gunnison Basin, the Yakima Basin, the Middle Rio Grande Basin, the Truckee-Carson Basin, and the Umatilla Basin.

  5. River Devices to Recover Energy with Advanced Materials (River DREAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, Daniel P.

    2013-07-03

    The purpose of this project is to develop a generator called a Galloping Hydroelectric Energy Extraction Device (GHEED). It uses a galloping prism to convert water flow into linear motion. This motion is converted into electricity via a dielectric elastomer generator (DEG). The galloping mechanism and the DEG are combined to create a system to effectively generate electricity. This project has three research objectives: 1. Oscillator development and design a. Characterize galloping behavior, evaluate control surface shape change on oscillator performance and demonstrate shape change with water flow change. 2. Dielectric Energy Generator (DEG) characterization and modeling a. Characterize andmore » model the performance of the DEG based on oscillator design 3. Galloping Hydroelectric Energy Extraction Device (GHEED) system modeling and integration a. Create numerical models for construction of a system performance model and define operating capabilities for this approach Accomplishing these three objectives will result in the creation of a model that can be used to fully define the operating parameters and performance capabilities of a generator based on the GHEED design. This information will be used in the next phase of product development, the creation of an integrated laboratory scale generator to confirm model predictions.« less

  6. Colorado River Sewer System Joint Venture to Upgrade Wastewater System

    EPA Pesticide Factsheets

    SAN FRANCISCO -Today, the Colorado River Sewer System Joint Venture, located in Parker, Ariz. entered into an agreement with the EPA to upgrade their wastewater treatment system to meet stringent water quality standards. The cost of the upgrade is ap

  7. Assessment of power step performances of variable speed pump-turbine unit by means of hydro-electrical system simulation

    NASA Astrophysics Data System (ADS)

    Béguin, A.; Nicolet, C.; Hell, J.; Moreira, C.

    2017-04-01

    The paper explores the improvement in ancillary services that variable speed technologies can provide for the case of an existing pumped storage power plant of 2x210 MVA which conversion from fixed speed to variable speed is investigated with a focus on the power step performances of the units. First two motor-generator variable speed technologies are introduced, namely the Doubly Fed Induction Machine (DFIM) and the Full Scale Frequency Converter (FSFC). Then a detailed numerical simulation model of the investigated power plant used to simulate power steps response and comprising the waterways, the pump-turbine unit, the motor-generator, the grid connection and the control systems is presented. Hydroelectric system time domain simulations are performed in order to determine the shortest response time achievable, taking into account the constraints from the maximum penstock pressure and from the rotational speed limits. It is shown that the maximum instantaneous power step response up and down depends on the hydro-mechanical characteristics of the pump-turbine unit and of the motor-generator speed limits. As a results, for the investigated test case, the FSFC solution offer the best power step response performances.

  8. Drought allocations using the Systems Impact Assessment Model: Klamath River

    USGS Publications Warehouse

    Flug, M.; Campbell, S.G.

    2005-01-01

    Water supply and allocation scenarios for the Klamath River, Ore. and Calif., were evaluated using the Systems Impact Assessment Model (SIAM), a decision support system developed by the U.S. Geological Survey. SIAM is a set of models with a graphical user interface that simulates water supply and delivery in a managed river system, water quality, and fish production. Simulation results are presented for drought conditions, one aspect of Klamath River water operations. The Klamath River Basin has experienced critically dry conditions in 1992, 1994, and 2001. Drought simulations are useful to estimate the impacts of specific legal or institutional flow constraints. In addition, simulations help to identify potential adverse water quality consequences including evaluating the potential for reducing adverse temperature impacts on anadromous fish. In all drought simulations, water supply was insufficient to fully meet upstream and downstream targets for endangered species.

  9. Assessment of river quality in a subtropical Austral river system: a combined approach using benthic diatoms and macroinvertebrates

    NASA Astrophysics Data System (ADS)

    Nhiwatiwa, Tamuka; Dalu, Tatenda; Sithole, Tatenda

    2017-12-01

    River systems constitute areas of high human population densities owing to their favourable conditions for agriculture, water supply and transportation network. Despite human dependence on river systems, anthropogenic activities severely degrade water quality. The main aim of this study was to assess the river health of Ngamo River using diatom and macroinvertebrate community structure based on multivariate analyses and community metrics. Ammonia, pH, salinity, total phosphorus and temperature were found to be significantly different among the study seasons. The diatom and macroinvertebrate taxa richness increased downstream suggesting an improvement in water as we moved away from the pollution point sources. Canonical correspondence analyses identified nutrients (total nitrogen and reactive phosphorus) as important variables structuring diatom and macroinvertebrate community. The community metrics and diversity indices for both bioindicators highlighted that the water quality of the river system was very poor. These findings indicate that both methods can be used for water quality assessments, e.g. sewage and agricultural pollution, and they show high potential for use during water quality monitoring programmes in other regions.

  10. Game theory and risk-based leveed river system planning with noncooperation

    NASA Astrophysics Data System (ADS)

    Hui, Rui; Lund, Jay R.; Madani, Kaveh

    2016-01-01

    Optimal risk-based levee designs are usually developed for economic efficiency. However, in river systems with multiple levees, the planning and maintenance of different levees are controlled by different agencies or groups. For example, along many rivers, levees on opposite riverbanks constitute a simple leveed river system with each levee designed and controlled separately. Collaborative planning of the two levees can be economically optimal for the whole system. Independent and self-interested landholders on opposite riversides often are willing to separately determine their individual optimal levee plans, resulting in a less efficient leveed river system from an overall society-wide perspective (the tragedy of commons). We apply game theory to simple leveed river system planning where landholders on each riverside independently determine their optimal risk-based levee plans. Outcomes from noncooperative games are analyzed and compared with the overall economically optimal outcome, which minimizes net flood cost system-wide. The system-wide economically optimal solution generally transfers residual flood risk to the lower-valued side of the river, but is often impractical without compensating for flood risk transfer to improve outcomes for all individuals involved. Such compensation can be determined and implemented with landholders' agreements on collaboration to develop an economically optimal plan. By examining iterative multiple-shot noncooperative games with reversible and irreversible decisions, the costs of myopia for the future in making levee planning decisions show the significance of considering the externalities and evolution path of dynamic water resource problems to improve decision-making.

  11. Use of Iqqm For Management of A Regulated River System

    NASA Astrophysics Data System (ADS)

    Hameed, T.; Podger, G.; Harrold, T. I.

    The Integrated Quantity-Quality Model (IQQM) is a modelling tool for the planning and management of water-sharing issues within regulated and unregulated river sys- tems. IQQM represents the major river system processes, including inflows, rainfall and evaporation, infiltration, and flow routing down river channels and floodplains. It is a water balance model that operates on a daily timestep and can represent reser- voirs, wetlands, surface water/groundwater interaction, and soil moisture deficit for irrigation areas, along with many other features of both natural and regulated systems. IQQM can be customised for any river valley, and has proven to be a useful tool for the development, evaluation, and selection of operational rules for complex river systems. The Lachlan catchment lies within Australia's largest river system, the Murray- Darling Basin. Extensive development in the Murray-Darling Basin within the last 100 years has resulted in land degradation, increased salinity, poor water quality, damage to wetlands, and decline in native fish species. In response to these issues, in 1995 the Murray-Darling Basin Commission (MDBC) imposed restrictions on growth in diver- sions (the "MDBC Cap"), and the New South Wales government has more recently applied its own restrictions (the "River Flow Objectives"). To implement the MDBC Cap and the River Flow Objectives, new operational rules were required. This presen- tation describes how IQQM was used to develop and evaluate these rules for the Lach- lan system. In particular, rules for release of environmental flows were developed and evaluated. The model helped identify the flow window that would be most beneficial to the riverine environment, the critical time of year when environmental releases should be made, and resource constraint conditions when environmental releases should not be made. This process also involved intensive consultations with stakeholders. The role of IQQM within this process was to help the

  12. 15. INTERIOR OVERVIEW TO SOUTHEAST. ACTIVE CONTROL PANEL AND GENERATORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OVERVIEW TO SOUTHEAST. ACTIVE CONTROL PANEL AND GENERATORS AT LEFT, HISTORIC CONTROL PANEL AT RIGHT. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  13. Itaipu royalties: The role of the hydroelectric sector in water resource management.

    PubMed

    Lorenzon, Alexandre Simões; Alvares Soares Ribeiro, Carlos Antonio; Rosa Dos Santos, Alexandre; Marcatti, Gustavo Eduardo; Domingues, Getulio Fonseca; Soares, Vicente Paulo; Martins de Castro, Nero Lemos; Teixeira, Thaisa Ribeiro; Martins da Costa de Menezes, Sady Júnior; Silva, Elias; de Oliveira Barros, Kelly; Amaral Dino Alves Dos Santos, Gleissy Mary; Ferreira da Silva, Samuel; Santos Mota, Pedro Henrique

    2017-02-01

    For countries dependent on hydroelectricity, water scarcity poses a real risk. Hydroelectric plants are among the most vulnerable enterprises to climate change. Investing in the conservation of the hydrographic basin is a solution found by the hydropower sector. Given the importance of the Itaipu plant to the energy matrix of Brazil and Paraguay, the aim of this study is to review the current distribution of royalties from Itaipu, using the hydrographic basin as a of criterion of analysis. Approximately 98.73% of the Itaipu basin is in Brazil. The flow contributes 99% of the total electricity generated there, while the drop height of the water contributes only 1%. Under the current policy, royalties are shared equally between Brazil and Paraguay. In the proposed approach, each country would receive a percentage for their participation in the drop height and water flow in the output of the turbines, which are intrinsic factors for electricity generation. Thus, Brazil would receive 98.35% of the royalties and Paraguay, 1.65%. The inclusion of the hydrographic basin as a criterion for the distribution of royalties will promote more efficient water resource management, since the payment will be distributed throughout the basin of the plant. The methodology can be applied to hydroelectric projects worldwide. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Extent of areal inundation of riverine wetlands along five river systems in the upper Hillsborough river watershed, west-central Florida

    USGS Publications Warehouse

    Lewelling, B.R.

    2004-01-01

    Riverine and palustrine wetlands are a major ecological component of river basins in west-central Florida. Healthy wetlands are dependent, in part, upon the frequency and duration of periodic flooding or inundation. This report assesses the extent, area, depth, frequency, and duration of periodic flooding and the effects of potential surface-water withdrawals on wetlands along five river systems in the upper Hillsborough River watershed: Hillsborough and New Rivers, Blackwater and Itchepackesassa Creeks, and East Canal. Results of the study were derived from step-backwater analyses performed for each of the river systems using the U.S. Army Corps of Engineers Hydrologic Engineering Center-River Analysis System (HEC-RAS) one-dimensional model. Step-backwater analyses were performed based on daily mean discharges at the 10th, 50th, 70th, 80th, 90th, 95th, 99.5th, and 99.97th percentiles for selected periods. The step-backwater analyses computed extent of inundation, area of inundation, and hydraulic depth. An assessment of the net reduction of areal inundation for each of the selected percentile discharges was computed if 10 percent of the total river flow were diverted for potential withdrawals. The extent of areal inundation at a cross section is controlled by discharge volume, topography, and the degree to which the channel is incised. Areal inundation can occur in reaches characterized by low topographic relief in the upper Hillsborough watershed during most, if not all, selected discharge percentiles. Most river systems in the watershed, however, have well defined and moderately incised channels that generally confine discharges within the banks at the 90th percentile. The greatest increase in inundated area along the five river systems generally occurred between the 95th to 99.5th percentile discharges. The decrease in inundated area that would result from a potential 10-percent discharge withdrawal at the five river systems ranged as follows: Hillsborough

  15. An Investigation of Health and Safety Measures in a Hydroelectric Power Plant.

    PubMed

    Acakpovi, Amevi; Dzamikumah, Lucky

    2016-12-01

    Occupational risk management is known as a catalyst in generating superior returns for all stakeholders on a sustainable basis. A number of companies in Ghana implemented health and safety measures adopted from international companies to ensure the safety of their employees. However, there exist great threats to employees' safety in these companies. The purpose of this paper is to investigate the level of compliance of Occupational Health and Safety management systems and standards set by international and local legislation in power producing companies in Ghana. The methodology is conducted by administering questionnaires and in-depth interviews as measuring instruments. A random sampling technique was applied to 60 respondents; only 50 respondents returned their responses. The questionnaire was developed from a literature review and contained questions and items relevant to the initial research problem. A factor analysis was also carried out to investigate the influence of some variables on safety in general. Results showed that the significant factors that influence the safety of employees at the hydroelectric power plant stations are: lack of training and supervision, non-observance of safe work procedures, lack of management commitment, and lack of periodical check on machine operations. The study pointed out the safety loopholes and therefore helped improve the health and safety measures of employees in the selected company by providing effective recommendations. The implementation of the proposed recommendations in this paper, would lead to the prevention of work-related injuries and illnesses of employees as well as property damage and incidents in hydroelectric power plants. The recommendations may equally be considered as benchmark for the Safety and Health Management System with international standards.

  16. Assessing the impacts of water abstractions on river ecosystem services: an eco-hydraulic modelling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carolli, Mauro, E-mail: mauro.carolli@unitn.it; Geneletti, Davide, E-mail: davide.geneletti@unitn.it; Zolezzi, Guido, E-mail: guido.zolezzi@unitn.it

    The provision of important river ecosystem services (ES) is dependent on the flow regime. This requires methods to assess the impacts on ES caused by interventions on rivers that affect flow regime, such as water abstractions. This study proposes a method to i) quantify the provision of a set of river ES, ii) simulate the effects of water abstraction alternatives that differ in location and abstracted flow, and iii) assess the impact of water abstraction alternatives on the selected ES. The method is based on river modelling science, and integrates spatially distributed hydrological, hydraulic and habitat models at different spatialmore » and temporal scales. The method is applied to the hydropeaked upper Noce River (Northern Italy), which is regulated by hydropower operations. We selected locally relevant river ES: habitat suitability for the adult marble trout, white-water rafting suitability, hydroelectricity production from run-of-river (RoR) plants. Our results quantify the seasonality of river ES response variables and their intrinsic non-linearity, which explains why the same abstracted flow can produce different effects on trout habitat and rafting suitability depending on the morphology of the abstracted reach. An economic valuation of the examined river ES suggests that incomes from RoR hydropower plants are of comparable magnitude to touristic revenue losses related to the decrease in rafting suitability.« less

  17. Numerical Simulation of Missouri River Bed Evolution Downstream of Gavins Point Dam

    NASA Astrophysics Data System (ADS)

    Sulaiman, Z. A.; Blum, M. D.; Lephart, G.; Viparelli, E.

    2016-12-01

    The Missouri River originates in the Rocky Mountains in western Montana and joins the Mississippi River near Saint Louis, Missouri. In the 1900s dam construction and river engineering works, such as river alignment, narrowing and bank protections were performed in the Missouri River basin to control the flood flows, ensure navigation and use the water for agricultural, industrial and municipal needs, for the production of hydroelectric power generation and for recreation. These projects altered the flow and the sediment transport regimes in the river and the exchange of sediment between the river and the adjoining floodplain. Here we focus on the long term effect of dam construction and channel narrowing on the 1200 km long reach of the Missouri River between Gavins Point Dam, Nebraska and South Dakota, and the confluence with the Mississippi River. Field observations show that two downstream migrating waves of channel bed degradation formed in this reach in response to the changes in flow regime, sediment load and channel geometry. We implemented a one dimensional morphodynamic model for large, low slope sand bed rivers, we validated the model at field scale by comparing the numerical results with the available field data and we use the model to 1) predict the magnitude and the migration rate of the waves of degradation at engineering time scales ( 150 years into the future), 2) quantify the changes in the sand load delivered to the Mississippi River, where field observations at Thebes, i.e. downstream of Saint Louis, suggest a decline in the mean annual sand load in the past 50 years, and 3) identify the role of the main tributaries - Little Sioux River, Platte River and Kansas River - on the wave migration speed and the annual sand load in the Missouri River main channel.

  18. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River

  19. 4. INTERIOR OF ABANDONED SANTA ANA CANAL TUNNEL, SHOWING CEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR OF ABANDONED SANTA ANA CANAL TUNNEL, SHOWING CEMENT TROUGH FLOOR AND UNFINISHED GRANITE ROOF. VIEW TO SOUTHWEST. - Santa Ana River Hydroelectric System, Abandoned Tunnel, Redlands, San Bernardino County, CA

  20. INTERIOR VIEW LOOKING AT THE OILOSTATIC RESERVOIR AND PRESSURIZING TANKS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING AT THE OILOSTATIC RESERVOIR AND PRESSURIZING TANKS. - Wilson Dam & Hydroelectric Plant, Oilostatic Transmission System, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  1. 34. SAR2, WATERDRIVEN EXCITERS. SCE negative no. 10329, November 1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SAR-2, WATER-DRIVEN EXCITERS. SCE negative no. 10329, November 1, 1923. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  2. 1. DOMESTIC WATER SUPPLY TREATMENT HOUSE, ON PENSTOCK ABOVE SAR1. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DOMESTIC WATER SUPPLY TREATMENT HOUSE, ON PENSTOCK ABOVE SAR-1. VIEW TO NORTWEST. - Santa Ana River Hydroelectric System, SAR-1 Domestic Water Supply Treatment House, Redlands, San Bernardino County, CA

  3. 3. DETAIL, LIGHTNING ARRESTER ON SAR TRANSMISSION LINE. EEC print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL, LIGHTNING ARRESTER ON SAR TRANSMISSION LINE. EEC print no. S-C-01-00478, no date. Photographer unknown. - Santa Ana River Hydroelectric System, Transmission Lines, Redlands, San Bernardino County, CA

  4. Impacts of land use on phosphorus transport in a river system

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pant, H. K.

    2010-12-01

    Phosphorus (P) is a primary limiting nutrient in freshwater systems, however, excessive P load in the systems cause eutriphication, resulting in algal blooms and oxygen depletion. This study estimated potential exchange of P between water column and sediments by P sorption, and identified P compounds in sediments by 31Phosphorus Nuclear Magnetic Resonance Spectroscopy in the samples collected from the Bronx River, New York City, NY. Similarly, mineralization, as well as enzymatic hydrolysis using native phosphoatases (NPase) and phosphodiesterase (PDEase) showed that land use changes and other anthropogenic factors had effects on the P availability in the river. Distinguished characteristics of P bioavailability appeared at major tributaries of Sprain Brook and Troublesome Brook, boundary between fresh and saline water at East Tremont Ave, and estuary close to Hunts Point Wastewater Treatment Plant. Incidental sewer overflows at Yonkers, oil spill at East Tremont Avenue Bridge, fertilizer application at Westchester’s lawns, and gardens, animal manure from the zoo, combined sewer overflows (CSOs), storm water runoff from Bronx River Parkway, and inputs from East River influenced spatial and temporal variations on P transport in the river. This study provides an overview of impacts of land use on nutrient transport in a river system, which may help to make effective policies to regulate P application in the river watersheds, in turn, improve water quality and ecological restoration of a river.

  5. Application of optimization technique for flood damage modeling in river system

    NASA Astrophysics Data System (ADS)

    Barman, Sangita Deb; Choudhury, Parthasarathi

    2018-04-01

    A river system is defined as a network of channels that drains different parts of a basin uniting downstream to form a common outflow. An application of various models found in literatures, to a river system having multiple upstream flows is not always straight forward, involves a lengthy procedure; and with non-availability of data sets model calibration and applications may become difficult. In the case of a river system the flow modeling can be simplified to a large extent if the channel network is replaced by an equivalent single channel. In the present work optimization model formulations based on equivalent flow and applications of the mixed integer programming based pre-emptive goal programming model in evaluating flood control alternatives for a real life river system in India are proposed to be covered in the study.

  6. 32. SAR1, VIEW FROM STABLE LOFT. SCE negative no. 10319, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. SAR-1, VIEW FROM STABLE LOFT. SCE negative no. 10319, November 1, 1923. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  7. 26. GARAGE AND RETAINING WALLS NEAR SAR3. NOTE SEVEN OAKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. GARAGE AND RETAINING WALLS NEAR SAR-3. NOTE SEVEN OAKS DAM ROAD CONSTRUCTION SCAR ON MOUNTAINSIDE IN DISTANCE. VIEW TO NORTHWEST. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  8. 1. OVERVIEW OF FIFTH FLUME ABOVE SAR1 FOREBAY, SHOWING OLD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERVIEW OF FIFTH FLUME ABOVE SAR-1 FOREBAY, SHOWING OLD AND NEWER CEMENT FOOTINGS. VIEW TO NORTHEAST. - Santa Ana River Hydroelectric System, Flumes & Tunnels below Sandbox, Redlands, San Bernardino County, CA

  9. Temporal and spatial variation in pharmaceutical concentrations in an urban river system.

    PubMed

    Burns, Emily E; Carter, Laura J; Kolpin, Dana W; Thomas-Oates, Jane; Boxall, Alistair B A

    2018-06-15

    Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Temporal and spatial variation in pharmaceutical concentrations in an urban river system

    USGS Publications Warehouse

    Burns, Emily E.; Carter, Laura J.; Kolpin, Dana W.; Thomas-Oates, Jane; Boxall, Alistair B.A.

    2018-01-01

    Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse.

  11. Status and conservation of the fish fauna of the Alabama River system

    USGS Publications Warehouse

    Freeman, Mary C.; Irwin, E.R.; Burkhead, N.M.; Freeman, B.J.; Bart, H.L.; Rinne, John N.; Hughes, Robert M.; Calamusso, Bob

    2005-01-01

    The Alabama River system, comprising the Alabama, Coosa, and Tallapoosa subsystems, forms the eastern portion of the Mobile River drainage. Physiographic diversity and geologic history have fostered development in the Alabama River system of globally significant levels of aquatic faunal diversity and endemism. At least 184 fishes are native to the system, including at least 33 endemic species. During the past century, dam construction for hydropower generation and navigation resulted in 16 reservoirs that inundate 44% of the length of the Alabama River system main stems. This extensive physical and hydrologic alteration has affected the fish fauna in three major ways. Diadromous and migratory species have declined precipitously. Fish assemblages persisting downstream from large main-stem dams have been simplified by loss of species unable to cope with altered flow and water quality regimes. Fish populations persisting in the headwaters and in tributaries to the mainstem reservoirs are now isolated and subjected to effects of physical and chemical habitat degradation. Ten fishes in the Alabama River system (including seven endemic species) are federally listed as threatened or endangered. Regional experts consider at least 28 additional species to be vulnerable, threatened, or endangered with extinction. Conserving the Alabama River system fish fauna will require innovative dam management, protection of streams from effects of urbanization and water supply development, and control of alien species dispersal. Failure to manage aggressively for integrity of remaining unimpounded portions of the Alabama River system will result in reduced quality of natural resources for future generations, continued assemblage simplification, and species extinction.

  12. Status and conservation of the fish fauna of the Alabama River system

    USGS Publications Warehouse

    Freeman, Mary C.; Irwin, E.R.; Burkhead, N.M.; Freeman, B.J.; Bart, H.L.

    2005-01-01

    The Alabama River system, comprising the Alabama, Coosa, and Tallapoosa subsystems, forms the eastern portion of the Mobile River drainage. Physiographic diversity and geologic history have fostered development in the Alabama River system of globally significant levels of aquatic faunal diversity and endemism. At least 184 fishes are native to the system, including at least 33 endemic species. During the past century, dam construction for hydropower generation and navigation resulted in 16 reservoirs that inundate 44% of the length of the Alabama River system main stems. This extensive physical and hydrologic alteration has affected the fish fauna in three major ways. Diadromous and migratory species have declined precipitously. Fish assemblages persisting downstream from large main-stem dams have been simplified by loss of species unable to cope with altered flow and water quality regimes. Fish populations persisting in the headwaters and in tributaries to the mainstem reservoirs are now isolated and subjected to effects of physical and chemical habitat degradation. Ten fishes in the Alabama River system (including seven endemic species) are federally listed as threatened or endangered. Regional experts consider at least 28 additional species to be vulnerable, threatened, or endangered with extinction. Conserving the Alabama River system fish fauna will require innovative dam management, protection of streams from effects of urbanization and water supply development, and control of alien species dispersal. Failure to manage aggressively for integrity of remaining unimpounded portions of the Alabama River system will result in reduced quality of natural resources for future generations, continued assemblage simplification, and species extinctions. ?? 2005 by the American Fisheries Society.

  13. An advanced modelling tool for simulating complex river systems.

    PubMed

    Trancoso, Ana Rosa; Braunschweig, Frank; Chambel Leitão, Pedro; Obermann, Matthias; Neves, Ramiro

    2009-04-01

    The present paper describes MOHID River Network (MRN), a 1D hydrodynamic model for river networks as part of MOHID Water Modelling System, which is a modular system for the simulation of water bodies (hydrodynamics and water constituents). MRN is capable of simulating water quality in the aquatic and benthic phase and its development was especially focused on the reproduction of processes occurring in temporary river networks (flush events, pools formation, and transmission losses). Further, unlike many other models, it allows the quantification of settled materials at the channel bed also over periods when the river falls dry. These features are very important to secure mass conservation in highly varying flows of temporary rivers. The water quality models existing in MOHID are base on well-known ecological models, such as WASP and ERSEM, the latter allowing explicit parameterization of C, N, P, Si, and O cycles. MRN can be coupled to the basin model, MOHID Land, with computes runoff and porous media transport, allowing for the dynamic exchange of water and materials between the river and surroundings, or it can be used as a standalone model, receiving discharges at any specified nodes (ASCII files of time series with arbitrary time step). These features account for spatial gradients in precipitation which can be significant in Mediterranean-like basins. An interface has been already developed for SWAT basin model.

  14. EXTERIOR VIEW SHOWING THE OILOSTATIC TERMINALS IN THE GENERATING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW SHOWING THE OILOSTATIC TERMINALS IN THE GENERATING PLANT SWITCH YARD. - Wilson Dam & Hydroelectric Plant, Oilostatic Transmission System, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  15. 52. SAR1, OPERATOR WORKING GOVERNOR. EEC print no. GC0100390, no ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. SAR-1, OPERATOR WORKING GOVERNOR. EEC print no. G-C-01-00390, no date. Photograph by Benjamin F. Pearson. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  16. Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack Q. Richardson

    2012-06-28

    Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project costmore » match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.« less

  17. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix N: Wildlife.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Columbia River System Operation Review

    1995-11-01

    The Columbia River System is a vast and complex combination of Federal and non-Federal facilities used for many purposes including power production, irrigation, navigation, flood control, recreation, fish and wildlife habitat and municipal and industrial water supply. Each river use competes for the limited water resources in the Columbia River Basin. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR. This documentmore » is the product of the Wildlife Work Group, focusing on wildlife impacts but not including fishes. Topics covered include the following: scope and process; existing and affected environment, including specific discussion of 18 projects in the Columbia river basin. Analysis, evaluation, and alternatives are presented for all projects. System wide impacts to wildlife are also included.« less

  18. Small hydroelectric power plant for Aztec, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, E.W.

    1982-05-01

    Preliminary engineering results and the outcome of other specific studies associated with the establishment of a hydroelectric power plant at Aztec, New Mexico, are presented, with particular emphasis on estimated costs of construction and long-term operation. Four alternative levels of effort were evaluated. Recommendations, based primarily on cost effectiveness, are presented along with material useful as a basis for a possible follow-on Phase II study. At least three levels of effort appear economically attractive alternatives for the city to pursue.

  19. Defining biophysical reference conditions for dynamics river systems: an Alaskan example

    NASA Astrophysics Data System (ADS)

    Pess, G. R.

    2008-12-01

    Defining reference conditions for dynamic river ecosystems is difficult for two reasons. First long-term, persistent anthropogenic influences such as land development, harvest of biological resources, and invasive species have resulted in degraded, reduced, and simplified ecological communities and associated habitats. Second, river systems that have not been altered through human disturbance rarely have a long-term dataset on ecological conditions. However there are exceptions which can help us define the dynamic nature of river ecosystems. One large-scale exception is the Wood River system in Bristol Bay, Alaska, where habitat and salmon populations have not been altered by anthropogenic influences such as land development, hatchery production, and invasive species. In addition, the one major anthropogenic disturbance, salmon (Oncorhynchus spp.) harvest, has been quantified and regulated since its inception. First, we examined the variation in watershed and stream habitat characteristics across the Wood River system. We then compared these stream habitat characteristics with data that was collected in the 1950s. Lastly, we examined the correlation between pink (Oncorhynchus gorbuscha), chum (O. keta), and Chinook (O. tshawytscha), and sockeye salmon (O. nerka), and habitat characteristics in the Wood River system using four decades of data on salmon. We found that specific habitat attributes such as stream channel wetted width, depth, cover type, and the proportion of spawnable area were similar to data collected in the 1950s. Greater stream habitat variation occurred among streams than over time. Salmon occurrence and abundance, however was more temporal and spatially variable. The occurrence of pink and chum salmon increased from the 1970's to the present in the Wood River system, while sockeye abundance has fluctuated with changes in ocean conditions. Pink, Chinook and chum salmon ranged from non-existent to episodic to abundantly perennial, while sockeye

  20. 76 FR 12101 - Jordan Hydroelectric Limited Partnership; Notice of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Project No. 12737-002] Jordan Hydroelectric Limited Partnership; Notice of Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's regulations, 18 CFR part 380 (Order No. 486, 52 FR 447897), the Office of...

  1. Benchmarking wide swath altimetry-based river discharge estimation algorithms for the Ganges river system

    NASA Astrophysics Data System (ADS)

    Bonnema, Matthew G.; Sikder, Safat; Hossain, Faisal; Durand, Michael; Gleason, Colin J.; Bjerklie, David M.

    2016-04-01

    The objective of this study is to compare the effectiveness of three algorithms that estimate discharge from remotely sensed observables (river width, water surface height, and water surface slope) in anticipation of the forthcoming NASA/CNES Surface Water and Ocean Topography (SWOT) mission. SWOT promises to provide these measurements simultaneously, and the river discharge algorithms included here are designed to work with these data. Two algorithms were built around Manning's equation, the Metropolis Manning (MetroMan) method, and the Mean Flow and Geomorphology (MFG) method, and one approach uses hydraulic geometry to estimate discharge, the at-many-stations hydraulic geometry (AMHG) method. A well-calibrated and ground-truthed hydrodynamic model of the Ganges river system (HEC-RAS) was used as reference for three rivers from the Ganges River Delta: the main stem of Ganges, the Arial-Khan, and the Mohananda Rivers. The high seasonal variability of these rivers due to the Monsoon presented a unique opportunity to thoroughly assess the discharge algorithms in light of typical monsoon regime rivers. It was found that the MFG method provides the most accurate discharge estimations in most cases, with an average relative root-mean-squared error (RRMSE) across all three reaches of 35.5%. It is followed closely by the Metropolis Manning algorithm, with an average RRMSE of 51.5%. However, the MFG method's reliance on knowledge of prior river discharge limits its application on ungauged rivers. In terms of input data requirement at ungauged regions with no prior records, the Metropolis Manning algorithm provides a more practical alternative over a region that is lacking in historical observations as the algorithm requires less ancillary data. The AMHG algorithm, while requiring the least prior river data, provided the least accurate discharge measurements with an average wet and dry season RRMSE of 79.8% and 119.1%, respectively, across all rivers studied. This poor

  2. 24. OVERVIEW OF SAR3 AREA, SHOWING SWITCH RACK, SERVICE YARD, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. OVERVIEW OF SAR-3 AREA, SHOWING SWITCH RACK, SERVICE YARD, WAREHOUSE, CARPENTER SHOP, AND STORAGE SHED. VIEW TO SOUTH-SOUTHEAST. PANORAMA 2/2. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  3. 1. FIRST SECTION OF PIPELINE BETWEEN CONFLUENCE POOL AND FISH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. FIRST SECTION OF PIPELINE BETWEEN CONFLUENCE POOL AND FISH SCREEN. NOTE RETAINING WALL BESIDE PIPE. VIEW TO NORTH-NORTHEAST. - Santa Ana River Hydroelectric System, Pipeline to Fish Screen, Redlands, San Bernardino County, CA

  4. Feasibility of determination of low-head hydroelectric power development at existing sites: Brighton Dam hydroelectric development. Feasibility report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Will, Alan L.

    1979-04-01

    The redevelopment of the hydroelectric facility at Brighton Dam near Laurel, Maryland has been found to be both technically and financially feasible, the benefit to cost ratio being 1.53:1 compared with an equivalent coal-based generation source. Environmental impacts have been assessed as relatively slight, but some problems, due to poor water quality at the bottom of the reservoir are anticipated and solutions for these would have to be worked out. The benefit to cost ratio could thus be marginally decreased, but the relative costs of one alternative scheme compared to another would not be affected. There is no apparent impedimentmore » to proceeding with the work. The selected development would have a single hydroelectric generating unit of 500 kW rated capacity. The gross generation from the project would be 2,840,000 kWh in the year with average rainfall. It is estimated that the total project cost would be $734,000 (at third quarter 1978 price levels), with no allowance for funds during construction (AFDC). Based on 6.25% cost of money, the project would provide power at a levelized cost over the plant lifetime of approximately 23.3 mills per kWh with no AFDC or 24.6 mills/kWh with AFDC. At present, WSSC electrical power demands at Brighton Dam amount to 147,000 kWh per year which is met by Baltimore Gas and Electric Company (BG and E). This represents only 5% of the potential generation at the site and BG and E have agreed in principal to purchase the surplus power.« less

  5. 25. SAR2, SHOWING TAILRACE REPAIRS AFTER FLOOD OF JANUARY, 1916; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SAR-2, SHOWING TAILRACE REPAIRS AFTER FLOOD OF JANUARY, 1916; ALSO FLUME CONNECTION TO MENTONE SYSTEM. SCE negative no. 3904, July 13, 1916. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  6. 20. OVERVIEW OF SAR3 COMPLEX, SHOWING FORMER RESIDENTIAL AREA, SAR3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. OVERVIEW OF SAR-3 COMPLEX, SHOWING FORMER RESIDENTIAL AREA, SAR-3 SWITCH RACK, MAINTENANCE YARD, AND GREENSPOT BRIDGE. NOTE ALSO LARGE PIPE CONDUCTING TAILRACE WATER INTO IRRIGATION SYSTEM. VIEW TO SOUTHWEST. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  7. 17. Photocopy of photograph (original copy in Edison collection). Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (original copy in Edison collection). Photographer and date unknown, although probably taken before 1920. VIEW OF NORTH END OF TULE RIVER POWERHOUSE SHOWING POWERHOUSE AT PHOTO CENTER, TRANSFORMER BUILDING TO RIGHT OF POWERHOUSE, GARAGE TO LEFT OF POWERHOUSE, AND OPERATOR COTTAGE BEHIND POWERHOUSE AND TRANSFORMER HOUSE. VIEW TO SOUTHEAST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  8. Methane and carbon dioxide concentrations in sediments and diffusive fluxes at the sediment-water interface from three tropical systems in Brazil during the pre-impoundment phase

    NASA Astrophysics Data System (ADS)

    Abe, D. S.; Sidagis-Galli, C.; Grimberg, D. E.; Blanco, F. D.; Rodrigues-Filho, J. L.; Tundisi, J. G.; Matsumura-Tundisi, T.; Tundisi, J. E.; Cimbleris, A. C.; Damázio, J. M.; Project Balcar

    2013-05-01

    The concentrations of methane and carbon dioxide in the sediments pore water were quantified by gas chromatography in three hydroelectric reservoirs under construction during the pre-impoundment phase. Sediment sampling was performed in ten to twelve stations in each river by a Kajak-Brinkhurst corer coupled to a 3 m long aluminum rod in four seasons. The theoretical diffusive fluxes of these gases at the sediment-water interface were also calculated using the Fick's first law of diffusion. The mean annual concentration and diffusive flux of methane were highest in the sediments of the Xingu River (12.71 ± 3.03 mmol CH4 m-2 and 3.84 ± 0.91 mmol CH4 m-2 d-1), located in the Amazon, influenced by the presence of organic matter originating from the surrounding forest. The mean annual concentration of carbon dioxide was highest in the São Marcos River (71.36 ± 10.36 mmol CO2 m-2), located in an area of cerrado savanna, while the highest diffusive flux of carbon dioxide was observed in the Madeira River (30.23 ± 2.41 mmol CO2 m-2 d-1), which rises in the Andes Cordillera and has a very high water flow. The mean concentration and diffusive flux of carbon dioxide in the three studied systems were much higher (64-98%) in comparison with the methane, influenced by the oxic condition in these lotic systems. Nevertheless, the present study shows that the sediments of these systems, especially in the Xingu River, have significant amount of methane dissolved in the pore water which is being diffused to the overlying water. The information obtained in this study during the pre-filling phase will be important for the calculation of net flows of greenhouse gases after the impoundment of these future reservoirs. This study is part of the Strategic Project "Monitoring Emissions of Greenhouse Gases in Hydroelectric Reservoirs" - Call 099/2008 of the Brazilian Agency of Electric Energy (ANEEL) and sponsored by ELETRONORTE, FURNAS and CHESF.

  9. Unraveling the effects of climate change and flow abstraction on an aggrading Alpine river

    NASA Astrophysics Data System (ADS)

    Bakker, Maarten; Costa, Anna; Adriao Silva, Tiago A.; Stutenbecker, Laura; Girardclos, Stéphanie; Loizeau, Jean-Luc; Molnar, Peter; Schlunegger, Fritz; Lane, Stuart N.

    2017-04-01

    that sediment supply increased and extensive sedimentation took place. The river reaches showed a common, synchronous development, steepening in response to altered flow sediment supply conditions. In the years thereafter sedimentation rates decreased (locally incision occurred) and the reaches showed a more phased and sequential development that propagated in the downstream direction. Besides being conditioned by variations in upstream sediment supply, sediment transfer was also affected by changes in the timing and duration of purges, associated with the management and capacity hydropower system, and the evolving river bed morphology (and local river engineering). In the Borgne River we find that despite the considerable impact of flow abstraction, it is still possible to identify a climate change signal that propagates through the system and drives river morphological response. This signal is associated with a critical climate control upon upstream sediment supply coupled with the effects of combined climate and human impact on the operation of the hydroelectric power scheme.

  10. 4. OPPOSITE VIEW OF PHOTO CA2163 SHOWING ORIGINAL WEST BANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. OPPOSITE VIEW OF PHOTO CA-216-3 SHOWING ORIGINAL WEST BANK FLUME PIER AT PHOTO LEFT CENTER AND NEW HIGHWAY 190 BRIDGE ABOVE FLUME. VIEW IS A 1998 DUPLICATION OF HISTORIC VIEW SHOWN IN PHOTO CA-216-11. VIEW TO NORTHWEST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  11. An intelligent agent for optimal river-reservoir system management

    NASA Astrophysics Data System (ADS)

    Rieker, Jeffrey D.; Labadie, John W.

    2012-09-01

    A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.

  12. Understanding Socio-Hydrology System in the Kissimmee River Basin

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards

  13. 16. EXCITERS, AND SYNCHROSCOPE GAUGE ON WALL. ACTIVE ELECTRIC EXCITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. EXCITERS, AND SYNCHROSCOPE GAUGE ON WALL. ACTIVE ELECTRIC EXCITER AT REAR; UNUSED WATER-DRIVEN EXCITER IN FOREGROUND. VIEW TO SOUTH-SOUTHWEST. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  14. 34. FORMER SANDBOX ON SAR1 FLOWLINE. EEC print no. SC0100559 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. FORMER SANDBOX ON SAR-1 FLOWLINE. EEC print no. S-C-01-00559 (print is marked '81' outside vignette frame), no date. Photographer unknown. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  15. 5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. #2 TRANSMISSION LINES, MARCH 7, 1916. SCE drawing no. 4932. - Santa Ana River Hydroelectric System, Transmission Lines, Redlands, San Bernardino County, CA

  16. Assessing and optimising flood control options along the Arachthos river floodplain (Epirus, Greece)

    NASA Astrophysics Data System (ADS)

    Drosou, Athina; Dimitriadis, Panayiotis; Lykou, Archontia; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas; Mamassis, Nikos

    2015-04-01

    We present a multi-criteria simulation-optimization framework for the optimal design and setting of flood protection structures along river banks. The methodology is tested in the lower course of the Arachthos River (Epirus, Greece), downstream of the hydroelectric dam of Pournari. The entire study area is very sensitive, particularly because the river crosses the urban area of Arta, which is located just after the dam. Moreover, extended agricultural areas that are crucial for the local economy are prone to floods. In the proposed methodology we investigate two conflicting criteria, i.e. the minimization of flood hazards (due to damages to urban infrastructures, crops, etc.) and the minimization of construction costs of the essential hydraulic structures (e.g. dikes). For the hydraulic simulation we examine two flood routing models, named 1D HEC-RAS and quasi-2D LISFLOOD, whereas the optimization is carried out through the Surrogate-Enhanced Evolutionary Annealing-Simplex (SE-EAS) algorithm that couples the strengths of surrogate modeling with the effectiveness and efficiency of the EAS method.

  17. Digital Elevation Model Correction for the thalweg values of Obion River system, TN

    NASA Astrophysics Data System (ADS)

    Dullo, T. T.; Bhuyian, M. N. M.; Hawkins, S. A.; Kalyanapu, A. J.

    2016-12-01

    Obion River system is located in North-West Tennessee and discharges into the Mississippi River. To facilitate US Department of Agriculture (USDA) to estimate water availability for agricultural consumption a one-dimensional HEC-RAS model has been proposed. The model incorporates the major tributaries (north and south), main stem of Obion River along with a segment of the Mississippi River. A one-meter spatial resolution Light Detection and Ranging (LiDAR) derived Digital Elevation Model (DEM) was used as the primary source of topographic data. LiDAR provides fine-resolution terrain data over given extent. However, it lacks in accurate representation of river bathymetry due to limited penetration beyond a certain water depth. This reduces the conveyance along river channel as represented by the DEM and affects the hydrodynamic modeling performance. This research focused on proposing a method to overcome this issue and test the qualitative improvement by the proposed method over an existing technique. Therefore, objective of this research is to compare effectiveness of a HEC-RAS based bathymetry optimization method with an existing hydraulic based DEM correction technique (Bhuyian et al., 2014) for Obion River system in Tennessee. Accuracy of hydrodynamic simulations (upon employing bathymetry from respective sources) would be regarded as the indicator of performance. The aforementioned river system includes nine major reaches with a total river length of 310 km. The bathymetry of the river was represented via 315 cross sections equally spaced at about one km. This study targeted to selecting best practice for treating LiDAR based terrain data over complex river system at a sub-watershed scale.

  18. Ecological aspects of the sandfly fauna (Diptera, Psychodidae) in an American cutaneous leishmaniasis endemic area under the influence of hydroelectric plants in Paranapanema river, State of Paraná, Brazil.

    PubMed

    Cruz, Mariza Fordellone Rosa; Galati, Eunice Aparecida Bianchi; Cruz, Carolina Fordellone Rosa

    2012-01-01

    An epidemiological study was undertaken to identify determinant factors in the occurrence of American cutaneous leishmaniasis in areas under the influence of hydroelectric plants in Paranapanema river, State of Paraná, Brazil. The ecological aspects of the phlebotomine fauna were investigated. Sandflies were sampled with automatic light traps from February 2004 to June 2006 at 25 sites in the urban and rural areas of Itambaracá, and in Porto Almeida and São Joaquim do Pontal. A total of 3,187 sandflies of 15 species were captured. Nyssomyia neivai predominated (34.4%), followed by Pintomyia pessoai (32.6%), Migonemyia migonei (11.6%), Nyssomyia whitmani (8.8%), and Pintomyia fischeri (2.7%), all implicated in the transmission of Leishmania. Males predominated for Ny. neivai, and females for the other vector species, with significant statistical differences (p < 0.001). Nyssomyia neivai, Pi. pessoai, Ny. whitmani, Brumptomyia brumpti, Mg. migonei, and Pi. fischeri presented the highest values for the Standardized Species Abundance Index (SSAI). The highest frequencies and diversities were found in the preserved forest in Porto Almeida, followed by forests with degradation in São Joaquim do Pontal and Vila Rural. Sandflies were captured in all localities, with the five vectors predominating. Ny. neivai had its highest frequencies in nearby peridomestic environments and Pi. pessoai in areas of preserved forests. The highest SSAI values of Ny. neivai and Pi. pessoai reflect their wider dispersion and higher frequencies compared with other species, which seems to indicate that these two species may be transmitting leishmaniasis in the area.

  19. 33 CFR 62.51 - Western Rivers Marking System.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....51 Section 62.51 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers Marking System. (a) A variation of the standard U.S. aids to navigation system described above is employed...

  20. 33 CFR 62.51 - Western Rivers Marking System.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....51 Section 62.51 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers Marking System. (a) A variation of the standard U.S. aids to navigation system described above is employed...

  1. 33 CFR 62.51 - Western Rivers Marking System.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....51 Section 62.51 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers Marking System. (a) A variation of the standard U.S. aids to navigation system described above is employed...

  2. From academic to applied: Operationalising resilience in river systems

    NASA Astrophysics Data System (ADS)

    Parsons, Melissa; Thoms, Martin C.

    2018-03-01

    The concept of resilience acknowledges the ability of societies to live and develop with dynamic environments. Given the recognition of the need to prepare for anticipated and unanticipated shocks, applications of resilience are increasing as the guiding principle of public policy and programs in areas such as disaster management, urban planning, natural resource management, and climate change adaptation. River science is an area in which the adoption of resilience is increasing, leading to the proposition that resilience may become a guiding principle of river policy and programs. Debate about the role of resilience in rivers is part of the scientific method, but disciplinary disunity about the ways to approach resilience application in policy and programs may leave river science out of the policy process. We propose six elements that need to be considered in the design and implementation of resilience-based river policy and programs: rivers as social-ecological systems; the science-policy interface; principles, capacities, and characteristics of resilience; cogeneration of knowledge; adaptive management; and the state of the science of resilience.

  3. Distribution of Major and Trace Elements in a Tropical Hydroelectric Reservoir in Sarawak, Malaysia.

    PubMed

    Sim, Siong Fong; Ling, Teck Yee; Nyanti, Lee; Ean Lee, Terri Zhuan; Mohd Irwan Lu, Nurul Aida Lu; Bakeh, Tomy

    2014-01-01

    This paper reports the metals content in water, sediment, macroalgae, aquatic plant, and fish of Batang Ai Hydroelectric Reservoir in Sarawak, Malaysia. The samples were acid digested and subjected to atomic absorption spectrometry analysis for Na, K, Mn, Cr, Ni, Zn, Mg, Fe, Sn, Al, Ca, As, Se, and Hg. The total Hg content was analysed on the mercury analyser. Results showed that metals in water, sediment, macroalgae, aquatic plant, and fish are distinguishable, with sediment and biota samples more susceptible to metal accumulation. The distributions of heavy metals in water specifically Se, Sn, and As could have associated with the input of fish feed, boating, and construction activities. The accumulation of heavy metals in sediment, macroalgae, and aquatic plant on the other hand might be largely influenced by the redox conditions in the aquatic environment. According to the contamination factor and the geoaccumulation index, sediment in Batang Ai Reservoir possesses low risk of contamination. The average metal contents in sediment and river water are consistently lower than the literature values reported and well below the limit of various guidelines. For fishes, trace element Hg was detected; however, the concentration was below the permissible level suggested by the Food and Agriculture Organization.

  4. Distribution of Major and Trace Elements in a Tropical Hydroelectric Reservoir in Sarawak, Malaysia

    PubMed Central

    Nyanti, Lee; Ean Lee, Terri Zhuan; Mohd Irwan Lu, Nurul Aida Lu

    2014-01-01

    This paper reports the metals content in water, sediment, macroalgae, aquatic plant, and fish of Batang Ai Hydroelectric Reservoir in Sarawak, Malaysia. The samples were acid digested and subjected to atomic absorption spectrometry analysis for Na, K, Mn, Cr, Ni, Zn, Mg, Fe, Sn, Al, Ca, As, Se, and Hg. The total Hg content was analysed on the mercury analyser. Results showed that metals in water, sediment, macroalgae, aquatic plant, and fish are distinguishable, with sediment and biota samples more susceptible to metal accumulation. The distributions of heavy metals in water specifically Se, Sn, and As could have associated with the input of fish feed, boating, and construction activities. The accumulation of heavy metals in sediment, macroalgae, and aquatic plant on the other hand might be largely influenced by the redox conditions in the aquatic environment. According to the contamination factor and the geoaccumulation index, sediment in Batang Ai Reservoir possesses low risk of contamination. The average metal contents in sediment and river water are consistently lower than the literature values reported and well below the limit of various guidelines. For fishes, trace element Hg was detected; however, the concentration was below the permissible level suggested by the Food and Agriculture Organization. PMID:27437493

  5. 75 FR 35020 - Wilkesboro Hydroelectric Company, LLC; Notice Soliciting Scoping Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    .... Applicant: Wilkesboro Hydroelectric Company, LLC. e. Name of Project: W. Kerr Scott Hydropower Project. f. Location: The proposed project would be located at the existing U.S. Army Corps of Engineers' (Corps) W..., FL 33527, (813) 659-3014; and Mr. Kevin Edwards, P.O. Box 143, Mayodan, NC 27027, (336) 589-6138 i...

  6. Water quality assessment of the River Nile system: an overview.

    PubMed

    Wahaab, Rifaat A; Badawy, Mohamed I

    2004-03-01

    The main objective of the present article is to assess and evaluate the characteristics of the Nile water system, and identify the major sources of pollution and its environmental and health consequences. The article is also aimed to highlight the importance of water management via re-use and recycle of treated effluents for industrial purpose and for cultivation of desert land. An intensive effort was made by the authors to collect, assess and compile the available data about the River Nile. Physico-chemical analyses were conducted to check the validity of the collected data. For the determination of micro-pollutants, Gas Chromatography (GC) and High Performance Liquid Chromatography (HPLC) were used. Heavy metals were also determined to investigate the level of industrial pollution in the river system. The available data revealed that the river receives a large quantity of industrial, agriculture and domestic wastewater. It is worth mentioning that the river is still able to recover in virtually all the locations, with very little exception. This is due to the high dilution ratio. The collected data confirmed the presence of high concentrations of chromium and manganese in all sediment samples. The residues of organo-chlorine insecticides were detected in virtually all locations. However, the levels of such residues are usually below the limit set by the WHO for use as drinking water. The most polluted lakes are Lake Maryut and Lake Manzala. Groundwater pollution is closely related to adjacent (polluted) surface waters. High concentrations of nutrients, E. coli, sulfur, heavy metals, etc. have been observed in the shallow groundwater, largely surpassing WHO standards for drinking water use. A regular and continuous monitoring scheme shall be developed for the River Nile system. The environmental law shall be enforced to prohibit the discharge of wastewater (agricultural, domestic or industrial) to River Nile system.

  7. 78 FR 5830 - Draft Environmental Assessment and Proposed Habitat Conservation Plan for the Interim Operations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... Operations of PacifiCorp's Klamath Hydroelectric Project on the Klamath River, Klamath County, OR, and... Environmental Policy Act (NEPA) for the interim operations of the Klamath Hydroelectric Project in [[Page 5831... habitats upon which they depend, resulting from the interim operations of the Klamath Hydroelectric Project...

  8. 63. Photocopy of photograph, no date. MAP OF POTOMAC EDISON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Photocopy of photograph, no date. MAP OF POTOMAC EDISON COMPANY SYSTEM. (Courtesy of the Potomac Edison Company Library (Hagerstown, MD), Historical Data Files - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV

  9. 29. SAR2, VIEW TO NORTH WITH EXCITERS AT LEFT. SCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SAR-2, VIEW TO NORTH WITH EXCITERS AT LEFT. SCE negative no. 1043, photographed June 6, 1912. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  10. 31. SAR2, INTERIOR SHOWING SWITCHBOARD, OPERATOR'S DESK, AND TRANSFORMER BANK. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SAR-2, INTERIOR SHOWING SWITCHBOARD, OPERATOR'S DESK, AND TRANSFORMER BANK. SCE negative no. 10327, November 1, 1923. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  11. 36. SAR1, OVERVIEW OF POWERHOUSE AND HOUSING AREA FROM ACROSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. SAR-1, OVERVIEW OF POWERHOUSE AND HOUSING AREA FROM ACROSS CANYON. EEC print no. G-C-01-00088, no date. Photograph by Benjamin F. Pearson. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  12. 7. SOUTHEAST PENSTOCK ENTERING RECEIVER ON NORTHEAST SIDE OF SAR1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SOUTHEAST PENSTOCK ENTERING RECEIVER ON NORTHEAST SIDE OF SAR-1, ALSO SHOWING TURBINE SHUT OFF VALVES AND ISOLATION VALVE. VIEW TO WEST. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  13. 36. SAR1 UNDER CONSTRUCTION, WITH WORKERS ATOP CRANE. EEC print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. SAR-1 UNDER CONSTRUCTION, WITH WORKERS ATOP CRANE. EEC print no. N-C-01-00031, no date. Photograph by Benjamin F. Pearson. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  14. 42. SAR2, OVERVIEW OF POWERHOUSE AND HOUSING AREA, LOOKING NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. SAR-2, OVERVIEW OF POWERHOUSE AND HOUSING AREA, LOOKING NORTH, SHOWING HORSE-DRAWN BUGGY. SCE negative no. 3, no date. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  15. 33. SAR1, LOOKING DOWN CANYON OVER TAILRACE CONSTRUCTION. EEC print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SAR-1, LOOKING DOWN CANYON OVER TAILRACE CONSTRUCTION. EEC print no. G-C-01-00269, no date. Photograph by Benjamin F. Pearson. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  16. 46. GENERAL MAP OF SANTA ANA NO. 3 PROJECT MAP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. GENERAL MAP OF SANTA ANA NO. 3 PROJECT MAP OF ALL THREE POWER HOUSE SYSTEMS, EXHIBIT J, JAN. 25, 1956. SCE drawing no. 535041 (sheet no. 1; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  17. Water-quality and algal conditions in the Clackamas River basin, Oregon, and their relations to land and water management

    USGS Publications Warehouse

    Carpenter, Kurt D.

    2003-01-01

    In 1998, the U.S. Geological Survey sampled the Clackamas River, its major tributaries, and reservoirs to characterize basic water quality (nutrients, dissolved oxygen, pH, temperature, and conductance), water quantity (water sources within the basin), and algal conditions (biomass and species composition). Sampling locations reflected the dominant land uses in the basin (forest management, agriculture, and urban development) as well as the influence of hydroelectric projects, to examine how these human influences might be affecting water quality and algal conditions. Nuisance algal growths, with accompanying negative effects on water quality, were observed at several locations in the basin during this study. Algal biomass in the lower Clackamas River reached a maximum of 300 mg/m2 chlorophyll a, producing nuisance algal conditions, including fouled stream channels and daily fluctuations in pH and dissolved oxygen concentrations to levels that did not meet water-quality standards. Algal biomass was highest at sites immediately downstream from the hydroelectric project's reservoirs and/or powerhouses. Nuisance algal conditions also were observed in some of the tributaries, including the North Fork of the Clackamas River, Clear Creek, Rock Creek, and Sieben Creek. High amounts of drifting algae increased turbidity levels in the Clackamas River during June, which coincided with a general increase in the concentration of disinfection by-products found in treated Clackamas River water used for drinking, presumably due to the greater amounts of organic matter in the river. The highest nutrient concentrations were found in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks), where most of the agriculture and urban development is concentrated. Of these, the greatest load of nutrients came from Deep Creek, which had both high nutrient concentrations and relatively high streamflow. Streams draining forestland in the upper basin (upper Clackamas River

  18. Coastal and lower Elwha River, Washington, prior to dam removal--history, status, and defining characteristics: Chapter 1 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    Characterizing the physical and biological characteristics of the lower Elwha River, its estuary, and adjacent nearshore habitats prior to dam removal is essential to monitor changes to these areas during and following the historic dam-removal project set to begin in September 2011. Based on the size of the two hydroelectric projects and the amount of sediment that will be released, the Elwha River in Washington State will be home to the largest river restoration through dam removal attempted in the United States. Built in 1912 and 1927, respectively, the Elwha and Glines Canyon Dams have altered key physical and biological characteristics of the Elwha River. Once abundant salmon populations, consisting of all five species of Pacific salmon, are restricted to the lower 7.8 river kilometers downstream of Elwha Dam and are currently in low numbers. Dam removal will reopen access to more than 140 km of mainstem, flood plain, and tributary habitat, most of which is protected within Olympic National Park. The high capture rate of river-borne sediments by the two reservoirs has changed the geomorphology of the riverbed downstream of the dams. Mobilization and downstream transport of these accumulated reservoir sediments during and following dam removal will significantly change downstream river reaches, the estuary complex, and the nearshore environment. To introduce the more detailed studies that follow in this report, we summarize many of the key aspects of the Elwha River ecosystem including a regional and historical context for this unprecedented project.

  19. 26. SAR2, GENERAL VIEW FROM WEST SHOWING DAMAGE FROM 1938 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SAR-2, GENERAL VIEW FROM WEST SHOWING DAMAGE FROM 1938 FLOOD. SCE negative no. 20949, March 30, 1938. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  20. 35. SAR1 UNDER CONSTRUCTION, SHOWING TAILRACE AREA AND SCAFFOLDING. EEC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SAR-1 UNDER CONSTRUCTION, SHOWING TAILRACE AREA AND SCAFFOLDING. EEC print no. N-C-01-00028, no date. Photograph by Benjamin F. Pearson. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  1. 2. PLANK WALKWAY ATOP PIPE, ALSO SHOWING OVERFLOW CONTROL BOX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PLANK WALKWAY ATOP PIPE, ALSO SHOWING OVERFLOW CONTROL BOX AT JUNCTION OF PIPE WITH CONCRETE CHANNEL TO FISH SCREEN. VIEW TO NORTHEAST. - Santa Ana River Hydroelectric System, Pipeline to Fish Screen, Redlands, San Bernardino County, CA

  2. Accumulated state assessment of the Peace-Athabasca-Slave River system.

    PubMed

    Dubé, Monique G; Wilson, Julie E

    2013-07-01

    Effects-based analysis is a fundamental component of watershed cumulative effects assessment. This study conducted an effects-based analysis for the Peace-Athabasca-Slave River System, part of the massive Mackenzie River Basin, encompassing 20% of Canada's total land mass and influenced by cumulative contributions of the W.A.C. Bennett Dam (Peace River) and industrial activities including oil sands mining (Athabasca River). This study assessed seasonal changes in 1) Peace River water quality and quantity before and after dam development, 2) Athabasca River water quality and quantity before and after oil sands developments, 3) tributary inputs from the Peace and Athabasca Rivers to the Slave River, and 4) upstream to downstream differences in water quality in the Slave River. In addition, seasonal benchmarks were calculated for each river based on pre-perturbation post-perturbation data for future cumulative effects assessments. Winter discharge (January-March) from the Peace and Slave Rivers was significantly higher than before dam construction (pre-1967) (p < 0.05), whereas summer peak flows (May-July) were significantly lower than before the dam showing that regulation has significantly altered seasonal flow regimes. During spring freshet and summer high flows, the Peace River strongly influenced the quality of the Slave River, as there were no significant differences in loadings of dissolved N, total P (TP), total organic C (TOC), total As, total Mn, total V, and turbidity and specific conductance between these rivers. In the Athabasca River, TP and specific conductance concentrations increased significantly since before oil sands developments (1967-2010), whereas dissolved N and sulfate have increased after the oil sands developments (1977-2010). Recently, the Athabasca River had significantly higher concentrations of dissolved N, TP, TOC, dissolved sulfate, specific conductance, and total Mn than either the Slave or the Peace Rivers during the winter months

  3. 75 FR 66748 - City of Kaukauna, WI; Notice of Authorization for Continued Project Operation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... City of Kaukauna, Wisconsin, licensee for the Badger-Rapide Croche Hydroelectric Project, filed an... thereunder. The Badger-Rapide Croche Hydroelectric Project is on the Fox River in Outagamie County, near the... operation of the Badger-Rapide Croche Hydroelectric Project, until such time as the Commission acts on its...

  4. 76 FR 37108 - Inside Passage Electric Cooperative; Notice of Declaration of Intention and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... Supply Creek Hydroelectric Project. f. Location: The proposed Water Supply Creek Hydroelectric Project will be located on Water Supply Creek, near the town of Hoonah on Chichagof Island, Alaska, affecting T... proposed run-of-river Water Supply Creek Hydroelectric Project will consist of: (1) A proposed 8-foot- high...

  5. Climate scenarios for the Truckee-Carson River system

    USGS Publications Warehouse

    Dettinger, Michael; Sterle, Kelley; Simpson, Karen; Singletary, Loretta; Fitzgerald, Kelsey; McCarthy, Maureen

    2017-01-01

    In this study, the scenarios ultimately take the form of gridded, daily (maximum and minimum) temperatures and precipitation totals spanning the entire Truckee-Carson River System, from which meteorological inputs to various hydrologic, water-balance and watermanagement models can be extracted by other parts of the Water for the Seasons project and by other studies and stakeholders. Climate scenarios are constructed using: 1) survey data from interviews with 66 Truckee-Carson River System water-management and water-interest organizations to identify plausible drought and high-flow events that could stress the system irreparably; 2) input from the Stakeholder Affiliate Group and other modelers on the Water for the Seasons team to gain additional key stakeholder input with regard to organizational survey results and to identify the most pressing water-management issues being faced in the system; and 3) historical climate datasets used to simulate possible future conditions.

  6. 19. Photocopy of photograph (original copy in Edison collection). Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original copy in Edison collection). Photographer and date unknown, although probably taken before 1920. SOUTH SIDE OF TULE RIVER POWERHOUSE COMPLEX SHOWING OPERATOR COTTAGE AT PHOTO RIGHT AND POWERHOUSE AND TRANSFORMER BUILDING IN BACKGROUND AT PHOTO LEFT. LINE OF BURIED PENSTOCK IS VISIBLE ON SIDE OF HILL AT PHOTO CENTER. VIEW TO NORTH. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  7. Contaminant impacts to the endocrine system in largemouth bass in northeast U.S. rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.B.; Sorenson, S.K.

    1995-12-31

    The National Biological Service (NBS) in cooperation with the USGS-National Water Quality Assessment (NAWQA) program conducted a reconnaissance investigation of potential disruption of the endocrine system in carp and largemouth bass (LMB) from streams and rivers across the US. Chemical analysis of sediment and fish tissue, from agricultural and industrial sites in NAWQA study units, indicated the potential for impacts to the endocrine system of fish. Collections of 39 male and 28 female LMB were made in fall 1994 from contaminated and reference sites in three major river systems in the Northeast US (Potomac, Hudson, and Connecticut rivers). Additional fishmore » collections will be made at these same sites in Spring 1995. Blood and gonadal tissue samples will give a triad of bioindicators (17B-estradiol/11-ketotestosterone ratios, vitellogenin, and gonad histopathology) of potential endocrine disruption. Chemical residue for tissue will also be made from selected LMB to compare with the bioindicators. Comparisons of contaminated sites and reference site indicated a significantly lower E/T ratio in female LMB from two contaminated sites (Housatonic River in the Connecticut River system and the Anacostia River in the Potomac River system). Additionally, significantly higher E/T ratios in male LMB were found from each of the three river systems. These E/T ratios indicate that endocrine disruption is both estrogenic to male LMB (feminization) and potentially androgenic to the female LMB (masculinization).« less

  8. Quantifying hyporheic exchange dynamics in a highly regulated large river reach

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Bao, J.; Huang, M.; Hou, Z.; Arntzen, E.; Mackley, R.; Harding, S.; Crump, A.; Xu, Y.; Song, X.; Chen, X.; Stegen, J.; Hammond, G. E.; Thorne, P. D.; Zachara, J. M.

    2016-12-01

    Hyporheic exchange is an important mechanism taking place in riverbanks and riverbed sediments, where the river water and shallow groundwater mix and interact with each other. The direction and magnitude of hyporheic flux that penetrates the river bed and residence time of river water in the hyporheic zone are critical for biogeochemical processes such as carbon and nitrogen cycling, and biodegradation of organic contaminants. Hyporheic flux can be quantified using many direct and indirect measurements as well as analytical and numerical modeling tools. However, in a relatively large river, these methods can be limited by the accessibility, spatial constraints, complexity of geomorphologic features and subsurface properties, and computational power. In rivers regulated by hydroelectric dams, quantifying hyporheic fluxes becomes more challenging due to frequent hydropeaking events created by dam operations. In this study, we developed and validated methods that combined field measurements and numerical modeling for estimating hyporheic fluxes across the river bed in a 7-km long reach of the highly regulated Columbia River. The reach has a minimum width of about 800 meters and variations in river stage within a day could be up to two meters due to the upstream dam operations. In shallow water along the shoreline, vertical thermal profiles measured by self-recording thermistors were combined with time series of hydraulic gradient derived from river stage and water level at in-land wells to estimate the hyporheic flux rate. For the deep section, a high resolution computational fluid dynamics (CFD) modeling framework was developed to characterize the spatial distribution of flux rates at the river bed and the residence time of hyporheic flow at different river flow conditions. Our modeling results show that the rates of hyporheic exchange and residence time are controlled by (1) hydrostatic pressure induced by river stage fluctuations, and (2) hydrodynamic drivers

  9. The current content of artificial radionuclides in the water of the Tobol-Irtysh river system (from the mouth of the Iset River to the confluence with the Ob River).

    PubMed

    Nikitin, Alexander I; Chumichev, Vladimir B; Valetova, Nailia K; Katrich, Ivan Yu; Kabanov, Alexander I; Dunaev, Gennady E; Shkuro, Valentina N; Rodin, Victor M; Mironenko, Alexander N; Kireeva, Elena V

    2007-01-01

    Data on content of (90)Sr, (137)Cs, (239,240)Pu and (3)H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the "Mayak" PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of (137)Cs, (90)Sr and (3)H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of "Mayak" PA waste transport by (90)Sr is distinctly traced as far as the area of the Irtysh and Ob confluence.

  10. Surface Hydrology in Global River Basins in the Off-Line Land-Surface GEOS Assimilation (OLGA) System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.

    1998-01-01

    Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.

  11. Impacts of Climate Change on Stream Temperatures in the Clearwater River, Idaho

    NASA Astrophysics Data System (ADS)

    Yearsley, J. R.; Chegwidden, O.; Nijssen, B.

    2016-12-01

    Dworshak Dam in northern Idaho impounds the waters of the North Fork of the Clearwater River, creating a reservoir of approximately 4.278 km3 at full pool elevation. The dam's primary purpose is for flood control and hydroelectric power generation. It also provides important water quality benefits by releasing cold water into the Clearwater River during the summer when conditions become critical for migrating endangered species of salmon. Changes in the climate may have an impact on the ability of Dworshak Dam and Reservoir to provide these benefits. To investigate the potential for extreme outcomes that would limit cold water releases from Dworshak Reservoir and compromise the fishery, we implemented a system of hydrologic and water temperature models that simulate daily-averaged water temperatures in both the riverine and reservoir environments. We used the macroscale hydrologic model, VIC, to simulate land surface water and energy fluxes, the one-dimensional, time-dependent stream temperature model, RBM, to simulate river temperatures and a modified version of CEQUAL-W2 to simulate water temperatures in Dworshak Reservoir. A long-term hydrologically based gridded data set of meteorological forcing provided the input for comparing model results with available observations of flow and water temperature. For purposes of investigating the impacts of climate change, we used the results from ten of the most recent Climate Model Intercomparison Project (CMIP5) climate change models scenarios in conjunction with the estimates of anthropogenic inputs of climate change gases from two representative concentration pathways (RCP). We compared the simulated results associated with a range of outcomes at critical river locations from the climate scenarios with existing conditions assuming that the reservoir would be operated under a rule curve based on the average reservoir elevation for the period 2006-2015 rule curve and for power demands represented by that same period.

  12. Optimally managing water resources in large river basins for an uncertain future

    USGS Publications Warehouse

    Edwin A. Roehl, Jr.; Conrads, Paul

    2014-01-01

    Managers of large river basins face conflicting needs for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting local economies for years. The Savannah River Basin’s coastal area contains municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent since the 1970s. There is a planned deepening of the harbor that includes flow-alteration features to minimize further migration of salinity. The effectiveness of the flow-alteration features will only be known after they are constructed. One of the challenges of basin management is the optimization of water use through ongoing development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to significantly reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the

  13. 47. INTERIOR UNDER CONSTRUCTION, SHOWING EXCITERS AND BASES FOR GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. INTERIOR UNDER CONSTRUCTION, SHOWING EXCITERS AND BASES FOR GENERATOR UNITS. EEC print no. N-C-01-00033, no date. Photograph by Benjamin F. Pearson. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  14. 4. THIRD FLUME ABOVE SAR1 FOREBAY, SHOWING TYPICAL CHANGE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. THIRD FLUME ABOVE SAR-1 FOREBAY, SHOWING TYPICAL CHANGE IN CURVATURE OF METAL SHEETING AS FLUME MEETS TUNNEL AT PORTAL. VIEW TO NORTH. - Santa Ana River Hydroelectric System, Flumes & Tunnels below Sandbox, Redlands, San Bernardino County, CA

  15. 12. OVERVIEW FROM FORMER RESIDENTIAL AREA NORTH OF SAR2, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. OVERVIEW FROM FORMER RESIDENTIAL AREA NORTH OF SAR-2, SHOWING TRAIL UP TO FOREBAY, RETAINING WALL, PEPPER TREES, AND SAR-2 IN DISTANCE. VIEW TO SOUTH-SOUTHEAST. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  16. An economic analysis of selected strategies for dissolved-oxygen management; Chattahoochee River, Georgia

    USGS Publications Warehouse

    Schefter, John E.; Hirsch, Robert M.

    1980-01-01

    A method for evaluating the cost-effectiveness of alternative strategies for dissolved-oxygen (DO) management is demonstrated, using the Chattahoochee River, GA., as an example. The conceptual framework for the analysis is suggested by the economic theory of production. The minimum flow of the river and the percentage of the total waste inflow receiving nitrification are considered to be two variable inputs to be used in the production of given minimum concentration of DO in the river. Each of the inputs has a cost: the loss of dependable peak hydroelectric generating capacity at Buford Dam associated with flow augmentation and the cost associated with nitrification of wastes. The least-cost combination of minimum flow and waste treatment necessary to achieve a prescribed minimum DO concentration is identified. Results of the study indicate that, in some instances, the waste-assimilation capacity of the Chattahoochee River can be substituted for increased waste treatment; the associated savings in waste-treatment costs more than offset the benefits foregone because of the loss of peak generating capacity at Buford Dam. The sensitivity of the results to the estimates of the cost of replacing peak generating capacity is examined. It is also demonstrated that a flexible approach to the management of DO in the Chattahoochee River may be much more cost effective than a more rigid, institutional approach wherein constraints are placed on the flow of the river and(or) on waste-treatment practices. (USGS)

  17. Assessing cumulative impacts to elk and mule deer in the Salmon River Basin, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neil, T.A.; Witmer, G.W.

    1988-01-01

    In this paper, we illustrate the method, using the potential for cumulative impacts to elk and mule deer from multiple hydroelectric development in the Salmon River Basin of Idaho. We attempted to incorporate knowledge of elk and mule deer habitat needs into a paradigm to assess cumulative impacts and aid in the regulatory decision making process. Undoubtedly, other methods could be developed based on different needs or constraints, but we offer this technique as a means to further refine cumulative impact assessment. Our approach is divided into three phases: analysis, evaluation, and documentation. 36 refs., 2 figs., 3 tabs.

  18. Parasitism by Monogenoidea in Piaractus mesopotamicus (Characiformes, Characidae) cultivated in Paraná River (Brazil).

    PubMed

    Leão, M S L; Justo, M C N; Bueno, G W; Cohen, S C; São Clemente, S C

    2017-11-01

    This study investigated the occurrence, prevalence, mean abundance and mean intensity of monogenoidean parasites in Piaractus mesopotamicus farmed in cages in the reservoir of the Itaipu Hydroelectric Power Station, Paraná River, Brazil. The parasite distribution pattern and the correlation of prevalence and abundance with the total length of hosts were also investigated. Four monogenoidean species were collected: Anacanthorus penilabiatus, A. toledoensis, Mymarothecium ianwhitingtoni and M. viatorum. All the parasites collected in P. mesopotamicus showed the typical aggregated distribution pattern, and the abundance and the prevalence did not shown any correlation with the total length of hosts.

  19. 33 CFR 209.141 - Coordination of hydroelectric power operations with power marketing agencies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.141... establishes policies and procedures for coordinating the operation of the Corps of Engineers' hydroelectric... civil works field operating agencies (FOA) having generating facilities producing marketable electric...

  20. 33 CFR 209.141 - Coordination of hydroelectric power operations with power marketing agencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.141... establishes policies and procedures for coordinating the operation of the Corps of Engineers' hydroelectric... civil works field operating agencies (FOA) having generating facilities producing marketable electric...

  1. 33 CFR 209.141 - Coordination of hydroelectric power operations with power marketing agencies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.141... establishes policies and procedures for coordinating the operation of the Corps of Engineers' hydroelectric... civil works field operating agencies (FOA) having generating facilities producing marketable electric...

  2. 33 CFR 209.141 - Coordination of hydroelectric power operations with power marketing agencies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.141... establishes policies and procedures for coordinating the operation of the Corps of Engineers' hydroelectric... civil works field operating agencies (FOA) having generating facilities producing marketable electric...

  3. Glof Study in Tawang River Basin, Arunachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Panda, R.; Padhee, S. K.; Dutta, S.

    2014-11-01

    Glacial lake outburst flood (GLOF) is one of the major unexpected hazards in the high mountain regions susceptible to climate change. The Tawang river basin in Arunachal Pradesh is an unexplored region in the Eastern Himalayas, which is impending to produce several upcoming hydro-electric projects (HEP). The main source of the river system is the snow melt in the Eastern Himalayas, which is composed of several lakes located at the snout of the glacier dammed by the lateral or end moraine. These lakes might prove as potential threat to the future scenario as they have a tendency to produce flash flood with large quantity of sediment load during outbursts. This study provides a methodology to detect the potential lakes as a danger to the HEP sites in the basin, followed by quantification of volume of discharge from the potential lake and prediction of hydrograph at the lake site. The remote location of present lakes induced the use of remote sensing data, which was fulfilled by Landsat-8 satellite imagery with least cloud coverage. Suitable reflectance bands on the basis of spectral responses were used to produce informational layers (NDWI, Potential snow cover map, supervised classification map) in GIS environment for discriminating different land features. The product obtained from vector overlay operation of these layers; representing possible water area, was further utilized in combination with Google earth to identify the lakes within the watershed. Finally those identified lakes were detected as potentially dangerous lakes based on the criteria of elevation, area, proximity from streamline, slope and volume of water held. HEC-RAS simulation model was used with cross sections from Google Earth and field survey as input to simulate dam break like situation; hydrodynamic channel routing of the outburst hydrograph along river reach was carried out to get the GLOF hydrograph at the project sites. It was concluded from the results that, the assessed GLOF would be a

  4. 77 FR 59389 - Hawks Nest Hydro, LLC; Notice of Intent To File License Application, Filing of Pre-Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    .... Name of Project: Hawks Nest Hydroelectric Project (P-2512-069) and Glen Ferris Hydroelectric Project (P... of Gauley Bridge, and Glen Ferris Hydroelectric Project is on the Kanawha River in the vicinity of the Town of Glen Ferris, both within Fayette County, West Virginia. The projects do not affect federal...

  5. Reach-scale characterization of large woody debris in a low-gradient, Midwestern U.S.A. river system

    NASA Astrophysics Data System (ADS)

    Martin, Derek J.; Pavlowsky, Robert T.; Harden, Carol P.

    2016-06-01

    Addition of large woody debris (LWD) to rivers has increasingly become a popular stream restoration strategy, particularly in river systems of the Midwestern United States. However, our knowledge of LWD dynamics is mostly limited to high gradient montane river systems, or coastal river systems. The LWD-related management of low-gradient, Midwestern river systems is thus largely based on higher gradient analogs of LWD dynamics. This research characterizes fluvial wood loads and investigates the relationships between fluvial wood, channel morphology, and sediment deposition in a relatively low-gradient, semiconfined, alluvial river. The LWD and channel morphology were surveyed at nine reaches along the Big River in southeastern Missouri to investigate those relationships in comparison to other regions. Wood loads in the Big River are low (3-114 m3/100 m) relative to those of higher gradient river systems of the Pacific Northwest, but high relative to lower-gradient river systems of the Eastern United States. Wood characteristics such as size and orientation suggest that the dominant LWD recruitment mechanism in the Big River is bank erosion. Also, ratios of wood geometry to channel geometry show that the Big River maintains a relatively high wood transport capacity for most of its length. Although LWD creates sites for sediment storage, the overall impact on reach-scale sediment storage in the Big River is low (< 4.2% of total in-channel storage). However, wood loads, and thus opportunities for sediment storage, have the potential to grow in the future as Midwestern riparian forests mature. This study represents the first of its kind within this particular type of river system and within this region and thus serves as a basis for understanding fluvial wood dynamics in low-gradient river systems of the Midwestern United States.

  6. Quantifying habitat benefits of channel reconfigurations on a highly regulated river system, Lower Missouri River, USA

    USGS Publications Warehouse

    Erwin, Susannah O.; Jacobson, Robert B.; Elliott, Caroline M.

    2017-01-01

    We present a quantitative analysis of habitat availability in a highly regulated lowland river, comparing a restored reach with two reference reaches: an un-restored, channelized reach, and a least-altered reach. We evaluate the effects of channel modifications in terms of distributions of depth and velocity as well as distributions and availability of habitats thought to be supportive of an endangered fish, the pallid sturgeon (Scaphirhynchus albus). It has been hypothesized that hydraulic conditions that support food production and foraging may limit growth and survival of juvenile pallid sturgeon. To evaluate conditions that support these habitats, we constructed two-dimensional hydrodynamic models for the three study reaches, two located in the Lower Missouri River (channelized and restored reaches) and one in the Yellowstone River (least-altered reach). Comparability among the reaches was improved by scaling by bankfull discharge and bankfull channel area. The analysis shows that construction of side-channel chutes and increased floodplain connectivity increase the availability of foraging habitat, resulting in a system that is more similar to the reference reach on the Yellowstone River. The availability of food-producing habitat is low in all reaches at flows less than bankfull, but the two reaches in the Lower Missouri River – channelized and restored – display a threshold-like response as flows overtop channel banks, reflecting the persistent effects of channelization on hydraulics in the main channel. These high lateral gradients result in punctuated ecological events corresponding to flows in excess of bankfull discharge. This threshold effect in the restored reach remains distinct from that of the least-altered reference reach, where hydraulic changes are less abrupt and overbank flows more gradually inundate the adjacent floodplain. The habitat curves observed in the reference reach on the Yellowstone River may not be attainable within the

  7. Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system.

    PubMed

    Nel, Holly A; Dalu, Tatenda; Wasserman, Ryan J

    2018-01-15

    Microplastics are important novel pollutants in freshwaters but their behaviour in river sediments is poorly understood due to the large amounts of coloured dissolved organic matter that impede sample processing. The present study aimed to 1.) estimate the microplastic pollution dynamics in an urban river system experiencing temporal differences in river flow, and 2.) investigate the potential use of chironomids as indicators of microplastic pollution levels in degraded freshwater environments. Microplastic levels were estimated from sediment and Chironomus spp. larvae collected from various sites along the Bloukrans River system, in the Eastern Cape South Africa during the summer and winter season. River flow, water depth, channel width, substrate embeddedness and sediment organic matter were simultaneously collected from each site. The winter season was characterised by elevated microplastic abundances, likely as a result of lower energy and increased sediment deposition associated with reduced river flow. In addition, results showed that particle distribution may be governed by various other external factors, such as substrate type and sediment organic matter. The study further highlighted that deposit feeders associated with the benthic river habitats, namely Chironomus spp. ingest microplastics and that the seasonal differences in sediment microplastic dynamics were reflected in chironomid microplastic abundance. There was a positive, though weakly significant relationship between deposit feeders and sediment suggesting that deposit feeders such as Chironomus spp. larvae could serve as an important indicator of microplastic loads within freshwater ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 1. SAR1, SOUTHEAST AND SOUTHWEST ELEVATIONS, WITH SWITCH RACK AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SAR-1, SOUTHEAST AND SOUTHWEST ELEVATIONS, WITH SWITCH RACK AT LEFT, AND SANTA ANA WELL #1 AND STONE RETAINING WALLS AT RIGHT. VIEW TO NORTH. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  9. 44. SAR3, GENERAL VIEW OF POWERHOUSE AND HOUSING AREA FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. SAR-3, GENERAL VIEW OF POWERHOUSE AND HOUSING AREA FROM THE NEW TRAIL ACROSS THE CANYON. SCE negative no. 4321, March 15, 1918. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  10. 3. TAILRACE AND FOREBAY, SANTA ANA NO. 3, EXHIBIT L, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. TAILRACE AND FOREBAY, SANTA ANA NO. 3, EXHIBIT L, JAN. 25, 1956. SCE drawing no. 541475 (sheet 6; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, SAR-3 Forebay & Penstock, Redlands, San Bernardino County, CA

  11. 78 FR 41057 - Sabine River Authority of Texas and Sabine River Authority, State of Louisiana; Public Meetings...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... the Draft Environmental Impact Statement for the Toledo Bend Hydroelectric Project On May 17, 2013, the Commission issued a Draft Environmental Impact Statement (draft EIS) for the Toledo Bend Hydroelectric Project No 2105-036 (Toledo Bend Project). The draft EIS documents the views of governmental...

  12. 78 FR 37216 - Sabine River Authority of Texas and Sabine River Authority, State of Louisiana; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... Environmental Impact Statement for the Toledo Bend Hydroelectric Project In accordance with the National... Office of Energy Projects has reviewed the application for license for the Toledo Bend Hydroelectric... the Toledo Bend Project. The draft EIS documents the views of governmental agencies, non- governmental...

  13. Design of river height and speed monitoring system by using Arduino

    NASA Astrophysics Data System (ADS)

    Nasution, T. H.; Siagian, E. C.; Tanjung, K.; Soeharwinto

    2018-02-01

    River is one part of the hydrologic cycle. Water in rivers is generally collected from precipitation, such as rain, dew, springs, underground runoff, and in certain countries also comes from melt ice/snow. The height and speed of water in a river is always changing. Changes in altitude and speed of water can affect the surrounding environment. In this paper, we will design a system to measure the altitude and speed of the river. In this work we use Arduino Uno, ultrasonic sensors and flow rate sensors. Ultrasonic sensor HC-SR04 is used as a river height meter. Based on the test results, this sensor has an accuracy of 96.6%.

  14. Modern Sedimentation off the Kaoping River, SW Taiwan: A Comparison with Eel River's S2S System

    NASA Astrophysics Data System (ADS)

    Huh, C.; Lin, H.; Lin, S.

    2006-12-01

    The Kaoping (KP) River in SW Taiwan has a watershed area of 3257 km2 and an annual sediment discharge of 49 MT. Although the sediment yield of the KP River basin (1.5×104 ton km-2 yr^{- 1}) is the 4th highest among Taiwan's catchment basins, it is nearly one order of magnitude higher than that of the Eel River's basin (~1.8×103 ton km-2 yr-1; the highest in the U.S.). The KP canyon extends almost immediately seaward from the river's mouth and terminates in the northwestern corner of the South China Sea. The head of the canyon is characterized by high and steep walls exceeding 600 m. The KP river's source-to-sink system offers a dramatic case of mountainous rivers at active margins for S2S study. Here we report some results about modern sedimentation in KP river's dispersal system. Seventy-six sediment cores collected from an area of ~3000 km2 were analyzed for fallout nuclides 7Be, 137Cs and 210Pb by gamma spectrometry. From profiles of excess 210Pb and 137Cs sediment accumulation rates in the coring sites were estimated, which vary from 0.06 to 1.6 cm/yr, with the highest rates (>1 cm/yr) distributed in the upper slope (<600 m) on both sides of the KP canyon. The area with high sedimentation rates on Pb-210 time scale coincides with the area covered by a flood layer resulting from Typhoon Haitang during July 18-20, 2005. This suggests that the open margin on the upper slope is a depocenter for sediment dispersed via a surface component of the river's plume on various timescales (from events to centennial). With a total of 76 sampling points laid out, a framework consisting of 105 triangular grids is configured to calculate the budget of sediment in the study area. The calculated budget, at 7.2 MT/yr, accounts for only ~15% of KP river's sediment discharge. We speculate that most of the remainder is exported out of the study area via the KP canyon to the deep sea by gravity-driven turbidity or hyperpycnal flows.

  15. 33 CFR 209.141 - Coordination of hydroelectric power operations with power marketing agencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... power operations with power marketing agencies. 209.141 Section 209.141 Navigation and Navigable Waters... Coordination of hydroelectric power operations with power marketing agencies. (a) Purpose. This regulation... generating facilities with the power marketing agencies. (b) Applicability. This regulation applies to all...

  16. Tracing Water Sources and Quantifying Evaporation in the Brazos River, Central Texas

    NASA Astrophysics Data System (ADS)

    VanPlantinga, A.; Hunt, L. E.; Winning, D.; Robertson, J.; Stockert, E.; Roark, E.; Grossman, E. L.

    2013-12-01

    Situated in the subtropical dry zone, Central Texas is sensitive to the effects of climate change, notably drought; furthermore, developments over the last century in agriculture, urban infrastructure, and river engineering have altered the landscape extensively. This study models water source mixing and seasonal variation in evaporation in Brazos River waters in Central Texas. The Brazos River from Waco to College Station, Texas is generally characterized as having dissolved salt load derived mostly from Lake Whitney (a flood-control and hydroelectric storage reservoir) and groundwater baseflow from the adjacent shallow alluvial aquifer. Brazos River water δ18O, δD, and conductivity were measured bi-weekly in Brazos County, Texas from January 2012 through August 2013. Conductivity, δ18O, and δD vary seasonally and are positively correlated. The Brazos River δ18O-δD data from Brazos County fall along a local evaporation line (δD = 5.66 * δ18O - 2.47, r2 = 0.95) that intersects and surpasses values for Lake Whitney. In contrast, the δ18O-conductivity trend for the Brazos River does not intersect data for Lake Whitney. These observations suggest mixing with an evaporated water source of lower conductivity. The relative contribution of other Brazos River water sources is uncertain. Percent evaporation of original rain sampled as Brazos River water was estimated using a Rayleigh distillation model and the method of Gonfiantini (1986) while assuming 1) a closed system with an atmospheric exchange component, and 2) δ18O and δD values of local rain are -5.33‰ and -32.6‰, respectively. Modeled percent evaporation of original rain varies from winter (JFM; 1%-20%) to spring (AMJ; 9-25%) to summer (JAS; 16-33%), to fall (OND; 15-24%). Rayleigh distillation modeling estimates are consistently higher (~5%) than those estimated by Gonfiantini's method. A simple mass-balance model predicts that Brazos River water percent evaporation and δ18O enrichment are 2

  17. Evaluation of melioration area damage on the river Danube caused by the hydroelectric power plant 'Djerdap 1' backwater.

    PubMed

    Pajic, P; Andjelic, L; Urosevic, U; Polomcic, D

    2014-01-01

    Construction of the hydroelectric power plant (HPP) 'Djerdap 1' formed a backwater effect on the Danube and its tributaries, which had an inevitable influence on groundwater level, causing it to rise and thus creating additional threats to all melioration areas on more than 300 km of the Danube riversides, as well as on the riversides of its tributaries: the Sava (100 km) and the Tisa (60 km). In this paper, the HPP 'Djerdap 1' backwater effect on some characteristic melioration areas (34 in all) has been analyzed. In most of these areas intensive agricultural activity has always been present. An assessment of agricultural production damage was carried out by complex hydrodynamic calculations (60 calculation profiles) for different backwater regimes, with the aim to precisely quantify the HPP 'Djerdap 1' backwater effect on groundwater piezometric levels. Combining them with complex agroeconomic analyses, the aim is to quantify agricultural production damage and to consider the perspective of melioration area users. This method, which combines two different, but compatible, aspects of the melioration area threat assessment (hydrodynamic and agroeconomic), may present a quality base for further agricultural production threat assessment on all melioration areas on the Danube riversides, with the final aim to consider the economic effects and the importance of its further protection.

  18. Final Technical Report - Modernization of the Boulder Canyon Hydroelectric Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taddeucci, Joe

    2013-03-29

    unit is a double nozzle Pelton turbine with a 10-to-1 flow turndown and a maximum turbine/generator efficiency of 88%. This alone represents a 6% increase in overall efficiency. The old turbine operated at low efficiencies due to age and non-optimal sizing of the turbine for the water flow available to the unit. It was shut down whenever water flow dropped to less than 4-5 cfs, and at that flow, efficiency was 55 to 60%. The new turbine will operate in the range of 70 to 88% efficiency through a large portion of the existing flow range and would only have to be shut down at flow rates less than 3.7 cfs. Efficiency is expected to increase by 15-30%, depending on flow. In addition to the installation of new equipment, other goals for the project included: Increasing safety at Boulder Canyon Hydro Increasing protection of the Boulder Creek environment Modernizing and integrating control equipment into Boulder's municipal water supply system, and Preserving significant historical engineering information prior to power plant modernization. From January 1, 2010 through December 31, 2012, combined consultant and contractor personnel hours paid for by both the city and the federal government have totaled approximately 40,000. This equates roughly to seven people working full time on the project from January 2010 through December 2012. This project also involved considerable material expense (steel pipe, a variety of valves, electrical equipment, and the various components of the turbine and generator), which were not accounted for in terms of hours spent on the project. However, the material expense related to this project did help to create or preserve manufacturing/industrial jobs throughout the United States. As required by ARRA, the various components of the hydroelectric project were manufactured or substantially transformed in the U.S. BCH is eligible for nomination to the National Register of Historic Places due in part to its unique engineering features and innovative

  19. Urban Flood Management with Integrated Inland-River System in Seoul

    NASA Astrophysics Data System (ADS)

    Moon, Y. I.; Kim, J. S.; Yuk, J. M.

    2015-12-01

    Global warming and climate change have caused significant damage and loss of life worldwide. The pattern of natural disasters has gradually diversified and their frequency is increasing. The impact of climate change on flood risk in urban rivers is of particular interest because these areas are typically densely populated. The occurrence of urban river flooding due to climate change not only causes significant loss of life and property but also causes health and social problems. It is therefore necessary to develop a scientific urban flood management system to cope with and reduce the impacts of climate change, including flood damage. In this study, we are going to introduce Integrated Inland-River Flood Analysis System in Seoul to conduct predictions on flash rain or short-term rainfall by using radar and satellite information and perform prompt and accurate prediction on the inland flooded areas. In addition, this urban flood management system can be used as a tool for decision making of systematic disaster prevention through real-time monitoring.

  20. 77 FR 14516 - Alabama Power Company, Martin Dam Hydroelectric Project; Notice of Proposed Revised Restricted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... a Programmatic Agreement for Managing Properties Included in or Eligible for Inclusion in the... for inclusion in, the National Register of Historic Places at the Martin Dam Hydroelectric Project...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abernethy, C. Scott; Neitzel, Duane A.; Lusty, E. William

    The Bonneville Power Administration (BPA), the United States Bureau of Reclamation (USSR), and the Washington State Department of Ecology (WDOE) are funding the construction and evaluation of fish passage facilities and fish protection facilities at irrigation and hydroelectric diversions in the Yakima River Basin, Washington State. The program provides offsite enhancement to compensate for fish and wildlife losses caused by hydroelectric development throughout the Columbia River Basin, and addresses natural propagation of salmon to help mitigate the impact of irrigation in the Yakima River Basin. This report evaluates the flow characteristics of the screening facilities. Studies consisted of velocity measurementsmore » taken in front of the rotary drum screens and within the fish bypass systems during peak flows. Measurements of approach velocity and sweep velocity were emphasized in these studies; however, vertical velocity was also measured. 5 refs., 18 figs., 15 tabs.« less

  2. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, 1998-1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter J.; Blenden, Michael L.; Kucera, Paul A.

    2002-08-01

    This report summarizes the results of the Lower Snake River Compensation Plan Hatchery Evaluation Studies (LSRCP) and the Imnaha Smolt Monitoring Program (SMP) for the 1999 smolt migration from the Imnaha River, Oregon. These studies were designed and closely coordinated to provide information about juvenile natural and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) biological characteristics, behavior and emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam on the Columbia River. Data collected from these studies are shared with the Fish Passage Center (FPC). These data are essential to quantify smoltmore » survival rates under the current passage conditions and to evaluate the future recovery strategies that seek to optimize smolt survival through the hydroelectric system. Information shared with the FPC assists with in-season shaping of flow and spill management requests in the Snake River reservoirs. The Bonneville Power Administration and the United States Fish and Wildlife Service contracted the Nez Perce Tribe (NPT) to monitor emigration timing and tag 21,200 emigrating natural and hatchery chinook salmon and steelhead smolts from the Imnaha River during the spring emigration period (March 1-June 15) with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 1999 marked the eighth year of emigration studies on the Imnaha River and the sixth year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Determine spring emigration timing of chinook salmon and steelhead smolts collected at the Imnaha River trap. (2) Evaluate effects of flow, temperature and other environmental factors on emigration timing. (3) Monitor the daily catch and biological characteristics of juvenile chinook salmon and steelhead smolts collected at the Imnaha River screw trap. (4) Determine emigration timing, travel time

  3. Rivers of Energy: The Hydropower Potential. Worldwatch Paper No. 44.

    ERIC Educational Resources Information Center

    Deudney, Daniel

    Described are the history, current status and future potential of hydroelectric power in the world. Issues discussed include the environmental and social impacts of dam construction, and the use of small-scale hydroelectric installations in developing nations. Also considered are hydroelectric development of the world's remote regions, the need to…

  4. 37. SAR2, SHOWING OIL CIRCUIT BREAKERS (ABOVE) AND GENERATOR FIELD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. SAR-2, SHOWING OIL CIRCUIT BREAKERS (ABOVE) AND GENERATOR FIELD COIL CONTROL RHEOSTATS (BELOW). SCE negative no. 10331, November 1, 1923. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  5. 23. OVERVIEW OF SAR3 AREA, SHOWING CORNER OF SAR3 WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. OVERVIEW OF SAR-3 AREA, SHOWING CORNER OF SAR-3 WITH TAILRACE, ADMINISTRATIVE OFFICE, TOILET SHED, AND RETAINING WALLS AT FORMER EMPLOYEE HOUSING SITE. VIEW TO SOUTHEAST. PANORAMA 1/2. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  6. 2. SPILLWAYS AND ROCKDROP, SANTA ANA NO. 3, EXHIBIT L, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SPILLWAYS AND ROCK-DROP, SANTA ANA NO. 3, EXHIBIT L, JAN. 25, 1956. SCE drawing no. 541724 (sheet 5; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, SAR-3 Forebay & Penstock, Redlands, San Bernardino County, CA

  7. 46. LONGITUDINAL SECTION POWER HOUSE S.A.R. NO. 2, EDISON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. LONGITUDINAL SECTION - POWER HOUSE S.A.R. NO. 2, EDISON PROJECT, APR. 30, 1945. SCE drawing no. 523198 (sheet no. 8; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  8. 9. HIGH LENNON FLUME, SANTA ANA NO 3, EXHIBIT L, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. HIGH LENNON FLUME, SANTA ANA NO 3, EXHIBIT L, JAN. 25, 1956. SCE drawing no. 541723 (sheet 3; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Warm Springs Canyon-SAR-3 Flumes, Redlands, San Bernardino County, CA

  9. 5. SANDBOX BETWEEN TUNNELS 12. SANTA ANA NO. 3, EXHIBIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SANDBOX BETWEEN TUNNELS 1-2. SANTA ANA NO. 3, EXHIBIT L, JAN. 25, 1956. SCE drawing no. 541727 (sheet 2; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Sandbox, SAR-3 Flowline, Redlands, San Bernardino County, CA

  10. Mines as lower reservoir of an UPSH (Underground Pumping Storage Hydroelectricity): groundwater impacts and feasibility

    NASA Astrophysics Data System (ADS)

    Bodeux, Sarah; Pujades, Estanislao; Orban, Philippe; Dassargues, Alain

    2016-04-01

    The energy framework is currently characterized by an expanding use of renewable sources. However, their intermittence could not afford a stable production according to the energy demand. Pumped Storage Hydroelectricity (PSH) is an efficient possibility to store and release electricity according to the demand needs. Because of the topographic and environmental constraints of classical PSH, new potential suitable sites are rare in countries whose topography is weak or with a high population density. Nevertheless, an innovative alternative is to construct Underground Pumped Storage Hydroelectricity (UPSH) plants by using old underground mine works as lower reservoir. In that configuration, large amount of pumped or injected water in the underground cavities would impact the groundwater system. A representative UPSH facility is used to numerically determine the interactions with surrounding aquifers Different scenarios with varying parameters (hydrogeological and lower reservoir characteristics, boundaries conditions and pumping/injection time-sequence) are computed. Analysis of the computed piezometric heads around the reservoir allows assessing the magnitude of aquifer response and the required time to achieve a mean pseudo-steady state under cyclic solicitations. The efficiency of the plant is also evaluated taking the leakage into the cavity into account. Combining these two outcomes, some criterions are identified to assess the feasibility of this type of projects within potential old mine sites from a hydrogeological point of view.

  11. Sediment supply as a driver of river evolution in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ahmed, Joshua; Constantine, José Antonio; Dunne, Thomas; Legleiter, Carl; Lazarus, Eli D.

    2015-04-01

    The Amazon represents the only large river basin in the world where there is a sufficient range of sediment supplies and a lack of engineering controls to assess how sediment supply drives the evolution of meandering rivers. Despite recent analytical advances (Asahi et al., 2013; Pittaluga and Seminara, 2011), modern theory does not yet identify or explain the effects of externally imposed sediment supplies, a fundamental river characteristic, on meandering river evolution. These sediment supplies would be radically reduced by the construction of large dams proposed for the Amazon Basin (Finer and Jenkins, 2012). Here, we demonstrate that the sediment loads imposed by their respective drainage basins determine planform changes in lowland rivers across the Amazon. Our analysis, based on Landsat image sequences, indicates that rivers with high sediment loads draining the Andes and associated foreland basin experience annual migration rates that are on average four times faster than rivers with lower sediment loads draining the Central Amazon Trough and shields. Incidents of meander cutoff also occur more frequently along the rivers of the Andes and foreland basin, where the number of oxbows in the floodplains is more than twice that observed in the floodplains of the Central Amazon Trough and shields. Our results, which cannot be explained by differences in channel slope or hydrology, highlight the importance of sediment supply in modulating the ability of meandering alluvial rivers to reshape the floodplain environment through river migration. Asahi, K., Shimizu, Y., Nelson, J., Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2013JF002752. Finer, M., Jenkins, C.N., 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS One, 7(4), e35126. Pittaluga, M.B., Seminara, G., 2011. Nonlinearity and unsteadiness in river

  12. Analysis of the ancient river system in Loulan period in Lop Nur region

    NASA Astrophysics Data System (ADS)

    Zhu, Jianfeng; Jia, Peng; Nie, Yueping

    2010-09-01

    The Lop Nur region is located in the east of the Tarim Basin. It has served as the strategic passage and communication hub of the Silk Road since Han Dynasty. During Wei-Jin period, the river system there was well developed and the ancient city of Loulan was bred there. In this study, GIS is used to accomplish automatic extraction of the river course in the Lop Nur region at first using ArcGIS. Then the RCI index is constituted to extract ancient river course from Landsat ETM image with band 3 and band 4. It is concluded that the north river course of Peacock River conformed before the end of the 4th century AD according to the distribution of the entire river course of the Lop Nur region. Later, the Peacock River changed its way to south to Tarim River, and flowed into Lop Nur along the direction paralleling Altun Mountain from west to east. It was the change of the river system that mainly caused the decrease in water supply around ancient city of Loulan before the end of 4th century. The ancient city of Loulan has been gradually ruined in the sand because of the absence of water supply since then.

  13. [Malaria and hematological aspects among residents to be impacted by reservoirs for the Santo Antônio and Jirau Hydroelectric Power Stations, Rondônia State, Brazil].

    PubMed

    Katsuragawa, Tony Hiroshi; Cunha, Roberto Penna de Almeida; de Souza, Daniele Cristina Apoluceno; Gil, Luiz Herman Soares; Cruz, Rafael Bastos; Silva, Alexandre de Almeida E; Tada, Mauro Shugiro; da Silva, Luiz Hildebrando Pereira

    2009-07-01

    In Rondônia State, Brazil, two new hydroelectric plants, Santo Antônio and Jirau, are scheduled for construction on the Madeira River, upriver from the State capital, Porto Velho. The current study analyzes malaria prevalence before the construction and provides information on the possible impacts of malaria burden related to the influx of thousands of persons attracted by direct and indirect employment opportunities. According to the findings, malaria is present throughout the region, with varying prevalence rates. The existence of potential asymptomatic malaria carriers among the local population may be epidemiologically relevant and should be considered in the malaria control programs organized by public authorities and companies responsible for building the power plants, aimed at early diagnosis and treatment, vector control, water supply, and infrastructure in the urban areas.

  14. On a Model of a Nonlinear Feedback System for River Flow Prediction

    NASA Astrophysics Data System (ADS)

    Ozaki, T.

    1980-02-01

    A nonlinear system with feedback is proposed as a dynamic model for the hydrological system, whose input is the rainfall and whose output is the discharge of river flow. Parameters and orders of the model are estimated using Akaike's information criterion. Its application to the prediction of daily discharges of Kanna River and Bird Creek is discussed.

  15. Monitoring the resilience of rivers as social-ecological systems: a paradigm shift for river assessment in the 21st Century

    EPA Science Inventory

    First, we briefly describe the development of the major, biophysically-focused river assessment and monitoring approaches over the last 50 years. We then assess the utility of biophysical parameters for assessing rivers as social-ecological systems. We then develop a framework de...

  16. Status and trends of selected resources in the Upper Mississippi River System

    USGS Publications Warehouse

    Johnson, Barry L.; Hagerty, Karen H.

    2010-01-01

    Like other large rivers, the Upper Mississippi River System (UMRS) serves a diversity of roles. The UMRS provides commercial and recreational fishing, floodplain agriculture, drinking water for many communities, an important bird migration pathway, a variety of recreational activities, and a navigation system that transports much of the country's agricultural exports. These multiple roles present significant management challenges. Regular assessment of the condition of the river is needed to improve management plans and evaluate their effectiveness. This report provides a summary of the recent status (mean and range of conditions) and trends (change in direction over time) for 24 indicators of the ecological condition of the Upper Mississippi and Illinois Rivers using data collected through the Long Term Resource Monitoring Program (LTRMP). The 24 indicators were grouped into seven categories: hydrology, sedimentation, water quality, land cover, aquatic vegetation, invertebrates, and fish. Most of the data used in the report were collected between about 1993 and 2004, although some older data were also used to compare to recent conditions.Historical observations and current LTRMP data clearly indicate that the UMRS has been changed by human activity in ways that have diminished the ecological health of the river. The data indicate that status and trends differ among regions, and we expect that regional responses to various ecological rehabilitation techniques will differ as well. The continuing role of the LTRMP will be to provide the data needed to assess changes in river conditions and to determine how those changes relate to management actions, natural variation, and the overall ecological integrity of the river system.

  17. Transboundary water resources management and livelihoods: interactions in the Senegal river

    NASA Astrophysics Data System (ADS)

    Bruckmann, Laurent; Beltrando, Gérard

    2016-04-01

    In Sub-Saharan Africa, 90 % of wetlands provide ecosystem services to societies, especially for agriculture and fishing. However, tropical rivers are increasingly regulated to provide hydroelectricity and irrigated agriculture. Modifications of flows create new hydrological conditions that affect floodplains ecology and peoples' livelihoods. In the Senegal river valley, large dams were built during the 1980's to secure water resources after a decade of water scarcity in the 1970's: Manantali in the upper basin with a reservoir of 12km3 and Diama close to estuary to avoid saltwater intrusion during dry season. Senegal river water resources are known under the supervision of Senegal River Basin Development Organization (OMVS), which defines water allocation between different goals (electricity, irrigation, traditional activities). This study, based on the concept of socio-hydrology, analyses socio-ecological changes following thirty years of dam management. The work enlightens adaptation mechanisms of livelihoods from people living along the river floodplain and feedback on water ressources. The study uses a mixed method approach, combining hydrological analyses, literature review and data collection from surveys on stakeholders and key informants level in the middle Senegal valley. Our results suggest that in all the Senegal river valley, socio-ecological changes are driven by new hydrological conditions. If dam management benefit for peoples with electrification and development of an irrigated agriculture, it has also emphasized the floodplain degradation. Flooded area has decline and are more irregular, causing an erosion of floodplain supporting services (traditional activities as fishing, grazing and flood-recession agriculture). These conditions reduce peoples' livelihood possibilities and irrigation is the only regular activity. As a feedback, irrigated agriculture increases withdrawals in the river and, recently, in aquifers posing a new uncertainty on water

  18. Examining the evolution of an ancient irrigation system: the Middle Gila River Canals

    NASA Astrophysics Data System (ADS)

    Zhu, Tianduowa; Ertsen, Maurits

    2014-05-01

    Studying ancient irrigation systems reinforces to understand the co-evolution process between the society and water systems. In the prehistoric Southwest of America, the irrigation has been a crucial feature of human adaptation to the dry environment. The influences of social arrangements on irrigation managements, and implications of the irrigation organization in social developments are main issues that researchers have been exploring for a long time. The analysis of ceramics pattern and distribution has assisted to the reconstruction of prehistoric social networks. The existing study shows that, a few pottery fragments specially produced by the materials of the middle Gila River valley, were found in the Salt River valley; however, very few specialized ceramics of the Salt River valley occurred in the middle Gila River valley. It might indicate that there were trades or exchanges of potteries or raw materials from the middle Gila River valley to the Salt River valley. The most popular hypothesis of trading for the potteries is crop production. Based on this hypothesis, the ceramics trade was highly tied to the irrigation system change. Therefore, examining the changing relationship among the ceramics distribution along the middle Gila River, canals flow capacity, and available streamflows, can provide an insight into the evolutionary path among the social economy, irrigation and water environment. In this study, we reconstruct the flow capacity of canals along the middle Gila River valley. In combination with available streamflow from the middle Gila River, we can simulate how much water could be delivered to the main canals and lateral canals. Based on the variation and chronology of potteries distribution, we may identify that, the drama of the middle Gila River receiving insufficient flows for crop irrigation caused the development of ceramics exchange; or the rising of potteries exchange triggers the decline of irrigation in the study area.

  19. Grid-connected in-stream hydroelectric generation based on the doubly fed induction machine

    NASA Astrophysics Data System (ADS)

    Lenberg, Timothy J.

    Within the United States, there is a growing demand for new environmentally friendly power generation. This has led to a surge in wind turbine development. Unfortunately, wind is not a stable prime mover, but water is. Why not apply the advances made for wind to in-stream hydroelectric generation? One important advancement is the creation of the Doubly Fed Induction Machine (DFIM). This thesis covers the application of a gearless DFIM topology for hydrokinetic generation. After providing background, this thesis presents many of the options available for the mechanical portion of the design. A mechanical turbine is then specified. Next, a method is presented for designing a DFIM including the actual design for this application. In Chapter 4, a simulation model of the system is presented, complete with a control system that maximizes power generation based on water speed. This section then goes on to present simulation results demonstrating proper operation.

  20. The ecological dynamics of Barra Bonita (Tietê River, SP, Brazil) reservoir: implications for its biodiversity.

    PubMed

    Tundisi, J G; Matsumura-Tundisi, T; Abe, D S

    2008-11-01

    Barra Bonita reservoir is located in the Tietê River Basin - São Paulo state - 22 degrees 29' to 22 degrees 44' S and 48 degrees 10 degrees W and it is the first of a series of six large reservoirs in this river. Built up in 1963 with the aim to produce hydroelectricity this reservoir is utilized for several activities such as fish production, irrigation, navigation, tourism and recreation, besides hydroelectricity production. The seasonal cycle of events in this reservoir is driven by the hydrological features of the basin with consequences on the retention time and on the limnological functions of this artificial ecosystem. The reservoir is polymitic with short periods of stability. Hydrology of the basin, retention time of the reservoir and cold fronts have an impact in the vertical and horizontal structure of the system promoting rapid changes in the planktonic community and in the succession of species. Blooms of Microcystis sp. are common during periods of stability. Superimposed to the climatological and hydrological forcing functions the human activities in the watershed produce considerable impact such as the discharge of untreated wastewater, the high suspended material contributions and fertilizers from the sugar cane plantations. The fish fauna of the reservoir has been changed extent due to the introduction of exotic fish species that exploit the pelagic zone of the reservoir. Changes in the primary productivity of phytoplankton in this reservoir, in the zooplankton community in the diversity and organization of trophic structure are a consequence of eutrophication and its increase during the last 20 years. Control of eutrophication by treating wastewater from urban sources, adequate agricultural practices in order to diminish the suspended particulate matter contribution, revegetation of the watershed and riparian forests along the tributaries are some possible restoration measures. Another action that can be effective is the protection of wetlands

  1. Hydrodynamic modeling of hydrologic surface connectivity within a coastal river-floodplain system

    NASA Astrophysics Data System (ADS)

    Castillo, C. R.; Guneralp, I.

    2017-12-01

    Hydrologic surface connectivity (HSC) within river-floodplain environments is a useful indicator of the overall health of riparian habitats because it allows connections amongst components/landforms of the riverine landscape system to be quantified. Overbank flows have traditionally been the focus for analyses concerned with river-floodplain connectivity, but recent works have identified the large significance from sub-bankfull streamflows. Through the use of morphometric analysis and a digital elevation model that is relative to the river water surface, we previously determined that >50% of the floodplain for Mission River on the Coastal Bend of Texas becomes connected to the river at streamflows well-below bankfull conditions. Guided by streamflow records, field-based inundation data, and morphometric analysis; we develop a two-dimensional hydrodynamic model for lower portions of Mission River Floodplain system. This model not only allows us to analyze connections induced by surface water inundation, but also other aspects of the hydrologic connectivity concept such as exchanges of sediment and energy between the river and its floodplain. We also aggregate hydrodynamic model outputs to an object/landform level in order to analyze HSC and associated attributes using measures from graph/network theory. Combining physically-based hydrodynamic models with object-based and graph theoretical analyses allow river-floodplain connectivity to be quantified in a consistent manner with measures/indicators commonly used in landscape analysis. Analyzes similar to ours build towards the establishment of a formal framework for analyzing river-floodplain interaction that will ultimately serve to inform the management of riverine/floodplain environments.

  2. 11. INTAKE FLUME AND TUNNEL SECTIONS, SANTA ANA NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTAKE FLUME AND TUNNEL SECTIONS, SANTA ANA NO. 3, EXHIBIT L, JAN. 25, 1956. SCE drawing no. 541728 (sheet 1; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Warm Springs Canyon-SAR-3 Flumes, Redlands, San Bernardino County, CA

  3. 10. TYPICAL DETAILS OF LENNON FLUME, SANTA ANA NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. TYPICAL DETAILS OF LENNON FLUME, SANTA ANA NO. 3, EXHIBIT L, JAN. 25, 1956. SCE drawing no. 541722 (sheet 4; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Warm Springs Canyon-SAR-3 Flumes, Redlands, San Bernardino County, CA

  4. Landscape ecology of the Upper Mississippi River System: Lessons learned, challenges and opportunities

    USGS Publications Warehouse

    DeJager, Nathan R.

    2016-03-22

    The Upper Mississippi River System (UMRS) is a mosaic of river channels, backwater lakes, floodplain forests, and emergent marshes. This complex mosaic supports diverse aquatic and terrestrial plant communities, over 150 fish species; 40 freshwater mussel species; 50 amphibian and reptile species; and over 360 bird species, many of which use the UMRS as a critical migratory route. The river and floodplain are also hotspots for biogeochemical activity as the river-floodplain collects and processes nutrients derived from the UMR basin. These features qualify the UMRS as a Ramsar wetland of international significance.Two centuries of land-use change, including construction for navigation and conversion of large areas to agriculture, has altered the broad-scale structure of the river and changed local environmental conditions in many areas. Such changes have affected rates of nutrient processing and transport, as well as the abundance of various fish, mussel, plant, and bird species. However, the magnitude and spatial scale of these effects are not well quantified, especially in regards to the best methods and locations for restoring various aspects of the river ecosystem.The U.S. Congress declared the navigable portions of the Upper Mississippi River System (UMRS) a “nationally significant ecosystem and nationally significant commercial navigation system” in the Water Resources Development Act of 1986 (Public Law 99-662) and launched the Upper Mississippi River Restoration (UMRR) Program, the first comprehensive program for ecosystem restoration, monitoring, and research on a large river system. This fact sheet focuses on landscape ecological studies conducted by the U.S. Geological Survey to support decision making by the UMRR with respect to ecosystem restoration.

  5. Interactive Forecasting with the National Weather Service River Forecast System

    NASA Technical Reports Server (NTRS)

    Smith, George F.; Page, Donna

    1993-01-01

    The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.

  6. Evolution of biomolecular loadings along a major river system

    NASA Astrophysics Data System (ADS)

    Freymond, Chantal V.; Kündig, Nicole; Stark, Courcelle; Peterse, Francien; Buggle, Björn; Lupker, Maarten; Plötze, Michael; Blattmann, Thomas M.; Filip, Florin; Giosan, Liviu; Eglinton, Timothy I.

    2018-02-01

    Understanding the transport history and fate of organic carbon (OC) within river systems is crucial in order to constrain the dynamics and significance of land-ocean interactions as a component of the global carbon cycle. Fluvial export and burial of terrestrial OC in marine sediments influences atmospheric CO2 over a range of timescales, while river-dominated sedimentary sequences can provide valuable archives of paleoenvironmental information. While there is abundant evidence that the association of organic matter (OM) with minerals exerts an important influence on its stability as well as hydrodynamic behavior in aquatic systems, there is a paucity of information on where such associations form and how they evolve during fluvial transport. Here, we track total organic carbon (TOC) and terrestrial biomarker concentrations (plant wax-derived long-chain fatty acids (FA), branched glycerol dialkyl glycerol tetraethers (brGDGTs) and lignin-derived phenols) in sediments collected along the entire course of the Danube River system in the context of sedimentological parameters. Mineral-specific surface area-normalized biomarker and TOC concentrations show a systematic decrease from the upper to the lower Danube basin. Changes in OM loading of the available mineral phase correspond to a net decrease of 70-80% of different biomolecular components. Ranges for biomarker loadings on Danube River sediments, corresponding to 0.4-1.5 μgFA/m2 for long-chain (n-C24-32) fatty acids and 17-71 ngbrGDGT/m2 for brGDGTs, are proposed as a benchmark for comparison with other systems. We propose that normalizing TOC as well as biomarker concentrations to mineral surface area provides valuable quantitative constraints on OM dynamics and organo-mineral interactions during fluvial transport from terrigenous source to oceanic sink.

  7. 76 FR 1148 - CRD Hydroelectric LLC, Iowa; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... reviewed the application for an original license for the Red Rock Hydroelectric Project (FERC Project No... Engineers' Red Rock Dam. Staff prepared an environmental assessment (EA), which analyzes the potential... the Public Reference Room or may be viewed on the Commission's Web site at http://www.ferc.gov using...

  8. An Integrated Decision Support System for Water Quality Management of Songhua River Basin

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping; Yin, Qiuxiao; Chen, Ling

    2010-11-01

    In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.

  9. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia

    PubMed Central

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments. PMID:26132139

  10. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia.

    PubMed

    Benchimol, Maíra; Peres, Carlos A

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments.

  11. Hydrologic Engineering Center River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement

    DTIC Science & Technology

    2017-09-18

    Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement En vi ro nm en ta l L ab or at or y...Engineering Center-River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental...Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000 Under Project 396939, “Missouri River Recovery Management Plan and Environmental

  12. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River: Recommendations for Fisheries Enhancement: Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashe, Becky L.; Scholz, Allan T.

    1992-03-01

    This report recommends resident fish substitution projects to partially replace anadromous fish losses caused by construction of Grand Coulee and Chief Joseph Dams. These recommendations involve enhancing the resident fishery in the Pend Oreille River as a substitute for anadromous fish losses. In developing these recommendations we have intentionally attempted to minimize the impact upon the hydroelectric system and anadromous fish recovery plans. In this report we are recommending that the Northwest Power Planning Council direct Bonneville Power Administration to fund the proposed enhancement measures as resident fish substitution projects under the NPPC's Columbia Basin Fish and Wildlife Program. Themore » Pend Oreille River, located in northeast Washington, was historically a free flowing river which supported anadromous steelhead trout and chinook salmon, and large resident cutthroat trout and bull trout. In 1939, Grand Coulee Dam eliminated the anadromous species from the river. In 1955, Box Canyon Dam was constructed, inundating resident trout habitat in the river and creating many back water and slough areas. By the late 1950's the fishery in the reservoir had changed from a quality trout fishery to a warm water fishery, supporting largemouth bass, yellow perch and rough fish (tenth, suckers, squawfish). The object of this study was to examine the existing fishery, identify fishery improvement opportunities and recommend fishery enhancement projects. Three years of baseline data were collected from the Box Canyon portion of the Pend Oreille River to assess population dynamics, growth rates, feeding habits, behavior patterns and factors limiting the fishery. Fishery improvement opportunities were identified based on the results of these data. Relative abundance surveys in the reservoir resulted in the capture of 47,415 fish during the study. The most abundant species in the reservoir were yellow perch, composing 44% of the fish captured. The perch

  13. Surface-geophysical characterization of ground-water systems of the Caloosahatchee River basin, southern Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.; Locker, Stanley D.; Hine, Albert C.; Bukry, David; Barron, John A.; Guertin, Laura A.

    2001-01-01

    The Caloosahatchee River Basin, located in southwestern Florida, includes about 1,200 square miles of land. The Caloosahatchee River receives water from Lake Okeechobee, runoff from the watershed, and seepage from the underlying ground-water systems; the river loses water through drainage to the Gulf of Mexico and withdrawals for public-water supply and agricultural and natural needs. Water-use demands in the Caloosahatchee River Basin have increased dramatically, and the Caloosahatchee could be further stressed if river water is used to accommodate restoration of the Everglades. Water managers and planners need to know how much water will be used within the river basin and how much water is contributed by Lake Okeechobee, runoff, and ground water. In this study, marine seismic-reflection and ground-penetrating radar techniques were used as a means to evaluate the potential for flow between the river and ground-water systems. Seven test coreholes were drilled to calibrate lithostratigraphic units, their stratal geometries, and estimated hydraulic conductivities to surface-geophysical profiles. A continuous marine seismic-reflection survey was conducted over the entire length of the Caloosahatchee River and extending into San Carlos Bay. Lithostratigraphic units that intersect the river bottom and their characteristic stratal geometries were identified. Results show that subhorizontal reflections assigned to the Tamiami Formation intersect the river bottom between Moore Haven and about 9 miles westward. Oblique and sigmoidal progradational reflections assigned to the upper Peace River Formation probably crop out at the floor of the river in the Ortona area between the western side of Lake Hicpochee and La Belle. These reflections image a regional-scale progradational deltaic depositional system containing quartz sands with low to moderate estimated hydraulic conductivities. In an approximate 6-mile length of the river between La Belle and Franklin Lock, deeper

  14. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, G.F.

    1996-01-01

    -feet, and storage decreased from 1952 to 1964 and from 1976 to 1980 because of below-normal precipitation and increased withdrawals of ground water for irrigation. Annual ground-water discharge increased to about 7.1 million acre-feet in 1980, or about 80 percent since the start of irrigation. About 10 percent of the 1980 total discharge was ground-water pumpage. About 3.1 million acres, or almost one-third of the plain, was irrigated during 1980: 2.0 million acres with surface water, 1.0 million acres with ground water, and 0.1 million acres with combined surface and ground water. About 8.9 million acre-feet of Snake River water was diverted for irrigation during 1980 and 2.3 million acre-feet of ground water was pumped from 5,300 wells. Most irrigation wells on the eastern plain are open to basalt. About two-thirds of them yield more than 1,500 gallons per minute with a reported maximum of 7,240 gallons per minute; drawdown is less than 20 feet in two-thirds of the wells. Most irrigation wells on the western plain are open to sedimentary rocks. About one-third of them yield more than 1,00 gallons per minute with a reported maximum of 3,850 gallons per minute; drawndown is less than 20 feet in about one-fifth of the wells. The major instream use of water on the Snake River Plain is hydroelectric power generation. Fifty-two million acre-feet of water generated 2.6 million megawatthours of electricity during 1980. Digital computer ground-water flows models of the eastern and western plain reasonably simulated regional changes in water levels and ground-water discharges from 1880 (preirrigation) to 1980. Model results support the concept of three-dimensional flow and the hypotheses of no underflow between the eastern and western plain. Simulation of the regional aquifer system in the eastern plain indicates that is 1980 hydrologic conditions, including pumpage, were to remain the same for another 30 years, moderate declines in ground-water levels and decreases in spring

  15. Description of water-systems operations in the Arkansas River basin, Colorado

    USGS Publications Warehouse

    Abbott, P.O.

    1985-01-01

    To facilitate a current project modeling the hydrology of the Arkansas River basin in Colorado, a description of the regulation of water in the basin is necessary. The geographic and climatic setting of the Arkansas River basin that necessitates the use, reuse, importation, and storage of water are discussed. The history of water-resource development in the basin, leading to the present complex of water systems, also is discussed. Municipal, irrigation, industrial, and multipurpose water systems are described. System descriptions are illustrated with schematic line drawings, and supplemented with physical data tables for the lakes, tunnels, conduits, and canals in the various systems. Copies of criteria under which certain of the water systems operate, are included. (USGS)

  16. 76 FR 28024 - Swan Falls Hydroelectric Project, Idaho Power Company; Notice of Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 503-048-ID] Swan Falls Hydroelectric Project, Idaho Power Company; Notice of Teleconference a. Date and Time of Meeting: Tuesday, May 24, 2011 at 10 a.m. (Mountain Time). b. Place: By copy of this notice we are inviting all interested...

  17. Revolutionising landscapes: Hydroelectricity and the heavy industrialisation of society and environment in the Comte de Beauharnois, 1927--1948

    NASA Astrophysics Data System (ADS)

    Pelletier, Louis-Raphael

    This dissertation analyses the rapid industrialisation of the rural Comte de Beauharnois and the adjacent stretch of the Fleuve Saint-Laurent owing to the construction, between 1929 and 1948, of a gigantic canal for hydroelectricity production and navigation by an electricity corporation called the Beauharnois Light Heat and Power (BLH&P). Using principally the archives of the BLH&P---especially its complaints files and its rich photographic record---this thesis argues that this process exemplifies the finance capitalist reorganisation of the society and ecosystems of the Canadian province of Quebec from the 19th century to the Great Depression. In keeping with recent work in environmental history, the transformation of rural landscapes and a river for heavy industry is described as an important dimension of a revolution in modes of production. More specifically, I argue that, in the case under study, the finance-capitalist reorganisation of Quebec revolved around two central and explicit projects, one social and the other environmental: the grouping of most individuals in an industrial working class without control over the means of production and the reorganisation of rural landscapes into reservoirs of modern energy and industrial natural resources.

  18. Estimated use of water in the Delaware River Basin in Delaware, New Jersey, New York, and Pennsylvania, 2010

    USGS Publications Warehouse

    Hutson, Susan S.; Linsey, Kristin S.; Ludlow, Russell A.; Reyes, Betzaida; Shourds, Jennifer L.

    2016-11-07

    water withdrawn was freshwater. Total groundwater withdrawals were calculated to be 545 Mgal/d (8 percent of the total), all of which was freshwater. During 2010, calculated withdrawals by category, in decreasing order, were: thermoelectric power, 4,910 Mgal/d; public supply, 1,490 Mgal/d; self-supplied industrial, 350 Mgal/d; irrigation, 175 Mgal/d; self-supplied domestic, 117 Mgal/d; mining, 41.3 Mgal/d; aquaculture, 19.3 Mgal/d; livestock, 6.72 Mgal/d, and commercial, 5.89 Mgal/d. The amount of instream use for hydroelectric power generation purposes in 2010 was reported to be 273 Mgal/d for the Wallenpaupack Plant and 127 Mgal/d for the Mongaup River system.Total return flows in the DRB were 2,960 Mgal/d in 2010. Although municipal wastewater-treatment plants accounted for 539 (97 percent) of the return-flow sites, they accounted for about 70 percent of the total return flows in the DRB. There was limited information on return flows from thermoelectric power.

  19. Downstream effects of hydropower production on aquatic macroinvertebrate assemblages in two rivers in Costa Rica.

    PubMed

    Chaves-Ulloa, Ramsa; Umaña-Villalobos, Gerardo; Springer, Monika

    2014-04-01

    Despite the fact that little is known about the consequences of hydropower production in tropical areas, many large dams (> 15 m high) are currently under construction or consideration in the tropics. We researched the effects of large hydroelectric dams on aquatic macroinvertebrate assemblages in two Costa Rican rivers. We measured physicochemical characteristics and sampled aquatic macroinvertebrates from March 2003 to March 2004 in two dammed rivers, Peñas Blancas and San Lorenzo, as well as in the undammed Chachagua River. Sites above and below the dam had differences in their physicochemical variables, with wide variation and extreme values in variables measured below the dam in the San Lorenzo River. Sites below the dams had reduced water discharges, velocities, and depths when compared with sites above the dams, as well as higher temperatures and conductivity. Sites above dams were dominated by collector-gatherer-scrapers and habitat groups dominated by swimmer-clingers, while sites below dams had a more even representation of groups. In contrast, a comparison between two sites at different elevation in the undammed river maintained a similar assemblage composition. Tributaries might facilitate macroinvertebrate recovery above the turbine house, but the assemblage below the turbine house resembled the one below the dam. A massive sediment release event from the dam decreased the abundance per sample and macroinvertebrate taxa below the dam in the Peñas Blancas River. Our study illustrates the effects of hydropower production on neotropical rivers, highlighting the importance of using multiple measures of macroinvertebrate assemblage structure for assessing this type of environmental impact.

  20. 33. A.C. PANEL FOR MENTONE POWER HOUSE, P.L. & P. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. A.C. PANEL FOR MENTONE POWER HOUSE, P.L. & P. CO., LOS ANGELES. RETRACED FROM MASSON'S DRAWING NO. C-275. JAN. 20, 1909. SCE drawing no. 52880. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA

  1. 29. OVERVIEW OF SAR3 COMPLEX, LOOKING NORTHEAST. FROM LEFT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. OVERVIEW OF SAR-3 COMPLEX, LOOKING NORTHEAST. FROM LEFT TO RIGHT, THE STRUCTURES ARE THE SAR-3 POWERHOUSE, SWITCHRACK, OFFICE (IN BACKGROUND), WAREHOUSE, CARPENTER SHOP, MAINTENANCE YARD, STORAGE BUILDING, AND STORAGE GARAGE (IN BACKGROUND). - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  2. 28. PLANS AND SECTIONS OF POWERHOUSE. SANTA ANA NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. PLANS AND SECTIONS OF POWERHOUSE. SANTA ANA NO. 3, EXHIBIT L, JAN. 25, 1956 (SHEET 8; FOR FILING WITH FEDERAL POWER COMMISSION). SCE drawing no. 541729. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA

  3. 4. PLAN AND PROFILES OF PENSTOCK AND SPILLWAY PIPE, SANTA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PLAN AND PROFILES OF PENSTOCK AND SPILLWAY PIPE, SANTA ANA NO. 3, EXHIBIT L, JAN. 25, 1956. SCE drawing no. 541726 (sheet 7; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, SAR-3 Forebay & Penstock, Redlands, San Bernardino County, CA

  4. Performance of a coupled lagged ensemble weather and river runoff prediction model system for the Alpine Ammer River catchment

    NASA Astrophysics Data System (ADS)

    Smiatek, G.; Kunstmann, H.; Werhahn, J.

    2012-04-01

    The Ammer River catchment located in the Bavarian Ammergau Alps and alpine forelands, Germany, represents with elevations reaching 2185 m and annual mean precipitation between1100 and 2000 mm a very demanding test ground for a river runoff prediction system. Large flooding events in 1999 and 2005 motivated the development of a physically based prediction tool in this area. Such a tool is the coupled high resolution numerical weather and river runoff forecasting system AM-POE that is being studied in several configurations in various experiments starting from the year 2005. Corner stones of the coupled system are the hydrological water balance model WaSiM-ETH run at 100 m grid resolution, the numerical weather prediction model (NWP) MM5 driven at 3.5 km grid cell resolution and the Perl Object Environment (POE) framework. POE implements the input data download from various sources, the input data provision via SOAP based WEB services as well as the runs of the hydrology model both with observed and with NWP predicted meteorology input. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. Results obtained in the years 2005-2011 reveal that river runoff simulations depict high correlation with observed runoff when driven with monitored observations in hindcast experiments. The ability to runoff forecasts is depending on lead times in the lagged ensemble prediction and shows still limitations resulting from errors in timing and total amount of the predicted precipitation in the complex mountainous area. The presentation describes the system implementation, and demonstrates the application of the POE framework in networking, distributed computing and in the setup of various experiments as well as long term results of the system application in the years 2005 - 2011.

  5. Role of hydrological events in sediment and sediment-associated heavy metals transport within a continental transboundary river system - Tuul River case study (Mongolia)

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2013-04-01

    The concentration of heavy metals in rivers is often greater in the sediment load than in the water solution. Overall, heavy metal conveyance with sediment transport is a significant contributor to the global transport of heavy metals. Heavy metals once released to a river system may remain in the deposits of the river from short to very long times, for instance depending on to which extent erosion and deposition can influence the sediment mass stored in the river bed. In general, the mobility of contaminated sediments to downstream water recipients may to large extent be governed by natural sediment transport dynamics during hydrological events, such as flow peaks following heavy rainfalls. The Tuul River (Northern Mongolia) belongs to a Tuul River-Orkhon River-Selenga River- transboundary river system that discharges into Lake Baikal. The river system is largely characterized by its natural hydrological regime with numerous rapid peak flow events of the spring-summer periods. However, recent studies indicate contamination of fine sediment with heavy metals coming from placer gold mining area (Zaamar Goldfield) located along the downstream Tuul River. In this work, the general idea is to create a one-dimensional sediment transport model of the downstream Tuul River, and use field-data supported modeling to investigate natural erosion-deposition rates and the role of peak flows in natural sediment transport at 14 km reach just downstream the gold mining area. The model results show that the sediment load of the finest investigated grain size has a great potential to be eroded from the bed of the studied reach, especially during the main peak flow events. However, the same events are associated with a significant deposition of the finest material. The model results also show different hysteresis behavior of the sediment load rating curves (clockwise and counter-clockwise) during the main peak flow events. These are interpreted as effects of changing in

  6. Mercury cycling in the Hells Canyon Complex of the Snake River, Idaho and Oregon

    USGS Publications Warehouse

    Clark, Gregory M.; Naymik, Jesse; Krabbenhoft, David P.; Eagles-Smith, Collin A.; Aiken, George R.; Marvin-DiPasquale, Mark C.; Harris, Reed C.; Myers, Ralph

    2016-07-11

    The Hells Canyon Complex (HCC) is a hydroelectric project built and operated by the Idaho Power Company (IPC) that consists of three dams on the Snake River along the Oregon and Idaho border (fig. 1). The dams have resulted in the creation of Brownlee, Oxbow, and Hells Canyon Reservoirs, which have a combined storage capacity of more than 1.5 million acre-feet and span about 90 miles of the Snake River. The Snake River upstream of and through the HCC historically has been impaired by water-quality issues related to excessive contributions of nutrients, algae, sediment, and other pollutants. In addition, historical data collected since the 1960s from the Snake River and tributaries near the HCC have documented high concentrations of mercury in fish tissue and sediment (Harris and Beals, 2013). Data collected from more recent investigations within the HCC continue to indicate elevated concentrations of mercury and methylmercury in the water column, bottom sediments, and biota (Clark and Maret, 1998; Essig, 2010; Fosness and others, 2013). As a result, Brownlee and Hells Canyon Reservoirs are listed as impaired for mercury by the State of Idaho, and the Snake River from the Oregon and Idaho border through the HCC downstream to the Oregon and Washington border is listed as impaired for mercury by the State of Oregon.

  7. Fish vs. power: Remaking salmon, science and society on the Fraser River, 1900--1960

    NASA Astrophysics Data System (ADS)

    Evenden, Matthew Dominic

    Overlapping resource demands made the Fraser River a contested site of development politics in twentieth century British Columbia. Since the turn of the century, power interests surveyed the river's flow, sited dams and promoted development schemes. Fisheries interests, on the other hand, sought to maintain the river as salmon spawning habitat. They questioned the necessity of dams, supported fisheries research and rehabilitation and organized anti-development coalitions. Before the mid-1950s a number of dam projects proceeded on Fraser tributaries and major landslides at Hells Gate modeled the dangers of main stem development. Because of the concerted political lobbying of fisheries groups, the skeptical appraisal of fisheries scientists to development proposals and the legal and political authority of the federal Department of Fisheries and the International Pacific Salmon Fisheries Commission, major dam projects were defeated on the Fraser in the late 1950s. Delayed development on the Fraser helped to spur hydroelectric projects on other rivers in the province; the fish-power problem on the Fraser altered the province's spatial economy of power. Once development began on the Columbia and Peace Rivers, the Fraser was protected by implication. The study combines approaches from environmental history, the history of science and political economy to demonstrate the intersections and interactions between nature, knowledge and society. Research was conducted at eleven archives in Canada and the United States in the papers of organizations, corporations, government departments, politicians, scientists and individuals.

  8. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta

    USGS Publications Warehouse

    Alexander, Jason S.; Wilson, Richard C.; Green, W. Reed

    2012-01-01

    The U.S. Geological Survey Forecast Mekong project is providing technical assistance and information to aid management decisions and build science capacity of institutions in the Mekong River Basin. A component of this effort is to produce a synthesis of the effects of dams and other engineering structures on large-river hydrology, sediment transport, geomorphology, ecology, water quality, and deltaic systems. The Mississippi River Basin (MRB) of the United States was used as the backdrop and context for this synthesis because it is a continental scale river system with a total annual water discharge proportional to the Mekong River, has been highly engineered over the past two centuries, and the effects of engineering have been widely studied and documented by scientists and engineers. The MRB is controlled and regulated by dams and river-engineering structures. These modifications have resulted in multiple benefits including navigation, flood control, hydropower, bank stabilization, and recreation. Dams and other river-engineering structures in the MRB have afforded the United States substantial socioeconomic benefits; however, these benefits also have transformed the hydrologic, sediment transport, geomorphic, water-quality, and ecologic characteristics of the river and its delta. Large dams on the middle Missouri River have substantially reduced the magnitude of peak floods, increased base discharges, and reduced the overall variability of intraannual discharges. The extensive system of levees and wing dikes throughout the MRB, although providing protection from intermediate magnitude floods, have reduced overall channel capacity and increased flood stage by up to 4 meters for higher magnitude floods. Prior to major river engineering, the estimated average annual sediment yield of the Mississippi River Basin was approximately 400 million metric tons. The construction of large main-channel reservoirs on the Missouri and Arkansas Rivers, sedimentation in dike

  9. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 1. Engineering Design and Instrumentation

    PubMed Central

    Weiland, Mark A.; Deng, Z. Daniel; Seim, Tom A.; LaMarche, Brian L.; Choi, Eric Y.; Fu, Tao; Carlson, Thomas J.; Thronas, Aaron I.; Eppard, M. Brad

    2011-01-01

    In 2001 the U.S. Army Corps of Engineers, Portland District (OR, USA), started developing the Juvenile Salmon Acoustic Telemetry System, a nonproprietary sensing technology, to meet the needs for monitoring the survival of juvenile salmonids through eight large hydroelectric facilities within the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006, the Pacific Northwest National Laboratory began the development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in two or three dimensions for determining route of passage and behavior as the fish passed at the facility. The additional information on route of passage, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities through the FCRPS. PMID:22163918

  10. Local Economic Development and Hydropower Along the Brahmaputra River Basin in Northeast India

    NASA Astrophysics Data System (ADS)

    Mock, A.

    2014-12-01

    Large dams have long been controversial. They offer benefits, such as reduced greenhouse gas emissions, energy security, and local development, yet produce negative social and ecological impact, such as wildlife habitat destruction, human displacement, and the disruption of downstream fishing or agricultural industries. In the past decade, the Indian government has signed Memoranda of Understanding with hydroelectric power companies for the building of over 130 large dams on the Brahmaputra River in the state of Arunachal Pradesh in Northeast India. These dams can generate 43% of India's assessed hydropower potential to sustain India's growing economy. In addition, the Indian government claims that these dams will bring local development with needed jobs. However, local Arunachali people have protested and temporarily halted hydropower projects because of the impact of dams on their existing livelihoods. Using the North Eastern Electric Power Corporation's (NEEPCO) Ranganadi Hydroelectric Project as a case study, our project examined whether dams in Northeast India provide jobs for local people, and whether distance from the dam or work colony to a worker's hometown affects the type of job the worker received. Survey data from residents at NEEPCO's work colony in Doimukh, Arunachal Pradesh, was analyzed using SPSS (n = 18). Our research found that 100% of workers at the dam originally resided in Northeast India, with 33% from Arunachal Pradesh, and 67% from the nearby states of Assam, and Tripura. Further, our analysis revealed no statistically significant relationship between the distance to a worker's hometown and job type (p = .609). Where workers come from did not affect the type of job they received. More research using a larger sample size and additional hydroelectric project case studies is needed to further explore the relationship between worker home location and their job types.

  11. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    USGS Publications Warehouse

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and

  12. Stability of backwater-influenced river bifurcations: A study of the Mississippi-Atchafalaya system

    NASA Astrophysics Data System (ADS)

    Edmonds, D. A.

    2012-04-01

    In this paper I use numerical modeling to show that the hydraulic backwater profile creates a feedback that may stabilize river bifurcations. The numerical model simulates flow and sediment transport in the Mississippi-Atchafalaya River system without the Old River Control Structure. The results show that bifurcation evolution strongly depends on the discharge upstream of the bifurcation. At upstream discharges greater than 12600 m3 s-1 the Atchafalaya River discharge increases through time at the expense of the Mississippi River. Interestingly, at upstream discharges lower than 12600 m3 s-1 the opposite occurs and the Mississippi River discharge increases at the expense of the Atchafalaya River. The capture direction changes because the backwater profile of each river varies enough at high and low discharge to invert the water surface slope ratio. These results suggest that the capture direction would change at high and low flow, which would have a stabilizing effect by preventing the runaway growth of one channel. Accounting for this, I calculate that in the absence of the Old River Control Structure capture would not happen catastrophically, but rather the Atchafalaya River would capture the Mississippi River in ˜300 years from present day.

  13. 75 FR 30021 - South Carolina Electric and Gas Company; Saluda Hydroelectric Project; Notice of Teleconference...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... telephone. The FERC contact for the Saluda Hydroelectric Project is Lee Emery. Please call Lee Emery at (202) 502-8379 by 4 p.m. EST, June 11, 2010, or by e-mail at lee[email protected] , to receive specific...

  14. 26. BUILDING PLANS FOR MENTONE POWER HOUSE, PACIFIC LIGHT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. BUILDING PLANS FOR MENTONE POWER HOUSE, PACIFIC LIGHT AND POWER CO., OCT. 7, 1903. R.S. MASSON, CONSULTING ELECTRICAL ENGINEER, SAN FRANCISCO AND LOS ANGELES. SCE drawing no. 52306. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA

  15. Investigating the Performance of One- and Two-dimensional Flood Models in a Channelized River Network: A Case Study of the Obion River System

    NASA Astrophysics Data System (ADS)

    Kalyanapu, A. J.; Dullo, T. T.; Thornton, J. C.; Auld, L. A.

    2015-12-01

    Obion River, is located in the northwestern Tennessee region, and discharges into the Mississippi River. In the past, the river system was largely channelized for agricultural purposes that resulted in increased erosion, loss of wildlife habitat and downstream flood risks. These impacts are now being slowly reversed mainly due to wetland restoration. The river system is characterized by a large network of "loops" around the main channels that hold water either from excess flows or due to flow diversions. Without data on each individual channel, levee, canal, or pond it is not known where the water flows from or to. In some segments along the river, the natural channel has been altered and rerouted by the farmers for their irrigation purposes. Satellite imagery can aid in identifying these features, but its spatial coverage is temporally sparse. All the alterations that have been done to the watershed make it difficult to develop hydraulic models, which could predict flooding and droughts. This is especially true when building one-dimensional (1D) hydraulic models compared to two-dimensional (2D) models, as the former cannot adequately simulate lateral flows in the floodplain and in complex terrains. The objective of this study therefore is to study the performance of 1D and 2D flood models in this complex river system, evaluate the limitations of 1D models and highlight the advantages of 2D models. The study presents the application of HEC-RAS and HEC-2D models developed by the Hydrologic Engineering Center (HEC), a division of the US Army Corps of Engineers. The broader impacts of this study is the development of best practices for developing flood models in channelized river systems and in agricultural watersheds.

  16. Influence of environmental parameters on the concentration of subsurface dissolved methane in two hydroelectric power plants in Brazil

    NASA Astrophysics Data System (ADS)

    Silva, M. G.; Marani, L.; Alvala, P. C.

    2013-12-01

    Methane (CH4) is a trace gas in the atmosphere of great importance for atmospheric chemistry as one of the main greenhouse gases. There are different sources with the largest individual production associated with the degradation of organic matter submerged in flooded areas. The amount of dissolved methane that reaches the surface depends on the production in the sediments and consumption in the water column. Both processes are associated with microbial activity and consequently dependent on the physico-chemical environmental conditions. The construction of hydroelectric dams cause flooding of areas near the river that can change the characteristics of the environment and cause changes in subsurface methane concentration. In this work, we studied two hydroelectric plants located in Brazil: Batalha (17°20'39.52"S, 47°29'34.29"W), under construction when the samples were take, and Itaipu (25°24'45.00"S, 54°35'39.00"W) which has been floated over 30 years ago. The water samples to determine dissolved methane were collected approximately 5 cm near the surface. In each collection point was measured depth, water temperature, pH and redox potential. The range of dissolved methane between the two dams was similar: 0.07-10.33 μg/l (Batalha) and 0.15-10.93 μg/l (Itaipu). However, the Batalha's average (4.04 × 3.43 μg/l; median = 3.66 μg/l) was higher than that observed in Itaipu (2.15 × 1.59 μg/l; median = 2.53 μg/l). The influence of environmental parameters on the concentration of dissolved methane was evaluated by multivariate statistical techniques (Principal Component Analysis - PCA). All of the parameters had some correlation with dissolved methane, however, the greatest contribution in Batalha was associated with pH while in Itaipu was the depth. The pH variation of the various points studied in Batalha may be associated with periods of drought and flooding of the river and hence the incorporation of organic matter in the environment. The organisms

  17. Options for managing hypoxic blackwater events in river systems: a review.

    PubMed

    Kerr, Janice L; Baldwin, Darren S; Whitworth, Kerry L

    2013-01-15

    Blackwater events are characterised by a high concentration of dissolved organic carbon in the water column. They occur naturally in lowland rivers with forested floodplains and bring a variety of benefits to both aquatic and floodplain biota. However, particularly when accompanied by high temperatures, respiration of the organic carbon may cause blackwater to become hypoxic. This may lead to a range of lethal and sub-lethal effects on the aquatic biota. We review the current scientific knowledge concerning the management of blackwater and hypoxia, and examine how this knowledge may be applied to the management of hypoxic blackwater events in lowland river systems. A range of management options, which aim to either prevent the development of hypoxic blackwater or to reintroduce oxygen into deoxygenated waters, are reported. Mitigation options that may be applicable to lowland river systems include manipulating the season and magnitude of floods in regulated rivers, increasing roughness in flow paths, establishing oxygenated refugia for aquatic biota and introducing hydraulic structures that promote turbulence and re-aeration. With climatic changes trending towards a scenario where extreme events leading to the development of hypoxic blackwater are more probable, it is now vital to validate and optimise management options on local and regional scales and work towards closing knowledge gaps. With judicious management of regulated rivers, it is possible to minimise the impacts of hypoxic flows while preserving the benefits brought to floodplain and river ecosystems by seasonal flooding and carbon exchange. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  18. Floodplain Impact on Riverine Dissolved Carbon Cycling in the Mississippi-Atchafalaya River System

    NASA Astrophysics Data System (ADS)

    DelDuco, E.; Xu, Y. J.

    2017-12-01

    Studies have shown substantial increases in the export of terrestrial carbon by rivers over the past several decades, and have linked these increases to human activity such as changes in land use, urbanization, and intensive agriculture. The Mississippi River (MR) is the largest river in North America, and is among the largest in the world, making its carbon export globally significant. The Atchafalaya River (AR) receives 25% of the Mississippi River's flow before traveling 189 kilometers through the largest bottomland swamp in North America, providing a unique opportunity to study floodplain impacts on dissolved carbon in a large river. The aim of this study was to determine how dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the AR change spatially and seasonally, and to elucidate which processes control carbon cycling in this intricate swamp river system. From May 2015 -May 2016, we conducted monthly river sampling from the river's inflow to its outflow, analyzing samples for DOC and DIC concentrations and δ 13C stable isotope composition. During the study period, the river discharged a total of 5.35 Tg DIC and a total of 2.34 Tg DOC into the Gulf of Mexico. Based on the mass inflow-outflow balance, approximately 0.53 Tg ( 10%) of the total DIC exported was produced within the floodplain, while 0.24 Tg ( 10%) of DOC entering the basin was removed. The AR was consistently saturated with pCO2 above atmospheric pressure, indicating that this swamp-river system acts a large source of DIC to the atmosphere as well as to coastal margins. Largest changes in carbon constituents occurred during periods of greatest inundation of the basin, and corresponded with shifts in isotopic composition that indicated large inputs of DIC from floodplains. This effect was particularly pronounced during initial flood stages. This study demonstrates that a major river with extensive floodplains in its coastal margin can act as an important source of DIC as well

  19. Historical and Contemporary Patterns of Mercury in a Hydroelectric Reservoir and Downstream Fishery: Concentration Decline in Water and Fishes.

    PubMed

    Green, Derek J; Duffy, Mark; Janz, David M; McCullum, Kevin; Carrière, Gary; Jardine, Timothy D

    2016-08-01

    Mercury (Hg) contamination can pose risks to human and animal health as well as commercial fisheries. Reservoir construction in riverine systems produces flooded conditions amenable to Hg(II)-methylating bacteria, which can transform this relatively benign environmental contaminant into the bioaccumulative, environmentally relevant, and neurotoxic methyl-Hg (MeHg). Hg concentrations ([Hg]) in fishes from reservoirs can take decades to decrease to pre-dam levels, but less is known about Hg exported downstream and its dynamics within downstream fish populations. We examined and compared the multidecadal rates of biotic [Hg] decrease and contemporary factors affecting [Hg] in fish collected from a hydroelectric reservoir (Tobin Lake) and a related downstream fishery (Cumberland Lake) along the Saskatchewan River, Canada. Rates of [Hg] decrease were considered in four species-northern pike (Esox lucius), sauger (Sander canadensis), goldeye (Hiodon alosoides), and walleye (S. vitreus)-all of which showed a significant decrease over time (p < 0.001) and are now lower than Health Canada consumption guidelines (0.5 μg/g). Rates of decrease ranged from 0.5 to 3.9 %/year and were similar between sites in the cases of northern pike and sauger. Contemporary factors affecting [Hg] in walleye collected downstream include fish length (p < 0.001), fish age (p < 0.001), and trophic magnification through the food web (p < 0.001), and relationships between [Hg] and trophic level in predatory and prey fish are now similar to those found in non-Hg-inundated systems at a similar latitude. Together, these results suggest connected contamination between the two sites and delineate the timeline during which [Hg] in a variety of fish species decreased to nontoxic levels in both locations.

  20. One-dimensional flow model of the river-hyporheic zone system

    NASA Astrophysics Data System (ADS)

    Pokrajac, D.

    2016-12-01

    The hyporheic zone is a shallow layer beneath natural streams that is characterized by intense exchange of water, nutrients, pollutants and thermal energy. Understanding these exchange processes is crucial for successful modelling of the river hydrodynamics and morphodynamics at various scales from the river corridor up to the river network scale (Cardenas, 2015). Existing simulation models of hyporheic exchange processes are either idealized models of the tracer movement through the river-hyporheic zone system (e.g. TSM, Bencala and Walters, 1983) or detailed models of turbulent flow in a stream, coupled with a conventional 2D Darcian groundwater model (e.g. Cardenas and Wilson, 2007). This paper presents an alternative approach which involves a simple 1-D simulation model of the hyporheic zone system based on the classical SWE equations coupled with the newly developed porous media analogue. This allows incorporating the effects of flow unsteadiness and non-Darcian parameterization od the drag term in the hyporheic zone model. The conceptual model of the stream-hyporheic zone system consists of a 1D model of the open channel flow in the river, coupled with a 1D model of the flow in the hyporheic zone via volume flux due to the difference in the water level in the river and the hyporheic zone. The interaction with the underlying groundwater aquifer is neglected, but coupling the present model with any conventional groundwater model is straightforward. The paper presents the derivation of the 1D flow equations for flow in the hyporheic zone, the details of the numerical scheme used for solving them and the model validation by comparison with published experimental data. References Bencala, K. E., and R. A. Walters (1983) "Simulation of solute transport in a mountain pool-and-riffle stream- a transient storage model", Water Resources Reseach 19(3): 718-724. Cardenas, M. B. (2015) "Hyporheic zone hydrologic science: A historical account of its emergence and a